1	Application and assessment of a membrane-based pCO_2 sensor under field and laboratory
2	conditions
3	Zong-Pei Jiang* ^{1,2} , David J. Hydes ¹ , Sue E. Hartman ¹ , Mark C. Hartman ¹ , Jon M. Campbell ¹ ,
4	Bruce D. Johnson ³ , Bryan Schofield ³ , Daniela Turk ^{4,5} , Douglas Wallace ⁴ , William Burt ⁴ , Helmuth
5	Thomas ⁴ , Cathy Cosca ⁶ , Richard Feely ⁶
6	¹ National Oceanography Centre Southampton, European Way, Southampton, UK
7	² State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
8	³ ProOceanus Systems Inc., Bridgewater, Nova Scotia, Canada.
9	⁴ Department of Oceanography, Dalhousie University, Halifax, NS, Canada
10	⁵ Lamont-Doherty Earth Observatory, Columbia University, NY, USA
11	⁶ Pacific Marine Environmental Lab, NOAA, Seattle, WA, USA
12	
13	*Corresponding author: Zong-Pei Jiang
14	National Oceanography Centre Southampton, University of Southampton
15	European Way, Southampton, United Kingdom, SO14 3ZH
16	
17	Running head: Assessment of a membrane-based NDIR pCO ₂ sensor
18	

19 Acknowledgment

20 The Swire Charitable Trust and the Swire Education Trust are gratefully acknowledged for 21 funding the Swire NOCS Ocean Monitoring System (SNOMS) project and the scholarship for 22 Zong-Pei Jiang's PhD study. The Swire Group Company China Navigation and the crews on the 23 MV Pacific Celebes are to be thanked for supporting the operation of the SNOMS project. Dave 24 Childs provided invaluable analysis of the salinity samples at NOCS. At the Institute of Ocean 25 Science in Canada, Marty Davelaar, Jim Christian and Kyle Davidson helped with sample pickups 26 and joined in the SNOMS sample processing exercise. We gratefully thank Jim Eddington, Emily 27 Chua, Claire Normandeau, Trina Whitsitt and Douglas Schillinger during the Aquatron tests at 28 Dalhousie University. We also thank the support from Richard Lampitt, Kate Larkin, Maureen 29 Pagnani, Thanos Gkritzalis on the sensor deployment and maintenance at the PAP site. Wei-Jun 30 Cai is thanked for the helpful discussion on the organic alkalinity. We also thank Mike 31 DeGrandpre and Wiley Evans for their helpful suggestions on improving this paper. 32

34	The principle, application and assessment of the membrane-based ProOceanus CO_2 -Pro TM sensor
35	for partial pressure of CO_2 (p CO_2) are presented. The performance of the sensor is evaluated
36	extensively under field and laboratory conditions by comparing the sensor outputs with references
37	of direct measurements from calibrated pCO_2 measuring systems and the thermodynamic
38	carbonate calculation from discrete samples. Under stable laboratory condition, the sensor agreed
39	with a calibrated water-air equilibrator system at -3.0 \pm 4.4 μatm during a 2-month
40	intercomparison experiment. When applied in field deployments, the larger differences between
41	measurements and the calculated pCO_2 references (6.4 \pm 12.3 μatm on a ship of opportunity and
42	$8.7\pm14.1~\mu atm$ on a mooring) are related not only to sensor error, but also to the uncertainties of
43	the references and the comparison process, as well as changes in the working environments of the
44	sensor. When corrected against references, the overall uncertainties of the sensor results are
45	largely determined by those of the pCO_2 references (± 2 and ± 8 μatm for direct measurements
46	and calculated pCO ₂ respectively). Our study suggests accuracy of the sensor can be affected by
47	temperature fluctuations of the detector optical cell and calibration error. These problems have
48	been addressed in more recent models of the instrument through improving detector temperature
49	control and through using more accurate standard gases. Another interesting result in our
50	laboratory test is the unexpected change in alkalinity which results in significant underestimation
51 52	in the pCO ₂ calculation as compared to the direct measurement (up to 90 μ atm).

53 Introduction

54	The knowledge of surface ocean CO_2 variability is important for understanding the marine carbon
55	cycle and its future response to the absorption of anthropogenic CO_2 (Doney et al. 2009). In the
56	past few decades, high-accuracy seawater pCO_2 measuring systems (Körtzinger et al. 1996;
57	Dickson et al. 2007; Pierrot et al. 2009) have been widely used on research vessels providing high
58	quality pCO_2 data, which leads to the generation of a global atlas of the surface ocean pCO_2
59	(Surface Ocean CO ₂ Atlas, <u>http://www.socat.info/</u> , Bakker et al. 2013) and CO ₂ flux
60	(Takahashi et al. 2009). However, there is still a lack of data from large areas of the globe,
61	especially in the shelf seas, Southern Ocean, and southern-hemisphere subtropical gyres (Doney et
62	al. 2009). Moreover, changes in seawater pCO_2 can occur on timescales from daily (Degrandpre et
63	al. 1998; Yates et al. 2007; Dai et al. 2009; Turk et al. 2013) to seasonal and interannual (Bates
64	2002, 2007; Watson et al. 2009; Jiang et al. 2013), especially in the dynamic coastal environments
65	(Borges and Frankignoulle 1999; Thomas and Schneider 1999; De La Paz et al. 2008; Turk et al.
66	2010; Jiang et al. 2011). Observations with sufficient temporal and spatial resolution are thus
67	needed for a better understanding of the controlling mechanism of pCO ₂ variability in different
68	regions and for a more reliable CO_2 flux estimation.
69	In addition to the traditional shipboard measuring system (e. g. the General Oceanics pCO_2
70	measuring system) , there are emerging techniques to develop autonomous pCO_2 sensors. As
71	summarized in Table 1, these sensors generally follow the same basic concept based on the
72	measurement of a gas or indicator solution that is in equilibrium with the seawater to be
73	determined. The equilibrium state can be reached by using water-gas equilibrators where the gas is
74	directly in contact with the seawater, or via gas permeable interfaces such as polydimethylsiloxane

75	(PDMS) or polytetrafluoroethene (PTFE) membrane. The equilibrated gas can be measured by a
76	non-dispersive infrared (NDIR) spectrometry, while the equilibrated indicator solution can be
77	determined by electrode, fluorescence or spectrophotometric methods (Table 1). For these
78	reagent-based fibre optic chemical sensors (Goyet et al. 1992; Degrandpre 1993; Lefévre et al.
79	1993; Degrandpre et al. 1995), improvements have been made by using multi-wavelength
80	detection and long pathlength liquid-core waveguides for better precision and accuracy
81	(Degrandpre et al. 1999; Wang et al. 2002; Wang et al. 2003; Nakano et al. 2006; Lu et al. 2008).
82	Evolving sensor technology has enabled cost-effective pCO ₂ measurements to be made on
83	various platforms such as ship of opportunity (SOO), buoy and mooring, glider, profiling float and
84	autonomous underwater vehicle (Degrandpre et al. 1998; Nakano et al. 2006; Nemoto et al. 2009;
85	Willcox et al. 2009; Fiedler et al. 2012; Saderne et al. 2013).
86	In this paper, we describe the principle and design of a membrane-based NDIR pCO ₂ sensor
87	(ProOceanus CO_2 -Pro TM , hereafter referred to as CO_2 -Pro). The sensor's functionality, reliability
88	and accuracy are evaluated under various situations including: a 16-day coastal mooring
89	deployment test adjacent to a coral reef in Hawaii (October to November 2009), shipboard
90	underway mapping on a SOO (October 2009 to March 2012), intercomparison with a calibrated
91	water-gas equilibrator system in the Aquatron Laboratory at Dalhousie University (May to
92	September 2012) and long-term open-ocean mooring deployment in the Northeast Atlantic (June
93	2010 to July 2012). The performance of the CO_2 -Pro is assessed by comparing the sensor outputs
94	against two kinds of reference: (1) the thermodynamic carbonate calculation of pCO_2 from the
95	determinations of dissolved inorganic carbon (DIC), total alkalinity (TA), and pH from discrete
96	samples; (2) direct measurements by the traditional water-gas equilibrator NDIR systems which

