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Can CRRA Preferences Explain CAPM-Anomalies in

the Cross-Section of Stock Returns?I

Sabine Elmiger∗

August 5, 2013

Abstract

A large number of empirical studies find evidence for systematic deviations from the
CAPM. The CAPM tends to understate the returns on low-beta stocks and overstate the
returns on high-beta stocks, which means that the security market line is too steep. Other
well-documented anomalies are the size premium and the value premium. The CAPM is
a special case of the consumption-based CAPM. This study adresses the question whether
the consumption-based CAPM with constant relative risk aversion preferences can explain
CAPM-anomalies. An example of an economy with power utility and lognormal returns is
examined that can be solved in closed form. The model leads to a security market line that
is flatter than in the CAPM and generates a size and a value premium. The comparative
statics suggest that cross-sectional anomalies and the equity premium puzzle are of a very
similar nature.

Keywords: CAPM , CCAPM , CRRA, lognormality , multiple assets , beta
premium, value premium, size premium

1. Introduction

The traditional capital asset pricing model (CAPM) of Sharpe (1964),
Lintner (1965) and Mossin (1966) is one of the cornerstones of finance. It
provides a simple explanation about what type of risk drives the cross-section
of asset returns and how to measure it. More precisely, it states that expected
asset returns are solely determined by the assets’ exposure to market risk.

IThis is part of my PhD thesis. I would like to thank my supervisor Thorsten Hens for
helpful comments and discussions. I am grateful to the Hausdorff Institute for Mathematics
in Bonn, where I completed this work in summer 2013.
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The measure for this is the so-called beta factor, which measures the co-
variance between the assets’ return with the return on the market portfolio
scaled by the variance of the market return. The CAPM is a very elegant
pricing model, but its empirical validity is highly debated.

The CAPM says that expected excess returns should be proportional
to their beta with a factor of proportionality equal to the expected market
excess return. Different empirical studies show that there is indeed a linear
relationship between assets’ expected excess returns and their betas, but the
line is too flat. Excess returns on low-beta assets tend to be too high, and
excess returns on high-beta assets tend to be too low. For a discussion of
this observation see Frazzini and Pedersen (2011) and the survey of Fama
and French (2004) and references therein.

In the empirical literature, there is evidence that many different sorting
procedures other than beta-sorting lead to significant deviations from the
CAPM. The most prominent examples of this evidence are probably the
size and the value premium. Banz (1981) finds that stocks with a small
market capitalization have higher expected returns than the CAPM predicts,
and Rosenberg et al. (1985) report that stocks with a high book-to-market
ratio (value stocks) tend to have higher expected returns. Moreover, sorting
procedures according to several other price-related ratios yield analogous
results. See the survey of Fama and French (2004) for a brief discussion of
price-related CAPM-anomalies.

The consumption-based capital asset pricing model (CCAPM) developed
by Rubinstein (1976), Lucas (1978) and Breeden (1979) offers one possible
explanation for CAPM-anomalies. It suggests that the covariance between an
asset’s return and the pricing kernel (also called stochastic discount factor)
should be used as a measure for an asset’s risk. In this framework, the
CAPM holds under restrictive assumptions on either the utility function or
the distribution of returns.1 For example in case of quadratic utility, the
pricing kernel becomes a linear function of the market return, and the risk
measure of the CCAPM reduces to the CAPM beta. In general, however, the
pricing kernel is not linear in the market return and higher-order moments
affect the cross-section of stock returns.

The question we address in this paper is whether reasonable assumptions
on utility functions and the distribution of returns can resolve anomalies

1For a list of necessary and sufficient conditions to derive the CAPM see Berk (1997).
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of the CAPM in the cross-section of stock returns. This study analyzes an
example economy with constant relative risk aversion (CRRA) and lognormal
returns. Campbell and Viceira (2002) note that preferences must exhibit
CRRA, because there are no long-term trends in risk premia, even though
per capita consumption and wealth considerably increased in the past. They
also remark that the assumption of lognormal returns allows to capture the
non-negativity of gross returns. In case of CRRA preferences and lognormal
returns, the pricing kernel is nonlinear and therefore higher-order moments
are priced. Our example economy shows that the implied deviations from
the CAPM can explain why the security market line is flatter than in the
CAPM and why there is a size and a value premium.

Our findings are surprising in light of existing theoretical results in the
framework with CRRA preferences and lognormal returns. Merton (1973)
finds in a continuous-time model that the CAPM holds when the investment
opportunity set is constant through time. Based on this result, Campbell and
Viceira (2002) argue that in discrete time an approximate CAPM holds when
time intervals are short. Our example economy in a discrete-time framework
shows that CAPM-anomalies can become substantial for certain parameter
specifications. We find that the coefficient of relative risk aversion and the
volatility of fundamentals have to be rather high to get sizeable CAPM-
anomalies, which suggests that the CAPM-puzzles are closely linked to the
equity premium puzzle. Thus, the continuous-time framework is technically
more convenient, but it comes at the cost of missing an important feature of
the model, namely that it can qualitatively explain CAPM-anomalies in the
cross-section of stock returns.

In Section 3, we introduce the model and the underlying assumptions.
Section 4 introduces the pricing error of the CAPM in the framework of
the CCAPM. Section 5 discusses the flatness of the security market line in
our setting. In Section 6, we address the impact of price-related sorting
procedures. Section 7 analyzes the comparative statics of the pricing error.

2. Literature related to the CCAPM with CRRA preferences

Kraus and Litzenberger (1983) provide conditions on agents’ preferences
and the distribution of returns that give rise to a three-moment CAPM,
which besides mean and variance also incorporates skewness. They show
that there is a preference for positive skewness when agents have monotone
increasing strictly concave utility functions with nonincreasing absolute risk
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aversion. Higher-order moments are not considered, since preferences for
higher-order moments are not completely determined by these assumptions.
While assets that follow linear characteristic lines are priced according to the
standard CAPM, assets with quadratic characteristic lines are then priced
according to a three-moment CAPM.2 Harvey and Siddique (2000) test a
conditional version of the three-moment CAPM. They find that conditional
skewness is significant even in the presence of factors based on size and book-
to-market ratio. Furthermore, they note that the size and the value factor
partly capture similar information as conditional skewness.

