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Abstract

Using the light-front pion wave function based on a Bethe-Salpeter amplitude model, we study

the properties of the pion in symmetric nuclear matter. The pion model we adopt is well constrained

by previous studies to explain the pion properties in vacuum. In order to consistently incorporate

the constituent up and down quarks of the pion immersed in symmetric nuclear matter, we use

the quark-meson coupling model, which has been widely applied to various hadronic and nuclear

phenomena in a nuclear medium with success. We predict the in-medium modifications of the pion

electromagnetic form factor, charge radius and weak decay constant in symmetric nuclear matter.
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I. INTRODUCTION

One of the most exciting challenges in hadronic physics is to investigate the changes in

hadron properties in a nuclear medium as well as in a nucleus [1, 2]. In particular, partial

restoration of chiral symmetry in a dense nuclear medium has not yet been confirmed by

experiment, although it is generally accepted to occur based on quantum chromodynamics

(QCD). In spite of the notorious complex number or sign problem of the fermion determinant,

one hopes that lattice QCD simulation will eventually be able to study hadron properties

in a nuclear medium with relatively high baryon densities [3–6].

Chiral symmetry is one of the most important symmetries in QCD. Therefore, it is very

interesting to study the pion properties, since it is the Nambu-Goldstone boson of the theory

which is realized in nature due to the spontaneous breaking of chiral symmetry. Thus, it

is natural to ask how the pion properties would be modified in a nuclear medium, where

chiral symmetry is expected to be (partially) restored (see Ref. [7] for a review concerning

this question).

There exist several works on pion properties in a nuclear medium, e.g. using the Nambu-

Jona-Lasinio (NJL) model [8], studies were made for the dynamical mass (of the pion-like

mode) [9], the pion structure function [10], and the mass and decay constant [11–13]. Other

studies dealt with the pion decay constant in a composite-operator approach [14], pion

cloud effects on the Drell-Yan scattering [15], mass shifts via in-medium chiral perturbation

theory [16–18], masses and decay constants within a Dyson-Schwinger and Bethe-Salpeter

equation ansatz [19]. Furthermore, the pion in finite density has been studied with QCD

sum-rule approaches [20], using virial expansions [21], a non-local chiral quark model [22],

a relativistic mean field approach [23], and by exploiting operator relations in QCD [24].

However, only one of them [23] examined the in-medium modification of the pion elastic form

factor (in asymmetric nuclear matter) based on the ρ−ω mixing mechanism at the hadronic

level. In the present work, we investigate the pion structural properties in symmetric nuclear

matter based on quark degrees of freedom.

In order to do so, it is necessary to have a reliable pion model which is well constrained and

successful in describing its properties in vacuum. However, because of the Nambu-Goldstone

boson nature of the pion with an anomalously small mass, its description in vacuum itself is

not straightforward either, and a special treatment is necessary. Furthermore, even if such a
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successful model is available, one requires a proper description of the system’s state as well as

a consistent current operator to perform a meaningful comparison with experimental data.

To properly define the state of a relativistic system, three space-time hyper-surfaces were

identified by Dirac [25]. These hyper-surfaces correspond to different forms of relativistic

Hamiltonian dynamics, namely instant form, front form and point form.

In the present study, we apply the front-form dynamics incorporating consistency between

the current operator and the state from a field theoretical point of view with a fixed number

of particles. In particular, although the state has an infinite number of components in the

Fock-space [26], only the lowest Fock component or valence component is usually modelled

and used for calculating electroweak form factors. In principle, the infinite set of coupled

eigenvalue equations for the Hamiltonian operator in the Fock space can be replaced by an

effective squared-mass operator or an effective Hamiltonian acting on the valence sector. At

the same time, it is also possible to express systematically the higher Fock-state components

of the wave function as functionals of the lower ones [26–28]. The effective electroweak

current operator for the valence component of the state can also be consistently derived

within the field theoretical framework of the Bethe-Salpeter equation projected on the equal

light-front time [29, 30]. However, the major advance in the extraction of the form factors

from the front-form wave function is the realization that in the Drell-Yan frame (q+ = 0)

the pair production does not contribute unlike in the q+ 6= 0 frame [31].

In Ref. [32], the effect of such pair-terms was studied in detail to evaluate the form

factors of a system with two identical fermions, where effective constituent quark masses of

the lowest Fock-space component were used to describe the pion properties in vacuum. The

vertex function describes the momentum component of the coupling of the quarks to the

pion bound state, where by momentum component we mean the light-front wave function

obtained by integrating over the relative quark momentum, k−, after the separation of the

instantaneous terms in the external quark legs. Namely, the momentum component is the

light-front wave function which depends on the kinematic variables, k+ and ~k⊥. In this

model, the symmetric vertex function and the light-front valence wave function which are

symmetric under the exchange of the fermion momenta are employed [32]. (See also Ref. [33]

for a nonsymmetric case.) Symmetry properties of a Bethe-Salpeter amplitude are derived

from quantum field theory, where conceptual and phenomenological problems arise when a

nonsymmetric vertex function is used to describe the pion [31, 33]. For example, the form
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factor and weak decay constant cannot be reproduced simultaneously. In this study, we use

the pion model of Ref. [32] which has all the desired properties discussed above.

The main purpose of the present article is to investigate the in-medium modifications

of the pion properties, i.e. the electromagnetic form factor, radius and decay constant in

symmetric nuclear matter, where the pion model [32] is adjusted so as to provide the best

description of the electromagnetic form factor data in vacuum. Because the (symmetric)

nuclear matter is translational and rotational invariant, usual Lorentz transformation can

be applied. Thus, the input obtained in the nuclear matter rest frame by the nuclear matter

model we employ, keeps the track of the Lorentz scalar and vector nature of mean fields,

and thus our assumption on the pion vertex model enables us to extract the form factor in

a covariant manner.

