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ABSTRACT 

 

Humpback Chub Gila cypha are endangered cyprinids endemic to the Colorado 

River drainage and are adapted to live in fast currents of warm, turbid water. Although 

nine known aggregations of Humpback Chub currently exist in the main-stem Colorado 

River in the Grand Canyon, little is known about their reproduction. I hypothesized that 

Colorado River water temperatures below Glen Canyon Dam are too low due to 

hypolimnetic water releases from Lake Powell for female Humpback Chub to develop 

mature eggs for spawning.  

Ultrasonic imaging, also called ultrasound, is an effective, non-lethal method used 

to determine sex and maturity of a variety of freshwater, anadromous, and marine fishes. 

However, many previous studies have been performed in laboratory environments. I 

developed a standardized method for ultrasonically scanning endangered Humpback 

Chub Gila cypha in remote locations within Grand Canyon, Arizona, USA. This method 

minimized stress to individual fish and took less than 1 min to perform. I was able to 

identify female fish with eggs based on two jpeg images and one 10 s video clip collected 

in the field. I also used ImageJ®, a National Institute of Health image processing 

program, to develop a brightness index to evaluate the maturity of eggs in female fish. I 

collected ultrasonic scans of captive, ripe Humpback Chub held at the Southwestern 

Native Aquatic Resources and Recovery Center (SNARRC) to determine that female fish 

were potentially ripe when a subsample of their eggs exhibited a brightness value within 

the 32-44 range. Although I was able to estimate egg maturity, I was not able to estimate 

egg mass of female fish.  
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I used ultrasound to evaluate reproductive condition of 751 Humpback Chub in 

Grand Canyon. I documented egg development in female fish from the main-stem 

Colorado River, Little Colorado River, Havasu Creek, and Shinumo Creek. Egg 

development in Humpback Chub varies by location and time of year. Potentially ripe 

(stage 3) female fish were found at all sample locations and dates except at Shinumo 

Creek in 2013 and 2014. Potentially ripe females were also detected in every main-stem 

aggregation except for Pumpkin Springs and in two locations outside of established 

aggregations.  

Fisheries managers can use ultrasound to collect vital information about the 

reproductive status of fishes that cannot be killed and that are found in remote or rugged 

field locations. My findings indicate that female Humpback Chub are able to produce 

eggs throughout the main-stem Colorado River and that internal egg development and 

egg production likely do not limit recruitment. However, female fish may never 

experience the environmental triggers they need to spawn or may not experience 

conditions that would allow eggs and larvae to survive.  
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Effectiveness of Ultrasonic Imaging for Evaluating Presence and Maturity of Fish 

Eggs in Remote Locations 

 

Abstract 

Ultrasonic imaging, also called ultrasound, is an effective, non-lethal method used 

to determine sex and maturity of a variety of freshwater, anadromous, and marine fishes. 

However, most previous studies have been performed in laboratory environments. I 

developed a standardized method for ultrasonically scanning endangered Humpback 

Chub Gila cypha in remote locations within Grand Canyon, Arizona, USA. This method 

minimized stress to individual fish and took less than 1 min to perform. I was able to 

identify female fish with eggs based on two jpeg images and one 10 s video clip collected 

in the field. I also used ImageJ®, a National Institute of Health image processing 

program, to develop a brightness index to evaluate the maturity of eggs in female fish. I 

collected ultrasonic scans of captive, ripe Humpback Chub held at the Southwestern 

Native Aquatic Resources and Recovery Center (SNARRC) to determine that female fish 

were potentially ripe when a subsample of their eggs exhibited a brightness value within 

the 32-44 range. Although I was able to estimate egg maturity, I was not able to estimate 

egg mass of female fish. I successfully scanned 751 Humpback Chub in the field and 

collected jpeg images and video clips for each fish. Fisheries managers can use this non-

invasive technique in remote or rugged field locations to collect vital information about 

the reproductive status of fishes that cannot be killed. 
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Introduction 

Biologists must be able to accurately sex fish and determine their maturity to 

effectively manage their populations (Pope et al. 2010). Invasive methods such as blood 

samples, oocyte biopsies, and dissection of fish have traditionally been used to determine 

fish sex and gonad maturity (Blythe et al. 1994). However, these methods can be 

impractical, especially when working with valuable captive broodstock (Blythe et al. 

1994) or with rare or endangered species (Bryan et al. 2007). Non-invasive methods, like 

the evaluation of external morphological differences between male and female fish, are 

often not accurate (Mattson 1991) which creates a need for the development of new 

methods to identify sex and reproductive status in fish.  

Ultrasonic imaging, also known as ultrasound, was first used in medicine in the 

1970s to examine the human heart (Novelo and Tiersch 2012). Fisheries researchers 

began using ultrasound in the 1980s to sex juvenile and mature Coho Salmon 

Oncorhynchus kisutch (Martin 1983) and Pacific Herring Clupea pallasii (Bonar et al. 

1989). Over the past 30 years, ultrasound has been developed as an effective, non-lethal 

method to determine sex and maturity of a variety of freshwater, anadromous, and marine 

fishes (Novelo and Tiersch 2012). 

Although ultrasound is an effective tool, its applications for field biologists have 

been limited. Most ultrasound research has occurred in controlled laboratory 

environments, and many studies have either physically or chemically restrained fish 

during ultrasonic scanning procedures (Novelo and Tiersch 2012). Although some studies 

have used portable ultrasound units in the field, little information on methods is available 
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for researchers or managers who wish to use this technique on fish in remote field 

locations (Evans 2003; Wildhaber et al. 2005).  

Practical ultrasonic imaging techniques must be developed in order for fisheries 

managers to use this technology in remote locations. These locations include decks of 

marine fishing vessels, lakes and streams in the backcountry, rivers in deep canyons, and 

isolated aquaculture operations. One of the most remote locations in North America is the 

Colorado River as it flows through the Grand Canyon. 

Using ultrasound in a remote field environment like the Grand Canyon presents 

many challenges. Air temperatures >40 °C, sand, and water all strain and can damage 

electronic equipment. Shade can be scarce, which makes discerning images on electronic 

screens difficult. Rough rides through the Colorado River’s famous whitewater rapids can 

damage equipment. Opportunities to charge batteries are limited, and sampling trips can 

last from 10-18 d. Biologists have limited time within which they must capture fish and 

obtain information. These working conditions create a harsh environment for electronic 

equipment and a limited time frame for conducting ultrasound evaluations on fish. 

My goal was to develop an ultrasonic imaging technique that could be used in remote 

field environments. My objectives were to: 

1) Develop a standardized method to obtain ultrasonic images in remote field 

locations that minimizes stress to fish and is time efficient. 

2) Develop evaluation techniques of ultrasound images to accurately identify female 

fish containing eggs and gauge maturity of eggs. 
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Methods 

Development of Field Ultrasonic Scanning Procedure 

 I selected a remanufactured Sonosite M-Turbo-R ultrasound unit with a 13-6 

MHz linear transducer to scan all fish (VetImaging, Irvine, California). This unit was 

selected because it is typically used by veterinarians, especially those who travel to farms 

to administer care to large animals. The transducer I used was designed to scan small 

mammals, birds, and reptiles, and can penetrate up to 4 cm deep when scanning. Both the 

unit and the transducer can withstand shock damage from being dropped about 1 m. The 

unit was not waterproof, so I transported it in a plastic foam-filled case (Pelican Custom, 

South Deerfield, Massachusetts). One battery would provide up to 2 h of continuous use. 

I used Common Carp Cyprinus carpio to develop a standardized protocol to 

obtain ultrasonic image data from fish in the field. I used gill nets with 64-mm-stretch-

measure mesh and set them overnight in Tremaine Lake, Arizona, on June 19, 2013, to 

collect 86 Common Carp. Captured fish were removed from gill nets and held in net pens 

until they were transported in oxygenated 94-L coolers to a greenhouse facility at the 

U.S. Forest Service Rocky Mountain Research Station, Southwest Forest Science 

Complex in Flagstaff, Arizona. Fish were held inside a greenhouse in a 1,000-L 

rectangular circulating tank system for 24 h before I inserted a unique PIT tag and 

ultrasonically scanned each fish. I then injected each fish ventrally between the pelvic 

fins with 0.5 mL of Ovaprim®, a synthetic hormone that induces spawning, and waited 1 

week before ultrasonically scanning fish and dissecting them. 

After 1 week, all fish were placed in 40-L tubs and euthanized with MS-222 

(tricaine methane sulfonate) before I began taking measurements. I recorded TL (mm), 

SL (mm), FL (mm), and weight (g).  
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Before ultrasonically scanning a fish, I entered PIT tag numbers unique to each 

fish in the scanner. I also entered the location, date, and species. Finally, I set the scan 

type as musculoskeletal, and the scan depth to 2.6 cm. While the machine was saving this 

information, I externally photographed the left lateral side of each fish. I removed the fish 

from water, wet the end of the probe, and positioned the transducer probe parallel to the 

operculum. I then scanned the left lateral side of each fish twice, starting immediately 

posterior of the pectoral fin, moving toward the caudal fin, and ending at the anal opening 

or vent (Figure 1.1). The first full scan was saved as a 10 to 15 s video, depending on the 

fish TL. For the second full scan, I followed the same procedure, but saved two jpeg 

images per fish. One image was saved during the anterior half of the full scan, and the 

second image was saved during the posterior half of the full scan. I spent less than 60 s 

scanning each fish. The ultrasound machine automatically created a folder for each 

unique PIT tag number where all video files and jpeg images associated with that tag 

number were stored. 

