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Abstract

Background: During the last decade, new Neogene fossil assemblages from South America have revealed important clues
about the evolution of seabird faunas in one of the major upwelling systems of the world: the Humboldt Current. However,
most of this record comes from arid Northern Chile and Southern Peru and, in consequence, our knowledge of the
evolutionary history of seabirds in the temperate transitional zone is negligible. A new Late Pliocene assemblage of fossil
birds from the coastal locality of Horcon in Central Chile offers a unique opportunity to fill this gap.

Principal Findings: Isolated bones of a medium-sized penguin are the most abundant bird remains. Morphological and
cladistic analyses reveal that these specimens represent a new species of crested penguin, Eudyptes calauina sp. nov.
Eudyptes is a penguin genus that inhabit temperate and subantarctic regions and currently absent in central Chile.
Additionally, a partial skeleton of a small species of cormorant and a partial tarsometatarsus of a sooty shearwater have
been identified.

Conclusion/Significance: The Horcon fossils suggest the existence of a mixed avifauna in central Chile during the Pliocene
in concordance with the latitudinal thermal gradient. This resembles the current assemblages from the transitional zone,
with the presence of species shared with Northern Chile and Southern Peru and a previously unrecorded penguin currently
absent from the Humboldt System but present in the Magellanic region. Comparison of Pliocene seabird diversity across the
Pacific coast of South America shows that the Horcon avifauna represents a distinctive assemblage linking the living faunas
with the Late Miocene ones. A comparison with the fossil record near the Benguela Current (west coast of southern Africa)
suggests that the thermic gradient could play an important role in the preservation of a higher diversity of cold/temperate
seabirds in the Humboldt Current.
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Introduction

The fossil record of seabirds is often abundant in Cenozoic

marine formations. Nevertheless, there is a clear asymmetry in our

knowledge of fossil seabird communities between the Northern

and Southern hemispheres. Of the 368 records of seabirds

presented by Warheit [1], only 25% come from the Southern

Hemisphere and of those, 27% come from South America.

Fortunately, the number of taxa reported for South America had

been increasing in abundance and diversity during the last decade,

including two of the most important Neogene assemblages: the

Late Miocene Bahia Inglesa Formation in northern Chile [2–4],

and the Middle Miocene to Pliocene Pisco Formation in Southern

Peru [5–7]. These are key areas for the study of the evolution of

seabird faunas in one of the major upwelling systems of the world:

the Humboldt Current.

The Humboldt Current system [8] is one of the most productive

marine ecosystems worldwide and its area of influence defines one

of the largest biogeographical provinces in the southern oceans:

the Peruvian-Chilean Province (PCP) [9], which has been

recognized as one of the main areas of endemism for seabirds in

Chile [10]. Some authors also recognize a transition zone at its

southern limit, between 30 and 43uS, also known as the Central

[11] or Central Chilean Province [12], where this fauna becomes

progressively more similar to the Magellanic fauna by the addition

of cold-temperate taxa [13].

Unfortunately, the Neogene record of seabirds in other marine

formations of the Southeast Pacific is comparatively scarce and

consequently poorly known [14–18]. Most of these records are

Pliocene in age, being younger than the main assemblages

recorded in Bahia Inglesa and Pisco, and giving us an exceptional

opportunity for the study of changes in the composition of seabird

faunas over time. However, all these localities are restricted to the

PCP in Northern Chile and Southern Peru. In consequence, our

knowledge of the evolutionary history of seabirds in the

transitional zone during the Neogene is negligible.

In this context, the discovery of a new assemblage of fossil birds

in the coastal locality of Horcon in central Chile offers a unique
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opportunity to fill this gap for southern temperate areas and, along

with the previously known Pliocene records, reveals changes in the

composition of seabird faunas in the area of influence of the

Humboldt Current during the last 5 Ma.

Materials and Methods

The Horcon Formation
The specimens described here come from coastal outcrops of

the Horcon Formation [19,20], located 51 km north to the city of

Valparaiso between the villages Horcon and Maitencillo in the

Valparaiso Region, central Chile (see Figure S1.1 in Document

S1).

The lithology of the Horcon Formation is characterized by

predominance of subhorizontal, unconsolidated fine sandstones

with a dip of 2u to 3u. The estimated thickness of the sequence is

45 m and two well-defined stratigraphic intervals can be identified.

All the specimens described here come from the upper unit, which

corresponds to the main section of the sequence (see Figure S1.2 in

Document S1). This unit is characterized by layers of fine to coarse

sandstone, light-colored and poorly consolidated, which are

interspersed with few conglomeritic layers. Vertebrate and

invertebrate macrofossils are abundant in all the sandstone strata,

with over 60 taxa recognized so far, making the Horcon

Formation one of the most diverse and the southernmost marine

vertebrate assemblages currently known for the Neogene in the

Southeastern Pacific [21]. The stratigraphic column for this

formation can be found in Document S1.

Tavera [20] assigned the Horcon Formation to the Pliocene

based on the mollusk biostratigraphy. The new mollusk specimens

collected during this study, which include the bivalves Chlamys cf.

hupeanus and Panopea coquimbensis along with the gastropods Chorus

blainvillei, Chorus doliaris and Herminespina mirabilis, corroborate an

age not younger than Late Pliocene [22–28].

Repository information
The material consists of eighteen specimens including a set of

associated wings and pectoral girdle elements (SGO-PV 21443)

deposited in the Vertebrate Palaeontological collection of the

Museo Nacional de Historia Natural, Santiago (Chile), under

accession numbers SGO-PV 21443 to 21455 and SGO-PV 21487

to 21490. All necessary permits were obtained for the described

study, which complied with all relevant regulations. The collection

of these specimens was authorized by the Consejo de Monumentos

Nacionales (Chile) through the order number 4703, enacted on

September 24th, 2010.

Nomenclatural Acts
The electronic edition of this article conforms to the require-

ments of the amended International Code of Zoological Nomen-

clature, and hence the new names contained herein are available

under that Code from the electronic edition of this article. This

published work and the nomenclatural acts it contains have been

registered in ZooBank, the online registration system for the

ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any

standard web browser by appending the LSID to the prefix

‘‘http://zoobank.org/’’. The LSID for this publication is:

urn:lsid:zoobank.org:pub: 5DE13597-E734-453B-8703-F42F84f-

206A38. The electronic edition of this work was published in a

journal with an ISSN, and has been archived and is available from

the following digital repositories: PubMed Central, LOCKSS.

Phylogenetic analysis
To explore the phylogenetic relationship of the new penguin

species described here (Figure 1), we expanded and modified a

recently published combined matrix [29], including 246 morpho-

logical characters plus five genes (RAG-1, 12S, 16S, COI, and

cytochrome b) with over 6000 basepairs. We added eight new

osteological characters for the humerus and tarsometatarsus, new

states for five of the previously used characters and a modification

of the definition of two other characters. The list of characters,

detail of the modifications to the original matrix and the GenBank

accession numbers are provided in Document S1; and a nexus file

of the entire data set is provided as Dataset S1.

Three of the taxa previously included by Ksepka et al. [29] were

identified as wildcards, labile taxa that reduce the resolution of the

consensus tree, and excluded from the final analysis: Delphinornis

wimani, Palaeeudyptes antarcticus and Duntroonornis parvus. From the

taxa added by Ksepka and Thomas [30], only Inguza predemersus

was included in the final analysis; Nucleornis was included during

preliminary analysis, but was identified as a wildcard and excluded

from the final analysis. As a result, the current analysis includes 55

penguin taxa. All South American taxa included here were coded

by direct observation, with the only exception of ‘‘Pygoscelis’’

grandis. The outgroup includes 13 species of Procellariiformes and

two species of Gaviiformes. The trees were rooted on Gaviiformes.

The phylogenetic analysis was conducted following the strategy

defined by Ksepka et al. [29], using PAUP4.0b10 [31] with a

heuristic search strategy (1000 replicates of random taxon addition

saving 10 trees per replicate, with TBR branch swapping). All

characters were equally weighted, multistate coding was used only

to represent polymorphism, and branches with a minimum length

of zero were collapsed. A morphology-only and morphology plus

molecular data analysis were done. Strict and Adams consensus

trees were calculated for each analysis, but only the strict

consensus are presented, showing the best-solved topology.

Additional consensus trees can be found in the Figure S3 in

Document S1.

Results

Systematic palaeontology
Sphenisciformes Sharpe, 1891.

Spheniscidae Bonaparte, 1831.

Eudyptes Vieillot, 1816.

Eudyptes calauina sp. nov.

(Figures 1A–I, L–W, 2, Figure S2A–B in Document S1)

ZooBank life science identifer (LSID) for spe-

cies. urn:lsid:zoobank.org:act: ECFC692D-4AA8-4AE6-8B56-

307B416A432F

Etymology. Noun in apposition. Calauina (k l en ) is the

name of the rockhopper penguin (Eudyptes chrysocome) in the quasi-

extinct Yaghan language, spoken by the Yagán people from Tierra

del Fuego, Southern Chile.

Holotype. SGO-PV 21487, complete right tarsometatarsus

(Figure 1L–Q, Figure S2A in Document S1).

Paratype. SGO-PV 21444, complete right tarsometatarsus

(Figure 1R–W, Figure S2B in Document S1).

Referred materials. SGO-PV 21452, cervical vertebrae;

SGO-PV 21451, left humerus lacking humeral head (Figure 1B–

D); SGO-PV 21448, distal portion of left humerus; SGO-PV

21449, proximal fragment of left humerus (Figure 1E–G); SGO-

PV 21447, proximal portion of right tibiotarsus (Figure 1H); SGO-

PV 21488, distal portion of right tibiotarsus (Figure 1I); SGO-PV

21445, pedal phalanx; SGO-PV 21453, fragment of pedal

phalanx.

Pliocene Seabirds at the Humboldt Current
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Type locality and horizon. Horcon Formation, Late Plio-

cene, Chile. SGO-PV 21487, 21452, 21448, 21449, 21488 and

21453 collected from layer 12 (Figure S1.2 in Document S1).

SGO-PV 21444 collected from layer 8. SGO-PV 21451 collected

from layer 9. SGO-PV 21445 collected from layer 10.

Diagnosis. Larger than Megadyptes antipodes, Spheniscus chilensis

and S. humboldti; but smaller than S. urbinai and Pygoscelis grandis.

The tarsometatarsus is on average 30% larger than Eudyptes sclateri,

16% larger than Megadyptes antipodes and 12% larger than

Madrynornis. Based on the humerus, E. calauina can be differenti-

ated from other species of the genus by (i) the presence of a slightly

concave and asymmetrical proximal border of the tricipital fossa in

ventral view instead of the stronger symmetrical concavity

common in extant species, (ii) a more robust humeral shaft with

a robustness index (proximodistal length/ventrodorsal width at

middle point) of 4 whereas in extant species it is between 4.5 and

4.9 (see Character 176 in Document S1), and (iii) a scapulo-

tricipital sulcus separated from the humerotricipital sulcus and not

dorsally connected as in other species. At the level of the

tarsometatarsus, it can be differentiated by (i) an elongation index

between 1.7 and 1.8 (Figure 2), (ii) a moderately deep medial

dorsal sulcus instead of the occasionally shallow one observed in

other species, (iii) a strongly dorsoplantarly compressed lateral

edge of metatarsus IV creating a sharp edge in lateral view, unlike

the wider and rounded edge in extant species, and (iv) a slightly

pointed trochlea II with parallel medial and lateral edges in

plantar view, instead of the strongly pointed one with a more

rounded medial edge of extant species. An expanded description of

the specimens assigned to E. calauina is provided in Document S1.

Measurements. SGO-PV 21487: length at middle point

41.3 mm; proximal mediolateral width 24.3 mm; distal mediolat-

eral width 27.5 mm. SGO-PV 21444: length at middle point

41 mm; proximal mediolateral width 22.7 mm; distal mediolateral

width 25.3 mm. SGO-PV 21451: maximum preserved length

76.8 mm; diaphysis length 69.4 mm; ventrodorsal width at middle

point 17.4 mm. A comparative table of measurements for the

tarsometatarsus is provided in Table S1 in Document S1.

Anatomical remarks
Although all specimens have been found isolated, all of them are

similar in morphology to homologous elements of the genus

Eudyptes and larger than in Megadyptes. The most diagnostic

elements of this set are the tarsometatarsus (SGO-PV 21487 and

SGO-PV 21444) and humerus (SGO-PV 21451 and SGO-PV

Figure 1. Fossil penguins from the Horcon Formation. A. Skeletal reconstruction of Eudyptes calauina sp. nov. showing the identified
elements; and size comparison with the Macaroni penguin E. chrysolophus and the Yellow-eyed penguin Megadyptes antipodes (yellow silhouette).
Referred specimens: left humerus (SGO-PV 21451) in (B) cranial, (C) distal and (D) caudal views; proximal fragment of left humerus (SGO-PV 21449) in
(E) cranial, (F) proximal and (G) ventral views; (H) proximal fragment of right tibiotarsus (SGO-PV 21447) in cranial view; and (I) distal portion of right
tibiotarsus (SGO-PV 21488) in cranial view. Tarsometatarsus of Humboldt penguin Spheniscus humboldti (J) and Northern Rockhopper penguin E.
moseleyi (K). Holotype: right tarsometatarsus attributed to an adult (SGO-PV 21487) in (L) dorsal, (M) plantar, (N) medial, (O) lateral, (P) proximal and
(Q) distal views. Paratype: right tarsometatarsus attributed to a subadult (SGO-PV 21444) in (R) dorsal, (S) plantar, (T) medial, (U) lateral, (V) proximal
and (W) distal views. Spheniscidae indet.: (X) proximal fragment of right radius (SGO-PV 21450) in ventral view; (Y) right ulna (SGO-PV 21455) in
ventral view; and (Z) right carpometacarpus (SGO-PV 21454) in ventral view. Silhouettes (green for E. calauina, blue for Spheniscidae indet.) based on
complementary specimens attributed to the same species or living relatives. Abbreviations: ci, capital incisure; dt, dorsal tubercle; hts,
humerotricipital sulcus; lc, lateral hypotarsal crest; le, lateral edge of the metatarsi IV; lf, lateral proximal vascular foramen; mf, medial proximal
vascular foramen; pli, pit for ligament insertion; ptr, posterior trochlear ridge; sts, scapulotricipital sulcus; tf, tricipital fossa; tII, trochlea metatarsi II; tIII,
trochlea metatarsi III; tIV, trochlea metatarsi IV; ts, transverse sulcus.
doi:10.1371/journal.pone.0090043.g001
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21449); both elements widely used for the typification of fossil

penguins and showing the same distinctive combination of

characters as in Eudyptes, whereas all the other specimens are

referred mainly based on their size range and general morphology.

Consequently, only the tarsometatarsus and humerus are used for

the diagnosis.

