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ABSTRACT 

Ideal coating materials for implants should be able to induce excellent osseointegration, 

which requires several important parameters, such as good bonding strength, limited 

inflammatory reaction, balanced osteoclastogenesis and osteogenesis, to gain well-

functioning coated implants with long-term life span after implantation. Bioactive elements, 

like Sr, Mg and Si, have been found to play important roles in regulating the biological 

responses. It is of great interest to combine bioactive elements for developing bioactive 

coatings on Ti-6Al-4V orthopedic implants to elicit multidirectional effects on the 

osseointegration. In this study, Sr, Mg and Si-containing bioactive Sr2MgSi2O7 (SMS) 

ceramic coatings on Ti-6Al-4V were successfully prepared by plasma-spray coating method. 

The prepared SMS coatings have significantly higher bonding strength (~37MPa) than 

conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was 

also found that the prepared SMS coatings switch the macrophage phenotype into M2 

extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca2+ and Toll-like 

receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also 

inhibited by SMS coatings. The expression of osteoclastogenesis related genes (RANKL and 

MCSF) in bone marrow derived mesenchymal cells (BMSCs) with the involvement of 

macrophages was decreased, while OPG expression was enhanced on SMS coatings 

compared to HA coatings, indicating that SMS coatings also downregulated the 

osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement 

of macrophages was comparable between SMS and HA coatings. Therefore, the prepared 

SMS coatings showed multidirectional effects, such as improving bonding strength, reducing 

inflammatory reaction and downregulating osteoclastic activities, but maintaining a 

comparable osteogenesis, as compared with HA coatings. The combination of bioactive 
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elements of Sr, Mg and Si into bioceramic coatings can be a promising method to develop 

bioactive implants with multifunctional properties for orthopaedic application. 

 

Key words: SMS coatings; bonding strength; osteogenesis; inflammatory reaction; 

osteoclastogenesis, macrophages, bone marrow derived mesenchymal cells (BMSCs) 

 

 

1. INTRODUCTION 

Plasma-sprayed bioactive ceramics on Ti-6Al-4V, which combines the bioactivity of 

bioceramics and the mechanical properties of titanium alloy, have been widely used for 

orthopaedic implant application.1-5 Due to its high similarity of the bone inorganic 

composition, hydroxyapatite (HA) has been coated on the surface of Ti-6Al-4V and achieved 

certain clinical success. However, there are still some drawbacks arousing great attentions, 

such as  relatively low bonding strength, stability and osseointegration ability, which affect 

its long-term clinical performance and success rate.6 Bioactive glass and their composite 

coatings have been investigated, which show good bioactivity.7-11 However, it is still very 

challenging to develop ideal bioactive ceramic-coatings on Ti alloy with excellent 

mechanical properties (e.g. high bonding strength and stability) and positive biological 

effects (e.g. limited inflammatory reaction, well balanced osteogenesis and osteoclastogenesis) 

after implantation, since the osseointegration of bioactive materials with host bone tissues is 

affected by a series of important factors, such as bonding strength, inflammatory reaction, 

osteoclastogenesis and osteogenesis.12-17  

The bonding strength of the coatings with substrates is an important property of coated 

implants. Although coating materials, like HA, can well integrate with the surrounding bone 

tissue, they also prevent the bone tissue from contacting with the titanium surface directly. It 
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means that the bonding strength between the coating and the metal substrate surface 

represents most of the overall bonding strength between the implants and bone tissue before 

complete degradation of coating materials. Poor bonding strength may result in the 

delamination of coatings from Ti alloys and limits their long-term survival after 

implantation.18 Therefore, it is of great importance to develop new coating materials which 

can maintain the good biological behaviours as HA while enhancing the bonding strength 

between coatings and metal substrates. Previous studies have shown that silicate-based 

bioceramic coatings generally have higher bonding strength than HA coatings prepared by 

plasma-spray method,3, 19, 20 indicating the value of silicate bioceramics to maintain longer 

life span of orthopaedic implants. 

For the successful osseointegration, the implant is supposed to integrate with bone tissue 

directly without any intervening connective tissue. Inflammatory response is a key factor in 

determining the formation of fibrous capsule. Excessive inflammation can lead to the 

formation of fibrous capsule and also separate the bone cells from contacting and integrating 

with the implants, resulting in the failure of implants.21 As foreign bodies, implants tend to 

cause foreign body reaction, which is known to form fibrous capsule.  From this point of 

view, developing orthopaedic coatings with the capability of inhibiting inflammatory reaction 

could be a potential strategy. Macrophages are known to be one of the most important cells in 

the material-induced immune response to orthopaedic coatings,22 thereby they can be used for 

investigating the interactions between bioactive coatings and immune cells.23 In addition to 

their effects on inflammation, macrophages are also known to influence bone physiology and 

pathology.24, 25 Macrophages are the precursors of osteoclasts, which participate in the bone 

remodelling and material degradation. Macrophages also contribute to osteogenesis through 

the expression and secretion of a wide range of regulatory molecules,26 such as BMP2, 

transforming growth factor β (TGF-β), etc.27-29 To our knowledge, there are few studies about 
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the osteoclastogenesis and osteogenesis induced by orthopaedic coatings with the 

involvement of macrophages. For these reasons, it is interesting to investigate the 

inflammation caused by the interaction between the coating and macrophages and the further 

osteoclastogenesis and osteogenesis induced by orthopaedic coatings with the involvement of 

macrophages.  

Osteoclasts play important roles in degrading the materials and remodelling the new forming 

bone during osseointegration. The successful osseointegration requires adequate and effective 

osteoclastic activities. High osteoclastic activities may lead to the bad quality of the newly 

formed bone tissue (poor bone mass and density), resulting in the bad loading capacity of 

implants. Such a phenomenon is not uncommon clinically, especially in patients with 

osteoporosis. The imbalance between bone resorption and bone formation in osteoporosis 

patients results in high bone resorption. It is thereby of great clinical significance to develop 

coating materials, which are capable to inhibit osteoclastic activities, especially for patients 

with osteoporosis.  