97	are regularly calibrated against standard gases. The advantages and limitations of the CO ₂ -Pro are
98	summarized and the recent improvements of the instrument are introduced.
99	Materials and Procedures
100	Principle of the CO ₂ -Pro
101	The CO ₂ -Pro is designed as a light-weight, compact, plug and play, versatile instrument for pCO ₂
102	measurements on moorings, drifters and profilers, in underway mode and in laboratories. As
103	shown in Figure 1, the sensor is fitted with an equilibrator composed of a gas permeable PDMS
104	membrane (other membrane materials are also available) and an internal detection loop with a
105	NDIR detector based on a highly modified PPSystems SBA-4 CO ₂ analyzer. The patented gas
106	transfer interface of the equilibrator features a tubular design, through which the equilibration
107	between the surrounding water and the internal gas stream can be achieved. Copper wire is wound
108	round the tube to inhibit the potential for bio-film formation and the equilibrator is protected from
109	physical damage by an end-cap. An associated Seabird Electronics SBE 5M submersible pump
110	flows water past the outer surface of the equilibrator membrane to accelerate the equilibration.
111	The response time, i.e. the time for the membrane to reduce the perturbation in pCO_2 by a factor
112	of 1/e, is typically 2 minutes depending on the pumping rate. NDIR measurement on the
113	equilibrated internal gas is taken at a wavelength of 4.26 μ m at a controlled optical cell
114	temperature (30, 40 or 55°C). In addition, temperature, pressure and humidity of the internal gas
115	are determined to correct the CO ₂ measurement. Further detailed specifications of the CO ₂ -Pro can
116	be found at the company's website <u>http://www.pro-oceanus.com/co2-pro.php</u> .
117	When the sensor is turned on, the optical cell of the detector warms up and then stabilizes at the
118	temperature set point. A zero point calibration (ZPC) is then carried out to provide a zero-CO ₂

119	baseline (C_{zero}) for the subsequent NDIR absorption measurement. This is done by circulating the
120	internal gas through a CO ₂ absorption chamber containing soda lime or Ascarite (flow path: valve
121	2 - circulation pump - optical cell - valve 3 - absorption chamber - valve 2, Fig. 1). When the ZPC
122	finishes, the solenoid valves 2 and 3 are activated to circulate the internal gas around a closed
123	circuit connecting the equilibrator and detector (flow path: valve 2 - circulation pump - optical cell
124	- valve 3 - valve 4 - equilibrator - valve 1- valve 2, Fig. 1). The inferred signal of the internal gas
125	(C _{meas}) is measured to calculate the absorbance ($\epsilon = C_{meas}/C_{zero}$) and CO ₂ concentration. Once the
126	internal gas is equilibrated with the water surrounding the equilibrator (typically 10-15 minutes
127	after the ZPC), the seawater CO_2 concentration can be determined. The CO_2 -Pro features a
128	programmable regular automatic ZPC function to correct the detector drift which can be caused by
129	contamination of the optical cell, optical source ageing and changes in detector sensitivity.
130	Each CO ₂ -Pro is factory calibrated at a known optical cell temperature and pressure against 5
131	standard gasses with xCO_2 (mole fraction of CO_2 in dry air) spanning from 0 to 600 ppm (other
132	calibration ranges are also available). The calibration equation is obtained by a three-segment
133	least-squares fitting to a quadratic equation between ϵ and xCO_2 . This equation is subsequently
134	tested by measuring a further three known mixtures of CO ₂ . While the calibration equation
135	provides a raw xCO ₂ from the inferred measurement, empirical corrections are applied to account
136	for the differences of conditions between calibration and measurement (temperature, pressure,
137	water vapour). As the actual measurement is made on gas which is nearly saturated with water
138	vapour, the output of CO_2 -Pro is the mole fraction of CO_2 in wet air (w CO_2 , ppm) and p CO_2 in the
139	measured water is obtained by: $pCO_2 = wCO_2 * P_{wet}$, where P_{wet} is the measured total pressure of
140	the internal gas which includes water vapour pressure.

141 ACT coastal mooring test

- 142 The application of the CO₂-Pro in coastal mooring measurement was previously tested in a
- demonstration project organized by the Alliance for Coastal Technologies (ACT)
- 144 (<u>http://www.act-us.info/evaluations.php#pco2</u>). During October to November 2009, a CO₂-Pro
- 145 was mounted on a surface mooring and deployed at a fixed depth of 1 m close to a shallow
- sub-tropical coral reef in Kaneohe Bay, Hawaii. Continual measurements were made by the
- 147 CO₂-Pro on an hourly basis and the results were compared with the reference pCO₂ calculated
- 148 from discrete samples. pH and TA of these samples were measured spectrophotometrically using
- 149 meta-cresol purple and bromo-cresol green as indicators, respectively (Dickson et al. 2007). Both
- 150 measurements were calibrated against the Certified Reference Material (CRM) from Scripps
- 151 Institution of Oceanography. The accuracy of the pH measurement was estimated to be 0.005 and
- 152 the standard deviation (SD) of repeated TA measurements was 1.9 μmol kg⁻¹ (ACT 2009b).
- 153 Details of the deployment, measurements, calculation and quality control were documented by
- 154 ACT (2009a, b).

155 SNOMS underway measurements

156 From June 2007 to March 2012, CO₂-Pro sensors were used for continuous shipboard underway

- 157 measurement in the operation of a SOO-based measuring system (referred to as SNOMS) on the
- 158 MV Pacific Celebes (Hydes et al. 2013). For these measurements a CO₂-Pro was mounted in a
- 159 45-litre flow-through pressure tank, together with other sensors for temperature, conductivity,
- 160 dissolved oxygen and total dissolved gas pressure. To adapt it to the SNOMS tank, the protecting
- 161 end-cap and the associated water pump of the CO₂-Pro were removed. The gas transfer interface
- 162 was thus directly exposed to the seawater for pCO₂ measurement, which also enabled direct

163	cleaning of the membrane surface. The SNOMS tank was fed at a flow rate of 28 ± 2 litres
164	minute ⁻¹ by a branch of the non-toxic seawater being pumped to the ship's fresh water generator.
165	This water supply was routinely turned off in shallow and potentially turbid water, thereby
166	preventing sedimentation in the tank and contamination of the membrane of the CO ₂ -Pro. At each
167	port, the tank was opened and the CO ₂ -Pro membrane was cleaned by hosing it down with fresh
168	water.
169	The CO ₂ -Pro was continuously working when the SNOMS system was in operation. The
170	frequency of the automatic ZPC was set to be 6 hours, and the 15 minutes of data after each ZPC
171	(when the internal gas was re-equilibrating with the water) was discarded. In order to account for
172	the difference between the water temperature in the tank (T_{tank}) and that in the surface ocean, an
173	insulated Seabird 48 hull-contact temperature sensor was used to monitor the sea surface
174	temperature (SST). The time lag between SST and T_{tank} was estimated to be ~30 seconds. By
175	considering the temperature effect on pCO_2 (Takahashi et al. 1993), the tank water pCO_2
176	measured by CO ₂ -Pro (pCO _{2,Pro}) was corrected to the sea surface condition: $pCO_{2,SST} = pCO_{2,Pro} *$
177	$exp[0.0423*(SST-T_{tank})]$ The likely accuracy of SST from the hull measurement is 0.1 °C (Beggs
178	et al. 2012), which results in an uncertainty of ~1.5 μ atm in converting pCO _{2,Pro} to pCO _{2,SST} .
179	In addition to the underway measurements, discrete samples were collected by the ship's
180	engineers for the determination of DIC and TA. These samples were shipped to the National
181	Oceanography Centre, Southampton (NOCS) and were measured under stable laboratory
182	conditions. The CRM-calibrated measurements of DIC and TA were carried out using a VINDTA
183	3C (Marianda, Germany). Repeat measurements on pooled samples were undertaken before

184 sample analysis each day (n>3), these suggested a precision better than $\pm 2 \mu mol \text{ kg}^{-1}$ for DIC and 185 $\pm 1.5 \mu mol \text{ kg}^{-1}$ for TA respectively.

