
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Steinfeld, Ron, Contini, Scott, Matusiewicz, Krystian, Pieprzyk, Josef, Guo,
Jian, Ling, San, & Wang, Huaxiong (2008) Cryptanalysis of LASH. Lecture
Notes in Computer Science : Fast Software Encryption, 5086, pp. 207-
223.

This file was downloaded from: http://eprints.qut.edu.au/69384/

c© Copyright 2008 Springer-Verlag Berlin Heidelberg

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/978-3-540-71039-4_13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/19965946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Pieprzyk,_Josef.html
http://eprints.qut.edu.au/69384/
http://dx.doi.org/10.1007/978-3-540-71039-4_13

Cryptanalysis of LASH

Scott Contini1, Krystian Matusiewicz1, Josef Pieprzyk1, Ron Steinfeld1,
Jian Guo2, San Ling2, and Huaxiong Wang1,2

1 Advanced Computing – Algorithms and Cryptography,
Department of Computing, Macquarie University

{scontini,kmatus,josef,rons,hwang}@ics.mq.edu.au
2 Nanyang Technological University,

School of Physical & Mathematical Sciences
{guojian,lingsan,hxwang}@ntu.edu.sg

Abstract. We show that the LASH-x hash function is vulnerable to
attacks that trade time for memory, including collision attacks as fast as

2
4
11

x and preimage attacks as fast as 2
4
7

x. Moreover, we describe heuristic
lattice based collision attacks that use small memory but require very
long messages. Based upon experiments, the lattice attacks are expected
to find collisions much faster than 2x/2. All of these attacks exploit the
designers’ choice of an all zero IV.
We then consider whether LASH can be patched simply by changing the

IV. In this case, we show that LASH is vulnerable to a 2
7
8

x preimage
attack. We also show that LASH is trivially not a PRF when any subset
of input bytes is used as a secret key. None of our attacks depend upon
the particular contents of the LASH matrix – we only assume that the
distribution of elements is more or less uniform.
Additionally, we show a generalized birthday attack on the final com-

pression of LASH which requires O

„

x2
x

2(1+ 107
105

)

«

≈ O(x2x/4) time and

memory. Our method extends the Wagner algorithm to truncated sums,
as is done in the final transform in LASH.

1 Introduction

The LASH hash function [3] is based upon the provable design of Gol-
dreich, Goldwasser, and Halevi (GGH) [7], but changed in an attempt to
make it closer to practical. The changes are:

1. Different parameters for the m by n matrix and the size of its elements
to make it more efficient in both software and hardware.

2. The addition of a final transform [8] and a Miyaguchi-Preneel struc-
ture [10] in attempt to make it resistant to faster than generic attacks.

The LASH authors note that if one simply takes GGH and embeds it in a
Merkle-Damg̊ard structure using parameters that they want to use, then

there are faster than generic attacks. More precisely, if the hash output
is x bits, then they roughly describe attacks which are of order 2x/4 if n
is larger than approximately m2, or 2(7/24)x otherwise3. These attacks
require an amount of memory of the same order as the computation
time. The authors hope that adding the second changes above prevent
faster than generic attacks. The resulting proposals are called LASH-x,
for LASH with an x bit output.

Although related to GGH, LASH is not a provable design: one can
readily see in their proposal that there is no security proof [3]. Both the
changes of parameters from GGH and the addition of the Miyaguchi-
Preneel and final transform prevent the GGH security proof from being
applied.

Our Results. In this paper, we show:

– LASH-x is vulnerable to collision attacks which trade time for memory
(Sect. 4). This breaks the LASH-x hash function in as little as 2(4/11)x

work (i.e. nearly a cube root attack). Using similar techniques, we can
find preimages in 2(4/7)x operations. These attacks exploit LASH’s all
zero IV, and thus can be avoided by a simple tweak to the algorithm.

– Again exploiting the all zero IV, we can find very long message colli-
sions using lattice reduction techniques (Sect. 6). Experiments suggest
that collisions can be found much faster than 2x/2 work, and addition-
ally the memory requirements are low.

– Even if the IV is changed, the function is still vulnerable to a short
message (1 block) preimage attack that runs in time/memory O(2(7/8)x)
– faster than exhaustive search (Sect. 5). Our attack works for any

IV.

– LASH is not a PRF (Sect. 3.1) when keyed through any subset of
the input bytes. Although the LASH authors, like other designers
of heuristic hash functions, only claimed security goals of collision
resistance and preimage resistance, such functions are typically used
for many other purposes [6] such as HMAC [2] which requires the PRF
property.

– LASH’s final compression (including final transform) can be attacked

in O

(

x2
x

2(1+ 107
105)

)

≈ O(x2x/4) time and memory. To do this, we adapt

Wagner’s generalized birthday attack [13] to the case of truncated

3 The authors actually describe the attacks in terms of m and n. We choose to use x
which is more descriptive.

sums (Sect. 6). As far as we are aware, this is the fastest known attack
on the final LASH compression.

Before we begin, we would like to make a remark concerning the use of
large memory. Traditionally in cryptanalysis, memory requirements have
been mostly ignored in judging the effectiveness of an attack. However,
recently some researchers have come to question whether this is fair [4,
5, 14]. To address this issue in the context of our results, we point out
that the design of LASH is motivated by the assumption that GGH is
insufficient due to attacks that use large memory and run faster than
generic attacks [3]. We are simply showing that LASH is also vulnerable
to such attacks so the authors did not achieve what motivated them to
change GGH.

After doing this work, we have learnt that a collision attack on the
LASH compression function was sketched at the Second NIST Hash Work-
shop [9]. The attack applies to a certain class of circulant matrices. How-
ever, after discussions with the authors [11], we determined that the four
concrete proposals of x equal to 160, 256, 384, and 512 are not in this
class (although certain other values of x are). Furthermore, the attack is
on the compression function only, and does not seem to extend to the full
hash function.

2 Description of LASH

2.1 Notation

Let us define rep(·) : Z256 → Z
8
256 as a function that takes a byte and

returns a sequence of elements 0, 1 ∈ Z256 corresponding to its binary
representation in the order of most significant bit first. For example,
rep(128) = (1, 0, 0, 0, 0, 0, 0, 0). We can generalize this notion to sequences
of bytes. The function Rep(·) : Z

m
256 → Z

8·m
256 is defined as Rep(s) =

rep(s1)|| . . . ||rep(sm), e.g. Rep((192, 128)) = (1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0). Moreover, for two sequences of bytes we define ⊕ as the usual
bitwise XOR of the two bitstrings.

We index elements of vectors and matrices starting from zero.

2.2 The LASH-x Hash Function

The LASH-x hash function maps an input of length less than 22x bits to
an output of x bits. Four concrete proposals were suggested in [3]: x =
160, 256, 384, and 512.

The hash is computed by iterating a compression function that maps
blocks of n = 4x bits to m = x/4 bytes (2x bits). The measure of n in
bits and m in bytes is due to the original paper. Always m = n/16. Below
we describe the compression function, and then the full hash function.

Compression Function of LASH-x. The compression function is of
the form f : Z

2m
256 → Z

m
256. It is defined as

f(r, s) = (r ⊕ s) + H · [Rep(r)||Rep(s)]T , (1)

where r = (r0, . . . , rm−1) and s = (s0, . . . , sm−1) belong to Z
m
256. The

vector r is called the chaining variable.

The matrix H is a circulant matrix of dimensions m× (16m) defined
as

Hj , k = a (j−k) mod 16m ,

where ai = yi (mod 28) is a reduction modulo 256 of elements of the
sequence yi based on the Pollard pseudorandom sequence

y0 = 54321, yi+1 = y2
i + 2 (mod 231 − 1) .

Our attacks do not use the circulant matrix properties or any properties
of this sequence.

A visual diagram of the LASH-160 compression function is given in
Figure 1, where t is f(r, s).

40
bytes

8

>>>><

>>>>:

0

B
B
B
B
@

2

6
6
6
6
4

r

3

7
7
7
7
5

⊕

2

6
6
6
6
4

s

3

7
7
7
7
5

1

C
C
C
C
A

+

640 columns
z }| {
2

6
6
6
6
4

· · · H · · ·

3

7
7
7
7
5

·

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

...
Rep(r)

...
−
...

Rep(s)
...

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
4

t

3

7
7
7
7
5

Fig. 1. Visualizing the LASH-160 compression function.

The Full Function. Given a message of l bits, padding is first applied
by appending a single ‘1’-bit followed by enough zeros to make the length
a multiple of 8m = 2x. The padded message consists of κ = ⌈(l + 1)/8m⌉
blocks of m bytes. Then, an extra block b of m bytes is appended that
contains the encoded bit-length of the original message, bi = ⌊l/28i⌋
(mod 256), i = 0, . . . ,m − 1.

