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Abstract 

Copper doped zinc aluminium ferrites CuxZn1-x.(AlxFe2-x)O4 are synthesized 

by the solid-state reaction route and characterized by XRD, TEM, EPR and non linear 

optical spectroscopy techniques. The average particle size is found to be from 35 to 

90 nm and the unit cell parameter “a” is calculated as from 8.39 to 8.89 Å. The cation 

distributions are estimated from X-ray diffraction intensities of various planes. The 

XRD studies have verified the quality of the synthesis of compounds and have shown 

the differences in the positions of the diffraction peaks due to the change in 

concentration of copper ions. TEM pictures clearly indicating that fundamental unit is 

composed of octahedral and tetrahedral blocks and joined strongly. The selected area 

electron diffraction (SAED) of the ferrite system shows best crystallinity is obtained 

when Cu content is very. Some of the d-plane spacings are exactly coinciding with  

XRD values.  EPR spectra is compositional dependent at lower Al/Cu concentration 

EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to 

Cu2+. Absence of EPR spectra at room temperature indicates that the sample is 

perfectly ferromagnetic. EPR results at low temperature indicate that the sample is 

paramagnetic, and that copper is placed in the tetragonal elongation (B) site with 

magnetically non-equivalent ions in the unit cell having strong exchange coupling 

between them. This property is useful in industrial applications.  Nonlinear optical 

properties of the samples studied using 5 ns laser pulses at 532 nm employing the 
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open aperture z-scan technique indicate that these ferrites are potential candidates for 

optical limiting applications. 

 

Key words: Copper doped zinc aluminium ferrite, synthesis solid state reaction  
                         route, XRD, EPR, non-linear optics, TEM, Tetragonal symmetry. 
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1. Introduction 

The spinel is a mixed metal oxide with a general formula (M2+)(M3+)2(O2-)4 where M 

is a transition metal ion or a combination of ions. Many compounds adopt this type of 

structure. Generally magnetic ferrites are denoted by the formula AB2O4 where A and 

B refer to tetrahedral and octahedral sites respectively in the Fcc oxygen lattice. The 

unit cell contains eight formula units.  Each unit cell consists of eight tetrahedral (A) 

sites and four octahedral (B) sites in the Fcc lattice.  Hence half of the octahedral 

interstitial sites are occupied by trivalent metal ions and 1/8 of the tetrahedral 

interstitial sites are occupied by divalent ions in a normal spinel. In A site the divalent 

metal ion is in the center of a tetrahedron surrounded by four oxygens, whereas in B 

site the trivalent metal ion is in the center of an octahedron and is surrounded by six 

oxygens.[1]. The equilibrium distribution of cations in the nano spinel compound 

structure depends on ionic radii, electronic configuration, chemical composition, 

method of preparation, grain size, electrostatic/crystal field stabilization energies 

(CFSE), and polarization effects [2,3]. Cations like Zn2+, Mg2+ and Cd2+ show a 

strong preference for the A site, whereas Fe3+ ions prefer the B-sites. In inverse 

spinels cations like Mn2+, Ni2+, Co2+, Cu2+ occupy one of the B sites and hence one of 

the trivalent ion occupies tetrahedral sites thus inverting the structure. It is reported 

that the method of preparation plays a very important role with regard to the chemical, 

structural and magnetic properties of spinel ferrites [4].  

 

In general spinels are classified into three types; viz. normal, inverse and mixed 

spinel. (Zn/Mg)Fe2O4 is a normal spinel, (Zn/Mg)(Al/Mn/CrNi/Fe)2O4 is a mixed 

spinel, and examples of inverse spinel include magnetite, NiFe2O4 etc.,  In all inverse 

spinels one of the trivalent ion is in tetrahedral hole and the divalent metal ion is in 

the octahedral hole. There are a total of 56 ions in the unit cell of a spinel, of which 8 

are M2+ ions, 16 are M3+ ions and 32 are O2- ions. This is calculated as: 64 tetrahedral 

A site (8 x 8=64), 32 octahedral B site. Moreover, in normal spinel 8 M2+ are in the A 

site and 16 M3+ are in the B site, while in inverse spinel 8 M3+ are in the A site, and 8 