This new species can be assigned to the genus Eudyptes based on

a combination of 23 osteological characters. Of these, ten allow us

to discriminate this species from Spheniscus (Figure 1J), the only

penguin genus that currently inhabits the area and the most

common one in the fossil record of Chile and Peru. These

characters are, at level of humerus: (i) humeral head strongly

prominent proximally (slightly prominent in Eudyptula and

Spheniscus); (ii) notch between dorsal tubercle and humeral head

present (usually absent in Spheniscus, Eudyptula and Tereingaornis); (iii)

capital incisure completely separated from transverse ligament

sulcus (connected through narrow sulcus in Aptenodytes, Inguza,

Madrynornis, Palaeospheniscus and Eretiscus); (iv) presence of deep pit

for ligament insertion adjacent to head on proximal surface (absent

or very shallow in Pygoscelis antarctica, P. adeliae, Madrynornis,

Palaeospheniscus, Eretiscus and occasionally in Aptenodytes patagonicus);

(v) proximal margin of tricipital fossa weakly projected in proximal

view (well-exposed in extant species of Spheniscus and occasionally

in Pygoscelis antarctica); (vi) impressio insertii m. supracoracoideus

and m. latissimus dorsi separated by small gap (separated by

moderate gap in Palaeospheniscus, Eretiscus and occasionally in

Spheniscus urbinai); (vii) shaft robustness index between 4 and 5

(between 5 and 6 in Eudyptula, Inguza, Madrynornis and Eretiscus);

(viii) nutrient foramen situated on ventral face of shaft (situated on

anterior face in Madrynornis and Eretiscus); (ix) preaxial angle weak

or absent (well defined in Aptenodytes, Pygoscelis, Megadyptes,

Spheniscus, Palaeospheniscus, Eretiscus and occasionally in Eudyptes);

(x) posterior trochlear ridge reaching ventral edge of the shaft

(extends beyond ventral margin in Aptenodytes, Pygoscelis and

Madrynornis; but does not reach ventral edge in Inguza, Eretiscus

and some species of Spheniscus); (xi) trochlear angle greater than or

equal to 45u (between 35u and 45u in Inguza, Madrynornis,

Tereingaornis and occasionally slightly under 45u in Spheniscus

urbinai, Palaeospheniscus and Eretiscus); and (xii) ulnar condyle almost

parallel to radial and not surpassing anterior edge of humerus

(slightly surpassing anterior edge in Madrynornis, Palaeospheniscus and

Eretiscus).

At level of tarsometatarsus: (xiii) elongation index less than 2

(between 2 and 2.5 in extant species of Spheniscus, S. muizoni,

Megadyptes, Eudyptula, Inguza, Madrynornis, Palaeospheniscus, Eretiscus

and occasionally in Pygoscelis adeliae and Eudyptes moseleyi); (xiv)

inconspicuous colateral lateral ligament scar (creating depression

over lateral surface in Pygoscelis; and creating notch on proximo-

lateral vertex in Spheniscus, Eudyptula, Inguza, Nucleornis, Madrynornis,

Palaeospheniscus and Eretiscus); (xv) medial hypotarsal crest projected

farther than lateral crest (both reach same projection in Pygoscelis);

(xvi) intermediate hypotarsal crest indistinguishable from lateral

crest (slightly separated by shallow groove in proximal view in

Madrynornis, Palaeospheniscus, Eretiscus and occasionally in Eudyptula

and Eudyptes chrysocome); (xvii) lateral hypotarsal crest forming

diagonal ridge that overhangs lateral foramen (poorly defined and

proximal to lateral foramen in Aptenodytes, Pygoscelis, Megadyptes,

Eudyptula, Spheniscus and Nucleornis), (xviii) large medial proximal

vascular foramen opening plantarly at medial surface of medial

hypotarsal crest (often smaller in Spheniscus and Eudyptula; opening

at plantar surface in Aptenodytes, Pygoscelis and Nucleornis; vestigial in

Palaeospheniscus and Eretiscus); (xix) small lateral proximal vascular

foramen (occasionally enlarged in Spheniscus; vestigial in Eretiscus;

and absent in Nucleornis); (xx) lateral intertrochlear notch deeper

than medial (sub-equal to equal in Aptenodytes, Pygoscelis, Megadyptes,

Spheniscus urbinai, S. megaramphus and Inguza); (xxi) trochlea metatarsi

Figure 2. Tarsometatarsus elongation index vs length. Plot of the tarsometatarsus elongation index (EI, obtained from the division of the
proximodistal length per the mediolateral width at the proximal end) against the proximodistal length of tarsometatarsus in Neogene penguins.
doi:10.1371/journal.pone.0090043.g002
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IV shorter than II in dorsal view (sub-equal to equal in Aptenodytes,

Pygoscelis, Megadyptes, Eudyptula and Spheniscus); (xxii) trochlea

metatarsi III and IV aligned at the same plane in distal view

(trochlea IV displaced dorsally in extant species of Spheniscus and S.

megaramphus); and (xxiii) trochlea metatarsi II slightly deflected

plantarly in distal view (strongly deflected in Eudyptula, Spheniscus

megaramphus and Palaeospheniscus).

The tarsometatarsus SGO-PV 21487 (Figure 1L–Q) is 16%

larger than in Megadyptes; whereas the best-preserved humerus

available SGO-PV 21451 (Figure 1B–D) is approximately 5%

larger than in Megadyptes. The elongation index (EI), obtained from

the division of the proximodistal length per the mediolateral width

at the proximal end of the tarsometatarsus, is 1.7 for SGO-PV

21487 and 1.8 for SGO-PV 21444 being within the range of

Eudyptes chrysolophus (1.7), E. sclateri (1.8), E. schlegeli (1.8), Pygoscelis

papua (1.7–1.8), P. antarctica (1.6–2.0), P. grandis (1.8) and Nucleornis

(1.8). This is smaller than in E. moseleyi, E. chrysocome, E.

pachyrhynchus and E. robustus. In a plot of the EI against the

proximodistal length (Figure 2), it is evident that both specimens

are separated from South American extant and fossil penguins;

with Nucleornis from the Early Pliocene of South Africa being the

only similar taxon in size and proportions. However, the EI of

Nucleornis is based on an approximation of the proximal width and

the morphology of this element is clearly distinguishable from E.

calauina.

Ontogenetic stages of specimens
Taking as reference the extant species of Eudyptes and Megadyptes,

where the average length of the tarsometatarsus is approximately

45% of the length of the humerus, SGO-PV 21451 is approxi-

mately 13% smaller than the size expected based on the holotype

(91.7 mm). We estimate the expected size range for the humerus,

calculated as the linear measure +/21.96 per the standard

deviation [32], using the standard deviation for the humerus

length in E. pachyrhynchus (2.1) [33]. The expected size range is

between 87.6 and 95.8 mm, suggesting that SGO-PV 21451 is

approximately 10% smaller than expected based on the propor-

tions of living species of Eudyptes. Considering the relatively smooth

surface texture of the humerus SGO-PV 21451, along with the

well-defined edges and muscular attachments, this specimen can

be attributed to an adult or late subadult [34]. In consequence, the

difference in proportion observed cannot be easily attributed to the

aging of the individuals. This can be an indication of a slightly

different humerus-tarsometatarsus proportion in E. calauina as has

been described in fossil species of Spheniscus [35]. There is evidence

of variation in the average proportion represented by the

tarsometatarsus among Eudyptes species: 45.8% in E. chrysocome,

45.4% in E. pachyrhynchus, 45.3% in E. robustus and 42% in E.

sclateri. Considering a reconstructed length of 80 mm for the

humerus SGO-PV 21451, and assuming that it belongs to the

same individual as the holotype, the proportion in E. calauina will

be close to 50%; being 5% higher than in most of the living

species. This is similar to the proportion in Eudyptula (50%) and

similar to the range of difference between Aptenodytes patagonicus

(40.2%) and A. forsteri (34%). Nevertheless, it is clear that both

elements belong to different individuals and the lack of associated

elements does not allow a more detailed comparison.

On the other hand, it is important to note that whereas the

holotype SGO-PV 21487 can be attributed to an adult (Figure 1L–

Q), the paratype SGO-PV 21444 most likely represents a subadult

individual (Figure 1R–W). This is based on the slight size

difference, the more porous texture of the bone (Figure S2.A–B

in Document S1) and the degree of development of some

anatomical features in SGO-PV 21444, like the larger medial

foramen and the deeper and more angular intertrochlear notches.

For this reason, the diagnosis for the tarsometatarsus is based

mostly on the holotype. Nevertheless, both specimens share the

most diagnostic characters of the genus.

Phylogenetic analysis
Analysis of the combined data set resulted in 192 most

parsimonious trees (MPTs) of 5563 steps (Figures 3A, Figure

S3.1-2 in Document S1), whereas the morphology-only analysis

resulted in 704 MPTs of 802 steps (Figure 3B, Figure S3.3-4 in

Document S1). Both analyses recovered fewer trees than Ksepka et

al. [29], a difference attributed primarily to the exclusion of the

wildcard taxa and a more complete data set. Our results also show

better resolution and recover all the genera as monophyletic, with

the exception of Archaeospheniscus and Pygoscelis. Topologies of the

combined and morphology-only strict consensus trees are almost

identical for the stem penguin taxa, but there is disagreement in

the topology of the crown group between both analyses (Figure 3).

The general relations among the stem genera are similar to

those previously reported [29,30]; however, a new series of

pairings has been obtained. Mesetaornis and Marambiornis are joined

close to the base of the Sphenisciformes. The large polytomy

recovered by Ksepka et al. [29], including Palaeeudyptes, Inkayacu,

Icadyptes and Pachydyptes is better resolved. The two Antarctic

species attributed to Palaeeudyptes, P. gunnari and P. klekowskii, are

now separated from this polytomy as a more basal node. Three

clades, composed of Inkayacu+the Burnside ‘‘Palaeeudyptes’’, Kairuku

waitaki+Kairuku grebneffi and Icadyptes+Pachydyptes are also recovered.

They appear in a polytomy in both strict consensus trees (Figure 3).

Additionally, Palaeospheniscus is recovered as monophyletic with

respect to Eretiscus. A list of the osteological synapomorphies that

support these clades and the monophyly of the extant genera can

be found in Document S1.

Our results show a better-resolved topology for the crown group

than previous analyses at level of genera [29,30]. All the fossil taxa

recovered as part of the crown group, with the possible exception

of Inguza, are from the Neogene of South America. The strict

consensus of our combined analysis shows Madrynornis and Inguza

in an unsolved relationship with the clade containing the Antarctic

penguins (Aptenodytes+Pygoscelis) and the temperate-tropical group

containing the remaining extant genera (Figure 3A); whereas the

morphological analysis joins both genera as the sister group of the

crown Spheniscidae (Figure 3B). These taxa are also recovered

outside Spheniscidae in the Adams consensus of the combined

analysis (Figure S3.2 in Document S1). Madrynornis from the

Middle Miocene of Argentina had been previously recovered as

sister of Eudyptes within Spheniscidae [30,36]; while in the case of

Inguza from the Early Pliocene of South Africa, a closer

relationship with the temperate-tropical group had been previ-

ously suggested [30]. This change is mainly the result of the

modification of some characters and the substantial decrease in the

percentage of missing-data for Madrynornis, which is reduced from

47.7 to 15.5 for osteological characters. In contrast with the most

recent analyses [29,30], the inclusion of both taxa within

Spheniscidae slightly reduces the resolution of the strict consensus

of the combined analysis in comparison with the morphology-only

analysis. This decrease in resolution can be linked to a general

problem regarding osteological characters: the high intrageneric

homogeneity and intraspecific variation observed among extant

taxa. In consequence, some of these characters must be coded as

polymorphic, reducing their strength in comparison with the

molecular data and collapsing some nodes in the combined

analysis. It is expected that the addition of new characters and the

reduction of missing data for fossil taxa will improve the resolution

Pliocene Seabirds at the Humboldt Current
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of the analyses as will improving completeness of molecular data

for extant taxa.

All our analyses recover three main clades within Spheniscidae:

(i) the Antarctic penguins, (ii) the burrowing penguins, and (iii) the

yellow-headed penguins (Figure 2). The first one includes the truly

Antarctic penguins joining the great penguins (Aptenodytes) and

brush-tailed penguins (Pygoscelis). This clade has been previously

recovered by morphology-only analyses [37,38] and more recently

by a molecular analysis [39], but both genera are always recovered

in separate basal nodes in most molecular [40] and combined

analyses [29,30,41]. In our results, the Antarctic group also

includes the fossil species ‘‘Pygoscelis’’ grandis joined in a basal node.

‘‘Pygoscelis’’ grandis was originally included as a stem taxon of

Pygoscelis [37], but subsequent analyses recovered it in different

positions within the crown group [29,41]. Unfortunately, the

character states for this taxon have been taken from the literature

in the latest analyses, so that a direct revision of the type specimen

is required to resolve their affinities.

The burrowing penguins include the blue penguin (Eudyptula)

and the banded penguins (Spheniscus), and had been recovered as a

monophyletic group by molecular, morphological, and combined

analysis [29,39,40,41]. Within the banded penguins, a dichotomy

between the extant species and the South American fossils is

always recovered in our analysis. This differs from the relations

presented by previous studies [29], in which S. muizoni is more

closely related to the crown Spheniscus than to S. urbinai and S.

megaramphus. This change is mainly due to the increase in the

number of characters coded for the South American fossils.

Figure 3. Phylogenetic relations of Eudyptes calauina sp. nov. A. Strict consensus tree of 192 MPTs (tree length = 5563 steps, rescalated
consistency index [RC] = 0.373, retention index [RI] = 0.699) from a combined analysis of morphological characters plus .6000 bp. B. Strict consensus
tree of 704 MPTs (tree length = 802 steps, RC = 0.492, RI = 0.879) from an analysis of morphological-only characters.
doi:10.1371/journal.pone.0090043.g003
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Finally, the yellow-eyed penguin (Megadyptes) plus the crested

penguins (Eudyptes) form the yellow-headed penguins clade, well

supported by molecular, morphological, and combined analysis

[29,39,40,41]. Eudyptes calauina is always recovered within the

crested penguins in our analysis. Despite the lack of internal

resolution in the strict consensus (Figure 3), the crested penguins

are always recovered as a monophyletic clade with the yellow-eyed

penguin as sister taxon. The lack of internal structure in the strict

consensus within Eudyptes is most likely related to the high

percentage of missing molecular data, which in some species

exceeds 80%. Nevertheless, part of the internal topology is

recovered by the Adams consensus (Figure S3.2, S3.4 in

Document S1)

The main difference between the combined and morphology-

only analysis is the relationship between these three main clades

derived from the rooting [42]. A temperate-tropical group (clade A

in [30]) containing the burrowing and yellow-headed penguins has

always been recovered as monophyletic in molecular [39,40] and

combined analyses [29,30,41] (Figure 3A), and the Adam

consensus of our combined analysis recovers a dichotomy between

the Antarctic penguins and the temperate-tropical penguins

(Figure S3.2 in Document S1). On the other hand, morphology-

only analyses often recover the burrowing penguins as the most

basal node within Spheniscidae, joining the Antarctic and yellow-

headed penguins in a more derived clade [37,38,41] (Figure 3B).

This topology is collapsed in some of the most recent morpho-

logical trees [29,30], most likely due to the inclusion of wildcard

taxa. It is important to mention, that this does not affect the

placement of Eudyptes calauina within the crested penguins; and

despite these differences, the main relations between genera are

largely congruent. It has been suggested that the study of fossil taxa

representing the proximal outgroups to the crown Spheniscidae

could help to improve its rooting [42]. In this sense, our results

suggest that the study of the relationships of Madrynornis and Inguza

can be key to improve the congruence between molecular and

morphological data.

