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Abstract. We introduce Kamouflage: a new architecture for building
theft-resistant password managers. An attacker who steals a laptop or
cell phone with a Kamouflage-based password manager is forced to carry
out a considerable amount of online work before obtaining any user cre-
dentials. We implemented our proposal as a replacement for the built-in
Firefox password manager, and provide performance measurements and
the results from experiments with large real-world password sets to eval-
uate the feasibility and effectiveness of our approach. Kamouflage is well
suited to become a standard architecture for password managers on mo-
bile devices.

1 Introduction

All modern web browsers ship with a built-in password manager to help users
manage the multitude of passwords needed for logging into online accounts. Most
existing password managers store passwords encrypted using a master password.
Firefox users, for example, can provide an optional master password to encrypt
the password database. iPhone users can configure a PIN to unlock the iPhone
before web passwords are available.

By stealing the user mobile device the attacker is able to obtain the password
database encrypted under the master password. He or she can then run an offline
dictionary attack using standard tools [17,14] to recover the master password
and then decrypt the password database. We examined a long list of available
password managers, both for laptops and smartphones, and found that all of
them are vulnerable to offline attack. To address this threat, several potential
defenses quickly come to mind:

The first one is to use salts and slow hash functions to slow down a dictionary
attack on the master password. Unfortunately, these methods do not prevent
dictionary attacks [5]; they merely slow them down. Moreover on mobile devices,
we found that password managers tend to offer the use of a numerical PIN code
to protect the database. While PIN codes are more easy to use on a smartphone,
they also offer a smaller key space which makes the aforementioned attacks easier.

Another potential defense is to use a password generator [18] rather than
a password manager. A password generator generates site-specific passwords
from a master password. Users, however, want the ability to choose memorizable



passwords so that they can easily move from one machine to another; this can
be quite difficult with the strings typically created by a password generator. As
a result, if a password generator is not ubiquitous, and currently none are, then
the majority of users will never use one.

Finally, another defense is to store passwords in the cloud [21,7] and use a
master password to authenticate to the cloud. This solution only shifts the prob-
lem to the cloud; any employee at the cloud service can run an offline dictionary
attack to expose account passwords for multiple users. Other potential defenses
and their drawbacks are discussed in Section 6.

Our contribution. We propose a new architecture for building theft-resistant
password managers called Kamouflage. Our goal is to force the attacker to mount
an online attack before he can learn any user passwords. Since online attacks
are easier to block (e.g. by detecting multiple failed login attempts on the user’s
account) we make it harder for an attacker to exploit a stolen password manager.
Major websites already implement internal security mechanisms that throttle
after several failures and therefore forcing an attacker to perform online work is
an effective defense.

Kamouflage works as follows. While standard password managers store a
single set S of user passwords, Kamouflage stores the set S0 = S along with
N − 1 decoy sets S1, . . . , SN−1. A typical value for N is N = 10, 000, but larger
or smaller values are acceptable. Based on our personal experience M = |S|, the
size of the real stored password set, is on the order of 100 (a pessimistic estimate:
in reality users on average have fewer than ten passwords [6]). The key challenge
for Kamouflage is to generate decoy sets that are statistically indistinguishable
from the real set. This is difficult because as shown by our user survey, users tend
to pick memorizable passwords that are closely related. If Kamouflage simply
picked random decoy sets, an attacker would be able to easily distinguish the
real password set from the decoys.

With Kamouflage, an attacker who steals the device will be forced to per-
form, on average, N/2 online login attempts (or N/2M at each of the M web-
sites) before recovering the user’s credential. Web sites can detect these failed
login attempts and react accordingly. With web site participation, Kamouflage
can be further strengthened by having the user’s device registering a few decoy
passwords (say 10) at web sites where the user has an account. If a web site
ever sees a login attempt with a decoy password, the site can immediately block
the user’s account and notify the user. This is similar in spirit to the warning
displayed by GMail when an account is accessed from two different countries in
a brief period of time.

Using decoy password sets is a practical approach because if we assume that
each user has about 100 passwords and each password takes about 10 bytes,
then the decoy sets will take about 10MB of storage, which is roughly the size of
three MP3 files, which a negligible storage requirement for modern laptops and
smartphones.