M2+ and 8 M3+ are in the B site. In mixed spinels the cation distribution in the A and B 

sites is not exactly similar to that in the normal and inverse structures. The structural 

and the magnetic environments of these two sites are quite different from each other.  
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The substitution of nonmagnetic ions such as Al3+ ions in simple and mixed ferrites 

has received substantial attention over the past few years [5-7]. The introduction of 

paramagnetic copper is found to enhance the formation of mixed spinels. It has been 

reported that the presence of nonmagnetic ions reduces magnetic interactions between 

the two interstitial sites and weakens hyperfine magnetic fields, thereby changing the 

magnetic and electronic properties. In recent years, research on spinel ferrites has 

received renewed attention due to the availability of new and sophisticated techniques 

for the synthesis and characterization of nanoparticles. Normal ferrites are widely 

used for microwave and non-crystalline (powder) ferrites for high frequency 

applications but the nano ferrites have several uses in heat transfer devices, drug 

delivery systems, solar cell applications and medical diagnostics, including cancer 

treatment. [8,9]. It is well known that when ferrites are sufficiently diluted with non-

magnetic atoms they can show a wide spectrum of magnetic structures, ferromagnetic 

order etc [10]. From an application point of view, it is quite meaningful to investigate 

how the magnetic and electronic properties and the structure of mixed spinels change 

by the introduction of paramagnetic and non-magnetic atoms into the lattice. In fact to 

the best of our knowledge, EPR studies are not reported so far on ferrite systems 

which contain paramagnetic metal ions. Therefore, in the present work, we have 

synthesized copper doped zinc aluminum ferrites of nano-size via a solid-state route. 

XRD, EPR and TEM measurements have been carried out in order to determine the 

cation distribution in the ferrite system under study. Moreover, open aperture z-scan 

measurements have been done using 5 ns laser pulses at 532 nm to measure the 

nonlinear optical transmission of the samples, to calculate the nonlinear absorption 

coefficient, and estimate their potential for optical limiting applications. 

 

2.Experimental 

2.1 Synthesis of nano sized copper doped zinc aluminium ferrite 

Samples of the mixed spinel ferrites (Zn1-xCux)(AlxFe2-x)O4 with variable 

composition (x = 0.15, 0.45, 0.75 and 0.90) are synthesized by using standard solid 

state route method. Mostly in the synthetic ferrite systems, Zn composition remains 

constant and is at its regular lattice site while Fe3+ was replaced by aluminium. But in 

the present syntheses composition of all Zn, Cu, Al and Fe ions are changed.  All the 

chemicals used are of analytical grade only. Distilled water is used for the preparation 

of the required solution. The process is described below: 
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 (i) 2.2886 g of pure zinc granules are dissolved in1:1 HCl and evaporated on 

sand bath near to dryness and 2.5572 g of CuCl2.2H2O is added to it. (ii) An amount 

of 33.3319 g of ferrous ammonium sulphate is dissolved in 1:1 dilute HCl. Its color 

becomes very light green and1:1 NH4OH is added drop wise until the precipitate is 

formed the color becomes dark green due to the formation of Fe(OH)2. The resulting 

mixture is stirred continuously for about 2 hours to convert it to Fe(OH)3 by desired 

oxidation filtered through an ordinary filter paper and washed several times with 

distilled water. (iii) 2 gm of Al2(SO4)3 is weighed and is dissolved in 15 ml of 

distilled water, 2 gm of NH4Cl is added and 1:1 NH4OH is added drop wise until the 

precipitation is complete. It is filtered and washed thoroughly with distilled water. 

The three solids are dissolved independently in minimum amount of 1:4 HCl (200 ml 

of water + 50 ml of HCl). The proportionate weight used in each sample is given 

Table-1. 

 

All the three solutions are mixed together and 3-5 ml of acetone is added for 

reducing the particle size is filtered through an ordinary filter paper to remove any 

insolubles. Final products are dried solutions and then heated up to 4000C on Bunsen 

burner. The synthesized final products of nano-size copper doped zinc aluminium 

ferrites (Zn1-x Cux)(AlxFe2-x.O4) are calcinated in air by raising the temperature up to 

2000C at the rate of 6 0C/minute in the hot air oven. The dried nano ferrite samples are 

taken in different silica crucible free from moisture and are then placed in the 

incinerator of a Muffle Furnace (Biocraft Scientific Systems (P) Ltd, Agra. India). 