Dittmar (2002) argues in favor of a four-moment CAPM. He shows that
positive and decreasing marginal utility, decreasing absolute risk aversion
and decreasing absolute prudence imply preference for skewness and kurtosis
aversion. He finds that factors like size and value become insignificant when
skewness and kurtosis are taken into account. Dittmar (2002) also compares
models with a general linear, quadratic and cubic pricing kernel with and
without the factors of Fama and French (1993) based on size and book-to-
market ratio to a model with power utility by testing the Euler equation on
industry-sorted portfolios. His tests reject the model with CRRA preferences,
even though they exhibit positive and decreasing marginal utility, decreasing
absolute risk aversion and decreasing absolute prudence.

Dittmar (2002) discusses only preferences for skewness and kurtosis in the
theoretical part of his study, since the preferences for higher-order terms are
not determined by the mere assumption of positive and decreasing marginal
utility, decreasing absolute risk aversion and decreasing absolute prudence.
The assumption of power utility also places restrictions on higher-order terms,
which Dittmar (2002) does not consider in the theoretical part of his study.

In contrast to Kraus and Litzenberger (1983) and Dittmar (2002), our
results implicitly account for all higher-order moments, since our example
economy can be solved in closed form. Our study also differs from the study
of Dittmar (2002) in that we discuss analytically the impact of assuming
CRRA preferences on the size and the value premium, whereas he compares
empirically the CCAPM with CRRA preferences to the Fama-French model.
Compared to the empirical study on CRRA preferences of Dittmar (2002),
our example economy allows us to explore the qualitative properties of the

2Characteristic lines describe the reaction of asset returns on changes in the market
return.
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model and gain deeper insights into possible reasons for the quantitative
shortcomings of the model. In addition, we analyze the premium on low-
beta assets as well and provide a more integrated view of different CAPM-
anomalies.

3. The model

This section introduces a two-period economy with CRRA preferences
and lognormal dividends. The two-period framework allows us to discuss
the effect of sorting assets into portfolios according to first-period variables.
Models with CRRA preferences and lognormal returns are difficult to solve
in general. The problem is that the distribution of aggregate dividends,
which is the sum of lognormal distributions, is not known. In order to obtain
closed-form solutions, we impose a specific correlation structure between the
dividends that assets pay.

3.1. Financial assets

There are two time-periods t = 0, 1 in the model. The economy consists
of a continuum of assets indexed by ρ ∈ R. The price of asset ρ at time t = 0
is denoted by qρ. Asset ρ pays a dividend

Dρ
0 = eρy0

at time t = 0 and
Dρ

1 = eρy1

at time t = 1, where y0 is a constant and

y1 ∼ N (µ, σ2).

The random variable y1 models a source of systematic risk. For simplicity we
do not model idiosyncratic risk, but we discuss the impact of idiosyncratic
risk on the results in Section 6.

The asset-specific parameter ρ is assumed to be normally distributed in
the cross-section of assets. More specifically we assume

ρ ∼ N (µρ, σ
2
ρ).

This assumption generates a quite realistic cross-section of dividends.3

3Elmiger (2010) documents that the cross-section of dividends is approximately log-
normally distributed except for the tails of the distribution.
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For our derivations we also need the distribution of aggregate dividends.
Aggregate dividends at time t = 0 are given by

DM
0 =

∫ ∞
−∞

Dρ
0f(ρ)dρ =

∫ ∞
−∞

eρy0f(ρ)dρ = eµρy0+ 1
2
σ2
ρy

2
0 ,

where f(ρ) denotes the density function of the normal distributionN (µρ, σ
2
ρ).

Aggregate dividends at time t = 1 are

DM
1 =

∫ ∞
−∞

Dρ
1f(ρ)dρ =

∫ ∞
−∞

eρy1f(ρ)dρ = eµρy1+ 1
2
σ2
ρy

2
1 .

We see that even though the distribution of the sum of lognormal dividends
is not known in general, we can compute aggregate dividends in closed form
in this particular case due to our assumption on the correlation structure
between dividends. For a very small cross-sectional dispersion of dividends
σ2
ρ, which means that the dividend payments of most assets are almost the

same, aggregate dividends are approximately lognormally distributed.

3.2. The representative agent

There is a representative agent who is initially endowed with all assets
in the economy. The agent chooses portfolio holdings θρ to maximize the
expected utility derived from consumption ct at time t = 0, 1. The objective
function is

u(c0) + δE [u(c1)]

subject to the budget constraints

c0 +

∫ ∞
−∞

qρθρdρ =

∫ ∞
−∞

(qρ +Dρ
0)f(ρ)dρ

c1 =

∫ ∞
−∞

Dρ
1θ
ρdρ.

The agent has CRRA preferences u(c) = (c)1−γ/(1−γ), where γ denotes the
coefficient of relative risk aversion. In equilibrium the agent has to hold all
assets and consumption equals c0 = DM

0 at time t = 0 and c1 = DM
1 at time

t = 1.
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4. The pricing error of the CAPM

The CAPM does not follow from the CCAPM when preferences have
CRRA if we do not place certain restrictions on the distribution of returns.
This section repeats the difference between the predictions of the CAPM and
the CCAPM in case of CRRA preferences,4 which we refer to as the pricing
error of the CAPM.

In our setting, the Euler equations are given by

E

[
δ
u′(c1)

u′(c0)
Rρ

]
= 1 for ρ ∈ R,

where u′(c1)/u′(c0) = (c0/c1)γ. This is equivalent to

E

[
δ

(
c0

c1

)γ]
︸ ︷︷ ︸

1

Rf

E [Rρ] + Cov

(
δ

(
c0

c1

)γ
, Rρ

)
= 1,

or, rearranged,

E [Rρ]−Rf = −RfCov

(
δ

(
c0

c1

)γ
, Rρ

)
.

