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Abstract
Immune response stimulation and inactivation of chondroitinase ABC I in physiological condition have been limited its 
use in various clinical conditions as a bacterial enzyme drug. In the present study, we have investigated some structural and 
functional features of N∆89, C∆274 and N∆89C∆274; three designed truncated cABC I, in order to clarify the unclear 
role of two terminal parts of cABC I i.e., the 1–89 and 747–1021 amino acids sequences of the full length enzyme through 
truncation. As a result, the numbers of potential epitopes, the susceptibility to trypsin digestion, ANS fluorescence spectra, 
and fluorescence quenching using KI and acrylamide were diminished for N∆89 and C∆274 in comparison to the wild type. 
Secondary and tertiary structure investigation for N∆89 and C∆274 revealed that the intrinsic fluorescence was increased and 
Far-UV CD spectra were changed accordingly. Relative to the wild type enzyme, 0.164, 0.195 remaining activity and lack of 
activity was shown with the zymographic assay for N∆89, C∆274 and N∆89C∆274 variants, respectively. The diminished 
enzyme activity and structural changes suggested a reorientation of microenvironments interactions including cation–π 
interactions around structural elements toward lowering regional mobility. Constructing applicable truncated cABC I with 
improved features could be regarded as a strategy to regain new possible functional advantages over the full length enzyme.
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Abbreviations
cABC I  Chondroitinase ABC I
cAC  Chondroitinase AC
PIC  Protein interaction calculator
LB  Luria–Bertani
IPTG  Isopropyl-ß-d-thiogalactopyranoside
PMSF  Phenylmethanesulfonyl fluoride
DAB  3,3′-Diaminobenzidine

SDS-PAGE  Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis

ANS  8-Anilinonaphthalene-1-sulfonic acid

1 Introduction

Potential promising effects of bacterial chondroitinase ABC 
I (cABC I; EC 4.2.2.4) in treatment of neurodegenerative 
disorders, cancers, amblyopia, cystic fibrosis disease, and a 
variety of other disorders have generally been linked with 
its ability in deceleration of overexpressed extracellular 
glycosaminoglycans following abnormal conditions [1–4]. 
However, degradation of injected cABC I as a drug into the 
targeted loci has stimulated the body immune response with 
secreting antidrug antibodies against its antigenic sites [5]. 
In addition, physiological inactivation of cABC I has moti-
vated researchers to utilize several strategies including site 
direct mutagenesis with different approaches for improve-
ment of cABC I catalytic efficiency [6–13].
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Establishment of truncated enzymes could be considered 
as a protein engineering approach based on sustaining criti-
cal structure parts of the molecule to improve their activity 
and stability [14], minimizing the overall complexity of full 
length enzyme for specific target delivery, maximizing the 
effective concentration of truncated version over the full 
length [15], and removing potential T cell epitopes of full 
length enzyme as a protein-sequence modification approach 
[16, 17].

Closeness comparing, truncated versions of chondroi-
tinase AC (cAC) have been reported to show different activi-
ties in comparison to its wild type as tested by zymographic 
assay. This might exhibit several advantages of the truncated 
enzyme in clinical usage over its full length variant as sug-
gested, although no results have reported about the structure 
and stability of these variants [15, 18]. Chondroitinase ABC 
I with widely open substrate-binding domain is structurally 
comparable to cAC according to their sequence and struc-
tural topology similarity [19–21]. It has been shown that 
modification of loops located at N- and C-terminal domains 
of cABC I, results in facilitation of substrate accessibility 
to the enzyme catalytic machinery [8, 10]. Investigating the 
role of amino-acids using site direct mutagenesis through 
analysis of available crystal structure, molecular docking, 
superimposing and alignment of cABC I with its homolo-
gous domains have revealed the number of amino acids pre-
sent in the active site of the enzyme and engagement of N- 
and C-terminal domains of cABC I in catalysis, although the 
exact function of the two terminal regions is still unclear and 
conceal behind their structural complexity [20–27]. In this 
study, three truncated variants of cABC I i.e., N∆89 (1–89), 
C∆274 (747–1021) and N∆89C∆274 (1–89 plus 747–1021) 
of cABC I with 1021 amino acids residue were designed in 
order to evaluate the deletion effect of these amino acids on 
the enzyme functionality.