The temperature is raised to 1200 0C and then allowed to cool to room temperature at 

the rate of 10C/minute in 17 hours. Again the temperature is raised to 1000 0C in 2 

hours and cooled very slowly to room temperature at the rate of 10C/minute in 17 

hours. The reacted materials in each crucible were well grounded separately in an 

agate pestle mortar. Now the compounds formed are nano-sized copper doped zinc 

aluminium ferrite. 

 
2.2 Characterisation Techniques 

X-ray powder diffraction patterns of all the samples are recorded using Philips X-ray 

diffractometer operated in reflection geometry at 30 mA, 40 kV with Cu-Kα ( λ = 

1.54060 Å). The source is kept at 25 ºC. Data are collected using a continuous scan 

rate of 1º per 2 min which is then refined into 2 theta steps of 0.02º. The TEM images 
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are obtained on Philips CM 200 transmission electron microscope operating at 200 

kV having a resolution 0.23 nm. EPR spectra of the samples (x= 0.15, 0.45, 0.75 and 

0.90) are also recorded from 95 K to 300K on Bruker ESR spectrometer operating at 

X band frequency (υ =9.45 GHz) having a 100 KHz field modulation to obtain first 

derivative EPR spectrum. DPPH with a g value of 2.0036 is used for g factor 

calculation.  

 

2.3 Z-scan measurements 

In the open-aperture z-scan technique, essentially the optical transmission of a 

given sample is measured as a function of the light fluence (energy per unit area) 

falling on it to ascertain whether the sample shows nonlinear transmission or not. In 

the typical experimental configuration a Gaussian laser beam is focused using a 

converging lens, which is a simple way to achieve a continuous variation of laser 

fluence along the beam axis (taken as the z-axis). The sample is then placed at 

different positions with respect to the beam focus (z=0), and the corresponding 

transmissions are measured. The fluence which is a maximum at the focal point will 

decrease towards either side as given by  

   

 

F(z) = 4 ln2
Ein

π
3

2

 

 
 

 

 
 ω (z)2    

Here Ein is the input laser energy and ω(z) is the beam radius, given by  

 

ω(z) = ω (o) 1+
Z
Z0

 

 
 

 

 
 

2

      

with ω(0) being the focal spot radius, and 

 

Z0 =
πω(0)

2

λ
 the Rayleigh range (λ is the 

laser wavelength). In practice the sample is mounted on a linear translation stage to 

achieve smooth translation with good spatial resolution. By plotting the normalized 

transmission (Tnorm) against the sample position (z), the open-aperture z-scan curve is 

obtained. The above two equations can be used to calculate F(z) for each z so that the 

variation of Tnorm with F(z) also can be plotted. Appropriate transmission equations 

are now used to numerically fit the measured data and estimate nonlinear absorption 

coefficients. We used the second harmonic output (532 nm) of a Q-switched Nd: 

YAG laser (Continuum, MiniLite), generating laser pulses of 5 ns duration for the 

measurements.  (Zn1-xCux)(AlxFe2-x)O4 samples with x = 0.15, 0.45, 0.75, and 0.90 
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were investigated. Samples were dissolved in HCl and taken in a glass cuvette of 1 

mm path length.  By appropriate dilution the linear transmission of all samples was 

adjusted to 46% in the 1 mm cuvette. Laser pulse energy used was 70 μJ, and laser 

pulses were fired at a low repetition rate of 0.2 Hz to the cuvette to avoid sample 

heating that might otherwise interfere with the measurements. The input energy and 

the transmitted energy were measured using two pyro-electric energy probes (RjP 

735). The z-scan curve plotted from the measured data shows a dip in the focal region 

indicating nonlinear absorption  

 