During the scanning procedure, I determined sex based on live images on the 

ultrasound machine. If I noticed an egg mass, I used calipers on the machine to measure 

and record the area (cm2) of the mass. Immediately after scanning each fish, I externally 

sexed it and dissected it. I noted the sex of each fish and gonad weight (g). If the carp was 

a female, I measured the length (mm) and width (mm) of the ovaries. Finally, I measured 

the diameter (mm) of a subset of 30 eggs. This information was used to calibrate ImageJ® 

(National Institute of Health, Bethesda, Maryland), the software I used for analysis of egg 

maturity. 
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 I also ultrasonically scanned Humpback Chub Gila cypha at the Southwestern 

Native Aquatic Resources and Recovery Center (SNARRC, Dexter, New Mexico), a U.S. 

Fish and Wildlife Service hatchery that holds Humpback Chub broodstock and provides 

juveniles for stocking in Grand Canyon, to obtain reference ultrasound videos and images 

of ripe fish for comparison with fish scanned in the field. Hatchery specialists retrieved 

fish they believed to be adult females for all samples. I scanned Humpback Chub (N = 

23) on April 22 and 23, 2014, when hatchery specialists were stripping eggs for 

production. These fish were held in an outdoor 405-m2 pond. After I scanned fish on 

April 22, they were injected with a solution of carp pituitary gland hormone (2-3 mg per 

kg body weight) and saline (0.3%) to induce spawning. I waited 16 h before re-scanning 

these fish. I performed the full ultrasonic scanning method described above for a set of 

pre-spawn and post-spawn images for each fish. In 2015, I scanned 14 adult female 

Humpback Chub over a 3 month period. Fish were held in an outdoor 405-m2 pond and 

were moved to a concrete outdoor raceway after I scanned them on February 26. I 

scanned these fish again on March 19, and on April 22 and 23 when hatchery specialists 

were spawning them. During the April 22-23 scanning, I used the same procedure from 

2014 to obtain pre-spawn and post-spawn images. 

 

Analysis of Ultrasonic Images 

All images and clips were downloaded to a computer and evaluated using the 

software package ImageJ®. A fish was considered female if it had eggs, or indeterminate 

if eggs could not be identified. 
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I used ImageJ® to develop an egg brightness index to evaluate egg maturity and 

allow comparisons among samples from all field sites. I used a standardized reference 

point in the still image saved during the first half of the second full ultrasound scan. In 

images, I consistently found the white triangle created from ovary lining tissue at the 

anterior portion of the ovary. Immediately inside of the ovary lining triangle, where the 

egg mass was located, I selected an oval area between 39 x 29 pixels and 72 x 99 pixels 

(Figure 1.2). The pixel size of the selection depended on the degree of ovarian 

development of the fish. Next, I cropped the area within the selection circle. I then 

opened the Color Threshold dialog box and recorded the median pixel brightness for the 

selection.  

I used ImageJ® to develop an egg mass index that would allow comparisons of the 

size of the egg mass detected in female Humpback Chub among field sites. I evaluated 

only females who were within a brightness range that indicated they could be potentially 

ripe. Both still images from the second full ultrasound scan were used to estimate egg 

mass. I used the polygon selection feature in ImageJ® to select the entire ovary visible in 

each image, and I recorded both perimeter and area of the selection for Common Carp. I 

used Microsoft Excel® to evaluate the relationships between the area estimated with the 

use of ImageJ® (pixels) and area estimated with the use of the ultrasound machine (cm2), 

between the egg mass area estimated using ImageJ® (pixels) and ovary weight (g), 

between the ImageJ® estimation (pixels) and ovary area (cm2), and between ImageJ® 

estimation (pixels) and gonadosomatic index values. Gonadosomatic index values were 

calculated following the methods of Strange 1996. 
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Testing Procedure in Field  

 Once I had developed these ultrasonic scanning procedures in the laboratory, I 

tested them during fish sampling trips in the Grand Canyon. I measured battery life, 

number of equipment malfunctions, total number of fish scanned, number of mortalities 

during scanning, and ease of machine transport. I measured battery life by noting the 

number of fish scanned before each battery lost power. I determined ease of transport by 

noting if the machine could be hiked into and out of Grand Canyon and transported by 

boat on river trips with no malfunctions. 

 

Results  

I used ultrasound to evaluate a total of 58 Common Carp. These fish ranged from 

230-424 mm TL and included a mix of both ripe and non-ripe male and female fish. I 

correctly sexed 78% of Common Carp with ultrasound. Out of the 13 incorrectly sexed 

fish, two were females misidentified as non-females and four were ripe males 

misidentified as females. 

 All Humpback Chub scanned at SNARRC in April 2014 were correctly identified 

as females with eggs. I scanned the same 14 Humpback Chub in February, March, and 

April 2015 and correctly identified all fish as females with eggs. In order to confirm 

identification, eggs were stripped from these fish in April 2014 and April 2015. 

 The brightness index helped to evaluate egg maturity of Common Carp (Figure 

1.3) and Humpback Chub (Figure 1.4). The three ripe female Common Carp had 

brightness values of 36, 43, and 47, and values for female Humpback Chub that released 

eggs consistently fell within the 32-44 range.  
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I found a relationship between the area (pixels) estimated with the use of ImageJ® 

and area estimated with the use of the ultrasound machine (cm2) for Common Carp 

(Figure 1.5) I found no relationship between the egg mass area (pixels) estimated using 

ImageJ® and ovary weight (g) (Figure1.6), no relationship between egg mass area (pixels) 

estimated using ImageJ® estimation and ovary area (cm2) (Figure 1.7), and no 

relationship between ImageJ® area estimation (pixels) and gonadosomatic index values 

(Figure 1.8). 

Over three field seasons and a total of 162 d in the field, I successfully scanned 

751 Humpback Chub in Grand Canyon. No fish were killed or injured during the 

procedure. On average, fish were handled < 60 s before release. 

Two batteries, one in use and one spare, were sufficient to keep the ultrasound 

machine powered in the field. However, I had to purchase two replacement batteries over 

the course of the study. I was able to scan 50-60 fish with one battery before the 

ultrasound machine lost power. During a 10-d trip, I had to recharge one battery. During 

an 18-d trip, I had to recharge each battery once. Gas powered generators were used to 

recharge batteries during trips. If generators were not available, then I would have used a 

total of three fully charged batteries for a 10-d trip and four fully charged batteries for an 

18-d trip. 

The ultrasound machine was hiked into and out of field sites for seven sampling 

trips. The custom Pelican case was too bulky for backpacking, so the machine was 

wrapped in bubble wrap and stored in a dry bag inside of a backpack. The machine was 

stored in its case and flown by helicopter into and out of field sites for three sampling 



19 

 

trips either by internal load or in a sling load. For the remaining trips by boat, the 

machine was stored in its protective case inside of a waterproof box. 

In April 2014, the ultrasound machine stopped working due to water damage to 

the motherboard. The cost of repair was US $3,000, and I used an identical machine 

loaned from Sonosite® during repairs. The water damage was caused by fish splashing 

water out of buckets they were held in before being processed. For the 2014 and 2015 

main stem Colorado River sampling trips I changed where I kept the scanner in the work 

boats. Instead of keeping the machine beside me on the main seating bench, I kept the 

machine behind me so my body would intercept water from splashing fish. The 

ultrasound machine did not need any more repairs for the duration of this project.  

 

Discussion 

 The technique I developed worked well for ultrasonically scanning Humpback 

Chub in Grand Canyon. It took < 1 min to process fish, and I was able to successfully 

scan 751 fish without causing significant delays in processing fish for other studies. No 

fish perished during or immediately after the scanning procedure. The machine 

performed well in air temperatures >40 °C and withstood exposure to sand. I was able to 

scan approximately 60 fish per battery. I prolonged battery life by scanning multiple fish 

at once instead of turning the machine off between individual fish scans.  

I purchased the refurbished unit used in this study for US$15,490, the transducer 

for $6,000, and $395 per battery. Most ultrasound units used for fisheries research are 

less expensive and range from $2,000-$9,000; however, these units are either not portable 

or not durable. Units used in hospitals can cost more than $100,000 (Novelo and Tiersch 



20 

 

2012). The 13-6 MHz linear transducer I used is comparable to most other studies in 

which transducer frequency varied from 3.5 to 15 MHz (Novelo and Tiersch 2012).  