Bone matrix deposition within the implants is another key step for the osseointegration. 

Materials enhancing the osteogenesis would be of great significance in improving the quality 

of new forming bone (high bone mass and density). Osteoblasts are responsible for the 

deposition of bone matrix. They can also regulate the differentiation and activity of 

osteoclasts, thereby maintaining the skeletal architecture. In addition to their traditional 

effects on inflammation, immune cells are increasingly supposed to be indispensable during 

osteogenesis of biomaterials, with the emergence and development of osteoimmunology.29 

They were found to be closely related with the bone cells, sharing a number of cytokines, 

receptors, signalling molecules and transcription factors.30 It is reported that evaluation 

system for the in vitro osteogenesis capacity involving immune cells is more accurate than 

that only using osteoblastic cells.29 To our knowledge, there are very few studies on the 
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orthopaedic coating mediating osteogenesis with the involvement of macrophages. Therefore, 

it is interesting and more accurate to investigate the osteogenesis of bioceramic coatings by 

using the evaluation system involving immune cells (macrophages).  

For these reasons, it is interesting to coat bioactive ceramic on Ti-6Al-4V with high bonding 

strength and the ability to inhibit the inflammatory reaction and osteoclastogenesis while 

maintaining excellent or enhancing osteointergration. More and more evidence has shown 

that bioactive elements play a key role in influencing the inflammatory reaction, osteogenesis 

and osteoclastogenesis.31, 32 Strontium (Sr) as a trace element in human body has been found 

to enhance osteogenesis while inhibiting osteoclastogenesis, which makes it applied widely in 

treating osteoporosis.33-35 In addition, Sr is also found to suppress the expression of the 

inflammation-promoting cytokine interleukin 6 (IL6) and decrease the production of pro-

inflammatory cytokines.31, 36 Magnesium (Mg) is essential for bone metabolism. The 

depletion of Mg can affect all the stages of skeletal metabolism adversely, causing cessation 

of bone growth, decreased osteoblastic and osteoclastic activity, osteopenia and bone 

fragility.37, 38 It was also reported to decrease inflammatory cytokine production.32, 39 Silicon 

(Si) is another important trace element of bone, which is reported to locate at active 

calcification sites, involving in the mineralization process of bone growth.40  Previous studies 

have shown that the released Si-containing ionic products from bioactive glass, bioceramics 

and coatings play an important role in stimulating the proliferation and differentiation of 

bone-forming cells. 41-43 

To our knowledge, although Sr, Mg and Si bioactive ions elicit important effects on 

inflammatory reaction, osteoclastogenesis or osteogenesis as well as new bone formation, 

there are few studies to design biomaterials with these properties, especially bioceramic 

coating materials for orthopaedic application. It is reasonable to speculate that the 

combination of Sr, Mg and Si in the bioceramic coatings on Ti-6Al-4V may lead to the 
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development of novel orthopaedic implants with multidirectional effects including the 

enhancement of bonding strength, inhibition of inflammatory reaction and osteoclastogenesis, 

and stimulation of osteogenesis. We have previously synthesized Sr2MgSi2O7 ceramic 

powders.44 In this study, the synthesized Sr2MgSi2O7 ceramic powders were coated onto the 

Ti-6Al-4V surface employing the plasma-spray method. Systematic investigation of the 

bonding strength of the coating on metal substrates, and the effect of the coating on 

inflammatory reaction, osteogenesis and osteoclastogenesis as well as the possible 

mechanisms of the effects was carried out by studying the interactions between the prepared 

coatings and macrophages, osteoclasts and BMSCs. 

 

2. MATERIALS AND METHODS 

2.1 Preparation of SMS coatings on Ti-6Al-4V 

The Sr2MgSi2O7 (SMS) powders were synthesized by the solid-state reaction process using 

SrO, MgO and SiO2 as raw materials according to our previous study.44 To improve powder 

flowability, a sinter-crushing method was used. Briefly, the synthesized SMS powder was 

pressed into tablets, sintered at 1300oC. Then the sintered tablets were crushed and sieved by 

200 and 400 meshes to obtain SMS particles with diameter of 40-80 µm for further coating 

preparation. The prepared SMS particles were characterized by scanning electron microscopy 

(SEM, JSM-6700, Japan). 

The reconstituted SMS particles were sprayed on Ti-6Al-4V (Shanghai Yantai metallic 

material Co., Ltd, China) substrate with dimensions of 10×10×2 mm. Prior to plasma 

spraying, the Ti-6Al-4V substrates were grit blasted, ultrasonically washed with ethanol and 

dried at 60oC. An atmosphere plasma sprayed system (sulzer metco, Switzerland) was applied 

to fabricate SMS coatings, and the parameters for plasma sprayed SMS coatings were shown 

as following (argon plasma gas flow rate: 40 slpm, hydrogen plasma gas flow rate: 10 slpm, 
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spray distance: 120 mm, argon powder carrier gas: 3.5 slpm, current: 650 Å, voltage: 66 V). 

HA coatings were fabricated by spraying commercial HA powders onto Ti-6Al-4V substrate 

according to the previous study3 and used as the control.  

 

2.2 Characterization, bonding strength and apatite mineralization of SMS coatings 

The surface microstructure of the prepared SMS coatings was observed by SEM (JSM-6700, 

Japan). The crystal phase composition of the prepared SMS coatings was characterized by x-

ray diffraction (XRD, D8 advance, Bruker, Germany) using Cu Kα radiation with scanning 

range of 10-80o and step size 0.02o. The average linear thermal expansion coefficient of the 

SMS-coated titanium and un-coated titanium was tested by using push-rod technique 

according to the standard testing method GB/T 16535-2008 (Linseis L75 Platinum Series), 

from room temperature to 800 oC. 