2  Materials and Methods

2.1  Chemicals

IPTG was purchased from Bio Basic Inc. (Canada). Ni-NTA 
agarose was supplied by Qiagen (USA). Kanamycin, ANS 
and chondroitin 4-sulfate were obtained from Sigma-Aldrich 
(USA). All other chemicals were provided by Merck (Ger-
many) and with analytical grade.

2.2  Bioinformatics and Gene Synthesis

Three-dimensional structure of wild type and truncated vari-
ants (N∆89, C∆274, and N∆89C∆274) of cABC I were 
designed and analyzed by I-TASSER protein structure and 
function prediction server and Jmol viewer software using 

cABC I PDB entry code (1HN0). Interaction within proteins 
and their immunogenicity were analyzed by protein interac-
tion calculator (PIC server) and prediction antigenic peptides 
servers (http://imed.med.ucm.es/Tools /antig enic.pl), respec-
tively. The gene encoding wild type and truncated (N∆89, 
C∆274, and N∆89C∆274) cABC I from Proteus vulgaris 
were synthesized by GeneCust Company (Luxembourg).

2.3  Gene Expression, Optimization and Western 
Blot Analysis

The pET-28 harboring wild-type, N∆89, C∆274 and 
N∆89C∆274 genes were transformed into the E.coli BL21 
(DE3) competent cells, grown in LB containing kanamy-
cin (50 µg/ml). Different concentrations of IPTG (0.1 and 
0.7 mM), temperatures (16 and 27 °C), and time (6 and 16 h) 
were applied for induction and incubation to assess the level 
of expressed proteins. Harvested bacterial pellets were sus-
pended in buffer A (50 mM potassium phosphate, 300 mM 
NaCl, 5 mM imidazole, and 1 mM PMSF; pH 7). After soni-
cation and centrifugation, soluble enzymes in supernatants 
were added onto a nickel-affinity chromatography column 
for purification. Enzyme refolding was performed using 
precipitated inclusion bodies of all proteins [28]. After two 
wash with buffer A, the inclusion bodies were solubilized in 
5 ml of buffer B (20 mM Tris–HCl, 6 M guanidine hydro-
chloride; pH 6.8) and centrifuged at 13,000×g for 21 min. 
Denatured enzymes were loaded onto a Ni-CAM column 
that was equilibrated with buffer B. Purified unfolded 
enzymes were renatured with one step dialysis against Tris 
buffer pH 6.8 for 24 h with several buffer change. Western 
blot was carried out with anti-His-tag mouse monoclonal 
Ab conjugated to HRP (1:1000) and DAB as a substrate to 
verify enzymes according to their attached N terminal his-
tag and molecular weights.

2.4  Activity Analysis

The enzymatic reaction was monitored spectrophotometri-
cally based on increased double bond formation as the prod-
uct which absorbs light at 232 nm. Kinetic parameters were 
calculated as previously described [8]. In order to screen the 
activity of enzymes, zymographic assay was also conducted. 
In this experiment, 100 µg of each enzyme was loaded on 
SDS-PAGE having 2 mg/ml chondroitin 4-sulfate as sub-
strate in the resolving gel. Gels were then rinsed with 2.5% 
Triton X100 for 1.5 h at RT. The zymographic assay buffer 
for incubation was 20 mM Tris, 100 mM  CaCl2, pH 7 for 
16 h. Alcian blue (2.5%) as a binding dye to C4S was added 
to zymogram gels for 12 h and destained bands were ana-
lyzed by Image J software using wild type enzyme as control 
[29, 30].

http://imed.med.ucm.es/Tools/antigenic.pl
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2.5  Circular Dichroism

