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Abstract

We develop the Hamilton-Jacobi formalism for Podolsky’s electromagnetic theory on

the null-plane. The main goal is to build the complete set of Hamiltonian generators of

the system, as well as to study the canonical and gauge transformations of the theory.
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1 Introduction

In this paper, we analyse the null-plane canonical structure of the generalised Podolsky’s

electrodynamics via the Hamilton-Jacobi (HJ) formalism for singular systems. Since we

are dealing with three separate subjects, each one deserving proper treatment by itself, we

separate the work in three main parts.

In the first part, section 2, it is presented the general Hamilton-Jacobi theory for sin-

gular and higher-order lagrangian systems, as it is the case of Podolsky’s theory. The HJ

formalism is well known from classical mechanics to be a road for the study of integrability

of classical systems, but its fundamental role in dynamical systems was discovered only

after Carathéodory’s work [1] on variational principles and first-order partial differential

equations (PDEs). Carathéodory built the HJ theory directly from Hamilton’s principle,

showing that it is actually the theory that relates first-order PDEs, first-order ordinary

differential equations (ODEs), and lagrangian variational problems. This unifying point of

view is called the complete figure of the variational calculus, and congregates all analytic,

algebraic, and geometric pictures of mechanics [2].

Considering singular systems, which are theories whose Lagrange function has singu-

lar Hessian matrices, the HJ theory does not exhibit the same fundamental problems seen

when the purely hamiltonian picture is considered [3, 4]. Carathéodory’s complete figure

is still valid, and a general treatment of constraints is naturally emergent [5]. In the HJ

theory, canonical constraints are seen as a set of Hamilton-Jacobi partial differential equa-

tions (HJPDE), and the integrability of this set is achieved by an integrability theorem,

leading to Frobenius’ integrability conditions [6, 7]. Advantages of the HJ approach come

from the fact that it provides a full theoretical stage to the canonical formulation of singu-

lar systems, rather than a consistency construction. One of the advantages is the absence

of the so called Dirac’s conjecture. Also, gauge fixing is not required for equivalence be-

tween the canonical and lagrangian descriptions at the classical level. Moreover, second

and higher derivative lagrangian systems were treated via the HJ formalism in [8]. High-

order theories were introduced by Ostrogradsky [9], and have been used since for many
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purposes. Among them, we may cite developments in high-order gauge theories [10], at-

tempts to solve the problem of renormalisation of the gravitational field [11], and recently

quantum gravity massive theories [12].

Podolsky’s theory has developed by Bopp [13], and independently by Podolsky and

Schwed [14] as a second-order gauge theory for the electromagnetic field, in order to treat

the r−1 dependency in the electrostatic potential. Because of this behaviour, the energy

necessary to assemble a system of point charges has infinite contribution of the charge’s

self-energy. This problem is related to divergences in the infrared sector of the quantum

electrodynamics (QED), as well to the problem of infinite vacuum polarisation current. The

theory proposed is described by the lagrangian density

L = −1

4
FµνF

µν +
1

2
a2∂λF

µλ∂γFµγ , (1)

with Fµν = ∂µAν − ∂νAµ as the components of the electromagnetic tensor field, and a being

a parameter with dimension of the inverse of mass. The second-order derivative term in (1)

results in a well defined electrostatic potential for r = 0, so the self-energy contribution may

be computed, it is just proportional to q2/a for each charge. The theory may be interpreted

as an effective theory for short distances [15], as a way to get rid of the problems related to

the r = 0 singularity in QED. In this case, the parameter a becomes a cut-off distance for

the theory. When r ≫ a, the theory would become experimentally indistinguishable from

Maxwell’s. In this point of view, a is linked to an effective radius for the electron.

If interpreted as a fundamental theory, the parameter a is related to a sector of massive

photons, which can be seen by the dispersion relation

p2
(

p2 −m2
γ

)

= 0, p2 ≡ pµp
µ, m2

γ ≡ 1/a2, (2)

taken from the generalised wave equation, result of the field equations of the lagrangian

(1). This relation indicates two kinds of photons, with modes p2 = 0 e p2 = m2
γ respectively.

The first mode corresponds to massless photons, the second mode is linked to photons with

mass parameter mγ . Massive photons are not observed in nature, so it is not generally

believed that Podolsky’s theory is fundamental. Yet, experimental attempts to provide

upper limits to mγ are taken from time to time [16]. The best result, however, is given by

Luo et al [17], which has mf < 2.1 × 10−51g.

In section 3 we discuss forms of relativistic dynamics, specially how to project genera-

tors of the Poincaré group when a given form of dynamics is defined in Minkowski space-

time. The first attempts of quantisation of Podolsky’s field were made in instant-form,

where time is defined by the x0 axis as the evolution parameter. There are five different

forms of such hamiltonian dynamics, each one related to different decompositions of the

Poincaré group [18]. The dynamics on the null-plane, also called the front-form dynamics,

is the hamiltonian dynamics of fields over a null-plane x0 + x3 = cte. The evolution pa-

rameter is chosen to be the coordinate x+ ≡ 1/
√
2
(

x0 + x3
)

, where the classical (quantum)

evolution of the system is given by the definition of appropriate fundamental “equal-time”

brackets (commutators), defined on a null-plane of constant x+, plus a special set of initial-
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boundary data.

There are some good reasons, both physical and mathematical, to analyse field theories

on the null-plane. One of them is the fact that this kind of dynamics usually reduces the

number of independent degrees of freedom necessary to describe a field [19, 20]. This is

closely related to the fact that the stability group of the Poincaré group in front-form, which

is the sub-group of transformations that relates field configurations in a single surface

x+ = cte, has seven generators, one more than the six kinematic generators in instant-

form. Besides, the algebra of these kinematic generators takes its simplest form in front-

form dynamics. For some important systems this feature is responsible for a complete

separation of physical degrees of freedom, resulting in a clean and excitation-free quantum

vacuum.

We let the application of the null-plane HJ formalism for section 4. The canonical struc-

ture of Podolsky’s theory was already studied in [21], in instant-form, and in [22] on the

null-plane, both using Dirac’s method. However, these papers had the goal of analysing

proper gauge conditions for the theory, in order to clarify the physical degrees of freedom.

Our main purpose here, using the HJ theory, is to obtain a complete set of involutive gen-

erators, or hamiltonians. We see that the presence of a non-involutive subset of constraints

demands modification of the dynamics of the system, with the introduction of generalised

brackets (GBs). With these brackets, we are able to find the complete set of generators,

which close a Lie algebra with the GBs, assuring integrability as stated by Frobenius’

theorem. On the other hand, any complete set of hamiltonians generate canonical trans-

formations, so we also present a way of defining these transformations and relate them to

the gauge transformations of Podolsky’s lagrangian. This is done without any mention to

Dirac’s conjecture, or even the necessity of ad-hoc methods, such as the case of Castellani’s

procedure [23]. In section 5 we present our final remarks.

2 The HJ theory for singular systems and higher-order ac-

tions

2.1 Higher-order theories

Let us start with a system described by n generalised coordinates qi. In general, the coor-

dinates should be at least of class C2k in a time parameter τ , but for now we may define

the variables qiI as the I-th derivative of qi with respect to τ , where I = {0, 1, · · · , k} for a

given k ∈ N. A high-order lagrangian theory, in this case of order k, is a theory described

by the action

A [γ] =

ˆ

γ

dτL
[

τ, qiI (τ)
]

, (3)

which is a functional of curve segments γ : qi = qi (τ) in the space of generalised coordi-

nates.