Here are the main difficulties we had to overcome to make Kamouflage work:



– Human-memorable passwords: Since decoys must look like human mem-
orizable passwords, we need a model for generating such passwords. To build
such a model we performed a study of human passwords, as discussed in Sec-
tion 2. We also took advantage of previous work on this topic [24,13,23,22].
While most previous work studied this problem for the purpose of speeding
up dictionary attacks, here we give the first “positive” application for these
password models, namely hiding a real password in a set of decoys.

– Related passwords: Since humans tend to pick related passwords, Kam-
ouflage must pick decoy sets that are both chosen according to a password
model and related to each other as real users tend to do. We develop a model
for password sets that mimics human behavior.

– Relation to master password: In some cases it makes sense to encrypt the
password database using a master password. Unfortunately, our experiments
found that users tend to pick master passwords that are themselves related
to the passwords being protected. Hence, we had to develop an encryption
scheme that cannot be used to rule out decoy sets. We present our approach
in Section 5.1.

– Site restrictions: Finally, different sites have different password require-
ments. When generating decoy sets we have to make sure that all passwords
in the decoy set are consistent with the corresponding site policy.

We built a Kamouflage prototype as a drop-in replacement for the Firefox
password manager. We give performance numbers in Section 4.2 where we show
that Kamouflage has little impact on user experience. Our design is comple-
mentary to mechanisms that aim at preventing password theft in-transit, such
as key-logging malware. Ideally both off-line and on-line protections should be
deployed in order to ensure password safety.

2 How users choose passwords

In this section we present the results of our experiments on user password behav-
ior that we use to support our assumptions that users are uncomfortable with
random independent passwords, and as a result tend to select predictable and
related passwords across multiple sites. In order to test this and related hypothe-
ses, we conducted two experiments: qualitative user interviews and quantitative
analysis of large, real-world password databases (one of them containing over 30
million entries). The results complement existing work in the area, such as [6].

Empirical motivation from user interviews. Our first experiment was a survey
conducted with undergraduate and post-doctoral students on our campus. The
goal of the survey was not to learn people’s passwords, but to elicit their approach
to dealing with passwords. The interviews were performed via an in-person ques-
tionnaire, and completed by 87 individuals: 30 CS undergraduate students, and
57 post-doctoral researchers from various fields including biology, chemistry and
psychology. 33% of the respondents were female, and over 61% were between 26



Table 1. General properties of password databases. phpbb data is skewed towards
shorter lengths (selection bias) because we had to crack it before analyzing it. We
confirm the observations about password shape made in [24].

Name Entries Size: 1-4 Size: 5-8 Size: 9-12 Size: 12+

RockYou 32.6M 0.2% 69.3% 27.0% 3.5%
phpbb 343K 4.2% 82.3% 13.4% 0.1%

and 35 years old. It can be said that our subjects represented the worst case
scenario for an attacker in the sense that they were highly educated (more than
60% having a PhD) and sophisticated in their use of the Internet.

In the survey we asked direct questions about users’ password habits. We
briefly summarize the results due to space constraints: 81% of our subjects ad-
mitted to reusing the same password on many websites, thereby supporting our
hypothesis on password reuse. This hypothesis is also supported by the number
of passwords used by our subjects: 65% of the sample reported using at most 5
passwords, and 31% reported using between 6 and 10 passwords. In a separate
question, 68% of the sample admitted selecting related but not necessarily iden-
tical passwords across sites. We also found that 83% of our subjects reported
that they did not password-protect their smartphone, despite the presence of
private data on the phone.

Password database analysis. In our second experiment we analyzed two real-
world password databases that were recently leaked to the public. One was from
the RockYou service: it contained 32 million entries [20], and we had access
to all the entries in plaintext. As a consequence, the results from its analysis
can be considered a highly reliable predictor of user behavior. The other pass-
word database was from the developer web site phpbb.com. We include it here for
comparison purposes, because phpbb.com does not enforce any password require-
ments, so users were free to use whatever they want. The phpbb.com database
contained 343 000 passwords. In this database, passwords were not listed in the
clear, but as hashes created by one of two schemes: a simple MD5 and 2048-fold
MD5 with salt. Using a cluster of computers over several months, we where able
to recover 241 584 passwords, or 71% of the full database. Since we did not have
direct access to the passwords as plaintext, our recovery process induces a se-
lection bias towards easier passwords, hence the phpbb.com numbers should be
used only as a secondary reference point.