Secondary structure contents of purified enzymes (0.2 mg/
ml in 20 mM Tris buffer, pH 6.8 at 25 °C) were recorded 
using an Aviv spectropolarimeter (model 215 USA). FAR-
UV CD spectra were expressed as molar ellipticity (deg cm2/
dmol) using the equation: [θ]λ = (θ × 100 MRW)/(cl) where 
MRW is mean amino acids residue weight of wild-type and 
truncated N∆89, C∆274, N∆89C∆274 cABC I enzymes 
separately, θ is the observed degree of ellipticity, c is the 
protein concentration (mg/ml) and l is the light path length 
(cm). To analyze and quantify the information content of far 
UV circular dichroism spectra and calculate the percentage 
of alpha helix and beta sheet contents of cABC I and trun-
cated version of cABC I, CDNN 2.1 software was used [31].

2.6  Fluorescence Spectroscopy

Intrinsic fluorescence was examined with 20 µg protein in 
20 mM Tris buffer, pH 6.8, at 25 °C. Extrinsic fluorescence 
spectra were assessed with 100 µg protein in 20 mM Tris 
buffer, and ANS (30 µM) as a probe at 25 °C. Intrinsic and 
extrinsic fluorescence spectra were recorded with the slit 
width of 10 nm from 300 to 400 nm and 400–600 nm after 
excitation at 280 nm and 380 nm using a Perkin Elmer lumi-
nescence spectrophotometer (L55 Germany), respectively. 
Potassium iodide and acryl amid quenching experiments 
were carried out with 20 µg of protein concentration in 
20 mM Tris buffer pH 6.8 at 25 °C. Ksv As simplest case of 
Collisional quenching occurs when a molecule can facilitate 
non- radiative transitions to the ground state. Ksv value; 
The Stern–Volmer constant, was calculated according to the 
ratio of fluorescence intensity in the absence and presence of 
the quencher; F0/F, using the equation F0/F = 1 + ksv[Q], in 
which Q is the molar concentration of the quencher.

2.7  Trypsinolysis Study

Trypsin digestion of proteins was performed with 0.2 mg/
ml protein concentration in 20 mM Tris buffer containing 
10 mM  CaCl2, pH 7.5 at 25 °C. After incubation of proteins 
with 0.2 µg/ml trypsin for 0, 25 and 45 min, PMSF; 1 mM 
final concentration, was added to the reaction mixture to stop 
the lysis enzyme action. Digestion pattern of proteins were 
visualized by SDS-PAGE.

3  Results

3.1  Bioinformatics

According to the available crystal structure, molecular 
docking and PIC server data, the area in cABC I that hold 

non-potential immunogenic amino acids (Fig. 1) are located 
in N-terminal (1–89) and C-terminal (747–1021) parts of 
the enzyme which were selected for truncation. Moreover, 
antigenic prediction results using “The Antigenic Index 
Server” and regarding antigenic index above 1.0, confirmed 
the above mentioned theoretical results (Fig. 3). Based on 
several available bioinformatics studies about crystal struc-
ture of cABC I, none of amino acids in the two selected 
terminal regions of enzyme in this study for truncation are 
still reported as a critical amino acids, therefore the reported 
functional elements of the cABC I are not removed upon 
truncation (Figs. 1, 2).

3.2  Enzymes Expression

Soluble forms of wild type and N∆89 enzymes were 
obtained incubating 6 h induction of the cells with IPTG 
0.7 mM at 27 °C and 16 h with 0.1 mM IPTG at 16 °C 
as inducing reagents, respectively. The C∆274 and 
N∆89C∆274 variants were solubilized by refolding meth-
ods. In order to compare structural differences with their 

Fig. 1  View of critical amino acids in terms of catalysis and substrate 
binding site of cABC I e.g.,  Arg105 from N-terminal and  His712 from 
C-terminal with CPK sapacefill style
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native soluble forms, wild type and N∆89 enzymes were 
also prepared in their refolded structures. Integrity and 
molecular mass of all proteins were confirmed by Western 
blot or SDS-PAGE (data not shown).

