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III. INTRODUCTION 

The main concept of this study was to explore molecules, which may be involved in 

the activation of the trigeminovascular system (TS) and hence in the pathomechanism of 

migraine. The findings may potentially contribute to the development of new solutions in the 

therapy of headache diseases.  

 

A. MIGRAINE 

Migraine is a common [1, 2], paroxysmal primary headache disorder. Characteristically, this 

is a highly complex, restrictive [3-5] and extremely costly [6, 7] disease, which has high 

socio-economic and personal impacts on the quality of life (workdays, school performance, 

family and social relationships).  

 

Pathomechanism 

Although there have been extensive researches in the field of migraine, the exact details of the 

pathomechanism are still unknown. Several hypotheses have been proposed to explain the 

processes of headache diseases. Although the predisposition to the development of migraine 

is presumably genetically determined, certain environmental factors (alcohol, certain foods, 

stress, hormonal changes, etc.) can trigger the emergence of headache. Factors assumed in the 

background of the mechanism of migraine include neuro-vascular alterations, neuropeptide 

release, the presence of neurogenic inflammation, plasma protein extravasation, peripheral 

and central sensitization, cortical spreading depression (CSD), a brain energy deficit and 

lesions in the white matter, as separately or simultaneously occurring phenomena. 

Since the 1990s, the central theme of migraine research has been the trigeminovascular theory, 

proposed by Moskowitz [8]. The TS provides an important pain-transmission link between 

the vascular and neuronal elements, because this is the major afferent pain pathway between 

the cranial vessels and the nuclei in the brainstem [9] (Fig. 1) [10]. Activation of the TS can 

therefore contribute to the development of migraine. 

The TS consists of the primary sensory pseudounipolar neurons whose cell bodies are located 

in the trigeminal ganglion (TRG), its terminals and the meningeal vasculature. The peripheral 

branches innervate the cranial vessels and meningeal tissues (the supratentorial dura mater, 

the dural vasculature and the pial arteries on the surface of the brain). The central fibres 

project to the area of the second-order neurons in the brainstem, the trigeminal nucleus 
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caudalis (TNC) and more caudally in the upper regions of the spinal cord (the nucleus spinalis 

nervi trigemini). The third-order neurons are located in the thalamus. 

The sensory trigeminal unit is controlled by the descending pathways from the 

monoaminergic nuclei (the nuclei raphe, the periaqueductal grey matter (PAG) and the locus 

coeruleus (LC)), referred to as migraine generators. Their exact functions are unknown, 

because the activation of these nuclei may be either a trigger or a consequence of migraine 

attacks. It is sure that elevated numbers of c-fos-immunoreactive (-ir) cells have been 

confirmed in the nucleus raphe magnus (NRM) following electrical stimulation of the TRG in 

rat [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transmitters, neuropeptides and sensitization 

Trigeminovascular activation produces a significant release of vasoactive molecules and 

various neuropeptides from the terminals of the trigeminal branches. Calcitonin gene-related 

peptide (CGRP), vasoactive intestinal peptide (VIP) and substance P (SP) can induce 

Figure 1. Trigeminovascular system (TS) 

TCC: trigeminocervical complex; PAG: periaqueductal grey matter; 

LC: locus coeruleus; NRM: nucleus raphe magnus   
Goadsby PJ. Neurol Clin. 2009;27:335-60. 
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functional changes such as vasodilatation, protein extravasation, mast cell degranulation, 

neurogenic inflammation and sensitization [12]. The co-existence of SP-, CGRP- and 

pituitary adenylate cyclase-activating polypeptide (PACAP)-ir fibres has been demonstrated 

in the region of the human TNC. Numerous SP-positive fibres have been identified in the LC, 

the NRM and the PAG, and also a few VIP fibres in the latter two structures. CGRP-ir cells in 

high number and PACAP-ir cell bodies have been found in the LC. It seems that, of the above 

molecules, the role of CGRP is the most significant in the mechanisms of migraine [13]. 

Stimulation of the TRG in laboratory animals and also in humans increases the intracranial 

blood flow in part, presumably via CGRP release [14, 15]. During migraine attacks, an 

elevated plasma CGRP level has been reported in the external jugular vein [16], but these 

results were recently disputed [17, 18]. Furthermore, an elevated CGRP concentration was 

observed in the cubital vein during nitroglycerin (NTG)-provoked headache, which returned 

to the baseline after the cessation of the pain. A correlation was detected between the CGRP 

level, the timing of the attack and the severity of the pain. The influence of CGRP in migraine 

headache is validated by the administration of triptans, which successfully ameliorate the 

attacks, the level of CGRP returning to the control [19]. 

 

Epidemiology and general features 

Epidemiological studies have revealed that the prevalence of migraine in the adult population 

in the developed countries is approximately 12%. Migraine may develop at any age and 

gender, but it is relatively common in young adult women. The diagnostic criteria of migraine 

are at least five attacks/month fulfilling the specified length of the attacks, the characteristics 

and the specific accompanying symptoms. Typically, the attacks are separated by shorter or 

longer painless intervals [20]. 

 

Types 

The 2004 guidelines of the Headache Classification Committee of the International Headache 

Society (IHS) [20] state that there are two main forms of this disease: migraine with or 

without aura. 

 

Migraine without aura (Common/simple migraine) 

This is the predominant, a clinical syndrome manifesting in recurrent attacks. The throbbing 

headache is characterized by a unilateral location, moderate or severe intensity and a lasting 

nature (4-72 hours). Routine physical activity aggravates the pain, and the attacks are 
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accompanied by specific features and associated symptoms (autonomic, eg. nausea, vomiting, 

vertigo, a feeling of weakness and shivering, and sensory, e.g. osmo-, photo- and 

phonophobia and often allodynia). Allodynia, which means an exaggerated pain reaction to a 

normally innoxious stimulus, may be highlighted, as it was examined in our study. The 

sensitization of the peripheral (TRG) and second-order (trigeminocervical complex; TCC) 

trigeminovascular neurons evokes throbbing and cephalic allodynia. The sensory input 

converges from the cephalic vasculatures, the meninges, the scalp and the facial skin. The 

activation of the third-order trigeminovascular neurons (the posterior thalamic nuclei) can be 

associated with the formation of extracephalic allodynia, which is related to the sensitivity of 

the facial and body skin [21, 22]. Additionally, migraine without aura often displays a 

menstrual relationship [23], which was also investigated in our project. 

Migraine with aura (Classic/complicated migraine) 

In migraine with aura, the episodic headache attacks and associated migraine symptoms are 

similar to those mentioned previously. However, they are usually preceded or sometimes 

accompanied by the phenomenon of aura, which is a transient, focal neurological symptom, 

lasting from minutes to an hour. Patients report the aura as a premonitory phase, occurring 

hours or days before the headache, and a headache resolution phase. They experience visual 

(scintillating scotoma and fortification spectrum) and sensory (paresthesia) symptoms and/or 

with aphasia; hyperactivity, hypoactivity, depression, a craving for particular foods, repetitive 

yawning, fatigue and neck stiffness and/or pain may also occur.  

 

Phases and symptoms 

The period of the migraine attack can be divided into 4 sections.  

a) The prodromal phase, as the early warning signs of the beginning of the attack, occurs 

several hours or even the day before the migraine. The patients usually notice unusual 

sensations and they may experience either strange energetic, excitable or depressed 

feelings, they may be irritable, they may feel thirsty or a craving for certain foods, they 

may be sleepy, with frequent yawning, or they may need to urinate more. These 

symptoms can facilitate the diagnosis of the problem as involving migraine. 

b) The second phase is typical only of aura with migraine. In this case, the patients have 

mainly strange visual, auditory and skin sensations, language problems, confusion and 

difficulties in concentration.  

c) The third phase is the headache with the accompanying symptoms mentioned above. 
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d) The last phase is the resolution or postdrome period, where the patient may feel tired or 

hung over, and they may have a mild headache, cognitive difficulties, gastrointestinal 

symptoms, mood changes and weakness. The patients generally note depression and 

malaise after an attack, though in extreme cases some people feel unusually refreshed or 

euphoric. 

 

Therapy 

In clinical practice, various drug treatments are available for the therapy of migraine. First and 

foremost, elimination of the provoking factors is the most important. Such agents include 

hormonal changes, foods, synthetic sweeteners, flavour enhancers, alcohol, sleep deprivation, 

stress, strong smells, weather changes and some drugs.  

The drug treatment of the diagnosed migraine patient involves both attack and interval 

therapy. In milder cases, general analgesics and non-steroidal inflammatory drugs together 

with antiemetics are sufficient, but in more severe cases specific antimigraine drugs are 

indispensable. Ergot alkaloid and serotonin (5-hydroxytriptamine, 5-HT) 1B/D-receptor 

agonist triptans are the most effective drugs in the abolition of migraine attacks, while β-

receptor and Ca2+-ion channel blockers, 5-HT2 anatgonists, tricyclic antidepressants and 

anticonvulsive drugs are of value as prophylactic therapy [24-26]. However, the effectiveness 

of these pharmaceuticals is not sufficient in all patients and the migraine-specific drugs 

usually have undesired side-effects. Hence, the investigation of new molecules, targets and 

markers involved in the pathomechanism of migraine is indispensible, with the development 

of effective drugs and successful therapy. 

 

Among the numerous “migraine-related” processes and substances, recent studies have 

potentially implicated the vasoactive PACAP in the pathophysiology, and hence in the future 

therapy of migraine [27, 28].  
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B. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE (PACAP) 

 

Characteristics 

PACAP is a member of the VIP/secretin/glucagon neuropeptide superfamily and is 

considered to be a “brain-gut peptide“, by virtue of its widespread expression and functions in 

the human organism [29, 30].  

PACAP was discovered due to its ability to increase adenylate cyclase (AC) activity in rat 

pituitary cells, and was first isolated from the ovine hypothalamus in 1989 [31]. The gene of 

PACAP (ADCYAP1) is localized on the short arm of chromosome 18 [32]. The peptide exists 

in two biologically active amidated forms, containing 38 and 27 amino acids: PACAP-38 and 

PACAP-27 (Fig. 2). PACAP-38 is the 

predominant form, accounting for 90% 

of the total PACAP content in most 

mammalian tissues, but it is rapidly 

metabolized and its plasma elimination 

half-life is less than 5 min [33]. 

PACAP is widely distributed in the 

central nervous system [34-36], in 

peripheral organs [37], in the 

endocrine glands [38, 39], and in 

secretions from the exocrine glands 

[40], thereby functioning as a 

pleiotropic peptide [41, 42].  

It is a hypophysiotropic hormone [43], a neurotransmitter and a neuromodulator in the 

nervous system [44], and it exerts neuroprotective [45], antiapoptotic [46] and differentiation-

inducing effects in the developing nervous system [47, 48]. Furthermore, it serves important 

regulatory and protective roles in the gastrointestinal [49], cardiovascular [50-52], 

reproductive [53, 54] and respiratory systems [55]. The effects of PACAP are mediated 

through three receptors: VPAC1 (previously designated the VIP, VIP1 or PACAP type II 

receptor), VPAC2 (known as the VIP2 or PACAP type III receptor) and PAC1 (formerly 

known as the PACAP type I receptor); the latter has 1000-fold higher specific affinity for 

both forms of PACAP than for VIP [28, 56]. The binding of PACAP to its receptors induces 

two main signal transduction pathways. Through Gs- or Gq/11-protein activation, a number of 

kinases exert a variety of physiological and pathophysiological effects [28, 30]. 

Figure 2. Amino acid sequences of  

PACAP-27 and PACAP-38. 

PACAP 27 

His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-

Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-

Ala-Val-Leu-NH2 

 

PACAP 38 

His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-

Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-

Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-

Lys-Asn-Lys-NH2  
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PACAP – neuropeptides, nociception, trigeminal system, migraine 

The role of PACAP in vasodilatation [57, 58] and nociceptive processes [59-65] has been 

confirmed in several studies. The presence of this peptide has been demonstrated in the 

trigeminal system [35, 66-68]. The co-localization of nociceptin and PACAP has been 

described, but their relationship is unknown. An investigation of human TRGs revealed that 

~68% of the nociceptin-positive cells contained PACAP [69]. In another study, moderately 

dense CGRP and PACAP-containing fibres were observed adjacent to numerous SP-ir fibres, 

but VIP-ir fibres were not seen in the TNC or at the cervical1-cervical2 (C1-C2) levels of the 

spinal cord [35, 70]. The co-existence of PACAP and SP has also been reported [71, 72]. 

Moreover, PACAP co-exists with CGRP in sensory ganglia and nerve plexuses of inner 

organs [73].  

The available human data point to the involvement of PACAP in the mechanisms of migraine. 