3. Results and Discussion  

3.1 X-ray diffraction results 

 Fig.1 presents the X-ray diffraction patterns of all copper doped zinc aluminium 

ferrite samples recorded on Philips diffractometer up to 25 º.   In Fig. 1 all major 

peaks were indexed to the standard pattern for ferrite, Fe3O4. These peaks show the 

cubic spinel ferrite system. The values of the crystal lattice constant “a” for all the 

samples determined from X ray data are listed in Table-2. The lattice constant (a) is 

found to increase linearly with copper/aluminium concentration (x).  This indicates 

that the variation of x with a obey Vegard’s law [11]. This behaviour of lattice 

constant with concentration may be due to substitutional effect of larger Cu2+ (0.73) 

and smaller Al3+ (0.50 Å)  ions which replace Fe3+ (0.64 Å) ions at octahedral (B) site 

where as Fe3+ ions are replaced by Zn2+ ions in position.  Due to this ionic radii of 

tetrahedral (A) sub lattice remains same and octahedral (B) sub lattice ionic radii 

increases. Similar results are observed when composition of Cu is varied in the ferrite 

system [12].   Further Zn2+ and Cu2+ ions have strong preference for tetrahedral (A) 

site and Al3+ occupies the octahedral (B) site.  The X-ray density ‘dx’ is calculated 

using the formula[13] 3NV
ZMd x = . Here “Z” (8) represents the number of 

molecules in a unit cell of the nano copper doped zinc aluminium ferrite lattice 

where M is the molecular weight of the compound, ‘N’ is the Avogadro’s number 

and ‘V is the lattice volume of the sample.  The calculated X-ray density for all the 

samples is also given in Table-2. The density decreases with increase of Cu/Al 

concentration (x).  This is because the increase in composition of Cu/Al content 

in the spinel system decreases the mass.  Also the unit cell volume increasing 

with increase of doping of Cu/Al content. Hence X ray density decreases. 
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The average grain size of the compound is evaluated from the line broadening of the 

peak (311) using Debye - Scherner equation ( ) θβ
λ

cos
9.0

2
1

=hklD Here D is the average 

particle size of the crystal, λ is the wavelength of incident X ray, θ is the 

corresponding Bragg angle ,
2

1β is the full width at the half maximum height 

(FWHM) of the peak.  The average particle size of the ferrite compound is calculated 

and is given in Table-2. 

The cation distribution in the spinel ferrite system has been estimated from X-ray 

diffraction measurements [14-16]. It has been reported that the intensities of (220), 

(422) and (440) planes are sensitive to cations on tetrahedral (A-) and octahedral (B-) 

sites [17,18]. The intensity of (222) is very sensitive to octahedral site. Therefore the 

intensities of (220), (422), and (440) planes are used to determine the cation 

distribution. The intensity ratios (I220/I440 and I422/I440) have been considered to 

be more sensitive to the cation distribution [19]. It is known that Fe3+ and Al3+ 

ions distribute over A- and B- sites [20], while Zn2+ and Cu2+ions have strong 

preference for A-site [21-23]. The intensities corresponding to (220) and (422) 

reflections are most sensitive to cations on tetrahedral sites [17,18], while those 

of (333) reflection are sensitive to cation on octahedral sites [17]. The intensity 

ratios: I220/I440, I422/I440 and I440/I333   to the samples are calculated. The 

calculated intensity ratio versus Al/Cu content is shown in Table-3. It is clear 

that ratio decreases as content increases.  The intensity of (222) goes on 

increasing with Cu content.  This suggests that Cu is substituted into octahedral 

site than tetrahedral site. This suggests that the formation of mixed spinel is very 

high.  

 
3.2 TEM analysis 
 
TEM was employed to visualize the size, shape and to confirm the nano crystalline 

nature of the synthesized copper doped zinc aluminium ferrite. Fig.2 shows the 

typical bright field TEM images of the synthesized (CuxZn1-x)(AlxFe2-x)O4 

nanoparticles. Also it is noticed that the ferrite particles are well defined with 

polygonal octahedral and tetrahedral shapes. The dense assembly of uniformly sized 

ferrite nanoparticles are seen at lower concentration of Al/Cu and at higher 
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concentrations, pale assembly of uniformly sized ferrite nanoparticles are observed. 

The whole surface of the grid was covered with ferrite nanoparticles. From the Fig.2 

it is clear that the ferrite particles had well-defined polygonal growth forms with 

octahedral and tetrahedral shapes. These two are well joined. This type of joining 

may find important application as building block for magnetic nanostructures. 

Further some of the grains are over lapped and could not be identified 

separately. The grain size of the particles with different Al/Cu concentrations are  

given in Table-4. 