Spheniscidae indet
Referred materials. SGO-PV 21489, fragment of right

coracoid; SGO-PV 21450, proximal fragment of right radius

(Figure 1X); SGO-PV 21455, right ulna (Figure 1Y); SGO-PV

21454, right carpometacarpus (Figure 1Z); SGO-PV 21457, distal

fragment of left carpometacarpus. All specimens collected from

layer 12. Measurements in table 1.

Remarks
All the specimens included here are morphologically similar to

Spheniscus and Eudyptes and in the size range of Spheniscus humboldti

and S. chilensis, being approximately 20% smaller than the size

expected for E. calauina. These may represent a second and smaller

species of penguin or juveniles of E. calauina.

The fibrous textures observed in the ulna SGO-PV 21455

(Figure 1Y, Figure S2.C in Document S1) and the carpometa-

carpus SGO-PV 21454 (Figure 1Z) allow us to attribute these

specimens to immature individuals. Based on the proportions of

the flipper elements in Eudyptes, Spheniscus and Megadyptes [43], and

the length of the carpometacarpus SGO-PV 21454, we calculate

the expected length for the main elements of the appendicular

skeleton (Table 1). The recorded length of the ulna SGO-PV

21455 is congruent with the expected size. However, the humerus

SGO-PV 21451 is approximately 12% larger than the expected

length based on the carpometacarpus. These differences suggest

that both specimens belong to two separate taxa or, as the surface

texture suggests, to different ontogenetic stages, whereas the ulna

and carpometacarpus possibly belong to the same taxon and a

similar ontogenetic stage. Unfortunately, the fragmentary nature

of these specimens and the fact that at least some of them belong to

immature individuals, make it impossible to offer a more specific

assignation.

Procellariiformes Fürbringer, 1888.

Procellariidae Leach, 1820.

Puffinus Brisson, 1760.

Puffinus cf. griseus Gmelin, 1789.

Referred materials. SGO-PV 21490, proximal fragment of

left tarsometatarsus (Figure 4A,C,E,F). Collected from layer 12.

Measurements. Maximum length preserved, 43.8 mm;

proximal mediolateral width, 9.7 mm; dorsoplantar width of shaft

at the middle point, 4.29 mm.

Anatomical comparison
In dorsal view, the medial cotyla is medially expanded, giving

an asymmetric appearance to the proximal end of the tarsometa-

tarsus as in P. griseus, P. gravis and P. bulleri, but weaker than in P.

pacificus. In genera such as Calonectris, Pterodroma and Pterodromoides

the proximal end is more symmetrical. The medial cotyla is also

located more proximally than the lateral cotyla as is usual in

Puffinus, whereas in Calonectris both cotylae are of subequal height.

The medial margin of the medial cotyla is strongly pointed as in

Puffinus and Calonectris. The intercotylar prominence is slightly

damaged and is relatively wide as in P. griseus and P. bulleri, being

smaller that in P. gravis and P. creatopus and less rounded that in P.

pacificus. As in P. griseus, P. gravis and P. pacificus the dorsal

infracotylar fossa is completely open, whereas in P. creatopus,

Calonectris and Bulweria the retinacular extensors scar (impressio

retinacula extensorii) forms a bridge that covers the medial

foramen. In P. bulleri the retinacular extensors scar forms a smaller

ridge proximal to the medial foramen.

The hypotarsal crests are partially preserved. In proximal view,

well-defined lateral and medial canals can be identified. The

presence of both canals is typical of Puffinus, whereas a lateral canal

partially close and a medial sulcus can be seen in genera like

Pterodroma and two shallow sulci are present in Fulmarus.

The middle shaft is strongly mediolaterally compressed as in

Puffinus, whereas in genera like Calonectris, Bulweria, Pterodroma,

Pterodromoides and Pachyptyla the shaft is more expanded mediolat-

erally. From the middle point of the shaft to the proximal end, the

shaft gradually expands mediolaterally as in P. griseus, P. creatopus

and P. bulleri; whereas in P. gravis, P. pacificus and Calonectris the

width of the shaft is more constant, expanding proximally only at

the level of the proximal foramina. The dorsal sulcus is shallow

and poorly defined as in Puffinus, whereas in genera like Pterodroma

and Pterodromoides it is deep and well delimited by medial and

lateral ridges.

Remarks
This specimen is equivalent in size and morphology to the

extant Puffinus griseus, one of the largest shearwaters and a much

larger taxon than most of the fossils previously attributed to

Puffinus in the Southeastern Pacific [44]. It represents a species

smaller than P. gravis and Procellaria, similar in size to Calonectris and

larger than Puffinus creatopus, P. bulleri and P. pacificus. Nevertheless,

considering the fragmentary nature of this record and the

intraspecific and interspecific variation within the extant species

[44], we avoid a more specific assignment.

All the specimens described by Stucchi and Urbina [44], from

the Miocene of the Pisco Formation represent species similar in

size or smaller than P. bulleri and P. pacificus. Additionally, an

isolated neurocranium from the Late Miocene of the Bahia Inglesa
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Formation has been attributed to Puffinus [45], and represents a

shearwater larger than P. griseus and P. creatopus. This specimen

possibly belongs to the same taxon as the skull found in the Pisco

Formation and erroneously attributed to Fulmarus by Cheneval [5].

Other Pliocene records of Puffinus in the Eastern Pacific include

the extinct Early Pliocene species P. tedfordi [46] from Baja

California, Mexico, and P. fethami [47] from California, USA; and

the Late Pliocene P. kanakoffi [47] and P. gilmorei [48] from San

Diego, USA. All these species are smaller than P. griseus.

Suliformes (Sharpe, 1891).

Phalacrocoracidae Reichenbach, 1850.

Phalacrocorax Brisson, 1760.

Phalacrocorax sp.

Referred materials. SGO-PV 21443, associated wings and

pectoral girdle elements including left and right coracoids,

proximal fragment of right scapula, proximal fragment of right

humerus, right ulna lacking of proximal end, right radius lacking

of proximal end, distal fragment of left ulna, proximal fragment of

right carpometacarpus (Figure 4H–O); SGO-PV 21446, proximal

fragment of left carpometacarpus. SGO-PV 21443 collected from

layer 12; SGO-PV 21446 collected from layer 9.

Measurements. SGO-PV 21443, left coracoid, maximum

length preserved 53.6 mm; left coracoid, sternal facet width

16.4 mm; right coracoid, maximum length preserved 57.1 mm;

right scapula, proximal width 14.2 mm; right humerus, maximum

proximal width 20.1 mm; right ulna, maximum length preserved

103.8 mm; right carpometacarpus, proximal anteroposterior

width 12 mm.

Remarks
These specimens represent a cormorant smaller than Phalacro-

corax bougainvilli and similar in size to P. gaimardi and P. brasilianus.

This range is equivalent to that described for Phalacrocorax sp. from

the Late Miocene and Pliocene of the Pisco Formation [5,7], and

the Late Pliocene of the La Portada Formation [16]. Similar

specimens are also known from the Late Miocene of the Bahia

Inglesa Formation, including an associated braincase and sternum

[18,49]. A second and larger species, P. aff. bougainvillii, is also

known from the Late Miocene and Pliocene of the Pisco and Bahia

Inglesa formations [2,7,18].

As has been mentioned by previous authors [7] and based on

the differences in the proportions respective to extant Pacific

cormorants, these specimens probably represent an extinct species.

Despite the fact that SGO-PV 21443 is one of the most complete

specimens of seabird currently known from Chile, here we avoid

naming a new species, considering the availability of more

Table 1. Length measured and expected for flipper element.

Measured Specimen measured Expected Percentage of total length

Humerus 76.8a (80b) SGO-PV 21451 70.1+/24.5 33%

Ulna 53.1 SGO-PV 21455 51 24%

Carpometacarpus 42.5 SGO-PV 21454 42.5 20%

The expected lengths were calculated base on the proportions described for Eudyptes, Spheniscus and Megadyptes [42], and using the carpometacarpus SGO-PV 21454
as reference specimen. The range for the humerus was calculated based in the method of Warheit [32] (measure +/2 1.96 x standard deviation) and using the standard
deviation offered by Livezey [42] for the humerus of Spheniscus magellanicus (2.3). Note that the humerus SGO-PV 21451 is larger than the expected length.
a. Maximum conserved length,
b. Estimated total length.
doi:10.1371/journal.pone.0090043.t001

Figure 4. Fossil shearwater and cormorant from the Horcon Formation. Proximal fragment of a fossil left tarsometatarsus assigned as
Puffinus cf. griseus (SGO-PV 21490) in (A) dorsal, (C) plantar and (E) proximal views; and (F) sketch showing the details of the proximal surface.
Proximal section of the same element in the extant great shearwater (Puffinus gravis) in (B) dorsal, (D) plantar and (G) proximal views. Partial wings
and pectoral girdle of the small cormorant Phalacrocorax sp. (SGO-PV 21443): (H) fragment of right ulna in dorsal view; (I) right coracoid in dorsal
view; (J) proximal fragment of left scapula in medial; (K) left coracoid in ventral view; (L) proximal fragment of left humerus in caudal view; (M) left
radius lacking of proximal end in ventral view; (N) left ulna lacking of proximal end in ventral view; and (O) proximal fragment of left
carpometacarpus in ventral view.
doi:10.1371/journal.pone.0090043.g004
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complete specimens in the Pisco Formation. This unnamed taxon

was the most common cormorant along the coast of Chile and

Peru during the late Neogene.

Discussion

The South American Record of seabirds during the
Pliocene

The fossil record of seabirds during the Pliocene in the

Southeastern Pacific has been mostly restricted to the area

currently comprised by the PCP, and the Horcon assemblage is

the first fauna described for the transitional zone and the

southernmost seabird locality currently known for the Pliocene

of South America (Figure 5B).

After the recent publication of new radiometric dates for the

vertebrate horizons Sacaco and Sacaco Sur from the Pisco

Formation [50], the only possibly Pliocene locality from Southern

Peru is Yauca [51,52]. If this age can be confirmed, this locality

will be the most diverse seabird assemblage for this interval in

South America, including penguins, cormorants and petrels, along

with at least three species of boobies currently unrecorded in other

areas [7,51,53]. A minimum of three other localities is known in

Northern Chile. These are the outcrops of the La Portada

Formation in Mejillones [16], the Pliocene Lechero Member of

the Bahia Inglesa Formation at Los Negros locality [37,54], and

the Carrizal locality of the Coquimbo Formation [18]. It is

possible that the record from Coquimbo [17] also belongs to the

Pliocene levels of the Coquimbo Formation. Penguins are

abundant and diverse across these localities, whereas the record

of other families is comparatively rare and includes petrels,

albatrosses, cormorants and caracaras.

Although the Pliocene record consists exclusively of extant

families, the seabird assemblages from Chile and Peru are

composed of a mixture of modern and extinct taxa. In comparison

with the Late Miocene, the only suprageneric taxon currently

absent from the Pliocene record is the Pelagornithidae, whereas

the great booby Sula magna persists in Southern Peru [51], and the

small cormorant Phalacrocorax sp. is still present from Peru to the

transitional zone [7,16]. It is possible that only one of the up to five

Late Miocene species of penguins persisted until the Pliocene: the

medium-sized Spheniscus sp. recorded in Yauca and Carrizal

[18,53]. On the other hand, at least three extant species are

possibly present during the Pliocene: the Humboldt penguin

Spheniscus humboldti [53], the Guanay cormorant Phalacrocorax

bougainvillii [7], and the sooty shearwater Puffinus cf. griseus recorded

in Horcon. The first two species are endemic to the PCP, whereas

the last one has a wide dispersion range but only breeds in

Subantarctic regions including the Magellanic region in South

America [10]. This suggests that the processes that originated the

modern seabird faunas along the Pacific coast of South America

had already started in the Late Pliocene; however, most of them

remain minor elements in the Pliocene assemblages.

Comparing the current and Pliocene richness of penguins and

cormorants across the PCP and the transition zone (Figure 5A), we

can see a general increase in the case of the cormorants, and a

decrease in the diversity of penguins in Peru and Northern Chile.

Similarly to the situation described for the North Pacific prior the

Pliocene [55], cormorants are comparatively rare in the record of

Peru and particularly Chile. Two species are known from the Late

Miocene to the Pliocene, whereas no fewer than three are

currently present across the Humboldt System. The small

Neogene cormorant Phalacrocorax sp., a possible ecological

analogue of the Red-legged Cormorant P. gaimardi, is by far the

most common cormorant until the Late Pliocene, whereas

specimens identifiable as the Guanay cormorant P. bougainvillii

are scarce. In contrast, the Guanay cormorant is currently one of

the most abundant and main guano-producing species in the PCP

[56], and it is also the most abundant species in Pleistocene sites of

southern Peru [57]. This change in dominance is most likely

related to the warmer oceanic conditions during the Pliocene [58],

and their effect on the main prey of the Guanay: the Peruvian

anchovy. Warm periods, like El Niño events, have a negative effect

on the population of anchovy and drive the alternate regimen

Figure 5. The Pliocene record of birds in the Southeast Pacific.
A. Comparison between the Pliocene (P) and extant (E) richness of
penguins and cormorants for each major area represented as minimum
number of species (MNS); B. Map showing the main fossiliferous
localities, the zoogeographical regions (PCP, Peruvian–Chilean Province;
TZ, Transition Zone) and the species recorded.
doi:10.1371/journal.pone.0090043.g005
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shifts between this species and the sardine [59]. Drops in the

anchovy population have strong effects on the population of the

Guanay cormorant and, in combination with commercial fishing,

had been associated with the recent decline of that species [60].

The predominance of warmer waters in the Pliocene of Northern

and Central Chile (see [61]) represents an adverse scenario for

these species.

On the other hand, only two species of penguins remained in

Peru by the Pliocene and a minimum of four were present across

Northern Chile, whereas the Humboldt penguin is the only species

that currently inhabits this area. This decrease in the diversity of

penguins is not well recorded in Horcon, where two species of

banded penguins can currently be found and only one species of

crested penguin can be confirmed for the Pliocene. Small penguins

in the size range of the Humboldt penguin became more common

in Northern Chile, and remains of medium sized Spheniscus are

comparatively rare during the Pliocene, whereas slightly larger

species like S. urbinai were common across the PCP during the Late

Miocene. However, at least one species, ‘‘Pygoscelis’’ grandis,

reached a large size in the range of Aptenodytes. This relatively

high diversity of penguins is intriguing considering the warmer

conditions described for the Pliocene [58,61,62]. Nevertheless,

there is also a reduction in size and a drop in the richness of species

with respect to the Late Miocene, where a minimum of four

species can be found in the Bahia Inglesa bonebed [3,18].

Interestingly, no more than two species have been found at the

same locality in the Pliocene in Northern Chile.

Subantarctic seabirds during the Pliocene Warming
The possible presence of genera currently restricted to the

Subantarctic and Antarctic in lower latitudes is another enigmatic

characteristic of seabird faunas during the Pliocene. Despite the

existence of other Neogene species originally attributed to the

Antarctic genera Pygoscelis [37,63,64] and Aptenodytes [63], Eudyptes

calauina is the only one currently supported by phylogenetic

analysis as part of a Subantarctic genus (see [41]). The presence of

subadults and possibly juveniles indicates that this was a breeding

species in Central Chile. Currently, the Southern Rockhopper and

Macaroni penguins are the only two breeding species in South

America, with colonies restricted to austral islands over 50uS [65].