Next, the blocks s(0), s(1), . . . , s(κ) of the padded message are fed to
the compression function in an iterative manner,

r(0) := (0, . . . , 0) ,

r(j+1) := f(r(j), s(j)), j = 0, . . . , κ .

The r(0) is call the IV. Finally, the last chaining value r(κ+1) is sent
through a final transform which takes only the 4 most significant bits of

each byte to form the final hash value h. Precisely, the ith byte of h is
hi = 16⌊r2i/16⌋ + ⌊r2i+1/16⌋ (0 ≤ i < m).

3 Initial Observations

3.1 LASH is Not a PRF

In some applications (e.g. HMAC) it is required that the compression
function (parameterized by its IV) should be a PRF. Below we show that
LASH does not satisfy this property.

Assume that r is the secret parameter fixed beforehand and unknown
to us. We are presented with a function g(·) which may be f(r, ·) or a
random function and by querying it we have to decide which one we have.

First of all, note that we can split our matrix H into two parts H =
[HL||HR] and so (1) can be rewritten as

f(r, s) = (r ⊕ s) + HL · Rep(r)T + HR · Rep(s)T .

Sending in s = 0, we get

f(r, 0) = r + HL · Rep(r)T . (2)

Now, for s′ = (128, 0, . . . , 0) we have

Rep(s′) = 10000000 00000000 . . . 0000000

and so

f(r, s′) = (r0 ⊕ 128, r1, . . . , rm−1) + HL · Rep(r)T + HR[·, 0] . (3)

where HR[·, 0] denotes the first column of the matrix HR. Let us compute
the difference between (2) and (3):

f(r, s′) − f(r, 0) = (r0 ⊕ 128, r1, . . . , rm−1)
T + HL · Rep(r)T +

HR[·, 0] − r − HL · Rep(r)T

= HR[·, 0] + ((r0 ⊕ 128) − r0, 0, 0, . . . , 0)
T

= HR[·, 0] + (128, 0, . . . , 0)T .

Regardless of the value of the secret parameter r, the output difference
is a fixed vector equal to HR[·, 0] + (128, 0, . . . , 0)T . Thus, using only two
queries we can distinguish with probability 1− 2−8m the LASH compres-
sion function with secret IV from a randomly chosen function.

The same principle can be used to distinguish LASH even if most of
the bytes of s are secret as well. In fact, it is enough for us to control only
one byte of the input to be able to use this method and distinguish with
probability 1 − 2−8.

3.2 Absorbing the Feed-Forward Mode

According to [3], the feed-forward operation is motivated by Miyaguchi-
Preneel hashing mode and is introduced to thwart some possible attacks
on the plain matrix-multiplication construction. In this section we show
two conditions under which the feed-forward operation can be described
in terms of matrix operations and consequently absorbed into the LASH
matrix multiplication step to get a simplified description of the compres-
sion function. The first condition requires one of the compression function
inputs to be known, and the second requires a special subset of input mes-
sages.

First Condition: Partially Known Input. Suppose the r portion of
the (r, s) input pair to the compression function is known and we wish

to express the output g(s)
def
= f(r, s) in terms of the unknown input s.

We observe that each (8i + j)th bit of the feedforward term r ⊕ s (for
i = 0, . . . ,m − 1 and j = 0, . . . , 7) can be written as

Rep(r ⊕ s)8i+j = Rep(r)8i+j + (−1)Rep(r)8i+j · Rep(s)8i+j .

Hence the value of the ith byte of r ⊕ s is given by

7∑

j=0

(

Rep(r)8i+j + (−1)Rep(r)8i+j · Rep(s)8i+j

)

· 27−j =

7∑

j=0

Rep(r)8i+j · 27−j

 +

7∑

j=0

(−1)Rep(r)8i+j · Rep(s)8i+j · 27−j

 .

The first integer in parentheses after the equal sign is just the ith byte
of r, whereas the second integer in parentheses is linear in the bits of s
with known coefficients, and can be absorbed by appropriate additions to
elements of the matrix HR. Hence we have an ‘affine’ representation for
g(s):

g(s) = (D′ + HR) · Rep(s)T + r + HL · Rep(r)T
︸ ︷︷ ︸

m × 1 vector

, (4)

where HR is the submatrix of H indexed by the bits of s (i.e. the last 8m
columns of H), and

D′ =

J0 08 . . . 08 08

08 J1 . . . 08 08
...

...
. . .

...
...

08 08 . . . Jm−2 08

08 08 . . . 08 Jm−1

,

where, for i = 0, . . . ,m−1, we define the 1×8 vectors 08 = [0, 0, 0, 0, 0, 0, 0, 0]
and

Ji = [27·(−1)Rep(r)8i , 26·(−1)Rep(r)8i+1 , . . . , 21·(−1)Rep(r)8i+6 , 20·(−1)Rep(r)8i+7] .

Second Condition: Special Input Subset. In addition to the above
we also observe that when bytes of one of the input sequences (say, r) are
restricted to values {0, 128} only (i.e. only the most significant bit in each
byte can be set), the XOR operation behaves like the byte-wise addition
modulo 256. In other words, if r∗ = 128 · r′ where r′ ∈ {0, 1}m then

f(r∗, s) = r∗ + s + H · [Rep(r∗)||Rep(s)]T

= (DJ + H) · [Rep(r∗)||Rep(s)]T . (5)

The matrix DJ recreates values of r∗ and s from their representations
and is the following block matrix of dimensions m × (16m),

J 08 08 . . . 08 08 J 08 08 . . . 08 08

08 J 08 . . . 08 08 08 J 08 . . . 08 08

08 08 J . . . 08 08 08 08 J . . . 08 08
...

...
...

. . .
...

...
...

...
...

. . .
...

...
08 08 08 . . . J 08 08 08 08 . . . J 08

08 08 08 . . . 08 J 08 08 08 . . . 08 J

,

where J = [27, 26, 25, 24, 23, 22, 21, 20] and 08 = [0, 0, 0, 0, 0, 0, 0, 0].
Since all the bits apart from the most significant one are always set to

zero in r∗ we can safely remove the corresponding columns of the matrix
DJ + H (i.e. columns with indices 8i + 1, . . . , 8i + 7 for i = 0, . . . , 39).
Let us denote the resulting matrix by H ′. Then the whole compression
function can be represented as

f(r′, s) = H ′ · [r′||Rep(s)]T

that compresses m + 8m bits to 8m bits using only matrix multiplication
without any feed-forward mode.

4 Attacks Exploiting Zero IV

Collision Attack. In the original LASH paper, the authors describe a
“hybrid attack” against LASH without the appended message length and
final transform. Their idea is to do a Pollard or parallel collision search
in such a way that each iteration forces some output bits to a fixed value
(such as zero). Thus, the number of possible outputs is reduced from
the standard attack. If the total number of possible outputs is S, then a
collision is expected after about

√
S iterations. Using a combination of

table lookup and linear algebra, they are able to achieve S = 2
14
3

m in
their paper. Thus, the attack is not effective since a collision is expected
in about 2

7
3
m = 2

7
12

x iterations, which is more than the 2x/2 iterations
one gets from the standard birthday attack on the full LASH function
(with the final output transform).

Here, exploiting the zero IV, we describe a similar but simpler at-
tack on the full function which uses table lookup only. Our messages will
consist of a number of all-zero blocks followed by one “random” block.
Regardless of the number of zero blocks at the beginning, the output
of the compression function immediately prior to the length block being

processed is determined entirely by the one “random” block. Thus, we
will be using table lookup to determine a message length that results in a
hash output value which has several bits in certain locations set to some
predetermined value(s).

Refer to the visual diagram of the LASH-160 compression function in
Fig. 1. Consider the case of the last compression, where the value of r is
the output from the previous iteration and the value of s is the message
length being fed in. The resulting hash value will consist of the most-
significant half-bytes of the bytes of t. Our goal is to quickly determine a
value of s so that the most significant half-bytes from the bottom part of
t are all approximately zero.

Our messages will be long but not extremely long. Let α be the max-
imum number of bytes necessary to represent (in binary) any s that we
will use. So the bottom 40−α bytes of s are all 0 bytes, and the bottom
320 − 8α bits of Rep(s) are all 0 bits. As before, we divide the matrix
H into two halves, HL and HR. Without specifying the entire s, we can
compute the bottom 40−α bytes of (r⊕s)+HL ·Rep(r). Thus, if we pre-
computed all possibilities for HR ·Rep(s), then we can use table lookup to
determine a value of s that hopefully causes h (to be chosen later) most-
significant half-bytes from the bottom part of t to be 0. See the diagram
in Fig. 2. The only restriction in doing this is α + h ≤ 40.