Table 1 shows some basic properties of the analyzed databases. In our work,
the primary concern was the structure of passwords: understanding this structure
is the key to being able to generate high-quality plausible decoys. Accordingly
we tested the hypothesis that people use known words in their passwords by
comparing the databases to the dictionaries created by openwall to work in
conjunction with the famous cracker “John the ripper” [17]. When combined
these dictionaries contain around 4 millions words (note that not all of these



Table 2. The effectiveness of simple word-based rules in parsing passwords. Percent
matched increases with each rule. The high coverage makes it possible to use this
approach for password set analysis (Section 4).

Rule Name Format RockYou RockYou % phpbb.com phpbb.com %

Strict W 6.6M 20.2% 80.0K 33.2%
Post Wd+ 6.9M 41.4% 37.7K 48.8%
Concat WW 6.1M 60.1% 50.0K 69.6%
Digit d+ 5.2M 76.1% 32.4K 83.0%
Concat-Post WWd+ 2.4M 83.4% 9.3K 86.9%

Table 3. Examples of passwords that did not match our rules. A large portion of the
remaining passwords can be classified based on additional rules like “hax0r” letter-digit
substitution and “iluv***” three word and letter concatenation.

Password Reason for not matching

lordburnz Letter substituted (’s’ → ’z’)
php4u Word-digit, word-letter, three tokens

ilove$$$ Non-alphanumeric, three tokens

are words from natural languages, but can rather be viewed broadly as “known
password tokens”).

Our analysis tool tried to match each password in the databases to one or two
dictionary words according to several rules: direct match; direct match with a
numerical suffix; match two words concatenated; etc. Just by using five rules we
were able to match more than 80% of the passwords in both databases (Table 2).
This result implies that for most users we can automatically produce the rules
that were used in coming up with the passwords. Our password manager can
then use the derived rules to generate new, plausible password sets that meet the
same constraints. The remaining users appear to use more advanced password
generation rules (Table 3), which can be emulated by building a simple N-gram
model based on the extensive available data.

3 Threat model

The basic threat model. We consider an attacker who obtains a device, such as
a laptop or smartphone, that contains user data stored in a password manager.
The password manager stores user passwords for online sites (banking, shopping,
corporate VPN) and possibly personal data such as social security and credit
card numbers. The attacker’s goal is to extract the user’s data from the password
manager.

We assume that the password manager encrypts the data using a master
password. On Windows, for example, password managers often call the Windows
DPAPI function CryptProtectData to encrypt data using a key derived from
the user’s login credentials. In this case we treat the user’s login password as the



master password. Other passwords managers, such as the one in Firefox, let the
user specify a master password separate from the login password.

An attacker can defeat existing password managers by an offline dictionary
attack on the master password. Hence, simply encrypting with a master password
cannot result in a secure password manager (unless the master password is quite
strong). We capture this intuition in our threat model by saying that the attacker
has “infinite” computing power and can therefore break the encryption used
by the password manager. This is just a convenience to capture the fact that
encryption based on a human password is weak.

In our basic threat model we assume that the attacker has no side information
about the user being attacked such as the user’s hobbies, age, etc. The only
information known to the attacker are the bits that the password manager stores.
We relax this assumption in the extended threat model discussed below. We
measure security of a password manager by the expected number of online login
attempts the attacker must try before he obtains some or all of the data stored
in the password manager. The attacker is allowed to attempts to log on different
and unrelated sites. We count the expected total number attempts across all
sites before some sensitive data is exposed. To deal with web sites that have
no online attack protections, Kamouflage will compartmentalize passwords into
groups to ensure that the most sensitive passwords are protected in all cases,
even if the less important ones are cracked successfully.

Extended model: taking computing time into account. In the basic model we
ignored the attacker’s computing time needed to break the encryption of the
password manager. In the extended model we measure security more accurately.
That is, security is represented as a pair of numbers: (1) expected offline com-
puting time; and (2) expected number of online login attempts until information
stored in the password manager is exposed. This allow us to more accurately
compare schemes. For this extended model we are using encryption to slow down
the attacker. The key challenge here is to design an encryption scheme that does
provide information to the attacker that he can use to reduce the amount of his
online work. Using encryption allows us to relax our basic-model assumptions.
We permit the attacker to have side information beyond the device data, such
as the user’s age, gender, hobbies, etc. As we will see, we can offer some security
even if the attacker has intimate knowledge of the victim.