186 The Aquatron laboratory test

187 After the operation on the *MV Pacific Celebes*, a controlled test of the CO_2 -Pro as a part of the 188 SNOMS tank was carried out in the Aquatron Laboratory at Dalhousie University during May to 189 September 2012. To carry out this test, a two cubic metre open tank (referred to as the Aquatron 190 tank) was set up beside the SNOMS tank. The two tanks were filled with sand-bed filtered 191 seawater pumped from an adjacent harbour (estuary) on 23 May. The water was continuously 192 pumped in a circuit between the two tanks with a turnover time of about 2 hours. The pCO₂ of the 193 tank water was monitored by the CO₂-Pro in the SNOMS system which operated in a similar way 194 as on the *MV Pacific Celebes*. After a stabilization period of \sim 50 days when the pCO₂ reached a 195 relatively constant range, another pCO₂ measuring system (referred to as the NOIZ system) was 196 set up in the Aquatron tank for a side-by-side comparison with the CO₂-Pro. In order to control 197 pCO₂ to ocean values during the two-month intercomparison exercise (13 July to 11 September), 198 a simple system was developed to bubble CO₂-free gas (laboratory air passing through a cartridge 199 filled with soda lime) into the Aquatron tank on three occasions (started on 10 July, 2 August and 200 31 August, Fig. 6). 201 The NOIZ system consisted of a bubble type water-gas equilibrator and a Licor 7000 NDIR

202 detector (Körtzinger et al. 1996). The equilibrator was mounted on the Aquatron tank and its

- 203 lower part was submerged in the water to minimize the temperature difference between the tank
- water and that in the equilibrator. The detector was calibrated every a few days with zero CO₂
- 205 concentration nitrogen gas and an air mixture calibrated with National Oceanic and Atmospheric

206 Administration (NOAA) standard gas before 27 August 2012. After that, the calibration directly

207 used a NOAA-supplied standard gas with an uncertainty of ± 1 ppm. No shift could be identified

- 208 in the calibration when calibration gasses were changed. The accuracy of the pCO_2 measured by
- 209 the NOIZ system was estimated to be within 2 μ atm.
- 210 In additional to the pCO₂ measurements, discrete samples for DIC and TA were collected
- 211 throughout the test on a daily basis. Nutrient samples were collected from 5 June onwards for
- determination of nitrate, silicate, phosphate and ammonia (Whitledge et al. 1981). To compensate
- 213 for water loss due to sampling and evaporation, the Aquatron tank was topped up every 4-7 day
- 214 with newly pumped water. Although this water was pumped from the same location, it may
- 215 have different properties compared to the original tank water due to the temporal variability at the
- 216 sampling site. However, these top up events only had a minor influence on the chemical
- 217 concentrations of the tank water because of the relatively small volumes added (0.2-3% of the
- total volume of the Aquatron tank). One exception was a substantial top up on 7 August (35%
- 219 of the total volume) because of a large drainage from the sampling tube, which significantly
- 220 changed the properties of the tank water (see the results section below).
- 221 Long-term in situ operation on the PAP mooring
- 222 Since June 2010, the CO₂-Pro was used for long-term in situ deployment at the Porcupine Abyssal
- 223 Plain site (PAP, 49 °N 16.5 °W, 4800 m water depth) which is the longest running
- 224 multidisciplinary observatory in the Northeast Atlantic (Hartman et al. 2012). It was deployed on a
- sensor frame at a fixed depth of 30 m together with other autonomous sensors for temperature,
- salinity, chlorophyll-a fluorescence and nitrate. All these sensors were controlled by a hub
- 227 controller which communicated with NOCS via satellite in near real-time. The CO₂-Pro was

- 228 powered by the solar panels on the mooring and its measurement frequency and the time length
- for each measurement could be changed remotely.

230 The carbonate system calculation

231 The marine carbonate system can be characterized from any two of the four parameters: DIC, TA, 232 pCO₂ and pH (Zeebe and Wolf-Gladrow 2001). In this study, the Excel program "CO2SYS" 233 (Pierrot et al. 2006) was used for the carbonate calculations. The dissociation constants of 234 carbonic acid $(pK_1 \text{ and } pK_2)$ determined in real seawater by Millero et al. (2006) are in good 235 agreement with previous measurements (Mehrbach et al. 1973; Mojica Prieto and Millero 2002), 236 and are more reliable than those measured in artificial seawater (Millero et al. 2006). Therefore, 237 we chose to use the constants of Millero et al. (2006) in our CO2SYS calculations. The sulphuric 238 dissociation was chosen as Dickson (1990) and the total boron fomulation was selected as Lee et 239 al. (2010). In this study, pCO₂ was calculated either from the combination of pH and TA (ACT test) or DIC and TA (SNOMS and Aquatron test). The uncertainty of the pCO₂ calculation comes 240 241 from inaccuracies in the thermodynamic dissociation constants (mainly pK_1 and pK_2) and the 242 experimental measurements of the variables used for calculation (Millero et al. 2006). As shown 243 in Table, 2, the various sources of uncertainties associated with the carbonate calculation yield 244 uncertainties in the calculated pCO₂ which are estimated to be \pm 7.5 µatm for the ACT test (ACT 245 2009a, b), \pm 8.1 µatm for the SNOMS operation and \pm 9.9 µatm for the Aquatron test within the 246 measured pCO₂ ranges, respectively. 247 Assessment

248 Results of the ACT coastal mooring test

249	The results of the ACT mooring test have been reported by ACT (2009a) and are briefly
250	summarized here. During the 16-day continuous measurement in Kaneohe Bay, nearly 100% of
251	the data were retrieved except for the data gaps during calibration cycles. The hourly time series
252	data from the CO_2 -Pro (p $CO_{2,Pro}$ in Fig. 2A, 280-840 µatm) shows a significantly greater dynamic
253	range compared to the values calculated from pH and TA (pCO _{2,pHTA} , 314-608 μ atm). The higher
254	measurement frequency of the CO ₂ -Pro thus better characterized the short-term variability of
255	pCO ₂ that was mainly caused by the strong biological activities of the adjacent coral reef system.
256	The 5-minute averages of the sensor outputs bracketing the time of discrete sample collection
257	were compared to the calculated $pCO_{2,pHTA}$ in Figure 2. The mean and SD of the differences
258	between the paired pCO _{2,Pro} and pCO _{2,pHTA} measurements ($\delta pCO_2 = pCO_{2,Pro} - pCO_{2,pHTA}$, Fig. 2C,
259	δpCO_2 refers to the difference between the raw/corrected sensor output and the pCO ₂ reference,
260	the same hereafter) are 8.7 \pm 14.1 µatm. pCO _{2,Pro} shows a tight correlation with pCO _{2,pHTA} (R ² =
261	0.99, n = 29, not shown), and the positive correlation between δpCO_2 and $pCO_{2,Pro}$ suggests an
262	increasing offset under high pCO ₂ conditions (Fig. 2B). This indicates that the δpCO_2 may have
263	been subject to a linear calibration error. When $pCO_{2,Pro}$ is corrected against $pCO_{2,pHTA}$, the SD of
264	the difference between the corrected sensor output (pCO_{2,ProCorr}) and pCO_{2,pHTA} is \pm 7.4 μatm
265	($\delta pCO_{2,corr}$ in Fig. 2D), which is similar to the uncertainty of $pCO_{2,pHTA}$ calculation (± 7.5 µatm).
266	There are no systematic changes in $\delta pCO_{2,corr}$ (Fig. 2D), which suggests no other significant
267	sources of error (i.e. biofouling, instrument drift) during the measurement. While the CO ₂ -Pro
268	performed very well among submersible CO ₂ sensors in the study (ACT 2009a), the potential
269	error in sensor measurement resulting from temperature fluctuation of the optical cell (see the PAP
270	result section below) was not considered in the performance report by ACT (2009a).

Results of the SNOMS underway measurement

272	The CO ₂ -Pro units used in the SNOMS operation were factory calibrated on a yearly basis. For
273	evaluation purposes, $pCO_{2,Pro}$ is compared to the $pCO_{2,DICTA}$ calculated from the daily DIC and TA
274	samples, as well as to direct measurements from other pCO_2 measuring systems in the same region.
275	As the pCO ₂ measurements were intermittent at the beginning of the SNOMS project during the
276	circumnavigation of the MV Pacific Celebes (2007-2009), the assessment presented below is
277	based on the continuous measurements along the repeated transects in the Pacific (2009 onwards).
278	From October 2009 to February 2012, the cargo ship in total made 18 transects between the
279	western US coast, New Zealand and Australia and two CO2-Pro units were used for measurement
280	in turn (Table 3). Of the 14 transects with successful instrumental measurements (other 2 transects
281	failed with sensor malfunction), there are 12 transects with DIC and TA data.
282	The difference between the raw sensor output $pCO_{2,Pro}$ (5-minute average corresponding to the
283	sampling time) and pCO _{2,DICTA} is shown in Fig. 3A. The overall offset ($\delta pCO_2 = pCO_{2,Pro}$ -
284	$pCO_{2,DICTA})$ for the 12 transects is 6.4 \pm 12.3 μatm (n=200). No correlation between δpCO_2 and
285	the absolute concentration of pCO_2 (300-500 µatm) is identified (not shown). It is noted that the
286	mean and SD of δpCO_2 vary from transect to transect (Table 3). Aside from any error and
287	potential drift of the sensor, the difference in δpCO_2 among transects may be caused by several
288	other factors: 1) uncertainty in the $pCO_{2,DICTA}$ calculation; 2) the different responses of the two
289	CO_2 -Pro units and the changing response of each unit before/after the recalibration in June 2010; 3)
290	the influence of water patchiness, i.e. taking a discrete sample from a different water patch from
291	that measured by the CO ₂ -Pro as the ship travelled at a relatively high speed (~15 knots). On the
292	other hand, δpCO_2 values from successive transects using the same sensor generally do not differ