I scanned live fish and did not physically restrain them (except for holding them), 

anesthetize them, or use water or gel as a medium. About 70% of fish ultrasound studies 

have reported using live fish, and 78% of studies either physically or chemically 

restrained fish in some way (Novelo and Tiersch 2012). Researchers submerged fish in 

order to use water as a medium in 63% of previous studies (Novelo and Tiersch 2012).  

I scanned the left lateral side of each fish below the lateral line from the 

operculum to the anal vent. Flatfishes and Pacific herring were the only reported species 

scanned laterally, and they were scanned either anterior to the dorsal fin or around the gut 

region (Novelo and Tiersch 2012). The amount of time researchers spent scanning fish 

varied from less than 30 s to less than 10 min (Novelo and Tiersch 2012). I spent less 

than 60 s scanning each fish which is comparable to other studies that have used live fish.  

I used ultrasonic images to correctly identify the sex of a large percentage of 

Common Carp (78%; N = 58). Misidentification can happen when gonads are too small 

or underdeveloped (Petochi et al. 2011) or when intersex characteristics are present in 

male and female fish (Martin-Robichaud and Rommens 2001). Accurate sex 

identification generally increases for large adult fish with mature gonads (Novelo and 

Tiersch 2012). Researchers have been able to accurately sex 95% of adult Striped Bass 

Morone saxatilis, 86% of adult Pallid Sturgeons Scaphirhynchus albus, 86% of mature 

and immature Shovelnose Sturgeon Scaphirhynchus platorynchus, and 78% of adult 

Baltic Cod Gadus morhua (Novelo and Tiersch 2012). However, for some species like 

Red Hind Epinephelus guttatus, gonads can be identified only immediately prior to 
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spawning, and for species like Neosho Madtom Noturus placidus, male gonads cannot be 

identified (Novelo and Tiersch 2012). 

Due to time constraints and low screen visibility in the field, I was not able to 

evaluate live ultrasound images for egg maturity. Furthermore, when I saved images of 

egg masses and downloaded them to a computer, the images lost much of their resolution. 

I was unable to evaluate egg maturity directly, so I developed and used the brightness 

index to gauge egg maturity. The brightness index helped me quantify different stages of 

egg development I saw in the field; however, this index needs to be used in addition to 

visual evaluation of ultrasonic images for accurate evaluation of egg maturity. The most 

common error I experienced with the brightness index was unintentionally including non-

egg tissue, especially some of the bright lining surrounding the egg mass, in the 

subsample of eggs I evaluated. The inclusion of this tissue caused the brightness index 

value to be much higher that it was without the tissue included in the subsample of eggs.  

I was not able to use ultrasound images to estimate egg mass because I only saw a 

small portion of one ovary from each fish. Future studies could test if ovary size can be 

accurately estimated by collecting multiple jpeg images or by collecting images of 

multiple cross sections along the left lateral side of fish. 

Although I was able to successfully scan endangered fish in a remote field 

environment, there were several drawbacks that might not make ultrasound applicable to 

all situations where similar measurements are needed. The initial investment for 

equipment was high because we needed a rugged machine that could withstand field 

conditions and because we needed multiple batteries and a way to charge them. For 

others, this investment will depend on specific project objectives. Because the machine 
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we used was not waterproof, we had to have the motherboard in the machine replaced 

due to water damage. Biologists and researchers who plan to use this machine should be 

prepared to protect it from any exposure to water to avoid costly repairs. 

 Ultrasonic imaging provides a powerful tool that fisheries biologists, managers, 

and researchers can use to learn more about the reproductive cycle of fishes, even in 

remote field locations. This method minimizes stress for fish, which is important when 

handling threatened or endangered species. Biologists and researchers will have to work 

with female fish of the target species to refine a brightness index to identify potentially 

ripe individuals. My method, with little alteration, could probably be used to 

ultrasonically scan cyprinid fishes above 180 mm TL. However, modifications of this 

method would likely be required when scanning smaller fish or when scanning fish 

species with different body shapes like ictalurids (Bryan et al. 2005; Guitreau et al. 

2012). 
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Figures 

 

 
 

Figure 1.1—Location of ultrasound scans conducted on fish. The left lateral side of each 

fish was ultrasonically scanned twice. The inner area of the rectangle denotes the area of 

the first scan that collected a 10-15 s video clip. The area within the ellipses indicates the 

two locations captured with a jpeg image during the second scan. 
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Figure 1.2—Screen capture of an ultrasound image showing an area (oval) immediately 

inside of the triangle created by the ovary lining at the anterior portion of the ovary. The 

area within the oval was selected and evaluated for brightness using ImageJ®. 
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Figure 1.3—Brightness values for Common Carp varied between females due to 

differences in egg maturity. The vertical black lines denote the range of values (36-47) 

that encompassed ripe females.  
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Figure 1.4—Brightness values of internal egg mass in female Humpback Chub held 

captive at the Southwestern Native Aquatic Resources and Recovery Center (SNARRC) 

and ultrasonically scanned April 2014 and 2015 varied. The vertical black lines denote 

the range of values (32-44) for ripe female Humpback Chub. 
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Figure 1.5—Relationship between area estimated in pixels with the use of ImageJ® and 

area estimated in cm2 directly from the ultrasound machine for Common Carp. This 

relationship is specific for the settings described in this study which include a scanning 

depth of 2.6 cm. 
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Figure 1.6—Relationship between area estimated with the use of ImageJ® and actual 

weight of the ovary for Common Carp. 
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Figure 1.7—Relationship between area estimated with the use of ImageJ® and actual area 

of the ovary for Common Carp. 
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Figure 1.8—Relationship between area estimated with the use of ImageJ® and the 

gonadosomatic index (GSI) value for female Common Carp. GSI values were calculated 

as a proportion of the total body mass. 𝐺𝑆𝐼 =
𝑜𝑣𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝑡𝑜𝑡𝑎𝑙 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
∗ 100 
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Use of Ultrasonic Imaging to Evaluate Egg Maturation of Humpback Chub Gila 

cypha in Grand Canyon 

 

Abstract 

Humpback Chub Gila cypha are endangered cyprinids endemic to the Colorado 

River drainage and are adapted to live in fast currents of warm, turbid water. Although 

nine known aggregations of Humpback Chub currently exist in the main-stem Colorado 

River in the Grand Canyon, little is known about their reproduction. I hypothesized that 

recruitment of juvenile Humpback Chub in Grand Canyon is limited because 

hypolimnetic water releases from Glen Canyon Dam create water temperature conditions 

that are too cold for female Humpback Chub to develop mature eggs for spawning. My 

goal was to use ultrasonic imaging, a non-lethal method, to evaluate reproductive 

condition of female Humpback Chub in Grand Canyon to determine if water temperature 

limits egg development in female Humpback Chub. I documented egg development in 

female fish from the main-stem Colorado River, Little Colorado River, Havasu Creek, 

and Shinumo Creek. Egg development in Humpback Chub varies by location and time of 

year. Potentially ripe (stage 3) female fish were found at all sample locations and dates 

except at Shinumo Creek in 2013 and 2014. Potentially ripe females were also detected in 

every main-stem aggregation except for Pumpkin Springs and in two locations outside of 

established aggregations. My findings indicate that female Humpback Chub are able to 

produce eggs throughout the main-stem Colorado River and that internal egg 

development and egg production likely do not limit Humpback Chub recruitment in 

Grand Canyon. However, female fish may never experience the environmental triggers 

they need to spawn. If these fish do spawn, their eggs may not be able to hatch and 
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develop at the cold water temperatures currently present within much of the Colorado 

River in Grand Canyon.  

 

Introduction 

 Humpback Chub are endangered fish endemic to the Colorado River Basin (U.S. 

Fish and Wildlife Service 2002). Historically, their range was thought to extend 

throughout the entire drainage; however, initial misidentification of many Gila species as 

Bonytail Chub Gila elegans and lack of fish collections may not support the hypothesis 

of a wide distribution (Miller 1946; Valdez and Clemmer 1982). Current understanding 

of historic distributions of Humpback Chub suggest they inhabited about 756 km of the 

Colorado River and its tributaries, starting at the Yampa River near its confluence with 

the Green River and extending downriver to the Grand Canyon (U.S. Fish and Wildlife 

Service 2002).  

 Currently, there are six wild, self-sustaining populations of Humpback Chub (U.S. 

Fish and Wildlife Service 2002). Five of these populations are located in the Upper 

Colorado River Basin, and the largest population is located in the Lower Colorado River 

Basin below Glen Canyon Dam in the Grand Canyon (U.S. Fish and Wildlife Service 

2002).  

Biologists have identified nine aggregations, or established sub-populations, of 

Humpback Chub in the main-stem Colorado River in Grand Canyon. Aggregations are 

defined as a group of fish that does not exchange individuals with another aggregation 

(Valdez and Ryel 1995). These aggregations have been named 30 Mile, Little Colorado 

River Inflow, Lava Chuar to Hance, Bright Angel Creek, Shinumo Creek, Stephen Aisle, 

Middle Granite Gorge, Havasu Creek, and Pumpkin Springs (Figure 2.1).  
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The largest of these aggregations is located at the confluence of the Little 

Colorado and Colorado Rivers where up to 95% of the entire population can be found 

(Valdez and Ryel 1995; Douglas and Marsh 1996). Individuals of this Little Colorado 

River Inflow aggregation are the only fish that biologists know consistently reproduce 

below Glen Canyon Dam (Coggins et al. 2006). They use the warm waters of the Little 

Colorado River to spawn and rear young (Gorman and Stone 1999). Adult fish typically 

spawn every spring from April through May in the Little Colorado River when water 

temperatures range from 16 to 22°C (Gorman and Stone 1999). 