Supposing δτ ≡ τ̄ − τ and δqi ≡ q̄i (τ̄) − qi (τ) general first-order variations of the time

4



and coordinates, we have the first-order variation,

δA =

ˆ

dτ

[

δL

δqi

(

δ − δτ
d

dτ

)

qi +
d

dτ

(

δL

δqi(I+1)

δqiI −Hδτ

)]

. (4)

In (4), the derivatives

δ

δqi
≡

k
∑

I=0

(−1)I
dI

dτ I
∂

∂qiI
, (5)

are known as the Lagrange derivatives, and

H ≡ δL

δqi
(I+1)

qi(I+1) − L, (6)

is defined as the hamiltonian function of the system. Summation is implicit for all re-

peated indexes, except in some few expressions, as (5). If the action A [γ] has an extreme

configuration γ0, this configuration is a solution of the Euler-Lagrange (EL) equations

δL

δqi
= 0, (7)

which are the equations of motion of the action (3).

2.2 Equivalent lagrangians

The HJ formalism in Carathéodory’s point of view [1] requires a way of defining equivalent

actions of the functional (3). This is done by supposing a point-transformation qi → q′i with

generating function S
(

τ, qiI′
)

. With this transformation, the new lagrangian is related to

the old one by L′ = L − dS/dτ . Here we introduce another index I ′ = {0, 1, · · · , k − 1},

which will be useful ahead. Adding a total derivative to the lagrangian does not change

the equations of motion, so if γ0 is an extreme configuration of the action
´

Ldτ , it is also

an extreme configuration of the transformed action
´

L′dτ . If this point-transformation

leads to L′ = 0 for γ = γ0, and L′ > 0 or L′ < 0 for any γ 6= γ0 in a close neighbourhood

of γ0, A [γ] has, respectively, a local minimum (L′ > 0) or a local maximum (L′ < 0) in γ0.

Expanding L′ in a Taylor series around γ0, we see that the new lagrangian is approximated

by a lower-order term that is quadratic positive (or negative) definite in δqiI . The necessary

conditions for the extreme configuration become

∂L′

∂qiI

∣

∣

∣

∣

γ=γ0

= 0, (8)

which result in

∂S

∂qiI′
=

∂L

∂qi(I′+1)

− d

dτ

(

∂S

∂qi(I′+1)

)

, (9)
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at γ = γ0.

If we take I ′ = k − 1, (9) becomes

∂S

∂qi(k−1)

=
∂L

∂qik
, (10)

For I ′ = k − 2 we have

∂S

∂qi(k−2)

=
∂L

∂qi(k−1)

− d

dτ

(

∂S

∂qi(k−1)

)

.

With (10), the result is

∂S

∂qi(k−2)

=
∂L

∂qi(k−1)

− d

dτ

∂L

∂qik
=

δL

δqi(k−1)

,

where we recognise the Lagrange derivative on the right. Following this iterative process,

the general relations are found to be

∂S

∂qiI′
=

δL

δqi(I′+1)

. (11)

On the other hand, L′ = L− dS/dτ immediately leads to

L− ∂S

∂τ
− qi(I′+1)

∂S

∂qiI′
= 0. (12)

Therefore, the existence of a function S
(

τ, qiI′
)

that obeys the conditions (11) and (12) is a

necessary condition for the existence of an extreme configuration of the action (3).

2.3 The HJ equation

The HJ formalism may be reached if we make of eq. (12) a PDE for the function S. In princi-

ple, we expect solving this problem with expressions of the type qi(I′+1) = φi(I′+1)

(

τ, qiI′ , ∂S/∂q
i
I′

)

,

that would be taken from (11). This, however, is not the case. Let us take again the expres-

sion (11) for I ′ = k − 1:

∂S

∂qi(k−1)

=
δL

δqik
=
∂L

∂qik
= ψi

(

τ, qiI′ , q
i
k

)

,

where ψ is function of τ and the variables qiI . This equation can indeed be inverted to

produce the expression

qik = φik

(

τ, qiI′ ,
∂S

∂qi(k−1)

)

, (13)

6



if the Hessian condition

det

(

∂ψi

∂qjk

)

= det

(

∂2L

∂qik∂q
j
k

)

6= 0 (14)

is satisfied.

However, eq. (11) for I ′ = k − 2 yields

∂S

∂qi(k−2)

=
∂L

∂qi(k−1)

− ∂2L

∂τ∂qik
− qj(I′+1)

∂2L

∂qjI′∂q
i
k

− qj(k+1)

∂2L

∂qjk∂q
i
k

, (15)

where a derivative superior to k appears in the last term. This equation provides

qj
(k+1)

= φj
(k+1)

(

τ, qiI′ ,
∂S

∂qi(k−1)

,
∂S

∂qi(k−2)

)

, (16)

if, again, (14) is satisfied. All orders have the same behaviour. Particularly, the lowest

order I ′ = 0 results in

qi(2k) = φi(2k)

(

τ, qiI′ ,
∂S

∂qiI′

)

.

Therefore, the best we can do is to invert (11) to obtain expressions for the variables of the

theory from order k to 2k. The condition for that is the Hessian matrix

Wij ≡
∂2L

∂qik∂q
j
k

(17)

to be non-singular.

This is not a problem if we consider the variables qiI′ independent coordinates of a con-

figuration space Q. This interpretation is also suggested by the end-point term in (4),

which defines the structure of the canonically conjugated variables of the theory: that sum

is a linear combination of independent variations δqiI′ only up to order I = k − 1, since L

depends of the coordinates up to order k. In this case, (12) is just written by

∂S

∂τ
+

∂S

∂qi(I′−1)

qiI′ +
∂S

∂qi(k−1)

φik − L
[

τ, qiI′ , φ
i
k

]

= 0, (18)

and no other equation is needed.

Now let us observe the hamiltonian function defined in (6), which can be written using

(11) by

H =
δL

δqiI′
qiI′ +

δL

δqik
φik − L =

∂S

∂qi(I′−1)

qiI′ +
∂S

∂qi(k−1)

φik − L (19)

7



for I ′ > 0. Substituting (13), we may write (18) as

∂S

∂τ
+H

(

τ, qiI′ ,
∂S

∂qiI′

)

= 0. (20)

Eq. (20) is the expected Hamilton-Jacobi equation.

The introduction of canonical variables is straightforward. In the HJ formalism, the

momenta conjugated to the variables qiI′ are defined as the components of the gradient of

the function S,

pI
′

i ≡ ∂S

∂qiI′
=

δL

δqi(I′+1)

. (21)

This definition results in the canonical hamiltonian

H0

(

τ, qiI′ , p
I′

i

)

≡ p
(I′−1)
i qiI′ + p

(k−1)
i φik − L, (22)

with all qik substituted by φik as functions of the momenta. It also results in the canonical

HJ equation

Φ0

(

τ, pτ , q
i
I′ , p

I′

i

)

≡ π0 +H0

(

τ, qiI′ , p
I′

i

)

= 0, (23)

where we introduce the notation π0 ≡ ∂S/∂τ .

2.4 The HJ equations for singular systems

The Hessian condition appears in the HJ formalism as a condition for the existence of the

PDE (20). But in the case of violation of the Hessian condition (14), implying the existence

of constraints, it is still straightforward to define a HJ approach. Let us suppose the n× n

Hessian matrix Wij to be singular of rank m < n. Then, there is a regular sub-matrix

m × m and a null-space of dimension r = n − m, splitting the configuration space in two

subspaces: the space of the variables qaI′ , for a = {1, · · · ,m}, which will be called Qm, and

the space of the variables tzI′ ≡ qzI′ with z = {1, · · · , r}, which will be called Γr. The former

are variables belonging to the regular space of the Hessian, related to the matrix

Wab ≡
∂2L

∂qak∂q
b
k

, (24)

which obeys detWab 6= 0. The later are variables belonging to the null-space of the same

Hessian matrix.