Non-threats. In this paper we primarily focus on extracting data from long-
term storage. We do not discuss attacks against the device or its operator while
in active use (such as shoulder snooping and key loggers), and similarly omit
hardware-based side-channel attacks, which can come in many guises, based,
e.g., on electromagnetic emanations (“van Eck phreaking”) and capacitive data
retention (“cold-boot attacks”), to name but a few possibilities. Similarly, we
do not address social engineering attacks such as phishing. While phishing is an
effective way to steal user passwords, addressing it is orthogonal to our goal of
providing security in case of device theft or loss.



4 Architecture

At any point in time, the password management software maintains a large
collection of plausible password sets; exactly one of these sets is the real one, and
the rest are decoys. Figure 1 illustrates the storage format. Apart from passwords,
all other site information is kept in the clear. That is, an attacker looking at the
database knows which sites the user has passwords for: she just has no idea what
the passwords are. When the real user launches his web browser, he is prompted
for the master password (MP) which is then cryptographically transformed to
obtain the index of the real password set in the collection. During a dictionary
attack, any attempt to guess the master password results in a different (plausible
and valid, but incorrect) set of passwords.

Database operations. The following are the core operations that a password
database needs to support, along with a description of our implementation for
them. Note that in Kamouflage these operations are well-defined for any choice
of master password: that is, by guessing a master password and attempting
database operations the attacker does not obtain any new information about
the validity of his guess.

– Add a new password to the database. In our design, this amounts
to adding a new password to each password set in the collection. The real
password set gets the user-supplied value, while decoy sets get auto-generated
entries influenced by the true one.

– Remove. Remove a password from the database. This is the reverse to
adding a password. Only requires removing the web site’s entry from each
password set. No regeneration is needed.

– Update. Update a password entry, presumably when a password is changed.
While the size of the password set collection will not change, the correspond-
ing entry in each decoy password set must also be regenerated. On the one
hand, this step ensures that the reuse patterns in the decoy sets continue
to match those in the real password set (subject to random mutations, of
course). On the other hand, we are also preventing an attacker from look-
ing at the database image before and after an update, and finding the real
password set based on the fact that it is the only one that has changed.
Journaling file systems make this second attack vector very plausible.

– Find. Find the right password given some web page characteristics like URL
and form field names. Given the master password, this is a straightforward
database access in the real password set, ignoring all decoys. (Of course, the
MP is needed to locate the correct set.)

4.1 Password set generation

Decoy password sets must be indistinguishable from the real password set. We
extend the context-free grammar approach from [22] to work for the case where
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Fig. 1. Kamouflage database: cleartext metadata and encrypted real and decoy pass-
word sets. Encryption is discussed in Section 5.1.

multiple passwords are being generated for the same user. In [22], passwords
candidates are generated by assigning probabilities to password templates (the
templates look like “l4d2s1”, meaning “a four-letter word, followed by two digits,
followed by a special character). The important insight there is that the likeli-
hood of a password being used is determined by the likelihood of its template,
in addition to the likelihood of its components. We point out that for the pur-
pose of decoy password set generation, varying the templates is unnecessary, and
even dangerous if done incorrectly: by performing asymmetric transformations
on the template, the password manager might leak information about the correct
password set.

In Kamouflage, decoy set generation proceeds in three steps:

1. Tokenization: The password manager converts the real user passwords into
rules of the form Pi → Ti1 ...Tii . The tokens typically stand for words or num-
bers of a certain size from a fixed dictionary3. In addition, tokens are reused
across passwords, ensuring that portions that are shared by several passwords
are correctly represented as equal by the rules. Tokenization is performed by
attempting to partition each password according to the different rules from
Section 2.

2. Validation: The system confirms that the tokenization is good: any tokens
which are not dictionary words are flagged and reviewed by the user. This is
the user’s opportunity to remove from passwords any words that are specific
to him, such as a last name or a birth date—such words can almost certainly
be used to identify the correct password set among all decoys. In a perfect
scenario, all of the users passwords will be readily tokenizable using standard
dictionary words, possibly combined with apparently random characters. (As
a consequence, decoys will be generated by using words of similar probability,
along with similarly distributed random characters.)

