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ABSTRACT
LEE JOSEPH EASSON: Indoor Localization Using Smartphones: Approaches, Issues, and Challenges

(Under the direction of Dr. Feng Wang)

Localization has gained priority in an increasingly inter-connected world. The majority of in-

dustries and sectors require some means of tracking the location of objects and/or people anywhere

on the Earth, whether indoors or outdoors. GPS is an already-implemented and viable solution for

outdoor localization. However, indoor localization is more challenging to implement and thus has

become a broad area of research. Despite the challenges of tracking location in places where satellite

GPS signals are unreliable or unreachable (i.e. within a building or structure), there has been consider-

able progress made in indoor localization research. Although current indoor localization technology

can achieve certain accuracy, they usually requires extra equipment and thus can be too cumbersome

and/or expensive for common purposes. A relatively new field of indoor localization research involves

using the sensors built into smartphones to triangulate a user’s position within a structure. This elim-

inates the requirement for extra cumbersome sensors or accessories. This honors thesis surveys the

current sphere of smartphone-based indoor localization research, analyzing the state-of-the-art ap-

proaches, their benefits and drawbacks. A test-bed is also developed to facilitate the evaluation of

each method mentioned in this thesis.
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1 Introduction

The need to track the location of people and objects has gained increased importance in the mod-

ern world. Every sector from military to commerce to health-care has great demands for tracking the

location of personnel or objects. In the military, it is necessary to keep track of where soldiers are

located when they are out on a mission [9]. In health-care it is necessary to keep track of where pa-

tients are located in a hospital in case something goes wrong and doctors need to be of assistance

to a particular patient. In commerce, determining delivery locations and tracking deliveries and de-

livery vehicles is vital [14]. Technology has been developed over the years that is designed to con-

stantly record and update the tracked location (i.e. latitude and longitude, or x- and y-coordinates on

a plane), orientation, and direction of motion of objects.

In general, there are two types of localization demands: outdoor and indoor. Outdoor localization

has a wide variety of uses in many industries. For instance, outdoor localization is used heavily in

the transportation industry as a means of navigation for vehicles, aircraft, and ships as well as for

pedestrians. The Global Positioning System (GPS) can triangulate the position of an object anywhere

on the Earth — until the object enters a building. Because GPS relies on reception of satellite signals,

triangulating position within a building or structure using GPS is ineffective, as satellite signals can be

easily blocked by ceilings and walls [10]. Because of this, it is necessary to use indoor localization to

track objects within buildings or places where GPS satellite signals are not well received.

Indoor localization has the potential to provide a multitude of benefits to a variety of situations.

Firefighters and emergency responders need to keep track of personnel and equipment even the

midst of fire, smoke, and confusion. However, within a burning building, GPS signals are obscured.

With an indoor localization sensor attached to each firefighter and piece of equipment, the fire chief

is able to know where they are in a building and can determine whether or not they are in danger.

A similar utilization can be applied to other professional fields such as park management (e.g. keep

track of hikers on trails within thick forest canopy) and health-care (e.g. keep track of hospital patients

or elderly nursing home residents).

Because of the beneficial potential of Indoor Localization, it has become a topic of research for

many network engineers. A large body or research has been dedicated to indoor localization and

many research teams have proposed different approaches to creating practical indoor localization

systems with good reliability and accuracy.

However, despite that technology for indoor localization exists, much of it is either expensive,

cumbersome, impractical, or less accurate. Recently, a new research direction has been proposed

that uses smartphones as indoor localization tracking devices. This thesis explores the current state

of smartphone-based indoor localization research, analyzes the benefits and limitations of each ap-
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proach, and makes discussions and insights striving to identify the appropriate strategy for optimally

utilizing the smartphone’s sensor suite.

2 Background

2.1 The Need for Localization

Since the beginning of human existence, the need to keep track of things has been an important

need. Whether on land, sea, or air, humans have needed determine and track the location of both

people and objects, and have invented several ways to do so, including maps, compasses, astrolabes,

and sextants [3].

This need for localization has lasted into modern times, and has even gained increased impor-

tance. Every sector from military to commerce to health-care to emergency response requires a means

of locating personnel and objects. In the military, it is important to keep track of where soldiers are

located when they are out on a mission. In commerce, it is required to track the routes and locations

of packages and deliverable goods anywhere on planet earth. In health-care it is necessary to keep

track of where patients are located in a hospital in case something goes wrong and doctors need to be

of assistance to a particular patient. In emergency response, it is important to trace the quickest route

to direct ambulances, firetrucks, or police cars to the site of the emergency.

Because of the modern need for localization, humans have derived dozens of technologies, sys-

tems, and software designed to pinpoint location, track position and motion, and provide remote

direction.

2.2 Outdoor Localization

Outdoor localization is the process of pinpointing the position, including location (X and Y coor-

dinates), altitude, orientation, and direction of motion. Some of the most effective and widely used

means for outdoor localization include Radio Detection and Ranging (RADAR), Long Range Navi-

gation (LORAN), and Global Navigation Satellite System (GNSS), the most common of which is the

Global Positioning System (GPS) [3] [14]. GPS is one of the most widely used outdoor localization

methods due to its high accuracy (up to 10 meters [5]) and adaptability making it useful for many sit-

uations. GPS is a system consisting of three parts: a network of 24 artificial satellites, a corresponding

network of ground stations, and receivers (e.g. a smartphone GPS app) [17]. The satellites orbit earth

at an altitude of 20,000 km (13,000 miles) and are relatively stationary at all times making them reli-

able points of localization similar to stars in constellations [18]. Using a process called trilateration,

at least three satellites are used to triangulate the position of the receiver as shown in figure 1 [19].
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The ground stations are used to ensure that the GPS satellites are in the appropriate positions of their

orbits in order to ensure that the triangulation is accurate [17].

Figure 1: Trilateration using GPS satellites [19]

Because of these properties, GPS is excellent for tracking the location of objects anywhere on earth

— unless the object is inside a structure. The major flaw with GPS and other outdoor localization

systems is that they fail to function normally when tracking objects whose location is obscured by

building walls, layers of earth, dense vegetation, or heavy atmospheric interference. Because of this

flaw, a system designed to track personnel and objects that are within buildings, underground, or

covered by a thick forest canopy is incredibly necessary. For cases such as these, an alternate means

of localization is needed: Indoor Localization.

2.3 Indoor Localization

As opposed to outdoor localization, indoor localization is the process of pinpointing position, in-

cluding location (X and Y coordinates), altitude, orientation, and direction of motion for an object

located within a structure or any other location where GPS signals cannot be well received. Because

of the need to track the location of personnel and objects when GPS is not a viable option, indoor

localization has become an active research topic. Because of the amount of research on indoor lo-

calization, several pieces of indoor localization technology have been developed that are designed to

overcome the limitations of GPS.

A relatively new area of research in indoor localization involves using a smartphone as a means to

track location in a manner similar to a GPS app. One may wonder, since technology for indoor local-

ization exists, why smartphone-based indoor localization is necessary. Much of the currently existing

indoor localization technology is incredibly accurate, such as the indoor localization system using
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Rao Blackwellized particle filter (RBPF) as presented in the Chinese Journal of Aeronautics with an er-

ror below 1.2 meters [12] and some systems like the Cricket indoor localization system are accurate

down to the centimeter [3]! Despite great accuracy, there are downsides to both of these systems that

make smartphone-based localization a relatively more viable option.

In particular, both the RBPF setup and the Cricket Indoor Localization system mandate the use of

external sensors in order to be fully functional. The RBPF system requires a foot-mounted Microstrain

inertial sensor in addition to a Samsung Galaxy tablet [12], and the Cricket indoor localization system

requires that an ultrasonic sensor be placed in every room [3]. The cost of the foot-mounted inertial

sensor with the relative cumbersomeness of a tablet for the RBPF setup, and the cost of installing

and maintaining an array of ultrasound sensors for the Cricket system can make these setups either

expensive, inconvenient, or both for enterprises despite their great accuracy [3] [12].

Currently, some of the most accurate indoor localization systems address the needs of the military

and first responders. However, the current consensus in indoor localization research for military pur-

poses is to use a multi-sensor fusion (i.e. system consisting of an array of sensors working in harmony)

in order to achieve maximum accuracy. These sensors include GPS receivers, inertial sensors, radios,

magnetometers, barometers, altimeters, ultrasonic sensors, Doppler radars, and imaging sensors all

placed in a Body Area Network (BAN) on the soldier [9]. Although designed to be as lightweight and

efficient as possible, the array of sensors dramatically increases the cost of these indoor localization

systems and would be impractical and cumbersome for civilian use.

Some smartphone-based indoor localization setups are designed in such a way that requires ad-

ditional sensors attached to the smartphone. External sensors for indoor localization can include

ultrawideband radios and ultrasonic sensors, among others, that can be attached using the exter-

nal ports on the smartphone or wirelessly using Bluetooth, BLE, and/or WiFi. Because of the cost of

the extra components, indoor localization systems that use external sensors are more expensive and

complex than systems that function with native sensors [14] and thus, this thesis avoids discussion

of indoor localization systems that mandate the use of external sensors in order to achieve accurate

localization, even if they do utilize a smartphone. The indoor localization systems discussed in this

thesis will be referred to as smartphone-only indoor localization systems.

Smartphone-based indoor localization systems that use the sensors natively built into the smart-

phone, do not require any external sensor, and are accurate to a reasonable degree could prove to

be highly effective and cost-efficient for a variety of purposes. The next section will detail two of the

most compelling advantages of smartphone-based indoor localization system and provide a brief dis-

cussion on the sensor suite within a modern smartphone and how each sensor can be utilized for a

smartphone-based indoor localization system.
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2.4 Smartphone-only Indoor Localization

2.4.1 Benefits

2.4.1.1 Ubiquity In modern times, it is uncommon for someone to be without a smartphone. In

almost every first-world country, the average middle class citizen is bound to own at least one smart-

phone which they carry with them at all times for the purposes of work, communication, and/or

entertainment. This makes smartphone-based indoor localization great for emergency situations,

because people will always have a means of emergency notification and navigation to the nearest

safety exit even if they happen to be in a private location such as the restroom.