In the singular case, eq. (11) produce the m · k relations

qa(k+I′) = φa(k+I′)

(

τ, tzI′ , q
a
I′ , p

I′

a

)

, pI
′

a ≡ ∂S

∂qaI′
, (25)

8



but also the r · k identities

∂S

∂tzI′
=

δL

δqz(I′+1)

≡ −HI′

z

(

τ, tzI′ , q
a
I′ , p

I′

a

)

. (26)

In canonical form, (26) become

ΦI
′

z

(

τ, tyI′ , q
a
I′ , π

I′

y , p
I′

a

)

≡ πI
′

z +HI′

z = 0, πI
′

z ≡ ∂S

∂tzI′
. (27)

Eqs. (27) form a set of r · k canonical constraints, and also a set of r · k first-order PDEs.

We notice that the canonical hamiltonian function (19) does not depend on the variables

tzk, so the definition of this function is not dependent of the Hessian condition, and the HJ

equation (23) is still valid. Let us introduce the notation tαI′ =
(

τ, tzI′
)

, then α = {0, 1, · · · , r}.

Since the momentum conjugated to τ is named π0, we may also include these as new vari-

ables in the theory as πI
′

α =
(

π0, π
I′

z

)

. Then, eqs. (23) and (24) may be written in a unified

way,

ΦI
′

α

(

tβI′ , q
a
I′ , π

I′

β , p
I′

a

)

≡ πI
′

α +HI′

α

(

tβI′ , q
a
I′ , p

I′

a

)

= 0, (28)

where we also use HI′

α =
(

H0,H
I′

z

)

. Eqs. (28) form a set of Hamilton-Jacobi first-order

partial differential equations.

2.5 Integrability and characteristic equations

The HJ equations (28) are necessary, but still not sufficient for the existence of extreme

configurations of the action A [γ]. It is still necessary that (28) provides at least one com-

plete solution for the S function. These equations are generally a set of (r + 1) ·k non-linear

coupled PDEs of the first-order, so we expect that a complete solution contains (r + 1)·k con-

stants of integration related to (r + 1) · k linearly independent parameters. In other words,

we expect that a complete solution has the form S = S
[

tαI′ , q
a
I′

(

tαI′
)]

for a set of (r + 1) ·k pa-

rameters tαI′ and a set of m ·k variables qaI′
(

tαI′
)

. Of course, this is possible only if ΦI
′

α form a

set of (r + 1) · k linearly independent equations. For the following, there is no need to carry

the I ′ index. We just write the generators Φα ≡ ΦI
′

α , in which now α = 0, · · · , (r + 1) · k, and

use the compact notation qi ≡
(

tαI′ , q
a
I′

)

= (tα, qa) and pi ≡
(

πI
′

α , p
I′

a

)

= (πα, pa).

The necessary and sufficient conditions for complete integrability are the Frobenius’

integrability conditions [7]

{Φα,Φβ} = C γ
αβΦγ , (29)

in which C γ
αβ is a set of structure coefficients. The brackets are the complete Poisson

brackets (PB)

{A,B} ≡ ∂A

∂qi
∂B

∂pi
− ∂B

∂qi
∂A

∂pi
. (30)
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If (29) holds, Φα form a complete set of constraints in involution with PB operation. We

name these set involutive constraints. Therefore, Frobenius’ conditions are resumed in the

fact that Φα are generators of a Lie algebra with the PB.

If F
(

qi, pi
)

is an observable of the complete phase-space, its dynamics is given by the

fundamental differential

dF = {F,Φα} dtα, (31)

so the dynamics takes place in the complete phase-space of the variables ξi ≡
(

tαI′ , q
a
I′ , π

I′

α , p
I′

a

)

,

where ΦI
′

α (ξ) are the generators, and tαI′ are the evolution parameters. This phase-space is

actually degenerate. Let us calculate (now with explicit indexes I ′)

dqaI′ =
{

qaI′ ,Φ
J ′

α

}

dtαJ ′ =
{

qaI′ , p
K ′

b

} ∂ΦJ
′

α

∂pK
′

b

dtαJ ′ . (32)

Using the definition (30), we see that
{

qaI′ , p
K ′

b

}

= δab δ
K ′

I′ , so

dqaI′ =
∂ΦJ

′

α

∂pI′a
dtαJ ′ . (33)

On the other hand,

dpI
′

a =
{

pI
′

a ,Φ
J ′

α

}

dtαJ ′ =
{

pI
′

a , q
b
K ′

} ∂ΦJ
′

α

∂qbK ′

dtαJ ′ = −∂Φ
J ′

α

∂qaI′
dtαJ ′ . (34)

Eqs. (33) and (34) are the generalisation of Hamilton’s equations for singular systems.

They are generally called the characteristic equations of the system (28). A third funda-

mental characteristic equation is given by

dS =
{

S,ΦJ
′

α

}

dtαJ ′ = pI
′

a dq
a
I′ + πI

′

α dt
α
I′ − ΦI

′

α dt
α
I′ , (35)

and results in an integral equations for S if (33) and (34) provide solutions for pI
′

a

(

tαI′
)

and

qaI′
(

tαI′
)

. The CE for tαI′ and πI
′

α are just identities, which reveals the degenerate character

of the complete phase space.

There is, however, a reduced phase-space which is not degenerate. It is the space of the

variables ξA ≡
(

qaI′ , p
I′

a

)

. In fact, it is shown in [7] that the sector of the variables
(

tαI′ , π
I′

α

)

in the complete phase space has zero volume element. The reason for that is the fact that

tαI′ form a parameter space which is isomorphic to a complete affine vector space. In other

words, the solutions of the characteristic equations are trajectories in the reduced phase-

space, of the type ξA = ξA
(

tαI′
)

, parametrised by the variables tαI′ . For this reason, we call

ξA the dependent variables, and tαI′ the independent variables of the theory. Usually, the

dependent variables are related to the “true” degrees of freedom of a physical system.
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2.6 The generalised brackets

The Frobenius’ theorem implies the HJ equations Φα = 0 must be complete and linearly

independent. However, in physical examples this condition is not usually satisfied. If

the set Φ = {Φα} is not integrable, two possible reasons are: (1) there may be other HJ

equations not included in this set, case in which the equations are not complete, or (2)

a subset of Φ is not linearly independent. In this case, since a physical system must be

integrable, the aim is to discover a complete set of involutive constraints. For that, we use

the procedure outlined in [6].

If the HJ equations Φα = 0 are valid, Frobenius’ condition {Φ,Φ} ⊂ Φ implies the

generators are dynamical invariants, in other words,

dΦα = {Φα,Φβ} dtβ = 0. (36)

Eq. (36) is a set of linear equations for the differential of the independent variables,

Mαβdt
β = 0, (37)

where we introduced the matrix Mαβ ≡ {Φα,Φβ}. Remember that, in our case, this matrix

has dimension (r + 1) · k.