Rf denotes the return on the riskless asset that pays 1 at t = 1 with certainty.
Since the above equation also holds for the market portfolio, we can write

E [Rρ]−Rf

E [RM ]−Rf
=

Cov
(
c−γ1 , Rρ

)
Cov

(
c−γ1 , RM

) =
Cov

(
(RM)−γ, Rρ

)
Cov ((RM)−γ, RM)

,

where RM denotes the return on the market portfolio. The second equation
follows, because the consumption of the representative agent equals aggregate
dividends in equilibrium. Multiplying the numerator and denominator with
the price of the market portfolio qM to the power of γ leads to the above
expression.

We can write the above equation equivalently as

E[Rρ]−Rf = αρ + βρ
(
E[RM ]−Rf

)
,

4The derivations can be found for example in LeRoy and Werner (2001).
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where

βρ =
Cov(Rρ, RM)

Var(RM)

and

αρ =

(
Cov

(
(RM)−γ, Rρ

)
Cov ((RM)−γ, RM)

− Cov(Rρ, RM)

Var(RM)

)
︸ ︷︷ ︸

≡Aρ

(
E[RM ]−Rf

)
.

If αρ were zero for all ρ ∈ R, we would obtain the CAPM. The term αρ

therefore denotes the pricing error of the CAPM with respect to asset ρ in
our model.

From the expression above we see that the size of the pricing error depends
on the expected market excess return, which is known to be too low in these
kinds of models. However, the market clearing condition sets consumption
equal to aggregate dividends. For illustration purposes, we use parameter
values in accordance with dividend data in the following. Dividend data is
more volatile than consumption data. Therefore we need lower coefficients
of relative risk aversion to generate high equity premia. We then discuss in
Section 7 how sensitive the results are to consumption growth parameters.

5. The smaller slope of the security market line

Empirical studies like Black et al. (1972) find that the security market
line estimated from the data is flatter than the CAPM predicts. Low-beta
stocks offer a premium that is too high and high-beta stocks offer a premium
that is too low. The following analysis shows that the pricing error of the
CAPM exhibits the same characteristics in our model.

5.1. The case of a small cross-sectional dispersion

This section examines a simplified version of the model. We assume that
the distribution of aggregate dividends at time t = 1 approximately follows
a lognormal distribution

DM
1 ≈ ey1 .

This assumption is reasonable for very small dispersions of cross-sectional
dividends σ2

ρ. The model then becomes more tractable and allows for a
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better understanding of the properties of the pricing error. The next section
addresses the generalization of our results to economies with arbitrarily large
dispersions of dividends. The parameter µρ has no impact on the qualitative
properties of the pricing error, since it only shifts the normal distribution.
Therefore, aggregate dividends would still follow a lognormal distribution for
µρ different from one as long as the cross-sectional dispersion is zero.

The pricing error in the simplified model is given by

αρ = Aρ(E[RM ]−Rf ),

where

Aρ =
e−γσ

2

e−ργσ2

(
e−ργσ

2 − 1

e−γσ2 − 1
− eρσ

2 − 1

eσ2 − 1

)
and

E
[
RM
]
−Rf =

1

δ
eγ(µ−ln(c0))− 1

2
γ2σ2

(
eγσ

2 − 1
)
.

Appendix B and Appendix C derive the pricing error in the model without
the lognormal approximation of aggregate dividends. Setting µρ = 1 and
σρ = 0, we obtain the expression of the pricing error given above. We
observe that the expected market excess return only scales the pricing error.
Cross-sectional differences in mispricing are entirely driven by Aρ. The above
expression also shows that the pricing error is zero for values of ρ ∈ {0, 1},
since the CAPM holds for the riskless asset and the market portfolio.

Appendix D shows that the function Aρ and therefore the pricing error
αρ decreases in ρ for values of ρ larger than

ρmaxA =
1

σ2
ln

(
γ(e−γσ

2 − eσ2
)

(γ + 1)(e−γσ2 − 1)

)
,

and increases in ρ for smaller values of ρ.
Next, we assess the CAPM beta βρ as a function of ρ. The CAPM beta

in our simplified model is given by

βρ =
e−γσ

2
(eρσ

2 − 1)

e−ργσ2(eσ2 − 1)
.

Appendix B shows the derivation of βρ in the general model without the
lognormal approximation of aggregate dividends. Setting µρ = 1 and σρ = 0,
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Figure 1: The left plot shows the pricing error as a function of the CAPM beta
for different coefficients of relative risk aversion. The right plot shows the security
market line of the CAPM and true expected stock returns as a function of the
CAPM beta for a coefficient of relative risk aversion of 9. The discount factor δ is
set to 0.96, mean logarithmic aggregate dividend growth µ− ln(c0) is set to 6.7%
and the standard deviation of logarithmic dividend growth σ is set to 13.5%.

we obtain the expression above. The beta of the riskless asset ρ = 0 is zero
and the beta of the market portfolio ρ = 1 is one as expected. Appendix E
shows that the CAPM beta is increasing in ρ for values of ρ larger than

ρminβ =
1

σ2
ln

(
γ

γ + 1

)
and decreasing in ρ for smaller values of ρ. Appendix F graphically shows
the factor Aρ of the pricing error and the CAPM beta as a function of ρ.

The above analytical results suggest that the pricing error is a decreasing
function of the CAPM beta for values of βρ larger than βρ

min
β . The left plot

in Figure 1 illustrates the relation between the pricing error and the CAPM
beta for different coefficients of relative risk aversion. We see that low-beta
assets have indeed a positive pricing error in our model, whereas high-beta
assets have a negative pricing error for values of beta around 0.5 and above.
Since we assume a very small cross-sectional dispersion of dividends, the
fraction of assets in the increasing part of the curve αρ, where this relation
breaks down, is negligibly small. The plots in Figure 1 assume a discount
factor of 0.96, mean logarithmic dividend growth of 6.7% and a standard
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deviation of logarithmic dividend growth of 13.5%.5

The right plot of Figure 1 compares the expected net returns of assets to
the security market line predicted by the CAPM. We see that the expected
returns of assets with a CAPM beta that is larger than 0.6 lie on an almost
straight line that is flatter than the security market line predicted by the
CAPM. The left plot shows that the slope of the security market line becomes
even smaller for larger coefficients of relative risk aversion. Section 7 provides
more details on the comparative statics.