3. Generation: Decoy sets are generated using the derived rules. We note
that if the validation step completed without any tokens being flagged, then

3 The dictionary used can be customizable to be able to accommodate different lan-
guages, or combinations of languages. However allowing arbitrary user customiza-
tions may lead to compromising security.



Table 4. Example decoy sets generated by the three-step algorithm.

Set Description Site #1 Site #2

S0 Real jones34monkey jones34chuck
S1 Decoy #1 apple10laptop apple11quest
S2 Decoy #2 tired93braces frame93braces
S3 Decoy #3 hills28highly hills48canny

the fixed dictionary is as likely to generate the real password set as any of
the decoys. The ease with which we can argue the statistical properties of
generated decoys is the main reason we converged on this model.

A short example will clarify the password generation mechanism outlined
above: let’s assume the real set is of size two (M = 2), and we need to generate
three different decoy sets (N = 4). Suppose the real password set consists of
the passwords “jones34monkey” and “jones34chuck”. The rules that are output
by the tokenization step are: P1 → ABC,P2 → ABD,A → W5, B → D2, C →
W6, D →W5. Depending on the dictionary used, the validation step could com-
plete successfully, or maybe some of the words could be flagged as not present
in the dictionary. For example the system could alert the user that “jones” is
not a word from the dictionary, and as such does not blend in with generated
decoy sets. The validation could also scan the contents of the user’s device (e-
mails, contacts, etc.) and specifically find words that are specific to the user even
though they can be found in the dictionary—”chuck” is not likely a random 5-
letter word if the user has a close relative called “Charles”. After all issues are
resolved at validation, the system generates decoy sets that might look like to
ones in Table 4.
Optionally, the process of generating decoys can be customized by the user to
better mimic the real password distribution. The customization choices should
not be stored on disk as they can help the attacker.

4.2 Implementation

In order to prove the feasibility of our architecture, we built a proof-of-concept
extension for the Firefox web browser, called Kamouflage. The extension imple-
ments the nsILoginManagerStorage interface and acts as an alternative storage
for login credentials.

The main goal in developing the extension was to show that the overhead of
maintaining decoy password sets is acceptable, particularly from a user’s point
of view. We intentionally used no optimizations in the handling of the password
database, because we wanted to get a sense of the worst-case performance implied
by our approach. Completing the extension to a point where it can be deployed
for real-world use is straight forward.

When it is loaded, Kamouflage registers with Firefox as a login manager stor-
age provider (nsILoginManagerStorage). Each of the implemented API meth-
ods (addLogin, findLogin, etc.) calls some internal methods that deal with



Table 5. User-visible performance of the Kamouflage Firefox extension for three typical
use cases. The estimate of 20 passwords per user is realistic, while 100 passwords are
a worst-case scenario unlikely to occur in practice [6].

Collection size (number of decoy sets) 103 104 104

Password set size (number of user passwords) 100 100 20
Database size on disk 2MB 20MB 4MB

Measured performance (access and update time) < 1 sec 5 sec < 1 sec

reading and writing the password database file from and to persistent storage,
as outlined earlier (see Figure 1). If the password storage file does not exist, it
is assumed that the user’s password set is the empty set.

Performance. We measured how individual API calls are impacted by various
password set collection sizes. We show that performance in Table 5. In our
implementation the password file is read in its entirety every time a password
is accessed, and written out completely for every update. From a user’s point of
view, there is no impact when maintaining approximately 103 decoy password
sets; at 104 decoy sets the performance drop becomes clearly noticeable.

In practice, the performance of our prototype could be further improved in
a number of ways:

– Caching. Our measurements of user-visible latency often include several
invocations of the nsILoginManagerStorage interface, each of which reads
the whole file from scratch. The login manager could cache the database
contents, reading the file only once, at launch time.

– Read size. Password storage does not need to be read in its entirety. Given a
master password (input by the user), only one password set needs to be read
from disk. In the context of a Firefox extension this would require writing
a native implementation for the read function: the JavaScript file I/O API
available does not allow random access inside a file.