We suppose the general case in which Mαβ has rank p ≤ (r + 1) · k. Then, there is

an invertible sub-matrix Mxy whose entries are the PB between a subset {Φx} ⊂ Φ, with

x = 1, · · · , p. In this case, for α = x (37) becomes

Mxβdt
β = 0 =⇒ Mxydt

y = −Mxα′dtα
′

, (38)

in which α′ = 1, · · · , q is the index of the null space of Mαβ . Then, (37) can be written as

dtx = −
(

M−1
)xy {Φy,Φα′} dtα′

, (39)

where
(

M−1
)xy

is the inverse matrix related to Mxy. Therefore, if the set Φ is not inte-

grable, the former independent variables tα ≡
(

tx, tα
′

)

are not mutually independent, due

to the fact that the matrix Mαβ has non-zero rank. In fact, (39) can be written for any set

of non involutive constraints, not only in the case of maximal rank.

Let us write (37) for α = α′,

Mα′βdt
β = 0 =⇒ Mα′xdt

x +Mα′β′dtβ
′

= 0. (40)

Using (39), we have

[{

Φα′ ,Φβ′

}

− {Φα′ ,Φx}
(

M−1
)xy {

Φy,Φβ′

}]

dtβ
′

= 0. (41)

Now we introduce the generalised brackets (GB) between two observables A and B:

{A,B}∗ ≡ {A,B} − {A,Φx}
(

M−1
)xy {Φy, B} , (42)

11



then we may write (40) as

{

Φα′ ,Φβ′

}∗
dtβ

′

= 0. (43)

It is straightforward to show that the GB are good brackets. They are antisymmetric

bilinear differential operators that obey the Jacobi identity.

Suppose we have chosen a subset {Φx} ⊂ Φ that is not of maximal rank. In this case,

(43) yields again two sets of equations, one of them will give rise to another generalised

brackets, since not all linear combinations of the independent variables was discovered.

The other set is just (43) again. When all linear combinations of the parameters are elimi-

nated by a final GB, the differentials dtα
′

in (43) are truly linearly independent. Then, the

integrability conditions are just given by

{

Φα′ ,Φβ′

}∗
= 0. (44)

Eqs. (44) may give two results. It may be identically satisfied for some generators, but

it may result in relations between the phase-space variables, which should be taken as new

constraints. If found, these new HJ equations should be added to the set Φ′ ≡ {Φα′}. Eqs.

(43) should be used again, since it is possible that the new set Φ′ is non-involutive, and new

GB may be defined. This process must be repeated until (44) gives no more constraints,

completing the system of generators, which will happen if the system is really integrable.

In this case, the remaining set of constraints obeys the conditions

{

Φα′ ,Φβ′

}∗
= C γ′

α′β′ Φγ′ , (45)

this time with the GB. Therefore, if the system is integrable we must be able to reduce it

to a set of complete involutive constraints with a GB.

With a complete involutive set, the fundamental differential of an observable F is given

by

dF = {F,Φα} dtα = {F,Φα′}∗ dtα′

, (46)

with use of (39). Note that the generators belonging to the invertible part of the matrix

Mαβ, the ones that are not involutive, are now completely eliminated since the GB of a non

involutive constraint with any observable of the phase-space is identically zero. If a system

has non involutive constraints, the characteristic equations must be calculated from (46).

Therefore, a subset of non involutive constraints is responsible to modify the dynamics of

the system.

2.7 Canonical and lagrangian symmetries

If Φ is a complete set of involutive constraints, it is shown in [7] that each member of the

set is a generator of an active canonical transformation on the reduced phase-space, called

a characteristic flow (CF). This is better seen in a geometrical framework: the symplectic
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structure of the complete phase-space is a degenerate 2-form ω = −dθ, where θ = dS is

the fundamental lepagian 1-form defined by the CE (35). The symplectic form is degen-

erate since it can be written as the sum of a regular 2-form ωP = dqa ∧ dpa, in canonical

coordinates, and a singular 2-form a = dtα ∧ dπα when the HJ equations Φα = 0 are satis-

fied. In fact, the 2-form a is identically a zero form when the Frobenius’ conditions (45) are

satisfied. The 2-form ωP defines the symplectic structure of the reduced phase-space.

A canonical transformation is any change in the phase-space that preserves its sym-

plectic structure. To relate each Φα to a canonical transformation, we define a vector field

Xα ≡ {•,Φα}∗ to each Φα (the • symbol takes the place of a phase-space observable). If the

set Φ is completely integrable, the Lie algebra (45) of the generators implies a Lie algebra

of the vector fields Xα,

[Xα,Xβ ] = XαXβ −XβXα = f γ
αβ Xγ , (47)

if the structure coefficients f γ
αβ = −C γ

αβ are independent of the complete phase-space

variables. Supposing (47) holds, any operator with the form T ≡ exp (∆tαXα) is a member

of the group of canonical transformations if, and only if, [ω, T ] = 0, which actually is the

case. Even if (47) is not obeyed, it is shown that [Xα, ω] = 0, which implies the symplectic

structure is preserved by the infinitesimal first-order transformation

δξ = δtαXαξ. (48)

We call (48) a characteristic flow generated by the vector fields Xα. Note that the CE (33),

(34) themselves have the form of characteristic flows dξ = dtαXαξ. Therefore, the Frobe-

nius’ theorem implies each Φα generates its own CF, related to an independent variable tα,

and each of these flows is independent of the others. Moreover, a general CF is a linear

combination of the flows generated by each Xα, with the form (48).

A special CF is defined as follows. Suppose δt0 = δτ = 0 and δtz = ǫz, where ǫz form a

set of LI constant parameters. In this case,

δξ = ǫzXzξ = {ξ,Φz}∗ ǫz. (49)

The transformation (49) is a canonical flow if the generators Φz close themselves a Lie

algebra {Φx,Φy}∗ = C z
xy Φz. On the other hand, the only way to assure this algebra is if

it is restricted to the reduced phase-space, where Φα = 0 holds. In this case, all algebrae

become abelian. The transformation (49), restricted to the reduced phase-space where

{Φx,Φy}∗ = 0 is a characteristic flow, which was called “point transformations” by Dirac,

in his hamiltonian picture [3]. The generator of the point transformation (49) is given by

G = Φzǫ
z, since δξ = {ξ,G} reproduces (49) when Φz = 0.

If the original system has lagrangian symmetries, e.g. local gauge symmetries in field

theories, we expect these symmetries manifest themselves as canonical symmetries, in this

case characteristic flows in the HJ picture. In this case, eq. (4) for δτ = 0 yields the Lie
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equation

δL =
δL

δqi
δqi +

d

dτ

(

δL

δqi
,(I+1)

δqi,I

)

= 0, (50)

and it has to be satisfied by the point transformation (49) for δqi = ǫzXzq
i =

{

qi, G
}∗

.

3 Forms of relativistic dynamics

3.1 Poincaré generators in field theories

In sec. 2, we revised the HJ theory for singular systems in a classical mechanical back-

ground. But since we propose the study of Podolsky’s electrodynamics, our particular in-

terest rests in second-order relativistic field theories, described by the functional

A [φ] ≡
ˆ

Ω
L
[

xµ, φa (x) , φaµ (x) , φ
a
µν (x)

]

dω. (51)

In (51), Ω is a volume of an (d+ 1)-dimensional Minkowski space-time M spanned by a

rectangular coordinate system xµ =
(

x0, x1, x2, · · · , xd
)

with volume element dω ≡ dx0dx1 · · · dxd.
The Lagrangian density L depends generally on the space-time coordinates xµ, the fields

φa (x) at each point x ∈ Ω, its first
(

φaµ ≡ ∂µφ
a
)

and second
(

φaµν ≡ ∂µ∂νφ
a
)

derivatives. If

we are dealing with a relativistic field, L must be Lorentz invariant. The action (51) is

distinct from (3) because the domain is a set of fields of several variables, and the integral

itself is a multiple integral. For this paper, the metric has signature (+−−−).

