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SUMMARY
Sequential experimental design methods use previous data and results to guide the choice and design of
future experiments. This paper describes the application of a sequential design technique to produce
optimal resistivity imaging surveys for time-lapse geoelectrical monitoring experiments. These survey
designs are time-dependent, and are optimised to focus a greater degree of the image resolution on the
regions of the subsurface that are actively changing than static optimised surveys that do not change over
time. The sequential design method is applied to a synthetic 2.5D monitoring experiment comprising a
well-defined cylindrical target moving along a trajectory that changes its depth and lateral position. The
data are simulated to be as realistic as possible, incorporating survey design constraints for a real
resistivity monitoring system and realistic levels and distributions of random noise, in order to match a
forthcoming experimental test of the method. The results of the simulations indicate that sequentially
designed optimal surveys yield an increase in image quality over and above that produced by using a static
(time-independent) optimised survey.
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Optimal design algorithms for geoelectrical resistivity imaging surveys have been developed that 
produce greater image resolution than standard surveys (e.g. dipole-dipole) for the same measurement 
time and cost. Such surveys have been applied to image geological structures e.g. a landslide 
(Wilkinson et al. 2012a). However, there is considerable interest in using resistivity imaging in a 
monitoring context as well as for one-off surveys. This raises the possibility that information from 
previous images could be used to guide the design of future surveys, a process known as sequential 
experimental design (Guest and Curtis, 2009). Although the optimal design of geoelectrical surveys 
depends only very weakly on the resistivity structure of the subsurface (Wilkinson et al. 2012b), it 
would still be possible to focus the resolution of future surveys on regions of the subsurface that have 
been identified in previous images as being of interest (i.e. regions where significant changes are 
taking place). In this paper, we describe a proof-of-principle demonstration of a sequential optimised 
survey design scheme for geoelectrical monitoring. The study uses synthetic data, contaminated by 
realistic levels of random noise, to simulate a laboratory demonstration of this monitoring concept. 

Method & Results 

A linearised estimate of the model resolution matrix for the inverse resistivity problem is given by 
R ≈ (GTG+C)-1GTG, where G is the Jacobian matrix comprising the logarithmic sensitivities of the 
measurements to changes in the model cell resistivities and C is the constraint matrix. The principal 
diagonal of R gives an estimate of R, the model resolution of the cells, where R = 0 is unresolved and 
R = 1 is perfectly resolved. All the permitted unique four-electrode measurements, subject to upper 
limits on geometric factor and chosen to avoid unstable configurations (Wilkinson et al 2012a), form 
the comprehensive measurement set. The model resolution for this set over a homogeneous 
subsurface is shown in Fig. 1(a), calculated for a linear array of 28 electrodes spaced at 0.05m 
intervals. We assess the quality of a given survey design by its relative model resolution 
Rr = Rsurvey / Rcompr. To generate a survey, the CR-method uses a locally-optimal iterative design 
scheme (Wilkinson et al 2012a). It maximises a weighted average of the relative resolution across the 
image of m cells, S = ΣwRr /m, by direct calculation of the changes in Rr when given measurements are 
added to the survey. In contrast to our previous 
studies, here we allow each cell to have a 
different weight w in the sum, to enable the 
resolution of the image to be focussed on regions 
of interest. Figures 1(b) and 1(c) show the relative 
model resolution distributions for a dipole-dipole 
survey with a = 1-4 and n = 1-10 and an 
optimised survey, designed with uniform 
weighting across the model space. Both surveys 
would require the same number of multi-channel 
commands (82), and hence the same duration and 
power, to execute on a ten-channel BGS ALERT 
system (Wilkinson et al. 2012a). These surveys 
were applied to monitor the position of a 
simulated moving target shown in Fig. 1(d). The 
target is a non-conducting infinite cylinder, 
arranged with its long axis perpendicular to the 
imaging plane. The cylinder has a diameter of 
0.15m, and starts with its centre at (0.075,-0.135), 
shown by the dotted circle, and finishes at 
(1.275,-0.257), showed by the filled circle, 
moving at a uniform rate along the dashed line 
over 20 time steps. The data were modelled using 
Res2DMod with a fine model grid (0.0125m 
horizontal and vertical spacing) and inverted on a 
coarser grid with Res2DInv using an L2 model 
constraint and an L1 data constraint (Loke et al. 

 
Figure 1(a) Comprehensive model resolution R.
(b) & (c) Relative model resolution Rr for the
dipole-dipole and optimised surveys. (d)
Geometry and track of target. 
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2003). The simulated data were contaminated with Gaussian random noise 
with a geometric factor (K) dependent standard deviation of (0.584 + 
0.0076 K) % (Freidel, 2003), which was chosen to match the typical noise 
levels observed in our laboratory imaging setup.  