Nevertheless, most of the crested penguins breed on islands

surrounding New Zealand between 35 and 55uS [66], in waters

with average Sea Surface Temperatures (SST) between 15 and

7uC. Multiproxy reconstructions and climate modeling suggest

SST around 16uC during the austral winter and 20uC during

summer in central Chile during the Pliocene [67]. However, there

is currently no Pliocene data available that comes directly from the

Humboldt Current System. The living crested penguins are

migratory and highly seasonal breeders [66]. This suggests that E.

calauina was a migratory species, probably breeding during the

austral winter like the Northern Rockhopper and the Fiordland

penguin [68]; and adapted to warmer conditions than the species

that currently inhabit South America, being probably more similar

to the New Zealand species. This may also be one of the causes for

the disappearance of this species from the transitional zone with

the beginning of Quaternary cooling.

The Benguela Current system in South Africa is the only other

area with a well-known Pliocene record of seabirds in the South

Hemisphere [1,30,69]. Seals [70] and a high diversity of penguins

[30] and Procellariiformes, including prions (Pachyptila) and diving

petrels (Pelecanoides) [71], are known for this region and have been

interpreted as evidence of Subantarctic conditions [1,69]. This

seems to contradict the warmer temperatures currently known for

the Pliocene [58,61,62,67]. However, it is possible that the meaning

of this vertebrate assemblage in terms of cooler temperatures has

been overstated, being also congruent with temperate conditions.

Seals are a dominant element of the pinniped assemblages during

the Neogene in the Southern Hemisphere [54], being diverse under

the warmer climate of the Miocene. Despite the fact that prions

mainly breed in Subantarctic islands, many species, like the Fairy

and Broad-billed prions [72], also breed in temperate areas.

Furthermore, the Magellanic Diving-petrel is the only diving petrel

truly restricted to cold-temperate regions, whereas two of the

remaining species reach warm-tempered areas and one, the

Peruvian Diving-petrel, is completely restricted to the PCP [72].

Finally, multiproxy reconstructions suggest SST around 18uC
during winter and 22uC during summer in the Western Cape of

South Africa for the Late Pliocene [67], being a similar range to the

current summer conditions at the area.

There is no doubt that, as in South America, the fossil

assemblages of South Africa show significant differences with

respect to the faunas that currently inhabit the region. Further-

more, the South African seabird assemblage during the Pliocene

was apparently more similar to the extant assemblage of the South

American PCP. Boobies (Sula), the dominant sulid genus during

the Neogene and the only one still present in South America, were

also present during the Pliocene in South Africa and later replaced

by the Cape gannet Morus capensis [1,69]. Diving petrels and

several species of storm petrels have been identified as endemic

species present in the Humboldt system without an ecological

equivalent in the present-day Benguela system [73]; whereas at

least one species of diving petrel and two of storm petrels were

present during the Pliocene [71]. The disappearance of these

cold/temperate elements from South Africa is intriguing consid-

ering the cooling trend of this region. Current estimations suggest

that the drop in SST was stronger and faster in the Benguela than

in the Humboldt system: approximately 8uC in 3.3 Ma versus 4uC
in 3.8 Ma [62]. One of the main drivers proposed for this faunal

turnover is the change in the availability of breeding areas (islands

and/or beaches) due to sea level fluctuation [1,30,54,71]. This is

certainly a possible explanation for a global reduction in the

richness of Procellariiformes and penguins, which largely prefer

islands to continental beaches. On the other hand, the differential

extinction of cold/temperate birds in the Benguela and Humboldt

systems can be related to the larger latitudinal thermal gradient in

South America, which allows these taxa to expand or contract

their distribution more easily than in Southern Africa. In this

sense, the mixed seabird fauna of Horcon shows that at least some

seabirds species, like the small Neogene cormorant, where spread

across a wide range of climatic conditions during the Pliocene.

Additionally, it is possible that the difference in the SST cooling

rate [62] could also play a role in this differential extinction.

Conclusion
The fossil record of Horcon reflects the existence of a mixed

seabird fauna in central Chile during the Pliocene, resembling the

current assemblages from the transitional zone. This area is unique

through the presence of E. calauina, the oldest record of this genus,

which is currently absent from the Humboldt System but present

in the Magellanic region. It also includes the first Pliocene record

of the sooty shearwater that currently breeds in the Magellanic

region, and a small cormorant shared with Southern Peru and

Northern Chile. The presence of a transitional zone in central

Chile during the Pliocene is congruent with the comparatively

cooler conditions suggested for Southern Chile based on

foraminifera [74], and the annual temperature oscillation that

could affect the area according to multiproxy reconstructions [67].

This thermal gradient could also play an important role in the

Pliocene Seabirds at the Humboldt Current

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e90043



preservation of a higher diversity of cold/temperate seabirds in the

Humboldt Current, compared with similar upwelling systems like

the Benguela Current (west coast of southern Africa). Nevertheless,

it is clear that despite the latitudinal differences across the

Humboldt System, the Pliocene seabirds represent a distinctive

assemblage linking the living faunas with the Late Miocene forms.

At the moment, the lack of Neogene records in Southern Chile

prevents us from making more detailed comparisons with the

Magellanic region, but it is expected that this gap can be filled in

the near future.
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Formación Pisco, Perú. Boletı́n de la Sociedad geológica del Perú 100: 67–77.
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Document S1 - Chávez Hoffmeister et al. The evolution of seabirds in the 

Humboldt Current: New clues from the Pliocene of central Chile 

 

Stratigraphic column 

 

 Two well-defined stratigraphic intervals can be identified across the entire sequence. 

The lower unit crops out with an estimated thickness of less than 8 m and consists of a 

sequence of conglomerates and greenish glauconitic sandstones containing some white 

calcareous concretions. The presence of carbonized plant remains and the absence of 

macrofossils are also characteristic of this unit. The upper unit corresponds to the main 

section of the sequence. The lithology of this unit is characterized by layers of fine to 

coarse sandstone, light-colored and poorly consolidated, which are interspersed with few 

conglomeritic layers.  

 

Figure S1.1. Location map. S1.2. Stratigraphic column of the Horcon Formation. 
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Expanded anatomical description 

 

Vertebrae 

 SGO-PV 21452 is most likely a fourth cervical. Its general shape resembles those 

observed in Eudyptes chrysocome, E. chrysolophus and Madrynornis. The dorsal tori are 

strongly prominent, relatively narrow anteroposteriorly and with their extremities 

pointing laterocaudally as in the compared species of Eudyptes and Madrynornis; 

whereas in Spheniscus urbinai the tori of module 3 and 4 (sensu Guinard et al. 2010) are 

less prominent, more rounded and wider anteroposteriorly. The hypapophysis is larger 

than in compared species of the genus, relatively slender and ventrocaudally directed.  

 

Humerus 

 Based on SGO-PV 21449 and the section preserved in SGO-PV 21451, the head is 

strongly prominent proximally and has the shape of a rampant arch with the apex 

ventrally located in posterior view; whereas in Eudyptula and Spheniscus the head is less 

prominent, giving a flatter appearance to the proximal extreme of the humerus. In SGO-

PV 21451, a notch between the dorsal tubercle and the base of the humeral head is 

clearly visible in caudal view (Figure 1d). This notch is usually absent in Spheniscus, 

Eudyptula and Tereingaornis. In SGO-PV 21449, the capital incisure is completely 

separated from the transverse ligament sulcus as in Eudyptes, Spheniscus and Eudyptula 

(Figure 1e). However, these are connected by a sulcus in Aptenodytes, Inguza, 

Madrynornis, Palaeospheniscus and Eretiscus. A deep pit for ligament insertion is 

present on the proximal surface adjacent to the head as in most Spheniscidae. This pit is 
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absent or extremely shallow in Pygoscelis, Madrynornis, Palaeospheniscus, Eretiscus 

and occasionally in Aptenodytes patagonicus. The proximal margin of the tricipital fossa 

is weakly projected in proximal view as in most living and Neogene penguins, like 

Madrynornis, Inguza and Palaeospheniscus. In contrast, it develops a lip-like projection 

that is well exposed in proximal view in extant species of Spheniscus and occasionally in 

Pygoscelis antarctica. Unlike the living species of Eudyptes and Spheniscus chilensis, 

where the proximal border of the tricipital fossa forms a symmetrical concavity in ventral 

view; in E. calauina it is asymmetrical and slightly concave. The impressio insertii m. 

supracoracoideus and m. latissimus dorsi are separated by a small gap as in 

Spheniscidae. The shaft robustness index (SRI: proximodistal length / ventrodorsal width 

at middle point, see Character 176) shows a value (4) at the limit between most of the 

living penguins (4.1-4.9) and the bulkiest fossil taxa such as Paraptenodytes robustus 

(MACN A-11032, holotype of Isotremornis nordenskjoldi) (3.9), Pachydyptes (3.8) and 

Platydyptes novaezealandiae (3.6). The nutrient foramen is situated on the ventral face 

of the shaft as in Palaeospheniscus and all Spheniscidae, whereas in Madrynornis and 

Eretiscus it is situated on the anterior face. The dorsal edge of the shaft is curved and 

without a clear preaxial angle as is usual in Eudyptes, nevertheless, a well-defined angle 

can occasionally be found as the normal condition in Aptenodytes, Pygoscelis, 

Megadyptes, Spheniscus, Palaeospheniscus and Eretiscus. The posterior trochlear ridge 

reaches the ventral edge of the shaft. This condition is also present in living species of 

Eudyptes, Megadyptes and Palaeospheniscus; where as a result, the ridge often slightly 

exceeds the ventral margin in cranial view but not in caudal view. In Aptenodytes, 

Pygoscelis and Madrynornis the ridge extends beyond the ventral margin, but does not 
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reach the ventral edge in Inguza, Eretiscus and most species of Spheniscus. The trochlear 

angle measured in SGO-PV 21451, defined as the angle between the main axis of the 

shaft and the tangent of ventral and dorsal condyles, is equal to 45
o
. This angle is within 

the range of most Spheniscidae (greater than or equal to 45
o
), although it is smaller in 

Inguza (43
o
), Madrynornis (41

o
) and Tereingaornis (41

o
); and occasionally in Spheniscus 

urbinai (43
o
-52

o
), Palaeospheniscus (39

o
-49

o
) and Eretiscus (44

o
-54

o
). In ventral view, 

the ventral condyle is almost parallel to the dorsal condyle and does not extend the 

anterior edge of the humerus which is flattened as in most Spheniscidae. In Madrynornis, 

Palaeospheniscus and Eretiscus the ventral condyle is more rounded and slightly 

surpasses the anterior edge. The dorsal end of the scapulotricipital sulcus is curved 

caudally and completely separated from the humerotricipital sulcus by the medial 

trochlear ridge; as in Aptenodytes, Spheniscus muizoni, Madrynornis, Palaeospheniscus 

and Eretiscus. In other species of Eudyptes and Spheniscus, the dorsal end of the 

scapulotricipital sulcus is dorsally connected to the humerotricipital sulcus. 

 

Tibiotarsus 

 The proximal fragment of a tibiotarsus SGO-PV 21447 (Figure 1h) partially 

resembles that of S. megaramphus. However, it is much smaller than in that species and 

many of their similarities are shared with other Spheniscidae, including Eudyptes. 

Similar to Spheniscus or Aptenodytes, the lateral crest is strongly prominent cranially in 

lateral view, unlike Eudyptes where the cranial edge of the crest is almost aligned with 

the cranial edge of the diaphysis. The cranial margin of the lateral crest is thickened but 

delimited by the proximal and distal edges of the crest shaft, whereas in Spheniscus, 
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Eudyptes, Madrynornis and Palaeospheniscus the margin is often projected proximally 

creating a proximal prominence in lateral view. The lateral longitudinal flexor fossa is 

relatively well developed and clearly delimited medially by a longitudinal crest, whereas 

the medial fossa of the collateral ligament is shallow and medially open as in most of the 

extant penguins. In S. muizoni and Spheniscus sp. MUSM 800 the collateral ligament 

fossa is deep and medially enclosed by a short proximal ridge. In the distal fragment of 

tibiotarsus SGO-PV 21488 (Figure 1i) the sulcus extensorius is located close to the 

midline of the shaft. The distal epiphysis is relatively wide mediolaterally to a similar 

degree as in living species of Eudyptes and less than in Megadyptes. The tubercle for the 

retinaculum of the fibularis muscle is well defined and prominent in caudal view. As in 

Eudyptes, S. chilensis, Madrynornis and Palaeospheniscus; a tuberosity for the extensor 

reticulum appears in the lateral edge forming a shallow lip-like crest. This tuberosity is 

usually absent in Spheniscus and occasionally present in Aptenodytes and Pygoscelis 

(Göhlich, 2007). The caudal edge of the medial condyle is slightly damaged. However, 

the edge is apparently continuous also in medial view, unlike in S. chilensis and 

Eudyptes where it is distally notched (Göhlich, 2007). In cranial view, the lateral condyle 

is slightly inflated laterally as in Eudyptes and Madrynornis creating a relatively straight 

lateral edge.  

 

Tarsometatarsus 

 The surface texture on the holotype SGO-PV 21487 suggest that it can be attributed to 

an adult, whereas the porous and fibrous textures observed on the tarsometatarsus SGO-

PV 21444 allow us to attribute these specimen to a subadult (Figure S2.A-B). 
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Figure S2. Detail of bone surface texture in penguin specimens. The bones in adults have 

a smoother surface as can be observed in the holotype of Eudyptes calauina SGO-PV 

21487 (A, plantar). In contrast, the porous and fibrous textures observed on the 

tarsometatarsus SGO-PV 21444 (B, plantar) and the ulna SGO-PV 21455 (C, ventral), 

along with the degree of development of some anatomical features; allow us to attribute 

these specimens to subadults. 

 

 The collateral lateral ligament scar is extremely shallow in SGO-PV 21444 (Figure 

1p) and absent in SGO-PV 21487 (Figure 1j) as in Eudyptes, Megadyptes and 

Aptenodytes. This scar is located proximodorsally in Spheniscus, Eudyptula, Inguza, 

Nucleornis, Madrynornis, Palaeospheniscus and Eretiscus; creating a truncate 

proximolateral vertex in dorsal view. The intermediate hypotarsal crest is 

indistinguishable from the lateral crest in plantar view as in all Spheniscidae, while in 
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Madrynornis, Palaeospheniscus, Eretiscus and occasionally in Eudyptula an extremely 

shallow groove is visible in proximal view slightly delimited by both crests. As in 

Eudyptes, Madrynornis, Palaeospheniscus, Eretiscus and Korora, the lateral hypotarsal 

crest is well defined in SGO-PV 21487 (Figure 1k) and forms a diagonal ridge that 

overhangs the lateral foramen, that is slightly less defined in SGO-PV 21444 (Figure 1q). 