5.2. The more general model

The simplified model of the previous section suggests that the security
market line is flatter in the CCAPM with CRRA preferences than in the
CAPM over a specific range of assets. In case of a very small cross-sectional
dispersion of dividends, pretty much all assets lie in this range. This section
checks if the previous results carry over to the more general model that allows
for any cross-sectional dispersion of dividends.

Appendix B and Appendix C derive the pricing error as well as the CAPM
beta of the more general model in closed form. Now let us compare economies
that differ in their cross-sectional distribution of dividends. Recall that the
cross-section of dividends is given by

Dρ
1 = eρy1 ,

where
ρ ∼ N (µρ, σ

2
ρ).

The cross-section is therefore completely characterized by the parameters
µρ and σ2

ρ. Note that both parameters affect the distribution of aggregate
dividends, which is given by

DM
1 = eµρy1+ 1

2
σ2
ρy

2
1 .

In order to obtain comparable plots, we match the first two moments
of logarithmic consumption growth for each pair of values µρ and σρ. In
the previous section we assumed µ − ln(co) = 6.7% and σ = 13.5% for
the parameters µρ = 1 and σρ = 0. In addition, we assume that initial
consumption equals c0 = 10000 units. For the derivation of the first and
second moment of logarithmic consumption growth see Appendix H.

5The chosen parameters for the distribution of aggregate dividend growth are supported
by the empirical study of Chen (2009).
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Figure 2: The two plots show the pricing error αρ as a function of the CAPM
beta βρ for different values of µρ and σ2

ρ. The left plot assumes µρ = 1 and the
right plot assumes σρ = 0.05.

µρ 1 2 3 1 1
σρ 0.05 0.05 0.05 0.01 0.03
βρ percentile 0.8606 0.9348 0.9577 0.9752 0.9206

Table 1: First percentile of beta for different parameter values µρ and σρ.

Figure 2 compares the pricing error αρ for different values of µρ and
σ2
ρ assuming log utility. We observe that the shape of the curve remains

basically the same in the sense that the curve reaches a maximum and then
starts to decrease for increasing values of βρ. The left plot assumes µρ = 1
and the right plot assumes σρ = 0.05. Note that the pricing error becomes
maximal for a β smaller than one. Most assets lie in the decreasing part of
the curve, which suggests that the security market line is too flat over a large
range of assets. To illustrate this point, Table 1 shows the first percentile
of beta values for different values of µρ and σ2

ρ. We observe that the first
percentile lies clearly in the decreasing part of the pricing error curve. Except
for a very small number of assets, there is a decreasing relation between the
pricing error and the CAPM beta. The security market line is therefore too
flat over a large range of assets.
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6. Price-related sorts and the role of idiosyncratic risk

Empirical evidence suggests that deviations from the traditional CAPM
become particularly clear when stocks are sorted into portfolios according
to market capitalization or book-to-market ratios. Before we move to price-
related sorting procedures, we discuss the impact of idiosyncratic risk on the
results. We show that our previous results are unaffected by the introduction
of idiosyncratic risk, but idiosyncratic risk does affect prices and thus price-
related sorts.

6.1. Idiosyncratic risk

In a first step, let us introduce idiosyncratic risk into the model. We
assume that dividends are given by

Dρ
1 = eρy1+ερ ,

where ερ denotes an asset-specific source of risk. Prices then are

qρ = E

[
δ

(
c0

c1

)γ
Dρ

1

]
= E

[
δ

(
c0

c1

)γ
eρy1+ερ

]
= E

[
δ

(
c0

c1

)γ
eρy1

]
E [eερ ] .

We see that prices depend on the expectation of the idiosyncratic risk factor.
Idiosyncratic risk therefore matters when we discuss price-related sorting
procedures. On the other hand, idiosyncratic risk has no impact on the
CAPM beta and the pricing error, since they only depend on systematic
risk. Let us illustrate this point briefly in mathematical terms. The CAPM
beta in a model with idiosyncratic risk is given by

βρ =
Cov

(
Rρ, RM

)
Var (RM)

=
Cov

(
eρy1+ερ

qρ
, RM

)
Var (RM)

=
Cov

(
eρy1 , RM

) E[eερ ]
qρ

Var (RM)
.

Inserting the above expression for prices, we obtain

βρ =
Cov

(
eρy1 , RM

)
E
[
δ
(
c0
c1

)γ
eρy1

]−1

Var (RM)
.

We observe that βρ is unaffected by idiosyncratic risk. For computing αρ we
proceed analogously. Recall that the pricing error is given by

αρ =

(
Cov

(
(RM)−γ, Rρ

)
Cov ((RM)−γ, RM)

− Cov(Rρ, RM)

Var(RM)

)(
E[RM ]−Rf

)
.
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The only two terms that could possibly depend on idiosyncratic risk are
Cov

(
(RM)−γ, Rρ

)
and Cov(Rρ, RM). The second term does not depend on

idiosyncratic risk as shown above and

Cov
(
(RM)−γ, Rρ

)
= Cov

(
(RM)−γ,

eρy1+ερ

qρ

)
= Cov

(
(RM)−γ, eρy1

) E[eερ ]

qρ
.

Inserting the above expression for prices, we have

Cov
(
(RM)−γ, Rρ

)
= Cov

(
(RM)−γ, eρy1

)
E

[
δ

(
c0

c1

)γ
eρy1

]−1

.

The pricing error αρ as well as the CAPM beta are therefore unaffected by
idiosyncratic risk. Since the CAPM beta as well as the pricing error do
not depend on idiosyncratic risk, we conclude that our previous results in
a model without idiosyncratic risk still hold in the presence of idiosyncratic
risk. However, idiosyncratic risk affects prices and therefore plays a role in
the following discussion of price-related sorting procedures.