With (51), the natural path for a HJ formalism in Carathéodory’s point of view would

be to define equivalent actions. But unlike the case of classical mechanics, there is not a

unique way of implementing Carathéodory’s programme in a covariant way. The simplest

method, introduced by Weyl [24], is by adding to A a simple boundary term. A second way,

developed by Carathéodory himself [2], would be adding a determinant to the Lagrangian

density. Each method leads to distinct definitions of geodesic fields, resulting in distinct HJ

theories. Carathéodory’s choice leads to a Hamiltonian function defined by the determinant

of the energy-momentum tensor. Weyl’s choice is the usual one, because it is analog to the

classical mechanical method. Moreover, it does not suffer from important limitations of

the alternative approach, e.g. the requirement of positivity of the Lagrangian density.

But even if we choose Weyl’s definition of geodesic fields, an important characteristic of

relativistic theories makes impracticable the construction of a covariant HJ theory with

constraints. These theories are invariant under any particular choice of global evolution

parameter, or time. In this case, the HJ equation becomes an identity, not a PDE. An

attempt to solve this problem is also done in [2], but it relies on unphysical assumptions

if applied to fundamental fields. Until now, no satisfactory way of defining a covariant HJ

formalism for constrained systems is at hand.

This problem is closely related to the problem of construction of covariant Hamiltonian

formalisms with constraints. Dirac was the first to conclude that a consistent Hamiltonian
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approach for field theories requires a choice of relativistic dynamics [18]. Such choice is

essentially a choice of "time" parameter τ as a linear combination of the space-time axes,

defined in the direction of a vector field u (x). This vector may be related to the world line

of a physical observer in a referential frame, but this is not necessarily the case: a given

frame of reference can use different forms of dynamics to describe a physical system. Along

with the vector u, one chooses a family Σ of d-dimensional surfaces orthogonal to u (x) at

each point x ∈ Ω. Each member Στ ∈ Σ must be labeled uniquely by a value of τ , then

we must choose the family so that the world line of a given observer intersects each family

member once.

When the vector u and the family Σ are chosen, the symmetry group of the space-time

may be decomposed. If Tµν are the components of the energy-momentum tensor the time

evolution generator, the hamiltonian function, is defined by the double projection

H ≡
ˆ

Στ

dσ uµT
µ
νu

ν , (52)

where dσx is the d-volume element of Στ . If w is a unit vector orthogonal to u,

Pw ≡
ˆ

Στ

dσ uµT
µ
νw

ν (53)

defines the linear momentum in the direction of w, which generates translations in Στ in

the w direction.

Let {vi (x)} be a base of vector fields defined in Στ for a given point x, where i, j =

1, · · · , d. In this case,

Lij ≡
ˆ

Στ

dσ uµ

(

T µαxβ − T µβxα

)

vαi v
β
j (54)

is the orbital angular momentum matrix, and

Sij ≡ −
ˆ

Στ

dσ uµ

[

δL

δφaµ
φaν (Jαβ)

ν
γ
xγ
]

vαi v
β
j (55)

is the spin matrix of the fields, where (Jαβ)
ν
γ

are the generators of the Lorentz group. The

matrix Mij = Lij + Sij generates rotations in Στ . We also have boosts, generated by

Bj ≡
ˆ

Στ

dσ uµ

[

T µαxβ − T µβxα − δL

δφaµ
φaν (Jαβ)

ν
γ
xγ
]

uαvβj , (56)

which are pseudo-rotations in the plane defined by vj and u.

3.2 Null-plane dynamics

Because of the causal structure of Minkowski’s metric, there is not a unique way of defin-

ing a hamiltonian dynamics. The most simple and used one was called by Dirac [18] the

instant-form dynamics. It is the dynamics of fields in 3-dimensional euclidian spaces or-

thogonal to the time axis t = x0/c, the time measured by a clock at rest with respect to the
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laboratory. In this case, u is given by the components (1, 0, 0, 0), while the base vectors vi

are the usual
{

x1, x2, x3
}

axes. The hamiltonian function is given by H =
´

Στ

dσ T00, and

the linear momenta are just Pi =
´

Στ

dσ T0i. Generators of rotations and boosts are also

immediately calculated from (54), (55) and (56).

The null-plane dynamics, on the other hand, is the form of dynamics where u lies in the

light-cone. We define time as the parameter

x+ =
1√
2

(

x0 + x3
)

, (57)

so u takes the form of the axis

uµ =
1√
2
(1, 0, 0, 1) . (58)

The equation x+ = const. defines a characteristic hyper-surface Σx+ orthogonal to the u

axis. This surface is called the null-plane, and it represents an electromagnetic wave front

in vacuum.

With this choice of evolution parameter and characteristic surfaces it is convenient to

choose an appropriate coordinate system. Let xµ be the rectangular coordinates
(

x0, x1, x2, x3
)

,

and let us consider the following transformation

yµ = Γµνx
ν , (59)

with

Γ =
1√
2







1 0 1

1 0 −1

0 I2×2

√
2 0






, (60)

in which I is the 2 × 2 identity matrix, and yµ is defined by the set
(

x+, x−, x1, x2
)

. We see

that x± = 1/
√
2
(

x0 ± x3
)

, while the remaining coordinates are unchanged. The coordinates

yµ are called null-plane coordinates.

The null-plane dynamics was mistaken, for some time, with a limiting process known as

the infinite momentum frame [20]. But the transformation (59) is not a reference choice. It

is actually a parameter choice with a combining coordinate system. It is not even a Lorentz

transformation, since the metric in y is given by

η =







0 1 0

1 0 0

0 0 −I2×2






. (61)

With this metric, the norm of a Lorentz vector is not a quadratic form in the temporal (+)

and longitudinal (−) components, but remains quadratic in the transverse components 1
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and 2:

A2 = ηµνA
µAν = 2A+A− −

(

Ai
)2
, i = 1, 2.

We stress that the metric (61) is the metric used to raise and lower indexes in the null-plane

coordinates.

For example, the D’Lambertian operator assumes the form

� ≡ ∂µ∂
µ = ∂+∂

+ + ∂−∂
− −∇2 = 2∂+∂− −∇2, (62)

where ∇ ≡ ∂i∂i. In this case, the null-plane dynamics is distinct of the usual instant-form.

The Klein-Gordon equation, for instance,

(

�+m2
)

φ = 0,

has the null-plane form

∂+∂−φ =
1

2

(

∇2 −m2
)

φ.

This is a first-order equation in the temporal coordinate x+, therefore the initial value

problem is not a Cauchy problem, but a characteristic value problem. To fix a unique

solution, it is necessary to provide a field configuration in a plane x+ = const., and a second

configuration in some x− = const. plane, for example.

In the null-plane we may write expressions for the hamiltonian function and the linear

momenta, based on eqs. (52) and (53). The x+ evolution generator is given by

H =

ˆ

Σ
dσ T+

+ =

ˆ

Σ
dσ T−+, dσ = dx−dx1dx2, (63)

while translations are generated by

P− =

ˆ

Σ
dσ T+

− =

ˆ

Σ
dσ T−−, Pi =

ˆ

Σ
dσ T+

i =

ˆ

Σ
dσ T−i. (64)

Generators of rotations and boosts may be calculated with eqs. (54), (55) and (56).