2.4.1.2 Convenience Many of the previously mentioned indoor localization systems all require the

use of external sensors to a certain degree — some require only one extra sensor, while some require

an array of sensors. A smartphone-based indoor localization system that does not require any addi-

tional sensors to be attached to a smartphone is incredibly convenient for most users. If the process

of becoming a user of an indoor localization system is as simple as downloading an app that reads

data from the smartphone’s native sensors, many more people will find it easy to implement onto

their devices (incredibly important in emergency situations). Finally, because people paid money for

and claim ownership of their smartphones, they will feel compelled to take care of their devices. If

an indoor localization system mandated that everyone attach sensors to their body and/or carry an

electronic device that was handed to them, they will feel less compelled to take care of it and will not

care very much if one of the devices malfunctions.

2.4.2 Smartphone Sensor Suite

The modern smartphone comes equipped with an entire suite of sensors that can be utilized for

indoor localization purposes. The sensors described in this thesis are shown in figure 2 and described

in next sections listed in order from most useful to least useful for the purposes of indoor localization.

The ordered list of sensors is show below.

• Accelerometer, Gyroscope, Magnetometer

• WiFi

• Bluetooth

• Cellular Radio

• GPS

• Camera

• Microphone

• Proximity Sensors
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• Ambient Light Sensors

• Temperature Sensors

Figure 2: Sensor suite built into a modern smartphone [14]

2.4.3 Accelerometer, Gyroscope, and Magnetometer

Two of the key sensors for indoor localization built into a modern smartphone are the accelerom-

eter and the gyroscope. The accelerometer is used to detect relative motion based on acceleration.

This is especially useful for indoor localization because it is possible to calculate velocity and distance

by integrating acceleration.

Small acceleration detection errors can easily accumulate and cause larger errors if not dealt with.

The gyroscope is used in conjunction with the accelerometer to calculate and provide angular accel-

eration data relative to the positional acceleration data. Angular data is used to derive the Euler angles

pitch, roll, and yaw. Similar to the accelerometer, small cumulative errors in angular acceleration can

lead to large errors and heavily flawed calculations. The smartphone’s magnetometer can be used as

a means to re-calibrate angular position by calculating angular position relative to magnetic north.

The magnetometer can itself also be used as a means of localization. Other sources of magnetism

such as electrical wiring and metals can introduce errors caused by noise, but they can be used to

determine location within a building (see Magnetic Fingerprinting). The combined data provided by

a system that utilizes both an accelerometer and a gyroscope is called 6 Degrees-of-Freedom (6 DoF)

data. Adding magnetometer data to a 6 DoF system is known as a 9 DoF system [14].
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2.4.4 WiFi

Because of their ubiquity and range of WiFi, its signal strength is becoming a popular means for

indoor localization. WiFi beacons can be set up and used as a means to triangulate and calculate a

user’s location within a structure by analyzing the strength of the WiFi signal. Although it has been

proven effective, no WiFi localization-based smartphones have been released to the market as of yet

[14].

2.4.5 Bluetooth

Similar to WiFi and Cellular Radio, Bluetooth can be used as a means of localization, albeit pos-

sessing the shortest range of the three. Bluetooth Low Energy (BLE) is an alternative form of Bluetooth

that is better suited for indoor localization purposes due to its lower power usage and bandwidth.

Both Bluetooth and BLE experience the same drawbacks as cellular radio and WiFi [14].

2.4.6 Cellular Radio

Providing a means of indoor position relative to a cell tower or base station is where the cellular

radio in a smartphone comes into play. This sensor plays a key role in indoor localization systems

that utilize RSSI (Received Signal Strength Indicator) Fingerprinting. Cellular signals can experience

interference when penetrating walls, floors, or ceiling, so the RSSI often varies greatly in strength.

Because cell towers and base stations are often located far away from a structure, the localization

accuracy can vary greatly (anywhere from 50 to 100 meters) despite the relatively high range of cellular

radio signals [14].

2.4.7 GPS

Although GPS is what indoor localization ultimately attempts to function without, it can still make

use of GPS. GPS can still be used for situations such as when the user is standing next to a window or

on a balcony. It can also act as a reference point for calibration when the user enters a building [14].

2.4.8 Camera

Identifying key features of the interior of a building using the high-resolution camera built in to a

smartphone is another means of indoor localization. The drawbacks to using the camera are the fact

that the camera must be exposed (as opposed to in the user’s pocket), the rear-facing camera (i.e. the

one that faces towards the user) has lower resolution than the front-facing camera, image processing

is a highly-intensive process that require a lot of computational power and overhead, and the camera

does not function well in dim or dark environments [14].
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2.4.9 Microphone

The microphones built into a smartphone are great for determining location based on ambient

sounds. A fingerprinting approach involving a system containing an array of beacons that each pro-

duce a unique frequency of sound can be used to accurately determine user location within a struc-

ture. However, the microphones in modern smartphones are optimized to register speech as opposed

to ambient sounds and sound detection is greatly hindered if the smartphone rests in a user’s pocket

or bag [14].

2.4.10 Proximity Sensors

Recent models of smartphones have built-in proximity sensors designed to detect the presence of

a face or a hand motion. The limited range of this sensor, however, severely limits its use and therefore

can only be used in specialized situations [14].

2.4.11 Ambient Light Sensors

Smartphones have an ambient light sensor that detects the magnitude of ambient light and ad-

justs the phone’s screen brightness accordingly. Although some system have made use of this sensor

(see SurroundSense), its usefulness is only marginal. The time of day can affect the sensor greatly and

produce noise, but artificial light sources can be installed to overcome this problem [14].

2.4.12 Temperature Sensors

The temperature sensor in a smartphone can also prove to useful for some indoor localization

systems, but is highly limited and can be greatly affected by body temperature. Because most smart-

phones are constantly in contact with the user’s body (either in the hand or in the pocket), much like

the proximity sensor, this sensor can only be used in very specialized systems [14].

3 Smartphone-only Indoor Localization

Indoor localization systems that make use of smartphones have a lot of potential due to their

cost, convenience, and portability. Making an indoor localization system that simply uses an app

on a smartphone without requiring any external sensors or attachments at the expense of pinpoint

accuracy costs much less than a highly-accurate localization that requires extra sensors. Smartphone-

based indoor localization systems are also convenient because nearly every individual carries a smart-

phone with them at all times and is therefore great for emergency and evacuation situations (after

all, people will even carry their smartphones to private areas like the restroom). Smartphones are

portable by their design, so an indoor localization system that takes advantage of portability could
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easily be useful to the average person. This paper will survey the sensor suite within a modern smart-

phone, describe the challenges of designing an smartphone-based indoor localization system, and

cover several methods for smartphone-based indoor localization, including both systems that take

advantage of an individual method and system that take advantage of multiple methods (i.e. hybrid

methods).

3.1 Challenges

Despite the bounty of research on smartphone-based indoor localization, the concept itself is

not without flaw. There are several issues to consider when determining which indoor localization

suits a particular need or situation the best. The next several section will list the common issues of

smartphone-based indoor localization and examine how they affect/diminish the quality or useful-

ness of an indoor localization system. The ordered list of challenges is shown below.

• Cost

• Setup

• Sensor Error

• Power

• Memory Processing

• 3D Localization

3.1.1 Cost

Although some smartphone-only indoor localization methods avoid using external sensors that

attach to the smartphone, many of them require additional remote sensors and beacons that can

greatly increase the cost of an indoor localization system. For this reason, many research teams focus

on the development of smartphone-based indoor localization systems that do not require the instal-

lation of beacons, emitters, or sensors in order to fully function. One example of cost reduction is to

determine and install the minimum amount of beacons necessary using models and optimizations to

determine best placement [14].

3.1.2 Setup

Many indoor localization systems require an initial setup procedure, such as those seen in the

LearnLoc framework [11], SurroundSense [5], and many other fingerprinting-based systems. Often,

dramatic changes to the environment will require the setup procedure to be run again, which can

come at the cost of time and resources. Indoor localization systems that use crowd-sourced mapping

or fingerprinting, on-the-fly fingerprinting, or map learning have proven to be useful for minimizing

the cost of setup procedures [13].
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3.1.3 Sensor Error

Smartphone sensors such as the magnetometer are incredibly prone to interference, especially

when in the proximity of metals, electromagnets, or electronics. Noise produced from interference

can lead to error in calculations. RF signals are prone to noise, environmental interference, and mul-

tipath errors. Localization methods that use inertia-based localization (e.g. pedestrian dead reck-

oning) are the best workaround for sensor error because their measurements rely on the physical

movement of the user rather than propagated signals, but even they have their problems including

irregular movements, error accumulation, and drift. Later we will see that calibration and filtering

approaches (e.g. Kalman filtering) are the best counter to for sensor error [10].

3.1.4 Power

Battery lifetime is a primary concern for both smartphone users and the designers of indoor lo-

calization systems. Frequent, intensive calculations and use of sensors can quickly drain the battery

power of the current suite of commercially-available smartphones. Different systems have different

power requirements, and even the most power intensive system try to mitigate their battery usage

(e.g. the LearnLoc framework, in which the initial calculations of the training phase are done on a

remote server rather than the smartphone [11]) [14].

3.1.5 Memory and Processing

Some indoor localization methods, such as LearnLoc, require image processing, machine learn-

ing, map matching, or signal processing. These methods require high processing and memory usage,

which limits their full usage on resource-conservative smartphones and can reduce battery life and

service quality [14].