293	greatly (e.g. transects 2, 3, 4 for sensor 47 and transects 7, 8, 9 for sensor 48, see Table 3). The
294	changes in δpCO_2 among these successive transects may be mainly related to the changes in the
295	condition of the gas transfer membranes (biofouling, contamination et al.) and the SNOMS tank
296	(sedimentation). The values of δpCO_2 show a random distribution around the mean value for each
297	transect except for transects 14 and 17 (Fig. 3C, D). The δpCO_2 in transect 14 shows a consistent
298	increasing trend with time which may be associated with the contamination of the equilibrator or
299	SNOMS tank (Fig. 3C). Moreover, values from the first 15 days of transect 17 (24.1 μ atm) are
300	significantly higher than those of the adjacent transects using the same sensor (2.6 and 7.4 μ atm
301	for transect 16 and 18 respectively), which is followed by a sudden decrease of $\sim 40 \ \mu atm$ in
302	δpCO_2 in the last 5 days (Fig. 3D). The causes of these dramatic changes in δpCO_2 during this
303	particular transect are not well identified.
304	As the calculated pCO _{2,DICTA} provides a consistent reference throughout the SNOMS operation for
305	the two CO_2 -Pro units before and after recalibration, we chose to correct $pCO_{2,Pro}$ against
306	pCO _{2,DICTA} for each transect individually. A time-dependent correction was applied to the transect
307	14, and the data in transect 17 are corrected in two sections as described above (Fig. 3C, D). As
308	shown in Figure 3B, the SD of the differences between the corrected sensor outputs and
309	$pCO_{2,DICTA}$ is \pm 7.8 µatm (Fig. 3B), which is similar to the uncertainty of the calculation of
310	$pCO_{2,DICTA} (\pm 8.1 \ \mu atm).$
311	During the same period of the SNOMS transect 9, another SOO MV Natalie Schulte took pCO ₂
312	measurement along the same route to that of the MV Pacific Celebes, but in a different direction
313	(Fig. 4A). The pCO ₂ measuring system was operated by Pacific Marine Environmental Laboratory
314	(PMEL), which features a showerhead design of equilibrator and NDIR detection of dried gas

315	(Pierrot et al. 2009). The availability of the regularly calibrated PMEL measurements (accuracy
316	within 2 µatm) provided an opportunity for an intercomparison to evaluate the corrected SNOMS
317	pCO_2 data. As shown in Figure 4, the temperature, salinity and pCO_2 measured by the two
318	systems generally display the same latitudinal distributions. The elevated pCO_2 observed around
319	the equator suggests the influence of westward advected CO2-rich water originating from the
320	equatorial upwelling (Fig. 4D). However, the difference in measuring time at the same location for
321	the two ships ranges 0-16 days (Δ Time in Fig. 4). Therefore, the difference of the two pCO ₂
322	measurements (Fig. 4F) includes not only the errors of the two measurements but also the natural
323	spatial and temporal variability of pCO ₂ . The latter is related to water movement and
324	warming/cooling of the surface water, which is indicated by the temperature and salinity
325	differences between the two datasets (Fig. 4E).
326	In order to minimize the influence of natural pCO ₂ variability on the comparison, the simultaneous
327	measurements by the two systems were highlighted in Figure 5. These measurements, with a time
328	difference less than 0.5 day, were made in the equatorial region when the two ships were within
329	250 km of each other. The results measured by the two ships generally agreed in salinity (0.14 \pm
330	0.05) and temperature (0.28 \pm 0.09 °C, Fig. 5A). Previous time-series and Lagrangian
331	observations in the equatorial Pacific show a diurnal pCO_2 variability of 2-8 µatm, which is
332	mainly controlled by the temperature fluctuation (Goyet and Peltzer 1997; Degrandpre et al. 2004).
333	In order to remove the temperature effect from the pCO_2 comparison, we normalize the $pCO_{2,Pro}$ to
334	the temperature measured by the PMEL system. When the temperature effect is removed, the
335	SNOMS pCO ₂ values agree well with the PMEL measurements at -0.3 \pm 3.9 μatm (δpCO_2 in Fig.
336	5B). This indicates reasonably good accuracy of the corrected SNOMS pCO ₂ data (note that the

raw CO2-Pro outputs have been corrected against the carbonate calculation by 8.7 µatm, see Table 337 338 3).

340	As shown in Fig. 6A, the water temperature during the Aquatron test generally showed a diurnal
341	variability of 1-3°C and it varied within 15.5-17.5°C during the intercomparison period (Fig. 6A).
342	The evaporation-induced increase in salinity was clearly observed and a sharp salinity drop on 7
343	August indicates the substantial addition of the fresher harbour water after drainage from the
344	sampling tube (Fig. 6B). In order to account for the changes in chemical properties due to
345	evaporation, DIC and TA are normalized to the mean salinity 32.3: $nX = (X / Salinity) *32.3$,
346	where X is the measured concentration of DIC or TA, and nX is the salinity-normalized
347	concentration (Fig. 6D). During the stabilization period, pCO ₂ decreased from the initial value (up
348	to 900 μ atm) to a relative constant range within 640-690 μ atm (Fig. 6C). At the same time, DIC
349	and TA both showed an increasing trend (Fig. 6B) while the concentrations of nutrients remained
350	at low levels with little variability (Fig. 6E, F). The relatively constant nDIC (~2150 μ mol kg ⁻¹ ,
351	Fig. 6D) suggests that the increase in DIC (Fig. 6B) mainly resulted from evaporation. In contrast,
352	the salinity-normalized nTA increased significantly from 2240 to 2290 μ mol kg ⁻¹ (Fig. 6D).
353	During the intercomparison period, the pCO ₂ levels were adjusted to be in the "natural" open
354	ocean range of 300-550 μ atm by the bubbling of CO ₂ -free air (started on 10 July, 2 August and 31
355	August). Corresponding decreases in pCO_2 and DIC (Fig. 6B, C) were observed when the tank
356	was purged with CO ₂ -free air, which was followed by progressive increases after the bubbling
357	stopped. On 7 August, the dramatic changes in all measured variables were caused by the
358	substantial addition of newly pumped water as described above. This induced sudden decreases

Results of the Aquatron laboratory test 339

in salinity, TA and DIC (Fig. 6A, B) that were associated with increases in pCO₂ and nutrients
(Fig. 6C, E, F).

361	The intercomparison of the pCO_2 measurements by the SNOMS and NOIZ systems is presented in
362	Figure 7. The CO ₂ -Pro functioned properly throughout the Aquatron test while the NOIZ system
363	suffered from malfunctions on a few occasions (the failed measurements are not included in the
364	intercomparison, Fig. 7A). Both measurements were averaged to 5 minute interval and $pCO_{2,NOIZ}$
365	was normalized to the temperature in the SNOMS tank to eliminate temperature influence on the
366	comparison (the average temperature difference is ~0.08 °C, which corresponds to ~1.5 μ atm in
367	pCO_2). There may be a slight delay in $pCO_{2,Pro}$ when responding to the pCO_2 disturbances
368	(bubbling, water top up) as these events occurred in the Aquatron tank were first observed by the
369	NOIZ system. Overall, the pCO_2 measured by the two systems shows a tight correlation ($pCO_{2,Pro}$
370	= 0.9987 * pCO _{2,NOIZ} , R^2 = 0.99, not shown). The mean and SD of the differences between the
371	two measurements ($\delta pCO_2 = pCO_{2,Pro} - pCO_{2,NOIZ}$) are -3.0 ± 4.4 µatm (n = 13847, Fig. 7C).
372	δpCO_2 does not show a constant drift over the two month test (Fig. 7C) but appears to vary with
373	the absolute pCO_2 concentration (Fig. 7B), which may be due to a linear error in the sensor
374	calibration. When the CO ₂ -Pro measurements are calibrated against $pCO_{2,NOIZ}$, the differences
375	between the calibrated pCO _{2,ProCorr} and pCO _{2,NOIZ} ($\delta pCO_{2,corr}$ in Fig. 7D, $0 \pm 2.9 \ \mu atm$) show a
376	random distribution around the mean value throughout the intercomparison experiment, which
377	suggests no instrumental drift of the CO ₂ -Pro occurred during the two-month period.
378	An interesting phenomenon observed in the Aquatron test is the unexpected changes in alkalinity.
379	The increase in nTA during the stabilization period (2240 to 2290 μ mol kg ⁻¹ , Fig. 6D) cannot be
380	explained by the changes in inorganic carbon content and nutrients: (1) the small changes in nDIC