0

B
B
B
B
B
B
B
B
@

r
z}|{
2

6
6
6
6
4

.

.

.

.

.

3

7
7
7
7
5

⊕

s
z }| {
2

6
6
6
6
4

ℓ
0
0
0
0

3

7
7
7
7
5

1

C
C
C
C
C
C
C
C
A

+

H
z }| {
2

6
6
6
6
4

|
|

HL | HR

|
|

3

7
7
7
7
5

·

Rep(r||s)
z }| {
2

6
6
6
6
6
6
6
6
4

.

.

.
−
ℓ
0
0

3

7
7
7
7
7
7
7
7
5

=

t
z }| {
2

6
6
6
6
4

.

.

.
0|.
0|.

3

7
7
7
7
5

Fig. 2. Visualizing the final block of the attack on the LASH-160 compression function.
Diagram is not to scale. Table lookup is done to determine the values at the positions
marked with ℓ. Places marked with 0 are set to be zero by the attacker (in the t vector,
this is accomplished with the table lookup). Places marked with ‘.’ are outside of the
attacker’s control.

We additionally require dealing with the padding byte. To do so, we
restrict our messages to lengths congruent to 312 mod 320. Then our “ran-
dom” block can have anything for the first 39 bytes followed by 0x80 for

the 40th byte which is the padding. We then assure that only those lengths
occur in our table lookup by only precomputing HR · Rep(s) for values
of s of the form 320i + 312. Thus, we have α = ⌈ log 320+c

8 ⌉ assuming we
take all values of i less than 2c. We will aim for h = c/4, i.e. setting the
bottom c/4 half-bytes of t equal to zero. The condition α+h ≤ 40 is then
satisfied as long as c ≤ 104, which will not be a problem.

Complexity. Pseudocode for the precomputation and table lookup
are given in Table 1. With probability 1− 1

e ≈ 0.632, we expect to find a
match in our table lookup. Assume that is the case. Due to rounding error,
each of the bottom c/4 most significant half-bytes of t will either be 0 or
−1 (0xf in hexadecimal). Thus there are 2c/4 possibilities for the bottom
c/4 half-bytes, and the remaining m − c/4 = x/4 − c/4 half-bytes (x − c
bits) can be anything. So the size of the output space is S = 2x−c+c/4 =
2x−3c/4. We expect a collision after we have about 2x/2−3c/8 outputs of this
form. Note that with a Pollard or parallel collision search, we will not have
outputs of this form a fraction of about 1/e of the time. This only means
that we have to apply our iteration a fraction of 1/(1 − 1

e) ≈ 1.582 times
longer, which has negligible impact on the effectiveness of the attack.
Therefore, we ignore such constants. Balancing the Pollard search time
with the precomputation time, we get an optimal value with c = (4/11)x,
i.e. a running time of order 2(4/11)x LASH-x operations. The lengths of
our colliding messages will be order ≤ 2c+log 2x bits.

For instance, in LASH-160 the optimal value is c = 58, yielding a pre-
computation time of about 258, a Pollard rho time of about 258, storage
of about 258, and colliding messages of lengths about 263 bytes. A more
realistic number to choose in practice is c = 40, which gives precompu-
tation time of 240, Pollard rho time of 265, storage of 240, and colliding
messages of 245 bytes.

Experimental Results. We used this method to find collisions in a
truncated version of LASH-160. Table 3 lists the nonzero blocks of two
long messages that collide on the last 12 bytes of the hash. Note that
padding byte needs to be added on to the end of the messages. We used
c = 28 and two weeks of cpu time on a 2.4GHz PC to find these.

Preimage Attack. The same lookup technique can be used for preimage
attacks. One simply chooses random inputs and hashes them such that
the looked up length sets some of the output hash bits to the target. This
involves 2c precomputation, 2c storage, and 2x−3c/4 expected computation
time, which balances to time/memory 2(4/7)x using the optimal parameter
setting c = (4/7)x.

5 Short Message Preimage Attack on LASH with

Arbitrary IV

The attacks in the previous section crucially exploit a particular parame-
ter choice made by the LASH designers, namely the use of an all zero Ini-
tial Value (IV) in the Merkle-Damg̊ard construction. Hence, it is tempting
to try to ‘repair’ the LASH design by using a non-zero (or even random)
value for the IV. In this section, we show that for any choice of IV, LASH-
x is vulnerable to a preimage attack faster than the desired security level
of O(2x). Our preimage attack takes time/memory O(2

7
8
x), and produces

preimages of short length (2x bits).

The Attack. Let f : Z
2m
256 → Z

m
256 denote the internal LASH com-

pression function and fout : Z
2m
256 → Z

m
16 denote the final compression

function, i.e. the composition of f with the final transform applied to the
output of f . Given a target value tout whose LASH preimage is desired,
the inversion algorithm finds a single block message sin ∈ Z

m
256 hashing

Table 1. The two main procedures for the long message attack on LASH-160. Only
the bottom c/4 bytes of t need to be computed in Lookup(). Similarly, only the bottom
c/4 bytes of v need to be computed in Precomp().

Precomp(int c)
{

for i := 0 to 2c − 1 do
Compute v := HR · Rep(320i + 312).
Round off bottom c/4 most significant half-bytes of v.
Store rounded half-bytes and 320i + 312 in a file.

}

Lookup(uchar r[40], uchar s[40], int c)
{

Expand r to a 320-bit vector, v.
Compute t := (uchar *)(−r − HL · v).
Round off bottom c/4 most significant half-bytes of t.
Look for a match of these half-bytes in a file.
if match exists then

Read in corresponding length.
Encode length into s vector.

else
Choose the “closest” data entry from file.
Read in corresponding length.
Encode length into s vector.

}

First Message Second Message

l = 3380367992 l = 1380208632
first nonzero block: first nonzero block:

fc 66 f8 79 ef 7e 97 9c e0 ff 3f 8a b2 44 3f b3 3d 9d e0 ff
ff 0f 00 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

hash: hash:

a4 6a df fc 34 27 c4 99 c1 85 71 07 4f 54 7f f1 bd 5c c1 85
7a d8 07 51 97 84 f0 0f 00 ff 7a d8 07 51 97 84 f0 0f 00 ff

Fig. 3. Two long messages that match on the last 12 bytes of the hash.

to tout, i.e. satisfying

fout(rout, sout) = tout and f(rin, sin) = rout,

where sout is equal the 8m-bit binary representation of the integer 8m
(the bit length of a single message block), and rin = IV is an arbitrary
known value. The inversion algorithm proceeds as follows (see Fig. 4):

Step 1: Using the precomputation-based preimage attack on the final
compression function fout described in the previous section (with
straightforward modifications to produce the preimage using bits of
rout rather than sout and precomputation parameter cout = (20/7)m),
compute a list L of 2m preimage values of rout satisfying fout(rout, sout) =
tout.

Step 2: Let c = 3.5m be a parameter (later we show that choosing c =
3.5m is optimal). Split the 8m-bit input sin to be determined into two
disjoint parts sin(1) (of length 6m−c bit) and sin(2) (of length 2m+c
bit), i.e. sin = sin(1)||sin(2). For each of the 2m values of rout from the
list L produced by the first step above, and each of the 26m−c possible
values for sin(1), run the internal compression function ‘hybrid’ partial
inversion algorithm described below to compute a matching ‘partial
preimage’ value for sin(2), where by ‘partial preimage’ we mean that
the compression function output f(rin, sin) matches target rout on a
fixed set of m+c = 4.5m bits (out of the 8m bits of rout). For each such
computed partial preimage sin = sin(1)||sin(2) and corresponding rout

value, check whether sin is a full preimage, i.e. whether f(rin, sin) =
rout holds, and if so, output desired preimage sin.