The bonding strength between SMS coatings and Ti-6Al-4V substrate was measured by a 

mechanical tester (Instron-5592, SATEC, USA) in accordance with American Society for 

Testing and Materials (ASTM) C-633 used in previous study.19 In brief, 10 cylindrical Ti-

6Al-4V rods (diameter: 25.4 mm) were prepared. Half of the rods were sprayed with SMS 

coatings, the other half were grit blasted. High-performance E-7 glue (Shanghai institute of 

synthetic resin, Shanghai, China) was used to join the two rods (one with SMS coatings and 

the other grit blasted), a compressive stress was applied to both rods end to assure an intimate 

contact. The combined rods were then place into a 100 oC oven for 3 h to solidify the glue. 

The bonding strength was measured by a mechanical tester (Instron-5592, SATEC, USA) at a 

crosshead speed of 2 mm·min-1, and the average of five measurement was calculated for the 

bonding strength of SMS coatings with Ti-6Al-4V substrate. 

To investigate the apatite-mineralization ability of the prepared SMS coatings, the coated 

samples  were immersed in acellular simulated body fluids (SBF) 45 and kept under shaking 
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conditions at 37 oC for 2, 4 6, 8, 10, 12 and 14 days. The ionic concentrations of Sr, Si, Mg, 

Ca and P ions released from SMS coatings were tested by inductively coupled plasma atomic 

emission spectroscopy (ICP-AES, Varian 715ES). The formed apatite mineralization on the 

surface SMS coatings were characterized by fourier transformed infrared spectroscopy 

(FTIR, Nicolet Co., USA) and SEM. 

 

2.3 Cell culture 

Three kinds of cells, including the murine-derived macrophage cell line RAW 264.7 cells, 

osteoclasts and BMSCs were used in this study. RAW 264.7 cell cultures were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies, Carlsbad, California, 

USA) supplemented with 5% fetal bovine serum (FBS, Thermo Scientific, Waltham, 

Massachusetts, USA), and 1% (v/v) penicillin/streptomycin (Life Technologies, Carlsbad, 

California, USA) at 37 ºC in a humidified CO2 incubator. The cells were passaged at 

approximately 80% confluence by scraping and expanded through two passages before being 

used for the study.  

Osteoclasts were derived from RAW 264.7 cells following the protocol as previously 

described. 46 In brief, RAW 264.7 cells were seeded to the T25 flask and cultured in complete 

medium (DMEM supplemented with 5% FBS and 1% (v/v) penicillin/streptomycin) at 37 ºC 

in a humidified CO2 incubator. After three days, the medium was replaced with fresh 

complete medium consisting of DMEM containing 5% FBS and 1% (v/v) 

penicillin/streptomycin, and supplemented with 35 ng/ml of recombinant human RANKL 

(Millipore, Billerica, Massachusetts, USA). Media was changed every 3 days and cells were 

allowed to differentiate into functional osteoclasts over a period of 21 days.  

BMSCs were isolated and cultured based on protocols according to our previous studies.47-49 

Briefly, bone marrow was obtained from patients (50-60 years old) undergoing hip or knee 
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replacement surgery with informed consent given by all donors and the procedure was 

approved by the Ethics Committee of Queensland University of Technology. Lymphoprep 

was added to isolate the mononuclear cells from the bone marrow by density gradient 

centrifugation (Axis-Shield PoC AS, Oslo, Norway). The obtained cells were seeded into the 

tissue culture flasks containing DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin and incubated at 37 ºC in a humidified CO2 incubator. The culture 

medium was changed every 3 days until the primary mesenchymal cells reached 80% 

confluence. The unattached hematopoietic cells were removed through medium change. The 

confluent cells were routinely subcultured by trypsinisation. Only early passages (p3–5) of 

cells were used in this study. 

 

2.4 The inflammatory response for macrophage RAW 264.7 cells cultured with SMS coatings 

2.4.1 Inflammatory gene expression of RAW264.7 cells  

RAW 264.7 cells were seeded on the coating surface at a density of 105/coating disk 

(10×10mm). The cells were incubated for 6 days and the medium was changed on day 3. On 

day 3 and 6, the conditioned media were collected, and centrifuged at 1500 rpm to gain the 

supernatants. They were then mixed with complete medium at a ratio of 1:2 for the 

conditioned-medium experiments. Total RNA was extracted using TRIzol reagent (Life 

Technologies, Carlsbad, California, USA) on day 6 for RT-qPCR detection.  

500 ng of total RNA was used for the synthesis of complementary DNA using DyNAmoTM 

cDNA Synthesis Kit (Finnzymes, Thermo Scientific, Waltham, Massachusetts, USA) 

following the manufacturer’s instructions. RT-qPCR primers (Table S1), which were 

designed based on cDNA sequences from the NCBI Sequence database. SYBR Green qPCR 

Master Mix (Life Technologies, Carlsbad, California, USA) was used for detection and the 
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target mRNA expressions were assayed on the ABI Prism 7500 Thermal Cycler (Applied 

Biosystems, Foster City, California, USA). Each sample was performed in triplicate. The 

mean cycle threshold (Ct) value of each target gene was normalized against Ct value of a 

house keeping gene to gain the relative expression. For the calculation of fold change, ∆∆Ct 

method was applied, comparing mRNA expressions between SMS coating group and HA 

coating group. 