The medial proximal vascular foramen opens plantarly at the medial surface of the 

medial hypotarsal crest as in Eudyptes, Spheniscus, Eudyptula and Madrynornis; 

whereas in Pygoscelis and Nucleornis it opens directly at the plantar surface. In SGO-PV 

21487 the foramen is relatively large as in E. chrysolophus and Madrynornis; and is even 

larger in SGO-PV 21444, being visible in plantar view as in Megadyptes and 

occasionally in E. chrysocome. This degree of development is rare in Spheniscus, being 

often smaller as in Eudyptula. The lateral proximal vascular foramen is small as in most 

Spheniscidae, with the exception of Spheniscus in which it is occasionally enlarged (this 

is particularly common in S. humboldti). In contrast, the lateral foramen is vestigial in 

Eretiscus and completely absent in Nucleornis. The medial dorsal sulcus is moderately 

deep as in Eudyptes, Megadyptes, S. urbinai and S. chilensis. In E. schlegeli and E. 

sclateri the sulcus is occasionally shallow as in Aptenodytes, Pygoscelis, Madrynornis, 

Palaeospheniscus and Eretiscus. In contrast, in Eudyptula, most of the Spheniscus 

species, Inguza and Nucleornis the sulcus is much deeper. The lateral edge of the 

metatarsus IV in SGO-PV 21487 is strongly compressed dorsoplantarly creating a sharp 

edge in lateral view (Figure 1m), as in Palaeospheniscus. In plantar view, the lateral 

intertrochlear notch is proximally deeper than the medial as in Eudyptes, the extant 

Spheniscus spp., S. muizoni, Eudyptula, Madrynornis and Palaeospheniscus. The 



 8 

trochlea metatarsi IV is shorter than the trochlea metatarsi II in dorsal view as in 

Eudyptes, Madrynornis and Palaeospheniscus; whereas in Aptenodytes, Pygoscelis, 

Megadyptes, Eudyptula and Spheniscus both are sub-equal.  In distal view, the dorsal 

edges of the trochlea metatarsi III and IV are aligned at the same plane (Figure 1o,u), 

whereas in extant species of Spheniscus, S. chilensis and S. megaramphus, the trochlea 

IV is displaced dorsally. Plantarly, the lateral ridge of the trochlea IV is much larger than 

the medial ridge in distal view, creating a plantar edge that is strongly pointed laterally 

and flattened medially as in Eudyptes, Pygoscelis, S. chilensis, S. urbinai, S. 

megaramphus, Eudyptula, Madrynornis and Palaeospheniscus. Also in distal view, the 

plantar edge of the trochlea II is slightly deflected plantarly with respect to the plane 

defined by the most plantar point of the trochleae III and IV (Figure 1o,u), as in 

Eudyptes, Aptenodytes, Pygoscelis, the extant species of Spheniscus, S. chilensis, S. 

urbinai, S. muizoni and Madrynornis. In plantar view, the trochlea II is slightly pointed 

with parallel medial and lateral edges in SGO-PV 21487 as in Megadyptes, Aptenodytes, 

Eudyptula, S. megaramphus, Madrynornis and Paleospheniscus. However, in extant 

species of Eudyptes the trochlea II is strongly pointed with a more rounded medial edge 

or following the medial edge of the tarsometatarsus. An intermediate state can be seen in 

SGO-PV 21444, where the trochlea II is slightly pointed but the medial edge follows the 

medial edge of the tarsometatarsus. 
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Taxon Specimens Length 

Proximal 

width 

Distal 

width 

Elongation 

index (EI) 

Eudyptes calauina SGO-PV 21487 41.3 24.3 27.5 1.7 

Eudyptes calauina SGO-PV 21444 41 22.7 25.3 1.8 

Eudyptes chrysolophus (n = 1) 
a
 25.1 14.2 17 1.7 

Eudyptes moseleyi Z.2007.065 30.9 15.3 20.5 2 

Eudyptes chrysocome (n = 3) 
a
 29 14.8 19.5 1.9 

Eudyptes robustus (n = 18) 
b
 29.36 14.73 19.35 1.9 

Eudyptes pachyrhynchus (n = 28)
 b

 30.02 15.2 19.75 1.9 

Eudyptes sclateri (n = 19)
 b

 31.6 17.03 22 1.8 

Eudyptes schlegeli AMNH 5399 33.3 18.7 22.2 1.8 

Megadyptes antipodes (n = 20)
 b

 35.03 18.37 22.94 1.9 

Spheniscus humboldti (n = 2)
 a
 35.7 16.6 21.2 1.8 

Spheniscus magellanicus (n = 5)
 c
 31.4 15.7 19.72 2 

Spheniscus demersus (n = 8)
 a
 32.7 15.6 19.6 2 

Spheniscus muizoni MNHN PPI 147 33.31 16.22 21.53 2 

Spheniscus urbinai MUSM 401 48.76 24.69 30.09 1.9 

Spheniscus megaramphus MUSM 2087 50.97 26.62 34.66 1.9 

Eudyptula minor (n = 3)
 a
 22 10.2 13.4 2.1 

Pygoscelis adeliae (n = 18)
 c
 32.48 17.09 21.03 1.9 

Pygoscelis papua (n = 9)
 c
 32.84 19.31 24.1 1.7 

Pygoscelis antarctica (n = 3)
 c
 28.93 16.07 20.3 1.8 

Pygoscelis grandis SGO-PV 1104 49.2 27.33 – 1.8 

Aptenodytes patagonicus (n = 3)
 1

 45.5 27.8 33.3 1.6 

Aptenodytes forsteri (n = 3)
 1

 45.2 32.3 38.1 1.1 

Madrynornis mirandus MPEF PV 100 36.3 18.1 19.1 2 

Inguza predemersus SAM PQ L23018 27.2 12.8 – 2.1 

Nucleornis insolitus SAM PQ MBD3 40.4 22.4 – 1.8 

Palaeospheniscus bergi (n = 5)
 c
 36.4 16.54 20.56 2.2 

Palaeospheniscus patagonicus (n = 3)
 c
 40.06 19.07 23.33 2.1 

Palaeospheniscus biloculata (n = 5)
 c
 42.1 19.1 24.1 2.2 

Eretiscus tonnii MLP 81-VI-26-1 19.6 8.16 – 2.4 

 

Table S1. Comparative measurements for the tarsometatarsus in millimeters. Sources of  

measurements: a. Stephan (1979), b. Worthy (1997), c. Acosta Hospitaleche and 

Gasparini (2007). 

 

 

 



 10 

Phylogenetic analysis 

 

Modifications to the matrix  

 During the revision of the original matrix of Ksepka et al. (2012), some 

inconsistencies between the list of characters and the coded state in the matrix were 

detected. The state code of characters 91 and 103 as defined in the character list is 

switched with respect to the states in the matrix; so that the state 0 in the matrix is defined 

as state 1 in the list and vice versa. Character 98 defines a state 2 that is not used in the 

matrix. The same happens with the state 0 of character 187. On the other hand, characters 

136, 173 and 195 include an extra state in the matrix that is not defined in the character 

list. Finally, six characters (201, 202, 203, 204, 207 and 208) have different numerations 

between the list of characters and the matrix. None of these errors had an impact on the 

original results offered by Ksepka et al. (2012), but they might create serious mistakes 

when new taxa are added. All these errors have been corrected for the present version and 

have been also corrected in an update of Ksepka et al. (2012) (see Dryad database). 
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GenBank molecular sequences  

GenBank accession numbers  

Taxon 12S  16S  COI Cyt-b RAG-1 

A. forsteri  DQ137187 DQ137147 DQ137185 DQ137225 DQ137246 

A. patagonicus  AY139221 DQ137148 DQ137186 AY 138623 DQ 137247 

D. capense X82517 — — AF076046 — 

D. exulans  DQ137205 DQ137165 DQ137168 DQ137208 DQ137229 

E. chrysocome  AY139630 — DQ525796 — DQ525776 

E. chrysolophus  DQ137197 DQ137157 DQ137171 AF076052 DQ137223 

E. filholi  DQ525741 — DQ525781 — DQ525761 

E. moseleyi  DQ525746 — DQ525786 — DQ525766 

E. pachyrhynchus  

 

U88007, 

X82522 

DQ 137152 DQ137170 DQ137210 DQ137231 

E. robustus  DQ137193 DQ137153 DQ137176 DQ137126 DQ137237 

E. schlegeli  DQ137196 DQ137156 DQ137175 DQ137215 DQ137236 

E. sclateri  DQ137194 DQ137154 DQ137169 DQ137309 DQ137230 

E. minor  NC_004538 DQ137164 DQ137174 NC_004538 DQ137235 

G. immer  AF173577 DQ137166 DQ137167 DQ137207 DQ137288 

G. stellata AF173587 AY293618 AY666477 AF158250 — 

M. giganteus X82523 — — AF076060 — 

M. antipodes  DQ137198 DQ137158 DQ137184 DQ137224 DQ1372245 

O. oceanicus  — — DQ433048 AF076062 — 

O. leucorhoa — — AY666284 AF0706064 — 

P. desolata  — — — AF076068 — 

P. urinatrix X82518 — — AF076076 DQ881818 

P. immutabilis  — — DQ433933 PIU48949 — 

P. palpebrata  — — — U48943 DQ881822 

P. aequinoctialis  — — — U74350 — 

P. brevirostris NC007174 NC007174 NC007174 NC007174 — 

P. gravis  AF175572 AF173752 DQ434014 U74354 — 

P. adeliae  AF173573 DQ137149 DQ137183 DQ137223 DQ137224 

P. antarctica  DQ137190 DQ137150 DQ137181 AF076089 DQ137242 

P. papua  DQ137191 DQ137151 DQ137182 AF076090 DQ137243 

S. demersus  DQ137199 DQ137159 DQ137177 DQ137217 DQ137238 

S. humboldti  DQ137201 DQ137161 DQ137180 DQ137220 DQ137241 

S. magellanicus  DQ137200 DQ137160 DQ137178 DQ137218 DQ137239 

S. mendiculus  DQ137202 DQ137162 DQ137179 DQ137219 DQ137240 

T. melanophrys  AY158677 AY158677 NC_007172 U48955 AY158677 
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Authorship 

 12S rDNA: Baker et al. (2006): DQ137187, DQ137190–1, DQ137193–4, 

DQ137196–202, DQ137205; Banks et al. (2006): DQ525741, DQ525746, DQ525756; 

Cooper & Penny (1997): U88007, U88024; García-Moreno et al. (unpublished): 

AY139621, AY139623, AY139630; Stanley & Harrison (1999): X82517–8, X82522–3, 

X82533; Slack et al. (2006): AY158677; NC_004538; Paterson et al. (1995): AF173573, 

AF173577–8. 16S rDNA: Baker et al. (2006): DQ137147–62, DQ13714765–6; Van 

Tuinen et al. (2000): AY158677, AY293618. Cytochrome b: Stanley & Harrison (1999): 

DQ137207–10, DQ137215–20, DQ13723–5, AF158250; Baker et al. (2006): DQ525761, 

DQ525766, DQ525776, NC_004538; Nunn et al. (1996): U48943, U48949, U48955; 

Nunn & Stanley (1998): AF076051–2, AF076046, AF076060, AF076062, AF076064, 

AF076068, AF076076, AF076089–90, U74335, U74350, U74353. COI: Nunn & Stanley 

(1998): DQ137167–72, DQ137174–86; Baker et al. (2006): DQ525781, DQ525786, 

DQ525796; Hebert et al. (2004): AY666477, AY666284; Kerr et al. (2007): DQ433048; 

Slack et al. (2006): NC_007172. RAG-1: Baker et al. (2006): DQ137230–3, DQ137235–

47; Ericson et al. (2006): DQ881818, DQ881822. 
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Morphological character descriptions 

List based on KF. Citations for the primary source of the characters are indicated with 

abbreviations as follows. A = Ando (2007); AH = Acosta Hospitaleche et al. (2007); BG 

= Bertelli & Giannini (2005); C = Clarke et al. (2007); CL = Clarke et al. (2010); GB = 

Giannini & Bertelli (2004); K = Ksepka et al. (2006); KC = Ksepka & Clarke (2010); KF 

= Ksepka et al. (2012); KT = Ksepka & Thomas (2011); OH = O’Hara (1986). Citation 

of Figures is also offered for some characters. Characters that are new or have been 

modified significantly from previous studies are indicated.  

 

Integument 

1. Tip of mandibular rhamphotheca, profile in lateral view: pointed (0); slightly 

truncated (1); strongly truncated, squared off (2); truncated but with a rounded margin 

(e.g., as seen in Procellariiformes) (3). (GB1) 

2. Longitudinal grooves on the base of the culmen: absent (0); present (1). (GB2) 

3. Longitudinal grooves on the base of latericorn and ramicorn: absent (0); present 

(1). (GB3) 

4. Feathering of maxilla, extent: totally unfeathered (0); slightly feathered, less than 

half the length of maxilla (1); feathering that reaches half the length of maxilla (2); 

feathering surpassing half the length of maxilla (3). (GB4) Ordered 

5. Ramicorn, inner groove at tip: absent (0); present and single (1); present and 

double (2). (GB5) Ordered 

6. Orange or pink plate on ramicorn: absent (0); present (1). (GB6) 

7. Plates of rhamphotheca, inflated aspect: absent (0); present (1). (GB7) 
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8. Gape: not fleshy (0); margin narrowly fleshy (1); margin markedly fleshy (2). 