381	and nutrients indicate minor TA changes resulted from biological activities such as precipitation
382	and dissolution of $CaCO_3$ (which changes TA and DIC at a ratio of 2:1) and nutrient uptake and
383	release by algae (which changes TA following the nutrient- H^+ -compensation principle)
384	(Wolf-Gladrow et al. 2007); (2) air-sea gas exchange of CO_2 changes DIC but does not affect the
385	concentration of TA (Wolf-Gladrow et al. 2007); (3) the oxygen saturation varied between 86-104%
386	(not shown) which suggests no TA changes induced by anaerobic processes. Similarly, increases
387	in nTA observed after the top up event on 7 August (2270 to 2290 μ mol kg ⁻¹) also did not match
388	the changes in nDIC and nitrates: the increasing concentrations of nDIC and nitrates during this
389	period (Fig. 6D, E) suggests the occurrence of remineralization processes which would decrease
390	TA.
391	In order to examine the TA anomaly in the Aquatron test, we calculate alkalinity from the
392	measured DIC and pCO ₂ using the CO2SYS. The calculated Alk _{sys} (uncertainty estimated to be \pm
393	3.5 μ mol kg ⁻¹) is the alkalinity expected at the equilibration state of the carbonate system, which
394	accounts for the major inorganic buffering acid-base pairs. It is shown in Figure 8A that the
395	concentrations of Alk _{sys} are 3-24 μ mol kg ⁻¹ lower than the measured values of TA _{meas} . This excess
396	of TA_{meas} over the Alk_{sys} (Alk_{excess}) suggests substances or processes which affect the
397	concentration of alkalinity and/or the titration process of alkalinity. This may be due to: waste
398	water or reactive particles in the harbour, contamination during the pumping process, reaction
399	with the fibreglass wall of the Aquatron tank, or the existence of organic alkalinity. Although we
400	cannot clearly identify the source(s) of the alkalinity anomaly, it is shown that using the measured
401	TA_{meas} for carbonate calculation would result in underestimates in pCO ₂ (Fig. 8B). The pCO _{2,DICTA}
402	calculated from TA_{meas} and DIC is 7-90 µatm lower compared to the direct pCO ₂ measurement,

- 403 and this underestimation ($pCO_{2,bias} = pCO_{2,Pro} pCO_{2,DICTA}$) shows a similar trend to that of
- 404 Alk_{excess} (Fig. 8C). Closer investigation shows that the percentage bias in pCO₂ (%pCO_{2,bias}=
- 405 pCO_{2,bias} / pCO_{2,Pro}) is positively correlated to the percentage bias in alkalinity (%Alk_{excess}=
- 406 Alk_{excess} / $TA_{meas} = 12.54 * \% pCO_{2,bias}$, Fig. 8D).
- 407 Results of the long-term in situ operation on the PAP mooring
- 408 Since the first deployment in June 2010, a CO₂-Pro continuously worked at the PAP site until
- 409 January 2011 when a communication cable of the hub controller broke. A calibrated unit replaced
- 410 the original sensor in July 2011 and operated until March 2012 when the controlling hub was
- 411 flooded. A frustratingly short deployment during May to July 2012 was due to communication
- 412 failure when the sensor frame became detached from the mooring. The deployment of the
- 413 CO₂-Pro at PAP was successful for up to 7 months while the failure of longer measurement was
- 414 due to problems of the hub controller rather than the sensor malfunction.
- 415 In contrast to continuous measurement on SOO, the CO₂-Pro on the PAP mooring was operated
- 416 intermittently (1-4 times a day) due to the limited power supply. Each measurement lasted for
- 417 45-120 minutes which assures full equilibrium with the seawater (typically within 15 minutes).
- 418 The pCO_2 of the oligotrophic surface water around the PAP site is expected to show minor
- 419 variability during the short duration of each measurement. However, the pCO₂ measured by the
- 420 CO₂-Pro showed a consistent increase throughout each measurement (Fig. 9A presents a typical
- 421 measuring cycle of the CO₂-Pro) while the in situ temperature and salinity remained unchanged
- 422 (not shown). It is noted that the optical cell temperature of the detector shows an increasing trend
- 423 similar to that of pCO_2 (Fig. 9A). Moreover, the cell temperature during the measurement (t_{meas}) is
- 424 found to be much higher than that during the ZPC ($\Delta t_{cell} = t_{meas} t_{ZPC}$, Fig. 9A). As the NDIR

425 measurement is affected by the optical cell temperature, this temperature fluctuation would result426 in errors in pCO₂ detection.

427	In order to examine the influence of optical cell temperature, a laboratory test was carried out
428	when the sensor was recovered from deployment. A series of CO_2 standard gases (256, 363 and
429	459 ppm) were connected to the detector bypassing the equilibrator for direct NDIR
430	measurements. In addition, a CO_2 -free gas (N ₂ passing through CO_2 absorbance) was used to
431	simulate the baseline measurement of C_{zero} during the ZPC. Measurements of these gases
432	were carried out following a ZPC at 40 °C, while the temperature of the optical cell during the
433	measurement of each gas was perturbed by heating with an electric breeze and cooling with a
434	cold pack (Δt_{cell} was adjusted to be -0.7 to 1.8 °C). The test results show that the inferred
435	signals of all measured gases decrease linearly with increasing optical cell temperature (not
436	shown). As the zero-CO ₂ signal also changes with temperature, using a baseline measured at
437	t_{zero} as the blank reference for measurements at different cell temperatures would result in
438	errors in calculating ε and xCO ₂ . As shown in Figure 9B, the errors in xCO ₂ (xCO _{2,error} =
439	measured xCO_2 – certified value) were linearly correlated with Δt_{cell} , and the temperature
440	effects are similar for the three standard gases at 15 ppm $^{\circ}C^{-1}$. It is also shown that the errors
441	in xCO_2 can be removed if the influence of Δt_{cell} is considered in the calculations of ϵ and
442	xCO_2 (Fig. 9B). The scatter of the data should mainly be caused by the uneven heating or
443	cooling on the optical cell in our test.
444	When this correction of Δt_{cell} is applied to the PAP measurement, the corrected pCO _{2,tcorr}
445	stabilizes at 15 minutes after the ZPC as expected from the equilibrium time and shows minor

446 changes afterward (Fig. 9A). It is notable that the Δt_{cell} at the PAP mooring is quite large (up

447	to 1.5 °C), which corresponds to an error in pCO ₂ as large as 25 μ atm. This is because of the
448	early ZPC at low t_{ZPC} when the optical cell was not sufficiently warmed up, as well as
449	inadequate thermostat control of the optical cell, i.e. the cell temperature continued to
450	increase after the ZPC. In contrast, this issue is not significant for the continuous
451	measurements as the long-term operation allows the optical cell to be fully warmed up
452	minimizing the temperature difference between ZPC and measurement. The Δt_{cell} during the
453	SNOMS and Aquatron operations was ~ 0.2 °C corresponding to an error of 3 μ atm in pCO ₂ ;
454	corrections of Δt_{cell} are applied to the SNOMS and Aquatron data before assessment.
455	Discussion, recommendations and improvements
456	Overall, the CO ₂ -Pro is a very robust sensor suitable for onboard and in situ measurements on
457	platforms with limited working space and on platforms that cannot be serviced regularly. The
458	sensor's capacity for long-term operation is demonstrated by the successes of the SNOMS
459	operation and PAP mooring deployments. In this study, the performance of the CO ₂ -Pro is
460	evaluated extensively under field and laboratory conditions and the results are summarized in
461	Table 4. The CO ₂ -Pro agreed with a calibrated water-air equilibrator system during a 2-month
462	side-by-side laboratory intercomparison (-3.0 \pm 4.4 μatm). When used at sea, the direct sensor
463	outputs differed from the calculated pCO_2 reference by 6.4 \pm 12.3 μatm on a SOO and 8.7 \pm 14.1
464	µatm on a mooring. These differences result from a number of factors including the uncertainties
465	in the reference and the comparison process, the sensor error, how well the sensor was set up,
466	contamination issues etc. Our study suggests that, when pCO_2 references are available for
467	correction, the uncertainty of the corrected sensor result is similar to and largely determined by the
468	uncertainties of the references.