2.4.2 Flow cytometry  

To explore the phenotype switch of macrophage, expression of M1 and M2 macrophage cell 

surface marker CCR7 and CD163, respectively, were determined by flow cytometry. RAW 

264.7 cells were seeded in the T25 flask and cultured in complete medium. After 1 day of 

culture, the medium was replaced by the macrophage-conditioned medium obtained from 

section 2.4.1. After another 2 days, the cells were detached by scraping. Nonspecific protein 

binding was blocked by 1% BSA/PBS. Samples were incubated with CCR7 (1:25) (GeneTex, 

Irvine, California, USA) and CD163 antibody (1:100) (AbD Serotec, Raleigh, North 

Carolina, USA) for 30 minutes at 4ºC, followed by incubation with Dylight 488-anti-mouse 

and DyLight 405- anti-goat secondary antibody (DAKO, Multilink, California, USA) for 30 

minutes at 4 ºC. After washing with 1% BSA/PBS, cells were analysed on a FC500 flow 

cytometer (Beckman Coulter, Brea, California, USA). The data were analysed using Flowing 

Software (www.flowingsoftware.com).  

2.4.3 Mechanism of the inflammatory gene expression change  

To understand the mechanism of two involved inflammation signalling pathways, 

Wnt5A/Ca2+ (Wnt5A, Fz5, calmodulin-dependent protein kinase II (CaMKII), nuclear factor 

of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α)), and TLR 

pathways (MyD88, Ticam1/2, IκB-α) were evaluated by RT-qPCR and Western blot. RAW 

264.7 cells were seeded on the coating surface at a density of 105/coating disk. Total RNA 
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was extracted using TRIzol reagent (Life Technologies, Carlsbad, California, USA) for RT-

qPCR detection as described in section 2.4.1.  

The whole cell lysates were collected after 7 and 24 hours of culture for the Western Blot 

detection of CaMKII and IκB-α. 10 µg proteins from each sample were separated on SDS-

PAGE gels and then transferred onto a nitrocellulose membrane (Pall Corporation, East Hills, 

New York, USA). After being blocked in Odyssey blocking buffer for 1 hour (LI-COR 

Biosciences, Lincoln, Nebraska, USA), the membranes were incubated with primary 

antibodies against IκB-α (1:1000, rabbit anti-human/mouse; Cell Signaling Technology, 

Danvers, Massachusetts, USA), CamKII (pan, 1:1000, rabbit anti-human/mouse; Cell 

Signaling Technology, Danvers, Massachusetts, USA), and α-tubulin (1:5000, rabbit anti-

human; Abcam, Cambridge, United Kingdom) overnight at 4 °C. The membranes were 

washed three times in TBS-Tween buffer, and then incubated with anti-mouse/rabbit HRP 

conjugated secondary antibodies at 1: 4000 dilutions for 1 hour at room temperature. The 

protein bands were visualized using the Odyssey infrared imaging system (LI-COR 

Biosciences, Lincoln, Nebraska, USA). The relative intensity of protein bands was quantified 

using Image J software (National Institutes of Health, Bethesda, Maryland, USA). 

 

2.5 The osteoclateogenesis and osteoclastic activities 

RAW 264.7 cells and osteoclasts were seeded on the coating surface at a density of 

105/coating disk. On day 6, total RNA was extracted using TRIzol reagent for detection of 

osteoclastic activities related gene expression (TRAP, Cathepsin K (CTSK), Carbonic 

Anhydrase II (CA 2), receptor activator of NF-kB (RANK) and Calcitonin Receptor (CT), 

Matrix metalloproteinase-9 (MMP9)) as described in section 2.4.1. On day 3 and 6, the 

conditioned media were collected, and centrifuged at 1500 rpm to gain the supernatants for 

the further ions concentration detection. 
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Given that osteoblastic cells are the important source of osteoclastogenesis regulating 

cytokines, we further used the macrophage-conditioned media to stimulate the BMSCs to 

detect the gene expression changes of osteoclastogenesis regulating cytokines. BMSCs were 

seeded in the 6 well plates and cultured in complete medium. After 1 day of culture, the 

medium was replaced by the macrophage-conditioned medium obtained from section 2.4.1. 

After 3 and 6 days, total RNA was extracted using TRIzol reagent (Life Technologies, 

Carlsbad, California, USA). RT-qPCR detection was carried out to determine the 

osteoclastogenesis regulating cytokines (MCSF, RANKL, and OPG) gene expression 

changes as described in section 2.4.1. 

 

2.6 The osteogenesis for BMSCs cultured with SMS coatings with involvement of immune 

cells 

2.6.1 Alkaline phosphatise activity of BMSCs 

To detect the ALP activity of BMSCs, BMSCs were cultured in 24-well culture plates with a 

seeding density of 20,000 cells per well. ALP activity was assessed at 7 days culture in 

macrophages conditioned-coating media. The cells were lysed in 100 µL of 0.2% Triton X-

100 and then centrifuged at 14 000 rpm for 15 min at 4°C. 50 µL supernatants were mixed 

with 150 µL working solution and determined using the QuantiChromTM Alkaline 

Phosphatase Assay Kit (BioAssay Systems, Hayward, California, USA). The total protein 

content was measured by the BCA Protein Assay Kit (Thermo Scientific, Waltham, 

Massachusetts, USA). The relative ALP activity was then obtained as the changed optical 

density (OD) values divided by the total protein content50. 

2.6.2 Bone-related gene expression of BMSCs 

BMSCs were plated at a density of 20,000 cells per well in separate 6-well plates. After 24 

hours of incubation, the culture medium was removed and replaced by macrophages 
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conditioned media. Cell morphology was observed under a Nikon's inverted microscope 

(Eclipse Ti, Nikon, Tokyo, Japan) and figures were taken. Total RNA was extracted using 

TRIzol reagent after 3 and 7 days of culture for the RT-qPCR detection as described in 

section 2.4.1.  