3.3  Activity Analysis

Vmax (µM/min), Km (µM), kcat  (min−1), kcat/Km (µM−1/
min) as kinetic parameters of wild type cABC I were 
0.012 ± 0.0025, 0.52 ± 0.08, 2223 ± 205 and 4275, respec-
tively (mean ± SD for at least three measurements). No 

catalytic activity could be detected for truncated forms 
spectrophotometrically. Zymographic assay was carried out 
to analyze the probable activity of truncated enzymes and 
the wild type cABC I as a control (Fig. 4). N∆89, C∆274 
showed 0.164, 0.195 as compared to the wild-type enzyme, 
respectively and N∆89C∆274 was inactive (Fig. 5).

3.4  Fluorescence Studies

Evaluation of local stability of proteins around their aro-
matic residues by intrinsic fluorescence indicated the higher 

Fig. 2  3D view of a wild type cABC I containing three domains: 
N-terminal (1–234), catalytic domain (235–617) including active 
site, C-terminal (618–1021), b residue 1–89 selected amino acids of 
N-terminal with cyan color for N∆89 truncated form, c residue 747–

1021 selected amino acids of C-terminal with cyan color for C∆274 
truncated form and d residue 1–89 selected amino acids of N-termi-
nal plus residue 747–1021 selected amino acids of C-terminal with 
cyan color for N∆89C∆274 form. (Color figure online)
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emission intensities for N∆89 and C∆274 as compared to 
the wild type enzyme (Fig. 6). In these two variants, 4 and 
14 of 64 total residues of Trp and Tyr were decreased upon 
truncation, respectively. The ksv values obtained for N∆89 
and C∆274 variants by quenching experiments using KI and 
acrylamide, were lower in comparison with the wild type, 
indicating compactness of the structures (Fig. 7; Table 1). 
8-Anilino-1-naphthalenesulfonic acid (ANS) is believed to 

strongly bind cationic groups of proteins and polyamino 
acids through ion pair formation. A paucity of data exists on 
the fluorescent properties of ANS in these interactions. ANS 
binding to arginine and lysine derivatives was studied by 
fluorescence and circular dichroism spectroscopies to aug-
ment published information attained by isothermal titration 
calorimetry (ITC). Extrinsic fluorescence were monitored 
using ANS as a probe for hydrophobic patches as binding 
sites or positively charged amino acids at the surface of the 
enzymes. ANS is mainly non-fluorescent in aqueous solu-
tion, but fluorescence enhancement results from the ion pair-
ing between charged group of Arg (or Lys) and the sulfonate 
group of ANS that reduce the intermolecular charge transfer 
(CT) rate constant. The intramolecular CT process affects 
upon a positive charge near the –NH group of ANS produc-
ing a blue shift of fluorescence [32]. Based on ANS binding 
analysis, the slightly red shifts as well as decrease in ANS 
fluorescence intensity were shown for N∆89 and C∆274 
proteins relative to the wild type enzyme. Thus, N∆89 and 
C∆274 proteins showed less exposed hydrophobic patches 
or positively charged amino acids on their surfaces upon 
deletions of 18 of 64 total hydrophobic residues and 38 of 
105 total residues of positive charge amino acids (Fig. 8).

Fig. 3  Average antigenic propensity plot result for wild type cABC I sequence. Residues having propensity index above 1.0 are potentially anti-
genic (the reported accuracy of this method is about 75%)

Fig. 4  Analyses of cleavage activity of wild type cABC I and its 
truncated forms using zymographic assay in the presence of C4S 
as a substrate. Lane 1: wild type cABC I, lane 2: N∆89, lane 3: 
N∆89C∆274 and lane 4: C∆274

Fig. 5  Relative activities of truncated forms of cABC I in comparison 
to the wild type enzyme as control

Fig. 6  Intrinsic fluorescence spectra of wild type and truncated cABC 
I (20 µg/ml protein concentration) in 50 mM phosphate buffer, pH 6.8
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3.5  Trypsinolysis Patterns

In order to assess the sensitivity of the enzymes to prote-
olysis, trypsin digestion experiment was performed for the 
variants. N∆89 and C∆274 digestion patterns revealed a 
more resistance against trypsinolysis in comparison to the 
wild type as shown in Fig. 9. In these two variants, 8 and 30 
of 105 total residues of Arg and Lys were decreased upon 
truncation, respectively.