For integer parameter c, the internal compression function ‘hybrid’
partial inversion algorithm is given a 8m-bit target value tin, an 8m-bit

ff

M
S
B

4

tout

fout

sout (fixed length block)

routrin (fixed IV)

sin

sin(1) (100 b)

sin(2) (220 b)

sin(2, 1)

sin(2, 2)

sin(2, 3)

1
4
0

b

tin

Fig. 4. Illustration of the preimage attack applied to LASH-160.

input rin, and the (6m− c)-bit value sin(1), and computes a (2m + c)-bit
value for sin(2) such that f(rin, sin) matches tin on the top c/7 bytes as
well as on the LS bit of all remaining bytes (a total of m + c matching
bits). The algorithm works as follows:

Feedforward Absorption: We use the observation from Section 3.2
that for known rin, the Miyaguchi-Preneel feedforward term (rin⊕sin)
can be absorbed into the matrix by appropriate modifications to the
matrix and target vector, i.e. the inversion equation

(rin ⊕ sin) + H · [Rep(rin)||Rep(sin)]T = tin mod 256, (6)

where H is the LASH matrix, can be reduced to an equivalent linear
equation

H ′ · [Rep(sin)]T = t′in mod 256, (7)

for appropriate matrix H ′ and vector t′ easily computed from the
known H, t, and rin.

Search for Collisions: To find sin(2) such that the left and right hand
sides of (7) match on the desired m+c bits, we use the hybrid method
based on [3], which works as follows:
– Initialization: Split sin(2) into 3 parts s(2, 1) (length m bits),

s(2, 2) (length c bits) and s(2, 3) (length m bits). For i = 1, 2, 3 let
H ′(2, i) denote the submatrix of matrix H ′ from (7) consisting of

the columns indexed by the bits in s(2, i) (e.g. H ′(2, 1) consists of
the m columns of H ′ indexed by the m bits of s(2, 1)). Similarly,
let H ′(1) denote the submatrix of H ′ consisting of the columns of
H ′ indexed by the m bits of sin(1).

– Target Independent Precomputation: For each of 2c possible values
of s(2, 2), find by linear algebra over GF (2), a matching value for
s(2, 3) such that

[H ′(2, 2) H ′(2, 3)] · [Rep(s(2, 2))||Rep(s(2, 3))]T = [0m]T mod 2,
(8)

i.e. vector y = [H ′(2, 2) H ′(2, 3)] · [Rep(s(2, 2))||Rep(s(2, 3))]T mod
256 has zeros on the LS bits of all m bytes. Store entry
s(2, 2)||s(2, 3) in a hash table, indexed by the string of c bits ob-
tained by concatanating 7 MS bits of each of the top c/7 bytes of
vector y.

– Solving Linear Equations: Compute s(2, 1) such that

H ′(2, 1) · [Rep(s(2, 1))]T = t′in −H ′(1) · [Rep(sin(1))]T mod 2. (9)

Note that adding (8) and (9) implies that H ′ ·
[Rep(sin(1))||Rep(sin(2))]T = t′in mod 2 with sin(2) =
s(2, 1)||s(2, 2)||s(2, 3) for any entry s(2, 2)||s(2, 3) from the
hash table.

– Lookup Hash Table: Find the s(2, 2)||s(2, 3) entry indexed by the
c-bit string obtained by concatanating the 7 MS bits of each of
the top c/7 bytes of the vector t′in − H ′(2, 1) · [Rep(s(2, 1))]T −
H ′(1) · [Rep(sin(1))]T mod 256. This implies that vector H ′ ·
[Rep(sin(1))||Rep(sin(2))]T matches t′in on all top c/7 bytes, as
well as on the LS bits of all bytes, as required.

Correctness of Attack. For each of 2m target values rout from list L,
and each of the 22.5m possible values for sin(1), the partial preimage
inversion algorithm returns sin(2) such that f(rin, sin) matches rout on
a fixed set of m + c bits. Heuristically modelling the remaining bits of
f(rin, sin) as uniformly random and independent of rout, we conclude that
f(rin, sin) matches rout on all 8m bits with probability 1/28m−(m+c) =
1/27m−c = 1/23.5m (using c = 3.5m) for each of the 22.5m × 2m = 23.5m

runs of the partial inversion algorithm. Assuming (heuristically) that each
of these runs are independent, the expected number of runs which produce
a full preimage is 23.5m ×1/23.5m = 1, and hence we expect the algorithm
to succeed and return a full preimage.

Complexity. The cost of the attack is dominated by the second step,
where we balance the precomputation time/memory O(2c) of the hybrid
partial preimage inversion algorithm with the expected number 27m−c

of runs to get a full preimage. This leads (with the optimum parameter

choice c = 3.5m) to time/memory cost O(23.5m) = O(2
7
8
x), assuming each

table lookup takes constant time. To see that second step dominates the
cost, we recall that the first step with precomputation parameter cout uses
a precomputation taking time/memory O(2cout), and produces a preim-
age after an expected O(24m−3cout/4) time using cout + (4m − 3cout/4) =
4m + cout/4 bits of rout. Hence, repeating this attack 2m times using m
additional bits of rout to produce 2m distinct preimages is expected to
take O(max(2cout, 25m−3cout/4)) time/memory using 5m + cout/4 bits of
rout. The optimal choice for cout is cout = (20/7)m ≈ 2.89m, and with
this choice the first step takes O(2(20/7)m) = o(23.5m) time/memory and
uses (40/7)m < 8m bits of rout (the remaining bits of rout are set to zero).

6 Attacks on the Final Compression Function

This section presents collision attacks on the final compression function
fout (including the output transform). For a given r ∈ Z

m
256, the attacks

produce s, s′ ∈ Z
m
256 with s 6= s′ such that fout(r, s) = fout(r, s

′). To
motivate these attacks, we note that they can be converted into a ‘very
long message’ collision attack on the full LASH function, similar to the
attack in Sect. 4. The two colliding messages will have the same final
non-zero message block, and all preceding message blocks will be zero. To
generate such a message pair, the attacker chooses a random (8m−8)-bit
final message block (common to both messages), pads with a 0x80 byte,
and applies the internal compression function f (with zero chaining value)
to get a value r ∈ Z

m
256. Then using the collision attack on fout the attacker

finds two distinct length fields s, s′ ∈ Z
m
256 such that fout(r, s) = fout(r, s

′).
Moreover, s, s′ must be congruent to 8m−8 (mod 8m) due to the padding
scheme. For LASH-160, we can force s, s′ to be congruent to 8m − 8
(mod 64) by choosing the six LS bits of the length, so this leaves a 1/52

chance that both inputs will be valid.

The lengths s, s′ produced by the attacks in this section are very long
(longer than 2x/2). However, we hope the ideas here can be used for future
improved attacks.

6.1 Generalized Birthday Attack on the Final Compression

The authors of [3] describe an application of Wagner’s generalized birth-
day attack [13] to compute a collision for the internal compression func-
tion f using O(22x/3) time and memory. Although this ‘cubic root’ com-
plexity is lower than the generic ‘square-root’ complexity of the birthday
attack on the full compression function, it is still higher than the O(2x/2)
birthday attack complexity on the full function, due to the final trans-
formation outputting only half the bytes. Here we describe a variant of
Wagner’s attack for finding a collision in the final compression including
the final transform (so the output bit length is x bits). The asymptotic

complexity of our attack is O

(

x2
x

2(1+ 107
105)

)

time and memory – slightly

better than a ‘fourth-root’ attack. For simplicity, we can call the running
time O(x2x/4).

The basic idea of our attack is to use the linear representation of fout

from Sect. 3.2 and apply a variant of Wagner’s attack [13], modified to
carefully deal with additive carries in the final transform. As in Wagner’s
original attack, we build a binary tree of lists with 8 leaves. At the ith
level of the tree, we merge pairs of lists by looking for pairs of entries (one
from each list) such that their sums have 7 − i zero MS bits in selected
output bytes, for i = 0, 1, 2. This ensures that the list at the root level
has 4 zero MS bits on the selected bytes (these 4 MS bits are the output
bits), accounting for the effect of carries during the merging process. More
precise details are given below.