Humpback Chub can also be found in Havasu Creek and Shinumo Creek, which 

are tributary streams to the Colorado River. Both streams feature natural barriers near 

their confluences with the main-stem Colorado River. As part of restoration efforts to 

establish a second spawning population, the National Park Service began translocating 

juvenile Humpback Chub from the Little Colorado River into these streams in 2009 

(Healy et al. 2013). Biologists found ripe male fish in Havasu Creek in May 2012 and 

both ripe male and female fish in May 2013 (Healy et al. 2013). In addition, untagged 

juvenile Humpback Chub were detected during the May 2013 sampling trip (Healy et al. 

2013). No ripe individuals or untagged juvenile fish have been caught in Shinumo Creek 

(Healy et al. 2013). Spurgeon et al. (2015) found that due to high emigration rates, 

Shinumo Creek may only provide a suitable grow-out location for juvenile Humpback 

Chub before they disperse into the main-stem Colorado River.  

Humpback Chub were listed as endangered under the Endangered Species Act in 

1973 (U.S. Fish and Wildlife Service 2002). This species faces many threats including 

parasitism, hybridization with other members of the Gila genus, pollution, predation by 
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and competition with nonnative species, loss of habitat, and alteration of stream flow 

(Valdez and Clemmer 1982; U.S. Fish and Wildlife Service 2002). 

Nineteen different parasites have been documented in Grand Canyon and its 

tributaries (Linder et al. 2012) and may also jeopardize the survival of Humpback Chub 

in this area. Three parasites—including Asian tapeworm Bothriocephalus acheilognathi, 

anchor worm Lernaea cyprinacea, and trematodes Ornithodiplostomum sp.—in particular 

affect Humpback Chub, especially resident fish in the Little Colorado River (Choudhury 

et al. 2004; Hoffnagle et al. 2006; Linder et al. 2012). Infected fish may exhibit poor 

body condition and can perish (Hoffnagle et al. 2006). The cold waters of the main-stem 

Colorado River are believed to inhibit the life cycle of these parasites and provide an 

important refuge for subadult and adult fish (Hoffnagle et al. 2006). 

Another threat to the persistence of Humpback Chub is hybridization. Humpback 

Chub are able to hybridize with Bonytail and Roundtail Chub Gila robusta (U.S. Fish and 

Wildlife Service 2002). Hybridization can result in the loss of genetic diversity and 

further stress threatened populations of fish (U.S. Fish and Wildlife Service 2002).  

Humpback Chub in Grand Canyon are less threatened by pollution than some 

populations located in the Upper Colorado River Basin; however, it is possible for 

pollutants to be washed down the Little Colorado River from Cameron, AZ (U.S. Fish 

and Wildlife Service 2002). Trucks carrying hazardous material across bridges could 

overturn and spill pollutants into the Little Colorado River approximately 65 km 

upstream of its confluence with the Colorado River (U.S. Fish and Wildlife Service 

2002).  
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The presence of non-native fishes can also threaten populations of Humpback 

Chub. A myriad of non-native fishes have been introduced to the Colorado River, with 

the potential to negatively interact with native fishes (Gloss and Coggins 2005). Brown 

Trout Salmo trutta, Rainbow Trout Oncorhynchus mykiss, Channel Catfish Ictalurus 

punctatus, and Black Bullhead Ameiurus melas are the main species that threaten 

Humpback Chub in Grand Canyon (U.S. Fish and Wildlife Service 2002). In the Little 

Colorado River, Channel Catfish, Black Bullhead and Rainbow Trout are known to 

consume Humpback Chub (Marsh and Douglas 1997). In the main-stem Colorado River, 

Brown Trout, Rainbow Trout, and Channel Catfish prey upon Humpback Chub (Valdez 

and Ryel 1997, cited by U.S. Fish and Wildlife Service 2002; Yard et al. 2011). Common 

Carp Cyprinus carpio may eat chub eggs, and Fathead Minnow Pimephales promelas, 

Plains Killifish Fundulus zebrinus, and Red Shiner Cyprinella lutrensis, are known 

larvivores that consume early life stages of Humpback Chub. Rainbow Trout may also 

compete with Humpback Chub for limited food resources and rearing habitats (Valdez 

and Ryel 1997, cited by U.S. Fish and Wildlife Service 2002; Gloss and Coggins 2005).  

 The closure of Glen Canyon Dam in 1963 drastically altered the flow, turbidity, 

and temperature of the Colorado River through Grand Canyon. Prior to its closure, 

seasonal floods and variable flows were common, especially during monsoon season 

(Topping et al. 2003). Dam operations have removed natural high flood flows and 

increased base flows. Load following, or adjusting power output based on changing 

electricity demand, for hydroelectric generation has also caused extreme daily 

fluctuations in flow (Topping et al. 2003).  
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Water released from Glen Canyon Dam is now clear and cold. Sediment is still 

washed into the main-stem Colorado River through its tributaries; however, duration of 

turbidity is greatly reduced when compared to pre-dam conditions (Topping et al. 2000). 

Clear water conditions favor sight predators like Rainbow Trout and Brown Trout (Yard 

et al. 2011). Laboratory studies show that relatively low levels of turbidity reduce 

Rainbow Trout predation on juvenile Humpback Chub (Ward et al. 2016) 

The average temperature of water released from Glen Canyon Dam is 9°C and 

fluctuations between 7°C and 12°C occur throughout the year with warmest temperatures 

typically recorded in late fall (Vernieu et al. 2005). Before the dam’s closure, water 

temperatures averaged 14°C and fluctuations from 0°C to 27°C occurred with the 

warmest temperatures recorded in summer (Vernieu et al. 2005). 

Cold water temperatures slow Humpback Chub growth, decrease larval survival 

(Clarkson and Childs 2000), and increase predation vulnerability of juvenile fish to 

rainbow trout (Ward and Morton-Starner 2015). Cold water temperatures also lengthen 

incubation period and reduce egg survival (Hamman 1982). Hamman (1982) found that 

88% of Humpback Chub eggs will die in water temperatures of 12-13°C, which are 

similar to conditions in many parts of the main-stem Colorado River. He also found that 

eggs that do survive in 12-13°C water take over 200 hours longer to begin hatching and 

that 85% of the fry that hatch from those eggs perish (Hamman 1982).  

Although spawning has been well documented in the Little Colorado River, little 

is known about reproduction of Humpback Chub in the main-stem Colorado River. After 

Glen Canyon Dam began its operations, reproduction in the main-stem has rarely been 

detected (Van Haverbeke et al. 2013). Since the dam’s closure, the only possible 
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detection of reproduction in the main-stem has been near the 30 Mile aggregation where 

extensive spring systems create warm water refugia for fish (Valdez and Masslich 1999; 

Andersen et al. 2010). However, these fish could be upstream migrants from the Little 

Colorado River (Paukert et al. 2006). Based on the findings from these studies, water 

temperatures in the main-stem Colorado River below Glen Canyon Dam may be too cold 

to support egg and larval fish survival. Kaeding and Zimmerman (1983) speculate that 

females can normally develop eggs in the cold main-stem Colorado River, but mature 

fish must migrate to the Little Colorado River in order to successfully spawn. My study 

was designed to evaluate these hypotheses. 

Fish biologists must understand reproductive development of a species in order to 

evaluate the dynamics of its populations (Bryan et al. 2007). Traditional methods used by 

biologists to determine sex and gonad maturity, like dissection, are often invasive (Blythe 

et al.1994) and impractical when working with endangered species (Bryan et al. 2007). 

The development and use of non-invasive and non-lethal methods like ultrasonic imaging 

are needed so biologists can collect reproductive information needed for management of 

endangered fishes.  

 

Goal and Objectives 

 My goal was to use newly developed ultrasonic imaging techniques (Brizendine, 

Chapter 1, this thesis) to identify egg development in Humpback Chub in the Grand 

Canyon. My objectives were to: 

1) Evaluate reproductive condition of Humpback Chub in the main-stem Colorado 

River, Little Colorado River, Shinumo Creek, and Havasu Creek. 

2) Document locations of female Humpback Chub with eggs in the Grand Canyon. 
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Methods 

Study Area 

I sampled Humpback Chub in the main-stem Colorado River below Glen Canyon 

Dam between Lee’s Ferry (river km 0.0) and Pearce Ferry (river km 452.2) (Figure 1). 