3.1.6 3D Localization

A challenge for many indoor localization systems is the accurate localization of a user in 3D space.

Many indoor localization system, some of which are presented in this thesis, make satisfactory use of

indoor localization on a 2D space. The introduction of a third dimension introduces more complex

calculations and interesting edge cases that must be worked around. For instance, in a pedestrian

dead reckoning system, the localization fails to work if the user enters an elevator [8] [14], which, in a

multi-story building, is quite common. For this case, there would need to be some workaround that

allows the indoor localization system to detect when the user enters an elevator on one floor and exits

the elevator on a different floor.
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3.2 Individual Methods

This section surveys several individual methods and/or algorithms for determining the location,

direction of motion, and orientation of an object located within a building. Each method is presented

with one or more examples of an indoor localization system that uses the method either in isolation

or with an emphasis on it. Figure 3 shows a diagram of the individual methods discussed in the next

sections and how they are categorized in relation to one another.

Figure 3: Diagram of Indoor Localization Techniques

3.2.1 Dead Reckoning

Dead Reckoning [6] is a statistical technique in which previously recorded data is used to estimate

current data, as demonstrated in figure 4. In the case of indoor localization, dead reckoning uses pre-

vious location data in order to predict the target’s current location. There are several dead reckoning

techniques currently used for indoor localization. The most common method is Pedometer-based

Dead Reckoning, also called Pedestrian Dead Reckoning (PDR) in which a person’s steps are detected

and recorded along with stride-length measures in order to estimate where a person is within a given

structure. PDR has been shown to demonstrate sufficient accuracy for many indoor localization sys-

tems, which is why it is the standard dead reckoning method for indoor localization [4].

FootPath [8] is a self-contained map-based indoor localization system designed for smartphones

that uses step detection and dead reckoning by way of sequence alignment algorithms borrowed from

bioinformatics [8].

Indoor localization for FootPath involves five steps, as described in Figure 5. First, FootPath gath-

ers map data using an open-source mapping software. Second, the user uses his/her smartphone to

11



Figure 4: Dead Reckoning [6]

Figure 5: Overview of FootPath [8]

pinpoint a starting location and a final destination, after which the smartphone app traces the best

route. Once the path has been traced, FootPath begins step detection using the smartphone’s ac-

celerometer and compass. The FootPath software recognizes a step when the detected acceleration

is at least 12m/s2 within a window of 165ms (which allows for about five samples) with a timeout of

333ms. A graph showing the filtered accelerations and detected steps with respect to time (ms) used

in FootPath is shown in see Figure 6.

After a step is detected, FootPath immediately begins the path matching algorithm. There are two

possible path matching algorithms for FootPath, first fit and best fit [8].

The first fit algorithm assumes that the user’s current step heading will match directly with the

user’s expected direction. A step heading αi is said to be matching with current direction β j if the

angle between them is less than 42o . First fit will operate in direct matching mode if the current step

heading with the expected direction , and lookahead matching mode if the current step heading does

not match the expected direction for more than five consecutive steps.

The best fit algorithm is more complex than first fit, but allows for more accurate matching of step

heading and expected direction. Best fit utilizes a sequence matching algorithm commonly used in

bioinformatics that uses pattern matching with an map of expected patterns as demonstrated below.
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Figure 6: Experimental Setup for FootPath - Step Detection [8]

scor e(α,β) =



0.0 if ^(α,β) ≤ 45°

1.0 if 45° <^(α,β) ≤ 90°

2.0 if 90° <^(α,β) ≤ 120°

10.0 else

Using a dynamic programming approach with the matrix D(i , j ), the expected position along a

pathway can be calculated using the pos j formula:

D(i , j ) = mi n
{
D(i −1, j −1)+ scor e(M(i ),S( j )),

D(i −1, j )+ scor e(M(i ),S( j −1))+1.5,

D(i , j −1)+ scor e(M(i −1),S( j ))+1.5
}

pos j = ar g mi n(D(i , j ))

The formula only worries about pos j because D(_, j ) only depends on D(_, j −1) allowing for fast

and efficient calculation.

Discussion: It is worth noting that because dead reckoning is a category of mathematical tech-

niques rather than a single method. Different indoor localization systems that use dead reckoning

may use different mathematical techniques. While FootPath uses a combination of string pattern

matching and recursion to estimate user location, the LearnLoc Framework, a hybrid indoor local-

ization system that combines pedestrian dead reckoning along with other methods (see section of

LearnLoc Framework), uses trigonometric formulas for location calculation.

With the current suite of sensors built into the modern smartphone, along with high refresh and
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sampling rates, pedestrian dead reckoning systems like FootPath would be an excellent strategy for

smartphone-based indoor localization. Because pedestrian dead reckoning systems only rely on in-

ertial measurements (i.e. readings from the accelerometer and gyroscope), they do not require the

installation of additional devices like WiFi beacons.

However, a downside to pedestrian dead reckoning is that calculations of distance are commonly

inconsistent and can lead to additive inconsistencies in stride length calculations (i.e. some strides

are shorter and some are longer, even with the same person). A second, and crippling, downside

is that because pedometer-based dead reckoning depends on step detection, it fails when a person

enters a vehicle or uses a device that substitutes for walking (i.e. elevator, wheelchair, escalator).

3.2.2 Fingerprinting

Fingerprinting is a localization and/or mapping technique involving the gathering of data from

several wireless sensors or radios placed at various spatial points. There are two steps involved in

the fingerprinting process: an initial setup, and a real-time recording. In the initial setup, selected

locations are marked with a unique ID or signature (i.e. a fingerprint, hence the name of the pro-

cess). During the real time recording, location data is gathered continuously and compared relative

to the fingerprinted locations. As the user navigates through a building where fingerprints placed

strategically throughout, the indoor localization system will estimate user location based on which

fingerprint has the highest received signal strength from the user. To give an example, a floor of an

office building has two fingerprints, one in the conference room and one in the manager’s office. If

an employee logged into the fingerprinting-based indoor localization system is walking toward the

manager’s office, the office fingerprint will have an (increasingly) higher signal strength than the con-

ference room fingerprint. Thus, the system determines that the employee is located in the vicinity of

the manager’s office. There are two commonly used methods for fingerprinting: magnetic and RSSI.

3.2.2.1 Magnetic Fingerprinting Magnetic fingerprinting is an indoor localization fingerprinting

method that utilizes the magnetometer in smartphones by detecting sources of magnetic noise such

as electronics, metals, and electrical wiring. By observing and classifying the magnetic noise pro-

duced by each source, the magnetometer in a smartphone can give a good approximation of where a

person is within a building.

IndoorAtlas [16] is a company that specializes in developing indoor localization systems using ge-

omagnetic mapping and tracking. In a partnership with Yahoo!, IndoorAtlas created a fingerprinting-

based indoor localization system to create indoor maps for buildings in Japan. The system uses the

compass built into a modern smartphone in conjunction with several geomagnetic “fingerprints” that

are unique to each building. According to Ben Frederick’s article [16], “the earth generates a mag-

14



netic field, and each structure erected on the earth carries its own magnetic signature that can be

detected through a phone’s sensors”. According to Dan Patton, the CCO (Chief Commercial Officer)

at IndoorAtlas, scalability is a limiting factor for many hardware-based indoor localization systems.

Maintaining beacons and WiFi routers can become expensive and time-consuming and would require

specialized personnel to keep them in working order. The cost of equipment for many hardware-

based localization systems is often prohibitive for many companies. The IndoorAtlas system, on the

other hand, seeks to take a software-based approach to indoor localization that allows for customers

to customize the system to suit their needs (e.g. manage data and location-based services using a

mobile application). The system, according to Patton, is accurate within one to two meters and works

in three dimensions because each floor of a building has its own unique magnetic fingerprint.

3.2.2.2 RSSI Fingerprinting RSSI fingerprinting is similar to magnetic fingerprinting with the dif-

ference being the detection of received RF signals by the smartphone’s built-in radio. As of now, this

is one of the most popular techniques for indoor localization, particularly when used in conjunction

with WiFi RF signals. By categorizing RF fingerprints throughout a building or structure, the radio

sensor in a smartphone can give a good approximation of a user’s location within a structure. RADAR

is an example of RSSI Fingerprinting that uses WiFi RSSI fingerprinting with Euclidean distance mea-

surement [2].

Discussion: Fingerprinting is widely used in indoor localization because of it’s accuracy. When

many fingerprints are placed throughout a structure, and indoor localization system can pinpoint

the location of a user down to a few meters. Although a limitation of fingerprinting systems is that

many of them require an initial setup phase in order to place fingerprints, both magnetic and RSSI

fingerprinting can use pre-installed beacons as fingerprints. For magnetic fingerprinting, in-built

metals and electrical wiring can act as fingerprints, and for RSSI fingerprinting, WiFi access points

(APs) can be used as fingerprints.

The biggest limitation fingerprinting is that the smartphone’s magnetometer and radio sensors are

prone to error and interference. The introduction of new sources of magnetic noise, including other

cell phones, and radio interference can vastly affect the localization calculations of fingerprinting

indoor localization systems.

3.2.3 Trilateration

Trilateration involves triangulating a user’s location using distance estimations between the smart-

phone and two or more external RF beacons. When using the distance estimations from more than

three beacons, it is possible to calculate a three-dimensional position for the user. The three means

of trilateration-based indoor localization are RSSI distance estimation, Time of Arrival (ToA) ranging,
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and Time Difference of Arrival (TDoA) [14].

3.2.3.1 RSSI Distance Estimation Similar to RSSI fingerprinting, RSSI can also be used for distance

estimation and in-turn the triangulation of a user’s indoor location based on RSSI distance calcula-

tions. The RSSI value changes proportionally with the distance from the RF signal origin and therefore

can be used to estimate distance from the source. The EZ localization algorithm is one of the earliest

and most effective examples of RSSI distance estimation [7].