4 Podolsky’s electromagnetic theory on the null-plane

4.1 Conjugated momenta

Podolsky’s electromagnetic theory is described by the Lagrangian density

L = −1

4
FµνF

µν +
1

2
a2∂λF

µλ∂γFµγ , Fµν ≡ ∂µAν − ∂νAµ, (65)

in which Aµ are the fundamental fields, components of a U (1) gauge connection. The

fields Fµν are components of the curvature field strength related to the connection field.
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Therefore, the density (65) is second-order in the fields Aµ, and preserves the U (1) gauge

symmetry. In fact, all relativistic second-order Lagrangians with the U (1) symmetry are

equivalent to (65) [10].

The action related to (65) is given by

A =

ˆ

Ω
dω

(

−1

4
FµνF

µν +
1

2
a2∂λF

µλ∂γFµγ

)

, (66)

where Ω is a 4-volume in Minkowski space-time with 4-volume element dω. The general

first variation of this functional, analogue to eq. (4), is given by

δA =

ˆ

Ω
dω

δL

δAµ
(δ − δxγ∂γ)Aµ

+

ˆ

Ω
dω∂γ

[

δL

δ (∂γAµ)
δAµ +

δL

δ (∂γ∂νAµ)
δ (∂νAµ)−Hγ

µδx
µ

]

, (67)

where

δ

δAµ
=

∂

∂Aµ
− ∂γ

∂

∂ (∂γAµ)
+ ∂γ∂λ

∂

∂ (∂γ∂λAµ)
(68)

is the Lagrange derivative up to the second-order derivative term, and

Hα
β ≡ δL

δ (∂αAµ)
∂βAµ +

δL

δ (∂α∂γAµ)
∂β∂γAµ − Lδαβ (69)

is the general form of the energy-momentum tensor density.

Observing (69), we have the following covariant momenta

πµν =
δL

δ (∂µAν)
= Fµν − 2a2ηωγΥαµ

βω∆
νλ
αγ∂λ∂ρF

βρ, (70a)

πµνλ =
δL

δ (∂µ∂νAλ)
= 2a2ηωγΥαµ

βω∆
νλ
αγ∂ρF

βρ, (70b)

where we use the symbols

Υαβ
µν ≡ 1

2

(

δαµδ
β
ν − δβµδ

α
ν

)

, ∆αβ
µν ≡ 1

2

(

δαµδ
β
ν + δβµδ

α
ν

)

. (71)

In this case, we may also write

Hαβ = FµαAµ,β + a2ηατΥ
τµ
ǫν ∂

ǫ∂λF
νλAµ,β + 2a2ηγνηαφ∆

λφ
µνΥ

µǫ
ψγ∂τF

ψτAǫ,λβ − ηαβL, (72)

as the non symmetric energy-momentum tensor density. The field equations are written

by

δL

δAµ
=
[

1 + a2�
]

∂αF
µα = 0. (73)

In the null-plane dynamics, where the time axis is the unit vector uα = (1, 0, 0, 0) in
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null-plane coordinates, the Hamiltonian function is given by the expression

H =

ˆ

Σ
dσHα

βuαu
β =

ˆ

Σ
dσH+

+. (74)

Again, Σ is a 3-surface of constant x+, and dσ ≡ dx−dx1dx2 its respective volume element.

The Hamiltonian density takes the form

Hc ≡ H+
+ = πµ+Aµ,+ + πµ+νAµ,+ν − L

=
[

πµ+ − ∂−π
µ+− − ∂iπ

µ+i
]

Aµ,+ + πµ++Aµ,++ − L, (75)

where i = 1, 2. This Hamiltonian is precisely of the form Hc = pµĀµ + πµ
(

∂+Āµ
)

− L, with

pµ ≡ πµ+ − ∂−π
µ+− − ∂iπ

µ+i, (76a)

πµ ≡ πµ++. (76b)

Then, we identify (pµ, πµ) as the momenta conjugated to the variables
(

Aµ, Āµ
)

, respec-

tively. They have the explicit expressions

πµ = a2ηµ+∂ρF
+ρ, (77a)

pµ = Fµ+ + ∂+π
µ + 2a2

(

δµβ∂
+ − 1

4
δ+β ∂

µ − 1

2
ηµα∆+λ

αβ ∂λ

)

∂ρF
βρ. (77b)

4.2 The HJ equations

If we write (77) in the null-plane components, we have the following conjugated momenta:

π+ = 0, (78a)

πi = 0, (78b)

π− = a2∂λF
+λ, (78c)

p+ = ∂−π
−, (78d)

p− = F−+ + 2a2∂+∂λF
−λ, (78e)

pi = F i+ + 2a2∂+∂λF
iλ − ∂iπ

−. (78f)

These are the variables conjugated to Ā+, Āi, Ā−, A+, A− and Ai respectively. We observe

that the momenta π+, πi and p+ are not invertible, thus, we associate them to the canonical

constraints

π+ = 0, πi = 0, p+ − ∂−π
− = 0. (79a)

From p−, on the other hand, we obtain an expression for ∂+Ā−,

∂+Ā− =
(

2a2∂−
)−1 [

p− − Ā− +
(

1− 2a2∇2
)

∂−A+ + 2a2∂−∂−Ā+ + 2a2∂−∂iĀi
]

, (80)

where
(

2a2∂−
)−1

represents a Green’s function of the operator 2a2∂−, which depends on a
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set of initial/boundary conditions, the characteristic data of the fields. Without specifying

these data, (80) is actually a family of solutions. We will need to fix the characteristic data

later when analysing the HJ equations of the system, and in fact the expression (80) is not

required in any of the following analysis. In this case, we let the initial/boundary analysis

for later.

Now, the expression for pi can be written in the form

pi = F−i + ∂iπ
− + 2a2∂−

(

2∂−Āi − ∂iĀ− − ∂−∂iĀ+ + ∂jFij
)

. (81)

This expression does not provide any velocity, therefore, (79) and (81) constitute the follow-

ing set of constraints

φ1 = π+, (82a)

φi2 = πi, (82b)

φ3 = p+ − ∂−π
−, (82c)

φi4 = pi − ∂iπ
− + Fi− + 2a2∂−

[

∂iĀ− − 2∂−Āi + ∂i∂−A+ − ∂jFij
]

. (82d)

Since

πµ ≡ ∂S

∂Āµ
, pµ ≡ ∂S

∂Aµ
, (83)

eqs. (82) are a set of HJ equations.

Another HJ equation is necessary, the one related to the canonical Hamiltonian density

(75), which has the explicit form

Hc = pµĀµ + π−
(

∂−Ā+ + ∂iĀi −∇2A+

)

− 1

2
a2∂λF

iλ∂γFiγ +
1

4
FµνF

µν , (84)

where ∇2 = ∂i∂i. Note that this density has no explicit dependency of any velocity, the same

happening with the densities in (82). Then, there is no need for (80) in the construction of

the constraints. In this case, we simply write the set of HJ equations

φ0 = p0 +Hc, (85a)

φ1 = π+, (85b)

φi2 = πi, (85c)

φ3 = p+ − ∂−π
−, (85d)

φi4 = pi − ∂iπ
− + Fi− + 2a2∂−

[

∂iĀ− − 2∂−Āi + ∂−∂iA+ − ∂jFij
]

, (85e)

where p0 ≡ ∂S/∂x+ is the momentum conjugated to the time variable x+.
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4.3 Generalised Brackets

To be a complete integrable system, (85) must be a complete involutive set with the com-

plete Poisson brackets

{F,G} ≡
ˆ

Σ
dσx

[

∂F

∂Aµ (x)

∂G

∂pµ (x)
− ∂G

∂Aµ (x)

∂F

∂pµ (x)
+

+
∂F

∂Āµ (x)

∂G

∂πµ (x)
− ∂G

∂Āµ (x)

∂F

∂πµ (x)

]

, (86)

for any observables F and G of the complete phase space of the variables
(

Aµ, Āµ, p
µ, πµ

)

.