These locations include areas where aggregations have been identified and areas between 

these aggregations (Valdez and Ryel 1995). Additionally, I sampled the lower Little 

Colorado River (13.6-9.6 river km) where spawning activity has been documented 

(Gorman and Stone 1999). Finally, I sampled Havasu Creek below Beaver Falls (9.7-1.4 

river km) and the lower reach of Shinumo Creek (6.1-0.4 river km). 

Because the Grand Canyon is remote, access to field sites was difficult and 

limited. I sampled at various times of year, from April to October, to encompass probable 

spawning periods. The main-stem Colorado River was sampled July 20 - August 5 and 

September 4 - 22, 2013; July 18 - August 4 and September 4 - 24, 2014; and August 31 - 

September 18, 2015. I sampled the Little Colorado River April 20 – 24 and July 4 - 10, 

2013; and April 16 - 20, May 15 - 18, and October 21 - 26, 2014. I sampled Shinumo 

Creek June 12 - 16, 2013; and June 11 - 18, 2014. Finally, I sampled Havasu Creek May 

2 - 11, 2013; and May 5 - 14, 2014 (Table 2.1).  

I used hoop nets baited with AquaMax® 600 sport fish pellets (Land O’Lakes, 

Inc., Purina Animal Nutrition LLC, Gray Summit, Missouri) and trammel nets to capture 

Humpback Chub in the main-stem Colorado River. I used unbaited hoop nets to capture 

fish in the Little Colorado River, Havasu Creek, and Shinumo Creek. All hoop nets and 

trammel net dimensions and set times were based on the standardized methods protocol 

for Grand Canyon fisheries research (Persons et al. 2013). Total length, fork length, sex, 
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sexual characteristics (indications of color or tuberculation), and a unique Passive 

Integrated Transponder (PIT) tag number were recorded for each fish per the Persons et 

al. protocol (2013). If a fish did not have a PIT tag, one was inserted. Fish were then 

scanned with ultrasound before release following the protocol of Brizendine (Chapter 1, 

this thesis). I linked unique PIT tag numbers to ultrasonic images to distinguish 

individual fish.  

 

Analysis 

I sexed all ultrasound video clips and images of fish and classified them as non-

females or as females with eggs. The identified females were processed with ImageJ® 

following the protocol of Brizendine (Chapter 1, this thesis). 

River range (km) for main-stem Colorado River aggregations was defined by 

Valdez and Ryel (1995). For this study, I extended some aggregation ranges downstream 

by several km to increase sample sizes per aggregation (Tables 2.2, 2.3). 

I tested four different relationships. First, I tested the relationship between the 

proportion of potentially ripe (stage 3) females for different aggregations. I then 

evaluated the relationships between the proportion of potentially ripe females and month 

sampled and year sampled. Finally, I evaluated the relationship between the proportion of 

ripe females and accumulated degree days that individual female fish experienced.  

All statistical analyses were performed by using the software package R 3.2.4 (R 

Core Team 2016) and the lme4, arm, and ggplot2 packages (Bates et al. 2015; Gelman 

and Su 2015; Wickham 2015). I used generalized linear regression for all analyses. I used 



43 

 

the proportion of potentially ripe females as the dependent variable, and depending on the 

analysis, aggregation, month, year, and degree days were used as independent variables. I 

used Akaike’s Information Criterion (AIC) to compare models (Burnham and Anderson 

2002).  

For the degree days analysis, I first calculated degree days by using the averaging 

method (Herms 2004). I used the following formula: 

 𝐷𝑒𝑔𝑟𝑒𝑒 𝐷𝑎𝑦𝑠 = (
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒+𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

2
) −  𝑏𝑎𝑠𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) 

I used 14°C as the base temperature because that is the lowest temperature at which 

Humpback Chub have spawned (Kaeding et al. 1990).  

I assigned a temperature gauge to each aggregation (Table 2.4) and downloaded 

data from the Grand Canyon Monitoring and Research Center’s GCDAMP website 

(http://www.gcmrc.gov/discharge_qw_sediment/stations/GCDAMP). I used Microsoft 

Excel® to condense 15 min interval temperatures into daily maximum and minimum 

values. I calculated degree days for each calendar day. I added degree days accumulated 

from January 1 to the day prior to the beginning of a sampling trip. That value was 

associated with each main-stem aggregation from an individual sampling trip. I 

calculated degree days for each aggregation for every main-stem Colorado River 

sampling trip (Table 2.4). 

 

Results 

I identified four stages of egg development (Figure 2.2). Stage 0 fish had no eggs 

present and were classified as non-females. Stage 1 fish had a bright white ovarian lining 

in addition to a low density of eggs. Stage 2 fish had the ovarian lining and a higher 

http://www.gcmrc.gov/discharge_qw_sediment/stations/GCDAMP
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density of small eggs present. Stage 3 fish had the ovarian lining present and a large mass 

of bigger eggs. Each stage of egg development had a specific range of brightness values 

associated with it, as measured with ImageJ®. Stage 1 fish brightness ranged from 0-31, 

stage 2 fish ranged from 45-100, and stage 3 ranged from 32-44. The stage 3 fish were 

considered potentially ripe females based on laboratory evaluations (Brizendine, Chapter 

1, this thesis). 

The highest proportion of potentially ripe (stage 3) female Humpback Chub in the 

main-stem Colorado River was caught during the July/August 2013 sampling trip (Table 

2.3). Potentially ripe females were also found outside of established aggregations near the 

confluence of the main-stem Colorado River and Deer Creek and near the confluence of 

the Colorado River and Kanab Creek. No potentially ripe fish were caught at the 

Pumpkin Springs aggregation.  

The highest proportion of potentially ripe females was caught in the Bright Angel 

Creek aggregation (Table 2.5). All aggregations, except for Pumpkin Springs, had 

proportions of potentially ripe female fish that were significantly different than zero 

(Table 2.6). My model predicted that 50-60% of fish caught and ultrasonically scanned 

from each aggregation, except for Pumpkin Springs, should be potentially ripe female 

Humpback Chub (Figure 2.3). 

A significantly higher proportion of potentially ripe females were caught during 

July/August than in September in the main-stem Colorado River (Tables 2.6, 2.7). The 

proportion of potentially ripe female Humpback Chub detected at the 30 Mile, Havasu 

Creek, LCR + Lava Chuar, and Stephen Isle aggregations was significantly different 

between July/August and September (Table 2.6). This model also predicted that roughly 
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50-60% of the total catch from these aggregations should be potentially ripe female fish 

(Figure 2.4). 

The highest proportion of potentially ripe females was caught in 2015 (Table 2.8). 

The year sampled significantly affected the proportion of potentially ripe females 

detected in every aggregation except for Pumpkin Springs (Table 2.6). My model 

predicted that the highest proportions of potentially ripe females for each aggregation 

occurred in 2013 (Figure 2.5). 

Fish located in the Pumpkin Springs aggregation experienced the most accumulated 

degree days (Table 2.4). The greatest number of accumulated degree days for each 

aggregation occurred during the September 2014 sampling trip (Table 2.4). I found an 

inverse relationship between degree days and proportion of ripe females (Tables 2.6, 2.8). 

My model predicted that the highest proportions of potentially ripe females were found in 

aggregations with the lowest number of degree days (Figure 2.6). 

The highest proportion of stage 2 female Humpback Chub in the main-stem Colorado 

River was caught during the September 2015 sampling trip (Table 2.2). These moderately 

developed females were also found outside of established aggregations near the 

confluence of the main-stem Colorado River and Kanab Creek and in the main-stem 

Colorado River near Parashant. 

Both stage 2 and stage 3 female Humpback Chub were found in all samples I 

collected from the Little Colorado River (Table 2.1). The highest proportion of stage 2 

females was found in the Little Colorado River during the October 2014 sampling trip. 

Additionally, 15% of the fish scanned during this trip were stage 3 or potentially ripe 
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females. The highest proportion of potentially ripe females was found during the April 

2014 sampling trip.  

Both stage 2 and potentially ripe (stage 3) female Humpback Chub were found in the 

May 2013 and May 2014 samples from Havasu Creek (Table 2.1). No potentially ripe 

females were detected in Shinumo Creek during the June 2013 and June 2014 sampling 

trips, and no stage 2 females were detected during the June 2013 sampling trip (Table 

2.1). However, six stage 2 females were found in the June 2014 sample. Both stage 2 and 

stage 3 or potentially ripe females were detected in the June 2013 and June 2014 main-

stem samples near the confluence of the Colorado River and Shinumo Creek.  