The EZ localization algorithm attempts a bold innovation: an indoor localization system that does

not require any preliminary setup. Many indoor localization systems, especially fingerprinting-based,

require an initial setup step to gather enough data in order to accurately determine location. EZ works

under the assumption that a building will have WiFi, but the location of the access points (APs) is un-

known. The EZ localization system involves the user’s smartphone recording Received Signal Strength

(RSS) measurements and transferring them to a remote server where the EZ localization algorithm

performs localization calculations from the received data. The key way the EZ system seeks to bypass

a lengthy setup process is to assume that all locations within a building, even when unknown, will

abide by the laws of wireless propagation and uses genetic algorithms based off those assumptions to

calculate location [7].

The distances between a set of APs and their corresponding mobile devices can be determined

from the RSS values using the equations:

di j =
√

(x j − ci )T (x j − ci )

pi j = Pi −10γi l og di j +R

The equation for di j corresponds to the distance between the jth mobile device and the ith AP, calcu-

lated using the 2D vectors x j and ci . The equation for pi j refers to the RSS amount from the ith AP at

a distance of one meter. Pi is the received signal strength from the i th AP and R is a random variable

designed to mimic the variations in RSS due to obstructions, noise, and multipath effects. γi refers to

the fall rate of the RSS when in proximity of the ith AP. The higher the value of γi , the more the RSS

decreases with distance and vice versa [7].

Discussion: The EZ localization system has two major limitations: selecting the correct APs, and

selecting a subset of locations. Some buildings can have an astounding number of WiFi access points.

In fact, during one of the experimentations with the EZ system, the experimenters at the Microsoft

research lab in India detected 160 APs on a single office floor. The system even suffered the dividing

wall problem [5] when they realized that some of the APs belonged to a neighboring office building.

Some APs were even configured with multiples SSIDs! Running the localization algorithm using all of
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those access points could become extremely taxing on the system, so designing the system so that it

only receives signals from the most optimal APs was a necessity [7].

In order to effectively train the EZ system, RSS signals need to be received from a healthy variety

of locations across an indoor space. Data gathered from a single user who traverses most of the entire

space or data gathered from a large group of people spread out over the indoor space are both ideal.

The challenge is to determine, given a large amount of data, how do we determine a subset of “useful”

locations. The Microsoft research team who developed the EZ system also developed an algorithm

called LocSelect which is designed to select a subset of locations based on the overlap of RSS informa-

tion throughout the indoor space [7]. In comparison to random selection of locations, the LocSelect

algorithm provided significantly less location error (in meters) as shown in figure 7

Figure 7: Comparison of Location Error (meters): LocSelect vs. Random Placement

3.2.3.2 Time of Arrival (ToA) and Time Difference of Arrival (TDoA) Ranging Another way of de-

termining location using trilateration is to measure the time it takes for a signal to travel from RF

source to receiver. This can be achieved in two different ways: Time of Arrival (ToA) and Time Differ-

ence of Arrival (TDoA) [14].

ToA ranging involves the smartphone sending a signal to an access point and estimating distance

based on the round trip time (RTT) of the signal. Time Difference of Arrival (TDoA), also known as

Multilateration involves the smartphone sending multiple signals to two or more access points and

estimating distance based on the difference in the RTT of the signal from each point. For both ToA

and TDoA, an alternate method is to do the reverse by having the fixed points simultaneously send a

signal to the smartphone and calculate location based on the difference in time each of the signals is

received by the smartphone [14].

Discussion: Because trilateration-based indoor localization systems calculate user location based

on the RSS or ToA from multiple access points simultaneously, they tend to be more accurate than

their corresponding fingerprinting-based systems.

However, trilateration methods are highly error-prone due to RF interference and multipath ef-
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fects (a phenomenon that occurs when a receiver receives duplicate signals at different times [22]). A

way to circumvent these errors is to use the magnitude (see Proximity Estimation) of a received sig-

nal instead of the estimated distance, but this has its own set of possible errors including including

reflections, echo, and object interference.

For both ToA and TDoA, the sensors in a smartphone are not built to calculate the timing of a

received signal to the degree of accuracy needed for ranging, so this option is not very viable unless

employed with external sensors or beacons. Modern smartphones also do not include radios designed

for multilateration by default and therefore would mandate the use of external sensors or beacons.

3.2.4 Proximity Estimation

The most basic form of localization that makes use of RF beacons, proximity estimation involves

estimating the user’s location based on the position of the beacon with the highest signal strength.

Proximity estimation is useful for indoor localization systems where only rough estimates of posi-

tion are needed instead of accuracy and minimal error. Similar to multilateration, this method can

be accomplished with acoustic beacons, but is limited by the fact that smartphone microphones are

designed to detect frequencies within the audible or near-audible range or hearing. Therefore, fre-

quencies that are unique enough to be detected and differentiated but not distracting to humans and

animals is a challenge [14].

Aruba [20], an HP enterprise company, has devised a “Blue Dot” approach to proximity estimation-

based indoor localization. The Blue Dot approach is not as intensive as other indoor localization sys-

tems in that instead of using intensive calculations to output a user’s location, the Blue Dot setup

simply detects if a user is in the proximity of a beacon (usually a Bluetooth beacon), which indicates

that the user is in an area of interest. This system was designed with marketing and advertisement in

mind. Many commercial vendors have adopted the Blue Dot system as a way to send promotions and

advertisements to potential customers.

Discussion: Because proximity estimation-based indoor localization systems are excellent when

only rough estimates are needed, they are poor for situations when accurate localization is needed.

Therefore, situations that require accurate localization, such as those in military and emergency re-

sponse, will not find a proximity estimation-based solution viable.

3.2.5 Visual Localization

Using the smartphone’s camera to read input from data sources is the basis of visual localization.

In order for this method to be effective, the camera must be constantly exposed and free of any ob-

structions between it and the data source. This localization method could potentially be used for

Augmented Reality (AR) purposes because of its relative ease of implementation and the necessity to
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keep the camera exposed while playing the AR game.

3.2.5.1 Visual Recognition Using environmental objects as unique visual cues is one way to utilize

the smartphone camera for indoor localization purposes. As an example, the company ByteLight [15]

planted a series of LEDs throughout a building that each transmitted a unique coded pulse. The

camera could register the pulse generated by an LED to indicate where the user is located within the

building.

ByteLight has implemented a visual recognition-based indoor localization system that uses Light

Emitting Diodes (LEDs) for localization. Using a technique known as Visible Light Communication

(VLC), the ByteLight system calculates location based on LEDs that give off a unique pulse installed in

light fixtures. These pulses are undetectable to the human eye (the pulses are hundreds of hertz), but

are very detectable to a smartphone’s camera. By detecting nearby LEDs, reading the unique pulse,

and performing client-side calculations, the ByteLight system can provide accurate localization in an

indoor environment. A demonstration of the VLC system is shown in figure 8.

Figure 8: Visual Light Communication (VLC) system developed by ByteLight [15]

Discussion: One of the greatest benefits of VLC indoor localization systems is that, because they

do not rely on WiFi, the system functions well even if the user is not connected to WiFi or the wire-

less internet is down. However, the VLC system invented by ByteLight does have its limitations. The

unique LEDs that the ByteLight system relies on have to be installed in a buildings lighting system

and, if the building already uses LEDs, the pre-existing LEDs cannot be retrofitted to work with the

ByteLight VLC system. For companies that have yet to upgrade to an LED lighting system, however,

VLC systems could be a fairly easy-to-implement means of indoor localization.

3.2.5.2 Scene Analysis Visual localization is not simply limited to LEDs; environmental objects

and unique landmarks could also be used for indoor localization purposes. By identifying landmarks

and measuring their perceived position, size, and orientation, the camera can estimate user location

based on these environmental cues. This process is remarkably similar to how the human eyes regis-
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ters environmental objects and makes judgments and calculations on distance, size, and orientation

based on perception.

Discussion: Unlike visual recognition, scene analysis relies on pre-existing environment cues.

Therefore, no infrastructure such as WiFi beacons or LEDs has to installed. Copious amounts of visual

input, however, need to be fed into a machine learning system in order for this method to be effective

enough for practical indoor localization purposes.

3.2.6 Comparison and Supplementary Techniques

Table 1 shows a summary of the individual indoor localization methods. Each method is given a

rating in relation to each of the challenges presented earlier. For Cost, Setup, Sensor Error, and Re-

sources, each method is given a rating of Low, Medium or High depending on quantity (e.g. estimate

of cost). The 3D Localization column is given a rating of Poor, Average, or Good depending on the

quality of how well a certain method can perform indoor localization calculations in a 3D space.

Some other techniques are not directly useable in the previously discussed indoor localization

methods, but nonetheless can greatly improve their accuracy and speed if available [10]. The three

most common supplementary techniques for indoor localization are map matching, particle filtering,

and Kalman filtering.

3.2.6.1 Map Matching By matching received indoor localization data with a large data set of maps,

accuracy of the indoor localization data can be greatly improved. By comparing indoor localization

data with a set of maps, it becomes quite easy to detect errors in localization and pathing. Because

people will take a path throughout a building that almost always corresponds with the floor layout of

the building, any detected errors in pathing are extremely apparent. FoothPath collects accelerometer

and magnetometer data and combines it with map data gathered through OpenStreetMap in order to

improve overall accuracy [8].