For the nuclear matter, we employ the quark-meson coupling (QMC) model [34–36] in

order to include consistently the in-medium properties of the constituent up and down

quarks in the pion in symmetric nuclear matter. The QMC model has been widely applied

to various nuclear and hadronic phenomena in a nuclear medium with successes. Although

our approach may be regarded as crude, this is a first exploratory study that treats both

the constituent quarks forming nuclear matter in the bound nucleons and those in the pion

immersed in this nuclear medium on the same footing. In particular, it is known that

a treatment of nuclear matter based on quark degrees of freedom is very difficult and a

description starting from first principles of QCD is far remote. In this sense, although

phenomenological, this study may give some insight in the pion properties in a nuclear

medium.

This article is organized as follows. In Section II we briefly describe the QMC model

focusing on the properties of constituent up and down quarks and the pion vertex in sym-

metric nuclear matter. The expressions for the in-medium electromagnetic form factor of

the pion are discussed in Section III, while the results for the in-medium pion properties,

electromagnetic form factor, radius and weak decay constant are presented in Section IV.

Finally, Section V is devoted to a summary and discussions.
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II. QUARKS IN NUCLEAR MATTER

In order to study consistently the modifications of the pion properties in a nuclear

medium, we need a reasonable model of nuclear matter based on the quark degrees of

freedom, as well as a pion model which successfully describes the pion properties in vacuum.

We first discuss the quark model description of nuclear matter with the QMC model, with

presenting some results calculated for symmetric nuclear matter.

A. Quark Model of Nuclear Matter: QMC Model

The QMC model was introduced in 1988 by Guichon [34] with the MIT bag model, and

by Frederico et al . in 1989 [37] with help of a confining harmonic potential, both approaches

to describe nuclear matter properties based on the quark degrees of freedom. The model has

been successfully applied for various studies of finite (hyper)nuclei [35] as well as the hadron

properties in a nuclear medium (see Ref. [36] for a comprehensive review). In the model

the medium effects arise through the self-consistent coupling of phenomenological isoscalar-

Lorentz-scalar (σ), isoscalar-Lorentz-vector (ω) and isovector-Lorentz-vector (ρ) meson fields

to the confined light-flavor u and d valence quarks — rather than to the nucleons. As a

result the internal structure of the bound nucleon is modified by the surrounding nuclear

medium with respect to the free nucleon case.

The effective Lagrangian density for a uniform, spin-saturated, and isospin-symmetric

nuclear system (symmetric nuclear matter) at the hadronic level is given by [34–36],

L = ψ[iγ · ∂ −m∗

N (σ̂)− gωω̂
µγµ]ψ + Lmeson, (1)

where ψ, σ̂ and ω̂ are respectively the nucleon, Lorentz-scalar-isoscalar σ, and Lorentz-

vector-isoscalar ω field operators, with

m∗

N(σ̂) = mN − gσ(σ̂)σ̂, (2)

which defines the σ-field dependent coupling constant, gσ(σ̂), while gω is the nucleon-ω

coupling constant. All the important effective nuclear many-body dynamics including 3-

body nucleon force modeled at the quark level, will effectively be condensed in gσ(σ̂). Solving

the Dirac equations for the up and down quarks in the nuclear medium with the same mean

fields (mean values) σ and ω, which act on the bound nucleon self-consistently based on
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Eq. (1), we obtain the effective σ-dependent coupling gσ(σ) at the nucleon level [34–36].

The free meson Lagrangian density is given by,

Lmeson =
1

2
(∂µσ̂∂

µσ̂ −m2
σσ̂

2)− 1

2
∂µω̂ν(∂

µω̂ν − ∂ν ω̂µ) +
1

2
m2

ωω̂
µω̂µ , (3)

where we have ignored the isospin-dependent Lorentz-vector-isovector ρ-meson field, since

we consider isospin-symmetric nuclear matter within the Hartree mean-field approximation.

In this case the mean value of the ρ-mean field becomes zero and there is no need to consider

its possible contributions due to the ρ-Fock (exchange) terms.

In the following we work in the nuclear matter rest frame. For symmetric nuclear matter

in the mean-field approximation, the nucleon Fermi momentum kF (baryon density ρ) and

the scalar density (ρs) associated with the σ-mean field can be related as,

ρ =
4

(2π)3

∫

d~k θ(kF − |~k|) = 2k3F
3π2

, (4)

ρs =
4

(2π)3

∫

d~k θ(kF − |~k|) m∗

N (σ)
√

m∗2
N (σ) + ~k2

, (5)

where m∗

N (σ) is the constant value of the effective nucleon mass at a given density and is

calculated in the quark model. In the standard QMC approach [34–36], one uses the MIT

bag model and the Dirac equations for the up and down quarks in symmetric nuclear matter

are solved self-consistently with the σ and ω mean-field potentials. The Dirac equations for

the quarks and antiquarks (q = u or d, and Q = s, c or b, quarks) in the bag of hadron h in

nuclear matter at the position x = (t, ~r) (|~r| ≤ bag radius) are given by [36],

[

iγ · ∂x − (mq − V q
σ )∓ γ0

(

V q
ω +

1

2
V q
ρ

)]





ψu(x)

ψu(x)



 = 0, (6)

[

iγ · ∂x − (mq − V q
σ )∓ γ0

(

V q
ω − 1

2
V q
ρ

)]





ψd(x)

ψd(x)



 = 0, (7)