Clearly, the fundamental PB are

{Aµ (x) , pν (y)} =
{

Āµ (x) , π
ν (y)

}

= δνµδ
3 (x− y) , (87)

in which δ3 (x− y) ≡ δ (x− − y−) δ
(

x1 − y1
)

δ
(

x2 − y2
)

is the appropriate Dirac’s delta.

When calculating the matrix M ≡ {φA, φB}, with φA =
(

φ0, φ1, φ
i
2, φ3, φ

i
4

)

, we see that φ1

is in involution, but not the remaining constraints. Particularly, the subset
(

φi2, φ3, φ
i
4

)

is

non involutive, but it gives rise to a singular sub-matrix, indicating that a particular linear

combination of these constraints is integrable. However, we have the subset
(

φi2, φ
i
4

)

, which

obeys the relations

{

φi2 (x) , φ
j
4 (y)

}

= −4a2ηij∂x−∂
x
−δ

3(x− y), (88a)
{

φi4 (x) , φ
j
4 (y)

}

= 2ηij
[

1− 2a2∇2
x

]

∂x−δ
3 (x− y) . (88b)

This particular subset of HJ equations give rise to the matrix

M ij
IJ ≡ 2ηij

(

0 −2a2∂x−∂
x
−

2a2∂x−∂
x
− ∂x−

[

1− 2a2∇2
x

]

)

δ3 (x− y) , I, J = 2, 4. (89)

A matrix
(

M−1
)IJ

ij
obeying

ˆ

d3zM ij
IJ (x, z)

(

M−1
)JK

jk
(z, y) =

ˆ

d3z
(

M−1
)JK

jk
(x, z)M ij

IJ (z, y) = δikδ
K
I δ

3 (x− y) , (90)

if unique, is defined as the inverse matrix of M ij
IJ . A solution for (90) is given by

(

M−1
)IJ

ij
(x, y) ≡ 1

2
ηij

(

α (x, y) β (x, y)

γ (x, y) 0

)

, (91)

with

α (x, y) =
1

4a2

∣

∣x− − y−
∣

∣

2
ǫ
(

x− − y−
) [

1− 2a2∇2
x

]

δ2 (x− y) , (92a)

β (x, y) = −γ (x, y) = 1

a2
∣

∣x− − y−
∣

∣ δ2 (x− y) . (92b)
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In (92) we have δ2 (x− y) ≡ δ
(

x1 − y1
)

δ
(

x2 − y2
)

, and the sign function

ǫ (x− y) ≡











1 x > y

0 x = y

−1 x < y

. (93)

To each of the functions (92) we may add arbitrary functions of x+, x1, and x2, and

polynomials of x− up to second-order. Therefore, we do not have a unique inverse. These

functions can be fixed using proper boundary conditions for the fields in a null plane of

constant x−. We choose these conditions to be ∂−Aµ = ∂2−Aµ = ∂3−Aµ = 0 for x− → −∞. In

this case, we may treat (91) as an appropriate inverse matrix.

The GB related to the subset
(

φi2, φ
i
4

)

are given by

{F,G}∗ ≡ {F,G} −
¨

Σ
dσxdσy

{

F, φiI (x)
} (

M−1
)IJ

ij
(x, y)

{

φjJ (y) , G
}

, (94)

and result in the fundamental relations

{

Aµ (x) , Āν (y)
}∗

= −1

2
ηµjδ

j
νβ (x, y) , (95a)

{Aµ (x) , pν (y)}∗ = δνµδ
3 (x− y) , (95b)

{

Āµ (x) , Āν (y)
}∗

=
1

2
ηµjδ

j
να (x, y) + ∆j−

µν∂
x
j β (x, y) , (95c)

{

Āµ (x) , p
ν (y)

}∗
=

1

2
δjµδ

ν
−∂

x
i β (x, y) (95d)

−a2δiµ
[

δνk∂
x
k∂

x
i − δν+∂

x
i ∂

x
− + δνi

(

1

2a2
−∇2

x

)]

∂x−β (x, y) , (95e)

{

Āµ (x) , π
ν (y)

}∗
= δνµδ

3 (x− y) + a2δiµ
[

δν−∂
x
i − 2δνi ∂

x
−

]

∂x−β (x, y) . (95f)

Since the subset
(

φi2, φ
i
4

)

is eliminated, we have {φ1, φ3}∗ = 0 and {φ0, φ1}∗ = φ3. How-

ever,

{φ0 (x) , φ3 (y)}∗ = −
[

∂x−p
− (x) + ∂xi p

i (x)
]

δ3 (x− y) . (96)

Eq. (96) implies a new HJ equation, named

Φ (x) ≡ −∂x−p− (x)− ∂xi p
i (x) = 0. (97)

Now we have the extended, and renamed set of constraints

Φ0 ≡ p0 +Hc, (98a)

Φ1 ≡ π+ (x) , (98b)

Φ2 ≡ p+ (x)− ∂x−π
− (x) , (98c)

Φ3 ≡ −∂x−p− (x)− ∂xi p
i (x) . (98d)

Calculating the GB between them, we see that this set is complete and in involution with
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the GB operation. Therefore, we have completed the task at hand, which was to find a

complete integrable set of HJ equations for the system.

4.4 The field equations

With the GB (94), the fundamental differential

dF (x) =

ˆ

Σ
dσy {F (x) ,ΦA (y)}∗ dtA (y) , A = (0, 1, 2, 3) , (99)

gives the dynamical evolution of any observable F
(

A, Ā, p, π
)

of the phase space of the

system. The set of HJ equations (98), represented here by the set ΦA
(

A, Ā, p, π
)

= 0, is

completely integrable due to the analysis made in sec. 4.3, and provides a set of dynamical

generators for the evolution of the system. They may also be called Hamiltonians of the

system. Each Hamiltonian ΦA is related to an independent variable (or parameter) tA,

which is completely arbitrary in principle. We know, of course, that some of the parameters

must be related to some of the phase space variables, and, particularly, t0 = x+ is found

when F = x+ in (99). The parameter t3, on the other hand, is not part of the original set

of independent variables, since Φ3 is a generator found later in the integrability analysis,

and no phase space variable can be related to it, in principle. Nevertheless, the parameter

space is expanded to contain as many parameters as the number of involutive constraints

of the system, as long as integrability is assured. Moreover, the Frobenius’ theorem implies

linear independence of the independent variables, so the evolution in a given "direction"

does not depend on other "directions" of the parameter space.

For Aµ, we have the characteristic equations

dAµ = Āµdt
0 + δ+µ dt

2 +
(

δ−µ ∂− + δiµ∂i
)

dt3. (100)

Since t0 = x+, time evolution is given by

∂+A+ = Ā+, ∂+A− = Ā−, ∂+Ai = Āi, (101)

as expected. The characteristic equation associated to Āµ is

dĀµ = δ−µ
[

∂−Ā+ + ∂iĀi −∇2A+

]

dt0 + δ+µ dt
1 +

[

δ−µ ∂− + δiµ∂i
]

dt2. (102)

Time evolution alone yields

∂+Ā+ = 0, ∂+Āi = 0, ∂+Ā− = ∂−Ā+ + ∂iĀi −∇2A+, (103)

which are expected. Particularly, the ∂+Ā− equation agrees with (80) when the constraints

are used.