6.2. Price-related sorting procedures
The preceding discussion on idiosyncratic risk shows that a sort according

to market capitalization cannot perfectly sort according to abnormal returns
in general, because idiosyncratic risk affects prices but not abnormal returns.
Results on price-related sorting procedures therefore depend on idiosyncratic
risk. In our analysis, we do not model idiosyncratic risk explicitly. Instead
we stick to our model without idiosyncratic risk for the derivation of the
results, based on which we then discuss the impact of idiosyncratic risk. In
addition, we restrict ourselves to the more tractable version of the model with
a small cross-sectional dispersion of dividends, where aggregate dividends are
approximately lognormally distributed.

First, let us discuss sorting according to market capitalization qρ and the
size premium.6 Appendix G shows that the market capitalization increases
in ρ for values of ρ larger than

ρminq = γ − µ

σ2
.

Since the pricing error is a decreasing function in ρ for values of ρ larger than
ρmaxA , the pricing error also decreases in size for values of ρ that are larger
than ρminq and ρmaxA .

6Note that our model makes no distinction between market capitalization and prices.
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Figure 3: The left plot shows the relation between market capitalization and the
pricing error for different coefficients of relative risk aversion. The right plot shows
the relation between the dividend-price ratio and the pricing error. The discount
factor δ is set to 0.96, mean logarithmic aggregate dividend growth µ− ln(c0) is set
to 6.7%, the standard deviation of logarithmic dividend growth σ is set to 13.5%
and initial consumption c0 is set to 10000 units.

The left plot of Figure 3 illustrates graphically how the pricing error
relates to market capitalization according to our model. In contrast to the
CAPM beta and the pricing error, market capitalization does depend on
consumption in the first period. The plots in Figure 3 assume c0 = 10000
units. Since we normalized the total number of assets to one, c0 denotes
average dividends. We consider three different levels of relative risk aversion.
For γ = 1(2, 3), we find that ρminq = −509.6360(−508.6360,−507.6360) and
ρmaxA = 0.5023(0.5038, 0.5053). Note that the number of assets that lie on
the increasing left part of the pricing error curve αρ is very small if the cross-
sectional dispersion of dividends is small. We can therefore say that small
stocks tend to pay a higher premium than the CAPM implies and large stocks
pay a lower premium than in the CAPM.

The right plot of Figure 3 compares value stocks to growth stocks as
measured by the dividend-price ratio. For a small cross-sectional dispersion
of dividends, there are only few stocks on the very right of the curve. The plot
therefore suggests that stocks with a high dividend-price ratio tend to pay a
higher premium than the CAPM implies and stocks with a low dividend-price
ratio pay a lower premium than in the CAPM.
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The previous analyses allow no general conclusions for the model with
idiosyncratic risk. In the presence of idiosyncratic risk, the relation between
prices or price-related ratios and the pricing error is not clear if we do not
put further assumptions. Depending on the distribution of idiosyncratic risk
across assets, the results could look very different. However, if we assume that
the expectation of the idiosyncratic risk factor is equal for all assets, then all
prices are scaled by the same factor and the results remain qualitatively the
same. Accordingly, if the differences in the expectation of the idiosyncratic
risk factor do not differ too much across assets, we would at least expect the
previous results to hold for sorted portfolios of assets.

7. Comparative Statics

The previous results show that the security market line is flatter in our
model than in the CAPM, which leads to price-related CAPM-anomalies in
the cross-section of returns. This section analyzes how the CAPM pricing
errors depend on market conditions. Recall that the pricing error in the
simplified model with lognormal aggregate dividends is given by

αρ = Aρ(E[RM ]−Rf ),

where

Aρ =
e−γσ

2

e−ργσ2

(
e−ργσ

2 − 1

e−γσ2 − 1
− eρσ

2 − 1

eσ2 − 1

)
and

E
[
RM
]
−Rf =

1

δ
eγ(µ−ln(c0))− 1

2
γ2σ2

(
eγσ

2 − 1
)

(1)

From the above expression we see that the pricing error depends on four
parameters: the aggregate dividend growth parameters µ − ln(c0) and σ2

and the preference parameters γ and δ.

7.1. Aggregate dividend growth parameters

The impact of mean logarithmic aggregate dividend growth µ − ln(c0)
on the pricing error is immediately clear from the above expression for the
pricing error (1). It only affects the pricing error through the equity premium.
The higher µ − ln(c0) is, the larger the market premium and therefore the
pricing error is. In times of high expected logarithmic dividend growth we
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Figure 4: The left plot shows the absolute value of the pricing error factor Aρ

and the expected market excess return as a function of the variance of logarithmic
aggregate dividend growth for different assets. The right plot shows the pricing
error as a function of the CAPM beta for different variances. The discount factor
δ is set to 0.96, mean logarithmic aggregate dividend growth µ − ln(c0) is set to
6.7% and the coefficient of relative risk aversion is set to 9.

therefore expect cross-sectional anomalies to be more pronounced than in
times of low expected logarithmic dividend growth.

The impact from the variance of logarithmic aggregate dividend growth
σ2 is more complex. Note that the pricing error consists of two components:
the factor Aρ and the expected market excess return. Figure 4 plots them
separately and shows the resulting pricing error. From the left plot we see
that the absolute value of Aρ increases with σ2. The expected market excess
return also increases over a certain range of values, but starts to decrease for
larger values of σ2. Overall, we can say that asset anomalies become more
pronounced for larger values of σ2 as long as σ2 is not too large. The right
plot of Figure 4 shows the relation between the pricing error and the CAPM
beta for different variances of logarithmic dividend growth σ2 and illustrates
this point.