The attack. The attack uses inputs r, s for which the internal com-
pression function f has a linear representation absorbing the Miyaguchi-
Preneel feedforward (see Section 3.2). For such inputs, which may be of
length up to 9m bit (recall: m = x/4), the final compression function
f ′ : Z

9m
256 → Z

m
16 has the form

f ′(r) = MS4(H
′ · [Rep(r)]T), (10)

where MS4 : Z
m
256 → Z

m
16 keeps only the 4 MS bits of each byte of its

input, concatanating the resulting 4 bit strings (note that we use r here
to represent the whole input of the linearised compression function f ′

defined in Section 3.2). Let Rep(r) = (r[0], r[2], . . . , r[9m − 1]) ∈ Z
9m
256

with r[i] ∈ {0, 1} for i = 0, . . . , 9m − 1. Let ℓ ≈ ⌊ 4m
2(1+107/105) ⌋ (notice

that 8ℓ < 9m). We refer to each component r[i] of r as an input bit.
We choose a subset of 8ℓ input bits from r and partition the subset into
8 substrings ri ∈ Z

ℓ
256 (i = 1, . . . , 8) each containing ℓ input bits, i.e.

r = (r1, r2, . . . , r8). The linearity of (10) gives

f ′(r) = MS4(H
′
1 · [r1]T + · · · + H ′

8 · [r8]T),

where, for i = 1, . . . , 8, H ′
i denotes the m×ℓ submatrix of H ′ consisting of

the ℓ columns indexed (i−1) · ℓ, (i−1) · ℓ+1, . . . , i · ℓ−1 in H ′. Following
Wagner [13], we build 8 lists L1, . . . , L8, where the ith list Li contains

all 2ℓ possible candidates for the pair (ri, yi), where yi def
= H ′

i · [ri]T (note
that yi can be easily computed when needed from ri and need not be
stored). We then use a binary tree algorithm described below to gradually
merge these 8 lists into a single list L3 containing 2ℓ entries of the form
(r, y = H ′ · [r]T), where the 4 MS bits in each of the first α bytes of y are
zero, for some α, to be defined below. Finally, we search the list L3 for
a pair of entries which match on the values of the 4 MS bits of the last
m − α bytes of the y portion of the entries, giving a collision for f ′ with
the output being α zero half-bytes followed by m−α random half-bytes.

The list merging algorithm operates as follows. The algorithm is given
the 8 lists L1, . . . , L8. Consider a binary tree with c = 8 leaf nodes at level
0. For i = 1, . . . , 8, we label the ith leaf node with the list Li. Then, for
each jth internal node ni

j of the tree at level i ∈ {1, 2, 3}, we construct

a list Li
j labelling node ni

j, which is obtained by merging the lists Li−1
A ,

Li−1
B at level i − 1 associated with the two parent nodes of ni

j. The list

Li
j is constructed so that for i ∈ {1, . . . , 3}, the entries (r′, y′) of all lists

at level i have the following properties:

– (r′, y′) = (r′A||r′B , y′A + y′B), where (r′A, y′A) is an entry from the left
parent list Li−1

A and (r′B , y′B) is an entry from the right parent list
Li−1

B .

– If i ≥ 1, the ⌈ℓ/7⌉ bytes of y′ at positions 0, . . . , ⌈ℓ/7⌉ − 1 each have
their (7 − i) MS bits all equal to zero.

– If i ≥ 2, the ⌈ℓ/6⌉ bytes of y′ at positions ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉+ ⌈ℓ/6⌉− 1
each have their (7 − i) MS bits all equal to zero.

– If i = 3, the ⌈ℓ/5⌉ bytes of y′ at positions ⌈ℓ/7⌉ + ⌈ℓ/6⌉ , . . . , ⌈ℓ/7⌉ +
⌈ℓ/6⌉+ ⌈ℓ/5⌉− 1 each have their (7− i) = 4 MS bits all equal to zero.

The above properties guarantee that all entries in the single list at
level 3 are of the form (r, y = H ′ · [Rep(r)]T), where the first α = ⌈ℓ/7⌉+
⌈ℓ/6⌉+⌈ℓ/5⌉ bytes of y all have 7-3=4 MS bits equal to zero, as required.

To satisfy the above properties, we use a hash table lookup procedure,
which aims, when merging two lists at level i, to fix the 7 − i MS bits of
some of the sum bytes to zero. This procedure runs as follows, given two

lists Li−1
A , Li−1

B from level i− 1 to be merged into a single list Li at level
i:

– Store the first component r′A of all entries (r′A, y′A) of Li−1
A in a hash

table TA, indexed by the hash of:

• If i = 1, the 7 MS bits of bytes 0, . . . , ⌈ℓ/7⌉ − 1 of y′A, i.e. string
(MS7(y

′
A[0]), . . . ,MS7(y

′
A[⌈ℓ/7⌉ − 1])).

• If i = 2, the 6 MS bits of bytes ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉+ ⌈ℓ/6⌉ − 1 of y′A,
i.e. string (MS6(y

′
A[⌈ℓ/7⌉]), . . . ,MS6(y

′
A[⌈ℓ/7⌉ + ⌈ℓ/6⌉ − 1])).

• If i = 3, the 5 MS bits of bytes ⌈ℓ/7⌉+ ⌈ℓ/6⌉ , . . . , α− 1 of y′A, i.e.
string (MS5(y

′
A[⌈ℓ/7⌉ + ⌈ℓ/6⌉]), . . . ,MS6(y

′
A[α − 1])).

– For each entry (r′B , y′B) of Li−1
B , look in hash table TA for matching

entry (r′A, y′A) of Li−1
A such that:

• If i = 1, the 7 MS bits of corresponding bytes in positions
0, . . . , ⌈ℓ/7⌉−1 add up to zero modulo 27 = 128, i.e. MS7(y

′
A[j]) ≡

−MS7(y
′
B [j]) mod 27 for j = 0, . . . , ⌈ℓ/7⌉ − 1.

• If i = 2, the 6 MS bits of corresponding bytes in positions
⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉ + ⌈ℓ/6⌉ − 1 add up to zero modulo 26 = 64, i.e.
MS6(y

′
A[j]) ≡ −MS6(y

′
B[j]) mod 26 for j = ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉ +

⌈ℓ/6⌉ − 1.

• If i = 3, the 5 MS bits of corresponding bytes in positions ⌈ℓ/7⌉+
⌈ℓ/6⌉ , . . . , α−1 add up to zero modulo 25 = 32, i.e. MS5(y

′
A[j]) ≡

−MS5(y
′
B [j]) mod 25 for j = ⌈ℓ/7⌉ + ⌈ℓ/6⌉ , . . . , α − 1.

– For each pair of matching entries (r′A, y′A) ∈ Li−1
A and (r′B , y′B) ∈ Li−1

B ,
add the entry (r′A‖r′B , y′A + y′B) to list Li.

Correctness. The correctness of the merging algorithm follows from
the following simple fact:

Fact If x, y ∈ Z256, and the k MS bits of x and y (each regarded as the
binary representation of an integer in {0, . . . , 2k − 1}) add up to zero
modulo 2k, then the (k − 1) MS bits of the byte x + y (in Z256) are
zero.

Thus, if i = 1, the merging lookup procedure ensures, by the Fact
above, that the 7 − 1 = 6 MS bits of bytes 0, . . . , ⌈ℓ/7⌉ − 1 of y′A + y′B
are zero, whereas for i ≥ 2, we have as an induction hypothesis that the
7 − (i − 1) MS bits of bytes 0, . . . , ⌈ℓ/7⌉ − 1 of both y′A and y′B are zero,
so again by the Fact above, we conclude that the 7 − i MS bits of bytes
0, . . . , ⌈ℓ/7⌉ − 1 of y′A + y′B are zero, which proves inductively the desired
property for bytes 0, . . . , ⌈ℓ/7⌉−1 for all i ≥ 1. A similar argument proves
the desired property for all bytes in positions 0, . . . , α− 1. Consequently,

at the end of the merging process at level i = 3, we have that all entries
(r, y) of list L3 have the 7 − 3 = 4 MS bits of bytes 0, . . . , α − 1 being
zero, as required.

Asymptotic Complexity. The lists at level i = 0 have |L0| = 2ℓ entries.
To estimate the expected size |L1| of the lists at level i = 1, we model the
entries (r0, y0) of level 0 lists as having uniformly random and independent
y0 components. Hence for any pair of entries (r0

A, y0
A) ∈ L0

A and (r0
B , y0

B) ∈
L0

B from lists L0
A L0

B to be merged, the probability that the 7 MS bits of
bytes 0, . . . , ⌈ℓ/7⌉− 1 of y0

A and y0
B are negatives of each other modulo 27

is 1
2⌈ℓ/7⌉×7 . Thus, the total expected number of matching pairs (and hence

entries in the merged list L1) is

|L1| =
|L0

A| × |L0
B |

2⌈ℓ/7⌉×7
=

22ℓ

2⌈ℓ/7⌉×7
= 2ℓ+O(1).