[iγ · ∂x −mQ]ψQ(x) (or ψQ(x)) = 0, (8)

where we have neglected the Coulomb force as usual, since the nuclear matter properties

are due to the strong interaction, and we assume SU(2) symmetry for the light quarks,

mq = mu = md, and define m∗

q ≡ mq − V q
σ = m∗

u = m∗

d. In symmetric nuclear matter, the

isospin dependent ρ-meson mean field in Hartree approximation yields V q
ρ = 0 in Eqs. (6)

and (7), so we ignore it hereafter. The constant mean-field potentials in nuclear matter are
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defined by, V q
σ ≡ gqσσ = gqσ < σ > and V q

ω ≡ gqωω = gqω δ
µ,0 < ωµ >, with gqσ and gqω being the

corresponding quark-meson coupling constants, and the quantities inside the brackets stand

for taking expectation values by the nuclear matter ground state [36]. Note that, since the

velocity averages to zero in the rest frame of nuclear matter, the mean vector source due to

the quark fields as well, < ψq~γψq >= 0. Thus we may just keep the term proportional to γ0

in Eqs. (6) and (7).

The normalized, static solution for the ground state quarks or antiquarks with flavor f

in the hadron h, may be written, ψf(x) = Nfe
−iǫf t/R

∗

hψf (~r), where Nf and ψf(~r) are the

normalization factor and corresponding spin and spatial part of the wave function. The bag

radius in medium for a hadron h, R∗

h, is determined through the stability condition for the

mass of the hadron against the variation of the bag radius [36]. The eigenenergies in units

of 1/R∗

h are given by,




ǫu

ǫu



 = Ω∗

q ±R∗

h

(

V q
ω +

1

2
V q
ρ

)

,





ǫd

ǫd



 = Ω∗

q ±R∗

h

(

V q
ω − 1

2
V q
ρ

)

, ǫQ = ǫQ = ΩQ. (9)

The hadron masses in a nuclear medium m∗

h (free mass mh), are calculated by

m∗

h =
∑

j=q,q,Q,Q

njΩ
∗

j − zh

R∗

h

+
4

3
πR∗3

h B,
∂m∗

h

∂Rh

∣

∣

∣

∣

Rh=R∗

h

= 0, (10)

where Ω∗

q = Ω∗

q = [x2q+(R∗

hm
∗

q)
2]1/2, with m∗

q = mq−gqσσ, Ω∗

Q = Ω∗

Q
= [x2Q+(R∗

hmQ)
2]1/2, and

xq,Q being the lowest bag eigenfrequencies. nq(nq) and nQ(nQ) are the quark (antiquark)

numbers for the quark flavors q andQ, respectively. The MIT bag quantities, zh, B, xq,Q, and

mq,Q are the parameters for the sum of the c.m. and gluon fluctuation effects, bag constant,

lowest eigenvalues for the quarks q or Q, respectively, and the corresponding current quark

masses. zN and B (zh) are fixed by fitting the nucleon (the hadron) mass in free space. (See

table I the nucleon case.)

For the nucleon h = N case in the above, the lowest, positive bag eigenfunction is given

by

q(t, ~r) =
N√
4π
e−iǫqt/R∗

N





j0(xr/R
∗

N)

iβq~σ · r̂j1(xr/R∗

N)



 θ(R∗

N − r)χm, (11)

with r = |~r| and χm the spin function and

Ω∗

q =
√

x2 + (m∗
qR

∗

N)
2, βq =

√

Ω∗
q −m∗

qR
∗

N

Ω∗
q +m∗

qR
∗

N

, (12)

N−2 = 2R∗3
N j

2
0(x)[Ω

∗

q(Ω
∗

q − 1) +m∗

qR
∗

N/2]/x
2, (13)

7



TABLE I. Coupling constants, the parameter ZN , bag constant B (in B1/4), and calculated prop-

erties for symmetric nuclear matter at normal nuclear matter density ρ0 = 0.15 fm−3, for mq = 5

and 220 MeV. The effective nucleon mass, m∗

N , and the nuclear incompressibility, K, are quoted in

MeV (the free nucleon bag radius used is RN = 0.8 fm, the standard value in the QMC model [36]).

mq(MeV) g2σ/4π g2ω/4π m∗

N K ZN B1/4(MeV)

5 5.39 5.30 754.6 279.3 3.295 170

220 6.40 7.57 698.6 320.9 4.327 148

where x is the eigenvalue for the lowest mode, which satisfies the boundary condition at the

bag surface, j0(x) = βqj1(x).

The same meson mean fields σ and ω for the quarks satisfy the following equations at

the nucleon level self-consistently:

ω =
gωρ

m2
ω

, (14)

σ =
gσ
m2

σ

CN(σ)
4

(2π)3

∫

d~k θ(kF − |~k|) m∗

N(σ)
√

m∗2
N (σ) + ~k2

, (15)

CN(σ) =
−1

gσ(σ = 0)

[

∂m∗

N (σ)

∂σ

]

, (16)

where CN(σ) is the constant value of the scalar density ratio [34–36]. Because of the under-

lying quark structure of the nucleon used to calculate M∗

N (σ) in the nuclear medium (see

Eq. (10) with h = N), CN(σ) gets σ-dependence, whereas the usual point-like nucleon-based

model yields unity, CN(σ) = 1. It is this CN(σ) or gσ(σ) that gives a novel saturation mech-

anism in the QMC model, and contains the important dynamics which originates in the

quark structure of the nucleon. Without an explicit introduction of the nonlinear couplings

of the meson fields in the Lagrangian density at the nucleon and meson level, the standard

QMC model yields the nuclear incompressibility of K ≃ 280 MeV, which is in contrast to

a naive version of quantum hadrodynamics (QHD) [38] (the point-like nucleon model of

nuclear matter), results in the much larger value, K ≃ 500 MeV; the empirically extracted

value falls in the range K = 200 − 300 MeV. (See Ref. [39] for the updated discussions on

the incompressibility.)