2.6.3 The mineralization of BMSCs 

In order to identify mineralization nodules, Alizarin Red S staining was measured on day 14 

after BMSCs grown in macrophages conditioned media in a 96-well plate with osteogenic 

supplements. The medium was removed and the cells were washed with ddH2O and fixed in 

4% paraformaldehyde for 10 min at room temperature. After gently rinsing with ddH2O, the 

cells were stained in a solution of 2% Alizarin Red S at pH 4.1 for 20 min and were then 

washed with ddH2O. The samples were air-dried and figures were taken under a light 

microscope. The glossary of biomedical terms is listed in Table S2. 

 

2.7 Ionic concentrations 

SMS and HA coated Ti-6Al-4V were immersed in the complete medium. After 3 and 6 days, 

the conditioned media were collected, and centrifuged at 1500 rpm to gain the supernatants, 

which were then mixed with 0.5% HNO3 at a ratio of 1:2 for the further ions concentration 

detection. Macrophages and osteoclasts conditioned supernatants obtained from section 2.5 

were also mixed with 0.5% HNO3 at a ratio of 1:2 for the further ions concentration 

detection. The ionic concentrations of Sr, Si, Mg, and Ca ions in complete culture medium, 

macrophages and osteoclasts conditioned media were quantified by inductive coupled plasma 

atomic emission spectrometry (ICP-AES, PerkinElmer, Waltham, Massachusetts, USA). 
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2.8 Statistical analysis 

All the analyses were performed using SPSS software (IBM SPSS, Armonk, New York, 

USA). Data is shown as means ± standard deviation (SD) and analysed using one-way 

ANOVA followed by LSD post-hoc test. The level of significance was set at P<0.05. 

 

3. RESULTS 

3.1 Characterization, bonding strength and apatite mineralization of SMS coatings  

Figure 1A shows the morphology of reconstituted SMS particles by sinter-crushing method. 

The size of the SMS particles is about 40-80 µm with an irregular shape. The morphology of 

the prepared SMS coatings is shown in figure 1B and 1C. The coating has a rough surface 

built by random staking of fully and partially melted SMS particles (Fig. 1B). A higher 

magnification image presents that parts of the fully melted coating surface is relatively 

smooth (Fig. 1C). XRD analysis shows that the main crystal phase of prepared SMS coatings 

on Ti-6Al-4V is Sr2MgSi2O7 (JCPD 15-0016) (Fig. 1D). The average linear thermal 

expansion coefficient of the SMS-coated titanium and un-coated titanium in the temperature 

range of 20-800 oC was 9.39×10-6 and 9.65×10-6 oC -1, respectively. The mean bonding 

strength of the SMS coatings with Ti-6Al-4V substrate is 37.1±3.3 MPa. 

After soaked in SBF, there are newly formed apatite clusters on the surface of SMS coatings 

(Fig. 2A). Higher magnification SEM images shows that the formed clusters are composed of 

lath-like apatite microcrystals with the diameter of 100 nm (Fig. 2B). There are newly formed 

P-O characteristic peaks at the wavenumber of 1080, 603 and 562 cm-1 in FTIR pattern after 

soaked SMS in SBF (Fig. 2C). Sr concentrations in SBF solution increase distinctively at the 

first 2 days of soaking and then decrease with the increase of soaking time. Mg and Si 

concentrations slightly increase at first 2 days, and then maintain a stable release. The Ca and 

P concentrations tend to decrease with the increase of soaking time (Fig. 2D). 

Page 15 of 42

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

3.2 The inflammatory response for macrophage RAW 264.7 cells cultured with SMS coatings 

Flow cytometry results showed the mean fluorescence intensity of CD163 increased after the 

material stimulation (Fig. 3A a,b). On the contrary, the mean fluorescence intensity of CCR7 

showed no significant changes under the same treatment (Fig. 3A c,d).  

Anti-inflammatory genes IL-1ra expression was significantly upregulated by the stimulation 

of SMS coatings in comparison with the culture on HA coating (P < 0.05) (Fig. 3B). On the 

contrary, inflammatory genes IL-1β, IL-6 and Oncostatin M (OSM) expression were 

significantly downregulated with the same treatment (P < 0.05) (Fig. 3B).  

To explore the mechanism of inflammation related gene expression changes, we examined 

two inflammation signalling pathways (Wnt5A/Ca2+, TLR). Both Wnt5A and Fz5 gene 

expression were significantly downregulated (Fig. 4A) in comparison with the HA coating 

group. The downstream molecules CamKII also showed significant decrease in protein 

expression (Fig. 4C).  As to the Toll like receptor pathway, MyD88, Ticam 1 and 2 gene 

expression were all significantly downregulated (Fig. 4B, P < 0.05), while the downstream 

molecules IκB-α were enhanced in protein expression (Fig. 4C, P < 0.05). 

3.3 The osteoclastogenesis and osteoclastic activities 

Most of the osteoclastic activities related genes (TRAP, CTSK, RANK, CT, and MMP9) by 

macrophages were significantly downregulated by the stimulation of SMS coatings compared 

with that of HA coatings (Fig. 5). Similar results were observed in the stimulated osteoclasts, 

with the inhibitions of TRAP, CTSK, CA2, RANK, and MMP9 genes expression (Fig. 6). 

The expression of RANKL, an osteoclastogenesis enhancing gene, by BMSCs under the 

stimulation by conditioned medium from macrophages on SMS coatings was significantly 

downregulated on both day 3 and day 7 (Fig. 7, P <0.05). MCSF, another osteoclastogenesis 
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enhancing gene, was also significantly downregulated on day 7 (Fig. 7, P <0.05). 

Osteoclastogenesis inhibiting gene OPG showed a different pattern. It showed no significant 

change on day 3, but was significantly upregulated on day 7 (Fig. 7, P <0.05).  