A clinical study has revealed that intravenously administered PACAP-38 induces headache in 

healthy volunteers and migraine-like attacks in patients with migraine without aura (6 h on 

average after the start of the infusion) [27], similarly to the effect of NTG in causing headache 

[74, 75]. Moreover, the decrease of the mean blood flow velocity in the middle cerebral artery 

and the increase of the diameter of the superficial temporal artery were also observed in the 

PACAP study of the migraineurs. This implies again that PACAP-38 has vasodilating effect 

and it has role in the migraine-related mechanisms and anatomical structures:  

A broad range of data suggest that PACAP is an integrator of nociceptive and sensitization 

processes, besides being involved in neurogenic inflammation [59, 61, 65, 76].  This peptide 

is present in the primary sensory neurons of the TRG [68], the parasympathetic otic and the 

sphenopalatine ganglia [77, 78]. Moreover, PACAP-38 is found in the cell bodies and nerve 

fibres of the human TNC and the upper regions of the cervical spinal cord, which suggests 

that PACAP may be closely related to the TS [13, 35]. We earlier furnished evidence for this 

hypothesis with animal experimental results. PACAP-deficient mice displayed reduced light-

aversive behaviour (photophobia), as well as decreased meningeal blood flow and c-fos 

expression in the TRG and TNC were detected relative to wild-type mice after NTG-induced 

TS activation [79].  

Based on these results it is assumed that PACAP may be an important mediator, and therefore 

a diagnostic marker of TS activation. The receptors of PACAP have been implicated as 

potential therapeutic targets in migraine pathophysiology [28]. However, there are no direct 

experimental data to confirm this theory and no clinical data are available on endogenous 

alterations in PACAP levels in relation to migraine. 



15 
 

IV. AIMS 

The general aim of our study was to determine whether there are any alterations in the 

concentration of PACAP in blood and nerve tissues in the case of TS activation and migraine 

disorder. Preclinical investigations were therefore conducted by the stimulation of the TS in 

animals in order to generate migraine-like conditions, while the specificity and relevance of 

PACAP in migraine were confirmed in our human clinical study.  

1) PRECLINICAL ANIMAL EXPERIMENTS 
Our goal was to investigate the potential peripheral and central effects of PACAP in two types 

of rat experiments, which are models of peripheral and central sensitization by different 

pathways: 

a) NTG-induced chemical stimulation  

b) Electrical stimulation of the TRG 

PACAP-38-LI and PACAP-27-LI were measured following the development of the models in 

a time-dependent manner, in the venous blood plasma (the cranial vena cava) and the 

Gasserian ganglion (TRG), indicating peripheral alterations.  

In order to evaluate the central changes in both forms of the peptide, the immunoreactivities 

were determined in the area of second-order sensory neurons (TNC), the lower spinal cord 

(C3-C4) by radioimmunoassay (RIA), and the cerebrospinal fluid (CSF) from the suboccipital 

cistern by mass spectrometry (MS). 

2) CLINICAL HUMAN INVESTIGATIONS 

It is possible to analyse the mechanisms of pain in animal models, but there is no real 

clinically relevant system with which to mimic the human specificity of headache diseases 

appropriately. Human investigations are therefore particularly important to identify the key 

mediators responsible for the development and progression of migraine. 

Based on the literature, we hypothesized that the plasma concentration of PACAP-38 

increases during migraine attacks. Our aims were therefore to reveal the potential relationship 

between the PACAP-38 level of the human plasma and the presence of migraine headache.  

RIA measurements were carried out on peripheral blood plasma samples in order to determine 

the alterations in PACAP-38-LI during the ictal and interictal periods in migraine patients in 

comparison with healthy control subjects.   

In addition, the clinical features of the disease, the plasma CGRP-like immunoreactivity 

(CGRP-LI) and the PACAP-38-LI were compared to explore possible correlations. 
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V. MATERIALS AND METHODS 

1) PRECLINICAL ANIMAL EXPERIMENTS 

Animals 

Fifty-nine young adult Sprague-Dawley rats of either sex (8-12 weeks old, 250-350 g body 

weight) were used in these studies: 28 in the NTG-induced chemical TS activation model, 20 

in the electrical TRG-stimulation model, and 11 as intact animals in the control group (Table 

1). The animals were bred and maintained under laboratory conditions on a 12-h dark 12-h 

light cycle at 22-24 °C and ~60% relative humidity in the Laboratory Animal House of the 

Department of Neurology in Szeged. Standard rat chow and tap water were available ad 

libitum.  

Groups Subgroups 
Total number of 

animals 

Control  n=11 

NTG-model 90 min (n=14) 180 min (n=14) n=28 

ES-TRG-model 
ES-TRG 90 min (n=5) 180 min (n=5) 

n=20 
Sham ES-TRG 90 min(n=5) 180 min (n=5) 

 

 

Ethics 

All experimental procedures performed in this study complied fully with the guidelines of Act 

1998/XXVIII of the Hungarian Parliament on Animal Protection and the Decree on Scientific 

Procedures in Animal Experiments (243/1988), and with the recommendations of the 

International Association for the Study of Pain [80] and the European Communities Council 

(86/609/ECC). The studies were in harmony with the Ethical Codex of Animal Experiments 

and were approved by the Ethics Committee of the Faculty of Medicine, University of 

Szeged.  

 

Models 

Chemical stimulation of the TS 

A commonly applied and well-established animal model of TS activation is the systemic 

administration of NTG. Extensive literature is available on this field regarding the 

mechanisms, the good reproducibility and the human relevance [81-85].  

Table 1. Groups of animals in both models. 
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Figure 3. NTG-injection in rat. 

The NTG has proved to be useful as an antianginal drug; however, after discovery its 

headache producing side effect was immediately noted. The sublingually applied NTG 

induces a sudden, mild intensity 1-hour lasting headache after 20-30 min, in healthy subjects 

[86], but it occurs more often in migraineurs [87]. This first phase usually relieves 

spontaneously. After a delay of approximately 4 hours the NO-induced mechanisms trigger 

typical moderate or severe throbbing attack without aura only in migraine patients, which 

requires medication. Rarely, the migraine-like headache may also occur in healthy subjects, 

which can be explained by an anamnestic data predisposing the development of migraine [75]. 

 

The effect of NTG is based on the release of nitrogen oxide (NO), which produces a rapid 

vasodilatation. The effects of NO can be attributed to the soluble guanylate cyclase that 

enhances the conversion of guanosine triphosphate (GTP) to the second messenger cyclic 

guanosine-monophosphate (cGMP). The initial steps of signalling pathway are followed by 

activation of protein kinase-G (PKG), which can phosphorylate specific proteins in the 

vascular smooth muscles. As a result the RhoA monomer G-protein is inhibited, while the 

myosin light-chain protein is activated by the myosin phosphatase. The dural arteries dilate, 

which stimulate the pain-sensitive fibres around the blood vessels [88].  

NO is an endogenous transmitter, formed during the conversion of L-arginine to citrullin on 

the action of nitric oxide synthase (NOS). The NOS molecule is one of the markers of 

trigeminal activation, since NO itself is a very unstable gaseous substance, difficult to detect. 

The constitutive, Ca2+-dependent neuronal NOS isoform (nNOS) is the most important 

enzyme from the aspect of sensory information in trigeminal pain processing. It is abundant in 

the superficial layers of the dorsal horn of the spinal cord [89-91]. The inhibition of NOS was 

showed to be able to ameliorate the symptoms of spontaneous migraine attacks [92]. 

 

Experiments 

Three groups were involved in the NTG-induced chemical 

stimulation (CS) studies. One group of 11 animals remained intact. 

In two other groups, 14 animals per group received a single i.p. 

injection of NTG (prepared from Nitrolingual Pumpspray, Pohl-

Boskamp GmbH, Germany) in a dose of 10 mg/kg (0.13 ml/100 g of 

a 7.68 mg/ml solution) to induce CS of the TS (Fig. 3).  
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In rats, NTG in the dose mentioned above, as a massive stimulus for the TS, can trigger 

physiological (arterial diameter, pulsation and blood flow [93]) and molecular (c-fos, CGRP, 

SP, nNOS and Ca2+/calmodulin-dependent protein kinase II (CaMKII) [84, 94-98]) responses 

that resemble a common manifestation of activated TS.  

In case of the intact group the CSF, blood sampling and tissue preparation followed 

immediately the anaesthesia, but in the two other groups it took place only 90 min or 180 min 

after NTG administration. The animals were anaesthetized with i.p. chloral hydrate solution 

(in a dose of 0.4 g/kg), which provided stable, deep anaesthesia. Before cupping, CSF (~150 

µl per animal) was taken from the suboccipital cistern, while blood samples (5 ml per animal) 

were taken from the right cranial vena cava into ice-cold glass tubes containing 

ethylenediaminetetraacetic acid (EDTA) (12 mg) and the protease inhibitor aprotinin 

(Gordox, 1200 IU). Following cupping different nerve structures (the TNC, spinal cord (SC) 

and TRG) were excised from the animals at the 90 or 180 min time points. In preliminary 

experiments, sampling was also carried out after 15 and 30 min (data are shown in the case of 

plasma), but in view of the absence of changes in PACAP-38-LI at these times, this was not 

done later. Blood samples were kept at 4 °C until the plasma was separated by centrifugation 

(5,000 rpm for 10 min at 4 °C). Samples were stored at -80 °C until the measurement of 

PACAP-38- and PACAP-27-LI by RIA and determination of these peptides by MS (Fig. 4.). 

 

 
  
 

 

 

 

 
Figure 4. Scheme of the NTG-model in rat. 
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Electrical stimulation of the TS 

Another possibility to develop an activated state of the TS is the electrical stimulation (ES) of 

the TRG. This is a well-described, widely used and generally certified method of TS 

activation with a broad range of stimulation parameters [99-105]. ES of the superior sagittal 

sinus can evoke a similar effect. Besides direct stimulation of the peripheral trigeminal 

afferents, ES can cause mast cell degranulation in the dura mater and the tongue. Pronounced 

neurogenic inflammation (vasodilatation and plasma protein extravasation) therefore develops 

on the brain surface. These responses can be explained by the release of inflammatory 

mediators, e.g. various vasoactive neuropeptides, which can trigger general neuronal activity 

in the area of the trigeminal complex or cause changes in blood flow [106, 107] and even 

induce structural alterations in the nerve terminals [100, 108-110].  

 

Experiments 

Five animal groups were created for these 

examinations: 11 rats served as non-stimulated 

intact animals; two groups of 5 rats each were 

followed up after sham stimulation until 90 and 180 

min, respectively; and two groups of 5 rats each 

were investigated at 90 and 180 min after ES of 

the TRG. In earlier experiments, sampling was carried out after 30 min too (data are shown in 

the case of plasma), but as there was no change in PACAP-38-LI at this time, this was not 

done later. First, the rats were deeply anaesthetized with i.p. chloral hydrate solution (in a 

dose of 0.4 g/kg) and maintained throughout the experiment. The animals were placed in a 

stereotaxic setup where the head was fixed. After removal of the scalp, the localization of the 

TRG from the bregma was measured with micromanipulators according to the Watson-

Paxinos Rat Brain Atlas (anteroposterior: 3.2 mm; mediolateral: 2.9 mm). The skull was 

drilled at the assigned point and the stimulating macroelectrode was passed into the brain to 

reach the TRG (Fig. 5). The TRG was stimulated according to the following parameters: 

duration of stimulation: 30 min; stimulation rate: 10 Hz; duration of impulse: 5 ms; current: 1 

mA; stimulation mode: continuous. 

This ES method can induce massive neuropeptide release from the pseudounipolar TRG 

neurons [111-113]. This neuropeptide depletion can be attributed to the more rapid firing of 

cells caused by the relatively high current and frequency and the long duration of the 

stimulation [114]. In cases of sham stimulation, the electrode was positioned in the same way 

bregma 
TRG 

stimulating 
electrode 

• 

Figure 5. Scheme of the ES-TRG in rat. 



20 
 

at the same location, but no current was applied. CSF, blood samples and neural tissues were 

collected, stored and analysed as described above (Fig. 6.).  

 

 

 

 

 

RIA determination of plasma, CSF and tissue PACAP-38-LI and PACAP-27-LI 

Plasma and CSF concentrations of PACAP-38 and PACAP-27 were determined with specific 

and sensitive RIA techniques developed earlier [115]. The “88111-3” PACAP-38 and the 

“88123-3” PACAP-27 antisera were raised in rabbits with synthetic peptides conjugated to 

bovine serum albumin (BSA) or thyroglobulin with glutaraldehyde or carbodiimide. The high 

specificity and C-terminal sensitivity of this antibody were confirmed by cross-reactivity 

studies: no cross-reactivity was found with PACAP-27 in the PACAP-38 assay, with PACAP-

38 in the PACAP-27 assay, or with other neuropeptides in either case. Following 

centrifugation of the blood samples (2000 rpm at 4 °C for 10 min) the peptide was extracted 

from the plasma into 3 volumes of absolute alcohol. After precipitation and a second 

centrifugation (2000 rpm at 4 °C for 10 min), the samples were dried under a nitrogen flow 

and resuspended in 300 µl assay buffer before RIA determination so as to achieve a 10 times 

Figure 6. Scheme of the ES-TRG model. 
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higher concentration for the RIA procedure [61, 115]. Brain segments (TNC, TRG and C3-C4 

regions of SC) were frozen and stored at -80 °C until further processing. The samples were 

weighed and homogenized in 1 ml ice-cold bidistilled water with a manual potter homogenizer. 

The homogenates were centrifuged at 10000 rpm for 10 min and then at 12000 rpm for another 

10 min, and 70 µl samples of the supernatants were used for RIA measurements.   