469	One significant limitation of the CO ₂ -Pro is the lack of regular calibration against standard gases,
470	which makes it difficult to assess the accuracy of the measurement when it is deployed alone. To
471	remedy this potential problem, Pro-Oceanus has introduced a new version of CO ₂ -Pro with
472	on-board control of a gas port for introduction of standard gases. If the CO ₂ -Pro is to be used for
473	onboard or laboratory measurements, this version which enables external manual calibration is
474	recommended to be used. In the future, an automatic calibration function using standard gases
475	would be highly desired to optimize the accuracy of the measurement. For the field
476	applications, users of the CO ₂ -Pro (and any chemical sensor that is not calibrated while deployed)
477	should calibrate the sensor before and after long-term deployments to examine any potential drift.
478	Collection of discrete samples over a wide range of pCO_2 concentrations for the determination of
479	other carbonate variables is recommended to provide quality control on the sensor, and also, to
480	provide additional information on biogeochemical variability.
481	Clearly, the accuracy of the calibration gases used in the original factory calibration and any
482	subsequent recalibrations is a critical factor in sensor accuracy. However, this study reveals
483	that some inaccuracy of the sensor may be caused by calibration error which may be related to
484	the quality of calibration gases used. To address this problem, Pro-Oceanus has performed all
485	factory calibrations using NOAA and NOAA traceable standard gases that are accurate to
486	better than ± 1 ppm since 2011. Moreover, our study reveals that error in pCO ₂ measurement of
487	the CO ₂ -Pro can result from the changes in optical cell temperature between the ZPC and
488	measurement. This problem may be significant for the early versions of CO ₂ -Pro whose optical
489	cells are not well thermostatically controlled. However, this error is correctable and can be
490	avoided by better temperature control on the detector optical cell. Since 2011, an improved

491

temperature control is a standard feature of CO_2 -Pro which stabilizes the fluctuation of the

492 temperature of the detector cell to within ± 0.05 °C.

493	In order to fulfil the target of constraining the regional air-sea CO_2 fluxes to 0.2 Pg C year ⁻¹ , pCO ₂
494	measuring systems need to be accurate to within 2 μ atm for seawater pCO ₂ (Pierrot et al. 2009).
495	This is presently a demanding requirement for pCO ₂ sensors. As demonstrated in this work, the
496	CO ₂ -Pro sensors that were tested (particularly the older versions) did not meet the gold standard of
497	2 µatm. However, recent improvements to the CO2-Pro (as mentioned above) should enhance
498	sensor performance. Considering the large variability of pCO_2 in time and space, there is great
499	value in expanding in situ observations by using sensors with a known reasonably good accuracy.
500	The developing sensor technology provides a very effective way to increase the capability for
501	global and regional ocean monitoring. This can provide useful information on the surface ocean
502	where no or few measurements have been made or other extreme marine environments such as in
503	the deep ocean (the CO_2 -Pro has been successfully used on the SeaCycler and NEPTUNE
504	profilers, Johnson, B personal communication) or near hydrothermal vents (Nakano et al. 2006;
505	Willcox et al. 2009). Moreover, the long-term time series data from fixed-station sensor
506	deployments provides a most powerful tool to understand the controlling mechanisms regulating
507	the changes in ocean CO ₂ .
508	Another interesting finding in this study is the alkalinity anomaly and the mismatch in carbonate
509	calculation in the Aquatron test. Excess of measured TA (up to 24 μ mol kg ⁻¹) are found in
510	comparison to that calculated from DIC and pCO_2 , while the carbonate calculation of pCO_2 using
511	measured TA and DIC result in underestimation in pCO_2 (up to 90 µatm). Although the causes of
512	this TA anomaly cannot be confirmed in our study, one possible explanation is the organic

513	contribution to alkalinity. Many previous studies have proved the existent of organic alkalinity in
514	both laboratory cultures (up to 800 μ mol kg ⁻¹) and natural coastal environments (tens of μ mol kg ⁻¹)
515	(Cai et al. 1998; Hernandez-Ayon et al. 2007; Muller and Bleie 2008; Kim and Lee 2009). Since
516	the use of alkalinity including organic bases could lead to errors in the carbonate calculation, care
517	should be taken when making calculations for the marine carbonate system in environments with
518	high concentration of organic matter, e.g. estuary, coastal water and incubation culture solution.
519	When studying the organic matter-rich waters, alkalinity is recommended to be measured using
520	method proposed by Cai et al. (1998) or Hernández-Ayón et al. (1999) to identify the organic
521	alkalinity.

522

523 **Reference**

ACT. 2009a. Performance demonstration statement Pro-Oceanus Systems Inc. PSI CO₂-ProTM. 524 525 Alliance for Coastal Technologies, report Ref.No. ACT TD10-03. 526 ---. 2009b. Protocols for demonstrating the performance of in situ pCO₂ analyzers. Alliance 527 for Coastal Technologies, report Ref.No. ACT PD09-01. Bakker, D. C. E. and others (2013) An update to the Surface Ocean CO_2 Atlas (SOCAT 528 529 version 2). Earth System Science Data Discussions, 6, 465-512, 530 doi:10.5194/essdd-6-465-2013. Bates, N. R. 2002. Seasonal variability of the effect of coral reefs on seawater CO₂ and air-sea 531 CO₂ exchange. Limnol. Oceanogr. 47: 43-52. 532 533 ---. 2007. Interannual variability of the oceanic CO_2 sink in the subtropical gyre of the North 534 Atlantic Ocean over the last 2 decades. J. Geophys. Res. 112: C09013. 535 Beggs, H. M., R. Verein, G. Paltoglou, H. Kippo, and M. Underwood. 2012. Enhancing ship of opportunity sea surface temperature observations in the Australian region. J. Oper. 536 537 Oceanogr. 5: 59-73. 538 Borges, A. V., and M. Frankignoulle. 1999. Daily and seasonal variations of the partial 539 pressure of CO₂ in surface seawater along Belgian and southern Dutch coastal areas. J. Mar. Syst. 19: 251-266. 540 Cai, W. J., Y. C. Wang, and R. E. Hodson. 1998. Acid-base properties of dissolved organic 541 542 matter in the estuarine waters of Georgia, USA. Geochim. Cosmochim. Acta 62: 543 473-483. 544 Dai, M. H. and others 2009. Diurnal variations of surface seawater pCO_2 in contrasting 545 coastal environments. Limnol. Oceanogr. 54: 735-745. 546 De La Paz, M., A. Gomez-Parra, and J. Forja. 2008. Tidal-to-seasonal variability in the 547 parameters of the carbonate system in a shallow tidal creek influenced by 548 anthropogenic inputs, Rio San Pedro (SW Iberian Peninsula). Cont. Shelf Res. 28: 1394-1404. 549 550 Degrandpre, M. D. 1993. Measurement of seawater pCO_2 using a renewable-reagent fiber 551 optic sensor with colorimetric detection. Anal. Chem. 65: 331-337. Degrandpre, M. D., M. M. Baehr, and T. R. Hammar. 1999. Calibration-free optical chemical 552 553 sensors. Anal. Chem. 71: 1152-1159. 554 Degrandpre, M. D., T. R. Hammar, S. P. Smith, and F. L. Sayles. 1995. In situ measurements 555 of seawater pCO₂. Limnol. Oceanogr. 40: 969-975. 556 Degrandpre, M. D., T. R. Hammar, and C. D. Wirick. 1998. Short-term pCO₂ and O₂ 557 dynamics in California coastal waters. Deep Sea Res., Part II 45: 1557-1575. 558 Degrandpre, M. D., R. Wanninkhof, W. R. Mcgillis, and P. G. Strutton. 2004. A Lagrangian 559 study of surface pCO₂ dynamics in the eastern equatorial Pacific Ocean. J. Geophys. Res. 109: C08S07. 560 Dickson, A. G. 1990. Standard potential of the $(AgCl(s)+\frac{1}{2}H_2(g) = Ag(s) + HCl(aq))$ cell and 561 562 the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 563 K. J. Chem. Thermodyn. 22: 113-127.