Once the self-consistency equation for the σ, Eq. (15), has been solved, one can evaluate
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the total energy per nucleon:

Etot/A =
4

(2π)3ρ

∫

d~k θ(kF − |~k|)
√

m∗2
N (σ) + ~k2 +

m2
σσ

2

2ρ
+

g2ωρ

2m2
ω

. (17)

We then determine the coupling constants, gσ and gω, so as to fit the binding energy of

15.7 MeV at the saturation density ρ0 = 0.15 fm−3 (k0F = 1.305 fm−1) for symmetric nuclear

matter.

The pion model we adopt here [32] uses a vacuum constituent quark mass, mq = 220 MeV,

in order to well reproduce the electromagnetic form factor data and decay constant. There-

fore, to be consistent with this pion model, our nuclear matter is built with the same vacuum

mass. The corresponding coupling constants and some calculated properties for symmetric

nuclear matter at the saturation density, with the standard values of mσ = 550 MeV and

mω = 783 MeV, are listed in Table I. For comparison, we also give the corresponding quan-

tities calculated in the standard QMC model with a vacuum quark mass of mq = 5 MeV

(see Ref. [36] for details). Thus we have obtained the necessary properties of the light-flavor

constituent quarks in symmetric nuclear matter with the empirically accepted data for a vac-

uum mass of mq = 220 MeV; namely, the density dependence of the effective mass (scalar

potential) and vector potential. The same in-medium constituent quark properties will be

used as input to describe the pion immersed in symmetric nuclear matter.

In Figs. 1, 2 and 3, we respectively show our results for the negative of the binding energy

per nucleon (Etot/A − mN), effective mass of the nucleon, m∗

N , and effective mass of the

constituent up and down quarks, m∗

q , in symmetric nuclear matter.

As one can expect from the values of the incompressibility, K = (279.3, 320.9) MeV in

Table I, the result for E/A−mN with mq = 220 MeV shown in Fig. 1 varies slightly faster

than that for mq = 5 MeV [36] with increasing density. As for the effective nucleon mass

shown in Fig. 2 with mq = 220 MeV, also decreases faster than that for mq = 5 MeV [36]

with increasing nuclear density.

Concerning the effective constituent quark mass m∗

q shown in Fig. 3, a general comment

in connection with the light-front model [32, 40] is in order: due to the pole structure of the

propagators, the sum of the in-medium constituent quark masses must be larger than the

effective mass of the pion, m∗

π, namely 2m∗

q > m∗

π. Moreover, the pion mass up to normal

nuclear matter density is expected to be modified only slightly, where the modification δmπ

at nuclear density ρ = 0.17 fm−3 averaged over the pion isospin states is estimated as
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FIG. 1. Negative of the binding energy per nucleon (Etot/A−mN ) for symmetric nuclear matter

calculated with the vacuum up and down quark mass, mq = 220 MeV. At the saturation point

ρ0 = 0.15 fm−3, the value is fitted to −15.7 MeV. (See Ref. [36] for the mq = 5 MeV case, denoted

in there as QMC-I.)

δmπ ≃ +3 MeV [1, 7, 11, 17]. Therefore, we approximate the effective pion mass value to

be the same as in vacuum, m∗

π ≃ mπ up to ρ = ρ0 = 0.15 fm−3. In Fig. 3 we present the

results for the calculated effective mass of the constituent quarks, m∗

q , up to 1.5ρ0, focusing

on the relevant region where 2m∗

q > m∗

π ≃ mπ is satisfied.

B. Quark Propagator and Pion Vertex in Symmetric Nuclear Matter

In general, the quark self-energy in symmetric nuclear matter is modified by the Lorentz-

scalar-isoscalar and Lorentz-vector-isoscalar potentials. In the Hartree mean field approxi-

mation discussed in section II, the modifications enter as the shift of the quark (antiquark)

momentum via pµ → pµ+V µ = pµ+ δµ0V
0 (= pµ± δµ0V q

ω ; +(−) for quark(antiquark)) due to
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FIG. 2. Nucleon effective mass, m∗

N , in symmetric nuclear matter. See also caption of Fig. 1.

the vector potential, and in the Lorentz-scalar part through the the Lorentz-scalar potential

Vs as mq → m∗

q ≡ mq + Vs (= mq − V q
σ ). Since the Lorentz transformation properties are

retained in nuclear matter, these modifications can be implemented in the pion model [32]

without difficulties. Then, the up or down quark propagator (containing the quark and

antiquark components) in symmetric nuclear matter is given by,

S∗(p+ V ) =
1

/p+ /V −m∗
q + iǫ

, (18)

while the in-medium pion vertex [32] is modified as,

Λ∗(k + V, P ) =
C∗

((k + V )2 −m2
R + iǫ)

+
C∗

((P − k − V )2 −m2
R + iǫ)

, (19)

where the normalization factor associated with C∗ is also modified by the medium effects.

The regulator mass mR represents soft effects at short range, namely at about the 1 GeV

scale, and mR may also be influenced by in-medium effects. However, since there exists no

established way of estimating this effect on the regulator mass and we already approximate
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FIG. 3. Effective mass of the constituent up and down quarks, m∗
q ≡ m∗

u = m∗

d. See also caption

of Fig. 1.

m∗

π = mπ, we also employ m∗

R = mR. In addition, since it is correlated with the in-medium

modified constant C∗ discussed in Section III, we use the vacuum regulator mass value mR

to avoid introducing another source of uncertainty.