The tracers were mono-125I-labeled peptides prepared in our laboratory. Synthetic peptides 

were used as RIA standards in concentrations ranging from 0 to 1000 fmol/ml. The assay was 

prepared in 1 ml 0.05 M (pH 7.4) phosphate buffer containing 0.1 M sodium chloride, 0.25% 

(w/v) BSA and 0.05% (w/v) sodium azide. The antiserum (100 µl, 1:10000 dilutions), the 

RIA tracer (100 µl, 5000 cpm/tube) and the standard or unknown samples (100 µl) were 

measured into polypropylene tubes with the assay buffer. After incubation for 48-72 h at 4 °C, 

the antibody-bound peptide was separated from the free peptide by addition of 100 µl 

separating solution (10 g charcoal, 1 g dextran and 0.5 g commercial fat-free milk powder in 

100 ml distilled water). Following centrifugation (3000 rpm at 4 °C for 15 min), the contents 

of the tubes were gently decanted and the radioactivity of the precipitates was measured in a 

gamma counter (Gamma, type: NZ310). The PACAP-38 and PACAP-27 concentrations of 

the unknown samples were read from calibration curves. 

 

Examination of PACAP-38 and PACAP-27 in the rat plasma and CSF by MS 

Identification of PACAP-38 and PACAP-27 in the rat plasma and CSF samples in 

comparison with standard solutions was performed with matrix-assisted laser desorption 

ionization time of flight (MALDI TOF) MS. The quasimolecular ions of the PACAP-38 Na+ 

adduct (MW: 4558.7) and PACAP-27 (MW: 3147.6) or its [M+Na]+ were determined. The 

aqueous solutions of the PACAP-38 and the PACAP-27 standards and the examined samples 

were loaded onto the target plate (MTP 384 massive target T, BrukerDaltonics, Bremen, 

Germany) by mixing 1 µL of each solution with the same volume of a saturated matrix 

solution, prepared freshly every day by dissolving α-cyano-4-hydroxycinnamic acid (CHCA) 

in acetonitrile/0.1% trifluoroacetic acid (TFA) (1/2, v/v) [59]. The CSF samples were desalted 

and cleaned with 0.1% TFA solution with the use of ZipTip18 pipette tips (Millipore Kft., 

Hungary). The purified proteins and peptides were eluted directly onto the MALDI target 

plate with 3 µl of acetonitrile/0.1% TFA (50/50, v/v) solution by mixing 1 µl of the saturated 

matrix solution described above. The ions were accelerated under delayed extraction 

conditions (200 ns) in positive ion mode with an acceleration voltage of 20.00 kV; each 
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spectrum was detected in linear mode. The instrument uses a 337 nm pulsed nitrogen laser, 

model MNL-205MC (LTB Lasertechnik Berlin GmbH., Berlin, Germany). External 

calibration was performed in each case with #206195 Peptide Calibration Standards 

(BrukerDaltonics, Bremen, Germany). Protein masses were acquired in the range of 1000 to 

8000 m/z. Each spectrum was produced by accumulating data from 300 consecutive laser 

shots. The BrukerFlexControl 2.4 software was used for control of the instrument and the 

BrukerFlexAnalysis 2.4 software for spectrum evaluation. 

 

Statistical analysis 

Data are presented as mean+S.E.M. of the results on n=11-28 animals. Statistical analysis was 

performed with one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc test 

with GraphPad Prism 5.0 software. Levels of probability p<0.05 were considered significant. 
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2) CLINICAL HUMAN INVESTIGATIONS  

 

Participants 

87 migraine patients with or without aura and 40 healthy control subjects were enrolled in this 

study. The migraineurs were selected in accordance with the criteria of the Headache 

Classification Committee of the International Headache Society 2004 [20]. The study groups 

were age-matched. The demographic and clinical characteristics of the patient and control 

populations are summarized in Table 2. 

A detailed questionnaire was used to compile a homogeneous group of migraineurs as 

concerns the features of their migraine disease: the duration of the migraine, the attack 

frequency, allodynia [116], the severity of pain during attacks as measured on a visual-

analogue scale (VAS). The relation of the migraine attacks to the menstrual cycle [117] and to 

the presence of other non-migraine, chronic pain disorder (lumbago, low-back pain, knee- and 

hip-joint arthrosis) was also assessed. Depression was not clinically diagnosed in any of the 

cases. Healthy volunteers serving as controls were screened for non-reported/non-treated 

headaches. Subjects (both patients and controls) who displayed any significant and serious 

non-migraine chronic disorders were excluded from the study. 

Healthy control subjects 

n=40 

Mean age (years) Gender 

36.60 ± 11.84 
♀ n=26 

♂ n=14 

 

Migraine 

patients 

n=87 

Mean 

age 

(years) 

Gender 
Type of 

migraine 

Mean 

duration 

of disease 

(years) 

Mean attack 

frequency/ 
year 

Allodynia 

n=23 

Mean 

VAS-

score 

37.91 

± 

10.17 

♀ n=79 

♂ n= 8 

MA n=18 

MO n=69 

12.99 ± 

9.61 
36.80±28.44 

0. level n=64 

1. level n= 9 

2. level n= 9 

3. level n= 5 

7.94±

1.75 

 

 

 

 

Table 2. Mean data on healthy control volunteers and 87 migraineurs (age, gender, type of 

migraine (with or without aura), disease duration (years), attack frequency, allodynia and 

VAS-score) are shown. MA: migraine with aura; MO: migraine without aura. Allodynia: 0: 

absence of allodynia; 1: mild allodynia; 2: moderate allodynia; 3: serious allodynia.   
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Study design and procedures 

The study was approved by the Ethics Committee of the Faculty of Medicine, University of 

Szeged (87/2009). All study participants gave their written informed consent, in accordance 

with the Declaration of Helsinki. There were no restrictions as regards food and drink intake. 

Blood samples were drawn from migraineurs during a migraine attack and/or in an attack-free 

period. Affected patients were asked not to start their usual attack treatment until blood 

samples had been taken. Accordingly, 80 interictal and 28 ictal samples were collected. From 

among the 87 patients, blood samples of 21 migraineurs could be collected in both periods. 

Data of the 21 migraineurs are shown in Table 3. A single blood sample was taken from each 

control. Blood samples (6 ml per subject) were taken in a sitting position during rest from the 

cubital vein and collected in ice-cold glass tubes containing the anticoagulant EDTA (12 mg) 

and the protease inhibitor aprotinin (Gordox, 1200 IU), and kept at 4 °C until centrifugation 

(2000 rpm for 10 min at 4◦C). Plasma samples were stored at −80 °C until the PACAP-38-LI- 

and CGRP-LI were measured by RIA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Demographic data on 21 migraineurs, whose samples from both the ictal and the 

interictal periods were analysed. The age, gender, type of migraine (with or without 

aura), disease duration (years), attack frequency, allodynia, VAS-score, PACAP-38-LI in 

plasma samples (fmol/ml) originating from interictal and ictal phases, the time of the 

previous attack before interictal blood sampling (days) and the duration of the present 

headache (hours) are shown for each patient. MA: migraine with aura; MO: migraine 

without aura. Allodynia: 0: absence of allodynia; 1: mild allodynia; 2: moderate 

allodynia; 3: serious allodynia 



 
 

Patient Age Gender Type of 
migraine 

Duration 
of disease 

(years) 

Attack 
frequency

/year 
Allodynia VAS- 

score 

Interictal 
PACAP-38-LI 

(fmol/ml) 

Previous 
attack 
(days 
ago) 

Ictal 
PACAP-

38-LI 
(fmol/ml) 

Duration of 
headache before 

sampling 
(hours) 

1 24 ♀ MO 3 17 0 10 24.30 9 26.50 4 
2 39 ♀ MO 26 30 0 9 20.00 2 29.16 96 
3 46 ♀ MO 18 24 0 9 19.50 7 23.90 4 
4 44 ♀ MO 30 47 3 7 18.40 9 20.90 12 
5 45 ♀ MO 2 12 0 9 26.94 6 20.40 5 
6 27 ♀ MO 14 30 2 8 20.50 6 17.00 24 
7 35 ♀ MO 20 12 0 8 27.00 6 31.20 7 
8 39 ♀ MO 30 109 2 9 21.20 10 25.90 7 
9 31 ♂ MA 10 52 0 7 24.11 7 33.21 8 
10 21 ♀ MO 5 24 0 7 20.41 7 25.18 3 
11 38 ♀ MO 2 30 0 7 22.34 5 31.81 24 
12 46 ♀ MO 10 36 0 8 26.36 7 28.05 10 
13 17 ♂ MO 10 12 0 8 23.51 10 35.28 2 
14 30 ♀ MO 10 12 1 5 26.43 7 23.30 24 
15 39 ♂ MO 10 66 0 8 27.15 1 35.28 2 
16 37 ♀ MO 9 30 0 8 25.23 7 33.70 48 
17 50 ♀ MO 14 12 0 8 21.59 21 26.92 5 
18 52 ♀ MO 14 26 3 8 22.08 5 30.71 60 
19 35 ♀ MO 25 52 0 10 25.05 1 31.69 8 
20 58 ♀ MO 15 21 0 8 27.09 7 29.18 14 
21 35 ♀ MA 6 20 2 10 29.33 20 29.67 20 

Mean 37.52   13.48 32.10  8.14 23.74 7.62 28.04 18.43 
SD 10.34   8.61 23.23  1.20 3.09 4.95 5.00 23.33 
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RIA measurements and data acquisition 

Plasma concentrations of PACAP-38 were determined with specific and sensitive RIA 

techniques developed earlier [115]. The PACAP-38 antiserum “88111-3” was raised in 

rabbits with synthetic peptides conjugated to bovine serum albumin (BSA) or thyroglobulin 

with glutaraldehyde or carbodiimide. The high specificity and C-terminal sensitivity of this 

antibody were confirmed by cross-reactivity studies, and no cross-reactivity was found with 

PACAP-27 or with other related neuropeptides in either case. Following centrifugation of the 

plasma samples (2000 rpm at 4 °C for 10 min) the peptide was extracted from the plasma into 

3 volumes of absolute alcohol. After precipitation and a second centrifugation (2000 rpm at 

4 °C for 10 min), the samples were dried under a nitrogen flow and resuspended in 300 µl of 

assay buffer before RIA determination, in order to achieve a 10-times higher concentration for 

the RIA procedure [61, 115]. The tracers were mono-125I-labelled peptides prepared in our 

laboratory. Synthetic peptides were used as RIA standards in concentrations ranging from 0 to 

1000 fmol/ml. The assay was prepared in 1 ml 0.05 M (pH 7.4) phosphate buffer containing 

0.1 M sodium chloride, 0.25% (w/v) BSA and 0.05% (w/v) sodium azide. The antiserum (100 

µl, 1:10000 dilution), the RIA tracer (100 µl, 5000 cpm/tube) and the standard or unknown 

samples (100 µl) were measured into polypropylene tubes with the assay buffer. After 

incubation for 48–72 h at 4 °C, the antibody-bound peptide was separated from the free 

peptide by the addition of 100 µl of separating solution (10 g charcoal, 1 g dextran and 0.5 g 

commercial fat-free milk powder in 100 ml of distilled water). Following centrifugation (3000 

rpm at 4 °C for 15 min), the contents of the tubes were gently decanted and the radioactivity 

of the precipitates was measured in a gamma counter (Gamma, type NZ310). The PACAP-38 

concentrations of the unknown samples were read from calibration curves. 

Plasma concentrations of CGRP were determined with specific and sensitive RIA techniques 

developed earlier [118]. 

 

Statistical analysis 

Data expressed as mean±SD if not stated otherwise. The normality of the data was tested with 

the Shapiro-Wilk test. Group comparisons were carried out with the Student’s unpaired, 

paired t-tests and the Wilcoxon-test with SPSS 17.0. Data were analysed with multivariate 

test (repeated measure ANOVA) in the case of menstruation cycle and chronic pain condition 

related to PACAP-38 level. Statistical significance was accepted at p<0.05.  
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VI. RESULTS 

1) PRECLINICAL ANIMAL EXPERIMENTS 

Changes in PACAP-38-LI in rat plasma and different brain regions in response to CS of 

the TS 

The level of PACAP-38-LI in the systemic circulation of intact, untreated rats, 18.5+3.6 

fmol/ml, was not significantly changed within the 180-min examination period by CS of the 

TS with 10 mg/kg i.p. NTG (Fig.7). PACAP-27-LI was not measurable in the rat plasma; it 

was below the detection limit of the assay even when the total peptide content was extracted 

from a volume of 4 ml. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RIA could reliably measure both PACAP-38-LI and PACAP-27-LI in the homogenates of 

different rat brain regions related to the trigeminal system. Their concentrations were ~5-6 

fmol/mg and ~0.4-0.6 fmol/mg wet tissue respectively, in each of the TNC, the C3-C4 

segments of the SC and the TRG. NTG injection evoked significant increases in PACAP-38-

LI at both 90 min and 180 min in the TNC, but not in the other two examined areas. The 

concentrations of PACAP-27-LI were about 10 times lower than those of PACAP-38-LI in 

Figure 7. PACAP-38-like immunoreactivity (PACAP-38-LI) determined by RIA in rat 

plasma 15, 30, 90 and 180 min after i.p. injection of 10 mg/kg nitroglycerin. Plasma 

samples of untreated intact rats served as control. Each column denotes the mean+S.E.M. 

of the results on n=11-28 animals. Significant differences were not observed with one-way 

ANOVA followed by Tukey’s post-hoc test. 
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both the TNC and the C3-C4 regions of the SC. The level of the shorter form was 

approximately half that of the longer one in the TRG. The NTG-induced alterations in 

PACAP-27-LI in each region were identical to the changes in PACAP-38-LI (Fig. 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8. PACAP-38-like and PACAP-27-like immunoreactivities (PACAP-38-LI and 

PACAP-27-LI) determined by RIA in homogenates of (A) the trigeminal nucleus 

caudalis (TNC), (B) the C3-C4 spinal cord segments, and (C) the trigeminal ganglia 

(TRG) of the rat 90 and 180 min after 10 mg/kg i.p. nitroglycerin injection. The 

respective brain segments of untreated intact rats served as control. Each column 

denotes the mean+S.E.M. of the results on n=11-28 animals; *p<0.05, ***p<0.001 vs. 

intact control (one-way ANOVA followed by Tukey’s post-hoc test). 
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Changes in PACAP-38-LI in rat plasma and different brain regions in response to ES of 

the TS 

In contrast with what was observed on CS of the TS with NTG, ES of the right TRG led to a 

significant, ~30% elevation of the plasma PACAP-38-LI 90 min later. This elevation 

subsequently declined somewhat, but still remained significant at 180 min. Sham stimulation 

(electrode insertion without ES) did not influence the PACAP-38-LI in the systemic 

circulation (Fig. 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly to the effect of the NTG injection, electrical TRG stimulation gave rise to 

significant increases in both PACAP-38-LI and PACAP-27-LI levels in the TNC after 180 

min, whereas no change was observed in the C3-C4 and the TRG regions. No change was 

detected in the sham-stimulated group (Fig. 10).  