 

3.4 The osteogenesis for BMSCs cultured with SMS coatings with involvement of immune 

cells 

The osteogenic differentiation of BMSCs stimulated by the macrophage-conditioned medium 

with SMS and HA coatings is shown in Figure 8. Morphology of BMSCs was similar in both 

SMS and HA coatings groups (Fig. 8A). The ALP activity of BMSCs with SMS-stimulated 

RAW cell medium is slightly lower than that of HA group (Fig. 8B). Bone-related genes 

expression (ALP, OPN, OCN, COL1 and IBSP) has almost no significant difference between 

SMS and HA coatings groups (Fig. 8C) on both day 3 and 7, (Fig. 8D). Alizarin red staining 

shows that both SMS and HA coatings groups could lead to the formation of mineralisation 

nodules (Fig. 8E).  

 

4. DISCUSSION 

In this study, we successfully prepared Sr, Mg and Si-containing SMS coatings on Ti-6Al-4V 

by plasma-spray method. For orthopaedic coating applications, the prepared coating materials 

on titanium alloy should be relatively stable to maintain long-term life span. Although 

bioactive glass coatings possess excellent bioactivity, their dissolution rate is generally higher 

than that of crystallized bioceramic coatings. For this reason, we tried to combine the 

bioactive elements of Sr, Mg and Si into the coatings to induce favourable biological effects, 

together with higher crystallinity for higher chemical stability. Sr2MgSi2O7 is one of the 

typical crystal phases in the Sr, Mg and Si containing ceramic systems. Our previous study 

has shown that pure phase Sr2MgSi2O7 ceramic can be easily prepared. No phase change was 
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observed even after high temperature treatment. In addition, Sr2MgSi2O7 bioceramics exhibit 

stimulatory effects on the osteogenic differentiation of BMSCs.44 Concerning these 

physiochemical and biological properties, we applied this kind of ceramics as orthopaedic 

coatings on titanium. 

The stability of bioceramic coatings and their bonding strength with Ti alloy is of great 

importance to maintain their long-term life survival. When the bioceramic coated implants 

are implanted in vivo, host body cells will be in contact with the coating materials first. The 

coating materials will then experience some degradation either by physicochemical 

dissolution, cell-medicated dissolution, hydrolysis, enzymatic decomposition, or corrosion. 51 

The released ions or degraded particles from the coating are supposed to regulate the local 

microenvironment, which determines the response and behaviour of host cells. Therefore, it 

is vital to coat the titanium with bioactive materials, which can create a favourable 

environment for the new bone formation, like SMS did in this study. To maintain the long-

term life span of the implants, bioceramic coatings should release some bioactive ions to 

assist the osseointegration with host bone tissue and at the same time the prepared coatings 

should have relatively high stability (or slow degradation). In this study, SMS showed higher 

osteoclastogenesis-inhibiting capacity than HA, indicating that SMS coatings may have 

higher biological stability than that of HA coatings. In addition to the degradation, the 

bonding strength of bioceramic coatings with titanium is another important factor to maintain 

the long-term life span of the implants, since the high bonding strength will provide a stable 

coating interface without delamination from titanium to support functional loading before the 

coating materials are completely replaced by new bone tissue. 

The bonding strength of HA coatings is generally in the range of 15-25 MPa.52 Although the 

HA coated implants have achieved certain clinical success, the bonding strength of HA 

coating on titanic alloy is still not strong enough and may lead to the delamination 
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phenomenon in clinical applications. It is of great clinical significance to develop coated 

implants with high bonding strength as SMS revealed (37 MPa) in this study. Higher bonding 

strength of SMS coatings make them more potential for clinical applications, since they may 

have longer life span with functional loading.  

Thermal expansion coefficient of ceramics is one of the main factors to determine the 

bonding strength between the coating and the metallic substrate. Previous studies have shown 

that the silicate-based bioceramics possess similar thermal expansion coefficient with Ti-6Al-

4V, therefore favouring a higher bonding strength and reducing the residual stress due to the 

mismatch of the thermal expansion coefficient.3, 19, 20 In this study, it is found that the SMS-

coated titanium and uncoated titanium have similar linear thermal expansion coefficient. In 

addition, there are no obvious microcracks on the surface of SMS coatings, indicating that 

SMS coatings have strong bonding with titanium substrate. 

In addition to their high bonding strength, SMS coatings could also switch macrophage 

phenotype into M2 extreme, leading to the inhibition of the inflammatory reaction compared 

with the HA coatings. These effects may be related to the downregulation of WNT5A/Ca2+ 

and TLR pathways. Wnt5A/Ca2+ signalling pathway is known to enhance the inflammation.53 

Wnt5A can bind to Fz5, activating the Wnt/Ca2+ signalling pathway via CaMKII and protein 

kinase C, which culminates the expression of downstream inflammatory cytokine genes via 

the transcription factor NFκB.53 After soaked SMS coated implants, the culture medium 

showed a significant decrease of Ca2+ concentration. It is a logical extension to speculate that 

the decrease of Ca2+ concentrations may lead to the inhibition the Wnt/Ca2+ signalling 

pathway, resulting in the anti-inflammatory effects.  

Macrophages recognize the foreign bodies via TLR pathway, inducing innate immune 

response trying to degrade or reject the implants.54 MyD88 is one of the key components in 

this pathway. Most of the activated TLRs interact with MyD88, which then activate 
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downstream cascade.55 However, TLR3 can only conduct through a MyD88-independent 

signalling pathways, toll-like receptor adaptor molecule (Ticam), also known as TIR domain 

containing adapter inducing IFN β (TRIF), while TLR4 can signal through both pathways.56 

Although producing signal through different adapter proteins, both MyD88-dependent and 

Ticam-dependent pathways eventually activate the NF-κB, resulting in the expression of 

inflammatory cytokines.57 In the present study, MyD88, Ticam1 and Ticam2 gene 

expressions were all downregulated, while the NFκB inhibitor IκB was upregulated. It means 

that the SMS coatings might also lead to the inhibition of inflammatory response via TLR 

pathway. After the immersion of SMS coated implants, the culture medium showed a 

significant increase of Mg2+ concentration. Mg was known to suppress inflammatory 

cytokine production through inhibition of TLR pathway.32 Therefore, the inhibition of this 

pathway might be related to the release of Mg2+ from SMS coatings. Sr2+ is also found to 

decrease inflammatory cytokine production, which was also increased in the culture medium 

after soaked SMS coated implants.31, 36 However, the underlying mechanism is still unknown. 