 

The agglomeration of nano particles is usually explained as a common way to 

minimize their surface free energy in nano materials [24,25]. It has been 

observed in the synthesized compounds that the particles prepared with smaller 

Al/Cu substitution are some what agglomerated in nature.  The degree of 

agglomeration decreases with increasing Al/Cu substitution. The particles 

prepared from higher Al/Cu concentration are discrete.  The decrease in 

agglomeration is due to the replacement of Fe3+ ions by Al3+ ions and Zn2+ ion by 

Cu2+ ions that leads to decrease in radii of cations involved, which inturn 

decreases the grain size.  Hence the lattice constant decreases.  From the Table-4 

it can be seen that the mean particle size is 45 nm to 70 nm. The particles at lower 

Al/Cu concentration in the range 60 nm to 85 nm whereas at higher Al/Cu 

concentration in the range observed is 30–65nm.  Certain particles have a diameter 

between 150 and 300 nm. The particle sizes range from 30 nm to as high as 300 nm. 

The particle size distribution is broader and indicates the polycrystalline nature. The 

average particle sizes estimated from the TEM studies listed in Table -4 are in 

agreement with those values obtained from XRD analysis.  

 

The selected-area electron diffraction (SAED) pattern of the copper doped zinc 

aluminium ferrite is also shown in Fig-3. From the Fig.3 the crystal plane d-space is 

measured and is given Table-4.The ED pattern consists of concentric rings with spots 

over the rings. This feature indicates that the samples are good nanocrystalline in 

nature. [26-27].  The rings with a dotted pattern in SAED confirm the wide size 

distribution of CuO/AlO nano particles. From the Table-4 it is also clear that crystal 

plane d-spacing is decreasing with increase of Al/Cu concentration. This is in 
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agreement with the XRD results. As Al/Cu content increases the crystallinity also 

increases and the best crystal nature is observed at Al/Cu = 0.90 wt%, which is shown 

in Fig. 3.   The ED image clearly shows that the crystal d-plane of (310) and (333) 

which are well agreeing with the XRD values. 

 
 
 
3.2 EPR Spectral results  
 

EPR spectra recorded for copper doped zinc aluminium ferrite system, CuxZn1-

x(AlxFe2-x)O4 (x= 0.15, 0.45, 0.75 and 0.90), from 95 K to 300 K. These are shown 

in Fig. 4 as (a), (b) and(c). The analysis is as follows: 

Fe3+, a d5 ion with 6S5/2 spin state splits into three Kramers doublets, separated by 

nearly 1.0 cm-1.  In this case, only the lowest doublet is populated and one can 

observe resonances at g = 9.0 [28,29].  On the other hand, if the middle Kramers 

doublet is also populated, a g value of 4.29 is expected.  If third doublet is also 

populated, g values ranging from 0.3 to 4.29 can be seen.  A few systems are known 

which exhibit resonances from all the three Kramers doublet [29,30].  In the present 

case the g value observed at 9.0 and 3.5 can be attributed to the resonance arising 

from the three Kramers doublets which are populated even at 300K. 

 

(i) EPR spectra of Cu0.15Zn0.85Al0.15Fe1.85O4 recorded from 95K to 300K is shown 

in Fig. 4(a).  At all the temperatures the spectra exhibit two resonant signals one 

at lower field and another at higher field. Due to high concentration of iron 

(1.85) and the low copper content (0.15), EPR lines are hidden.  Thus the 

observed two resonant signals are attributed to characteristic of Fe3+.  The 

higher field (around 331.53 mT) resonant signal remains constant, at g=2.04 at 

all temperatures, whereas the lower field signal approaching higher field signal 

as the temperature is increased. The higher field signal may be attributed to Fe3+ 

ions on the octahedral (B) site and the lower field signal is attributed to Fe3+ ions 

on the tetrahedral (A) site.  Further the resonant field signal at lower end shows, 

a gradual montonic decrease with increasing temperature.  This is due to 

dipolar-dipolar broadening which decreases with increase in temperature. The g 

values and area of resonant signals are given Table -5.  The ratio of area of 

resonant signal at higher field to lower field gives the ratio of amount of Fe3+ 
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entering into octahedral (B) and tetrahedral (A) sites which coincides with the  

calculated  value of XRD analysis. 