3.2.6.2 Particle Filtering Particle filters are an extended form of map matching that assumes the

notion that the mobile user’s position abides by the natural laws of physics and any unnatural accel-

erations or locations are considered erroneous. Essentially, particles filtering involves representing as

many possible points of location as possible and then eliminating any point that defies the laws of

physics. Any remaining particles are deemed to be the array of possible locations within a building

that the mobile user can occupy [12].
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Individual Method Comparison

Method Cost Setup Sensor
Error

Resources
3D

Localization

Dead
Reckoning

Low Low Medium Medium Poor

Magnetic
Fingerprinting

Low Low-
Medium

High Medium Average

RSSI
Fingerprinting

High High Medium Medium Good

RSSI
Distance

Estimation
Medium Medium-

High
Medium High Good

Time of
Arrival

Ranging
Medium Medium-

High
Medium High Good

Time Distance
of Arrival
Ranging

Medium Medium-
High

Medium High Good

Proximity
Estimation Medium Medium Low Low

Average-
Good

Visual
Recognition Medium Medium High High Average

Scene
Analysis

Low Low High High
Poor-

Average

Table 1: Individual Method Comparison

3.2.6.3 Kalman Filtering Kalman filtering [10] is an algorithmic process that involves continuous

input of data, filtering noise from the data, and the calculation of estimated variables with noise re-

moved. Because noise is constantly being filtered out of equations, systems that make calculations

using Kalman filtering tend to be more accurate than those without. An indoor localization study at

the University of Freiburg [10] used this method in conjunction with an inertial measurement unit

(IMU) in order to continuously correct and calculate orientation data.

A diagram of the Kalman filter setup used is shown in Figure 9. Similarly to other individual meth-

21



Figure 9: Kalman Filtering - Orientation Determination [10]

ods, orientation is determined with the smartphone’s accelerometer, gyroscope, and magnetometer

working together. With Kalman filtering, the noise produced by these devices is mitigated using a se-

quence of filters shown in the diagram, withΩ representing the raw gyroscope data, δΩ representing

the bias error subtracted from Ω, Ω̂ representing the corrected gyroscope data, Θ representing the

calculated orientation based on Ω̂, δΘ representing bias error subtracted from Θ, and Θ̂ representing

corrected orientation calculation. The orientation is represented by the three Euler angles: Roll, Pitch,

and Yaw (see Figure 10). The magnetometer is used to compare the calculated Euler Angles to a set of

reference Euler Angles (based on magnetic North) and correct them accordingly. However, magnetic

disturbance can affect the magnetometer, so a mechanism for detecting magnetic field disturbances

is included in the filtering process.

Figure 10: Euler Angles: Roll, Pitch, and Yaw [10]

Although the indoor localization setup at the University of Freiburg was used to calculate and cor-

rect orientation data, Kalman filtering can, theoretically, be used to calculate and correct any type of

data needed. Because of its flexibility and effectiveness, it has become common method for combin-

ing data from multiple inputs sources for use in several hybrid indoor localization setups, as some of

them will be discussed in the next session. The process of calculating and combining data based on

input from multiple sensors using calculation and noise filtering is referred to as sensor fusion [14].
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Kalman filtering is computationally intensive, however, so it is not wise to simply add a kalman filter

to an indoor localization system without consideration of how system resources are budgeted.

3.3 Hybrid Methods

This section will survey several combined methods and/or algorithms for determining the loca-

tion, direction of motion, and orientation of an object located within a building. Each method will be

presented with an example of a indoor localization system that uses several of the previously men-

tioned individual methods in combination.

3.3.1 LearnLoc framework

The LearnLoc framework is a hybrid indoor localization system developed by a joint effort from

Colorado State University and the Colorado School of Mines. The framework combines dead-reckoning

and WiFi fingerprinting with several machine learning techniques for enhancement. With machine

learning algorithms added to the system, LearnLoc can make use of effective mathematical and sta-

tistical calculations to help the system make better predictions of user location. The four core com-

ponents of the LearnLoc framework are Step Detection, Inertial Navigation, WiFi fingerprinting, and

machine learning enhancements [11].

3.3.1.1 Step Detection The LeanLoc framework, acceleration on the z-axis is used to detect a step.

A low-pass filter is used to filter out only the major z-axis accelerations, in order to eliminate unwanted

step detections in a manner similar to what FootPath [8] achieves [11].

3.3.1.2 Inertial Navigation Using inertial navigation (i.e. dead reckoning) is fundamental to the

LearnLoc framework. It is used to determine the user’s heading based on previous heading angle

(in relation to magnetic north) and step detection. The heading angle is obtained by combining ac-

celerometer, gyroscope, and magnetometer readings using Kalman filtering. Figure 11 shows how a

new position is calculated [11]:

The equations for calculating the next user location, Lt+1(xt+1, yt+1), are:

xt+1 = xt +d ∗ cos(Θ)

yt+1 = yt +d ∗ si n(Θ)

3.3.1.3 WiFi Fingerprinting In order to utilize WiFi fingerprinting, LearnLoc uses IEEE 802.11 wire-

less signal strength standard and stores data including the Media Access Control (MAC) address of sev-

eral WiFi access points (AP), the Received Signal Strength (RSSI), and the calculated location points
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Figure 11: LearnLoc framework: Calculation of change in position [11]

in a tuple. A manual collection of fingerprint data with the mobile device is a required prerequisite

step for this part of the system. The collected fingerprint data is inserted into a SQLite database that

is later used for the machine learning algorithms (fingerprint data gathered regularly every three to

four meters along the path proved most effective). To reduce noise and achieve better accuracy in

fingerprinting, MAC addressed other those at at least j unique locations are filtered out.

3.3.1.4 Machine Learning The LearnLoc framework makes use of several common machine learn-

ing and data analysis techniques in order to improve prediction of indoor location based on previously

gathered data. LearnLoc uses three learning algorithms to aid the previously mentioned indoor local-

ization techniques: K-nearest neighbor (KNN), linear regression (LR), and non-linear reggression with

neural networks (NL-NN).

K-nearest neighbor [1] among the simplest of the data analysis algorithms used for either classifi-

cation and regression. It is non-parametric, which assumes that similar inputs have similar outputs,

and is referred to as lazy learning algorithm, which is an algorithm that only generalizes its data once

a query is received (the opposite is an eager learning algorithm which attempts to make generaliza-

tions before a query is sent). LearnLoc uses the KNN classification algorithm, in which new samples

are classified based on the k closest samples in the training set (i.e. the data pulled from the SQLite

database). In order to determine the closest sample, LearnLoc uses Euclidean Distance D to calculate

the distance between two points a and b as shown below:

D(a,b) =
√

n∑
i=1

(bi −ai )2

Repeated calculations are memory and CPU intensive, which is a problem for a system designed to

be used on a spec-restrained device such as a smartphone. By using Euclidean distance to find the

set of closest neighbors, thereby constraining the search-able nearest neighbor space to a subset of

the closest nearest neighbors, the LearnLoc framework makes efficient use of memory and energy.
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By restraining possible nearest neighbors to a small, manageable subset and using only the MAC ad-

dresses present at j unique locations using the WiFi fingerprinting approach previously mentioned,

this algorithm is able to perform intensive calculations while not consuming too much memory or

battery usage [11].

Linear regression algorithms are designed to record relationships between input and output vari-

ables. In the LearnLoc framework, these relationships are recorded in the initial training phase to

be used for predictions in the testing phase. Linear regression outputs can either be linearly or non-

linearly related to their inputs. LearnLoc works under the assumption that the inputs and outputs are

in a linear relationship, which produced reasonable accuracy during its initial testing. In order to cre-

ate a linear regression model, the input data has to be “fitted” using one of several regression analysis

estimation functions (including linear, non-linear, ordinary, weighted, generalized, partial, etc.). The

preferred regression analysis estimation method used for LearnLoc was Least Squares, an approach

which fits a curve to a set of points by minimizing the sum of the squares of the offsets of each point

from the curve. The formulas for the Least Squares approach are shown below:

y(x; w) = w0 +
N∑

i=1
wi xi

wbest = ar g mi n
N∑

n=1
(tn − y(xn ; w))2

The equation y(x; w) is a weighted sum that calculates the output values y as a function of the inputs

x and the weights w . The wbest formula is used in conjunction with the equation y(x; w) in order

to minimize error between the target values ti and the output values y(xn ; w) (ar g mi n returns the

minimum value from the set of calculated weights).

Because linear regression is a computationally intensive process, these calculations are performed

on a remote server during the training phase rather than the smartphone. The smartphone is used,

however, to perform indoor location calculations in real time during the testing phase.

Neural Networks are models based on how the brain and the nervous system receive, learn, and

process information. The artificial “neurons” of a neural network are called perceptrons, and each one

has several inputs that are individually weighted [11]. The equation below shows how the weighted

sum of all inputs x is calculated based on the weight of each perceptron, wi , which can increase or

decrease proportionally based on the value of the input xi :

y =
n∑

i=1
wi xi +w0

By using a non-linear neural network, LearnLoc is able to greatly improve location prediction ac-

curacy [11]. LearnLoc uses a feedforward backpropagation approach in the training phase to deter-

mine the set of weight parameters. Once the neural network model is created, it is possible to calculate
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the output y
′
i based on the current value of xi and wi by using a sigmoidal tangent function as shown

below.

y
′
i =

1

1+ewi xi

The graphs in Figures 12 and 13 show the average distance error and energy usage, respectively, for

each each of the previously discussed machine learning algorithms.

Figure 12: LearnLoc machine learning algorithms - Distance Error (m) [11]

Figure 13: LearnLoc machine learning algorithms - Energy Usage (KJ) [11]

Discussion: By using dead reckoning and WiFi fingerprinting in conjuction with several machine

learning techniques in order to provide error correction and make predictions on the user’s current

location, the LearnLoc framework proves to be an adept hybrid indoor localization system. Graph

(a) in figure 14 shows that when any of the three machine learning algorithms is used in the Learn-

Loc framework, it produces significantly less distance error than similar indoor localization systems.