Nevertheless, the inhibition of inflammatory response indicates that the SMS coatings are 

more compatible than HA coatings, which may prevent the formation of fibrous capsule.  

The osteoclastogenesis and osteoclastic activities were both inhibited by SMS coatings. The 

interactions between SMS coatings with pre-osteoclasts (macrophages), and osteoclasts were 

firstly investigated. Our results showed that SMS coatings significantly downregulated the 

osteoclast activity-related genes of both pre-osteoclasts (macrophages) and osteoclasts, such 

as TRAP, CTSK, RANK, and MMP9. Osteoblastic cells are also known to regulate the 

osteoclastogenesis via the releasing of RANKL, MCSF and OPG. MCSF binds to its receptor, 

c-fms, on osteoclast precursors and activates signalling through Akt and MAP kinases 

pathway.58 RANKL binds to RANK, receptor on the surface of osteoclast precursors, 

activating signalling through NF-κB, activator protein 1 (AP-1) and nuclear factor of 
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activated T cells 2 to induce expression of genes for the survive and differentiation of 

osteoclasts.59 OPG, a decoy receptor derived from osteoblasts, can bind to RANKL and 

interrupt its interaction with RANK receptor, thereby inhibit the osteoclastogenesis.60, 61 

Therefore, we further investigated the expression of RANKL, MCSF and OPG genes in 

BMSCs cultured in the conditioned media. It was found that SMS coatings could decrease the 

expression of RANKL and MCSF genes, and increase OPG expression of BMSCs. All these 

results suggest that SMS coatings downregulate the osteoclastogenesis and osteoclastic 

activities, as compared to HA coatings.  

It is found that Sr2+ and Sr-containing biomaterials have inhibitory effect on the osteoclastic 

differentiation and resorptive activity.62, 63 The underlying mechanism might be related to the 

suppression of IL6 family of cytokines.36 IL-6 and OSM are IL6-type cytokines that stimulate 

osteoclast formation and function, which were both downregulated in this study. IL6 is 

believed to play a positive regulatory role in osteoclast differentiation by inducing the 

expression of RANKL on the surface of osteoblasts, activating the RANK signalling pathway 

on osteoclast progenitors.64 The inhibition of IL6 receptor can directly block the osteoclast 

formation.65 OSM uses the same receptor subunit, gp130, for signaling, and often have 

similar and overlapping functions with IL6.66 OSM can help to enhance the 

osteoclastogenesis in a dose dependent manner, which might be related to its synergistic 

effects with IL6.67 

In this study, the concentrations of the released Sr2+ in the macrophage-conditioned medium 

reach 134 ppm for SMS coatings, which are significantly higher than those for HA coatings 

(only 0.25 ppm) (as shown in Table 1). Therefore, it is reasonable to speculate that the 

possible mechanism for the downregulated osteoclastogenesis of SMS coatings is mostly 

relative to the released Sr2+ ions from coatings. The inhibition of osteoclastogenesis may help 

to obtain properly balanced osteoclastogenesis and osteogenesis, extending the applications 
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of SMS coated Ti-6Al-4V to the patients with harsh bone qualities (low bone mass and 

density), especially those with osteoporosis.  

Previous studies have found that ionic products (Si, Mg, Sr) from SMS powders could 

enhance the osteogenesis of BMSCs. 44 It is known that the ion release from crystalline 

materials is mainly due to the dissolution of the materials in the aqueous environment. The 

dissolution rate of the crystalline materials mainly depends on the chemical composition and 

crystal structure. In this study, we found that although the dissolution of SMS coatings was 

slow, it did release Sr, Mg and Si ions, which induces the favourable biological effects. Given 

to the importance of immune cells during the material stimulated osteogenesis, we further 

investigated the osteogenesis-inducing capacity of SMS coatings with the involvement of 

immune cells (macrophages). It was found that the osteogenic differentiation of BMSCs on 

SMS coatings was comparable to that on the HA coatings even with the involvement of 

macrophages, indicating that SMS coatings have comparable in vitro osteogenesis-inducing 

capacity to HA coatings. Previous studies for evaluation of the in vitro osteogenesis mainly 

focused on the interaction of osteoblastic cells with bioactive coatings.68, 69 Current study 

extends the method by involving the macrophages to investigate the osteogenesis of BMSCs 

cultured with SMS coatings, which makes the evaluation for the in vitro osteogenesis-

inducing capacity of SMS coatings more sufficient and accurate.  

After implanted, the coating materials will be completely degraded eventually and replaced 

by new bone tissue. The degradation time differs from the composition and structure of the 

materials. It means that coating materials will exist temporarily during the integration of 

titanium substrate with host bone tissue. Titanium materials are not very effective to guide 

the regeneration of surrounding tissue. Coating with bioactive materials can well solve this 

issue, endowing titanium with bioactivities. The major function of coating materials is to 

regulate an osteogenesis-enhancing environment for better integration of the titanium 
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substrate with host bone tissue. One shortcoming of this strategy is creating one more 

interface temporarily between titanium substrate and coating materials. The bonding strength 

should be strong enough for keeping the implants steady before the replacement of coating 

materials with new bone tissue, which makes the bonding strength between coating materials 

and metallic substrate a very important property of coating materials. HA has good 

bioactivities; however, the interface between HA and titanium substrate is not strong enough 

in bonding strength limiting its application, while the new SMS coatings seems to overcome 

this problem with significantly higher bonding strength. 