 

(ii) EPR spectra of Cu0.45Zn0.55Al0.45Fe1.55O4 recorded from 95K to 300K are 

shown in Fig. 4(b). The overall EPR spectra is symmetric with a single resonant 

curve with g= 2.04. From the Fig. 4(b) it is noticed that when the temperature 

increases, the area of the resonant curve decreases and changes the g value. This 

may be due to the fact that Fe3+ ions are only in octahedral B site.  In tetrahedral 

A site the zinc and copper concentrations are almost equal and a very few Fe3+ 

ions may have entered into the lattice.  Thus diamagnetic nature of zinc in A site 

is superimposed on copper and iron ions. Hence lower field resonant signal may 

be absent. 

 

It is noticed that on increasing the Al3+/Cu2+ ions concentration (x), the value of 

higher field resonance signal remains almost unchanged and lower field signal 

disapper indicating that S-electron distribution of Fe3+ ions have hardly affected 

by Al3+ substitution.  Hence the presence of Fe2+ ions in the present ferrite 

system is ruled out. Thus the electron exchange interaction (Fe2+↔Fe3++e-) does 

not occur and hence the oxidation state of Fe3+ remains unchanged during the 

synthesis.  Further the resonant signal at lower field show a gradual monotonic 

decrease with increasing Cu/Al concentration (x).  This is because of super 

transferred hyperfine field at the central cation that originates from the magnetic 

moments of the nearest-neighbor cations, that is, from the intra-sub-lattice 

contributions hAA and hBB and the inter sub-lattice contributions hAB and hBA. In the 

present ferrite system, under study, the inter sub-lattice contributions hAB and hBA are 

predominant. The introduction of Al3+ ions replaces Fe3+ ions in the A- and B-sites 

decreases inter sub-lattice contributions, which in turn decreases the hyperfine field 

Hhfs at both A- and B-site. As nonmagnetic Al3+ ions replaces Fe3+ ions, the correct 

amount of Fe3+ present at A- and B-sites is estimated by determining the area under 

the EPR spectrum. The correct amount of Fe3+ ions occupied by octahedral (B-) and 

tetrahedral (A-) sites obtained from the EPR spectra and those calculated on the basis 

of cation distribution are in good agreement. The Fe3+(octahedral site)/Fe3+ 

(tetrahedral site) ratio obtained from the EPR spectra and X-ray intensity calculations 
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decreases with increasing Cu/Al concentration suggesting the decrease of ferri 

magnetic behavior. With increase of Cu2+/Al3+ ions concentration, intensity and the 

line width of the EPR spectra increases indicating a reduction in particle size and it is 

in accordance with TEM measurements. These results are in consistent with the 

results reported earlier [31].  

(iii) EPR spectra of Cu0.75Zn0.25Al0.75Fe1.25O4 recorded from 95K to 300K are 

shown in Fig. 4©. The spectrum is characteristic of Cu2+ in tetragonal distortion.  

This behaviour is valid upto temperature from 95K to 145K. From the spectrum, the g 

values obtained are g11 = 4.82 to 3.14 and ⊥g = 2.04. As the ferrite contains a very 

high percentage of copper, the hyperfine lines due to Cu(II) could not be resolved.  If 

g11 > ⊥g , the ground state is 2B1g, whereas if ⊥g >g11 or g11 = 2.00, the ground state is  
2A1g.  Further tetragonal cupric complexes with D4h generally have g11 

(corresponding to the magnetic field along the Z axis of the complexes) > ⊥g >2.04 

have the ground state 22 yxd
−

[32-34]. In the present case g11 > ⊥g >2.00 (4.82 to 3.14 

>2.04 > 2.0036) and hence the ground state is 2B1g ( 22 yxd
−

).   

Using the above data, a new parameter G [35] is defined as 

 

G =
g11 − ge

g⊥ − ge

 is nearly 8.0.  

If G value falls in between 3 and 5, the unit cell contains magnetically non-equivalent 

ions.  If G value is less than 3, the exchange coupling among the magnetically non 

equivalent Cu(II) ions in the unit cell is not very strong.  If G is greater than 5, a 

strong exchange coupling takes place among the magnetically non equivalent Cu(II) 

ions in the unit cell.[36-39].   In the present case G is nearly 8.0 which indicates that 

the unit cell contains magnetically non-equivalent ions and the coupling is very 

strong. In this, the area ratio of 

 

g⊥

g11

 is always equal to 1.65.  Thus the Cu2+/Fe3+ cation 

ratio of octahedral site to tetrahedral site in all compositions remains 1.65 and is equal 

to XRD values. Further increase in temperature (from 170 K to 300K) caused merger 

of hyperfine lines and gives only resonant line. Single EPR line is noticed due to high 

concentration Cu in the compound. Since the compound contains high content of 

copper the hyperfine lines could not be resolved due to dipolar-dipolar broadening. 