III. THE IN-MEDIUM ELECTROMAGNETIC FORM FACTOR MODEL

The electromagnetic interaction of a pion, a spin-zero qq bound composite system in

vacuum, is based on three ingredients [32]; i) effective Lagrangian which models the coupling

of the pion field to the quark fields, ii) a symmetric vertex function in momentum space,

iii) effective constituent quark masses and the lowest Fock state. We follow the procedure

in vacuum i) − iii) with the in-medium constituent quark properties as input and calculate

the in-medium pion properties using an effective Lagrangian density with a pseudoscalar

coupling [41],

LI = −ig∗~Φ · qγ5~τq Λ∗, (20)
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k − P

P k

(a)

k − P ′

P ′ΓΓ

k − P

P k

(b)

k − P ′

P ′ΓΓ

FIG. 4. Light-front time-ordered processes for the electromagnetic interaction of the pion, where

the diagrams (a) and (b) correpsond to F
∗(I)
π in Eq. (24)) and F

∗(II)
π in Eq. (25), respectively. The

shift of variables, kµ + V µ → kµ, is applied to the loop integral.

where g∗ is the coupling constant and Λ∗ is the in-medium vertex function. The coupling

constant g∗ is given by the Goldberger-Treiman relation at the quark level, g∗ = m∗

q/f
∗

π , with

the in-medium pion decay constant f ∗

π . The constant C
∗ in Eq. (19) is determined from the

charge normalization for the spin-zero composite system and it is density dependent. The

photon field is coupled the minimal way satisfying current conservation. The front-form

coordinates are defined as, k+ = (k + V )0 + k3, k− = (k + V )0 − k3, and ~k⊥ ≡ (k1, k2).

The electromagnetic current associated with the π+ is obtained from the corresponding

Feynman triangle diagram;

jµ = −i 2em
∗2
q

f ∗2
π

Nc

∫

d4k′

(2π)4
Tr

[

S∗(k′)γ5S∗(k′ − P ′)γµS∗(k′ − P )γ5
]

Λ∗(k′, P ′)Λ∗(k′, P ) , (21)

where (k′)µ = kµ + δµ0V
0, and Nc = 3 is the number of colors. The factor 2 stems from

isospin algebra. (It is easy to prove that the Ward identity is satisfied in the Breit-frame:

first one performs the trace in q ·j, and notices that the integrand of the resulting expression

is odd in ~k′ = ~k → −~k′ = −~k, and therefore q · j = 0.)

We choose the symmetric vertex function, Eq. (19), which also produces a symmetric
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light-front wave function under the interchange of the quark and antiquark momenta, which

improves the physical description without the conceptual difficulties associated with the non-

symmetric regulator (see also Refs. [31, 42]). The normalization constant C∗ in Eq. (19) is

fixed by imposing the condition F ∗

π (0) = 1 on the pion form factor.

The effect of the vector potential δµ0V
0 in the loop integral cancels identically due to

the choice of the pion vertex. Therefore, only the mass shift of the quarks is relevant in

the loop integral. In the four-momentum integration, we apply the transformation, k′µ =

kµ + δµ0V
0 → kµ, so that no trace of the vector potential remains in the expressions of

the pion decay constant and electromagnetic form factor. It is worthwhile to observe that,

the current Eq. (21) means to be covariant, while the quark propagator and pion vertex

are computed in the rest frame of nuclear matter. However, both the shift of the time

component of the quark momentum and effective mass in the medium allow us to recover

a boost invariant form for the form factor as the shift in the virtual quark energy can be

absorbed by a variable change in the loop momentum, since we have assumed that the vertex

parameter is unchanged by the medium effects, which may be justified by the fact that it

corresponds to a short-range scale deep inside the pion wave function, which is much smaller

than the nucleon size.

We work in the Breit-frame, where the momentum transfer, qµ = (P ′ − P )µ, q2 =

q+q−− (~q⊥)
2 ≡ −Q2, lies in the z−x plane with q+ = −q− =

√

−q2 sinα, qx =
√

−q2 cosα
and qy = 0 (the angle θ in Ref. [31] corresponds to α+ 90◦). The initial and final momenta

of the composite spin zero bound state with mass mB are: P 0 = E = E ′ =
√

m2
B − q2/4,

~P ′

⊥
= −~P⊥ = ~q⊥

2
and P ′

z = −Pz = q+

2
. The Drell-Yan condition q+ = 0 is recovered with

α = 0◦, while the q+ =
√

−q2 condition [43] in the Breit-frame follows from α = 90◦. We

here use α = 0◦.

In general, the pion form factor in medium can be extracted from the covariant expression:

jµ = e(P µ + P ′µ)F ∗

π (q
2). (22)

If covariance and current conservation are satisfied in the calculation, one can obviously

compute the electromagnetic form factor in any frame and from any nonvanishing component

of the current.