– Write size. Password sets do not all have to be rewritten on every addLogin

or updateLogin operation, if we can guarantee that older versions are over-
written and unavailable to an attacker.

5 Extensions

The system described in Section 4 does not encrypt the password database with
a master password. The master password is only used to identify the location of
the real password set. As we will see, encrypting the password database without
exposing the system to an offline dictionary attack is not trivial. In this section
we extend Kamouflage to address this issue and others.



5.1 Why and How to Encrypt

Side information is dangerous. An attacker armed with side information about
the victim can be successful, being able to guess the correct password set in
the collection by searching for victim-related keywords in the password storage,
hoping that those keywords appear as part of a password. Alternatively, if the
user elects to use a very weak password at a specific, unimportant web site, the
attacker may be able to recover it in an online attack, and use that information
later on to crack the master password offline. Both of these attacks are reason
enough to consider using encryption techniques similar to those used by current
systems.

Password managers often encrypt the password database with a master pass-
word, denoted MP. In our settings this is non-trivial, and if done incorrectly, can
cause more harm than good. To see why, suppose the password database is en-
crypted using an MP. Our user study from Section 2 shows that people tend to
choose master passwords that are related to the passwords being protected. An
attacker who obtains the encrypted password database can find the MP with
an offline dictionary attack and then quickly identify the real password set by
looking for a set containing passwords related to the MP.

Our approach to encryption. We use the following technique to avoid the pre-
ceding problem. Recall that each password set Si contains a set of related decoy
passwords generated as discussed in Section 4.1. We use the same approach
to generate a master password MPi for the set Si, so that MPi will likewise
be related to the passwords in Si. The master password for the real set is the
user-selected MP. Now, for each set Si do:

– generate a fresh random value IVi to be stored in the clear with the set Si,
and

– use two key derivation functions (KDF) to generate two values Ki and Li

from MPi as follows: Ki ← KDF1(MPi, IVi); Li ← KDF2(MPi)

The key Ki is used to encrypt the set Si. The index Li determines the position
of the set Si in the password database. In other words, the index of the set Si in
the database is determined by the master password for the set Si. Collisions (i.e.,
two sets that have the same index L) are handled by simply discarding any new
set that attempts to claim a busy slot, optionally regenerating it, and allowing
some small fraction of decoy slots to remain unused in order to ensure short
completion time. Once the whole database is generated, all master passwords
MPi are deleted. When the user enters the real master password MP the system
can recompute the index L to locate the encrypted set and its IV and then
recompute K to decrypt the set.

The best strategy for an attack on this system is to run through all dictionary
words (candidate MPs) and for each one to compute the corresponding index
L and candidate key K. Whenever the attacker eventually tries to decrypt a
password set using the actual MP that was used to encrypt it, he can generally



recognize this fact, causing that MP to become exposed along with the corre-
sponding password set. However, in the end, even after decrypting all the sets
in the password database with their respective correct master passwords, the
attacker must still do substantial online work to determine the good set.

Table 6 shows how the master password strength affects the offline compu-
tation effort and the number of online login attempts that an attacker needs to
perform, even if the attacker has perfect knowledge of the real master password
distribution.

Note that when the user adds or updates a password, the system cannot
add passwords to the decoy sets since it does not have the master passwords
for the decoy sets. Instead, when the real set is updated, all the decoy sets and
their master passwords are regenerated, and all sets are re-encrypted using new
random values IVi. The previous IVs must be securely purged from the database
to thwart attacks that compare the current contents from past snapshots.

Our performance numbers from Table 5 show that the running time to per-
form this whole update operation remains acceptable.

By adding encryption to Kamouflage, we have neutralized the threat of at-
tacks based on side information: depending on the MP strength, the attacker
may need to spend considerable offline effort before he is in a position to mount
the online attack.

Table 6. Comparison of attack difficulty in traditional and the new password man-
agement schemes, for different master password strengths (distribution known by the
attacker).

Master Password Strength

Traditional Weak Medium Strong

Offline (# of decryptions) 104 107 1010

Online (# of login attempts) 1 1 1

Kamouflage Weak Medium Strong

Offline (# of decryptions) 104 107 1010

Online (# of login attempts) 104 104 104

5.2 Website Policy Compatibility

Restrictive password policies can be detrimental to the security of passwords
stored using a mechanism like Kamouflage. Imagine that a web site requires that
user passwords consist only of digits, while the decoy set generator randomly uses
letters and digits when generating all passwords. In this scenario, an attacker
looking at all the password sets in the collection can zero in on the real password
set, because most likely it is the only one which contains a numeric password for
that specific web site. We surveyed the top 10 web sites listed by Alexa, along
with a small list of bank web sites, and tabulated their password requirements.