 

 

5. CONCLUSIONS 

In this study, bioactive elements Sr, Mg and Si-containing SMS coatings on Ti-6Al-4V have 

been successfully prepared by plasma-spray method. The prepared SMS coatings possess 

significantly higher bonding strength than that of HA coatings. SMS coatings inhibit the 

inflammatory reaction of immune cells RAW 264.7 possibly via the inhibition of 

WNT5A/Ca2+ and TLR pathways. In addition, SMS coatings could also inhibit the 

osteoclastic activities and osteoclastogenesis while maintaining good osteogenesis-inducing 

capacity. These multidirectional effects suggest that the SMS-coated Ti-6Al-4V may be a 

promising implant material for the orthopaedic applications. 
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Table1. The ionic concentrations of medium for SMS and HA coatings at different culture conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Culture medium immersed Macrophage conditioned Osteoclast conditioned 

  HA SrMg HA SrMg HA SrMg 

  0-3 d 3-6 d 0-3 d 3-6 d 0-3 d 3-6 d 0-3 d 3-6 d 0-3 d 3-6 d 0-3 d 3-6 d 

Ionic 

concentrations 

(mg/ L) 

Ca 20.19±0.31 17.75±0.53 0.46±0.01 16.69±1.25 29.89±0.21 25.11±0.49 0.32±0.01 18.07±0.02 26.81±0.46 24.93±0.23 0.20±0.02  17.01±0.36 

P 5.31±0.08 5.15±3.08 1.78±0.16 7.11±0.22 4.54±0.26 5.08±0.12 1.51±0.11 7.72±0.09 4.54±0.18 5.08±0.12 1.40±0.09 6.85±0.16 

Si 0.42±0.02 0.22±0.02 24.51±0.85 19.03±0.21 0.43±0.04 0.18±0.01 29.46±0.11 20.02±0.35 0.41±0.02 0.15±0.02 24.88±0.17 19.20±0.49 

Sr 0.26±0.05 0.33±0.11 2.97±0.02 102.06±0.13 0.17±0.14 0.25±0.03 7.49±0.13 134.23±1.38 0.16±0.02 0.21±0.10 5.88±0.19 151.02±3.26 

Mg 1.51±0.03 2.70±0.09 75.97±1.95 21.66±0.34 2.38±0.08 3.53±0.08 73.25±2.16 22.06±0.28 1.90±0.08 3.28±0.05 74.12±0.08 22.66±0.41 
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Figure 1. SEM for the prepared Sr2MgSi2O7 particles (A) and coatings (B, C). (C) is higher 

magnification image of (B). XRD analysis for the prepared Sr2MgSi2O7 coatings on Ti alloys 

(D), in which S stands for the characteristic peaks of crystal phase Sr2MgSi2O7 in the XRD 

pattern.  
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Figure 2. SEM (A, B) and FTIR (C) analysis for the prepared Sr2MgSi2O7 coatings on Ti 

alloys after soaked in SBF for 14 days. ICP-AES analysis for the change of ionic 

concentrations in SBF soaked with Sr2MgSi2O7 coatings (D). 
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Figure 3. (A). FACS results of RAW 264.7 cells cultured in different coatings. The mean 

fluorescence intensity of CD163 increased after the stimulation of SMS (a, b); however, the 

mean fluorescence intensity of CCR7 had only slight increase under the same treatment (c, 

d). (B). Fold changes of inflammation related genes IL10, IL1ra, TNFα, IL1β, IL6 and OSM, 

by comparing RAW 264.7 cells cultured in SMS coating with HA (HA group has been 

standardized as 1, see red bar). *: Significant difference (P < 0.05). 
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Figure 4. (A) Fold changes of WNT5A/Ca2+ pathway related genes: WNT5A and Fz5; (B) 

Fold changes of Toll-like pathway related genes: MyD88, Ticam1 and Ticam2; (C). Western 

blotting analysis of CaMKII and IκB-α expression. *: Significant difference by comparing 

RAW 264.7 cells cultured in SMS coating with HA (P < 0.05). (HA group has been 

standardized as 1, see red bar in Figure A and B). 
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Figure 5. Fold changes of osteoclastogenesis and osteoclast activities related genes: MCSF, 

TRAP, CTSK, CA2, RANK, CT and MMP9. *: Significant difference by comparing RAW 

264.7 cells cultured in SMS coating with HA (P < 0.05). (HA group has been standardized as 

1, see red bar). 
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Figure 6. Fold changes of osteoclast activities related genes: TRAP, CTSK, CA2, RANK, CT 

and MMP9. *: Significant difference by comparing RAW 264.7 cells derived osteoclasts 

cultured in SMS coating with HA (P < 0.05). (HA group has been standardized as 1, see red 

bar). 
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Figure 7. Fold changes of osteoclastogenesis related genes: OPG, RANKL, and MCSF. (A). 

Day 3, (B). Day 7. *: Significant difference by comparing BMSCs cultured in SMS coating 

stimulated RAW 264.7 cells conditioned medium with HA coating stimulated RAW 264.7 

cells conditioned medium (P < 0.05). (HA group has been standardized as 1, see red bar). 
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Figure 8. Osteogenic differentiation of BMSCs cultured in SMS and HA coatings stimulated 

RAW 264.7 cells conditioned medium. (A). morphologies of BMSCs in day 3 and 7; (B). 

ALP activities; (C&D). osteogenesis related gene expression (ALP, OPN, OCN, COL1, 

IBSP) by BMSCs in day 3 and 7; (E). alizarin red results. *: Significant difference by 

comparing BMSCs cultured in SMS coatings stimulated RAW 264.7 cells conditioned 

medium with HA coatings stimulated RAW 264.7 cells conditioned medium (P < 0.05). (HA 

group has been standardized as 1, see red bar). 
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