In the following, to compute the pion elastic form factor, we use the pseudo-scalar La-

grangian density of Eq. (20), the current defined by Eq. (21), and the symmetric vertex

14



function given by Eq. (19) with the plus component of the current, j+, associated with

Eq. (21) in the Breit-frame (with ~q in the z−x plane). Only two nonvanishing contributions

in Eq. (21) contribute to the form factor [31, 33, 44, 45]:

F ∗

π (q
2) = F ∗(I)

π (q2) + F ∗(II)
π (q2). (23)

With the replacement kµ+ δµ0V
0 → kµ, the two contributions to the form factor obtained

from j+, which correspond to the two diagrams shown in Fig. 4, are given by the following

expressions:

F ∗(I)
π (q2) = −i m∗2

q

(P+ + P ′+)f ∗2
π

Nc

(2π)4

∫

d2k⊥dk
+dk−θ(k+)θ(P+ − k+)

k+(P+ − k+)(P ′+ − k+)
Π∗(k, P, P ′), (24)

and

F ∗(II)
π (q2) = −i m∗2

q

(P+ + P ′+)f ∗2
π

Nc

(2π)4

∫

d2k⊥dk
+dk−θ(k+ − P+)θ(P ′+ − k+)

k+(P+ − k+)(P ′+ − k+)
Π∗(k, P, P ′) ,

(25)

where

Π∗(k, P, P ′) =
Tr[O∗+]Λ∗(k, P )Λ∗(k, P ′)

(k− − k−on + iǫ)(P− − k− − (P − k)−on +
iǫ

P+−k+
)

× 1

(P ′− − k− − (P ′ − k)−on + iǫ)
, (26)

with the “in-medium on-the-energy shell” values of the individual momentum given by

k−on =
k2
⊥
+m∗2

q

k+
, (P − k)−on =

(P − k)2
⊥
+m∗2

q

P+ − k+
, and (P ′ − k)−on =

(P ′ − k)2
⊥
+m∗2

q

P ′+ − k+
.(27)

For the trace Tr[O∗+] of the operator in Eq. (26),

O∗+ = (/k +m∗

q)γ
5(/k − /P ′ +m∗

q)γ
+(/k − /P +m∗

q)γ
5, (28)

one finds,

1
4
Tr[O∗+] = −k−(P ′+ − k+)(P+ − k+) + (k2

⊥
+m∗2

q )(k+ − P+ − P ′+)

− 1

2
~k⊥ · (~P ′

⊥
− ~P⊥)(P

′+ − P+) +
1

4
k+q2

⊥
. (29)

The detailed forms of F ∗(I) and F ∗(II) in vacuum after integration over k− can be found in

Appendices A and B of Ref. [32].
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The explicit form of the symmetric regulator function in the front-form momentum co-

ordinates in Eq. (26) which enters in Eqs. (24) and (25) is given by:

Λ∗(k, P ) = C∗

[

k+
(

k− − k2
⊥
+m2

R − iǫ

k+

)]−1

+ C∗

[

(P+ − k+)

(

P− − k− − (P − k)2
⊥
+m2

R − iǫ

P+ − k+

)]−1

. (30)

The sum of the contributions F
∗(I)
π and F

∗(II)
π in vacuum was already shown to yield the

covariant result [32]. The different directions of ~q in the Breit-frame can only change the

absolute values of F
∗(I)
π (q2) and F

∗(II)
π (q2), but not the sum. For example, with q+ = 0

(α = 0◦) we have F
∗(II)
π (q2) = 0, and thus F

∗(I)
π (q2) alone yields the covariant result [32].

The in-medium quark Dirac propagator after the variable shift, kµ + δµ0V
0 → kµ, can be

decomposed using the front-form momenta [26],

/k +m∗

q

k2 −m∗2
q + iǫ

=
/kon +m∗

q

k+(k− − k−on +
iǫ
k+
)
+

γ+

2k+
, (31)

where k−on = (k2
⊥
+ m∗2

q )/k+. The second term on the right-hand side of Eq. (31) is an

instantaneous term in the light-front time. The instantaneous term contributes to both,

F
∗(I)
π (q2) and F

∗(II)
π (q2), due to the analytic structure of the symmetric vertex function of

Eq. (19). These contributions are of nonvalence nature, as they are not reducible to the

impulse approximation within the valence wave function.

IV. VALENCE LIGHT-FRONT WAVE FUNCTION

The valence component of the light-front wave function in vacuum was obtained in

Ref. [32]. The external two-fermion space-time coordinates of the Bethe-Salpeter ampli-

tude are constrained to equal light-front time after dropping the instantaneous terms of the

external Dirac propagators [30]. However, the effect of the instantaneous terms in a Bethe-

Salpeter approach is included in the effective operators, together with the valence wave

function [30]. In the present treatment, the Bethe-Salpeter amplitude with the in-medium

pion vertex of Eq. (19) can be written as [32],

Ψ∗(k + V, P ) =
/k + /V +m∗

q

(k + V )2 −m∗2
q + iǫ

γ5Λ∗(k + V, P )
/k + /V − /P +m∗

q

(k + V − P )2 −m∗2
q + iǫ

. (32)

Separating out the instantaneous terms in the quark propagators as well as the remaining

spinor operator part in the numerator of Eq. (32) and the k+ and (P+ − k+) factors in
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Eq. (32), the momentum part (the part depends on the plus and transverse momenta) of

the valence component of the light-front wave function with kµ + δµ0V
0 → kµ is given by,

Φ∗(k+, ~k⊥;P
+, ~P⊥) = iN∗

∫

dk−

2π

1

(k− − k−on +
iǫ
k+
)(P− − k− − (P − k)−on +

iǫ
P+−k+

)

×
(

1

k2 −m2
R + iǫ

+
1

(P − k)2 −m2
R + iǫ

)

, (33)

where N∗ is a normalization factor,

N∗ = C∗
m∗

q

f ∗
π

(Nc)
1

2 .

Performing the k− integration in Eq. (33), one has

Φ∗(k+, ~k⊥;P
+, ~P⊥) =

P+

m∗2
π −M2

0

[

N∗

(1− x)(m∗2
π −M2(m∗2

q , m
2
R))

+
N∗

x(m∗2
π −M2(m2

R, m
∗2
q ))

]

, (34)

where x = k+/P+, with 0 ≤ x ≤ 1; M2(m2
a, m

2
b) =

k2
⊥
+m2

a

x
+

(P−k)2
⊥
+m2

b

1−x
− P 2

⊥
, and the

square of the mass isM2
0 = M2(m∗2

q , m
∗2
q ). Since the momentum part of the wave function is

symmetric under the exchange of the fermion momenta, we have a second term in Eq. (34),

which is different from Ref. [33].