Similarly, for level i = 2, we model bytes ⌈ℓ/7⌉ , . . . , ⌈ℓ/7⌉ + ⌈ℓ/6⌉ − 1 as
uniformly random and independent bytes, and with the expected sizes
|L1| = 2ℓ+O(1) of the lists from level 1, we estimate the expected size |L2|
of the level 2 lists as:

|L2| =
|L1

A| × |L1
B |

2⌈ℓ/6⌉×6
= 2ℓ+O(1),

and a similar argument gives also |L3| = 2ℓ+O(1) for the expected size of
the final list. The entries (r, y) of L3 have zeros in the 4 MS bits of bytes
0, . . . , α − 1, and random values in the remaining m − α bytes. The final
stage of the attack searches |L3| for two entries with a identical values for
the 4 MS bits of each of these remaining m − α bytes. Modelling those
bytes as uniformly random and independent we have by a birthday para-
dox argument that a collision will be found with high constant probability
as long as the condition |L3| ≥

√
24(m−α) holds. Using |L3| = 2ℓ+O(1) and

recalling that α = ⌈ℓ/7⌉ + ⌈ℓ/6⌉ + ⌈ℓ/5⌉ = (1/7 + 1/6 + 1/5)ℓ + O(1) =
107
210ℓ + O(1), we obtain the attack success requirement

ℓ ≥ 4m

2(1 + 107
105)

+ O(1) ≈ x

4
+ O(1).

Hence, asymptotically, using ℓ ≈ ⌊ x
2(1+107/105) ⌋, the asymptotic mem-

ory complexity of our attack is O(x2
x

2(1+ 107
105)) ≈ O(x2x/4) bit, and the

total running time is also O(x2
x

2(1+ 107
105)) ≈ O(x2x/4) bit operations. So

asymptotically, we have a ‘fourth-root’ collision finding attack on the fi-
nal compression function.

Concrete Example. For LASH-160, we expect a complexity in the or-
der of 240. In practice, the O(1) terms increase this a little. Table 2 sum-
marises the requirements at each level of the merging tree for the attack
with ℓ = 42 (note that at level 2 we keep only 241 of the 242 number of
expected list entries to reduce memory storage relative to the algorithm
described above). It is not difficult to see that the merging tree algo-
rithm can be implemented such that at most 4 lists are kept in memory
at any one time. Hence, we may approximate the total attack memory
requirement by 4 times the size of the largest list constructed in the
attack, i.e. 248.4 bytes of memory. The total attack time complexity is
approximated by

∑3
i=0 |Li| ≈ 243.3 evaluations of the linearised LASH

compression function f ′, plus
∑3

i=0 23−i|Li| ≈ 246 hash table lookups.
The resulting attack success probability (of finding a collision on the 72
random output bits among the 237 entries of list L3) is estimated to be
about 1 − e−0.5·237(237−1)/2160−88 ≈ 0.86. The total number of input bits
used to form the collision is 8ℓ = 336 bit, which is less than the num-
ber 9m = 360 bit available with the linear representation for the LASH
compression function.

Table 2. Concrete Parameters of an attack on final compression function of LASH-
160. For each level i, |Li| denotes the expected number of entries in the lists at level i,
’Forced Bytes’ is the number of bytes whose 7−i MS bits are forced to zero by the hash
table lookup process at this level, ‘Zero bits’ is four times the total number of output
bytes whose 4 MS bits are guaranteed to be zero in list entries at this level, ‘Mem/Item’
is the memory requirement (in bit) per list item at this level, ‘log(Mem)/List’ is the
base 2 logarithm of the total memory requirement (in bytes) for each list at this level
(assuming that our hash table address space is twice the expected number of list items).

Level (i) log(|Li|) Forced Bytes Zero bits Mem/Item, bit log(Mem)/List, Byte

0 42 6 0 42 45.4
1 42 7 24 84 46.4
2 41 9 52 168 46.4
3 37 88 336 43.4

6.2 Heuristic Lattice-Based Attacks on the Final Compression

We investigated the performance of two heuristic lattice-based methods
for finding collisions in truncated versions of the final compression func-
tion of LASH. The first reduces finding collisions to a lattice Shortest
Vector Problem (SVP). The second uses the SVP as a preprocessing stage

and applies a cycling attack with a lattice Closest Vector Problem (CVP)
solved at each iteration.

First Method: SVP-Based Attack We assume that the r input to
the final compression function is known and use the ‘affine’ representation
(4) in Sect. 3.2 of the internal compression function, i.e. g(s) = f(r, s) =
H ′ · s + b, with m × n matrix H ′ and m × 1 vector b. To find collisions
in the final compression function truncated to m′ ≤ m half-bytes using
a subset of n′ ≤ n input bits, we choose a m′ × n′ submatrix H̄ of H ′

(we let b′ denote the corresponding m′ × 1 subvector of b) and set up a
lattice LH̄ spanned by the rows of the following (n′+m′)×(n′ +m′) basis
matrix:

M =

(
B1 · In′ H̄T

0 256 · Im′

)

.

Here, B1 ∈ Z is a parameter with a typical value between 12 and 16, and
In′ , Im′ denote identity matrices of size n′ and m′, respectively. We now
run an SVP approximation algorithm (such as LLL or its variants) on M
to find a short vector

v = (v0, . . . , vn′−1, vn′ , . . . , vn′+m′−1)

in lattice LH̄ . Notice that by construction of LH̄ , for any lattice vector
v ∈ LH̄ we have the relation

n′−1∑

i=0

(vi/B1) · hi ≡ (vn′ , . . . , vn′+m′−1)
T (mod 256) , (11)

where hi ∈ Z
m′

256 denotes the ith column of H̄ for i = 0, . . . , n′ − 1.
We hope that v is ‘good’, i.e. has the following properties:

1 vi/B1 ∈ {−1, 0, 1} for all i = 0, . . . , n′ − 1.
2 |vi| < 16 for all i = n′, . . . , n′ + m′ − 1.

We choose n′ to guarantee that such ‘good’ lattice vectors exist.
Namely, suppose that we model the last m′ coordinates of a lattice vector
v as an independent uniformly random vector in Z

m′

256, for each choice of
the first n′ coordinates of v ∈ {−B1, 0, B1}. Then we expect that one
of the resulting 3n′

lattice vector has |v[i]| < 16 for i = n′, . . . , n′ +
m′ − 1 as long as 3n′

(31/256)m
′ ≥ 1, which leads to the condition n′ ≥

(log(256/31)/ log(3)) ·m′ ≈ 1.92m′ (we remark that a rigorous argument
using Minkowski’s Theorem shows that a ‘good’ lattice vector is guaran-
teed to exist if 8 < B1 < 16 and n′ > m′/(1 − log(B1)/4)).

If v is ‘good’, then rearranging (11) yields the following relation in
Z

m′

256: ∑

i:vi>0

hi =
∑

i:vi<0

hi + (vn′ , . . . , vn′+m′−1)
T .

Let t1 =
∑

i:vi>0 hi ∈ Z
m′

256 + b′, t2 =
∑

i:vi<0 hi ∈ Z
m′

256 + b′, and

e = (vn′ , . . . , vn′+m′−1)
T ∈ {−15, . . . ,+15}m′

. To obtain a collision for
the final compression function, we need that the 4 MS bits of the bytes
in t1 match the 4 MS bits in the corresponding bytes of t2, i.e. we need
that the addition of the error vector e to t2 doesn’t affect the 4 MS bits
of the bytes of t2. This happens if and only if for each (jth) byte t2[j] of
t2, we have

LS4(t2[j]) ∈
{
{0, . . . , 15 − e[j]} if e[j] ≥ 0 ,

{|e[j]|, . . . , 15} if e[j] < 0 .
(12)

Here LS4(t2[j]) denotes the 4 LS bits of byte t2[j]. Hence, for each j, there
are (16 − |e[j]|) ‘good’ values for LS4(t2[j]) which lead to a collision on
the 4 MS bits of that output byte. Modelling the bytes of t2 as uniformly
random and independent, we thus expect that all m′ bytes of t2 are good
(and hence we get an m′-byte collision for the final compression function)

with probability pgood =
∏m′−1

j=0
16−|e[j]|

16 .

Rather than running the costly SVP algorithm about k
def
= 1/pgood

times using different subsets of n′ input bits, we suggest a much faster
alternative. We run the SVP algorithm just once to get a single (t1, t2)
pair with additive difference vector e = t1 − t2, and then generate about
k additional pairs ti

1, t
i
2 with the same additive difference vector e, by

adding k common shift vectors δi to both t1 and t2, i.e. ti
1 = t1 +δi, ti

2 =
t2+δi for i = 1, . . . , k. The common shift vectors δi are generated as all 0-1
linear combinations of about log(k) unused columns of H ′ (i.e. columns of
H indexed by input bits which are not in the subset of n′ bits used in the
submatrix H̄). Modelling these k shift vectors δi as independent uniformly
random vectors, we expect to obtain a good ti

2 = t2 + δi among those
candidates, investing at most log(k) vector additions per trial (or even one
vector addition/subtraction per trial if we use a Gray code sequence of
0-1 combinations for the input bits used for generating the shift vectors).