7.2. Preference parameters

The effect of the time discount factor on the pricing error can be directly
seen from the above expression for the pricing error (1). The time discount
factor has no impact on Aρ and only affects the equity premium. The more
impatient the representative agent is, the higher the market premium and
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therefore the pricing error is. This finding is supported by empirical evidence.
The empirical study of Caliskan and Hens (2013) shows for example that
the value premium is more pronounced in countries with more impatient
investors.
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Figure 5: The left plot shows the absolute value of the pricing error factor Aρ

and the expected market excess return as a function of risk aversion for different
assets. The right plot shows the pricing error as a function of the CAPM beta
for different coefficients of relative risk aversion. The discount factor δ is set to
0.96, mean logarithmic aggregate dividend growth µ − ln(c0) is set to 6.7% and
the standard deviation of logarithmic dividend growth σ is set to 13.5%.

The effect from the coefficient of relative risk aversion is more complex.
The left plot of Figure 5 shows the absolute value of Aρ and the expected
market excess return as a function of the risk aversion coefficient. While
the pricing error factor Aρ increases for increasing coefficients of relative risk
aversion, the expected market excess return is not monotonic. The expected
market excess return increases in γ for small values of γ, but decreases in
γ for larger values of γ. We conclude that the asset anomalies becomes
more pronounced for larger values of relative risk aversion as long as the
coefficient of relative risk aversion lies in a reasonable range. The right plot of
Figure 5 shows the pricing error as a function of the CAPM beta for different
coefficients of relative risk aversion. The empirical study of Caliskan and
Hens (2013) also finds support for an increasing relation between the value
premium and the coefficient of relative risk aversion.
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8. Conclusion

The presented example economy shows that the CCAPM with CRRA
preferences and lognormal returns can qualitatively explain CAPM-anomalies
in the cross-section of stock returns. The model implies a security market
line that is flatter than the one in the CAPM over the range of most assets.
Most low-beta assets therefore pay higher abnormal returns than high-beta
assets. Furthermore, the smaller slope of the security market line leads to a
size premium and a value premium.

The slope of the security market line and thus the size of the CAPM-
anomalies strongly depend on the dividend and preference parameters. The
crucial parameters determining cross-sectional differences are the coefficient
of relative risk aversion and volatility of aggregate dividend growth. We find
that the security market line becomes flatter for increasing risk aversion and
increasing volatility. However, the coefficient of relative risk aversion needs
to be rather large to get large deviations from the CAPM. In this sense the
cross-sectional puzzles are very similar to the equity premium puzzle. The
CAPM-puzzles are also tightly linked to the equity premium puzzle, because
the pricing errors are proportional to the equity premium. We conclude that
in light of our model, the existence of a beta premium, a value premium and
a size premium is not a puzzle. It is the magnitude of these premia that is
puzzling, and the results argue in favor of a common explanation for the size
of the equity premium and the size of CAPM-anomalies.

Our results offer no conclusive answer to the question whether CRRA
preferences can explain CAPM-anomalies. There exist different explanations
for the size of the equity premium in the equity premium puzzle literature
that potentially explain the size of cross-sectional anomalies as well. They
are based on different assumptions on preferences or returns. One possible
explanation that is consistent with CRRA preferences are rare disasters in
the sense of Rietz (1988) and Barro (2006). Including rare disasters to the
model has a considerable impact on higher-order moments and decreases for
example skewness. Since CRRA preferences imply a preference for positive
skewness, a lower skewness in returns leads to a higher equity premium. Rare
disasters could explain why the empirical study of Dittmar (2002) finds no
support for a CRRA explanation of CAPM-anomalies, since the data does
not reflect the risk for rare disasters.

This study also analyzes and compares the beta sort to price-related sorts.
While beta only captures systematic risk, prices depend on systematic and
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idiosyncratic risk. However, the pricing error of the CAPM only depends
on systematic risk. The relation between the pricing error and price-related
sorts is therefore disturbed by idiosyncratic risk.

Our discussion of CAPM-anomalies in the cross-section of stock returns
is based on a simple example economy. An interesting extension would be
to derive more general conditions on the distribution of returns under which
CAPM-anomalies arise. This could serve as a basis for a more integrated
view of the equity premium puzzle and the CAPM-puzzles.
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Appendix A. Derivation of the expectation

In the following we often have to compute expectations of the form

E
[
eay1+by2

1

]
for coefficients a and b. Using the completion of the square method we obtain

E
[
eay1+by2

1

]
=

1

σ
√

2π

∫ ∞
−∞

eay+by2

e−
(y−µ)2

2σ2 dy

=
1

σ
√

2π

∫ ∞
−∞

e
− 1

2( 1
σ2−2b)

(
y2−2 aσ

2+µ

1−2bσ2 y+ µ2

1−2bσ2

)
dy

=
1

σ
√

2π
e
− 1

2( 1
σ2−2b)

(
µ2

1−2bσ2−
(
aσ2+µ

1−2bσ2

)2
) ∫ ∞
−∞

e
− 1

2( 1
σ2−2b)

(
y− aσ2+µ

1−2bσ2

)2

dy.

The integrand is proportional to a normal density function with mean aσ2+µ
1−2bσ2

and standard deviation
√

σ2

1−2bσ2 . The expectation therefore is equal to

E
[
eay1+by2

1

]
=

1√
1− 2bσ2

e
− 1

2( 1
σ2−2b)

(
µ2

1−2bσ2−
(
aσ2+µ

1−2bσ2

)2
)

=
1√

1− 2bσ2
e
− 1

2
a2σ2+2(a+bµ)µ

2bσ2−1 .

Appendix B. Derivation of Aρ and βρ

This section computes

Aρ =

(
Cov

(
(RM)−γ, Rρ

)
Cov ((RM)−γ, RM)

− Cov(Rρ, RM)

Var(RM)

)
,

which can equivalently be written as

Aρ =
qM

qρ

(
Cov

(
(DM

1 )−γ, Dρ
1

)
Cov ((DM

1 )−γ, DM
1 )
−

Cov
(
Dρ

1, D
M
1

)
Var (DM

1 )

)
. (B.1)
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Now let us compute all the covariances in Aρ. The numerator of the first
summand is

Cov
(
(DM

1 )−γ, Dρ
1

)
= Cov

(
e−γ(µρy1+ 1

2
σ2
ρy

2
1), eρy1

)
= E

[
e(ρ−γµρ)y1−γ 1

2
σ2
ρy

2
1

]
− E

[
e−γ(µρy1+ 1

2
σ2
ρy

2
1)
]
E [eρy1 ] .