 

Discussion 

Egg development in Humpback Chub varies by location and time of year. I found 

female fish with eggs at all sample locations during all sample dates. Moderately 

developed females (stage 2) were found at all sample locations and dates except in 

Shinumo Creek in 2014. Stage 2 females were also detected at all main-stem 

aggregations, and in two locations outside of these aggregations (Table 2.2). Potentially 

ripe (stage 3) female fish were found at all sample locations and dates except at Shinumo 

Creek in June 2013 and June 2014. Potentially ripe females were also detected in every 

main-stem aggregation except for Pumpkin Springs and in two locations outside of 

established aggregations (Table 2.3). It is likely that females from the Pumpkin Springs 

aggregation can ripen eggs due to warm water temperatures in that area. However, I 

scanned few adults from that aggregation because Humpback Chub over 180 mm TL are 

rarely caught in that area of the main-stem Colorado River. 
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 An inverse relationship between accumulated degree days and the proportion of 

potentially ripe females is counterintuitive. For broodstock fish in aquaculture, a 

minimum number of degree days is needed for fish to mature gametes. For example, 

female Common Carp Cyprinus carpio need a minimum of 1,200 degree days before they 

can produce mature eggs (Bromage and Roberts 1995). The temperature data I used 

reflects only cold main-stem Colorado River water temperatures and does not include any 

warm springs or other warm-water inputs that may occur within the river channel. The 

most known warm springs were located in upstream locations near the 30 Mile 

aggregation where main-stem water temperatures are lowest. This problem combined 

with low sample sizes from some aggregations, especially Pumpkin Springs, likely 

explains this counterintuitive relationship.  

During the Havasu 2013 and 2014 and Shinumo 2014 sampling trips, fish were 

scanned at depths other than the standard 2.6 cm (Table 2.1). During these trips, the 

ultrasound machine was hiked into and out of Grand Canyon and hiked around to hoop 

net sites. While the machine was being transported, the power button and scanning depth 

buttons were pressed. I did not double check the depth before I started scanning again. 

Even though I was scanning at different depths (2.2 cm and 3.1 cm), I did not realize my 

error until I downloaded the videos and images. Because National Park Service biologists 

stock subadult Humpback Chub in these tributaries, average fish size was smaller than 

other sample locations. In these smaller fish, it was difficult to discern egg development 

with a scan depth of 2.6 cm. The scan depth of 2.2 cm showed eggs more clearly. 

Therefore, I recommend not ultrasonically scanning Humpback Chub under 200 mm TL 

if biologists plan to use the method described by Brizendine (chapter 1, this thesis). If 
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biologists plan use this method to scan smaller fish, they should use a scan depth of 2.2 

cm. 

 

Management implications 

 My findings indicate that female Humpback Chub are able to produce eggs 

throughout the main-stem Colorado River and that internal egg development and egg 

production likely does not limit recruitment. However, I do not know if female fish ever 

experience the environmental triggers they need to spawn, or if their eggs are viable if 

they do spawn. Reproductive condition of fish can depend on multiple variables, 

including temperature, photoperiod, and stream flow (Helfman et al. 2009), and 

downstream effects of dams are not limited to modified thermal conditions. Unnatural 

flows can disrupt spawning, especially in fishes that respond to seasonal flow peaks 

(Helfman 2007). In the Little Colorado River, Humpback Chub spawn in April after late 

winter floods when water levels return to base flow and water temperature increases to 

15°C (Gorman and Stone 1999). If females can successfully spawn in the main-stem 

Colorado River, their eggs and larval offspring will likely experience high mortality at 

current cold river temperatures which may lead to poor recruitment (Hamman 1982; 

Robinson and Childs 2001). 

My findings of potentially ripe female fish in the main-stem Colorado River in 

June and July are similar to findings from previous studies. Suttkuss and Clemmer (1977) 

concluded that Humpback Chub in the main-stem Colorado River in Grand Canyon 

spawn during this time, and Hamman (1982) spawned fish captured from the main-stem 

in June in captivity when water temperatures were 21-22°C. I also found most of the 
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potentially ripe (stage 3) female Humpback Chub near areas with known warm springs or 

warm-water inputs from creeks. Valdez and Ryel (1995) noted that Humpback Chub 

gathered in areas with warm water refugia after Glen Canyon Dam was built. These small 

areas surrounding warm springs and other warm water inputs may play an important role 

in humpback chub reproduction and warrant further investigation. Biologists can now use 

advanced technologies to rapidly collect thermal images and identify small areas of warm 

water (Bonar and Petre 2015) which may help identify previously unknown areas that are 

important for female Humpback Chub egg maturation. 

Some of the warmest water years on record since the construction of Glen Canyon 

Dam have occurred since 2003 (Figures 2.7 and 2.8) due to the combination of regional 

climate warming trends, drought conditions, and increasing water demands (Smerdon et 

al. 2007). These conditions may explain why I detected potentially ripe female 

Humpback Chub. In addition, recent samples of otolith microchemistry of fish indicate 

that juveniles are living in the main-stem Colorado River (Limburg et al. 2013). If this 

warming water trend continues and if female fish are able to spawn viable eggs, large 

numbers of Humpback Chub may begin reproducing and recruiting in the main-stem 

Colorado River. 

 Ultrasound is a valuable tool that can be used to monitor Humpback Chub 

reproductive status in Grand Canyon. In the main-stem Colorado River, additional 

samples from areas outside of established aggregations and from areas not adjacent to 

warm water inputs would further define where females are potentially ripe and spawning. 

Additionally, samples collected during years with cold water temperatures would inform 

biologists if female fish can develop eggs under varying river conditions or if egg 
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development in main-stem resident females is occurring because of drought conditions 

which lead to warmer water releases from Lake Powell. Furthermore, the detection of 

potentially ripe females in the Little Colorado River during the October 2014 sampling 

trips may indicate that some Humpback Chub spawn in the fall. More samples from the 

Little Colorado River over time could allow biologists to evaluate possible fall spawning 

and to give insight into the prevalence of skip spawning (Yackulic et al. 2014; Pearson et 

al. 2015). 

 My findings inform managers where and how many potentially ripe females 

occurred in the main-stem Colorado River. Managers and biologists may be able to target 

one area or aggregation in order to develop a second spawning population of Humpback 

Chub, which is needed for the recovery of this species (U.S. Fish and Wildlife Service 

2002). 

 

Future Research 

Future research is needed to confirm and further explore the findings in this study. 

Conditions in the main-stem Colorado River below Glen Canyon Dam may cause female 

Humpback Chub to experience some form of reproductive dysfunction. Captive fish can 

display three types of reproductive dysfunction because their environment often lacks 

natural spawning cues (Zohar and Mylonas 2001). These types of reproductive 

dysfunction include failed vitellogenesis, failed final oocyte maturation, and failed 

spawning or egg release (Zohar and Mylonas 2001). The use of a spawning hormone like 

Ovaprim®, a synthetic hormone that has low mortality rates when used in cyprinid fishes 

and that does not cause a female fish to abort immature eggs (Hill et al. 2009), in order to 
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obtain eggs from wild female fish would allow researchers to confirm if eggs within the 

32-44 brightness range were viable. Researchers could also use other more invasive 

methods to obtain eggs like a rigid catheter (Rottmann et al. 1991) or endoscopy (Bryan 

et al. 2007). Eggs could then be evaluated for viability by attempting to fertilize them or 

by histological analysis (Petochi et al. 2011). In addition, researchers could take blood 

samples to test the concentration of proteins like plasma vitellogenin and hormones like 

estradiol to determine egg maturity (Bangs and Nagler 2014). Finally, researchers could 

also monitor captive female Humpback Chub monthly with ultrasound over the course of 

1-2 years to track changes in egg development.  
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Tables 

Table 2.1—Sampling dates, locations, and numbers of captured Humpback Chub with 

eggs detected using ultrasound. Female Humpback Chub with eggs were found in all 

sampling locations. Stage 2 females had moderate egg development, and stage 3 females 

were considered potentially ripe. Shinumo Creek (main-stem) refers to fish caught in the 

main-stem Colorado River above its confluence with Shinumo Creek. The percent of 

stage 2 and stage 3 females that were identified out of the total fish scanned is in 

parentheses. 

Site 

Sample Dates Total 

Fish 

Scanned 

Total 

Identified 

Females 

Total 

Stage 2 

Females 

Total 

Stage 3 

Females 
Month/Days Year 

Colorado River  
July 20–

August 5 
2013 67 46 7(10%) 29(43%) 

Colorado River  
July 18–

August 4 
2014 95 48 15(16%) 15(16%) 

Colorado River  
September 4-

22 
2013 73 42 10(14%) 13(18%) 

Colorado River  
September 4-

24 
2014 149 96 51(34%) 24(16%) 

Colorado River  
August 31-

September 18 
2015 93 63 35(38%) 12(13%) 

Little Colorado 

River 
April 20-24 2013 48 37 16(33%) 14(29%) 

Little Colorado 

River 
April 16-20 2014 39 23 13(33%) 18(46%) 

Little Colorado 

River 
May 15-18 2014 44 28 8(18%) 7(16%) 

Little Colorado 

River 
July 4-10 2013 57 37 7(12%) 2(4%) 

Little Colorado 

River 
October 21-26 2014 79 51 34(43%) 12(15%) 

Havasu Creek1 May 2-11 2013 32 30 6(19%) 10(31%) 

Havasu Creek2 May 5-14 2014 72 52 11(15%) 24(33%) 
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Shinumo Creek June 12-16 2013 11 4 0(0%) 0(0%) 

Shinumo Creek 

(main-stem) 
June 12-16 2013 17 7 5(29%) 1(6%) 

Shinumo Creek3 June 11-18 2014 32 12 6(19%) 0(0%) 

Shinumo Creek3 

(main-stem) 
June 11-18 2014 13 10 8(62%) 1(8%) 

1Fish were ultrasonically scanned at different depths, including 2.6 cm, 1.9 cm, and 3.1 cm.  
2Fish were ultrasonically scanned at different depths including 2.6 cm and 3.1 cm. 
3Fish were ultrasonically scanned at different depths, including 2.6 cm and 2.2 cm. 
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Table 2.2—Stage 2 female Humpback Chub were identified using ultrasound and were found in established aggregations and 

outside of those aggregations in the main-stem Colorado River. Stage 2 female fish had moderate egg development. Dashes 

indicate the location was not sampled during that date. LCR is an abbreviation for Little Colorado River. Total S2F is the total 

number of stage 2 females detected at an aggregation during a sampling period. Total FS is the total number of fish scanned at 

an aggregation during a sampling period.  