The purpose of this study is to compare the results of sequentially designed 
surveys with the standard dipole-dipole survey and the static optimised 
survey. It is important to distinguish between iterative optimal design 
techniques for non-linear problems, which are often described as “sequential” 
(Guest and Curtis, 2009), and sequential experimental design methods which 
depend explicitly on previous data. In these methods, it is assumed that there 
is a set of available experiments that may be conducted. After each stage of 
observation, a decision is made as to which (if any) experiment will be 
performed next. By attempting to choose the most informative experiment at 
each stage, superior results can potentially be obtained in comparison to 
repeating the same experiment at each stage. In geophysical monitoring, one 
could, for example 
design a survey to be 
optimal given estimates 
from previous time steps 

of the noise conditions or the physical structure of 
the subsurface (Wilkinson et al 2012a; 2012b). 
But in this study, we chose to use results from 
previous time steps to determine the regions of 
the image that are exhibiting the greatest changes, 
and to focus the resolution of the next optimised 
survey onto these regions. A flowchart of the 
algorithm that we used is shown in Fig. 2. At each 
stage, the survey is designed using a “change 
mask” to determine the cell weights w. This mask 
is 0 for cells that have not significantly changed 
in the last time step, and 1 for cells that have. 
Appropriate weights w for cells with mask values 
of 0 and 1 were found empirically to be 0.05 and 
1 respectively. For the first time step, every cell in 
the “blank” mask was set to 1. The survey 
designed using this mask was used to generate 
data for the baseline image (with no target 
present) and for the image at the first time step. 
Surveys at subsequent time steps were designed 
using masks generated by comparing the image at 
the previous time step to the baseline image. A 
chi-squared test was applied to each cell along 
with its eight immediately adjacent neighbours 
(Radke 2005) to determine whether the sum of 
the observed changes in these cells was 
significant compared to an expected degree of 
background variation (determined empirically to 
be ~7%). The significance level for the test was 
0.1%, so typically only one cell in 1000 would be 
misidentified. The survey thus designed from the 
previous image and the baseline would then be 
used to generate the data for the image at the next 
time step. This process would then be iterated 
until the end of the monitoring sequence. 

 
Figure 3(a) Baseline image (in terms of
resistivity reflection coefficient r). (b) Previous
image. (c) Calculated change mask. (d) Relative
model resolution of sequential survey design. (e)
Sequential survey image of target shown in (f). 

 
 
Figure 2 Sequential 
design process. 
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The elements of the sequential design process are illustrated for time step 6 in Fig. 3. Figures 3(a) and 
3(b) show the inverted images of the baseline and the target at time step 5 respectively. They are 
plotted in terms of a reflection coefficient r = (ρ - ρ0) / (ρ + ρ0), where ρ is the resistivity and ρ0 = 14 
Ωm is the background resistivity. On this scale, the perfect image would consist of a background with 
r = 0 and a cylindrical target with r = 1. The change mask calculated from these two images is shown 
in Fig. 3(c), and the relative model resolution of the sequential optimised survey designed to focus on 
this mask is shown in Fig. 3(d). Comparing this with Fig. 1(c) shows that the sequential optimised 
survey has greater model resolution than the static optimised survey in the vicinity of the changed 
regions, but that this comes at the expense of decreased resolution away from these regions. Note 
however that the resolution is still everywhere greater than the equivalent dipole-dipole survey (Fig. 
1(b)). The resulting image and the actual location and geometry of the target at time step 6 are shown 
in Figs. 3(e) and 3(f) respectively. 

 
Figure 4 Target position, Dipole-Dipole (D), Optimised (O) and Sequential (S) images at time steps
(a) 0, (b) 6, (c) 12, and (d) 19. 
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The results of the three types of monitoring 
survey (dipole-dipole “D”, static optimised “O”, 
and sequential optimised “S”) are shown in Fig. 4 
at four separate time steps. As expected it can be 
seen that the image resolution decreases as the 
depth of the target increases. By qualitatively 
comparing the recovered contrast and shape of 
the target, it is clear that the both types of 
optimised survey (static and sequential) produce 
better images than the dipole-dipole survey. It 
also seems that the sequential surveys produce 
slightly better images than the static optimised 
surveys, although the improvement is not as 
pronounced. To quantify the levels of 
improvement, Fig. 5 shows the Pearson 
correlation coefficients between the inverted 
images and the target. Over the twenty time-steps 

the average increase between the dipole-dipole and static optimised images is ΔPDO = 0.091. The 
average extra improvement gained from using the sequential design method, i.e. the increase between 
the static and sequential optimised images, is ΔPOS = 0.016. 

Conclusions 

We have used simulated data to provide a proof-of-concept demonstration of using sequential 
optimised survey design to improve image quality in geoelectrical monitoring experiments. Measured 
by correlation coefficients, in this example sequential optimisation produced an extra 17% increase in 
image quality compared to the use of a static optimised design. Although this is a simple example 
with a well-defined target geometry, the results ought to be applicable to any similar resistivity 
monitoring experiment providing that the data can be inverted and the survey design calculated in a 
time less than the data acquisition interval (i.e. more quickly than the characteristic timescales of the 
processes being monitored). 
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Figure 5 Pearson correlation coefficients, P,
between inverted images and target for Dipole-
Dipole, Optimised and Sequential survey designs.

 
Figure 5 Pearson correlation coefficients, P,
between inverted images and target for Dipole-
Dipole, Optimised and Sequential survey designs.