(GB8) Ordered 

9. Ramicorn color pattern: black (0); red (1); pink (2); yellow (3); orange (4); green 

(5); blue (6). (GB9) 

10. Latericorn and ramicorn, light distal mark: absent (0); present (1). (GB10) 

11. Latericorn color: black (0); red (1); orange (2); yellow (3); green (4); blue (5). 

(GB11) 

12. Culminicorn color: black (0); red (1); orange (2). (GB12) 

13. Maxillary and mandibulary unguis, color: black (0); red (1); yellow (2); green (3); 

blue-gray (4). (GB13) 

14. Ramicorn, ultraviolet color spot (reflectance peak): absent (0); present (1). 

(KC14)  

15. Bill of downy chick, color: dark (0); reddish (1); pale, variably horn to yellow (2); 

blue (3). (GB14) 

16. Bill of immature, color: dark (0); bicolored red and black (1); red (2); yellow (3); 

gray (4). (GB15) 

17. External nares: present (0); absent (1). (GB17) 

18. Nostril tubes in adult: absent (0); present (1). (GB16) 

19. Nostril tubes in hatchling: absent (0); present (1). (GB16) 

20. External nares: well-separated (0); fused at midline (1). (KC19) 

21. Iris color: dark (0); reddish-brown (1); claret red (2); yellow (3); white (4); silvery 

gray (5). (GB18) 

22. Scale-like feathers: absent (0); present (1). (GB19) 
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23. Rhachis of contour feathers: cylindrical (0); flat and broad (1). (GB20) 

24. Rectrices: form a functional fan (0); do not form a fan (1). (GB21) 

25. Remiges: differentiated from contour feathers (0); indistinct from contour feathers 

(1). (GB22) 

26. Apteria: present (0); absent (1). (GB23) 

27. Molt of contour feathers: gradual (0); simultaneous (1). (GB24) 

28. Yellow pigmentation in crown feathers (pileum): absent (0); present (1). (GB25)  

29. Head plumes (crista pennae): absent (0); present (1). (GB26) 

30. Head plumes (crista pennae), aspect: compact (0); sparse (1). (GB27) 

31. Head plumes (crista pennae), aspect: directed dorsally (0); directed posteriorly, 

not drooping (1); directed posteriorly, drooping (2). (GB28) 

32. Head plumes (crista pennae), position of origin: at base of bill close to gape (0); 

on the recess between latericorn and culminicorn (1); on forehead (2). (GB29) Ordered 

33. Head plumes (crista pennae), color: yellow (0); orange (1). (GB30) 

34. Nape (occiput), crest development: absent (0); slight (1); distinct (2). (GB31) 

Ordered 

35. Periocular area, color: black (0); white (1); yellow (2); bluish gray (3). (GB32) 

36. Fleshy eyering: absent (0); present (1). (GB33) 

37. White eyering: absent (0); present (1). (GB34) 

38. White eyebrow (supercilium): absent (0); narrow, from postocular area (1); 

narrow, from preocular area (2); wide, from preocular area (3). (GB35) Ordered 
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39. Loreal area (lorum), aspect: feathered (0); with spot of bare skin in the recess 

between latericorn and culminicorn (1); with spot of bare skin contacting eye (2); bare 

skin extending to the base of bill (3). (GB36) Ordered 

40. Auricular patch (regio auricularis): absent (0); present (1). (GB37) 

41. Throat pattern: black (0); white (1); yellow (2); irregularly streaked (3); with 

chinstrap (4). (GB38) 

42. Collar: absent (0); at most slight notch present (1); present, diffusely demarcated 

(2); black, strongly demarked (3). (GB39) Ordered 

43. Breast, golden in color: absent (0); present (1). (GB40) 

44. Dorsum color: black (0); dark bluish gray (1); light bluish gray (2). (GB41) 

45. Black marginal edge of dorsum between lateral collar and axillary patch, 

contrasting with dorsum: absent (0); present (1). (GB42) 

46. Black dots irregularly distributed over white belly: absent (0); present (1). (GB43) 

47. Flanks, dark lateral band reaching the breast: absent (0); present (1). (GB44) 

48. Distinct dark axillary patch of triangular shape: absent (0); present (1). (GB45) 

49. Flanks, extent of dorsal dark cover into the leg: incomplete, not reaching tarsus 

(0); complete, reaching tarsus (1). (GB46) 

50. Rump: indistinct in color from dorsum (0); distinct white patch (1). (GB47) 

51. Tail length: short, the quills barely emerge from the rump (0); quills distinctly 

developed (1). (GB48) 

52. Outer rectrices, color: same as inner rectrices (0); lighter than inner rectrices (1). 

(GB49) 
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53. White line connecting leading edge of flipper with white belly: absent (0); present 

(1). (GB50) 

54. Flipper, upperside, light notch at base: absent (0); present (1). (GB51) 

55. Leading edge of flipper, pattern of upperside: black (0); white (1). (GB52) 

56. Leading edge of flipper, pattern of underside: white (0); incompletely dark (1); 

completely dark and wide (2). (GB53) 

57. Flipper, underside, dark elbow patch: absent (0); present (1). (GB54) 

58. Flipper, underside, tip pattern: immaculate (0); patchy, in variable extent (1); 

small circular dot present (2). (GB55) 

59. Immature plumage, white eyebrow (supercilium): absent (0); or present (1). 

(GB56)  

60. Immature plumage, throat pattern (jugulum): black (0); or mottled (1); or white 

(2); or brown (3). (GB57) 

61. Immature plumage, flanks, dark lateral band: absent (0); or present (1). (GB58) 

62. Chicks hatch almost naked: no (0); yes (1). (GB59) 

63. Dominant color pattern of first down: pale gray (0); distinctly brown (1); 

bicolored, dark above and whitish bellow (2); uniformly blackish gray (3). (GB60) 

64. Dominant color pattern of second down: pale grey (0); distinctly brown (1); 

bicolored, dark above and whitish bellow (2); uniformly blackish gray (3). (GB61) 

65. Chick, second down, collar: absent (0); present (1). (GB62) 

66. Feet, dorsal color: dark (0); pink (1); orange (2); white-flesh (3); blue (4). (GB63) 

67. Feet, soles distinctly darker than dorsal surface: absent (0); present (1). (GB64) 

68. Feet, unguis digiti: flat (0); compressed (1). (BG65) 



 18 

 

Reproductive Biology 

69. Clutch size: two eggs (0); one egg (1). (GB65) 

70. Incubatory sac: absent (0); present (1). (GB66) 

71. Nest: no nest, incubation over the feet (0); nest placed underground, either 

burrowed in sand or inside natural hollow or crack (1); open nest, a shallow depression 

on bare ground or in midst of vegetation (2). (GB67) 

72. Size of first egg relative to the second egg: similar (0); dissimilar, first smaller 

(1); dissimilar, second smaller (2). (GB68) 

73. Crèche: absent (0); small, 3-6 birds (1); formed by dozens to hundreds of 

immatures (2). (GB69) 

74. Eggs, shape: oval (0); conical (1); spherical (2). (BG71) 

75. Ecstatic display: absent (0); present (1). (BG72) 

 

Osteology 

76. Premaxilla, tip (rostrum maxillare): pointed (0); weakly hooked (1); strongly 

hooked (2). Ordered. NOTE: In state 2, the tip ventrally exceeds the level of the tomial 

edge; whereas in state 1 the tip is approximately at the same level as the tomial edge. 

(GB0) (OH: fig.4) 

77. Premaxilla, frontal process, naso-premaxillary suture: visible (0); obliterated (1). 

(BG95) (BG: fig.12) 
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78. Nasal cavity, external naris (cavum nasi, apertura nasi ossea), caudal margin 

respect the rostral margin of the hiatus orbitonasalis (fossa antorbitalia): overlapping each 

other (0); non overlapping (1). (OH5) (OH: fig.2; BG: fig.11) 

79. Internarial bar (pila supranasalis), dorsal view: slender, slightly constricted 

laterally (0); wide throughout its length (1). (OH6) (OH: fig.3; BG: fig.12) 

80. Internarial bar (pila supranasalis), shape in cross section: suboval (0); inverted U- 

shape (1). (C75) 

81. Internarial bar (pila supranasalis), profile in lateral view (culmen): dorsal edge 

curves smoothly to tip of beak (0); pronounced step in dorsal edge (1). (KC78) 

82. Tomial edge (crista tomialis), plane of tomial edge respect to the basitemporal 

plate (lamina parasphenoidalis): approximately at the same level (0); dorsal to the level of 

the basitemporal plate (1). (BG97) 

83. Lacrimal: unperforated (0); perforated (1). (OH11) (OH: Fig.2; BG: Fig.11) 

84. Lacrimal: reduced, concealed in dorsal view (0); small portion exposed in dorsal 

view (1); well-exposed in dorsal view (2). (BG82) Ordered 

85. Lacrimal, contact with frontal: suture (0); fusion (1). (KT89) 

86. Lacrimal, dorsal process: closely applied to the nasal (0); rostral arm of dorsal 

process separated from the nasal by a slit-like rostro-caudally elongate opening (1). This 

character originally referenced the frontal, however the actual separation occurs along the 

nasal-lacrimal contact (modified in KT90). (BG83) 

87. Frontal, shelf of bone bounding salt-gland fossa (fossa glandulae nasalis) 

laterally: absent (0); present (1). (OH10) (BG: fig.9) 
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88. Squamosal, temporal fossa (fossa temporalis), size: fossae separated by 

considerable wide surface (at least the width of the cerebellar prominence) (0); more 

extensive, fossae meeting or nearly meeting at midline of the skull (1). (BG76) (BG: 

fig.9; K: fig.5) 

89. Squamosal, temporal fossa (fossa temporalis), depth of caudal region: flat (0); 

shallow (1); greatly deepened (2). (BG77) (BG: fig.10) Ordered 

90. Squamosal, development of the opening that transmits the a. ophthalmica externa 

in the caudoventral area of the temporal fossa (near nuchal crest): small or vestigial (0); 

well-developed (1). (BG78) (BG: fig.10) 

91. Supraoccipital, paired grooves for the exit of v. occipitalis externae (sulcus vena 

occipitalis externae): poorly developed (0); deeply excavated (1). (BG74) (BG: fig.8) 

92. Orbit, fonticuli orbitocraneales: small or vestigial (0); broad and conspicuous 

openings (1). (BG79) (BG: fig.10) 

93. Ectethmoid: absent (0); weakly developed, widely separate from the lacrimal (1); 

well developed, contacting or fused to the lacrimal (2). (BG80) 

94. Basioccipital, subcondylar fossa (fossa subcondylaris): absent or shallow (0); 

deep (1). (BG73) (BG: fig.7) 

95. Basitemporal plate (lamina parasphenoidalis), dorsoventral position with respect 

to the occipital condyle: ventral to the level of the condyle (0); at the level of the condyle 

(1); dorsal to the level of the condyle, surface depressed (2). (BG86) Ordered 

96. Basipterygoid process (proccessus basipterygoideus): absent (0); vestigial or 

poorly developed (1); well developed (2). (BG87) (BG: fig.7) Ordered 
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97. Eustachian tubes (tuba auditiva): open or very little bony covering near the caudal 

end of the tube (0); mostly enclosed by bone (1). (BG88) (BG: fig.7) 

98. Pterygoid, shape: elongated (0); slight lateral expansion of rostral end (1) rostal 

end broad, pterygoid sub-triangular (2). (BG89) (BG: fig.7; KC: fig.22) Ordered 

99. Palatine, lamella choanalis: curved and smooth plate, slightly differentiated from 

main palatine blade (0); ridged, distinct from main blade by a low keel (1); extended 

vertically ventrally forming the crista ventralis (2). (BG90) (BG: fig.13) Ordered 

100. Vomer, laterally compressed, vertical laminae and free from palatines (0); 

horizontally flattened laminae and ankylosed with palatines (1). NOTE: This character 

defines a state 2 in KT98 and KF98. However, this state does not appear in any of the 

included taxa. (BG91) (BG: fig.13) 

101. Facial foramen (foramen n. facialis): absent (0); present (1). (BG92) 

102. Jugal arch, bar shape in lateral view: straight (0); slightly curved (1); ventrally 

bowed (2); strongly curved, sigmoid shape (3). (BG93) (BG: fig.14) Ordered 

103. Jugal arch, dorsal process: absent (0); present (1). This pointed process is located 

on the caudal end of the jugal, adjacent to the condyle for articulation with the quadrate. 

(BG94) 

104. Quadrate, relative lengths of otic and orbital processes (processus oticus and 

processus orbitalis): otic process longest (0); orbital process longest (1). (KC102) 

105. Quadrate, otic process (processus oticus), rostral border, tubercle for m. adductor 

mandibulae externus, pars profunda: absent (0); present, as a ridge (1); presence, as a 

tubercle (2). (BG96) (BG: fig.15) 
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106. Quadrate, otic process (processus oticus), rostral border, tubercle for m. adductor 

mandibulae externus, pars profunda: contiguous with squamosal capitulum (0); separated 

from squamosal capitulum (1). (KC104) (KC: fig.23) 

107. Quadrate, processus oticus, caudal margin in lateral view: straight (0); flexed so 

as to be concave caudally (1). (A9) 

108. Mandible, symphysis: extensive bony connection (0); short terminal bony 

connection (1). (C101) 

109. Mandible, posteriorly projected midline spur from dentary underlying symphysis: 

absent (0); present (1). (KC107) 

110. Mandible, coronoid process (processus coronoideus), position on the dorsal 

margin of the mandible with respect to caudal mandibular fenestra (fenestra mandibulae 

caudalis): markedly rostral (0); on the rostral end of the fenestra (1); caudal to fenestra 

(2). (BG98) (BG: fig.16) Ordered 

111. Mandible, rostral fenestra (fenestra mandibulae rostralis): imperforate or small 

opening (0); large opening (1). (OH8) (OH: fig.4; BG: fig.16) 

112. Mandible, caudal fenestra (fenestra mandibulae caudalis): open, can be seen 

through from the medial or lateral aspects (0); nearly or completely concealed by the 

splenial medially (i.e., fenestra not visible in the medial aspect) (1). (OH9) 

113. Mandible, mandibular ramus: depth subequal over entire ramus (0); pronounced 

deepening at midpoint (1). (BG101) (BG: fig.16) 

114. Mandible, mandibular ramus: essentially straight or gently sloping (0); 

pronounced ventral deflection near midpoint (1). (KC112) 
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115. Mandible, dentary, length of dorsal edge relative to mandibular ramus length in 

lateral view: markedly more than half the length of ramus (0); approximately half the 

length of ramus (1). (BG103) 

116. Mandible, articular, medial process (processus medialis): not hooked (0); hooked 

(1). (BG104) (BG: fig.17; K: fig.6) 

117. Mandible, angular, aspect in dorsal view: sharply truncated caudally (0); caudally 

projected, forming retroarticular process (processus retroarticularis) (1). (BG106) (BG: 

fig.17) 

118. Mandible, angular, retroarticular process (processus retroarticularis), aspect in 

dorsal view in relation to the articular area for the quadrate between the lateral and 

medial condyles (condylus lateralis and condylus medialis): broad, approximately equal 

to the articular area (0); moderately long, narrower than the articular area (1); very long, 

longer and narrower than the articular area (2). (BG105) (BG: fig.17) Ordered 

119. Mandible, medial emargination between medial and retroarticular processes 

(processus retroarticularis and processus medialis): absent (0); weak concavity (1); strong 

concavity (2). (K108) (K: fig.6) Ordered 

120. Atlas, processus ventralis: absent or slightly developed (0); well developed, high 

and prominent ridge on the dorsal surface of the arcus atlantis (1). (BG108) (BG: fig.18) 

121. Transition to free cervicothoracic ribs begins at: 13th cervical vertebrae: (0); 14th 

cervical vertebrae (1); 15th cervical vertebrae (2). (BG109) Ordered 

122. Cervical vertebrae, transverse process (processus transversus) in last five cervical 

vertebrae: not elongated laterally (0); greatly elongated laterally (1). (BG111) 
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123. Thoracic vertebrae, posteriormost vertebrae: heterocoelous (0); weakly 

opisthocoelous; (1); strongly opisthocoelous (2). (K114) Ordered 

124. Thoracic vertebrae, deep excavation on lateral face of posterior thoracic 

vertebrae: absent (0); present (1). (KC124) 

125. Synsacrum, number of incorporated vertebrae: nine (0); eleven (1); twelve (2); 

thirteen (3); fourteen (4), fifteen or more (5). (C117) 

126. Synsacrum, height of crista synsacri between acetabuli: flat or weakly projected 

(0); strongly projected (1). (KC126) 

127. Synsacrum, first incorporated vertebra, position of fovea costalis: caudal to level 

of processus transversus (0); cranial to level of transverse process (1). (KF229) 

128. Synsacrum, ventral surface of first few incorporated vertebrae: rounded or 

flattened (0); sharp, blade-like ventral margin (1). (A63) 

129. Caudal vertebrae: seven (0), eight (1), nine (2). (BG113) Ordered 

130. Pygostyle, shape: tapers to a narrow edge both dorsally and ventrally as in most 

volant birds (0); triangular in cross-section with a wide, flat ventral margin (1). (KF232) 

131. Thoracic ribs, uncinate processes (costae, processes uncinati): elongate, narrow 

(0), wide at base, spatulate (1), extremely wide at base (2). Reference to bifurcation of the 

processes in state 2 from previous formulations of this character has been removed, as 

bifurcation shows individual variation in all species of Pygoscelis. (BG114) (BG: fig.19) 

132. Thoracic ribs, uncinate processes (costae, processes uncinati): fused to ribs (0); 

unfused (1) (KC129) 

133. Sternum, external spine (spina externa rostri): absent (0); present (1). (OH13) 

(BG: fig.20) 
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134. Sternum, facies articularis furculae projects as a distinctive process: absent (0); 

present (1). (BG116) (BG: fig.20) 

135. Sternum, articular facets for coracoids (sulcus articularis coracoideus): meet or 

overlap one another at midline (0); separated by wide non-articulatory surface (1). (C122) 

(BG: fig.20) 

136. Sternum, orientation of sulcus articularis coracoideus in ventral view: sulci 

oriented in essentially straight horizontal line (0); sulci directed caudolaterally so as to 

together form an inverted U shape (1). (A15) (KF: fig.3) 

137. Sternum, labrum internum: continues as sharp ridge onto the base of the spina 

externa (0); fades away without continuing onto the base (1). (C123) 

138. Sternum, caudal incisurae: absent (0); two (1); four (2). (KC134) 

139. Sternum, trabecula lateralis projects caudal to main body of sternum: no (0); yes 

(1). (KF234) 

140. Furcula, hypocleidium (apophysis furculae): absent or low knob-like process (0); 

long, blade-like process (1). (BG117) 

141. Furcula, ramus: sub-ovoid in cross-sectional omal end (0); mediolaterally 

flattened and craniocaudally expanded at omal end (1). (CL218) 

142. Scapula, acromion: craniodorsally directed, nearly parallel to long axis of scapular 

shaft at apex (0); forms a blunt triangular projection with apex directed approximately at 

45 degree angle from long axis of scapular shaft (1); narrow and tapering, apex omally 

directed (2); narrow and tapering, apex directed at a right angle to scapular shaft (3). 