Using the formula in Appendix A for expectations of the above form, we
obtain

Cov
(
(DM

1 )−γ, Dρ
1

)
= C1

(
e

1
2

(ρ2−2ργµρ)σ2+2ρµ

γσ2
ρσ

2+1 − e
1
2

(ρ2σ2+2ρµ)

)
, (B.2)

where

C1 =
1√

1 + γσ2
ρσ

2
e

1
2

γ2µ2
ρσ

2−2γµρµ−γσ2
ρµ

2

γσ2
ρσ

2+1 .

Proceeding accordingly, the covariance in the denominator is

Cov
(
(DM

1 )−γ, DM
1

)
= Cov

(
e−γ(µρy1+ 1

2
σ2
ρy

2
1), eµρy1+ 1

2
σ2
ρy

2
1

)
= C1

2 − C2
2C

3
2 , (B.3)

where

C1
2 = E

[
e(1−γ)(µρy1+ 1

2
σ2
ρy

2
1)
]

=
1√

1− (1− γ)σ2
ρσ

2
e
− 1

2

(1−γ)2µ2
ρσ

2+(2(1−γ)µρ+(1−γ)σ2
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(1−γ)σ2
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C2
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[
e−γ(µρy1+ 1

2
σ2
ρy

2
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]

=
1√

1 + γσ2
ρσ

2
e
− 1

2

γ2µ2
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2+(−2γµρ−γσ2
ρµ)µ

−γσ2
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[
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2
σ2
ρy

2
1

]
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1√
1− σ2

ρσ
2
e
− 1

2

µ2
ρσ

2+(2µρ+σ2
ρµ)µ

σ2
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The numerator of the second summand is

Cov
(
Dρ

1, D
M
1

)
= Cov

(
eρy1 , eµρy1+ 1

2
σ2
ρy

2
1

)
= E

[
e(ρ+µρ)y1+ 1

2
σ2
ρy

2
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− E [eρy1 ]E
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ρy

2
1

]
(B.4)

= C3

(
e

1
2

(ρ2+2ρµρ)σ2+2ρµ
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2 − e
1
2

(ρ2σ2+2ρµ)

)
, (B.5)

where

C3 =
1√

1− σ2
ρσ

2
e

1
2

µ2
ρσ

2+2µρµ+σ2
ρµ

2

1−σ2
ρσ

2 .

The denominator is given by

Var
(
DM

1

)
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eµρy1+ 1

2
σ2
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2
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)
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ρy
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4 , (B.6)

where
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2
e
−

2µ2
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ρµ)µ

2σ2
ρσ
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4 =
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1− σ2
ρσ

2
e
−
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σ2
ρσ
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Combining (B.1), (B.2), (B.3), (B.5) and (B.6) we obtain

Aρ =
qM

qρ
(A1 − A2) , (B.7)

where

A1 =
C1

C1
2 − C2

2C
3
2

(
e

1
2

(ρ2−2ργµρ)σ2+2ρµ

γσ2
ρσ
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1
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1
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)
.
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In a next step let us calculate prices. The ratio of the market price over
the price of the risky asset is

qM

qρ
=

E
[
δ
(
c0
c1

)γ
eµρy1+ 1

2
σ2
ρy

2
1

]
E
[
δ
(
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] =
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2
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Plugging this ratio of prices into (B.7), we obtain
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Note that C1, C
1
2 , C

2
2 , C

3
2 , C3, C

1
4 and C2

4 do not depend on ρ.
Note that the second summand in (B.1) represents βρ. Therefore we have
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Appendix C. Derivation of expected returns

The price of the market portfolio is given by

qM = E
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Noting that the integral over the density function is 1, we obtain
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For the expected future payoff, we have
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Note that the expectation equals the expectation in prices qM for γ = 0.
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Therefore the expected market return is given as
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For the riskless asset, we have

qf = E
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Note that the expectation equals the expectation in prices qM if we substitute
γ by 1 + γ. Therefore we have
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Appendix D. Properties of the function Aρ when DM is lognormal

In order to determine the shape of the function, we compute possible
extrema. Recall that

Aρ =
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Taking the first derivative with respect to ρ and setting it equal to zero, we
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Note that x = 0 only occurs for ρ = −∞. Thus, the extremum of interest is
only

ρ =
1

σ2
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)
.

Next we want to show that it is a maximum. Thus, we verify if the second
derivative is negative at the extremum. We want to show that

−γ
2σ4eργσ

2

e−γσ2 − 1
− σ4(γ + 1)2eρσ

2(γ+1)

eσ2 − 1
+
γ2σ4eργσ

2

eσ2 − 1
< 0.

In terms of x, we have(
γ2σ4

eσ2 − 1
− γ2σ4

e−γσ2 − 1
− σ4(γ + 1)2

eσ2 − 1
x

)
xγ < 0.

Note that x and thus xγ are positive, since the numerator as well as the
denominator is negative at the extremum. Therefore we only have to verify
that

γ2σ4

eσ2 − 1
− γ2σ4

e−γσ2 − 1
− σ4(γ + 1)2

eσ2 − 1
x < 0.

Inserting x at the extremum yields

γ2σ4

eσ2 − 1
− γ2σ4

e−γσ2 − 1
− σ4(γ + 1)2

eσ2 − 1

γ(e−γσ
2 − eσ2

)

(γ + 1)(e−γσ2 − 1)
< 0.

Multiplying by (eσ
2 − 1)(γ + 1)(e−γσ

2 − 1), we get

(γ+ 1)γ2σ4(e−γσ
2 − 1)− (γ+ 1)γ2σ4(eσ

2 − 1)− (γ+ 1)2γσ4(e−γσ
2 − eσ2

) > 0.