3.6  Secondary Structure Determination

Secondary structure content of the proteins was calculated 
by CDN software following analysis of Far-UV CD spectra 
of proteins. Increased β-sheets and decreased turn contents 
were reported for N∆89 and C∆274 variants in comparison 
to the wild type (Fig. 10).

4  Discussion

Utilizing cABC I as a therapeutic enzyme have been encoun-
tered different precautions related to the obstacles against 
approach to an appropriate applicable version [2, 23, 33].

In the case of protein truncation strategy, a number of 
truncated enzymes have showed increased activity or ther-
mal stability of new shorter length enzymes in compari-
son to their wild types ;although there have been enzymes 
in which activity and stability were drastically diminished 
as a consequence of amino acid deletions, indicating the 
importance or hindrance effect of the deleted segments [14, 
34–40].

In this study, we investigated the 1–89 and 747–1021 
amino acid deletions effect on the whole structure and func-
tion of cABC I through generation of new truncated proteins. 
The exact role of these two parts in the enzyme activity and/
or stability is not studied but in comparison to the wild type 
enzyme, antigenic prediction results indicated a decrease 
in the number of potential epitopes at the surface of N∆89, 
C∆274 and, N∆89C∆274 variants as a result of truncation.

Resistance of N∆89 and C∆274 variants against diges-
tion by trypsin suggested that truncation caused deletion of 
exposing Arg and Lys residues or flexible parts of the pro-
teins in their new tertiary structures. However, in accord-
ance to digestion patterns, the protease digestion and ANS 
fluorescence results revealed tertiary structure changes of 
proteins in different manners [32, 41–43]. ANS fluorescence 
intensities of N∆89 and C∆274 were decreased with a red 

Fig. 7  Stern–Volmer plot of fluorescence quenching by KI (a) and 
acrylamide (b) for wild type cABC I and the truncated forms

Table 1  Structural parameters 
of wild type cABC I and its 
truncated variants

Variants % α-helix % β-sheet % Turn % Random coil Ksv  (M−1) for 
acrylamide

Ksv  (M−1) for KI

Wild type 27 11.5 27.5 34.4 4.67 ± 0.4 3.14 ± 0.28
N∆89 27.86 21.16 17.18 33.78 4.27 ± 0.3 2.85 ± 0.13
C∆274 30.74 19.79 17.31 32.13 4.18 ± 0.43 2.74 ± 0.1
N∆89C∆274 14.97 31.77 16.88 36.27 5 ± 0.18 3.51 ± 0.08

Fig. 8  Extrinsic fluorescence spectra of wild type and truncated 
cABC I proteins
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shift indicating either the low binding affinity of ANS to Lys 
and Arg as positively charged amino acids at the surface of 
proteins or having lesser binding sites for ANS at the surface 
of N∆89 and C∆274 truncated forms [32].

Structural flexibility changes in truncated cABC I were 
supported by fluorescence results and Far-UV CD data. 
Intrinsic fluorescence emission was increased without 
blue shift for N∆89 and C∆274 as compared to the wild 
type. Intramolecular quenching effect of amino acid resi-
dues such as Arg and Lys on the photon emission of the 
wild type enzyme could be lowered as a consequence of 
truncation. Partially exposed tryptophan residues could 
be flanked with positively charged amino acid side chains 
in the wild type enzyme. This could be regarded as an 
explanation for more quenching the of wild type enzyme 
than N∆89 and C∆274 variants by KI as an ionic quencher 
[44, 45]. On the other hand, the Stern–Volmer value of 

acrylamide quenching for N∆89 and C∆274 was lowered; 
suggesting that channels were affected by interior dynamic 
re-arrangement.