Table 7. Password strength requirements at top sites ranked by Alexa and a small
group of finance-related web sites.

Web Site Password Requirement

Google at least 8 characters
Yahoo! at least 6 characters
YouTube at least 8 characters
Facebook at least 6 characters
Windows Live at least 6 characters
MSN at least 6 characters
MySpace 6 to 10 characters, at least 1 digit or punctuation

Fidelity 6 to 12 characters, digits only
Bank of America 8 to 20 characters, ≥ 1 digit and ≥ 1 letter, no $ < > & ^ ! [ ]

Wells Fargo 8 to 10 characters, ≥ 3 of: uppercase, digit, or special characters

The results are shown in Table 7, and clearly demonstrate that this danger is
real.

It is evident that the major Internet web sites already allow arbitrary pass-
words, subject only to a minimum length requirement. Security-savvy companies
such as Google, Yahoo, and Facebook realize that forcing specific password pat-
terns on users results in a system that is more difficult to use, prone to human
error, and ultimately less secure.

Kamouflage effectively deals with this challenge by mimicking the compo-
sition of a user’s passwords, and ensuring that passwords containing specific
classes of characters (lowercase letters, uppercase letters, digits, special char-
acters) continue to contain those classes of characters in the generated decoy
sets.

It is conceivable that some web sites will implement weak security, or will
not be significant for the user and as a result their passwords will be easy to
guess. In order to prevent this weakness from helping the attacker find out the
master password, and along with it the passwords for more secure and important
to the user web sites, it is also preferable for the password manager to allow
the grouping of web sites according to their importance. This grouping can be
suggested by the user or inferred automatically, and will determine whether site
passwords are kept in the protected database, or in a separate, unprotected area.

5.3 “Honeywords”: Using Decoys as Attacker Traps

Some web sites are averse to blocking a user’s account when they see a large
number of failed login attempts. This is usually due to fear that a user’s account
will effectively suffer a denial-of-service attack. The reasoning behind this is
sound: it is much more likely an attacker is trying to block a user’s account, than
trying to guess her password. It is attacks that are exceptions to this rule that
have the greatest potential to cause damage however: an unauthorized user of an
account could transfer money, attack other related accounts, or steal personal
information to be used later for identity fraud.



We have seen that decoy password sets carry certain risks when deployed
without care. At the same time, they provide an opportunity to cooperate with
web sites in detecting and blocking targeted attacks on user accounts, alleviating
concerns over potential DoS vulnerabilities of the lock-out logic [15].

Supplying web sites with some of their corresponding decoy passwords can
provide them with an effective tool for identifying attacks that are based on
compromised password files, and encourage them to take steps to block the user
account in such scenarios. This presents little risk on the part of the web site,
because the likelihood that a casual DoS attacker hits a decoy password, without
having access to the user’s device, should be very low. In other words, knowing
that an attack is not a random DoS but a genuine impersonation attempt will
make web sites more willing to take immediate and decisive actions to stop the
attack. This idea has been previously explored in the context of network security
for identifying and rapidly blocking intrusions via honeypots [19,16,3].

5.4 Master Password Fingerprinting

The flip side of using decoy traps as a defense mechanism, is that it becomes
vital to provide the user with positive feedback on the correctness of the mas-
ter password being entered. With the honeyword mechanism, a mistake on the
master password is indeed much more likely to result into a locked-out account
than a mistake on the account’s login password itself.

A simple technique similar to Dynamic Security Skins [4] can solve this prob-
lem. When the user selects his master password, he can be presented with an
icon selected pseudo-randomly from several thousand possible ones, based on
the master password. The user remembers the icon and uses its presence as a
cue that he typed the correct master password when he logs in again later on.
It is very unlikely that the user will mistype his password and at the same time
get the same icon, believing the password he typed was correct. In particular,
error-correction codes can be employed to ensure that single-character errors
always result in different validation icons.