Removing the canceling terms we have

eσ
2 − e−γσ2

> 0,

which is true. Therefore the function Aρ has only one extremum for finite ρ,
which is a maximum.
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Appendix E. Properties of the function βρ when DM is lognormal

Now let us turn to the CAPM beta βρ as a function of ρ. Recall that

βρ =
e−γσ

2
(eρσ

2 − 1)

e−ργσ2(eσ2 − 1)
.

Setting the first derivative to zero, we obtain

e−γσ
2

eσ2 − 1

(
(γ + 1)σ2eρσ

2(γ+1) − γσ2eργσ
2
)

= 0.

This equation is satisfied by ρ = −∞ and ρ = 1
σ2 ln

(
γ
γ+1

)
. In the following,

we show that the finite extremum is a minimum and the second derivative is

e−γσ
2

eσ2 − 1

(
(γ + 1)2σ4eρσ

2(γ+1) − γ2σ4eργσ
2
)
> 0.

This is equivalent to
(γ + 1)2eρσ

2 − γ2 > 0,

which is true. Since Aρ is decreasing in ρ for values larger than

ρ =
1

σ2
ln

(
γ(e−γσ

2 − eσ2
)

(γ + 1)(e−γσ2 − 1)

)

and βρ is increasing in ρ for values larger than ρ = 1
σ2 ln

(
γ
γ+1

)
, we see that

Aρ has to decrease in βρ for values of ρ larger than

ρ =
1

σ2
ln

(
γ(e−γσ

2 − eσ2
)

(γ + 1)(e−γσ2 − 1)

)
.

Appendix F. Plots of Aρ and βρ when DM is lognormal

Figure F.6 shows the factor Aρ and the CAPM beta βρ as a function of
ρ. Recall that the pricing error is given by

αρ = Aρ(E[RM ]−Rf ).

Aρ therefore describes the pricing error as a proportion of the market equity
premium. We see that the pricing error can become a substantial fraction
of the equity premium for a certain range of assets and higher coefficients of
relative risk aversion.
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Figure F.6: The left plot shows the factor Aρ of the pricing error as a function
of ρ for different coefficients of relative risk aversion. The right plot shows the
CAPM beta as a function of ρ for different coefficients of relative risk aversion.
The standard deviation of logarithmic dividend growth is set to 13.5%.

Appendix G. The shape of qρ when DM is lognormal

The price of an asset is

qρ = E

[
δ

(
c0

c1

)γ
eρy
]

= δcγ0e
(ρ−γ)µ+ 1

2
(ρ−γ)2σ2

.

In order to determine local extrema, we take the first order condition and
set it to zero:

δcγ0(µ+ (ρ− γ)σ2)e(ρ−γ)µ+ 1
2

(ρ−γ)2σ2

= 0.

Thus, there is an extremum for

ρ = γ − µ

σ2
.

In order to determine if this is a maximum or a minimum, we compute the
second derivative

δcγ0

(
σ2 +

(
µ+ (ρ− γ)σ2

)2
)
e(ρ−γ)µ+ 1

2
(ρ−γ)2σ2

> 0.

The function therefore has only one minimum.
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Appendix H. First two moments of logarithmic consumption growth

The first moment of logarithmic consumption growth is

E

[
ln

(
c1

c0

)]
= E [ln(c1)]− ln(c0)

and we have

E [ln(c1)] = E

[
µρy1 +

1

2
σ2
ρy

2
1

]
= µρE[y1] +

1

2
σ2
ρE[y2

1] = µρµ+
1

2
σ2
ρ(µ

2 + σ2).

(H.1)

The second moment of logarithmic consumption growth is

Var

(
ln

(
c1

c0

))
= Var (ln(c1))

and we have

Var (ln(c1)) =Var

(
µρy1 +

1

2
σ2
ρy

2
1

)
=E

[(
µρy1 +

1

2
σ2
ρy

2
1

)2
]
−
(
µρµ+

1

2
σ2
ρ(µ

2 + σ2)

)2

=E

[
µ2
ρy

2
1 + µρσ

2
ρy

3
1 +

1

4
σ4
ρy

4
1

]
−
(
µ2
ρµ

2 + µρµσ
2
ρ(µ

2 + σ2) +
1

4
σ4
ρ(µ

2 + σ2)2

)
=µ2

ρ(µ
2 + σ2) + µρσ

2
ρ(µ

3 + 3µσ2) +
1

4
σ4
ρ(µ

4 + 6µ2σ2 + 3σ4)

− µ2
ρµ

2 − µρσ2
ρµ

3 − µρσ2
ρµσ

2 − 1

4
σ4
ρµ

4 − 1

2
σ4
ρµ

2σ2 − 1

4
σ4
ρσ

4

=µ2
ρσ

2 + 2µρσ
2
ρµσ

2 + σ4
ρµ

2σ2 +
1

2
σ4
ρσ

4. (H.2)

Matching the first moment (H.1), we obtain

µρµ+
1

2
σ2
ρ(µ

2 + σ2) = 0.067 + ln(10000). (H.3)
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Matching the second moment (H.2), we obtain

µ2
ρσ

2 + 2µρσ
2
ρµσ

2 + σ4
ρµ

2σ2 +
1

2
σ4
ρσ

4 = 0.1352. (H.4)

Combining (H.3) and (H.4), we obtain

1

2
σ4
ρσ

4 −
(
µ2
ρ + 2σ2

ρ(0.067 + ln(10000))
)
σ2 + 0.1352 = 0.

The solutions to this equation are

σ2 =
µ2
ρ + 2σ2

ρ(0.067 + ln(10000))±
√(

µ2
ρ + 2σ2

ρ(0.067 + ln(10000))
)2 − 2σ4

ρ · 0.1352

σ4
ρ

.

Solving (H.3) for µ, we obtain

µ =
−µρ ±

√
µ2
ρ − σ2

ρ(σ
2
ρσ

2 − 2(0.067 + ln(10000))

σ2
ρ

.

Only two of the solutions are real. We take the one that gives positive
parameter values.
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