Further no EPR signal is noticed due to iron because the Al3+ ions are dominated by 

Fe3+ ions in both the sites. 
 



13 
 

(iv) No EPR spectra of (Cu0.90Zn0.10)(Al0.90Fe1.10)O4 recorded from 95K to 300K 

is noticed. The transition metal ion with spin S = 1 do not exhibit EPR spectra at 

normal temperatures. In the binuclear complexes, two spins in the s =½ of two 

adjacent Cu(II) ions are coupled via a bridging ligand such as oxygen and hence total 

spin becomes S=1 and hence does not give EPR spectrum. This results in a 

ferromagnetic behaviour. The ferromagnetism is represented by a positive 2J 

exchange interaction value (S=1 triplet ground state, S=0 singlet first excited state).  

At room temperature one can see S=1 signals when (S=0 EPR shows no signal.).  The 

EPR spectra of the isolated Cu(II) containing oxygen ligands show three signals 

which are typical for the ferro-magnetically coupled Cu(II) centers with spin S=1 in 

the X band frequency region [31].  This is also not noticed because the compound 

may exhibit high ferrimagnetism.  

 

3.3 Z-scan measurement results 

We tried fitting the measured z-scan data to different nonlinear transmission 

equations, and the best fit was obtained for a combined process of saturable 

absorption and effective two-photon absorption (2PA). Fig 5 shows the measured z-

scan curves along with the numerical fits. The effective nonlinear absorption 

coefficient in the present case is given by

 

α I( ) =
α0

1+
I
IZ

+ βI . Where α0 is the 

unsaturated linear absorption coefficient at the wavelength of excitation, I is the input 

laser intensity (fluence divided by laser pulse width), Is is the saturation intensity, and 

β is the effective 2PA coefficient. The corresponding propagation equation to find the 

transmitted intensity for a given input intensity is given by, 

 

dI
dZ 2 = −

α0

1+
I
IZ

+ βI

 

 

 
 
  

 

 

 
 
  
l  

  

Here Z’ indicates the propagation distance within the sample. By solving the above 

equation β and Is values for each sample were calculated.  

The effective 2PA coefficients are found to be 9×10-11 m/W, 7.35×10-11 m/W, 

7.2×10-11 m/W, and 6.3×10-11 m/W for x=0.15, 0.45, 0.75 and 0.90 respectively. (The 

corresponding saturation intensities are 4×1013 W/m2, 2.7×1013 W/m2, 2.3×1013 W/m2, 
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and 9.95×1012 W/m2 respectively).  In comparison, the effective 2PA coefficient 

values are of the same order as those measured in certain organic Schiff base 

complexes [40], copper nano-composite glasses [41] and Bi nanorods [42]. The 

increasing opacity of these samples with input laser fluence shows that these materials 

are potential materials for optical limiting applications, by which a sensitive detector 

or human eye can be protected from accidental exposure to intense laser radiation.   

 

4. Conclusions 

1. Ferrite compound is synthesized by standard solidstate route method shows 

      crystallinity.  

 2.  XRD results suggest that a higher content of Cu result in the substitution of  

      octahedral sites compared to tetrahedral sites. Further several crystal parameters  

     are evaluated which are coinciding with TEM and SAED results. 

3. TEM images shows that the basic unit is composed of both tetrahedral and  

     octahedral geometries and joined together to build the unit cell. TEM pictures are  

     clearly shows both octahedral and tetrahedral forms agglomerated with different  

     sizes with different Al/Cu concentration.  The SAED picture indicating that the  

     best crystallinity is noticed at higher Cu/Al concentration.  

4.  EPR results suggesting that doping of higher amounts of Cu, Al could not altered  

     the ferromagnetic behaviour at room temperature. At low temperatures the 

     compound show both ferromagnetic and paramagnetic nature. This property is  

     useful in several industrial applications. At low Cu concentration, the EPR  

     spectrum is dominant due to iron and at higher Cu concentration the spectrum is  

     due to copper. At very high Cu content no EPR signal is noticed indicating the  

     synthesized nano ferrite is high in ferromagnetic nature. 