However, graph (b) in figure 14 shows that energy consumption for the machine learning algorithms

is still high in comparison to it’s competitors, despite the offloading off calculations onto a remote

server.
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Figure 14: LearnLoc Results - (a) Average Error Distance (m) and (b) Energy Consumption (KJ) [11]

3.3.2 KAILOS

The KAist Indoor LOcalization System (KAILOS) [13] is a set of tools used for hybrid indoor lo-

calization system developed by the Korean Institute of Communications and Information Sciences.

KAILOS makes use of an extended Viterbi algorithm (a dynamic programming algorithm designed to

calculate the most likely path through a series of hidden states, called a Viterbi path) that makes local-

ization calculations based on previously recorded data from WiFi fingerprints, magnetic fingerprints,

and inertial sensors (gyroscope, compass, barometer).

In order to avoid time-consuming setup procedure in a manner similar to the EZ Localization

algorithm, KAILOS is a set of various methods and tools that allow for volunteer registration of in-

door maps and fingerprints of any building. These tools are available online on the KAILOS website

(http://kailos.io). Examples of the tools and functionalities available on the KAILOS website, includ-

ing building registration, indoor map construction, and fingerprint collection, are shown in Figure 15.

With the cost of volunteer fingerprint collection being close to zero, the tools provide by KAILOS are

incredibly beneficial.

The two main techniques used in KAILOS are a WiFi fingerprinting scheme called the Signal Fluc-
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Figure 15: Tools available on the KAILOS website [13]

tuation Matrix (SFM), which is designed to optimize performance even when collected fingerprint

data is sparse, and a sensor fusion that provides a framework for tracking user location [13].

Localization methods that use Received Signal Strength (RSS) calculations and fingerprinting re-

quire gathering and sampling of fingerprints in order to be effective. The purpose of the SFM is to

make predictions of location data even when the number of crowd-sourced fingerprints is low. The

SFM ignores the subtle fluctuations in the distance distance between a user’s location and an AP due

to fluctuations in the receiving of signals by the smartphone’s sensors and instead focuses on the

probability of the fluctuation between the user’s location and two RSS values. Because this kind of

fluctuation can be observed between any two APs, a reliable SFM can be obtained even if there are

only a few sparse fingerprints in the vicinity [13]. Figure 16 displays the difference between RSS and

SFM radio maps.

On the RSS histogram, many of the bins are empty because there were not enough samples col-

lected to produce an accurate calculation (only 20 samples were collected). The SFM, on the other

hand, was able to fill in the missing cells using frequency measurements of the fluctuations. Accord-

ing to the authors of the KAILOS article, “an SFM can be regarded as a universal histogram of RSS

values irrespective of locations and APs” [13]. The SFM calculates the probability of signal fluctuation

based on the RSS i of an AP at location l using a log-odd probability formula as shown below, where j

is the mean RSS of the AP l , P (i , j ) is the observed fluctuation of an RSS pair (i , j ), and P (i )P ( j ) is the

expected fluctuation of the probability of the pair (i , j ):

P (i |l ) = log (
P (i , j )

P (i )P ( j )
)
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Figure 16: Difference between RSS and SFM [13]

Using the SFM probability calculations, the Viterbi algorithm can be used to determine user loca-

tion in conjunction with the inertial sensors in a smartphone (e.g. accelerometer, gyroscope). Inertial

sensors are known to produce errors that can easily accumulate, so the extended Viterbi algorithm is

used to mitigate the distribution of errors. Figure 17 demonstrates how the Viterbi algorithm allows

for error compensation in the KAILOS system. The solid arrows represent the tracking results and the

dotted arrows represent distance and orientation data provided by the inertial sensors. At steps t0

, t1, and t2, error is filtered out from the tracking results, represented by the large gray circles, until

step t4 is reached where there is very little error present. At step t4, the tracking algorithm can use the

corrected probability distribution data as depicted by the dark circle.

Figure 17: Probability calculation and error compensation using a Viterbi Algorithm [13]

Figure 18 shows a diagram of the KAILOS positioning framework including Viterbi tracking and

the SFM. Detected inertial sensor readings (which produce transition probabilities) and WiFi signals

(which are used to generate emission probabilities). The probabilities are fed into the Viterbi algo-

rithm for error elimination and final location estimation. Discussion: KAILOS [13] and its use of

crowd-sourced fingerprints and maps bypasses the requirement of pre-installed beacons, making it

cost-effective. The Signal Fluctuation Matrix (SFM) is designed to ensure accurate location calcula-

tions even in areas with sparse fingerprints and the Viterbi is used as an effective means of inertial

error correction. When all three tools are combined, KAILOS proves to be both an accurate and cost-

effective indoor localization system.
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Figure 18: Sensor Fusion using a Viterbi Algorithm [13]

The greatest downside of KAILOS is accuracy. Crowd-sourced fingerprints will never be as ac-

curate as meticulously-place fingerprints, which makes the KAILOS better suited for large-scale or

remote buildings with plenty of crowd-sourced fingerprints available.

3.3.3 SurroundSense

SurroundSense [5] makes use of the more auxiliary smartphone sensors by using a fingerprinting

approach based on ambient sounds, lighting, colors, and motion patterns. It also uses fingerprinting

based on WiFi access points and geocentric solar magnetospheric coordinates (i.e. magnetic finger-

printing).

The SurroundSense system seeks to solve a very likely and feasible problem with both indoor and

outdoor localization systems: localization errors caused by a dividing wall. As an example, let’s say we

have an indoor localization solution with an accuracy of 5 meters. If a user is either standing next to

a dividing wall or has his/her phone placed next to the wall, the localization system may erroneously

determine that the user’s position is on the other side of the wall. As demonstrated in Figure 19, even

though the user is sitting in the Starbucks, the indoor localization system has determined that he/she

is actually located in the adjacent RadioShack.

Figure 19: Localization error caused by a dividing wall [5]

Several indoor localization systems have made attempts to overcome this issue, and several have

been successful. The Cricket indoor localization system [3], for instance, is one of the most notewor-

thy of these types of systems. Designed by Nissanka Bodhi Priyantha, a PhD student at Massachusetts
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Institute of Technology in 2005, for her dissertation, Cricket dealt with the dividing wall problem by

using a RSSI fingerprinting approach that uses both RF and ultrasound transmitters, the former used

for measuring and calculating distance between the user and the transmitter, and the latter for pro-

ducing a frequency unique to individual rooms.

Even though the design of the Cricket indoor localization system is effective and accurate, placing

specialized transmitters in every room in a building is expensive and often unfeasible. SurroundSense

seeks to overcome this problem by localizing based on properties inherent to individual rooms: ambi-

ent light and sound. The ambience (both light and sound) of a bookstore is different from a boutique,

which is different from a pub (see Figure 20).

Figure 20: Difference in ambience in a bookstore, boutique, and pub [5]

The SurroundSense indoor localization process is divided into two parts: fingerprint generation

and matching. The architecture of the SurroundSense system and the diagram of the fingerprint-

ing and matching processed is shown in Figure 21. To generate fingerprints, the smartphone gathers

ambience data, including the light, color, sounds, and WiFi signals unique to each room. It then pro-

cesses the data automatically using the SurroundSense software and transmits to a remote server. The

data is sent to the “fingerprint factory” where it is sorted by type (e.g. light, sound, color, accelerom-

eter, WiFi radio, etc.). The sorted data is then distributed to each of their respective modules. These

modules perform the respective action on their data types: color clustering for color, light extrac-

tion for light, sound filtering for sound, etc. Once sorted and processed, the data is placed into an

“ambience fingerprint” in the form < fs , fl , fc , fw , fa > corresponding to sound, light, color, WiFi, and

accelerometer respectively. This first fingerprint acts a “test fingerprint”. As a way to gather candidate

fingerprints to compare to the test fingerprint and account for instances where WiFi is unavailable, the

smartphone’s physical coordinates, LGSM , are also recorded, which includes< l at i tude, long i tude >.

LGSM is passed to geographical database, where the possible localization area is narrowed down to an

area with a radial accuracy of 150 meters. All of the fingerprints of the shortlisted stores (called “can-

didate fingerprints”) within that 150 meter radius are sent through fingerprint processing and placed

in a specialized tuple Fi =< f i
s , f i

l , f i
c , f i

w , f i
a >.

In the matching part of the localization process, the matching/filtering module selects the can-

didate fingerprint that most closely matches the test fingerprint by comparing the set of candidate

fingerprints to the test fingerprint. The matching/filtering module will eliminate some of the candi-
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date fingerprints that are not likely to match with the test fingerprint (filtering) and return subsets of

the candidate that are likely to match the test fingerprint. By using pairwise similarity (comparing

a pair of values based off of a quantitative property, or by whether or not they are identical), the set

of candidate fingerprints gradually gets smaller revealing the best possible candidates until the only

remaining candidate is declared as matching the test fingerprint and thus the user’s location.

Figure 21: SurroundSense Architecture [5]

The SurroundSense system has definite advantages. The dividing wall problem is addressed by

localizing based off the unique ambience of a particular location rather than localizing based on an

arbitrary fingerprint. Because the system requires ambient light and sound data and only uses WiFi

as a backup, localization using SurroundSense can work even in areas with weak or no WiFi signals.

Finally, because the intensive fingerprint matching calculations are performed on a remote server, the

user is able to use the system while conserving smartphone battery and processing power.

Despite its unique approach to indoor localization, SurroundSense is not without its limitations.

Because the SurroundSense system uses the smartphone’s camera and photosensors for localization,

the smartphone must be exposed at all times. Normally, a smartphone spends most of its time in a

pocket or handbag, but, with the rise of wearable smartphones, this may become less of a problem [5].