Tertiary structure experiments suggested that cationic-
aromatic contacts might have been undergoing changes in 
truncated cABC I in comparison to its wild type (Figs. 6, 
7, 8). For example the PIC server analysis showed that 27 
cation–π interactions within 6 Å distance; e.g., between 
 Tyr508 and  Arg560 amino acids in the catalytic site of wild-
type cABC I, were diminished in truncated variants as the 
amino acids were deleted. It is evident that the negatively 
charged electron clouds of any aromatic amino acids with 
the side chains of positively charged residues play a signifi-
cant role in protein structure, substrate binding and catalysis 
of enzymes [46, 47].

Far-UV CD spectra indicated an increased local stability 
of ß-sheet content and decreased irregular turn structures of 
N∆89 and C∆274 as compared to the wild type. Turns are 
well-suited to participate in substrate binding since they are 
mostly surface-exposed parts of the proteins [48].

The overall look at the CD and fluorescence spectra 
(Figs. 6, 10) have drawn our attention to a dramatic differ-
ence between native wild type enzyme and its refolded solu-
ble conformations. Also, there seems some similarity in the 
secondary and tertiary structures of native N∆89 with its 
refolded variant. These findings revealed a probable role of 
89 amino acids sequence from N-terminal of cABC I in its 
exact folding and re-folding pathways, although further infor-
mation is needed. In normal expression condition for C∆274 
and N∆89C∆274 proteins, they could not be extracted in the 
soluble fraction; this might be attributed to the role of the 274 
amino acids sequence deletion from the C-terminal domain of 

Fig. 9  SDS-PAGE analysis of limited proteolysis of wild type 
and truncated forms of cABC I by trypsin with 1/200 ratio to each 
enzyme at 25  °C. a 1—Trypsin, b 2—non-treated wild type, 3—
treated wild type in 25  min, 4—treated wild type in 50  min, c 2—

non-treated N∆89, 3—treated N∆89 in 25 min, 4—treated N∆89 in 
50 min, d 2—non-treated C∆274, 3—treated C∆274 in 25 min, 4—
treated C∆274 in 50 min, e 2—non-treated N∆89C∆274, 3—treated 
N∆89C∆274 in 25 min, 4—treated N∆89C∆274 in 50 min

Fig. 10  Far-UV CD spectra of wild type and truncated cABC I
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these variants in soluble expression process. A matter which 
should be more studied.

Although digestion of C4S as substrate was observed 
by zymographic assay for N∆89, C∆274 and the wild 
type enzyme (Fig. 5), the activity of N∆89, C∆274 and 
N∆89C∆274 variants could not be determined spectrophoto-
metrically, so not any kinetic parameters could be calculated. 
It seems that enough amounts of unsaturated disaccharide 
products are necessary to be detected spectrophotometrically. 
Catalytic machinery of cABC I have revealed the forma-
tion of substrate recognition site, catalytic site and product 
release area in the enzyme structure. Among the amino acids 
engaged, Arg105, Gln140, Arg221, Lys312, His388, His501, 
Tyr392, Arg395, Arg500, Tyr508, Arg560, His561, Asn564, 
Asn587, Glu653, His712 are recognized. These amino acids 
are involved in catalysis for protonation and deprotonatation of 
glycoside bond, substrate binding site, stabilizing inolate inter-
mediate, maintaining the integrity of catalytic site and neutral-
izing GAGs molecules. The right orientation of amino acids in 
the enzyme catalysis might have been drastically altered upon 
amino acids re-arrangements through cation–π interactions, 
the turn content of the secondary structures and imbalance in 
stability-flexibility of the truncated forms [49]. These varia-
tions could led to an uncompleted ß-elimination mechanism of 
substrate subsite by truncated cABC I representing the critical 
effect of deleted parts for catalysis [15, 19, 20, 27, 29, 46, 50]. 
However, apart from type of products, the digestion of sub-
strate could be visualized by zymographic assay.

In summary, the protease digestion, ANS fluorescence, 
intrinsic fluorescence, fluorescence quenching by KI and 
acrylamide, and Far-UV CD studies on cABC I revealed 
that internal structural microenvironment components were 
dynamically more stable for N∆89 and C∆274 variants than 
the wild type enzyme. Activity analysis showed that the 
deleted parts of the enzyme perform a significant role in cABC 
I catalysis.
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