The characteristic equations associated to the canonical momenta pµ and πµ are ob-
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tained from (99), resulting in the expressions

∂+p
+ = ∂λF

λ+ − a2∂i∂−∂λF
λi − a2∇2∂λF

λ+, (104a)

∂+p
i = ∂−F

−i +
(

1− a2�
)

∂jF
ij, (104b)

∂+p
− = ∂iF

i−. (104c)

Similarly, for πµ we derive

∂+π
+ = φ3, (105a)

∂+π
+ = F+− − p− + a2∂i∂λF

λi, (105b)

∂+π
i = −φi4. (105c)

The relations associated to π+ and π− indicate what we saw from the integrability condi-

tions, i.e., φ3 and φi4 result from the conditions dφ1 = 0 and dφi2 = 0. Using the fact that

∂+π
+ = 0, ∂+π

i = 0 and π− = a2∂λF
+λ, we obtain

p+ = a2∂−∂λF
+λ, (106a)

p− = F−+ + a2∂λF
−λ, (106b)

pi = F+i − a2∂i∂+∂λF
λ+ − 2a2∂−∂+∂λF

λi. (106c)

Replacing (106) in (105), we deduce the field equations

(

1 + a2�
)

∂λF
µλ = 0. (107)

Therefore, the time evolution sector of the characteristic equations are equivalent to the

Lagrangian field equations.

4.5 Symmetries

Let us go back to the complete set of dynamical generators (98), with the canonical Hamil-

tonian density (84). The Hamiltonians ΦA, as shown in [7], are generators of canonical

transformations in the complete phase space. The x+ "time" evolution studied above is

a particular case. As usual in constraint analysis, we are also interested in the canoni-

cal transformations which represent Lagrangian gauge transformations. In this case, we

consider the following infinitesimal transformations

δF (x) =

ˆ

Σ
dσy {F (x) ,Φa (y)}∗ δωa (y) , a = (1, 2, 3) , (108)

which are taken with δx+ = 0. The generator is given by

G ≡
ˆ

Σ
dσxΦa (x) δω

a (x) , a = 1, 2, 3. (109)

with Φa = 0.

24



Now we calculate a fixed point transformation on the Lagrangian density (65), given by

δL = δAµ
δL

δAµ
= δAµ

(

�+m2
)

∂αF
µα, m2 ≡ 1/a2, (110)

apart of a total divergence. Remember that δL/δAµ is the Lagrange derivative (68). On the

other hand, δAµ is generated by G via the generalised brackets, which gives the result

δAµ = {Aµ, G}∗ = δ+µ δω
2 −

(

δ−µ ∂− + δiµ∂i
)

δω3. (111)

Apart of divergence terms, substitution of (111) in (110) yields

δL = δω2
(

�+m2
)

∂αF
+α − δω3

(

�+m2
) (

∂−∂αF
−α + ∂i∂αF

iα
)

.

Note that the identity ∂α∂βF
αβ = 0 results in

∂−∂αF
−α + ∂i∂αF

iα = −∂+∂αF+α,

so, after some calculation,

δL =
(

δω2 + ∂+δω
3
) (

�+m2
)

∂αF
+α. (112)

The system is gauge invariant under the transformation (111) if δL is zero in Ω. Of

course, the field equations themselves lead to δL = 0, but if the symmetry is understood to

be valid outside the solutions of the variational problem, we must have

δω2 = −∂+δω3. (113)

Supposing Λ ≡ δω3 the gauge parameter, we have

δω2 = −∂+Λ, (114)

so (111) gives

δAµ = −δ+µ ∂+Λ− δ−µ ∂−Λ− δiµ∂iΛ = −∂µΛ. (115)

Therefore, we recover the correct gauge transformations Aµ → Aµ − ∂µΛ.

On the other hand, taking ∂+Λ ≡ Λ̇,

δĀµ = δ+µ δω
1 − δ−µ ∂−Λ̇− δiµ∂iΛ̇,

and δω1 is still arbitrary. However, if the gauge transformation for Aµ is given by δAµ =

−∂µΛ, the same transformation for Āµ should be δĀµ = −∂µΛ̇ for the sake of consistency.
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Therefore, we should fix δω1 = −Λ̈, so

δĀµ = −δ+µ Λ̈− δ−µ ∂−Λ̇− δiµ∂iΛ̇ = −∂µΛ̇. (116)

After some calculation, the generator of gauge transformations (109) becomes

G =

ˆ

Σ
dσx

(

∂µπ
µΛ̇ + ∂µp

µΛ
)

. (117)

In fact, the generator (117) reproduces the relations (115) and (116).

5 Final remarks

In this paper, we analysed the null-plane canonical structure of Podolsky’s generalised

electrodynamics via the Hamilton-Jacobi formalism. The essence of the HJ approach is

to understand canonical constraints as generators of transformations on the phase space.

Each generator is a hamiltonian function responsible to the evolution of the system along a

respective evolution parameter, as the canonic hamiltonian function which is the generator

of time evolution. The flows generated by the hamiltonians are solutions of the character-

istic equations taken from the fundamental differential (46). If complete integrability is

assured by application of Frobenius’ conditions, these generators are in involution with

the generalised brackets, closing themselves a Lie algebra. A complete set of involutive

constraints generates transformations that preserve the symplectic structure of the phase

space, therefore becoming canonical transformations, whose flows are called characteristic

flows. In this case, we understand the HJ formalism as the search for a complete set of

involutive hamiltonians of a singular system.

Applied to Podolsky’s theory, the HJ approach starts with the definition of the con-

straints (85). Among these constraints, we identify two sets of non-involutive ones, leading

to the GB (94), with fundamental relations calculated in (95). These brackets are defined

only with the application of proper boundary conditions, ∂−Aµ = ∂2−Aµ = ∂3−Aµ = 0 for

x− → −∞. The GB eliminate the set
(

φi2, φ
i
4

)

, but reveals a new constraint given by (97).

The complete set of hamiltonians, written in (98), is in involution with the GB, therefore

completing the task of finding the complete set of generators of the system.

In section 4.4 the canonical field equations are calculated. It is shown that these char-

acteristic equations, in the temporal sector, are equal to the Euler-Lagrange equations of

Podolsky’s lagrangian.

On the other hand, the evolution of the system in the direction of the remaining inde-

pendent variables ωa, with δx+ = 0, is analysed in section 4.5. In this case, the hamilto-

nians Φa generate characteristic flows defined by (109), and these flows are symmetries of

the system. Since Φa form a complete set of compatible observables in the reduced phase

space, we expect that these transformations are related to the gauge transformations de-

fined by an invariant field strength Fµν . In fact, δL = 0 leads directly to the relation (113)

between the former independent variables. Choosing Λ ≡ δω3 as the gauge parameter, we
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see that ω2 must have the form δω2 = −Λ̇, while ω1 must obey δω1 = −Λ̈. The correct gauge

transformations (115) and (116) are generated by the generating function (117).

Here, we stress the fact that the application of the HJ theory not only provides straight-

forward results for the complete set of generators and consistent canonical field equations,

but also resulted in the correct generators of the gauge transformations, via the correct re-

lation among the independent variables of the theory. This last result was always of some

controversy in the literature, since Dirac’s method incorporate an unproven assumption,

Dirac’s conjecture, which is the statement that all first-class constraints (correspondent to

our involutive constraints) must contribute to the construction of the generator. Moreover,

no ad-hoc method, as Castellani’s procedure [23], was necessary. In fact, it seems that

Dirac’s conjecture is actually not a defined problem in the HJ formalism. It is our intent,

however, to study the relation between Frobenius’ theorem and this conjecture in the near

future.
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