Location 

River 

Range 

(km) 

July/August 

2013 

July/August 

2014 

September 

2013 

September 

2014 

September 

2015 Total 

S2F Total 

S2F 

Total 

FS 

Total 

S2F 

Total 

FS 

Total 

S2F 

Total 

FS 

Total 

S2F 

Total 

FS 

Total 

S2F 

Total 

FS 

30 Mile 48-55 2 17 6 44 0 4 11 46 4 15 23 

LCR + Lava Chuar 92-123 2 9 4 24 1 20 28 73 26 51 61 

Bright Angel Creek 135-148 0 10 0 0 0 4 0 4 1 2 1 

Shinumo Creek 174-175 0 2 0 3 0 9 1 2 0 1 1 

Stephen Isle 185-193 0 0 0 11 0 2 3 4 2 6 5 

Middle Granite 

Gorge 
203-208 0 0 0 4 5 20 4 9 0 9 9 

Havasu Creek 251-267 2 10 3 6 3 8 3 10 2 7 13 

Pumpkin Springs 342-343 0 0 0 0 1 6 1 1 0 3 2 

Deer Creek 218-220 0 11 - - - - - - - - 0 

Kanab Creek 227-232 1 8 - - - - - - - - 1 

Parashant 317-320 0 0 2 3 - - 0 0 0 1 2 

Total  7 67 15 95 10 73 51 149 35 93 118 
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Table 2.3—Stage 3 or potentially ripe female Humpback Chub were identified using ultrasound and found in several 

aggregations in the main-stem Colorado River. Dashes indicate the location was not sampled during that date. LCR is an 

abbreviation for Little Colorado River. Total S3F is the total number of stage 3 females detected at an aggregation during a 

sampling period. Total FS is the total number of fish scanned at an aggregation during a sampling period.  

Location 

River 

Range 

(km) 

July/August 

2013 

July/August 

2014 

September 

2013 

September 

2014 

September 

2015 Total 

S3F Total 

S3F 

Total 

FS 

Total 

S3F 

Total 

FS 

Total 

S3F 

Total 

FS 

Total 

S3F 

Total 

FS 

Total 

S3F 

Total 

FS 

30 Mile 48-55 8 17 10 44 0 4 8 46 2 15 28 

LCR + Lava Chuar 92-123 2 9 2 24 0 20 12 73 7 51 23 

Bright Angel Creek 135-148 5 10 0 0 0 4 1 4 0 2 6 

Shinumo Creek 174-175 0 2 0 3 3 9 0 2 0 1 3 

Stephen Isle 185-193 0 0 2 11 0 2 0 4 1 6 3 

Middle Granite 

Gorge 
203-208 0 0 1 4 8 20 2 9 1 9 12 

Havasu Creek 251-267 5 10 0 6 2 8 1 10 1 7 9 

Pumpkin Springs 342-343 0 0 0 0 0 6 0 1 0 3 0 

Deer Creek 218-220 4 11 - - - - - - - - 4 

Kanab Creek 227-232 6 8 - - - - - - - - 6 

Total  30 67 15 95 13 73 24 149 12 93 94 
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Table 2.4—A temperature gauge was assigned to each aggregation in order to calculate degree days. Degree days were 

calculated by adding values from January 1 to the day prior to the beginning of each sampling trip. LCR is an abbreviation for 

Little Colorado River. Female Common Carp Cyprinus carpio need a minimum of 1,200 degree days before they can produce 

mature eggs (Bromage and Roberts 1995). 

Location 

 
 

Temperature 

Gauge 

Degree Days 

River 

Range 

(km) 

July/August 

2013 

July/August 

2014 

September 

2013 

September 

2014 

September 

2015 

30 Mile 48-55 09383050 0 0 0 2 0 

LCR + Lava Chuar 92-123 09383100 0 4 0 31 5 

Bright Angel Creek 135-148 09402500 0 38 2 111 39 

Shinumo Creek 174-175 09403270 4 100 23 217 78 

Stephen Isle 185-193 09403270 4 100 23 217 78 

Middle Granite 

Gorge 
203-208 09403270 4 100 23 217 78 

Havasu Creek 251-267 09404120 47 161 101 312 150 

Pumpkin Springs 342-343 09404220 219 349 353 586 363 
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Table 2.5—Stage 3 or potentially ripe females were found in all aggregations except 

Pumpkin Springs. The totals in this table include all fish caught during this study. LCR 

refers to the Little Colorado River aggregation. The data here were used to conduct the 

site-only effect generalized linear model analysis.  

Location 

Total 

Stage 2 

Females 

Total Non-

Stage 2 Fish 

Scanned 

Total 

Stage 3 

Females 

Total Non-

Stage 3 Fish 

Scanned 

Total 

Fish 

Scanned 

30 Mile 23 103 28 98 126 

Bright Angel Creek 1 19 6 14 20 

Havasu Creek 13 28 9 32 41 

LCR + Lava Chuar 61 116 23 154 177 

Middle Granite 

Gorge 
9 33 12 30 42 

Pumpkin Springs 2 8 0 10 10 

Shinumo Creek 1 16 3 14 17 

Stephen Isle 5 18 3 20 23 

Total 115 84 372 341 456 
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Table 2.6—Results of generalized linear models used to analyze factors related to the proportion of potentially ripe female 

Humpback Chub in main-stem Colorado River aggregations in Grand Canyon. Significance codes for p-values are as follows:  

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. LCR refers to the Little Colorado River aggregation.  

 

Model R code Coefficients Estimate 
Standard 

Error 

Z-

value 
P-value AIC 

Site 

CRaggmodel1 <- 

glm(cbind(ripefemale, 

nonripefemale)~-1+site, 

family="binomial", 

data=CRagg5) 

30 Mile -1.2528  0.2143 -5.846 5.03e-09 *** 42.53 

Bright Angel Creek -0.8473 0.4880  -1.736 0.082485 . 

Havasu Creek -1.2685 0.3773 -3.362 0.000774 *** 

LCR + Lava Chuar -1.9015 0.2235 -8.506 < 2e-16 *** 

Middle Granite 

Gorge 

-0.9163  0.3416 -2.683 0.007305 **  

Pumpkin Springs -25.1184 54605.924

5 

0.000 0.999633 

Shinumo Creek -1.5404 0.6362 -2.421 0.015466 * 

Stephen Isle -1.8971 0.6191 -3.064 0.002183 **  

Site + 

Month 

CRaggmodel2 <- 

glm(cbind(ripefemale, 

nonripefemale)~-

1+site+month, 

family="binomial", 

data=CRagg6) 

30 Mile -0.9984 0.2462 -4.055 5.01e-05 *** 65.83 

Bright Angel Creek -0.5960 0.5060 -1.178 0.23887 

Havasu Creek -0.9635 0.4063 -2.371 0.01773 * 

LCR + Lava Chuar -1.4860 0.3017 -4.926 8.38e-07 *** 

Middle Granite 

Gorge 

-0.4406  0.4176 -1.055 0.29135 

Pumpkin Springs -19.5875 4482.3273 -0.004 0.99651 

Shinumo Creek -1.1848 0.6616 -1.791 0.07331 

Stephen Isle -1.6461 0.6320  -2.605 0.00919 ** 

September -0.5309  0.2689 -1.974 0.04836 * 

Site + 

Year 

CRaggmodel3 <- 

glm(cbind(ripefemale, 

nonripefemale)~-

1+site+year, 

30 Mile -0.6989 0.3112 -2.246 0.0247 * 80.78 

Bright Angel Creek -0.6554 0.4973 -1.318 0.1875 

Havasu Creek -0.9048 0.4032 -2.244 0.0248 * 

LCR + Lava Chuar -1.3300  0.3106  -4.281 1.86e-05 *** 
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family="binomial", 

data=CRagg7) 

Middle Granite 

Gorge 

-0.5637 0.3690 -1.528 0.1265 

Pumpkin Springs -19.8382 4402.3196 -0.005 0.9964 

Shinumo Creek -1.3316 0.6446 -2.066 0.0388 * 

Stephen Isle -1.2670 0.6679 -1.897 

  

0.0578 . 