564	Dickson, A. G., C. L. Sabine, and J. R. Christian (2007), Guide to best practices for ocean						
565	CO ₂ measurements, 191 pp., North Pacific Marine Science Organization (PICES),						
566	Sidney, British Columbia.						
567	Doney, S. C. and others 2009. Surface-ocean CO ₂ variability and vulnerability. Deep Sea Res.,						
568	Part II 56: 504-511.						
569	Fiedler, B., P. Fietzek, N. Vieira, P. Silva, H. C. Bittig, and A. Körtzinger. 2012. In situ CO ₂						
570	and O_2 measurements on a profiling float. J. Atmos. Oceanic Technol. 30: 112-126.						
571	Goyet, C., and E. T. Peltzer. 1997. Variation of CO ₂ partial pressure in surface seawater in the						
572	equatorial Pacific Ocean. Deep Sea Res., Part I 44: 1611-1625.						
573	Goyet, C., D. R. Walt, and P. G. Brewer. 1992. Development of a fiber optic sensor for						
574	measurement of pCO2 in sea water: design criteria and sea trials. Deep Sea Res., Part						
575	I 39: 1015-1026.						
576	Hartman, S. E. and others 2012. The Porcupine Abyssal Plain fixed-point sustained						
577	observatory (PAP-SO): variations and trends from the Northeast Atlantic fixed-point						
578	time-series. ICES J. Mar. Sci. 69: 776-783.						
579	Hernandez-Ayon, J. M., A. Zirino, A. G. Dickson, T. Camiro-Vargas, and E.						
580	Valenzuela-Espinoza. 2007. Estimating the contribution of organic bases from						
581	microalgae to the titration alkalinity in coastal seawaters. Limnol. Oceanogr. Methods						
582	5: 225-232.						
583	Hernández-Ayón, J. M. N., S. L. Belli, and A. Zirino. 1999. pH, alkalinity and total CO ₂ in						
584	coastal seawater by potentiometric titration with a difference derivative readout. Anal.						
585	Chim. Acta 394: 101-108.						
586	Hydes, D. J. and others 2013. Report of the SNOMS Project 2006 to 2012, SNOMS: SWIRE						
587	NOCS Ocean Monitoring System. Part 1: Narrative description. National						
588	Oceanography Centre Research and Consultancy Report, 33.						
589	Jiang, ZP. and others 2011. Short-term dynamics of oxygen and carbon in productive						
590	nearshore shallow seawater systems off Taiwan: Observations and modeling. Limnol.						
591	Oceanogr. 56: 1832-1849.						
592	Jiang, ZP. and others 2013. Key controls on the seasonal and interannual variations of the						
593	carbonate system and air-sea CO ₂ flux in the Northeast Atlantic (Bay of Biscay). J.						
594	Geophys. Res. 118: 1-16.						
595	Kayanne, H. and others 2002. Submergible system to measure seawater pCO ₂ on a shallow						
596	sea floor. Mar. Technol. Soc. J. 36: 23-28.						
597	Kim, HC., and K. Lee. 2009. Significant contribution of dissolved organic matter to						
598	seawater alkalinity. Geophys. Res. Lett. 36: L20603.						
599	Körtzinger, A., H. Thomas, B. Schneider, N. Gronau, L. Mintrop, and J. C. Duinker. 1996.						
600	At-sea intercomparison of two newly designed underway pCO ₂ systems -						
601	encouraging results. Mar. Chem. 52: 133-145.						
602	Lee, S. S., C. Park, P. Fenter, N. C. Sturchio, and K. L. Nagy. 2010. Competitive adsorption						
603	of strontium and fulvic acid at the muscovite-solution interface observed with						
604	resonant anomalous X-ray reflectivity. Geochim. Cosmochim. Acta 74: 1762-1776.						
605	Lefévre, N., J. P. Ciabrini, G. Michard, B. Brient, M. Duchaffaut, and L. Merlivat. 1993. A						
606	new optical sensor for pCO ₂ measurement. Mar. Chem.: 189-198.						

607 Lu, Z., M. Dai, K. Xu, J. Chen, and Y. Liao. 2008. A high precision, fast response, and low power consumption in situ optical fiber chemical pCO₂ sensor. Talanta **76:** 353-359. 608 609 doi: 310.1016/j.talanta.2008.1003.1005. 610 Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz. 1973. Measurement of 611 the apparent dissociation constants of carbonic acid in seawater at atmospheric 612 pressure. Limnol. Oceanogr. 18: 897-907. Millero, F. J., T. B. Graham, F. Huang, H. Bustos-Serrano, and D. Pierrot. 2006. Dissociation 613 614 constants of carbonic acid in seawater as a function of salinity and temperature. Mar. 615 Chem. 100: 80-94. 616 Mojica Prieto, F. J., and F. J. Millero. 2002. The values of $pK_1 + pK_2$ for the dissociation of 617 carbonic acid in seawater. Geochim. Cosmochim. Acta 66: 2529-2540. 618 Muller, F. L. L., and B. Bleie. 2008. Estimating the organic acid contribution to coastal 619 seawater alkalinity by potentiometric titrations in a closed cell. Anal. Chim. Acta 619: 620 183-191. 621 Nakano, Y., H. Kimoto, S. Watanabe, K. Harada, and Y. W. Watanabe. 2006. Simultaneous 622 vertical measurements of in situ pH and CO₂ in the sea using spectrophotometric 623 profilers. J. Oceanogr. 62: 71-81. 624 Nemoto, K. and others 2009. Continuous observations of atmospheric and oceanic CO₂ using 625 a moored buoy in the East China Sea: Variations during the passage of typhoons. 626 Deep Sea Res., Part II 56: 542-553. 627 Pierrot, D., E. Lewis, and D. W. R. Wallace. 2006. MS Excel program developed for CO₂ system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis 628 629 Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN. 630 Pierrot, D. and others 2009. Recommendations for autonomous underway pCO₂ measuring 631 systems and data-reduction routines. Deep Sea Res., Part II 56: 512-522. 632 Rubin, S. I., and H. Ping Wu. 2000. A novel fiber-optic sensor for the long-term, autonomous 633 measurement of pCO₂ in seawater, p. 631-639 vol.631. OCEANS 2000 MTS/IEEE 634 Conference and Exhibition. Saderne, V., P. Fietzek, and P. M. J. Herman. 2013. Extreme Variations of pCO₂ and pH in a 635 636 Macrophyte Meadow of the Baltic Sea in Summer: Evidence of the Effect of Photosynthesis and Local Upwelling. PLoS ONE 8: e62689. 637 Shitashima, K. 2010. Evolution of compact electrochemical in-situ pH-pCO₂ sensor using 638 639 ISFET-pH electrode, p. 1-4. OCEANS 2010. 640 Tabacco, M. B., M. Uttamial, M. Mcallister, and D. R. Walt. 1999. An autonomous sensor 641 and telemetry system for low-level pCO_2 measurements in seawater. Anal. Chem. 71: 642 1483-1483. 643 Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. C. Sutherland. 1993. 644 Seasonal variation of CO₂ and nutrients in the high-latitude surface ocean: a comparative study. Global Biogeochem. Cycles 7: 843-878. 645 Takahashi, T. and others 2009. Climatological mean and decadal change in surface ocean 646 647 pCO₂, and net sea-air CO₂ flux over the global oceans. Deep-Sea Res., Pt II 56: 648 554-577. 649 Thomas, H., and B. Schneider. 1999. The seasonal cycle of carbon dioxide in Baltic Sea surface waters. J. Mar. Syst. 22: 53-67. 650

651	Turk, D., J. W. Book, and W. R. Mcgillis. 2013. pCO ₂ and CO ₂ exchange during high bora
652	winds in the Northern Adriatic. J. Mar. Syst. 117–118: 65-71.
653	Turk, D., V. Malačič, M. D. Degrandpre, and W. R. Mcgillis. 2010. Carbon dioxide
654	variability and air-sea fluxes in the northern Adriatic Sea. J. Geophys. Res. 115:
655	C10043.
656	Wang, Z. A., W. J. Cai, Y. C. Wang, and B. L. Upchurch. 2003. A long pathlength liquid-core
657	waveguide sensor for real-time pCO_2 measurements at sea. Mar. Chem. 84: 73-84.
658	Wang, Z. H., Y. H. Wang, W. J. Cai, and S. Y. Liu. 2002. A long pathlength
659	spectrophotometric pCO_2 sensor using a gas-permeable liquid-core waveguide.
660	Talanta 57: 69-80.
661	Watson, A. J. and others 2009. Tracking the variable North Atlantic sink for atmospheric CO ₂ .
662	Science 326: 1391-1393.
663	Whitledge, T. E., S. C. Malloy, C. J. Patton, and C. O. Wirick. 1981. Automated nutrient
664	analysis in seawater. Brookhaven National Lab Report 51398: 216.
665	Willcox, S. and others 2009. An autonomous mobile platform for underway surface carbon
666	measurements in open-ocean and coastal waters, p. 1-8. OCEANS 2009, MTS/IEEE
667	Biloxi - Marine Technology for Our Future: Global and Local Challenges.
668	Wolf-Gladrow, D. A., R. E. Zeebe, C. Klaas, A. Kortzinger, and A. G. Dickson. 2007. Total
669	alkalinity: The explicit conservative expression and its application to biogeochemical
670	processes. Mar. Chem. 106: 287-300.
671	Yates, K. K., C. Dufore, N. Smiley, C. Jackson, and R. B. Halley. 2007. Diurnal variation of
672	oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar. Chem.
673	104: 110-124.
674	Zeebe, R. E., and D. Wolf-Gladrow (2001), CO2 in Seawater: Equilibrium, Kinetics, Isotopes.,
675	356 pp., Elsevier, Amsterdam.