 

 

 

Figure 9. PACAP-38-like immunoreactivity (PACAP-38-LI) determined by RIA in the rat 

plasma 30, 90 and 180 min after electrical stimulation of the TRG (10 Hz, 1 mA, 30 min). The 

plasma samples of untreated intact rats and sham-stimulated rats served as controls. Each 

column denotes the mean+S.E.M. of the results on n=11-20; *p<0.05, ***p<0.001 vs. intact 

control; +p<0.05 vs. sham-stimulated control at the respective time (one-way ANOVA 

followed by Tukey’s post-hoc test). 
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Figure 10. PACAP-38-like and PACAP-27-like immunoreactivities (PACAP-38-LI and 

PACAP-27-LI) determined by RIA in homogenates of (A) the trigeminal nucleus caudalis 

(TNC), (B) the C3-C4 spinal cord segments, and (C) the trigeminal ganglia (TRG) of the rat 

90 and 180 min after electrical stimulation of the TRG (10 Hz, 1 mA, 30 min). The respective 

brain segments of untreated intact rats and sham-stimulated rats served as controls. Each 

column denotes the mean+S.E.M. of the results on n=11-20 animals; **p<0.01 vs. intact 

control (one-way ANOVA followed by Tukey’s post-hoc test). 



31 
 

Identification of PACAP-38 and PACAP-27 in rat plasma and CSF 

PACAP-38 was clearly identified by MS at m/z 4535.3 (PACAP-38 H+ adduct) in the intact 

rat plasma samples, but PACAP-27 was not detectable (Fig. 11C) relative to the standard 

spectra (Fig. 11A,B). However, neither form could be found in the CSF samples obtained 

from any group (Fig. 11D). RIA measurements confirmed the lack of PACAP-38-LI and 

PACAP-27-LI in the CSF (data not shown). 

 

 

  

 

  

Figure 11. Identification of PACAP-38 in (B) the standard and (C) intact rat plasma 

samples by MS at m/z 4535.3 Da, representing the average mass of the protonated 

quasimolecular ion of PACAP-38. Neither the other biologically active form, PACAP-27 

(3147.6 Da), nor its [M+Na]+ could be detected as compared to the (A) PACAP-27 

standard. Panel D is a MALDI TOF spectrum of the intact rat CSF sample in positive ion 

mode using linear detection, where the characteristic peaks of PACAP-38 (4535.3 Da) 

and/or PACAP-27 (3147.6 Da) were not observed. 
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2) CLINICAL HUMAN INVESTIGATIONS  

Differences in plasma PACAP-38-LI between migraineurs and healthy controls 

As concerns the total of 87 migraine patients (n=87), a significantly lower PACAP-38-LI was 

determined in the interictal plasma of the migraineurs (n=80; 24.60±3.59 fmol/ml) than in that 

of the healthy volunteers (n=40; 26.54±4.43 fmol/ml; Student’s unpaired t-test, p<0.011, 

t=2.578) (Fig. 12/A). However, the plasma samples from the patients during their migraine 

attacks (n=28) exhibited a significantly higher PACAP-38 concentration (27.39±4.67 

fmol/ml) as compared with the interictal samples (n=59; 24.91±3.73 fmol/ml; Student’s 

unpaired t-test, p<0.009, t=-2.676) (the interictal data of those 21 migraineurs whose plasma 

samples were collected from both periods were excluded from this analysis to avoid the 

statistical problems caused by the paired samples) (Fig. 12/B). No difference was found when 

the ictal samples were compared with those of the controls (Student’s t-test for unpaired 

comparisons, p<0.447, t=-0.765) (Fig. 12/C). 

 

 

 

 

 

  

Figure 12. PACAP-38-LI (fmol/ml) was determined by RIA in the plasma of the migraineur 

groups in comparison with those of healthy volunteers. Boxes indicate PACAP-38-LI 

(median±SD, minimum and maximum values) of healthy control subjects (n=40), and of 

migraineurs (n=87) during the interictal (n=80) and ictal periods (n=28). Significant PACAP-

38-LI decrease was observed in the interictal group vs. the control with Student’s unpaired t-

test, p<0.011 (A). Leaving out the interictal data of the paired samples, the interictal (n=59) 

vs. the ictal (n=28) group comparison showed significantly higher PACAP-38-LI during 

migraine attacks with Student’s unpaired t-test, p<0.009 (B). There were no significant 

PACAP-38-LI differences between the control and the ictal group with Student’s t-test for 

unpaired comparisons, p<0.447 (C). 

A B C 
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Association between plasma PACAP-38-LI and duration of migraine 

A mild negative correlation was found between the duration of the migraine and the interictal 

PACAP-38-LI (n=87; linear regression, p<0.044, R=-0.231) (Fig. 13). Plasma PACAP-38-LI 

did not correlate with the age, attack frequency, allodynia, and the VAS-score (ANOVA, 

linear regression, p>0.05) and differences were not found regarding the gender, hormonal 

changes and pain (Student’s unpaired t-test, p>0.05). 

 
 

  

 

 

Changes in plasma PACAP-38-LI and CGRP-LI in 21 migraineurs 

To gain insight into the changes of neuropeptide levels, we measured the plasma 

concentrations of PACAP-38 and CGRP plasma concentration in the same subject during a 

headache attack and interictally. The plasma PACAP-38-LI was significantly higher in the 

ictal period (28.04±5.00 fmol/ml) than in the interictal period (23.74±3.09 fmol/ml) (n=21; 

Student’s paired t-test, p<0.001, t=-4.134) (Fig. 14/A). 

The CGRP-LI was determined simultaneously with the PACAP-38-LI in both phases in 18 

migraineurs. Significantly higher CGRP levels were observed in the plasma samples during 

the ictal period (53.74±31.52 fmol/ml) as compared to the interictal period (39.74±27.49 

fmol/ml) (n=18; Wilcoxon-test, p<0.035) (Fig. 14/B). 

Figure 13. Interictal plasma PACAP-38-LI (fmol/ml) depending on the duration of the 

migraine disorder in the group of migraineurs (n=87). A negative correlation was observed 

with linear regression on the graph, p<0.044. 
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Figure 14. 

A: PACAP-38-LI (fmol/ml) was determined by RIA on plasma samples from migraineurs 

in both interictal and ictal periods. Plots of individual data for each patient (n=21). A 

significant difference was observed between the levels in the two phases with Student’s 

paired t-test, p<0.001. 

B: CGRP-LI (fmol/ml) was determined by RIA on plasma samples from migraineurs in 

both interictal and ictal periods. Plots of individual data for each patient (n=18). A 

significant difference was observed between the levels in the two phases with Wilcoxon-

test, p<0.035.  

The thick grey lines represent the mean values. 

A 

B 
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Associations of changes in plasma PACAP-38-LI with the menstruation cycle sensitivity 

and  chronic pain conditions in 21 migraineurs 

Changes in the plasma PACAP-38-LI proved to be influenced by 2 parameters: There was a 

significant PACAP-38-LI elevation in the ictal phase (31.01±3.32) compared to the interictal 

phase (24.18±2.52) in patients whose migraine headache was not sensitive to the menstruation 

cycle (Group 1: n=11; Student’s paired t-test, p<0.00002, t=-7.250). Meanwhile, there was no 

such significant increase during the ictal phase (24.78±4.56) compared to the interictal phase 

(23.26±3.70) in patients whose migraine headache was sensitive to the menstruation cycle 

(Group 2: n=10; Student’s paired t-test, p<0.344, t=-0.998) (Fig. 15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar PACAP-38-LI increase was detected in the ictal phase (30.01±3.69) vs. the interictal 

phase (24.15±2.47) of patients, who did not have chronic pain-related conditions (Group 1: 

n=15; Student’s paired t-test, p<0.00005, t=-5.716). However, there was no difference in the 

ictal phase (23.13±4.64) compared to the interictal phase (22.71±4.40) in patients, who had 

Figure 15. Plasma PACAP-38-LI (fmol/ml) in the interictal and ictal periods of two 

subpopulations of 21 migraineurs, characterized on the basis of the menstruation cycle 

dependence. Group 1: menstruation cycle-independent migraineurs (n=11); group 2: 

migraine patients, whose headache was sensitive to their menstruation cycle (n=10). Each 

box represents the median±SD, minimum and maximum values of the results. A significant 

difference in PACAP-38-LI was observed between the interictal and ictal phases in group 1 

with Student’s paired t-test, p<0.00002. 
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other non-migraine, chronic pain disorders (Group 2: n=6; Student’s paired t-test, p<0.833, 

t=-0.222) (Fig. 16). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

To reveal the relationship between ictal-interictal PACAP-38 levels and menstruation cycle 

and chronic pain, repeated measure ANOVA was used. Multivariate test showed significant 

main effect of PACAP-38 measurements in different phases of the disease (F(1,19)=22.579, 

p<0.0001) and main effect of headache related to the menstruation cycle (F(1,19)=22.257, 

p<0.0001). The interaction of the two factors was also significant (F(1,19)=9.096, p<0.007). 

Similar ANOVA was carried out for identifying if ictal/interictal PACAP-38 level changes 

are influenced by concomitant chronic pain conditions. While significant main effects were 

identified by analysis (ictal/interictal: F(1,19)=11.392, p<0.003, chronic pain condition: 

F(1,19)=0.553, p<0.446) the interaction was not significant in this case (p>0.05). 

No correlations were found between the levels of peptide and age, gender, the attack 

frequency, allodynia or the VAS-score.  

Figure 16. Plasma PACAP-38-LI (fmol/ml) was characterized in the interictal and ictal 

periods of two subpopulations of 21 migraineurs, separated on the basis of chronic pain 

conditions. Group 1: patients without chronic low back pain (n=15); group 2: patients with 

simultaneous low back pain (n=6). Each box represents the median±SD, minimum and 

maximum values of the results. A significant difference in PACAP-38-LI was observed 

between the interictal and ictal phases in group 1 with Student’s paired t-test, p<0.00005. 
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VII. DISCUSSION 

According to our results the alteration of PACAP-38-concentration in the peripheral 

blood plasma is associated with the migraine disease, which was also evidenced in animal 

models of the activated TS. The role of certain neuropeptides has being investigated for a long 

time in the development of migraine, but the function of PACAP in headache disorders may 

be a new perspective for the research. 

 

1) PRECLINICAL ANIMAL EXPERIMENTS  

Numerous animal experiments [59, 60, 62, 65] and some clinical studies [27, 28] have pointed 

out the key role of PACAP in nociceptive signalling mechanisms. Although its involvement 

in migraine has recently been indicated by human data [27, 223], and its 

immunohistochemical localization has been described in the TS [35], our work provides the 

first experimental evidence that its concentration is specifically altered in the TNC and the 

plasma in response to stimulation of the TS in rat models.  

Our results support the neuropeptide theory of the development of activated TS. Both 

peripheral and central sensitizations were accompanied by PACAP-level changes in our 

models, suggesting the complexity of this neuro-vascular system. The slightly divergent 

results observed in the two models can be explained by the differences in the activation 

mechanisms. 

 

Blood plasma 

Chemical stimulation of the TS 

It is well known that NO has vasodilating effect hence the NTG administration often causes 

immediate dull headache in sensitive subjects. The delay in the action of NO triggers a typical 

attack in migraineurs, which is possibly related to the activation of trigeminal Aδ and C fibres 

leading to central sensitization at the level of TNC [89].  