Using only the valence component, the electromagnetic form factor evaluated in the

Breit-frame reads [33, 41],

F ∗(WF )
π (q2) =

1

2π3(P ′+ + P+)

∫

d2k⊥dk
+θ(k+)θ(P+ − k+)

k+(P+ − k+)(P ′+ − k+)
Φ∗(k+, ~k⊥;P

′+, ~q⊥
2
)

×
(

k−onP
+P ′+ − 1

2
~k⊥ · ~q⊥(P+ − P ′+)− 1

4
k+q2

⊥

)

× Φ∗(k+, ~k⊥;P
+,−~q⊥

2
) . (35)

Once the normalization constant C∗ is obtained from the condition F ∗

π (0) = 1 (see Eq. (23)),

the probability of the valence qq component for the pion in medium can be calculated by

setting η∗ = F
∗(WF )
π (0).

For convenience, we introduce the transverse momentum probability density,

f ∗(k⊥) =
1

4π3m∗
π

∫ 2π

0

dφ

∫ P+

0

dk+M∗2
0

k+(P+ − k+)
Φ∗2(k+, ~k⊥;m

∗

π,~0), (36)

and integration of f ∗(k⊥) leads to the in-medium probability of the valence component in

the pion:

η∗ =

∫

∞

0

dk⊥k⊥f
∗(k⊥). (37)
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The in-medium pion decay constant, f ∗

π , is defined as the matrix element of the partially

conserved axial vector current in symmetric nuclear matter, with the ground state |0(ρ)〉:

Pµ〈0(ρ)|Aµ
i |π∗

j 〉 = im∗2
π f

∗

πδij ≃ im2
πf

∗

πδij. (38)

Using Aµ
i = qγµγ5 τi

2
q and the interaction Lagrangian density, Eq. (20), for the pion-qq vertex

function, we obtain after integration over k− the in-medium decay constant, f ∗

π , in terms of

the valence component of the model [41],

f ∗

π =
m∗

q(Nc)
1

2

4π3

∫

d2k⊥dk
+

k+(P+ − k+)
Φ∗(k+, ~k⊥;m

∗

π,~0), (39)

where f ∗

π above is associated with the plus-component on the light-front, i.e. the light-front

time component, thus the f ∗

π cannot be separated into time and space components as done

in chiral perturbation theory [1, 7, 11, 16–18]. The normalization condition of Φ∗ is given by

the probability of finding the pion in the valence component state, η∗ = F
∗(WF )
π (0), which

is less than one, similarly to the vacuum case [32]. However, an interesting feature due to

the in-medium effect arises, which will be discussed in Section V.

V. NUMERICAL RESULTS

The pion model in vacuum has two free parameters, the constituent quark mass, mq =

220 MeV used in meson phenomenology [41, 46, 47], and the regulator mass, mR = 600 MeV

obtained from fitting Eq. (39) to the experimental value of f exp
π = 92.4 MeV [48]. (In fact,

the model yields fπ = 93.1 MeV with these parameter values, whereas to reproduce exactly

the value f exp
π = 92.4 MeV some fine-tuning is necessary). Recall that we approximate the

in-medium pion mass, m∗

π ≃ mπ = 140 MeV, based on the analyses of Refs. [1, 11, 17] and

empirical extraction [7] from pionic-atom data.

The squared-charge radius of the pion is derived from the elastic form factor,

〈r2π〉 = −6
∂

∂q2
Fπ(q

2)

∣

∣

∣

∣

q2→0

, (40)

and one obtains 〈r2π〉1/2 = 0.74 fm in vacuum [32], to be compared with the experimental

value 0.67 ± 0.02 fm [49]. In practice, since the derivative is evaluated numerically and

|Fπ(q
2)| varies quite rapidly near q2 = 0 for all chosen nuclear densities as well as in vacuum,
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FIG. 5. Pion electromagnetic form factor in symmetric nuclear matter for four nuclear densities and

the vacuum case as a function of Q2 = −q2. Experimental data in vacuum are from Refs. [50–54].

Also shown are the corresponding effective quark mass values, m∗
q, where in vacuummq = 220 MeV.

the values quoted in this work are all evaluated at Q2 = −q2 = 0.001 (GeV/c)2, where the

stability of the form factor has been checked.

In Fig. 5, the Q2-dependence of the elastic form factor calculated in symmetric nuclear

matter for four nuclear densities along with the vacuum case is presented. The experimental

data in vacuum are from Refs. [50–54] and the vacuum result agrees well with the data

points of Ref. [50]. As the nuclear density increases, the absolute value of the form factor

|Fπ(q
2)| becomes harder. This leads to a larger pion charge radius in nuclear matter with

increasing density. In Fig. 6, we show the m∗

q dependence of the in-medium pion charge

radius, 〈r∗2π 〉1/2.

From Figs. 5 and 6 one can see that the pion charge radius grows as the nuclear density
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FIG. 6. The m∗
q dependence of the pion charge radius, 〈r∗2π 〉1/2.

(effective quark mass) increases (decreases). The decrease in the constituent quark mass

kinematically allows for the quarks to move in a larger space region and the quark-antiquark

bound state becomes shallower; i.e. the pion is less bound which results in an increase of

the charge radius.