Another limitation is that the testing of the SurroundSense system did not account for a lot of normal

customer behavior. The system was tested using two groups of students (four in total) at a shopping

mall who had earlier fingerprinted every store within the mall. Effort was made to mimic normal

customer behavior, but since none of the students had the intention of buying anything, the Sur-

roundSense system failed to pickup certain important sounds such as the beep of a checkout counter.

To make up for this, the students imitated the behavior of random customers from a distance includ-

ing browsing a store shelf or walking through the aisles [5]. Even though this improved accuracy, the
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SurroundSense system could not account for the wide variety of customer behavior and would need

further improvement in order to do so.

One of the more interesting limitations that we noticed when examining the SurroundSense sys-

tem was the testbed that was used in the article describing it. The system was tested on a Nokia N95

mobile phone, which was released in 2007 in the United States to be succeeded by the Nokia N96

in 2008. Given the fact that usage of Nokia phones has dramatically plummeted since the introduc-

tion of the iPhone in 2007 [21], the mobile phone tested with this system would not be a smartphone

representative of the mass population.

3.3.4 Hybrid Method Comparison

All of the hybrid indoor localization systems attempt to solve a current issue with indoor local-

ization systems and provide a unique approach in how to solve it. Table 2 displays a summary of the

benefits and drawbacks of each of the previously discussed hybrid systems.

Hybrid Method Comparison

Hybrid
System

Benefits Drawbacks

LearnLoc
• Machine learning al-

gorithms help make
better location calcu-
lations

• High energy con-
sumption

KAILOS
• SFM makes accurate

location calcula-
tions with sparse
fingerprints

• Viterbi algorithm can
account for inertial
sensor error

• Crowd-sourced fin-
gerprints are often
unreliable

• Crowd-sourcing cre-
ates cost of accuracy

SurroundSense
• Works well without

WiFi connection
• Accounts for dividing

wall problem

• Camera and photo-
sensors need to be
constantly exposed

• System did not ac-
count for majority of
customer behavior

• System was tested on
an outdated smart-
phone

Table 2: Hybrid Method Comparison
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4 Further Discussion

This honors thesis is written in conjunction with a research project that we have been working on

in which we design a system for indoor localization using senors built into a modern smartphone. Our

design assumes that the University of Mississippi Oxford campus will be where the system is utilized.

Our indoor localization system must be able to calculate position in 3D space because nearly all of

the on-campus buildings are multi-story. The design should attempt to make use of what devices

and resources are inherently available. In other words, our design should neither require the user to

attach external devices to his/her smartphone, nor should the design require campus maintenance

to install specialized beacons unless absolutely necessary. Finally, in the case that our system uses

WiFi fingerprinting, our system should be able to function even if campus WiFi is down. There are

five main components in the testbed for our system design: the client-side mobile app, the remote

server, the real-time database, the remote client, and the web client. Each of these components and

their relations are diagrammed in figure 22.

Cell phone
(Honor 8, 
Android): 

Getting data

Server
(Java, 

Eclipse): 
Send data

Client
(Java, Eclipse):

Compute 
accelerometer 

data to distance

Database
(MySQL):
Store data

JPanel
(Java, Eclipse):
Depict user’s 

location

Wireless                (TCP)

(TCP)

Figure 22: Diagram of our Indoor Localization System

The client-side app will read necessary data from the smart-phone, including accelerometer, gy-

roscope, and geo-sensor (including latitude, longitude, altitude, heading, and accuracy) data, as well

as a time stamp. Further data collection can be added while the app development proceeds. The

app will collect the data, package it, and transmit it to the remote server via a TCP (Transfer Control

Protocol) connection every 20 milliseconds.

The server will collect the data from the buffer sent over the TCP connection and send it to the

real-time database for storage. Having the real-time database will both allow us to store previously
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recorded data and help us better manage the stream of received data. The data stored in the database

is then sent to the remote client, where the data fed into an indoor localization algorithm which out-

puts an X, Y, and Z coordinate as well as orientation. The coordinates and orientation will then be

transmitted to the web client also via a TCP connection.

The web client provides a user-friendly 3D interface that allows a user to visualize where tracked

objects are located within a structure. The client will use a graphical rendering framework designed

for the web and will receive calculated localization data from the remote client.

4.1 Experimental Setup and Testbed Implementation

For testing purposes, our experimental setup assumes that the indoor testing environment is Weir

Hall, the Computer Science and IT building on the UM campus that consists of two floors with almost

identical floor plans and plenty of corridors and rooms to test the performance of our indoor local-

ization design. The design will track user location in 3D in order to determine which floor the user is

on as well as where the user is located spatially on their current floor.

The preferred mobile operating system (OS) for the client-side mobile app is Android 8.1, tested

on an Honor 8 android smartphone. The server-side code is written in Java and uses TCP sockets to

communication with the mobile app and web client. The web client uses JPanel as a simple display

as of now, but will eventually use a 3D rendering framework such as WebGL to provide a user-friendly

interface for our localization system.

Our current localization design uses a very basic form of pedestrian dead reckoning as shown in

the formula: ∫
ad t = v

with a representing the acceleration and d t being integration with respect to the current time-stamp

t . By integrating a, a simple method of tracking the user’s velocity can be achieved. This can be further

expanded upon in future development by using a double integral to get velocity v and displacement

x: ∫ ∫
ad td t =

∫
vd t = x

Although effective, this method in isolation would not make for a satisfactory indoor localization

system due to drawbacks like sensor error and irregular user movement patterns, so other methods

are needed to supplement our dead reckoning approach. The next section explores which previously-

discussed indoor localization methods can be used in conjunction with our system in order to im-

prove accuracy.
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4.2 Potential Localization Methods for Our Localization Design

For the purposes of the experimental setup we have created, we now compare and contrast the

methods previously discussed in this paper in order to determine which will be most effective to be

integrated into our indoor localization design.

WiFi fingerprinting could potentially work as a correction method for our dead reckoning-based

approach due to the fact that every building on campus, including Weir Hall, has access to WiFi with

several routers in each building. The downside of using WiFi fingerprinting is that it becomes useless

when the WiFi is down. Magnetic fingerprinting that localizes based on in-built sources of magnetism

like wiring, metals, and electronic devices would work as a substitute barring any campus-wide power

outages.

Trilateration would be a viable secondary methods for our design as long as some of the more

intensive calculation can be done on a remote server instead of the smartphone. With the servers in

Weir Hall, any mathematically complex setup processes could be performed on them which will save

both battery and memory on the smartphone.

Proximity estimation would be the simplest secondary method if the application can be built to

detect if the smartphone is within the proximity of a permanent, pre-installed beacon such a WiFi

router. The downside to proximity estimation is accuracy since it forgoes complex calculations and

instead uses simple proximity estimation.

Visual localization would probably be the least effective secondary method because the phone

camera would always have to be exposed in order for it to work, and many students on campus

carry their smartphones either in their purse, backpack, or pocket. The only possible niche that we

could foresee visual localization being viable is for an augmented reality application in which students

would points their phone cameras at objects.

Tables 3, 4, and 5 provide an analysis of how well each individual method would work in our cur-

rent indoor localization design as well as possible hybrid setups, both dual and triple combinations.

Each method or method combination is listed with its overall viability in our testbed (Bad, Medium,

Good) and a brief explanation of why it would function well in our indoor localization design.

5 Conclusion and Future Work

Human civilization has greatly benefited from every advancement in localization. Indoor localiza-

tion is a promising area of research that has the potential to benefit human society greatly. With the

ability to determine and track the location of people and objects when GPS signals are unavailable —

within a structure, underground or underwater, under dense forest canopy, etc. — the technological
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Individual Method Consideration

Method Viability Reason

Magnetic Fingerprinting Medium Plenty of magnetic sources in Weir
Hall; highly prone to error

RSSI Fingerprinting Good Weir Hall has plenty of WiFi APs to
utilize as fingerprints

RSSI Distance Estimation Good Similar to RSSI Fingerprinting;
slightly resource intensive

Time of Arrival Ranging Medium Resource intensive; requires pre-
cise timing calculations

Time Difference of Arrival Medium Requires precise timing of multi-
ple beacons

Proximity Estimation Good Simple approach; Weir Hall APs
could be used as beacons

Visual Recognition Bad Visual cue setup required; smart-
phone camera must be exposed

Scene Analysis Bad Computationally intensive; copi-
ous amounts of machine learning
needed; smartphone camera must
be exposed

Table 3: Individual Method Consideration

Hybrid Method Consideration (Dual Combination)

Method Viability Reason

Dead Reckoning and Fin-
gerprinting (RSSI)

Good Dead reckoning used for inertial
measurements, fingerprinting for
relative positioning

Dead Reckoning and Fin-
gerprinting (Magnetic)

Medium Similar to above approach, but
higher possibility of sensor error

Dead Reckoning and Trilat-
eration (RSSI Distance Esti-
mation)

Good Extension of combined DR and
RSSI Fingerprinting

Dead Reckoning and Trilat-
eration (ToA or TDoA)

Medium Similar to above approach, but
precise timing calculations are
needed

Dead Reckoning and Prox-
imity Estimation

Good Inertial measurement combined
with relative position; less accu-
rate than with fingerprinting, but
precise

Table 4: Hybrid Method Consideration (Dual Combination)

benefits are boundless. With indoor localization, autonomous vehicles have better pathing. Navi-

gation and/or exploration through museums, amusement parks, hospitals, schools, and workplaces

becomes greatly improved. Emergency response is streamlined and ever more effective. Vending,
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Hybrid Method Consideration (Triple Combination)

Method Viability Reason

Dead Reckoning, Finger-
printing, and Proximity Es-
timation

Good Inertial measurements combined
with 2 types of relative fingerprint
localization

Dead Reckoning, Finger-
printing, and Trilateration
(RSSI Distance Estimation)

Medium Similar to above approach; incred-
ibly computationally intensive

Dead Reckoning, Finger-
printing, and Trilateration
(ToA or TDoA)

Medium Similar to above approach; re-
quires precise timing calculations;
resource intensive

Dead Reckoning, Finger-
printing, and Filtering
(MM, PF, or KF)

Good Inertial measurements corrected
with Kalman filtering; fingerprint-
ing corrected with map matching
or particle filtering

Table 5: Hybrid Method Consideration (Triple Combination)

advertising and marketing companies can utilize indoor localization technology to greatly improve

customer experience. The possible benefits of indoor localization are limitless. When combined with

the convenience, ubiquity, and ease-of-use of the smartphone, the power of indoor localization can

aid the broadest audience possible.