5. Nonlinear optical transmission measurements employing 5 ns laser pulses at 532nm  

     indicate that these ferrites are potential materials for optical limiting applications. 

6. The synthesized material is a nano-structured mixed spinel type ferrite which may  

     have applications in high frequency devices as well as solar cell application.  
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Table 1 

x CuCl2 2H2O 
(170.48) 

Zn granules   
(65.38) 

Fe 
(NH4)2(SO4)2 
6H2O  (392.16) 

Al2(SO4)3.18H2O 
(666.42) 

0.15 0.4024 55.573 12.9898 3.7048 
0.45 1.2072 35.959 10.8834 11.1144 
0.75 2.0120 16.345 8.7769 18.524 
0.90 2.4145 6.538 7.7237 22.2288 

Cu = 63.546 ;   Zn = 65.38 ;   Fe = 55.85 ; Al = 26.982 ; O =16; H =1. 
Table 2 

Composition 
(x) 

Lattice 
constat (Å) 

ao 

Mass of  
the ferrite 

X ray 
density  
(dx) gm/cm3 

Grain size  
(nm) 

XRD TEM 

0.15 8.396 233.4758 5.2396 50 70 

0.45 8.699 227.2484 4.587 50 60 

0.75 8.753 218.0279 4.3188 43 45 

0.90 8.890 213.4167 4.0345 34 35 
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Table -3 

Composition X-ray intensity Cation distribution Fe3+ 
B 

site/A 
site 

I220/I440 I422/I440 I440/I400 

Cu0.15Zn0.85Al0.15Fe1.85O4 1.2375 0.2951 2.2453 Cu0.15Zn0.85Al0.15Fe1.85O4 1.56 

Cu0.90Zn0.10Al0.90Fe1.10O4 0.1917 0.2880 0.1142 Cu0.15Zn0.85Al0.15Fe1.85O4 1.50 

 
 
 
 
 
 
 
 

Table-4. 
Grain size (nm) Crystal plane d-spacing  (nm) 

Concentration (x) 
0.15 0.45 0.75 0.90 0.15 0.45 0.75 0.90 
   31.18 3.61   3.59 
   32.16 3.61 3.93 3.97  
   39.18 3.61 4.13   
  62.18 63.65 4.36 4.26 4.29 4.21 
  78.90 65.82 4.96  5.09 5.03 
   94.14  5.21(2)   
120.39  110.35 115.18(2) 6.32  6.08 6.07 
130.39  126.19  6.38    
132.49  139.28  6.47    
148.94 143.02 198.48  6.49    
165.73    6.54    
173.23    7.19 7.02 6.93 6.60 
 213.81    7.34 7.32 7.06 
 264.30      7.92 
 316.20      9.58 

 
Table 5 

Parameter Temperature (K) 
95 120 145 170 195 220 245 270 300 

g1 4.82 

1400 

4.66 

1450 

4.36 

1550 

4.02 

1680 

3.75 

1800 

3.46 

1950 

3.38 

2000 

3.22 

2100 

3.14 

2150  B(Gauss) 

g2 2.04 

3315 

2.04 

3315 

2.04 

3315 

2.04 

3315 

2.04 

3315 

2.04 

3315 

2.04 

3315 

2.04 

3315 

2.04 

3315 B(Gauss) 
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A site area 10 19 18 18 17 16 8 9 6 

B site area 16 32 30 30 28 26 13 15 10 

B site/A site 1.60 1.68 1.67 1.67 1.64 1.63 1.63 1.67 1.66 

 

 
Fig. 1 XRD spectrum of (CuxZn1-x)(AlxFe2-x)O4 
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Fig. 2 TEM images of (CuxZn1-x)(AlxFe2-x)O4 
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 Fig. 3 SAED pattern of (CuxZn1-x)(AlxFe2-x)O4 

 
 

 
Fig. 4(a) EPR spectrum of (Cu0.15Zn0.85)(Al0.15Fe1.85)O4 
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Fig. 4(b) EPR spectrum of (Cu0.45Zn0.55)(Al0.45Fe1.55)O4 

 
Fig. 4(c) EPR spectrum of (Cu0.75Zn0.25)(Al0.75Fe1.25)O4 
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Fig. 5. 
 