Next, we show in Fig. 7 the ratio of the in-medium to vacuum pion decay constant, f ∗

π/fπ,

versus nuclear density, associated with the light-front time component. The result shows

that f ∗

π decreases as nuclear density increases. This is consistent with the empirical findings

based on the pionic-atom experiment [7], which yield (f ∗

π/fπ)
2 ≃ 0.64 (associated with the

time component) at density ρ = 0.17 fm−3, while our result yields a larger reduction.

Finally, we summarize in Table II some properties of the pion in symmetric nuclear

matter. In particular, it is interesting to focus on the last column for η∗, which is the

probability of the valence component of the pion in symmetric nuclear matter, Eq. (37). As

nuclear density increases, the probability of the valence component in the pion is enhanced,

which is again the effect of the decreasing in the effective quark mass. This makes the quarks

20



0 0.2 0.4 0.6 0.8 1
ρ/ρ0

0.4

0.6

0.8

1

f π*
/
f

π

FIG. 7. Ratio of the in-medium to vacuum pion decay constant, f∗
π/fπ, associated with the light-

front time component, versus nuclear density.

freer to move inside the pion than the heavier valence quarks. This effect has the same origin

as the increase of the pion charge radius in nuclear matter discussed above.

In the present light-front model, it is not straightforward to discuss the in-medium

quark condensate and Gell-Mann-Oakes-Renner (GMOR) relation [55], as we use constituent

quarks with mq = 220 MeV in vacuum. However, for illustration, we attempt to analyze the

GMOR-like relation and discuss the quark condensates within the present approach. The

difference with the usual GMOR relation is that the pion decay constant in vacuum, fπ,

and in-medium, f ∗

π , are calculated using constituent quark masses instead of current quark

masses. Keeping this in mind, the GMOR-like relation in vacuum and in-medium may be

written by,

m2
πf

2
π = −2mq < qq >, (41)

m∗2
π f

∗2
π = −2m∗

q < qq >∗ . (42)

The ratio of the in-medium to vacuum quark condensates in the present approach may be
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TABLE II. Summary of in-medium pion properties. η∗ is calculated via Eq. (36), the probability

of the valence component in the pion.

ρ/ρ0 m∗
q [MeV] f∗

π [MeV] < r∗2π >1/2 [fm] η∗

0.00 220 93.1 0.73 0.782

0.25 179.9 80.6 0.84 0.812

0.50 143.2 68.0 1.00 0.843

0.75 109.8 55.1 1.26 0.878

1.00 79.5 40.2 1.96 0.930

estimated as,

< qq >∗

< qq >
=
mq

m∗
q

m∗2
π f

∗2
π

m2
πf

2
π

≃ mq

m∗
q

f ∗2
π

f 2
π

. (43)

At normal nuclear matter density, ρ0 (0.15 fm−3), the ratio gives ≃ 0.52 using Table II.

This implies a larger reduction in “quark condensate” compared to the value 0.67 ± 0.06

extracted in Ref. [7] at a density 0.17 fm−3 (their value for the normal nuclear matter

density). This feature may also be understood from the larger reduction in (f ∗

π/fπ)
2 in our

approach compared with that obtained in Ref. [7].

VI. SUMMARY AND DISCUSSIONS

We have studied the modifications of the pion properties in symmetric nuclear matter

based on the constituent quark model of the pion on the light front, where the pion model

reproduces well experimental data in vacuum. In order to incorporate the nuclear many-

body effects on an equal footing, i.e. with the quark degrees of freedom, we have employed

the QMC model. We have made use of the in-medium quark properties obtained in the

QMC model as input for the constituent up and down quarks in the pion to study the

in-medium modifications of the pion properties. The in-medium quarks in the pion contain

the information of nuclear many-body dynamics, the nuclear Fermi momentum and nuclear

saturation properties, which are consistent at the level of the Hartree mean-field approxima-

tion. Although this study is of exploratory nature, we believe that it constitutes an advance

in the treatment of the quarks confined in the pion in a nuclear medium.
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With regard to the pion properties in symmetric nuclear matter, we have presented the in-

medium electromagnetic form factor, charge radius and decay constant up to normal nuclear

matter density, based on the plus (light-front time) component of the corresponding light-

front current. Our results indicate a faster falloff of the elastic form factor with increasing

nuclear density, and consequently an increase of the pion charge radius.

Moreover, we have computed the in-medium pion decay constant, which is again associ-

ated with the light-front time component. We have shown that the decay constant decreases

as nuclear density increases, which is consistent with empirical findings based on the analysis

of the pionic-atom data. The corresponding ratio, f ∗

π/fπ, obtained in the present approach

is smaller, or equivalently, the reduction of fπ is larger. However, we should mention that in

the empirical extraction an uncertainty in the in-medium pion-mass shift exists, from which

the value of the pion decay constant reduction is extracted. (And we stress once again that

in our case f ∗

π is the light-front time component.)

Concerning the valence quark probability in the pion, our result shows this probability

increases with increasing nuclear density. We interpret this in terms of the decrease in

the effective constituent quark masses in the pion, which allows for a larger kinematical

distribution of the quarks within the pion, and in turn results in the increase of the valence

probability. The same reasoning holds for the increase of the pion charge radius.

We have also estimated the in-medium quark condensate using the Gell-Mann-Oakes-

Rener-like relation, and obtained the reduction of the in-medium quark condensate relative

to that in vacuum. However, the reduction is larger than that from the pionic-atom data

analysis. Most likely, this is due to the large constituent quark masses used in the pion

model.

In future, the present approach may be extended to the kaon, D-, ρ- and ω-mesons.

Alternatively, we can treat the in-medium effects on the quark’s mass function by means of

a Dyson-Schwinger equation with finite density and incorporate them in the Bethe-Salpeter

equation for the bound states.
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