5.5 Kamouflage Summarized

It is instructive to take a step back and compare our extended Kamouflage
architecture to a “traditional” password manager design.

The encryption step we added ensures that our password database is at
least as hard to crack as a traditional one: an attacker that guesses the master
password can test her guess offline, however even upon successful decryption
of a password set, there will be no guarantee that the decrypted set is the
real one and not a decoy. Successfully uncovering all password sets takes time
proportional to the size of the master password space, which is just the same as
with a traditional design. In other words, using decoy sets we are requiring the
attacker to perform a significant amount of on-line work even when the whole
space of master passwords has been explored offline.



Kamouflage also provides opportunities for additional security mechanisms
to be deployed by web sites. We mentioned the use of honeywords, whereby a
subset of the decoy password sets could be provided to web sites by the password
manager, enabling them to identify and quickly respond to a targeted attack,
without providing new opportunities for DoS.

Finally, the visual fingerprinting technique ensures that users have feedback
on whether they entered the correct master password, without leaking any infor-
mation to an attacker, and thus without weakening the strength of the master
password.

6 Additional Related work

RSA key camouflage. The idea of camouflaging a cryptographic key in a list
of junk keys was previously used by Arcot systems [12] to protect RSA signing
keys used for authentication. Arcot hid an RSA private key among ten thou-
sand dummy private keys. The user’s password was a 4 digit PIN identifying
the correct private key. The public key was also kept secret. An attacker who
obtained the list of ten thousand private keys could not determine which is the
correct one. Camouflaging an RSA private key is much easier than camouflaging
a password since the distribution of an RSA private key is uniform in the space
of keys.

Remote password storage. Several password management systems store pass-
words on a remote third party server. As examples, we mention Verisign’s PIP [21],
the Ford-Kaliski system [7], and Boyen’s Hidden Credential Retrieval [2], while
noting that many other proposals exist. These systems, unlike ours, require addi-
tional network infrastructure for password management. Moreover, in some sys-
tems, like Verisign’s, there is considerable trust in the third party since it holds
all user passwords. An exception is Boyen’s HCR scheme [2], which is designed
to exploit the limited redundancy of stored passwords to prevent the third-party
storage facility from validating the master password offline. Compared to [2],
Kamouflage can also deal with (sets of) passwords with large amounts of redun-
dancy.

Trusted Computing Chips. Another approach to protecting password storage
is to rely on disk encryption, such as Windows BitLocker which uses special
hardware (a TPM) to manage the disk encryption key. An attacker who steals
the laptop will be unable to decrypt the disk, unless he or she can extract the key
from the TPM. This solution, however, cannot be used on devices that have no
TPM chip, such as smartphones and some laptops; it also suffers from portability
problems. Clearly, we prefer a solution that does not rely on special hardware.

Intelligent dictionary attacks. Several recent papers propose models for how hu-
mans generate passwords [13,8,22]. These results apply their models to speeding
dictionary attacks. Here we apply these models defensively for hiding passwords
in a long list of dummy passwords.



Slow hash functions and halting functions. Many password management pro-
posals discuss slow hash functions for slowing down dictionary attacks [1,5,10].
These methods are based on the assumption that the attacker has limited com-
puting power. They can be used to protect the user’s master password against
dictionary attacks. Our approach, which is secure in the face of an attacker with
significant computing power, is complementary and can be used in conjunction
with slow hashing methods for additional security.

Graphical passwords. Graphical passwords [11,9] are an alternative to text pass-
words. While they appear to have less entropy than textual passwords, our meth-
ods can, in principle, also be used to protect graphical passwords. One would
need a model for generating dummy graphical passwords that look identical to
human generated passwords. We did not explore this direction.

7 Conclusions

We presented a system to secure the password database on a mobile device from
attacks that are often ignored by deployed password managers. The system lever-
ages our knowledge of user password selection behavior to substantially increase
the expected online work required to exploit a stolen password database. The
mechanism can be further strengthened with the cooperation of web sites to de-
tect decoy passwords. Using a prototype implementation we demonstrated that
the system can be used as a drop-in replacement to existing systems with mini-
mal impact on the user experience. Our experiments on real password databases
suggest that the proposed decoy generation algorithm produces decoy sets that
are indistinguishable from the real set.
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