In our experiment, the CS of the TS was might not strong enough to generate pronounced 

alterations in plasma PACAP-38-level. The higher PACAP-38-LI 15 min after NTG injection 

as compared with the control groups is explained by the acute and short-term effect of NO. In 

another study, we showed that the systemic blood pressure decreases in the first 10 min 

following NTG injection, after that it remains unchanged [79]. These phenomena are 

manifested in alterations in vessel wall tension, which can be one of the triggers of the 

pseudounipolar neurons of TRGs, since the intracranial vasculature is mainly innervated by 
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trigeminal nerves [119]. The initial vessel wall tension changes, as an exciter, stimulate the 

peripheral trigeminal nerve terminals, and therefore a small amount of PACAP-38 can be 

released into the systemic circulation. Later, when the blood pressure starts to become normal, 

the vessel wall tension will not change as much as earlier. It does not function as a trigger, so 

it cannot evoke PACAP-38 release.  

The other explanation of the decreasing PACAP-38-LI 30, 90 and 180 min after NTG 

injection is the short (less than 5 min) plasma elimination half-life of PACAP-38 in the blood. 

Central sensitization is generally confirmed in the NTG model, as observed in our 

experiments by the elevated PACAP-38- and PACAP-27-LI in the TNC. NTG evokes 

migraine attacks [75, 120] and develops sensitization [121] in human studies. Similarly, in 

animal experiments, NTG activates the second-order neurons and selectively elevates the 

levels of nNOS- [89], CaMKII- [122] and c-fos [123] -immunoreactivity, which are involved 

in nociception and central sensitization.	  

 

Electrical stimulation of the TS 

The ES of the TRG caused significant elevations of PACAP-38-LI in the blood plasma and 

both peptide forms in the TNC, which may be a result of PACAP release from both the 

peripheral [69, 124] and presumably the central terminals of the primary sensory neurons. 

This is in line with previous findings that capsaicin can induce PACAP release from 

peripheral sensory nerves [125]. The fact that the highest PACAP level in the circulation was 

measured 90 min after the ES is probably due to its release from the peripheral terminals of 

the activated neurons that is peaking at this time. The PACAP elevation was still significant at 

180 min, but it was tending to decrease due to the peptide depletion.  

 

Trigeminal nucleus caudalis 

Chemical stimulation of the TS 

The NTG-induced PACAP increase in the region of the TNC is likely to have an important 

role in the trigeminal activation. The fact that systemic administration of PACAP can evoke 

sensitization and migraine-like attacks in migraineurs [27] is in line with the results of our 

animal experiments. Moreover, PACAP release in the dorsal horn has been reported in other 

experimental conditions of peripheral stimulation [126-130]. The potential relationship 

between PACAP and pain is enhanced by the co-localization and functional link of the NOS 

and PACAP systems, which has been described in a variety of studies [63, 76, 131-134]. 
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Electrical stimulation of the TS  

The PACAP-38-LI increase in the plasma preceded the changes seen in the TNC after ES, 

which suggests a rapid peripheral release, followed by activation and sensitization of the 

second-order trigeminal neurons. The ES-induced TS activation is followed by enhanced 

PACAP release from the central terminals of the TRG neurons in the TNC. A similar change 

was reported in the cyclophosphamide-induced chronic cystitis model, where the expression 

of PACAP-27/38 increased significantly in the spinal segments and dorsal root ganglia (DRG) 

involved in micturition reflexes [135]. This PACAP release is also in accordance with the 

elevated PACAP-level noted after capsaicin administration into the subarachnoid space [125]. 

 

Briefly, the up-regulation of this peptide may indicate a general trigeminal activation. The 

most noteworthy result was the elevation of both PACAP-38- and PACAP-27-LI in the TNC, 

which occurred selectively after both CS and ES of the TS. We have recently reported that i.p. 

injected PACAP-38 evokes a marked photophobia, meningeal vasodilatation and an increased 

number of c-fos-positive neurons in the TNC of wild-type, but not PACAP-deficient mice 

[79]. These data are in complete agreement with our present conclusion that PACAP released 

in the TNC is responsible for central sensitization of the TS. Sensitization associated 

molecular changes restricted to the “trigeminal area” were observed in previous experiments: 

c-fos, CGRP [98, 136], nNOS-immunoreactivity in the NTG model [89], and c-fos [137], 

nNOS [111], CGRP alterations [110] following the ES of the TRG. 

 

Trigeminal ganglion 

Our experiments did not reveal significant PACAP changes of any kind in the TRG in either 

model. In a previous study PACAP-immunoreactivity was showed in a small number of nerve 

cell bodies of the human TRG, but expression changes of this peptide in the ganglia were not 

fully evaluated. Increased PACAP-levels in the sensory neurons of the rat DRG have been 

described several days after irreversible peripheral nerve damage (transection) [65] and nerve 

compression [138]. Moreover, the role of PACAP both in nociception and regeneration was 

emphasized in a sciatic nerve transection rat model, where the PACAP-immunoreactivity has 

changed in the DRG and different laminae of spinal cord compared to the control and 

transected side [139]. The lack of alteration in PACAP expression in the TRG in our 

experiments might be related to the fact that we applied acute stimulations. The short 

stimulation period and latency was not sufficient to cause substantial expression changes in 
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the ganglion. The ES method of TRG differs from the peripheral nerve damage applied in the 

studies mentioned above, but it is massive enough to cause damage and depletion of PACAP-

containing cells from the TRG. Further experiments are needed to emerge the real PACAP 

changes in the TRG and to get on to unexceptional results.      

 

Cerebrospinal fluid 

An earlier study revealed decreased somatostatin- and beta-endorphin-like immunoreactivities 

of the plasma or CSF obtained by suboccipital puncture, while the neuropeptide Y-like 

immunoreactivity did not change during the attack period in patients suffering from common 

migraine [140]. The present MS results confirmed the RIA detection of the presence of 

PACAP-38 in the rat plasma. In contrast, the presence of PACAP in the CSF was not detected 

with either the highly sensitive and specific RIA technique or MS, which suggests that 

PACAP was unable to cross the blood-CSF barrier. It is unknown that whether the barriers 

stay intact or damaged in our models. PACAP-27 was not detectable in either the plasma or 

the CSF, which might be explained by the generally lower concentration (10-100 times lower) 

of PACAP-27 in the mammalian tissues examined so far [30]. 

There is a few literature about the presence of PACAP in the CSF, however, one paper 

reported that PACAP is demonstrable in an artificial CSF perfusate in a specific rat 

experimental setup, where capsaicin was added to the perfusate [125]. In addition, a human 

study suggests that PACAP-38 could be detected in the CSF of healthy control subjects, 

moreover, its concentration in the CSF significantly increases in multiple sclerosis patients 

[141]. Nevertheless, under these conditions, disruption of the blood-CSF barrier cannot be 

excluded.  

 

Functions of PACAP in other pain conditions 

A number of investigations have demonstrated various actions of PACAP in nociceptive 

processes: intrathecally administered PACAP dose-dependently decreased the flinching of the 

hindpaw in the formalin test [65, 142]. In contrast, PACAP induced hyperalgesia after 

administration into the mouse spinal cord [60]. There is evidence that PACAP and its 

receptors can modulate the activity of spinal dorsal horn neurons in rat following a chronic 

constriction injury [126].  

The neuroregulatory functions of PAC1 receptor were demonstrated in a study, where the 

chronic nociceptive response of PAC1 receptor knock-out mice was markedly reduced in 

formalin, thermal, laser and mechanical stimulation-initiated models of inflammation [143]. 
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The inflammatory/neuropathic pain due to the effect of carrageenan and spinal nerve 

transection can be suppressed by the absence of the PACAP gene. Intrathecal administration 

of N-methyl-D-aspartic acid (NMDA) did not cause mechanical allodynia in PACAP knock-

out mice, but it was evoked by the application of PACAP and NMDA together. It suggests 

that PACAP can be the promoter of excitotoxic and nociceptive processes [76]. Nevertheless, 

the typical sensitization phenomena of migraine can be evoked by the systemic application of 

PACAP-38 in humans [27]. 

Further examinations are needed to clarify these controversial data of PACAP related to its 

pronociceptive or antinociceptive effects and peripheral or central features.   
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Figure 17. Possible theories of 

interictally decreased PACAP-38-LI. 

2) CLINICAL HUMAN INVESTIGATIONS  

Our work provided the first evidence that the plasma concentration of PACAP-38 is 

significantly lower in the interictal period of migraineurs as compared with that in healthy 

volunteers, however, the amount of peptide increases in the blood during migraine headaches. 

These results suggest that PACAP-38 might be an important mediator of the pathophysiology 

of migraine. Moreover, the different peptide levels regarding the two phases of disease 

indicate that the PACAP-38 is involved in the development of attacks. 

 

Possible mechanisms behind reduced PACAP-38-LI during interictal phase of migraine 

patients 

Since correlation was found between the interictal lower plasma concentration of PACAP-38 

and the disease duration hereby we think that the amount of PACAP-38 constantly decreases 

in the neuronal elements. Therefore diminishing peptide release and reduced plasma PACAP-

38 level can be detected during the attack-free period in the long term. The correct 

mechanisms are unknown, but we suggest that at the beginning of the ictal period a specific, 

but unknown trigger (stress, hormonal changes, foods, sleep deprivation, even more the lower 

plasma concentration of peptide, etc.) might induce PACAP-38 release from the sensory 

nerve terminals, which subsequently increases the plasma PACAP-38 level. However, the 

PACAP-38-LI elevation in the ictal period is not a definitive increase rather than return to the 

baseline, since this peptide concentration is just a little bit higher than the plasma PACAP-38 

level of healthy controls. We think that the presence of 

headache might serve to adjust the balance in the plasma 

PACAP level. It needs long term follow-up and multiple 

sampling investigations in order to determine the correct 

plasma PACAP-38 alterations and the functions of this 

peptide in migraineurs. 

The reduced peptide concentration might be explained 

indirectly in terms of brain energy deficit (an 

impairment of the cerebral and striated muscle energy 

metabolism [144, 145], elevated lactate levels [146, 

147], abnormalities of mitochondrial compartments 

[148] and imbalanced Mg2+ concentration in the 

neurons [149, 150]). It may additionally be 
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hypothesized that the low interictal peptide concentration might be associated with 

degenerative changes affecting the PACAP-releasing circuitries (cortical atrophy [151], iron 

deposition in the periaqueductal grey matter [152] and increased levels of markers indicative 

of neuronal and glial damage [153] (Fig. 17)). 

 

Possible mechanisms related to the elevated PACAP-38-LI during migraine attacks 

Among proposed mechanisms, the activation of vascular and neuronal elements of TS via 

several regulatory peptides seems to be essential in the formation of migraine. Dilation of 

meningeal vessels and sensitization of trigeminal neurons have been implicated as different 

components underlying this disease. There are some anatomical and physiological factors, 

which might be involved in the migraine-like headache induced by PACAP-38. 

 

Vascular effects of PACAP-38 related to migraine 

Some studies have approached the effects of PACAP-38 in headache from the aspect of 

vessels: 

• In 1995 Zagami and co-workers have published [154] that stimulation of the superior 

sagittal sinus causes extracranial release of PACAP.  

 
• An MRI angiographic study has revealed that PACAP-38 infusion-induced headache 

is related to significant dilatation of middle meningeal arteries (MMAs), in contrast 

with middle cerebral arteries [155]. A PAC1 receptor antagonist can influence the 

vasodilating action of PACAP-38 on pressurized MMAs. Multiple variants of the 

PAC1 receptor have been found besides the VPAC2 receptors in the rat MMAs [156]. 

However, there are some controversial results regarding the relationship of PACAP-38 

and these arteries [57, 156-158]. 

 
• There is evidence that the intracarotid infusion of PACAP-38 produces significant 

dilatation of the dural arteries in rat, which administration route has proved to be more 

effective than the intravenous [58].  

 
• Recently, the PACAP and VIP receptors were characterized by means of 

pharmacological modulators in human meningeal and coronary arteries. These 

peptides were found to have lower potency and efficacy in meningeal vasculature than 

in coronary arteries. This study concluded that processes of PACAP-38-induced 
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migraine-like headache might not involve meningeal vasodilatation rather than 

sensitization of peripheral and central sensory trigeminal fibres [57].  

• The vasodilating properties of PACAP in a small extent or indirectly can contribute to 

the development of headache, e. g. PACAP induces vascular effects mediated via 

activation of perivascular nerves [159]. The vascular effects cannot be excluded, but 

based on the literature it seems that these may be less relevant in migraine [57].  

 

Mast cell effects of PACAP-38 

PACAP-38 is more potent to sensitize trigeminal sensory fibres directly and also through 

mast cell degranulation [27, 160, 161]. It was recently reported that PACAP-38 is associated 

with mast cells, MMA dilation and migraine [162], but different PACAP fragments were also 

emphasized many times in several aspects: these peptides dose-dependently induce histamine 

[163] and serotonin release on rat peritoneal mast cells. The mechanism probably involves the 

direct activation of Gi-type proteins [164] or another PACAP receptor-independent direct 

activation of one or more G proteins, which may then activate the phopholipase-C (PLC) -

dependent signal-transduction pathway [165]. It was also found that PACAP is capable of 

releasing histamine from skin mast cells [166], moreover, the mast cell degranulation 

contributes to the development of PACAP-induced dermal oedema in mice [167].  

The reported effects of PACAP infusion regarding neurogenic inflammation and mast cell 

degranulation in relation to trigeminal activation are very poor and controversial [160]. 

Effects of different truncated PACAP and VIP fragments were tested on rat peritoneal and 

dural mast cells, which has concluded that PLC-mediated mast cell degranulation is 

implicated in PACAP-induced migraine [161]. 