Experimental Results. The largest partial collision we obtained for the
final compression function with this attack was with n′ = 85, m′ = 30
(120 colliding bits out of 160) using reduction time 9639 sec plus a post
computation time of 22611 sec on a 1.6GHz PC (a good shift vector was
found after about 235.5 trials, close to the expected number k ≈ 236.3).

This is much lower than the 260 hash computations needed to do this via
a birthday paradox approach. The partial collision is shown in Fig. 5.

First Input Second Input

r||s (first 20 bytes): r||s (first 20 bytes):

30 22 44 e2 f0 04 21 74 30 00 80 00 2a 08 02 00 80 09 05 20
c2 de 57 e1 73 80 00 00 00 00 02 de 57 e1 73 80 00 00 00 00

hash: hash:

4f 04 45 2f 29 a5 95 ab ec 52 4f 04 45 2f 29 a5 95 ab ec 52
a0 17 8e 62 80 85 62 9f b3 64 a0 17 8e 62 80 e0 44 f7 50 89

Fig. 5. Two final compression function inputs that match on the top 4 MS bits of 30
bytes of the output (all input bits which are not shown are zero).

This attack generates long colliding inputs of bit length n′ + log(k).
However, with better lattice reduction the value of n′ might be shortened
(heuristically n′ ≥ 1.92m′ should suffice, hence even n′ ≈ 58 for m′ =
30 may work). Furthermore, we can reduce the number log(1/pgood) of
additional input bits for generating the ‘postprocessing’ shift vectors by
instead flipping the values of input bits which have the same values among
the n′ bits used in the lattice reduction.

Second Approach: CVP-Based Attack Like the attack in Section 4,
the idea of this approach is to run a Pollard rho cycle attack on the final
compression function, and force some of the output bytes to zero in each
iteration to reduce the size S of the output space. The attack in Section 4
used a table lookup approach to force c output bits to zero at the expense
of 2c table storage and computation. Here, we aim to force c bits to zero at
each iteration using lattice techniques without the expense of 2c storage,
thus achieving similar run-time but without the necessity of large storage.

The Attack. As in the previous attack, we assume that the r input
is known and use the ‘affine’ representation (4) of the final compression
function output in terms of s, i.e. g(s) = f(r, s) = H ′ · s + b, with m × n
matrix H ′ and m×1 vector b. Fix attack parameters h ≤ m (the number
of output half-bytes we attempt to force to zero at each Pollard iteration)
and α ≥ h/2.

We define a Pollard iteration map g : Z
α′

256 → Z
α′

256 with α′ def
= m

2 − 3
8h

as follows.
Referring to Fig. 6, let H ′

R = [H ′
R2H

′
R1H

′
R0] denote the h×8 · (α′ +α)

submatrix of H ′ consisting of the intersection of the h bottom rows and

Fig. 6. Submatrices denoted as H ′
R2, H ′

R1, H ′
R0 are taken from the bottom left part of

the matrix HR. They correspond to the first α′, α/2 and α/2 bytes of the vector s.

H ′

m

h H ′
R2 H ′

R1 H ′
R0

8α′ 4α 4α

8 · (α′ + α) leftmost columns of H ′. Let t′ denote the bottom h bytes of
the compression function output (before truncating 4 LS bits per byte),
and s′ = [s′2s

′
1s

′
0]

T denote the top α′ + α bytes of s, where s′2 ∈ Z
α′

256 and

s′1, s
′
0 ∈ Z

α/2
256 . From Fig. 2 we have (assuming α + α′ ≤ m), that

t′ = H ′
R2 · Rep(s′2) + H ′

R1 · Rep(s′1) + H ′
R0 · Rep(s′0). (13)

On input s̄ ∈ Z
α′

256, the Pollard function g sets s′2 = s̄, and determin-
istically computes values for s′1 and s′0 to attempt to set the 4 MS bits of
each byte of t′ to zero. Namely, if lsb(s′2) = 0 (‘Case 0’), g sets s′1 = 0 and
finds a value for Rep(s′0) ∈ {−1, 0, 1}4α. Otherwise, if lsb(s′2) = 1 (‘Case
1’), g sets s′0 = 0 and finds a value for Rep(s′1) ∈ {−1, 0, 1}4α. Consider
first ‘Case 0’. Referring to (13), let y = −H ′

R2 · Rep(s′2) ∈ Z
h
256. Then g

computes Rep(s′0) ∈ {−1, 0, 1}4α such that H ′
R0 ·Rep(s′0) ≈ y. To do so, g

sets up lattice L0 spanned by the rows of the following (4α+h)×(4α+h)
basis matrix:

M0 =

(
B1 · I4α [H ′

R0]
T

0 256 · Ih

)

.

Note that this lattice is of the same form as the one used in Sec 6.2 (with
B1 an integer value between 12 and 16). Now g runs a Closest Vector
Problem (CVP) approximation algorithm (such as the Babai algorithm [1]
and its variants) on M0 to find a lattice vector

v = (v0, . . . , v4α−1, v4α, . . . , v4α+h−1) ∈ Z
4α+h

which is ‘close’ to the target vector

y′ = (0, . . . , 0,y) ∈ Z
4α+h.

We set Rep(s′0)[i] = v[i]/B1 for i = 0, . . . , 4α − 1. Note that at this point
we hope that v is sufficiently close to y′ so that

Rep(s′0) ∈ {−1, 0, 1}4α and |v[i] − y′[i]| < 16 for i = 4α, . . . , 4α + h − 1,
(14)

although it suffices if this happens for a noticeable fraction of inputs
to g (see analysis later). If (14) is satisfied then t′ = H ′

R2 · Rep(s′2) +
H ′

R0 · Rep(s′0) ≡ δ (mod 256) for some δ ∈ {−15, . . . , 15}h, and hence
MS4(t

′[i]) ∈ {0, 15} for i = 0, . . . , h − 1 (i.e. the 4 MS bits of the output
bytes are ‘approximately’ zero in the sense that there are only two possible
values for these 4 MS bits). In ‘Case 1’, g performs a similar CVP compu-
tation finding Rep(s′1) as the computation of Rep(s′0) in ‘Case 0’, where
the submatrix H ′

R0 above is replaced by the submatrix H ′
R1, yielding a

lattice basis matrix M1.

Finally, the Pollard iteration output g(s̄) ∈ Z
α′

256 is defined as the
concatenation of two strings derived from t′ computed from (13):

– The h bit string d ∈ {0, 1}h, where d[i] = 0 iff MS4(t
′[i]) = 0.

– The 4 · (m − h) bit string consisting of the top m − h half bytes of
H ′ · [s′2s′1s′00m−(α+α′)].

Note that the byte length of g(s̄) is (h+4·(m−h))/8 = m/2−3/8h
def
= α′,

as required. This completes the description of g.

Crucial Remark. The Babai CVP approximation algorithm can be sep-
arated into two steps. The first (more computationally intensive) ‘prepro-
cessing step’ does not depend on the target vector, and involves computing
a reduced basis for the lattice and the associated Gram-Schmidt orthogo-
nalization of the reduced basis. The second (faster) ‘online step’ involves
projecting the target vector on the Gram-Schmidt basis and rounding
the resulting projection coefficients to construct the close lattice vector.
In our Pollard iteration function g, we only have two fixed basis matri-
ces (M0 for ‘Case 0’ and an analogous basis M1 for ‘Case 1’). Hence we
need only run the time consuming preprocessing step twice, and then
in each Pollard rho iteration g only runs the fast ‘online step’ using the
appropriate precomputed bases.

The attack iterates the Pollard rho iteration function g on a random
initial value s̄ ∈ Z

α′

256. After a sufficient number of iterations (in the order
of 28α′/2), we expect to find a collision in g, which gives us two compression
function ternary inputs s′ = [s′2s

′
1s

′
0]

T and s̄′ = [s̄′2s̄
′
1s̄

′
0]

T for which the
corresponding compression function outputs t, t̄ ∈ Z

m
256 match on the 4

MS bits of all m bytes. Moreover, we hope that lsb(s′2) 6= lsb(s̄′2). Suppose,

without loss of generality, that lsb(s′2) = 0 and lsb(s̄′2) = 1. We therefore
have:

t =

8α′−1∑

i=0

Rep(s′2)[i] · hi
R +

8α′+8α−1∑

i=8α′+4α+1

Rep(s′0)[i − (8α′ + 4α)] · hi
R,

and

t̄ =

8α′−1∑

i=0

Rep(s̄′2)[i] · hi
R +

8α′+4α−1∑

i=8α′

Rep(s̄′1)[i − 8α′] · hi
R,

where hi
R denotes the ith column of H ′. From the equality of the 4 MS

bits of all m bytes of t and t̄ we have

t̄ = t + e ,

where e ∈ {−15, . . . ,+15}m. Therefore, rearranging this relation to have
only 0-1 linear combination coefficients on each side (by moving vectors
with −1 coefficients to the other side), we get a relation of the form:

8α′−1∑

i=0

Rep(s̄′2)[i] · hi
R +

∑

i:Rep(s̄′1)[i−8α′]=1

hi
R +

∑

i:Rep(s′0)[i−(8α′+4α)]=−1

hi
R

=

8α′−1∑

i=0

Rep(s′2)[i] · hi
R +

∑

i:Rep(s̄′1)[i−8α′]=−1

hi
R +

∑

i:Rep(s′0)[i−(8α′+4α)]=1

hi
R + e.