There have been several advancements in the realm of research on smartphone-based indoor lo-

calization. Many of the systems discussed in this thesis offer a unique solution to the problem of

determining indoor location using a smartphone either by combining existing methods or innovating

on new methods. Although all of them offer a unique solution, none of them are flawless, and there

are downsides to each, which makes smartphone-based localization an active area of research calling

for further innovations, advancements, and improvements to be made in the near future.

Our indoor localization system will see improvements upon future developments including an en-

hanced localization algorithm, modifications to the client-side mobile app to allow for more reading

of sensor data, and refinements on other system components including the database, remote server,

and remote client. These improvements will allow for an incredibly refined and effective smartphone-

only indoor localization system that could prove to be useful for the University of Mississippi, as well

as other campuses, for campus navigation, special activities, and in case of an emergency situation.

38



BIBLIOGRAPHY

39



Bibliography

[1] N. S. Altman. “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression”. In:
46.3 (1992), pp. 175–185. DOI: 10.1080/00031305.1992.10475879.

[2] Venkata N. Padmanabhan Paramvir Bahl. “RADAR: An In-Building RF-based User Location and
Tracking System”. In: (2000), pp. 1–10. DOI: 10.1109/INFCOM.2000.832252.

[3] Nissanka Bodhi Priyantha. “The Cricket Indoor Location System”. PhD thesis. 2005.

[4] Stéphane Beauregard and Harald Haas. “Pedestrian dead reckoning: A basis for personal posi-
tioning”. In: (Jan. 2006).

[5] Romit Roy Choudhury Martin Azizyan Ionut Constandache. “SurroundSense: Mobile Phone
Localization via Ambience Fingerprinting”. In: (2009), pp. 261–272. DOI: 10.1145/1614320.
1614350.

[6] Alessandro Benini. “Localization and Navigation of Autonomous Systems in Complex Scenar-
ios”. PhD thesis. Oct. 2010. DOI: 10.13140/RG.2.2.17142.40007.

[7] Venkata N. Padmanabhan Krishna Chintalapudi Anand Padmanabha Iyer. “Indoor Localization
Without the Pain”. In: (2010), pp. 173–184. DOI: 10.1145/1859995.1860016.

[8] Jo´ Agila Bitsch Link, Paul Smith, Nicolai Viol, and Klaus Wehrle. “FootPath: Accurate Map-
based Indoor Navigation Using Smartphones”. In: (2011), pp. 1–8. DOI: 10.1109/IPIN.2011.
6071934.

[9] Jouni Rantakokko, Joakim Rydell, Peter Strömbäck, Peter Händel, Jonas Callmer, David Törn-
qvist, Fredrik Gustafsson, Magnus Jobs, Mathias Grudén. “Accurate and Reliable Soldier and
First Responder Indoor Positioning: Multisensor Systems and Cooperative Localization”. In:
(2011), pp. 10–18. DOI: 10.1109/MWC.2011.5751291.

[10] Rui Zhang, Amir Bannoura, Fabian Hoflinger. “Indoor Localization using a Smart Phone”. In:
(2013), pp. 1–5. DOI: 10.1109/SAS.2013.6493553.

[11] Sudeep Pasricha, Viney Ugave, Charles W. Anderson, Qi Han. “LearnLoc: A Framework for Smart
Indoor Localization with Embedded Mobile Devices”. In: (2015), pp. 37–44. DOI: 10.1109/
CODESISSS.2015.7331366.

[12] Zhu Nan, Zhao Hongbo, Feng Wenquan, Wang Zulin. “A Novel Particle Filter Approach for In-
door Positioning by Fusing WiFi and Inertial Sensors”. In: (2015), pp. 1–9. DOI: 10.1016/j.
cja.2015.09.009.

[13] Dongsoo Han, Suk-hoon Jung, Sangjae Lee. “A Sensor Fusion Method for Wi-Fi-based Indoor
Positioning”. In: (2016), pp. 1–4. DOI: 10.1016/j.icte.2016.04.002.

[14] Christopher Langlois, Saideep Tiku, Sudeep Pasricha. “Indoor Localization with Smartphones”.
In: (2017), pp. 70–79. DOI: 10.1109/MCE.2017.2714719.

[15] Sal Cangeloso. Forget WiFiSlam — ByteLight uses LEDs for indoor positioning. URL: http://
www.extremetech.com/extreme/151068-forget-wifislam-bytelight-uses-leds-
for-indoor-positioning. (accessed: 03.18.2019).

[16] Ben Frederick. IndoorAtlas, Yahoo Team Geomagnetic Building Mapping In Japan. URL:https:
//www.mediapost.com/publications/article/269899/indooratlas-yahoo-team-
geomagnetic-building-mappi.html. (accessed: 02.26.2019).

[17] How Does GPS Work? URL: https://spaceplace.nasa.gov/gps/en/. (accessed: 04.23.2019).

[18] How Does GPS Work? URL: https://www.cfa.harvard.edu/space_geodesy/ATLAS/gps.
html. (accessed: 04.23.2019).

[19] How Does GPS Work? URL: http://www.physics.org/article-questions.asp?id=55.
(accessed: 04.23.2019).

[20] Bruce Krulwich. Hewlett Packard Enterprise: Aruba DrivingBlue Dot Indoor Location Into The Big Leagues.
URL: https://seekingalpha.com/article/3727956-hewlett-packard-enterprise-
aruba-driving-blue-dot-indoor-location-big-leagues. (accessed: 03.17.2019).

[21] Dave Lee. Nokia: The Rise and Fall of a Mobile Giant. URL: https://www.bbc.com/news/
technology-23947212. (accessed: 03.16.2019).

40

https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1109/INFCOM.2000.832252
https://doi.org/10.1145/1614320.1614350
https://doi.org/10.1145/1614320.1614350
https://doi.org/10.13140/RG.2.2.17142.40007
https://doi.org/10.1145/1859995.1860016
https://doi.org/10.1109/IPIN.2011.6071934
https://doi.org/10.1109/IPIN.2011.6071934
https://doi.org/10.1109/MWC.2011.5751291
https://doi.org/10.1109/SAS.2013.6493553
https://doi.org/10.1109/CODESISSS.2015.7331366
https://doi.org/10.1109/CODESISSS.2015.7331366
https://doi.org/10.1016/j.cja.2015.09.009
https://doi.org/10.1016/j.cja.2015.09.009
https://doi.org/10.1016/j.icte.2016.04.002
https://doi.org/10.1109/MCE.2017.2714719
http://www.extremetech.com/extreme/151068-forget-wifislam-bytelight-uses-leds-for-indoor-positioning
http://www.extremetech.com/extreme/151068-forget-wifislam-bytelight-uses-leds-for-indoor-positioning
http://www.extremetech.com/extreme/151068-forget-wifislam-bytelight-uses-leds-for-indoor-positioning
https://www.mediapost.com/publications/article/269899/indooratlas-yahoo-team-geomagnetic-building-mappi.html
https://www.mediapost.com/publications/article/269899/indooratlas-yahoo-team-geomagnetic-building-mappi.html
https://www.mediapost.com/publications/article/269899/indooratlas-yahoo-team-geomagnetic-building-mappi.html
https://spaceplace.nasa.gov/gps/en/
https://www.cfa.harvard.edu/space_geodesy/ATLAS/gps.html
https://www.cfa.harvard.edu/space_geodesy/ATLAS/gps.html
http://www.physics.org/article-questions.asp?id=55
https://seekingalpha.com/article/3727956-hewlett-packard-enterprise-aruba-driving-blue-dot-indoor-location-big-leagues
https://seekingalpha.com/article/3727956-hewlett-packard-enterprise-aruba-driving-blue-dot-indoor-location-big-leagues
https://www.bbc.com/news/technology-23947212
https://www.bbc.com/news/technology-23947212


[22] Multipath Progagation. Multipath Propagation. URL: https://www.electronics- notes.
com/articles/antennas-propagation/propagation-overview/multipath-propagation.
php. (accessed: 03.07.2019).

41

https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/multipath-propagation.php
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/multipath-propagation.php
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/multipath-propagation.php

	
	List of Figures
	List of Tables
	Introduction
	Background
	The Need for Localization
	Outdoor Localization
	Indoor Localization
	Smartphone-only Indoor Localization
	Benefits
	Smartphone Sensor Suite
	Accelerometer, Gyroscope, and Magnetometer
	WiFi
	Bluetooth
	Cellular Radio
	GPS
	Camera
	Microphone
	Proximity Sensors
	Ambient Light Sensors
	Temperature Sensors


	Smartphone-only Indoor Localization
	Challenges
	Cost
	Setup
	Sensor Error
	Power
	Memory and Processing
	3D Localization

	Individual Methods
	Dead Reckoning
	Fingerprinting
	Trilateration
	Proximity Estimation
	Visual Localization
	Comparison and Supplementary Techniques

	Hybrid Methods
	LearnLoc framework
	KAILOS
	SurroundSense
	Hybrid Method Comparison


	Further Discussion
	Experimental Setup and Testbed Implementation
	Potential Localization Methods for Our Localization Design

	Conclusion and Future Work
	Bibliography