 

The pleiotropic effects of PACAP might be attributable to the three kinds of receptors and the 

two main known signalling pathways. According to the literature the hypothetic mechanisms 

of vasodilation and mast cell degranulation caused by PACAP are the followings: 

 

1. In the vascular smooth muscle cells through the Gs-protein activation, PACAP 

stimulates the activity of AC, leading to increased cyclic adenosine monophosphate 

(cAMP) level. The cAMP can activate the protein kinase A (PKA), which activates 

the ATP-sensitive K+-channels by phosphorylation. Subsequently the K+ ions effuse to 

the extracellular space and the cell becomes hyperpolarised. The Ca2+ influx will give 

up through the L-type voltage-gated Ca2+-channels, which results decreased 



45 
 

intracellular Ca2+concentration and vascular relaxation. Furthermore, the cAMP can 

inhibit the myosin light-chain kinase (MLCK) and induces vasodilation [168, 169] 

(Fig. 18). 

 

2. In the mast cells via the Gq/11-protein-coupled process, it activates the β-subunit of 

PLC, which generates diacyl-glycerol (DAG) and inositol-triphosphate (IP3) from the 

phosphoinositol-diphosphate (PIP2) in the plasma membrane. The IP3 can mobilise the 

Ca2+ storages in the endoplasmatic reticulum, the DAG anchors the protein kinase C 

(PKC) to the cell membrane. The Ca2+ release can activate the PKC, which contributes 

to the secretion of histamine and other inflammatory mediators to the extracellular 

space inducing neurogenic inflammation [170-172] (Fig. 18). 

Indirectly the increased Ca2+-level can promotes the synthesis of NO, since the NOS I 

and NOS II are Ca2+-dependent enzymes, so the NO also causes vasodilation on 

another pathway [28, 173]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Different signalling pathways of PACAP in the smooth muscle cells and mast cells 
AC: adenylate cyclase; ATP: adenosine-triphosphate; Ca2+: calcium-ion; cAMP: cyclic adenosine 
monophosphate; DAG: diacyl-glycerol; ER: endoplasmatic reticulum; GDP: guanosine-diphosphate; Gq/11: 
heterotrimer G-protein subfamily; Gs: facilitating G-protein; GTP: guanosine-triphosphate; IP3: inositol 
triphosphate; IP3R: inositol triphosphate receptor; KATP: ATP-sensitive K+-channel;L-VGCC: L-type voltage-
gated Ca2+-channel; MLC20: myosin 20 kDa light chain; MLCK: myosin light chain kinase; MP: myosin 
phosphatase; P: phosphate group; PIP2: phosphoinositol-diphosphate; PKA: protein kinase A; PKC: protein 
kinase C; PLC-β: phospholipase C-β; VPAC1,2: PACAP receptor  Graph: Mészáros Á.    
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Neuronal effects of PACAP-38 related to migraine 

PACAP-38 is a sensory [68], sympathetic [77] and parasympathetic [78] neuropeptide [174], 

which is released from the nerve endings [13, 35, 68, 175] at the dural or other cranial 

compartments. It can modulate both vessels and nerve fibres through its receptors leading to 

elevated intracellular cAMP level [176]. There are several evidences that the increased cAMP 

causes sensitization and activates the trigeminal neurons [177] and meningeal nociceptors 

[178, 179], therefore induces delayed headache [180]. 

The headache-inducing action of PACAP-38 was first described in 2009. Schytz and co-

workers have demonstrated that PACAP-38 has a simple headache-evoking effect in healthy 

volunteers, but provokes severe migraine-like attacks in susceptible subjects. A decreased 

mean blood flow velocity in the middle cerebral artery and an increase in diameter of the 

superficial temporal artery were observed 20 min following the infusion [27].  

Since it is unknown that which alteration (development of headache or elevation of PACAP-

38-LI) occurs earlier, it is possible that PACAP-38 might cause a self-amplifying positive 

feedback, which can contribute to the maintenance and aggravation of headache. The 

causative role of PACAP-38 is equivocal, but its involvement is unquestioned. 

Based on similar features and 

receptors of PACAP and VIP, as 

well as the complex mechanism 

of migraine, it is likely that 

migraine cannot be related only to 

PACAP-38. This peptide can 

contribute to the evolution of 

migraine attacks in co-operation 

with other regulatory 

neuropeptides, molecules and 

enzymes, like VIP, CGRP, 5-HT, 

SP and NO. When the headache 

starts in response to specific 

triggers (environmental factors, TS activation (vasodilation, neuropeptide release, plasma 

protein extravasation), CSD, energy deficit), the presence and aggravation of pain may lead to 

the release of PACAP-38 from the nerve terminals, as a self-triggering process. This may be 

an explanation of the finding that the increase of plasma PACAP-38-LI in the ictal phases of 

migraineurs is moderate, though significant compared to the interictal period. Hereby the 

Figure 19. Possible theories of ictally increased 

PACAP-38-LI. 
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phenomenon of throbbing headache can be related to the increased PACAP-38-LI during the 

ictal phase of migraineurs found in our study. Subsequently, it would be plausible that the 

activation of second order trigeminal neurons by PACAP-38 can result in direct central 

sensitization [27] (Fig. 19). 

According to the wide distribution and pleiotropic effects of PACAP it is also certain that 

actually there are unknown receptors and signalling mechanisms of PACAP, which may have 

important functions in neurological diseases. Hereby our presumption is that the vascular and 

neuronal events caused by PACAP are not separable in the case of migraine. During attacks 

the PACAP-38 can release from both the central and peripheral terminals of the 

pseudounipolar neurons of TRG [66]. The peptide binds to its receptors and enters the 

systemic circulation. It seems, that activation of PAC1 and VPAC2 receptors can elicit 

vasodilation in the meningeal vessels, unlike the VPAC1 receptors are important in the 

vascular responses of cerebellar arteries [156]. The PAC1 receptors are also emphatic in the 

activation of second-order sensory neurons [79], which appears consistent with previous 

interpretations implicating PAC1 receptors in migraine [27, 181]. This is confirmed by the 

results that intradermal injection of PACAP-38 or VIP can elicit mild short-lasting cutaneous 

pain, increased skin blood flow, flare and wheal in healthy volunteers, which support that 

primarily the VPAC and not the PAC1 receptors mediate these alterations. It is evidenced that 

PACAP induces neurogenic inflammation, mast cell degranulation, neuronal activation and 

sensitization [27, 160]. Participation of PACAP in processes of migraine can be confirmed by 

administration of serotonin 5-HT1B and 5-HT1D receptor agonist sumatriptan, which 

attenuates the PACAP-induced MMA vasodilation and headache pain [27, 155].  

Summarized, PACAP can be involved in many aspects to promote the development and 

aggravation of severe headache attacks. 

 

Possible function of blood-brain barrier (BBB) in PACAP-related migraine disease 

In accordance with the molecular weights of PACAP-27 (3 kDa) and -38 (4.5 kDa) (Fig. 11/A, 

B), the PACAPs can penetrate the blood-brain barrier (BBB). PACAP is able to pass through 

the intact BBB [182, 183], the blood–spinal-[184, 185] and the blood–testis barrier [186]. 

However, the efficiency of PACAP transport across the BBB is dependent on the saturable 

peptide transport system [186-188]. Moreover, these mechanisms require specific transporters 

in specific brain areas [189, 190]. The hypothalamus and the hippocampus have the fastest 

uptake [189]. The accumulation of circulating peptide is limited in the brain by the brain-to-

blood efflux transporters [186, 191]. 
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Peptide carriers located at the BBB are often regulated and affected by diseases. Slower 

transport of PACAP can be observed into the whole brain, the olfactory bulb, the 

hypothalamus and the hippocampus in aged Alzheimer’s disease mice model [189]. The BBB 

transport of PACAP can alter following spinal cord injury, stroke, and cardiac arrest [184, 

185, 187].  

There are assumptions that the integrity of BBB is disrupted in migraineurs [192, 193]. 

Transient brain dysfunction, vasogenic cerebral oedema and damaged BBB can develop in 

lipopolysaccharide-induced brain injury in rats in response to the over-expression of matrix 

metalloproteinase 9 [194]. This enzyme can degrade the basal membrane, resulting in 

structural impairment of the BBB and altered plasma levels of certain molecules, which have 

been observed in patients with migraine [195-198]. The enhanced BBB permeability in 

migraine may facilitate PACAP to penetrate into the brain parenchymal elements and exert its 

central effects. From the opposite aspect, the PACAP released in the brain [30] can also 

penetrate through the BBB, and hence may be detected in the plasma. 

 

Correlation of PACAP-38-LI with the menstruation cycle and other chronic pain 

conditions in migraineurs 

Menstruation cycle 

Migraine attacks are often closely related to female hormonal changes [117]. Hence, it is 

interesting that PACAP-38-LI increases significantly during the ictal period only in those 

women whose headache is not related to the menstrual cycle. Although, the influence of 

menstruation cycle in the PACAP-38-LI changes cannot be excluded, but there is evidence 

that the plasma concentration of PACAP-38 is relatively stable and independent of the gender, 

age, food intake or female hormonal cycles in healthy subjects [40]. 

 

Chronic pain and stress 

It is well established that PACAP-38 plays an important role in a variety of other pain 

conditions [62, 199, 200]. Contrarily in our study there was no increased PACAP-38 LI in the 

ictal phase in patients with other chronic pain conditions. Moreover, we did not find any 

statistical proof of the influence of chronic pain and the alterations of PACAP-38 level. 

The role of stress might arise in the release of PACAP. This peptide may be involved in the 

hypothalamic-pituitary-adrenal (HPA) axis activation. Stress may be an inducing factor of 
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PACAP-38-release, because it was observed that the effects of different types of stressors 

were markedly ameliorated in PACAP-deficient mice [201].  

In our animal experiments the rats were anaesthetized in the ES-TRG model, so the effect of 

stress can be excluded, however, in the NTG-induced model the rats were awake.  

The influence of stress may also be excluded in the human study, because significant 

alterations were found only in the group of migraineurs without any other chronic pain 

syndrome, which condition can be perceived as a kind of stress factor. 

 

Possible relations between the PACAP-38 and CGRP in migraineurs 

CGRP is a 37-amino-acid neuropeptide, identified in 1982 [202]. It has diverse biological 

functions in the peripheral and central nervous system [203, 204]. More than 20 years ago, the 

presence of CGRP-immunoreactivity in the rat TRG [205] and the release of CGRP was 

demonstrated in the extracerebral circulation of humans and cats in response to TS activation 

[108, 206]. CGRP-containing neurons have also been detected in the human TRG [68, 207] 

and elevated plasma CGRP levels have been described in migraine [16, 17] and other types of 

primary headache [208]. CGRP caused MMA dilation was detected in normal volunteers and 

it was reversed by sumatriptan administration [209]. Moreover, an intravenous infusion of 

human alpha-CGRP causes migraine headache [180, 210] and there is a significant positive 

correlation between plasma levels of CGRP and headache severity scores in NTG-induced 

migraine attacks [87]. However, there are inconsistent results, which found increased plasma 

levels of CGRP in migraine during attack-free periods [17]. A controversial study questions 

the importance of CGRP in migraine [211]. Additionally, a study reported no changes in 

plasma CGRP-level during migraine attacks compared to the interictal period [18].  

Despite these contradictions, the importance of CGRP in migraine became firmly established 

[212]. In fact, intravenous and oral CGRP-receptor antagonists [213, 214] might also be 

effective in the treatment of migraine [215]. However, their side-effect profile, with special 

emphasis on hepatotoxicity, currently makes this drug development direction problematic 

[216-218]. Co-expression patterns were described between the CGRP and other peptides, 

molecules [13, 219]. Our results draw attention to a possible influence between the PACAP 

and CGRP systems in migraine pathogenesis [125, 220, 221]. In addition there are evidence 

that PACAP shares expression and regulation simultaneous with CGRP [27, 155, 222].  
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VIII. CONCLUSIONS 

In the animal experiments, both PACAP-38-LI and PACAP-27-LI were specifically 

elevated in the TNC in response to both the chemical and electrical stimulation of the TS. 

Furthermore, a marked elevation of PACAP-38 was detected in the systemic circulation only 

in the ES-TRG-model. The results indicate that this peptide is closely connected with the NO 

system, and PACAP might therefore play a pivotal role in nociception and the TS.  

 From the human study, it was concluded that PACAP-38 might be implicated in the 

development of migraine headache. There are associations between the migraine periods (ictal 

and interictal) and alterations in plasma PACAP-38 levels. The quantitative changes of this 

peptide are related to the disease duration, the menstruation cycle and the presence of other 

pain-related disorders. The causative role of PACAP-38 in migraine headache demands 

further studies [223]. 

These data facilitate the understanding of the mechanisms of TS activation, and 

answer certain questions relating to clinically relevant sensitization processes. Our results 

indicate the need of investigations of the role of plasma PACAP-38 as a putative biomarker in 

migraine, which might provide new perspectives as concerns the identification of a new target 

in the therapy of migraine. 

 

The relevance and potential future applications of PACAP  

PACAP seems to be an interesting and promising target understanding the actions of TS. 

Although the poor metabolic stability, the wide distribution and diverse effects of PACAP 

limit its application as a potent therapy for diseases, even so there have been attempts to 

utilize the functions of PACAP. 