Hence, we are now back to the situation encountered in the SVP-based
attack above, where we have two 0-1 inputs to the compression func-
tion, such that the corresponding output vectors differ by the vector
e ∈ {−15, . . . ,+15}m, and hence match on the 4 MS bits of all m bytes

with probability pgood =
∏m−1

i=0
16−|e[i]|

16 , and we apply the the same ‘post-
processing’ technique (adding about 1/pgood shift vectors generated by
all 0-1 combinations of log(1/pgood) unused input columns) until we get
a collision on the 4 MS bits of all m output bytes.

Heuristic Complexity Analysis. The memory complexity for this at-
tack is very small. The time complexity T is the sum of three compo-
nents: (1) The preprocessing time Tpre for the CVP algorithm, (2) The
time Tρ for the Pollard rho attack to produce a collision with {−1, 0, 1}
coefficients, and (3) The postprocessing time Tpost for transforming the
{−1, 0, 1} coefficient collision into a {0, 1} coefficient collision.

The preprocessing time Tpre is dominated by the time to reduce the
lattice bases M0 and M1. Using the ‘block size’ and ‘pruning’ parameters

of the NTL BKZ lattice reduction routines [12] we can trade off quality
of the reduction (which reduces the expected run-time Trho of the Pollard
rho step (see Table 3 below) at the expense of an increased preprocessing
time Tpre.

The Pollard rho step run-time Tρ is of the form Nρ · Titr, where Nρ

is the expected number of Pollard rho iterations required to obtain a
‘good’ collision in the Pollard iteration function g, and Titr is the time per
iteration, which is dominated by the ‘online step’ of the CVP algorithm.

Let S = 24m−3h denote the size of the space in which g is iterated.
Let pg denote the probability (over a random target vector) that the CVP
algorithm returns a ‘good’ vector, i.e. vector v with v[i]/B1 ∈ {−1, 0, 1}
for i = 0, . . . , 4α − 1 and |v[i]| < 16 for i ≥ 4α. Out of Nρ iterations, we
expect Nρ · pg iterations to produce ‘good’ vectors. Hence by a birthday
argument we expect to get a collision with high constant probability if
Nρ · pg · 1

2 ≥
√

S, where the factor of 1
2 accounts also for the probability

that the collision is ‘good’ also in the sense that lsb(s′2) 6= lsb(s̄′2). Using
S = 24m−3h = 24m−3c/4 we get

Nρ ≈ 21+2m−3h/2/pg. (15)

The probability pg can be determined experimentally for a given reduced
basis. It seems to be difficult to estimate by theoretical arguments. How-
ever, we note that the parameter choice α ≥ h/2 is made to ensure
(heuristically) that a ‘good’ vector v above will exist. Namely, suppose
that we heuristically model the last h coordinates of a lattice vector
v ∈ L0 as an independent uniformly random vector in Z

h
256, for each

choice for the first 4α coordinates of v ∈ {−B1, 0, B1}. Then we expect
that one of the resulting 34α lattice vector has |v[i] − y′[i]| < 16 for
i = 4α, . . . , 4α + h − 1 as long as 34α(31/256)h ≥ 1, which leads to the
condition α ≥ (log(256/31)/(4 log 3)) · h ≈ h/2.

The postprocessing time Tpost is estimated by 1/pgood shift vector ad-

ditions, where pgood =
∏m−1

i=0
16−|e[i]|

16 is the probability that a random
shift vector yields a collision on all output half bytes. Modelling the error
vector elements e[i] as uniformly random in {−15, . . . ,+15} and inde-
pendent, the expected value of 16

16−|e[i]| is 3.46, so the expected value of

1/pgood =
∏m−1

i=0
16

16−|e[i]| is 3.46m ≈ 20.448x. Hence Tpost ≈ 20.448x · Tadd,

where Tadd is the time to add/subtract an m-byte vector (assuming we
use a Gray code sequence for enumerating the input bit combinations pro-
ducing the tested shift vectors). We note that this may be a pessimistic
estimate for Tpost since the error coordinates e[i] are likely to be biased

towards small absolute values, rather than being uniformly random in
{−15, . . . ,+15}. To get a better estimate one can compute the average
value of 1/pgood for the outputs produced by the CVP algorithm.

Concrete Estimates for LASH-160. Table 3 summarises our experi-
mental results for estimating the complexity of this attack on LASH-160.

Table 3. Experimental results for CVP attack on LASH-160. Refer to text for expla-
nation of table headings.

h 4α b p log(Tpre) log(1/pg) log(Nρ) log(Titr) log(Tρ) ni

20 70 55 12 23.2 7.7 58.7 9.2 68.0 224

In Table 3, the unit of time used is one LASH-160 compression func-
tion evaluation, which is taken to be 392.83×40 ≈ 15713 Pentium cycles,
as reported in implementation results in [3]. The two most important
parameters log(Tpre) (measured preprocessing step time) and log(Tρ) (es-
timated Pollard rho step time) are shown in bold. For all the tabulated
cases, the postprocessing step time Tpost is Tpost ≈ 20.448×160 · Tadd ≈ 264

compression function evaluations, using the estimate Tadd ≈ 80 cycles.

Additional remarks on Table 3. The parameters b and p denote
block size and prune parameters, respectively, used for the NTL BKZ
lattice reduction algorithm [12] in the preprocessing step. Time Titr is the
measured time for the ‘online’ CVP step, approximating the time for one
evaluation of the Pollard iteration function g. The probability of a ‘good’
vector pg was estimated by running the ‘online’ step of the CVP algorithm
1000 times, each time with a new and uniformly random target vector
y ∈ Z

h
256, counting the number nnb of runs for which v[i]/B1 ∈ {−1, 0, 1}

for i = 0, . . . , 4α − 1, the number nnm for which |v[i] − y′[i]| < 16 for
i = 4α, . . . , 4α+h−1, and estimating pg ≈ nnb

1000 × nnm
1000 . The parameter nin

shows the bit length of each of the colliding inputs to the final compression
functions produced by the attack.

From the results in the table, we therefore estimate that with the right
choice of parameters, this attack can find collisions in the final compres-
sion of LASH-160 using about 268 total run-time and very little memory.

References

1. L. Babai. On Lovasz’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

2. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology – CRYPTO ’96, volume 1109 of LNCS,
pages 1–15. Springer, 1996.

3. K. Bentahar, D. Page, M.-J. O. Saarinen, J. H. Silverman, and N. Smart. LASH.
Second Cryptographic Hash Workshop, August, 24–25 2006.

4. D. J. Bernstein. Circuits for integer factorization: A proposal. Web page,
http://cr.yp.to/papers/nfscircuit.pdf.

5. D. J. Bernstein. What output size resists collisions in a xor of independent expan-
sions? ECRYPT Hash Workshop, May 2007.

6. S. Contini, R. Steinfeld, J. Pieprzyk, and K. Matusiewicz. A critical look at cryp-
tographic hash function literature. ECRYPT Hash Workshop, May 2007.

7. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice
problems. Electronic Colloquium on Computational Complexity (ECCC), 3(042),
1996.

8. S. Lucks. Failure-friendly design principle for hash functions. In Advances in
Cryptology – ASIACRYPT ’05, volume 3788 of LNCS, pages 474–494. Springer,
2005.

9. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably Secure FFT
Hashing (+ comments on “probably secure” hash functions). Second Crypto-
graphic Hash Workshop, August, 24–25 2006.

10. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

11. C. Peikert. Private Communication, August 2007.
12. V. Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl/.
13. D. Wagner. A generalized birthday problem. In Advances in Cryptology –

CRYPTO ’02, volume 2442 of LNCS, pages 288–303. Springer, 2002.
14. M. J. Wiener. The full cost of cryptanalytic attacks. J. Cryptol., 17(2):105–124,

2004.