NOTE: In KF136, only three states are defined. However, the matrix includes four states. 

Here the four states of that matrix are used. (CL223) 
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143. Scapula, facies articularis humeralis: rounded, projecting from shaft of scapula 

(0); compressed and ovoid, projecting from shaft of scapula (1); flattened and nearly 

merged with shaft of scapula (2). (KF235) 

144. Scapula, blade, caudal half (corpus scapulae, extremitas caudalis): blade-like (0); 

slightly expanded (1); broadly expanded, paddle-shaped (2). (BG118) (KC: fig.24) 

145. Coracoid, length: shorter than humerus (0); greatly elongated, longer than 

humerus (1). (KC137) 

146. Coracoid, processus acrocoracoideus, region of tuberulum brachiale: 

craniocaudally compressed (0); craniocaudally expanded, with a large flat surface cranial 

to tuberulum brachiale. (A22) 

147. Coracoid, scapular cotyle (scapula cotylaris): deep and socket-like (0); shallow 

depression (1). (CL217) 

148. Coracoid, medial margin, coracoidal fenestra: complete (0); incomplete (1); 

absent (2). (OH14) (OH: fig.6; BG: fig.21; K: fig.7) 

149. Coracoid, foramen nervi supracoracoidei: absent (0), present (1). Mayr (2005) 

cited ontogenetic evidence that this foramen is not homologous to the coracoidal fenestra 

of penguins. (K122) 

150. Coracoid, sternal margin (extremitas sternalis coracoidei): greatly expanded (0); 

moderate expansion (1). (BG120) (BG: fig.21) 

151. Coracoid, profile of the sternal margin (extremitas sternalis coracoidei) in ventral 

view: convex (0) concave (1), flat (2). NOTE: State 1 describes the strongly concave 

margin seen in Gavia and the slight concavity seen in Aptenodytes, whereas most 

penguins show a flatter margin and are consequently are coded as 2. This differs from the 
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code used by K124, KC141, KT143 and KF143, who use state 1 for all extant penguins. 

(K124) (K: fig.7; KC: fig.25) 

152. Coracoid, lateral process (processus lateralis): absent or highly reduced (0); well-

developed (1). (KC142) 

153. Coracoid, facies articularis sternalis, dorsal surface: single facet (0); two facets 

(1). (KF236) 

154. Forelimb elements: subcircular in cross section (0); flattened (1). (BG121) 

155. Humerus, head: very developed and reniform, continuous with tuberculum 

dorsale: absent (0); present (1). (BG122) 

156. Humerus, proximal edge of head in posterior view: semicircular humeral head 

with apex located near midline (0); humeral head with the shape of a rampant arch, with 

ventral apex, slightly prominent proximally (1); humeral head with the shape of a 

rampant arch with ventral apex, strongly prominent proximally (2). NEW STATE: State 

1 refers to the degree of prominence seen in Spheniscus, whereas state 2 can be seen in 

Pygoscelis. Both states are included in state 1 of C132, KC145, KT147 and KF147. 

(C132) 

157. Humerus, notch between the dorsal tubercle and humeral head: present (0); absent 

(1). NEW CHARACTER: This character is clearly visible in caudal view. State 0 can be 

seen in Pygoscelis and state 1 in Spheniscus. See Göhlich (2007). 

158. Humerus, incisura capitis: essentially confluent with sulcus transversus (0); 

connected with the sulcus transversus trough a narrow sulcus (1); completely separated 

from sulcus transversus (2). NEW STATE: State 1 refers to the condition seen in 

Palaeospheniscus patagonicus, whereas state 2 can be seen in Eudyptes. This connection 
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is more subtle than in Anthropornis in which the transverse sulcus and capital incisure 

forms a single cranial sulcus (state 0). (K127) (K: fig.10) 

159. Humerus, capital incisure: extends to secondary tricipital fossa (0); separated 

from secondary tricipital fossa (1). (CL222) 

160. Humerus, pit for ligament insertion on proximal surface adjacent to head: absent 

or very shallow (0); deep (1). (K128) (K: fig.8) 

161. Humerus, orientation of intumenscentia humeri and tuberculum ventrale: 

intumenscentia projects ventrally from shaft, tuberculum oriented posteriorly (0); 

intumenscentia projects ventrally from shaft, tuberculum oriented ventrally (1); 

intumenscentia projected more anteroventrally (so as to be partially obscured in posterior 

view), tuberculum oriented anteroventrally (2). (K129) (K: fig.10) 

162. Humerus, proximal margin of tricipital fossa (fossa tricipitalis): weak projection 

(0); projects so as to be well-exposed in proximal view (1). (K135) (K: fig.8) 

163. Humerus, proximal border of tricipital fossa in ventral view: concave proximal 

margin (0), straight to slightly concave border (1). NOTE: State 0 represents a truly 

concave margin as can be seen in Madrynornis; whereas state 1 includes the slightly 

concave margin usually present in Palaeospheniscus and the almost straight one present 

in Spheniscus. (KT154) (KT: fig.1m-o) 

164. Humerus, tricipital fossa (fossa tricipitalis), aspect: small with penetrating 

pneumatic foramina (0); moderate fossa without pneumatic foramen (1); deep fossa 

without pneumatic foramen (2). (BG123) 

165. Humerus, tricipital fossa (fossa tricipitalis): single (0); bipartite (1). (BG 124) 

(BG: fig.22) 
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166. Humerus, deltoid crest, impressio m. pectoralis: superficial poorly-defined groove 

(0); shallow, well-defined oblong fossa (1); deep, well-defined oblong fossa (2). 

Ordered. NOTE: In state 2, the deltoid crest is well defined distally, whereas in state 1 it 

is poorly defined. (BG125) 

167. Humerus, impressio insertii m. supracoracoideus: small, semicircular scar (0); 

greatly elongated with long axis sub-parallel to main axis of humeral shaft (1). (K133) 

(K: fig.9) 

168. Humerus, impressio insertii m. supracoracoideus and m. latissimus dorsi: 

separated by a wide gap (0); separated by a moderate gap (1); separated by small gap or 

confluent (2). (K134) (K: fig.9; KC: fig.26) Ordered 

169. Humerus, coracobrachialis caudalis scar: clearly separated from head (0); scar 

contacts distal margin of head (1). (CL219) 

170. Humerus, coracobrachialis caudal scar: deeply depressed, subcircular (0); flat, 

ovoid, oriented dorsoventrally (1); flat, elongate and oriented obliquely at approximately 

45 degree angle to long axis of shaft (2). (CL220) 

171. Humerus, groove for coracobrachialis nerve: absent or poorly defined (0); sharp, 

narrow sulcus (1). (CL221) 

172. Humerus, shaft, dorsoventral width: shaft thins or maintains width distally (0); 

shaft widens distally (1). (K136) (K: fig.10) 

173. Humerus, nutrient foramen (foramen nutricum): situated on ventral face of shaft 

(0) situated on anterior face of shaft (1). (C143) 

174. Humerus, anterior face of shaft elongate depression near ventral margin: absent 

(0); present (1). (C144) 
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175. Humerus, shaft, sigmoid curvature: absent or weak (0); strong (1). (K137) (K: 

fig.10) 

176. Humerus, shaft robustness index (proximodistal length / ventrodorsal width at 

middle point): greatly elongated, SRI ≥ 7 (0); greatly slender, 7 > SRI ≥ 6 (1); slender, 6 

> SRI ≥ 5 (2); thick, 5 > SRI ≥ 4 (3); bulky, DRI < 4 (4). NEW CHARACTER: For this 

index, the proximodistal length is measured from the contact between the dorsal tubercle 

and humeral head (proximal end), to the contact between the ulnar condyle and the 

trochlear processes (distal end). The ventrodorsal width is measured at the middle point 

of the diaphysis, regardless of the position of the preaxial angle. State 0 can be seen in 

Waimanu, state 1 in Perudyptes, state 2 in Palaeeudyptes, state 3 in Palaeospheniscus 

and state 4 in Pachydyptes. (KC: fig.26) 

177. Humerus, preaxial angle: absent or inconspicuous (0); well defined (1). NEW 

CHARACTER: Although there is a large quantitative variation in the development of 

this angle, its pattern of presence or absence is a stable character among many taxa. In 

state 0 the dorsal edge of the shaft is curved and without a clear preaxial angle, whereas 

in state 1 the angle creates a clear inflection point. State 0 can be seen in Eudyptes and 

state 1 in Spheniscus. 

178. Humerus, development of dorsal supracondylar tubercle (processus supracondylar 

dorsalis): absent (0); compact tubercle (1); elongate process (2). (BG126) 

179. Humerus, demarcation of sulcus scapulotricipitalis: not demarcated (0); passage a 

well-marked groove (1); development of trochlear ridge for articulation with os 

sesamoideum m. scapulotricipitis (2). (BG127). Ordered 
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180. Humerus, posterior trochlear ridge: extends beyond ventral margin of the humeral 

shaft (0); reaches the ventral margin (1); does not reach the ventral edge (2). NEW 

STATE: The new state 1 can be seen in Palaeospheniscus and Eudyptes. As a result, the 

ridge often slightly exceeds the ventral margin in cranial view but not in caudal view. 

(BG128) (BG: fig.23) 

181. Humerus, scar for origin of m. brachialis: ovoid fossa on cranial face of humerus 

at distal end (0); proximodistally elongate scar on dorsal margin of humeral shaft, with 

diagonally oriented proximal border (1); proximodistally elongate scar on dorsal margin 

of humeral shaft, with chevron-shaped proximal border (2). (A34) 

182. Humerus, angle between main axis of shaft and tangent of ulnar and radial 

condyles (condylus dorsalis and condylus ventralis): less than 35
o
 (0); 35° to 45

o
 (1); 

greater than or equal to 45
o
 (2); nearly 90

o
 (3). NEW STATE: The new state 0 can be 

seen in Perudyptes and Anthropornis. State 3 refers to the state in most flying birds, and 

state 2 represents values closer to 45 than to 90
o
. States 0 and 1 were included in state 0 

of KC141, KT169 and KF169. The values of angles for fossil taxa were obtained by 

photo analysis using TpsDIG version 2. (K141) (KC: fig.26) 

183. Humerus, ulnar condyle (condylus ventralis): rounded condyle displaced over the 

anterior edge of the humerus (0); ulnar condyle almost parallel to the radial, slightly 

surpassing the anterior edge of the humerus (1); ulnar condyle almost parallel to the 

radial, not surpassing the anterior edge of the humerus (2). MODIFIED: Under this new 

definition, state 0 can be seen in Palaeeudyptes, state 1 in Palaeospheniscus and state 2 

in Spheniscus. Although the anterior projection of the ulnar condyle in state 1 is less 
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pronounced than in state 0 (seen in the most basal penguins), it is more pronounced than 

in state 2. (K142) (K: fig.11) 

184. Humerus, shelf adjacent to condylus ventralis: large, ratio of condyle width: shelf 

width >1.3 (0); moderate, ratio of condyle width: shelf width 1.3-2.0 (1); greatly reduced, 

less than half condyle width (2). (K143) (K: fig.11) Ordered 

185. Radius, shaft: narrow (0); broad and flattened (1). (KC166) 

186. Radius, proximally projecting spike-like process at cranial margin: absent (0); 

present (1). (KF239) 

187. Ulna, olecranon position: arises at level of or proximally surpassing humeral 

cotylae (0); slightly distally displaced from cotylae (1); located one fourth of length to 

proximal end (2). MODIFIED: Because a combination of shapes and positions can be 

seen in penguins, we decided to separate both in two independent characters, previously 

coded together (K144). Under this new definition, state 0 can be seen in Puffinus, state 1 

in Icadyptes and state 2 in Spheniscus. (K144) (K: fig.12; KC: fig.27) 

188. Ulna, olecranon shape: short and robust (0); tab-like projection with a rounded 

posterior margin (1); tab-like projection with a squared posterior margin (2); tab-like 

projection with a distinctive angular posterior margin (3). NEW CHARACTER: 

Separation of the position and shape of the olecranon into two independent characters, 

previously coded together (K144). State 0 can be seen in Puffinus, state 1 in Icadyptes, 

state 2 in Kairuku and state 3 in Spheniscus. (K: fig.12; KC: fig.27) 

189. Ulna, distinct process extending toward sulcus humerotricipitalis of humerus: 

absent (0), present (1). (K145) 
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190. Ulna incisura radialis: concave in proximal view, so that the ulna contacts the 

proximal radius at both its caudal and ventral surfaces (0); obsolete, so radius and ulna 

abut one another at a nearly flat contact (1). (KF240) (KF: fig.5g-h) 

191. Ulnare: U-shaped (0); triangular, fan-shaped wedge (1). (KC169) 

192. Ulnare, distal angle: rounded (0); pointed (1). NOTE: This character refers to the 

distal angle in the specialized fan-shaped ulnare of penguins and is considered non-

comparable for outgroup taxa. (KF241) 

193. Carpometacarpus, pisiform process (processus pisiformis): well-projected round 

tubercle (0); reduced to a low ridge (1). (C155) 

194. Carpometacarpus, distal facet on metacarpal I: absent (0); present (1). (C156) 

(KC: fig.28) 

195. Carpometacarpus, metacarpal II, distinct anterior bowing: absent (0); present (1). 

(C157) 

196. Carpometacarpus, extension of metacarpals II and III: subequal or III slightly 

shorter (0); metacarpal III projects markedly distal of metacarpal II. (C158) (KC: fig.28) 

197. Carpometacarpus, metacarpal III, distal articular surface (facies articularis 

digitalis major): wedge shaped or broadens anteriorly in distal view (0), slightly 

depressed ovoid surface (1). (C159) 

198. Carpometacarpus, extensor process (processus extensorius): present (0); absent 

(1) (KC175) 

199. Carpometacarpus, metacarpal II, distal expansion: absent (0); present (1). 

(KC176)  
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200. Phalanges of manus, phalanx digit III proximal process: absent (0); present (1). 