A novel fusion molecule, PACAP-TAT, which contains the 11-amino acid human 

immunodeficiency virus protein TAT, endows PACAP with an enhanced ability to penetrate 

the BBB, than that of PACAP alone. The i.p. injection of PACAP-TAT induces a stronger 

inhibitory effect on food intake, which indicates the localization of protein in the brain [224]. 

It was recently demonstrated that therapeutic amounts of PACAP could be delivered to the 

brain by the intranasal administration route [190]. The occipital cortex and striatum were the 

highest uptake regions. The cyclodextrin-containing injections may therefore be useful in the 

therapeutic targeting of peptides to specific brain regions, because the various cyclodextrins 

can produce unique PACAP distribution patterns. Besides pharmacological interventions, the 

determination of PACAP plasma levels and their alterations may serve as biomarkers. 
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IX. ORIGINAL STATEMENTS OF THE THESIS 

 

Preclinical animal experiments 

1. The concentrations of PACAP-27/38 increased in the region of the brainstem 

(trigeminal nucleus caudalis) in response to both chemical and electrical stimulation of 

the trigeminovascular system in the rat.  

 

2. The concentration of PACAP-38 was elevated in the venous blood flow after electrical 

activation of the trigeminal ganglion in the rat. 

 

Clinical human investigations 

3. A significantly lower blood plasma PACAP-38 concentration was revealed in the 

interictal phase of migraineurs as compared with healthy controls.  

 

4. The lower interictal plasma PACAP-38 concentration is associated with the duration 

of migraine disease. 

 

5. A significantly higher blood plasma PACAP-38 concentration was observed in the 

ictal phase of migraineurs as compared with the attack-free period.  

 

6. The concentration of plasma PACAP-38 was significantly elevated during migraine 

attacks in those groups whose headache is not related to the menstrual cycle or who 

did not represent chronic pain conditions (low-back pain, lumbago and knee- and hip-

joint arthrosis). 
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XII. SUMMARY 

BACKGROUND 

Migraine is a common, paroxysmal primary headache disorder. Characteristically, this is a 

highly complex, restrictive and extremely costly disease, which has high socio-economic and 

personal impacts on the quality of life. Although there have been extensive researches in the 

field of migraine, the exact details of the pathomechanism remain unknown at present. 

Epidemiological studies have revealed that the prevalence of migraine in the adult population 

in the developed countries is approximately 12%. Migraine may develop at any age and 

gender, but it is relatively common in young adult women. The 2004 guidelines of the 

Headache Classification Committee of the International Headache Society (IHS) state that 

there are two main forms of this disease: migraine with or without aura. Both types can be 

characterized by interictal (attack-free) and ictal phases. The period of the migraine attack can 

be divided into 4 sections: Prodromal phase; Aura phase (in the case of migraine with aura); 

Headache phase with the accompanying symptoms; Resolution or postdrome period. In 

clinical practice, various drug treatments are available for the therapy of migraine. However, 

the effectiveness of these pharmaceuticals is not sufficient in all patients and the migraine-

specific drugs usually have undesired side-effects. Hence, the investigation of new molecules, 

targets and markers involved in the pathomechanism of migraine is indispensible, with the 

development of effective drugs and successful therapy. 

Several hypotheses have been proposed to explain the mechanisms of headache diseases. The 

activation of the trigeminovascular system (TS) and the releases of different neuropeptides 

have been confirmed in the processes of migraine. Recent studies have potentially implicated 

the vasoactive, pituitary adenylate cyclase-activating polypeptide (PACAP) in the 

pathophysiology of migraine. PACAP is a member of the VIP/secretin/glucagon neuropeptide 

superfamily and is considered to be a “brain-gut peptide“, by virtue of its widespread 

expression and function in the human organism. The role of PACAP in vasodilatation, 

nociceptive and sensitization processes as well as in the mechanisms of neurogenic 

inflammation has been confirmed in numerous studies. PACAP is present in the primary 

sensory neurons of the TRG, the parasympathetic otic and the sphenopalatine ganglia. 

Moreover, the available human data point to the involvement of PACAP in the mechanisms 

of migraine. Schytz and his co-workers demonstrated that the intravenous administration of 

PACAP-38 causes headache in healthy subjects and migraine-like attacks in migraine patients 

without aura, 6 h on average after the start of the infusion.  
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These results suggest that PACAP may be an important mediator and diagnostic marker of the 

TS activation. The receptors of PACAP have been implicated as potential therapeutic targets 

in migraine pathophysiology, but there are no direct experimental data to confirm this theory. 

Additionally, no clinical data are available on endogenous alterations in PACAP levels in 

relation to migraine. We therefore set out to examine the relationship between migraine and 

the level of expression of PACAP in animal models and also in human conditions involving 

migraine.   

AIMS 

The aim of our study was to determine whether there are any alterations in the concentration 

of PACAP in blood and nerve tissues in the case of TS activation and migraine disorder. 

Preclinical investigations were therefore conducted by the stimulation of the TS in animals in 

order to generate migraine-like conditions, while the specificity and relevance of PACAP in 

migraine were confirmed in our human clinical study.  

MATERIALS AND METHODS 

Preclinical animal experiments 

Fifty-nine young adult Sprague-Dawley rats of either sex (8-12 weeks old, 250-350 g body 

weight) were used in these studies in two different rat models of the activated TS: one 

induced by systemic nitroglycerine (NTG) injection and the other by electrical stimulation 

(ES) of the trigeminal ganglion (TRG). These are commonly applied and well-established 

animal models of TS activation. Extensive literature is available on this field regarding the 

mechanisms, the good reproducibility and the human relevance. In case of the control group 

the cerebrospinal fluid (CSF), the blood samples and the different trigeminal nerve structures 

were taken after the anaesthesia, but in the TS-activated groups the samples were excised only 

90 min or 180 min after the stimulations. PACAP-27- and PACAP-38-like 

immunoreactivities (PACAP-LI) were determined in the plasma and specific trigeminal 

components (trigeminal nucleus caudalis (TNC), cervical regions (C3-C4) of spinal cord (SC), 

TRG) by means of radioimmunoassay (RIA) and in the CSF by means of mass spectrometry.  

 

Clinical human investigations 

87 migraine patients with or without aura and 40 healthy control subjects were enrolled in this 

study. The migraineurs were selected in accordance with the criteria of the Headache 

Classification Committee of the International Headache Society 2004. The study groups were 

age-matched. A detailed questionnaire was used to compile a homogeneous group of 
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migraineurs as concerns the features of their migraine disease. Blood samples were drawn 

from healthy control subjects and migraineurs during a migraine attack and/or in an attack-

free period. There were no restrictions as regards food and drink intake. Affected patients 

were asked not to start their usual attack treatment until blood samples had been taken. From 

among the 87 patients, blood samples of 21 migraineurs could be collected in both periods. 

Plasma samples were stored at −80 °C until the PACAP-38- and calcitonin gene-related 

peptide (CGRP)-LI were measured by RIA. Additionally, we have analysed the correlations 

between the concentrations of peptides (PACAP-38, CGRP) and the features of migraine 

disease. 

In both study procedures the plasma PACAP-27/38-LI were determined with specific and 

sensitive RIA techniques developed earlier. The PACAP-38 (“88111-3”) and PACAP-27 

(“88123-3”) antisera were raised in rabbits with synthetic peptides conjugated to bovine 

serum albumin (BSA) or thyroglobulin with glutaraldehyde or carbodiimide. The high 

specificity and C-terminal sensitivity of these antibodies were confirmed by cross-reactivity 

studies. No cross-reactivity was found with each other or with other related neuropeptides in 

either case. Plasma CGRP-LI was measured with specific and sensitive RIA techniques by 

earlier published method.  

RESULTS 

Preclinical animal experiments 

In the animal experiments, the concentrations of PACAP-27 and -38 were significantly 

elevated in the TNC 90 and 180 min after the NTG-injection (p<0.05 and p<0.001) and 180 

min after the ES of the TRG (p<0.01). The plasma PACAP-38-LI was increased 90 and 180 

min following the ES (p<0.05 and p<0.001), but not in the NTG-induced model. PACAP-27 

was not present in the plasma, and the tissue concentrations of this peptide were lower than 

those of PACAP-38. The alterations in both peptides in the tissue homogenates in response to 

both TS stimulations were identical. Significant changes were not observed in the upper 

regions of the cervical SC or in the TRG in either of the models.  Neither PACAP form could 

be identified in the CSF. 

 

Clinical human investigations 

In the human study, significantly lower PACAP-38-LI was detected in the interictal plasma of 

the migraineurs as compared with the healthy control group (p<0.05). In contrast, elevated 

PACAP-38 and CGRP levels were measured in the ictal phase relative to the attack-free 
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period in the 21 migraineurs (pPACAP-38<0.001; pCGRP<0.05) and in the case of PACAP-38-LI 

in the overall population of migraineurs (p<0.01). A mild negative correlation was observed 

between the interictal PACAP-38-LI and the disease duration. 

DISCUSSION 

Preclinical animal experiments 

Our results support the neuropeptide theory of the development of activated TS. Both 

peripheral and central sensitizations were accompanied by elevated PACAP levels, suggesting 

the complexity of this neuro-vascular system. The slightly divergent results observed in the 

two models can be explained by the differences in the activation mechanisms. The up-

regulation of this peptide may indicate a general trigeminal activation. The most noteworthy 

result was the elevation of both PACAP-38- and PACAP-27-LI in the TNC, which occurred 

selectively after both CS and ES of the trigeminal system. These selective and significant 

peptide concentration changes in the brainstem nuclei suggest that the trigeminovascular 

trigger induces a marked release of PACAPs from the central terminals of the primary sensory 

neurons. It seems that ES of the TRG generates a massive TS activation. In response, PACAP 

can release from the peripheral branches, hence it enters the circulatory system and presents in 

elevated concentration in the blood. 

We have recently reported that i.p. injected PACAP-38 evokes a marked photophobia, 

meningeal vasodilatation and an increased number of c-fos-positive activated neurons in the 

TNC of wild-type, but not PACAP-deficient mice. These data are in complete agreement with 

our present conclusion that PACAP, releasing in the TNC is responsible for the central 

sensitization.  

 

Clinical human investigations 

We presume that similar mechanisms occur in migraineurs. In consequence of an unknown 

trigger, the systemic level of PACAP-38 increases. The PACAP, similar to the CGRP exerts 

its vasodilating, sensitizing effects and can contribute to the development and aggravation of 

headache. The correlation between the disease duration and the lower PACAP-38 

concentration during the attack-free period may be a consequence of the higher PACAP-38 

releases in the ictal phase, which may progressively deplete the PACAP-containing terminals.   

 

Among proposed mechanisms, the activation of vascular and neuronal elements of TS via 

several regulatory peptides seems to be essential in the formation of migraine. Dilation of 
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meningeal vessels and sensitization of trigeminal neurons have been implicated as different 

components underlying this disease. There are anatomical and physiological factors, which 

might be involved in the PACAP-38-induced migraine-like headache: PACAP-38 is a sensory, 

sympathetic and parasympathetic neuropeptide, which is released from the nerve endings at 

the dural or other cranial compartments. It can modulate both the vessels and the trigeminal 

nerve fibres (directly or through mast cell degranulation) through its receptors leading to 

elevated intracellular cyclic adenosine monophosphate (cAMP) levels. There are several 

evidences that the increased cAMP causes sensitization and activates the trigeminal neurons 

and meningeal nociceptors, therefore induces delayed headache. 

There are assumptions that the integrity of blood-brain barrier (BBB) is disrupted in 

migraineurs. The matrix metalloproteinase 9 can degrade the basal membrane, resulting in 

structural impairment of the BBB, and altered plasma levels of certain molecules that have 

been observed in patients with migraine. The enhanced BBB permeability in migraine may 

facilitate PACAP to penetrate into the brain parenchymal elements and exert its central effects. 

From the opposite aspect, the PACAP released in the brain can also penetrate through the 

BBB, and hence may be detected in the plasma. 

Although there are contradictions in the literature of CGRP, the importance of this peptide in 

migraine became firmly established. Our results draw attention to a possible influence 

between the PACAP and CGRP systems in migraine pathogenesis. In addition there are 

evidences that PACAP shares its expression and regulation simultaneously with CGRP. The 

correlations between the PACAP-38-LI and the menstruation cycle/other chronic pain 

conditions can confirm that the alterations of plasma PACAP-38 concentrations may be 

migraine specific features.   