2014 -0.6643 0.2980 -2.229 0.0258 * 

2015 -0.8216 0.3898 -2.108 0.0351 *   

Site + 

Degree 

Days 

CRddmodel1 <- 

glm(cbind(ripefemale, 

nonripefemale)~-

1+site+DD, 

family="binomial", 

data=CRagg4) 

30 Mile -

1.248e+0

0 

2.143e-01 -5.822 5.81e-09 *** 107.7 

Bright Angel Creek -6.815e-

01 

4.965e-01 -1.373 0.1698 

Havasu Creek -2.968e-

01 

5.538e-01 -0.536 0.5919  

LCR + Lava Chuar -

1.801e+0

0 

2.281e-01 -7.898 2.84e-15 *** 

Middle Granite 

Gorge 

-3.911e-0

1 

4.091e-01 -0.956 0.3391 

Pumpkin Springs -1.648e+

01 

2.649e+03 -0.006 0.9950 

Shinumo Creek -1.180e+

00 

6.575e-01 -1.794 0.0728 . 

Stephen Isle -1.190e+

00 

6.937e-01 -1.716 0.0862 . 

Degree Days -7.014e-0

3 

3.235e-03 -2.168 0.0301 *  
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Table 2.7—Stage 3 or potentially ripe females were found in all aggregations except 

Pumpkin Springs. The totals in this table include all fish caught in an aggregation during 

a specified month. July/Aug refers to fish caught during the July and August sampling 

trips in the main-stem Colorado River, and Sep refers to fish caught during the September 

sampling trips. LCR refers to the Little Colorado River aggregation. The data here were 

used to conduct the generalized linear model analysis with site and month effects. 

Location Month 

Total 

Stage 2 

Females 

Total 

Non-

Stage 2 

Fish 

Scanned 

Total 

Stage 3 

Females 

Total 

Non-

Stage 3 

Fish 

Scanned 

Total 

Fish 

Scanned 

30 Mile July/Aug 8 53 18 43 61 

Bright Angel Creek July/Aug 0 10 5 5 10 

Havasu Creek July/Aug 5 11 5 11 16 

LCR + Lava Chuar July/Aug 6 27 4 29 33 

Middle Granite 

Gorge 
July/Aug 0 4 1 3 4 

Pumpkin Springs July/Aug 0 0 0 0 0 

Shinumo Creek July/Aug 0 5 0 5 5 

Stephen Isle July/Aug 0 11 2 9 11 

30 Mile Sep 15 50 10 55 65 

Bright Angel Creek Sep 1 9 1 9 10 

Havasu Creek Sep 8 17 4 21 25 

LCR + Lava Chuar Sep 55 89 19 125 144 

Middle Granite 

Gorge 
Sep 9 29 11 27 38 

Pumpkin Springs Sep 2 8 0 10 10 

Shinumo Creek Sep 1 11 3 9 12 

Stephen Isle Sep 5 7 1 11 12 

Total NA 115 84 372 341 456 
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Table 2.8—Stage 3 or potentially ripe females were found in all aggregations except 

Pumpkin Springs. The totals in this table include all fish caught in an aggregation during 

a specified year. LCR refers to the Little Colorado River aggregation. The data here were 

used to conduct the generalized linear model analysis with site and year effects. 

Location Year 

Total 

Stage 2 

Females 

Total 

Non-

Stage 2 

Fish 

Scanned 

Total 

Stage 3 

Females 

Total 

Non-

Stage 3 

Fish 

Scanned 

Total 

Fish 

Scanned 

30 Mile 2013 2 19 8 13 21 

Bright Angel Creek 2013 0 14 5 9 14 

Havasu Creek 2013 5 13 7 11 18 

LCR + Lava Chuar 2013 3 26 2 27 29 

Middle Granite 

Gorge 2013 5 15 8 12 20 

Pumpkin Springs 2013 1 5 0 6 6 

Shinumo Creek 2013 0 11 3 8 11 

Stephen Isle 2013 0 2 0 2 2 

30 Mile 2014 17 73 18 72 90 

Bright Angel Creek 2014 0 4 1 3 4 

Havasu Creek 2014 6 10 1 15 16 

LCR + Lava Chuar 2014 32 65 14 83 97 

Middle Granite 

Gorge 2014 4 9 3 10 13 

Pumpkin Springs 2014 1 0 0 1 1 

Shinumo Creek 2014 1 4 0 5 5 

Stephen Isle 2014 3 12 2 13 15 

30 Mile 2015 4 11 2 13 15 

Bright Angel Creek 2015 1 1 0 2 2 

Havasu Creek 2015 2 5 1 6 7 

LCR + Lava Chuar 2015 26 25 7 44 51 

Middle Granite 

Gorge 2015 0 9 1 8 9 

Pumpkin Springs 2015 0 3 0 3 3 

Shinumo Creek 2015 0 1 0 1 1 

Stephen Isle 2015 2 4 1 5 6 

Total NA 115 84 372 341 456 
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Figures 

 

 

Figure 2.1—Map of areas sampled within the Grand Canyon, including the main-stem 

Colorado River, Little Colorado River, Shinumo Creek, and Havasu Creek. Map courtesy 

of Thomas Gushue, U.S. Geological Survey, Grand Canyon Monitoring and Research 

Center.  
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Figure 2.2—This illustration shows the four different stages of egg development in 

Humpback Chub identified in this study with ultrasound. The ellipses denote eggs. Stage 

0 fish had no eggs and were considered non-females. Stage 1 fish had a bright white 

lining, which was likely outer ovarian lining, in addition to a low density of eggs. Stage 2 

fish had the lining tissue and a higher density of small eggs present. Stage 3 fish had the 

lining present and a large mass of bigger eggs. 
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Figure 2.3—The proportion of potentially ripe female Humpback Chub was significantly 

different from zero for all main-stem Colorado River aggregations except for Pumpkin 

Springs. 30mi refers to the 30 Mile aggregation, BA to Bright Angel aggregation, Hav to 

Havasu Creek aggregation, LCR to Little Colorado River Inflow aggregation, MGG to 

Middle Granite Gorge aggregation, PS to Pumpkin Springs aggregation, Shin to Shinumo 

Creek aggregation, and SI to Stephen’s Isle aggregation.   
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Figure 2.4—The proportion of potentially ripe female fish significantly varied between 

months sampled for each Humpback Chub aggregation in the main-stem Colorado River. 

30mi refers to the 30 Mile aggregation, BA to Bright Angel aggregation, Hav to Havasu 

Creek aggregation, LCR to Little Colorado River Inflow aggregation, MGG to Middle 

Granite Gorge aggregation, PS to Pumpkin Springs aggregation, Shin to Shinumo Creek 

aggregation, and SI to Stephen’s Isle aggregation.  
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Figure 2.5—The proportion of potentially ripe female Humpback Chub varied between 

sampling years. The most potentially ripe female fish were captured in 2013 in each 

main-stem Colorado River aggregation except for Pumpkin Springs. 30mi refers to the 30 

Mile aggregation, BA to Bright Angel aggregation, Hav to Havasu Creek aggregation, 

LCR to Little Colorado River Inflow aggregation, MGG to Middle Granite Gorge 

aggregation, PS to Pumpkin Springs aggregation, Shin to Shinumo Creek aggregation, 

and SI to Stephen’s Isle aggregation.  
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Figure 2.6—The main-stem Colorado River aggregations with the highest proportion of 

potentially ripe female Humpback Chub often experienced the least accumulated degree 

days. This inverse relationship is counterintuitive and is likely explained by a lack of 

potentially ripe female fish detected at Pumpkin Springs and by temperature data that 

does not reflect warm water inputs to the main-stem. 30mi refers to the 30 Mile 

aggregation, BA to Bright Angel aggregation, Hav to Havasu Creek aggregation, LCR to 

Little Colorado River Inflow aggregation, MGG to Middle Granite Gorge aggregation, 

PS to Pumpkin Springs aggregation, Shin to Shinumo Creek aggregation, and SI to 

Stephen’s Isle aggregation.  
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Figure 2.7—Average annual water temperature (°C) has increased over time since 1990 

above the confluence of the main-stem Colorado River and the Little Colorado River. 

(Data source: U.S. Geological Survey, Grand Canyon Monitoring and Research Center, 

Grand Canyon Stations, Gauge 09383100: 

http://www.gcmrc.gov/discharge_qw_sediment/stations/GCDAMP). Average daily water 

temperatures were calculated for every day of the year and then averaged to calculate 

average annual water temperature.  
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Figure 2.8—Maximum annual water temperature (°C) has increased over time since 1990 

above the confluence of the main-stem Colorado River and the Little Colorado River. 

(Data source: U.S. Geological Survey, Grand Canyon Monitoring and Research Center, 

Grand Canyon Stations, Gauge 09383100: 

http://www.gcmrc.gov/discharge_qw_sediment/stations/GCDAMP). Average daily 

temperatures were calculated and then the highest average daily temperature was selected 

as the maximum annual water temperature. 
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