(BG130) (KC: fig.28) 

201. Phalanges of manus, relative length of phalanx III-1 and phalanx II-1: phalanx III-

1 shorter (0); subequal (1). (C161) (KC: fig.28) 

202. Phalanges of manus, length relative to carpometacarpus: long (0); short (1). 

(BG131) 

203. Fusion of ilia to synsacrum: unfused (0); partially fused (1); well-fused (2). 

(K149) (K: fig.13; KC: fig.29) Ordered 

204. Pelvis, preacetabular ilia: approach one another, but do not contact at midline (0); 

contact at midline forming canalis iliosynsacralis (1). NOTE: This character defines three 

states in KC181, KT187 and KF187; however, state 0 does not appear in any of the 

included taxa. Consequently, we keep only states 1 and 2 described in those works, 

recoding them as 0 and 1 respectively. (KC181) 

205. Pelvis, foramina intertransversalia large, forming wide openings on dorsal surface 

of pelvis: absent (0); present (1). (KC182) 

206. Ilium, projected postiliac spine: absent (0); present (1). 

207. Pelvis, size of foramen ilioischiadicum and foramen acetabuli: foramen 

ilioischiadicum smaller or similar in size (0); larger (1). (OH16) (BG: fig.24; KC: fig.29) 

208. Pelvis, fenestra ischiopubica: very wide and closed at its caudal end (0); slit-like 

and open at its caudal end (1). (BG133) 

209. Ischium, most caudal extent in relation to postacetabular ilium: ischium shorter 

than ilium (0); ischium projects slightly beyond the ilium (1); ischium produced far 

caudal to ilium (2). (BG134) (BG: fig.24) 
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210. Patella: absent or unossified (0); present (1). (KC187) 

211. Patella, sulcus m. ambiens: shallow groove (0); deep groove (1); perforated (2). 

(BG135) (OH: fig.8; BG: fig.25) 

212. Tibiotarsus, crista patellaris: slightly developed (0); moderate enlarged (1); 

greatly enlarged (2). (BG136) NOTE: In KC189, KF196 and KF195 only two states are 

defined. However, the matrices include three states. These are the three states used in 

their matrices. 

213. Tibiotarsus, shaft, anteroposterior flattening: weak, midshaft anteroposterior depth 

greater than 75% mediolateral width (0); strong, midshaft anteroposterior depth equal to 

or less than 75% mediolateral width (1). (C169) 

214. Tibiotarsus, notch in distal edge of medial condyle (condylus medialis): present 

(0); absent (1). (AH38) 

215. Tibiotarsus, lateral condyle (condylus lateralis) in lateral profile: ovoid (0); 

subcircular (1). (AH37) 

216. Tibiotarsus, sulcus extensorius: laterally positioned (0); close to midline (1); 

medially positioned (2). NOTE: Variation of this feature in penguins was noted by 

Clarke et al. (2003). (KC193). 

217. Tibiotarsus, medial margin in distal view: margin is nearly straight (0); margin 

strongly convex (1). (KF242) 

218. Tarsometatarsus, elongation index (proximodistal length / mediolateral width at 

proximal end): elongated, EI ≥ 3 (0); slender, 3 > EI ≥ 2.5 (1); shortened, 2.5 > EI ≥ 2 

(2); greatly shortened, EI < 2 (3). NEW STATE: State 2 can be seen in 

Palaeospheniscus and Eudyptula; whereas the new state 3 can be seen in Nucleornis and 



 36 

Aptenodytes. This latter state was included in state 2 of K156, KC194, KT200 and 

KF200. Values for some Antarctic fossils were obtained from the table of measurements 

in Myrcha et al. (2002). (BG138) Ordered 

219. Tarsometatarsus, collateral lateral ligament scar (impressio lig. collat. lat.): absent 

or inconspicuous (0); well defined creating a depression over the lateral surface (1); well-

defined creating a notch on the proximolateral vertex (2). NEW CHARACTER: State 0 

can be seen in Eudyptes, state 1 in Pygoscelis and state 2 in Spheniscus. 

220. Tarsometatarsus, medial margin, pronounced convexity: absent (0), present (1). 

(K157) 

221. Tarsometatarsus, enclosed hypotarsal canals (canales hypotarsi): present (0); 

absent (1). (BG141) 

222. Tarsometatarsus, relative plantar projection of medial and lateral hypotarsal 

crests: medial crest projects farther than lateral (0); projection of medial and lateral 

hypotarsal crests subequal (1). (KT203) 

223. Tarsometatarsus, intermediate hypotarsal crests (crista intermediae hypotarsi): 

distinct and well defined in plantar view, separated by groove (0); united with lateral 

crest, slightly separated by shallow groove in proximal view (1); indistinguishable or 

absent (2). NEW STATE: Under this new definition, state 0 can be seen in Mesetaornis, 

the new state 1 in Palaeospheniscus and state 2 in Spheniscus. (K158) (K: fig.14-15) 

224. Tarsometatarsus, lateral hypotarsal crest (crista lateralis hypotarsi): enlarged and 

connected with medial crest (0); well defined and parallel to proximodistal axis of 

tarsometatarsus (1); reduced, poorly defined and proximal to lateral foramen (2); forming 

a diagonal ridge that overhangs lateral foramen (3). NEW CHARACTER: State 0 can be 
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seen in Gavia, state 1 in Thalassarche, state 2 in Pygoscelis and state 3 in 

Palaeospheniscus. 

225. Tarsometatarsus, crista medialis hypotarsi: present (0); absent (1). (KF243) (KF: 

fig.7l,p,r) 

226. Tarsometatarsus, dorsal sulcus between metatarsals II and III (sulcus longitudialis 

dorsalis medialis): absent or barely perceptible (0); shallow groove (1); moderate groove 

(2) deep groove (3). (K159) (K: fig.15) Ordered 

227. Tarsometatarsus, proximal vascular foramina on plantar surface: foramen 

vasculare proximale mediale present, foramen vasculare proximale laterale absent or 

vestigial (0); both foramina present (1); foramen vasculare proximale laterale present, 

foramen vasculare proximale mediale absent or vestigial (2). NOTE: State 1 refers to the 

plantar opening of the medial foramen; regardless if it is open at the plantar surface as in 

Pygoscelis, or at the medial surface of the medial hypotarsal crest as in Spheniscus. 

(K162) (K: fig.14-15; KC: fig.30) 

228. Tarsometatarsus, medial hypotarsal crest (crista medialis hypotarsi) perforated by 

opening for the medial foramen proximalis vascularis: absent (0); present (1). (BG139) 

(BG: fig.26) 

229. Tarsometatarsus, proximal vascular foramen lateral on dorsal surface: absent or 

vestigial (0); small (1); enlarged (2). NEW CHARACTER: Although there is a large 

quantitative variation in the size of the vascular foramina, the extreme morphologies 

described for states 0 and 2 are exclusive of some taxa. State 0 can be seen in Eretiscus, 

state 1 in Eudyptes and state 2 in Spheniscus humboldti. 
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230. Tarsometatarsus, opening for medial foramen proximalis vascularis distal to crista 

medialis hypotarsi: absent (0); present (1). NOTE: Because both this opening and an 

additional opening perforating the crista medialis hypotarsi can be present in 

Aptenodytes, they are treated as independent characters. (BG140) 

231. Tarsometatarsus, distal vascular foramen (foramen vasculare distale): present, 

separated from incisura intertrochlearis lateralis by osseous bridge (0); present, open 

distally (1); absent (2). (K163) (K: fig.15; KC: fig.30) Ordered 

232. Tarsometatarsus, os metatarsale IV: distal end projects laterally (0); straight (1), 

distal end deflected medially (2). (K 160) 

233. Tarsometatarsus, intertrochlear notches (incisura intertroclear): medial notch 

absent (0); medial notch deeper than lateral (1); sub-equal to equal deepness (2); lateral 

notch deeper than medial (3). NEW CHARACTER: This character is clearly visible in 

plantar view. State 0 can be seen in Gavia, state 1 in Puffinus, state 2 in Aptenodytes and 

state 3 in Eudyptes. 

234. Tarsometatarsus, trochleae metatarsi II and IV in dorsal view: trochlea II shorter 

than IV (0); trochlea IV slightly shorter than II (1); equal (2). NEW CHARACTER: 

State 0 can be seen in Gavia, state 1 in Eudyptes and state 2 in Spheniscus. 

235. Tarsometatarsus, trochleae in distal view: trochleae metatarsi III and IV aligned in 

same plane (0); trochlea metatarsi IV displaced dorsally (1). (KT211) (KT: fig.1w-y) 

236. Tarsometatarsus, trochlea metatarsi II strongly plantarly deflected in distal view: 

no (0); yes (1). NOTE: This character refers to the plantar edge of the trochlea II with 

respect to the plane defined by the most plantar point of the trochleae III and IV in distal 

view; or with respect to the plane defined by the trochlear ridges of the trochlea III when 
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the trochlea IV is strongly dorsally deflected. State 0 can be seen in Eudyptes and state 1 

in Palaeospheniscus. (A73) 

237. Pedal digit I: small, with metatarsal I and single phalanx both present (0); 

metatarsal I reduced to an ossicle, claw represented by a minute ossicle or lost (1); 

metatarsal I absent (2).NOTE: Codings for Procellariiformes follow Forbes (1882); see 

also discussion in Mayr (2009). (KF245) Ordered 

 

Myology 

238. M. latissimus dorsi, pars cranialis, accessory slip: absent (0); present (1). (BG143)  

239. M. latissimus dorsi, pars cranialis and pars caudalis: separated (0); fused (1). 

(BG144) 

240. M. latissimus dorsi, pars metapatagialis, development: wide (0); intermediate (1); 

narrow (2). (BG145) Ordered 

241. M. serratus profundus, cranial fascicle: absent (0); present (1). (BG146) 

242. M. deltoideus, pars propatagialis, subdivision in superficial and deep layers: 

undivided (0); divided (1). (BG147) 

243. M. deltoideus, pars major: triangular or fan-shaped (0); strap-shaped (1). (BG148)  

244. M. deltoideus, pars major, caput caudale: short (0); intermediate (1); long (2). 

(BG149) Ordered 

245. M. deltoideus, pars minor, origin on the clavicular articulation of the coracoid: 

absent (0); present (1). (BG150) 

246. M. ulnometacarpalis ventralis: absent (0); present (1). (BG151) 

247. M. iliotrochantericus caudalis: narrow (0); wide (1). (BG152) 
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248. M. iliofemoralis, origin: tendinous (0); partially tendinous and partially fleshy (1); 

totally fleshy (2). NOTE: This character previously included four states. The states 

'mostly tendinous' and 'mostly fleshy' were lumped into a single state to avoid 

overweighing this ordered character. (BG153) Ordered 

249. M. flexor perforatus digitis IV, rami II-III: free (0); fused (1). (BG154) 

250. M. flexor perforatus digitis IV, rami I-IV: free (0); fused (1). (BG155) 

251. M. flexor perforatus digitis IV, insertion of middle rami: on phalanx 3 (0); on 

phalanx 4 (1). (BG156) 

252. M. latissimus dorsi, pars caudalis, additional origin from dorsal process of 

vertebrae: absent (0); present (1). (BG157) 

 

Other soft tissue 

253. Oral mucosa (bucca, tunica mucosa oris), buccal papillae group on the medial 

surface of the lower jaw (ramus mandibularis) at the level of the rictus: small number of 

rudimentary papillae with no clear arrangement (0); two clear rows of short conical 

papillae (1); large, elongated papillae with no clear arrangement (2). (BG158) 

254. Tracheal rings: single (0); bifurcated (1). (KC219) 
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Consensus trees 

 

Figure S3.1. Combined analysis strict consensus. Strict consensus tree of 192 MPTs 

(tree length = 5563 steps, rescalated consistency index [RC] = 0.373, retention index 

[RI] = 0.699) from a combined analysis of morphological characters plus >6000 bp. 
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Figure S3.2. Combined analysis Adams consensus. Adams consensus tree of 192 

MPTs (tree length = 5563 steps, RC = 0.373, RI = 0.699) from a combined analysis of 

morphological characters plus >6000 bp. 



 43 

 

Figure S3.3. Morphology-only analysis strict consensus. Strict consensus tree of 704 

MPTs (tree length = 802 steps, RC = 0.492, RI = 0.879) from an analysis of 254 

morphological-only characters. 
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Figure S3.4. Morphology-only analysis Adams consensus. Adams consensus tree of 

704 MPTs (tree length = 802 steps, RC = 0.492, RI = 0.879) from an analysis of 254 

morphological-only characters. 
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List of osteological synapomorphies 

 Osteological synapomorphies (unambiguous and supportive) for main clades and 

genera monophyly, obtained from the combined analysis.  

Clade/Taxa Unambiguous synapomorphies Supportive synapomorphies 

Mesetaornis + Marambiornis 218(0) — 

Palaeeudyptes — 157(0); 189(1) 

Inkayacu + Burnside “Palaeeudyptes” 169(0); 171(1) 77(0); 140(1); 180(0); 236(1) 

Pachydyptes + Icadyptes 177(0) 109(1); 157(0) 

Palaeospheniscus 223(1); 236(1) 
126(1); 127(0); 133(2); 

163(1); 180(1) 

Spheniscidae + Madrynornis + Inguza 
88(0); 99(0); 106(1); 116(1); 

119(2); 137(1) 
98(2); 110(1); 118(1) 

Spheniscidae excluding Madrynornis 

and Inguza 
103(1); 136(0); 147(1); 224(2) 

77(0); 105(1); 103(1); 158(2); 

177(1) 

Antarctic clade 
83(0); 89(1); 90(1); 148(1); 

151(1); 218(3); 219(1); 230(1) 

102(3); 118(0); 211(0); 

228(0); 233(2) 

Aptenodytes 
92(1); 111(1); 126(1); 133(0); 

186(0); 219(0) 
101(1); 120(1); 158(1) 

Pygoscelis 
84(1); 87(1); 115(1); 119(1); 

203(1); 222(1) 
160(0); 211(2) 

Temperate-Tropical clade 226(2) 82(0); 180(1) 

Burrowing clade 
 99(1); 102(1); 129(2); 156(1); 

157(1); 226(3) 
105(2); 207(1) 

Eudyptula 125(3); 148(1); 176(2); 236(1) 177(0) 

Pan-Spheniscus 
78(1); 79(1); 80(1); 88(1); 

110(0); 126(1); 163(1) 
84(0) 

Stem Spheniscus 136(1); 147(0) 207(0) 

Crown Spheniscus 115(1); 118(2); 162(1); 235(1) — 

Yellow-headed clade 
87(1); 91(0); 110(2); 115(1); 

219(0) 
112(1) 

Megadyptes — 233(2) 

Eudyptes 
102(3); 113(1); 218(3); 224(3); 

234(1) 
105(2); 177(0) 
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