CONCLUSION 

Our results suggest that PACAP is a special modulator of the TS. The fact that this peptide 

has an important role in the central sensitization involved in migraine-like headache is 

confirmed by the clear association between the migraine phases and the alterations in plasma 

PACAP-38 concentration in human observations. These data facilitate the understanding of 

the mechanisms of TS activation, and indicate the need for further investigations. The plasma 

PACAP-38 alterations might be a putative biomarker of migraine and provide new 

perspectives in the therapy of migraine. 
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XIII. ÖSSZEFOGLALÓ 

 
HÁTTÉR 

A migrén egy gyakori, rohamokban jelentkező primer fejfájásbetegség, mely jelentősen rontja 

a betegek életminőségét. A genetikai, kísérletes és klinikai vizsgálatok ellenére, a migrén 

pontos pathomechanizmusa máig nem tisztázott. Epidemiológiai adatok szerint a felnőtt 

populáció kb. 12 %-át érinti a betegség, mely leggyakrabban a fiatal felnőtt nőknél (20-40 év) 

jelentkezik. A migrénnek 2 fő típusa ismert: 1. aurás; 2. aura nélküli. Mindkét forma 

jellemzője az interiktális (rohammentes) és iktális (roham alatti) fázisok váltakozása. A 

migrénes rohamperiódus további szakaszokra osztható: 1. bevezető fázis (prodróma); 2. 

esetleg jelentkezhet aura; 3. fejfájás és kísérőtünetei; 4. lábadozás, felépülés 

(reconvalescencia). A fejfájások gyógyszeres intervallum és rohamterápiája sok esetben nem 

hatékony és számos nem kívánt mellékhatással rendelkezik. Ezért szükség van olyan 

kutatásokra, melyek a migrén pathomechanizmusában szerepet játszó molekulák, targetek és 

markerek azonosítását célozzák. Azok funkcióinak pontos felderítése segítséget nyújthat új, 

hatékony gyógyszerek és terápiás megoldások kifejlesztésében. 

A fejfájások kórfolyamata számos elmélettel magyarázható, azonban a trigeminális rendszer, 

az általa beidegzett érrendszer (trigeminovascularis rendszer, TR), valamint bizonyos 

neuropeptidek és neuroaktív anyagok szerepét már többször bizonyították. Az utóbbi időkben 

néhány migrénkutatás a vazoaktív, hipofízis adenilát cikláz-aktiváló polipeptid (PACAP) 

jelentőségére hívta fel a figyelmet. A PACAP a VIP/szekretin/glukagon szupercsalád tagja és 

„brain-gut peptidként” az emberi szervezetben széles körben előfordul, számos funkcióval 

rendelkezik. A PACAP-nak szerepe van a vazodilatációban, fontos integrátor a nociceptív és 

szenzitizációs mechanizmusokban, valamint a neurogén gyulladás folyamataiban. Jelen van 

többek között a trigeminális ganglion (TRG) neuronjaiban és perivascularis 

idegvégződéseiben, a paraszimpatikus ganglion oticumban és sphenopalatinumban. Egy 

2009-es klinikai vizsgált megerősítette a PACAP szerepét migrénes folyamatokban: Schytz és 

munkatársai kimutatták, hogy a 38 aminosavas peptid, a PACAP-38, intravénás infúzióban 

migrénszerű rohamokat és jelentős érválaszokat provokál migrénes betegekben, míg 

egészséges egyénekben fejfájást indukál. A PACAP tehát fontos mediátora és diagnosztikus 

markere lehet a TR aktivációjának, azonban az endogén PACAP-szint változásokról még 

keveset tudunk. Ezért vizsgálatainkban arra kerestük a választ, hogy hogyan szabályozza a 

PACAP a migrénes fejfájások kialakulását. 
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CÉLOK 

Célul tűztük ki a PACAP koncentráció-változásának vizsgálatát a vérben és a trigeminális 

rendszerrel kapcsolt agyi régiókban az aktivált TR állatmodelljeiben, valamint klinikánkon 

gondozott migrénes betegek vérmintáiban, a migrén periódusainak, jellemzőinek 

összefüggésében. 

 

ANYAGOK ÉS MÓDSZEREK 

Preklinikai állatkísérletek 

Vizsgálatainkban 59 fiatal felnőtt Sprague-Dawley patkányt (hím/nőstény; életkor: 8-12 hét; 

testsúly: 250-350 g) használtunk. Egyrészt kémiai úton szisztémás nitroglicerin injekcióval, 

másrészt az egyik oldali TRG elektromos ingerlésével 2 különböző mechanizmusú aktivált 

TR modellt alakítottunk ki, melyek jól kidolgozott, reprodukálható és humán szempontból is 

releváns rendszerek. A stimulált csoportokban a modellek kialakítását követő 90. és 180. 

percben, míg a kontroll csoport esetében az altatást követően, liquor és a vérmintát 

gyűjtöttünk, majd eltávolítottuk a különböző trigeminális idegi struktúrákat. Ezt követően a 

mintákat -80°C-on tároltuk, majd radioimmunoassay (RIA) módszerrel meghatároztuk a 

PACAP-27- és PACAP-38-immunoreaktivitást (IR) a vérplazmában és a trigeminális 

komponensekben (agytörzsi trigeminal nucleus caudalis = TNC, C3-C4 nyaki gerincvelő, 

TRG), illetve tömegspektrometria segítségével a liquorban. 

 

Klinikai humán vizsgálatok  

87 aurás és aura nélküli migrénes beteget, illetve 40 egészséges kontroll alanyt vontunk be 

tanulmányukba. A betegeket a Nemzetközi Fejfájás Társaság 2004-es kritériumrendszere 

alapján válogattuk. A csoportokat korban egyeztettük. Részletes migrén, allodynia és 

depresszió kérdőív alapján igyekeztünk homogenizálni a migrénes betegek csoportját. A 

kontroll alanyoktól egyszer, míg migrénes betegektől a rohammentes és/vagy roham alatti 

időszakban is gyűjtöttünk vérmintát. A pácienseket megkértük, hogy fejfájások idején ne 

alkalmazzanak gyógyszeres terápiát a vérvétel előtt. 21 migrénes beteg esetében mind az 

interiktális, mind az iktális periódusban történt vérvétel. A plazma mintákat −80 °C-on 

tároltuk a PACAP-38- és kalcitonin gén-rokon peptid (CGRP)-IR, RIA módszerrel történő 

meghatározásáig. Vizsgáltuk a betegség jellemzőinek és a plazma PACAP-38, CGRP 

mennyiségi változásainak összefüggéseit.  

A PACAP-27/38 méréseket egy korábban a PTE ÁOK Anatómiai és Farmakológiai 

Intézeteiben kifejlesztett, specifikus és szenzitív RIA technikával határoztuk meg. A nyúlban 
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termeltetett antiszérumok (PACAP-38, „88111-3”; PACAP-27, „88123-3”) nagy 

specificitását és C-terminális érzékenységét keresztreakciós mérésekkel igazolták. Az 

ismeretlen minták peptid koncentrációit kalibrációs görbe alapján határoztuk meg. A CGRP-

IR meghatározását korábban publikált metodika alapján végeztük. 

 

EREDMÉNYEK 

Preklinikai állatkísérletek 

Az állatkísérletekben a TNC területén szignifikánsan emelkedett PACAP-27 és -38 

koncentrációt mértünk a kémiai stimulációt követő 90. és 180. percben (p<0.05 és p<0.001), 

valamint a TRG elektromos ingerlése után 180 perccel (p<0.01). Jelentős PACAP-38-IR 

növekedést detektáltunk az elektromos stimulációt követő 90. és 180. percben (p<0.05 és 

p<0.001), ellenben a NTG-modellben ilyen nagymértékű változást nem találtunk. A 

vérplazmában a PACAP-27-et nem tudtuk kimutatni, és szöveti koncentrációja is alacsonyabb 

volt, mint a PACAP-38 esetében. A szöveti homogenizátumokban a peptidek hasonló 

arányban változtak mindkét modellben. Sem a kémiai, sem az elektromos modellben nem 

találtunk szignifikáns peptid-szint változást a TRG-ben és a C3-C4-es nyaki gerincvelői régió 

területén. A liquorban nem tudtuk kimutatni a PACAP egyik formáját sem.  

 

Klinikai humán vizsgálatok 

A humán vizsgálatokban a migrénes betegek rohammentes periódusában szignifikánsan 

alacsonyabb plazma PACAP-38-IR-t mértünk a kontroll alanyokhoz képest (p<0.05). Ezzel 

ellentétben szignifikánsan emelkedett PACAP-38 és CGRP szinteket találtunk az iktális 

fázisban az interiktálishoz viszonyítva a 21 „önkontrollos” beteg esetében (pPACAP-

38<0.001; pCGRP<0.05), valamint a vizsgált teljes migrénes populációban (p<0.01). Enyhe 

negatív korrelációt találtunk az interiktális PACAP-38 plazma szintje és a betegség 

fennállásának időtartama között. 

 

MEGBESZÉLÉS 

Preklinikai állatkísérletek 

Eredményeink alátámasztják az aktivált TR kialakulásában szerepet játszó neuropeptid-

felszabadulás elméletet. A neuro-vaszkuláris rendszer komplexitására utal, hogy 

modelljeinkben a perifériás és a centrális szenzitzáció mechanizmusait PACAP-szint 

változások kísérik. A modellek között megfigyelhető kismértékű eltérések a különböző 

aktivációs mechanizmusoknak tulajdoníthatók. A legszembetűnőbb eredmények a TNC 
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PACAP-27 és PACAP-38-IR emelkedése, melyek szelektíven jelentkeztek mind a kémiai, 

mind az elektromos ingerlés következtében. Mindez arra utal, hogy a TR aktiválódása – mely 

úgy tűnik, hogy a TRG elektromos ingerlése következtében még jelentősebb –, nagymértékű 

PACAP felszabadulást indukál az elsődleges érző neuronok perifériás és centrális 

terminálisaiból. Feltehetően ezek után belép a keringési rendszerbe, ahol emelkedett 

koncentrációban lesz jelen. Korábbi vizsgálatainkból kiderül, hogy vad típusú egerekben az ip. 

alkalmazott PACAP-38 fotofóbiát, meningeális vazodilatációt vált ki és megemeli a TNC-ben 

a c-fos pozitív, aktivált neuronok számát, ellentétben a PACAP-deficiens állatokkal szemben. 

Ezen eredmények összefüggésbe hozhatók jelen következtetéseinkkel, miszerint a TNC-ben 

felszabaduló PACAP felelős a centrális szenzitizációért, a TR aktiválódásáért.   

 

Klinikai humán vizsgálatok 

Feltételezzük, hogy hasonló folyamatok történnek a migrénes betegekben, bár az ok-okozati 

összefüggések még nem tisztázottak. Egy ismeretlen trigger következtében a PACAP-38 

szisztémás szintje megemelkedik, és a CGRP-hez hasonlóan kifejti vazodilatatív és 

szenzitizáló hatását. A mechanizmusok hozzájárulhatnak a fejfájás kialakulásához és 

súlyosbodásához. Az interiktálisan csökkent PACAP-38-szint és a betegség időtartamával 

mutatott összefüggés (kismértékű negatív korreláció) alapján felmerül, hogy a rohamok idején 

felszabaduló nagyobb mennyiségű peptid fokozatosan kiüríti a PACAP-tartalmú rostokat.  

 

Úgy tűnik, a TR neuronális és vaszkuláris elemeinek aktivációja nélkülözhetetlen a migrén 

kialakulásához. A meningeális erek dilatációja, a trigeminális neuronok szenzitizációja illetve 

hízósejt degranuláció is befolyásolhatja a PACAP-38 indukálta migrén-szerű fejfájást. A dura 

környezetében az idegvégződésekből felszabaduló PACAP-38 képes modulálni az erek és az 

idegrostok receptorain keresztül az intracelluláris cAMP szintet. Az emelkedett cAMP szint a 

trigeminális neuronok szenzitizációját, a meningeális nociceptorok aktivációját okozhatja, 

fejfájást indukálhat.  

Irodalmi adatok szerint migrénesekben csökken a vér-agy gát (BBB) integritása. 

Megfigyelték, hogy migrénesekben a megváltozott neuropeptid szintek, laktát és magnézium 

koncentrációk, valamint mitokondriális deficitek mellett, a BBB strukturáltsága is romlik. 

Ebben a matrix metalloproteináz 9, mint a bazális membránt degradáló enzimnek jelentős 

szerepe van. Tehát feltételezzük, hogy a migrénesekben fellelhető fokozott BBB 

permeabilitás elősegítheti a PACAP átjutását az agy parenchimás szöveteibe és így az 



72 
 

kifejtheti centrális hatásait. Másrészről, az agyban felszabadult PACAP is penetrálhat a BBB-

n és nagy mennyiségben átjuthat a plazmába.  

Tanulmányunk újabb bizonyítékul szolgál arra, hogy megemelkedik a CGRP plazmaszintje 

migrénes rohamok idején. Eredményeink felhívják a figyelmet arra, hogy kapcsolat lehet a 

PACAP és CGRP rendszerek között a migrén pathogenezisében, melyet más vizsgálatok is 

igazoltak. A PACAP-38-IR és a menstruációs ciklus/ krónikus fájdalom között tapasztalt 

összefüggések azt jelzik, hogy a peptid plazmakoncentrációjának változásai migrén specifikus 

jellemzők lehetnek.  

 

KÖVETKEZTETÉSEK 

Eredményeink alapján arra következtetünk, hogy a PACAP egy speciális modulátora lehet a 

TR-nek. A peptidnek szerepe lehet a szenzitizáció folyamataiban, melyet a humán 

tanulmányban megfigyelt, migrénes fázisokhoz kötött plazma PACAP-38 

koncentrációváltozások igazolhatnak. Vizsgálataink hozzájárulnak a betegség 

pathomechanizmusának részletesebb megismeréséhez, és perspektívákat kínálnak új targetek 

azonosítására a migrén terápiájában. További kutatások szükségesek a PACAP és a fájdalom 

vonatkozásában, melyek révén a PACAP egy új biomarkere lehet a fejfájásbetegségeknek. 
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XIV. APPENDIX 