Equilibrator	Measured phase	Determination	References
direct contact of water-gas	gas	NDIR	ACT (2009a); Nemoto et al. (2009)
gas permeable interface	gas	NDIR	Kayanne et al. (2002); Fiedler et al. (2012); Saderne et al. (2013), this study
gas permeable interface	indicator solution	electrode	Shitashima 2010
gas permeable interface	indicator solution	fluorescence	Goyet et al. (1992); Tabacco et al. (1999); Rubin and Ping Wu (2000)
gas permeable interface	indicator solution	spectrophotometry	Degrandpre (1993); Lefévre et al. (1993); Degrandpre et al. (1995; 1999);
			Wang et al. (2002; 2003); Nakano et al. (2006); Lu et al. (2008)

Table 2 The estimated uncertainties of the pCO_2 (µatm) calculated from various inputs (pH and TA, or DIC and TA) in this study

	Massured #CO	Sources of unce				
	Measured pCO_2	pK_1, pK_2	TA	DIC	pН	Uncertainty of the calculated pCO_2
ACT	280 to 840	4 to 12	0.5		6.8	7.5
SNOMS	300 to 500	7 to 10	2.3	3.8		8.1
Aquatron	280 to 860	6 to 15	4.4	6.6		9.9

No.	Start port	End port	Start date	End date	Sensor	pCO _{2,Pro} - pCO _{2,DICTA}	SD	\mathbf{R}^2	n
1	Taranga	Vancouver	23-Oct-09	11-Nov-09	48	5.7	9.8	0.91	14
2	Vancouver	Brisbane	02-Dec-09	25-Dec-09	48	failed measurement			
3	Taranga	Los Angeles	29-Jan-10	18-Feb-10	47	8.3	9.9	0.92	18
4	Los Angeles	Wellington	27-Mar-10	13-Apr-10	47	16.9	4.5	0.98	14
5	Taranga	Los Angeles	14-May-10	02-Jun-10	47	12.0	8.2	0.94	16
6	Vancouver	Auckland	25-Jun-10	14-Jul-10	48	failed measurement			
7	Taranga	Los Angeles	18-Aug-10	07-Sep-10	48	-6.6	8.6	0.97	19
8	Los Angeles	Brisbane	05-Oct-10	25-Oct-10	48	5.9	6.1	0.98	20
9	Taranga	Los Angeles	21-Nov-10	12-Dec-10	48	8.7	7.5	0.98	15
10	Los Angeles	Brisbane	18-Jan-11	12-Feb-11	none	no measurement; system removed for cali	bration		
11	Taranga	Los Angeles	16-Mar-11	10-Apr-11	none	no measurement; system removed for cali	bration		
12	Los Angeles	Brisbane	05-May-11	25-May-11	recalibrated 47	successful measurement; no DIC and TA	data		
13	Taranga	Los Angeles	15-Jun-11	06-Jul-11	recalibrated 47	successful measurement; no DIC and TA	data		
14	Los Angeles	Brisbane	30-Jul-11	20-Aug-11	recalibrated 47	0.3	18.0	0.85	18
15	Taranga	Los Angeles	20-Sep-11	09-Oct-11	recalibrated 47	6.6	8.3	0.94	15
16	Los Angeles	Brisbane	09-Nov-11	29-Nov-11	recalibrated 48	2.6	11.3	0.92	19
17	Taranga	Los Angeles	03-Jan-12	17-Jan-12	recalibrated 48	24.1	5.1	0.99	14
			18-Jan-12	23-Jan-12	recalibrated 48	-15.57 (sudden drop)	10.1		5
18	Los Angeles	Taranga	11-Feb-12	29-Feb-12	recalibrated 48	7.4	7.4	0.94	14

Table 3 The mean and standard deviation (SD) of the differences in the CO_2 -Pro outputs ($pCO_{2,Pro}$) and those calculated from DIC and TA ($pCO_{2,DICTA}$) during the SNOMS operation in the Pacific. R² refer to the correlation coefficients and *n* is the number of the pairs of pCO_2 .

	Application	Mode	Time length	Deference and its uncertainty	Difference with the reference (µatm)		
	Application			Reference and its uncertainty	direct output	corrected output	
ACT	mooring test	in situ	16-day	calculation from pH and TA (\pm 7.5 µatm)	8.7 ± 14.1	0 ± 7.4	
SNOMS	SOO observation	underway	several months	veral months calculation from DIC and TA ($\pm 8.1 \ \mu atm$)		0.2 ± 7.8	
				direct and calibrated measurement ($\pm 2 \ \mu atm$)		-0.3 ± 3.9	
Aquatron	laboratory test	underway	2 months	direct and calibrated measurement ($\pm 2 \ \mu atm$)	-3.0 ± 4.4	0 ± 2.9	

Table 4 Summary of the assessment results of the CO₂-Pro in this study

Figure Captions:

Fig. 1 Schematic of the flow paths of the ProOceanus CO_2 -ProTM pCO₂ sensor. See the text for details.

Fig. 2 The results of the ACT test in Kaneohe Bay: (A) the continuously hourly $pCO_{2,Pro}$ from the CO_2 -Pro and the $pCO_{2,pHTA}$ calculated from discrete pH and TA; (B) the correlation between the δpCO_2 ($\delta pCO_2 = pCO_{2,Pro} - pCO_{2,pHTA}$) and $pCO_{2,Pro}$, the linear fit and the 95% prediction bands are shown; (C) δpCO_2 (8.4 ± 14.1 µatm) vs. time; (D) $\delta pCO_{2,corr} = pCO_{2,ProCorr} - pCO_{2,pHTA}$ (0 ± 7.4 µatm) vs. time, where $pCO_{2,ProCorr}$ is the sensor output corrected by $pCO_{2,pHTA}$ using the regression shown in panel B. Figure adapted from ACT (2009a).

Fig. 3 For the 12 Pacific transects during the SNOMS operation, (A) $\delta pCO_2 = pCO_{2,Pro}$ -

pCO_{2,DICTA}, where pCO_{2,Pro} is the raw sensor output and pCO_{2,DICTA} is calculated from DIC and TA, the mean and SD of δ pCO₂ are 6.4 ± 12.3 µatm; (B) δ pCO_{2,corr} = pCO_{2,ProCorr} - pCO_{2,DICTA}, where pCO_{2,ProCorr} is the pCO_{2,Pro} corrected by pCO_{2,pHTA} for individual transects, the mean and SD of δ pCO_{2,corr} are 0.2 ± 7.8 µatm. The increasing δ pCO₂ in transect 14 and the sudden changes in δ pCO₂ in transect 17 are shown in panel (C) and (D), together with the δ pCO_{2,corr}.

Fig. 4 (A) The overlapping route of the two ships of opportunity; the latitudinal distributions of (B) salinity, (C) SST, (D) pCO₂ measured by the PMEL and SNOMS systems; and their differences in (E) SST, salinity and (F) pCO₂. Δ Time is the difference in measuring time at the same location for the two ships.

Fig. 5 The differences of the simultaneous measurements (time difference less than 0.5 day and distance within 250 km) by the SNOMS and PMEL systems: (A) SST and salinity; (B) pCO₂.

Fig. 6 The variations of (A) temperature and salinity, (B) DIC and TA, (C) pCO_2 measured by the CO_2 -Pro and the NOIZ system, (D) salinity normalized nDIC and nTA, (E) nitrate and phosphate, and (F) silicate and ammonia during the Aquatron test. The dashed line and the solid line correspond to the starting of the intercomparison and the substantial water top up event respectively. The arrow lines in panel (C) correspond to the starting of the bubbling of the CO_2 -free gas. See the text for details.

Fig. 7 The results of the two-month intercomparison between the CO₂-Pro and the calibrated NOIZ system: (A) pCO₂; (B) the pCO₂ differences ($\delta pCO_2 = pCO_{2,Pro} - pCO_{2,NOIZ}$) vs. pCO_{2,NOIZ}, the linear fit and the 95% prediction bands are shown; (C) δpCO_2 vs. time; (D) $\delta pCO_{2,corr}$ is the pCO₂ differences between the corrected pCO_{2,Pro} and pCO_{2,NOIZ}.

Fig. 8 (A) The concentrations of TA_{meas} from direct measurement and Alk_{sys} calculated from the measured DIC and pCO₂; (B) pCO₂ measured by the CO₂-Pro (pCO_{2,Pro}) and pCO_{2,DICTA} calculated from the measured DIC and TA; (C) the differences of TA and pCO₂ between direct measurements and the carbonate calculations ($Alk_{excess} = TA_{meas} - Alk_{sys}$, pCO_{2,bias} = pCO_{2,Pro} - pCO_{2,DICTA}); (D) the correlation between the percentage of pCO_{2,bias} and Alk_{excess} in comparison to the measured values (%pCO_{2,bias} = pCO_{2,bias} / pCO_{2,Pro}, %Alk_{excess} = Alk_{excess} / TA_{meas}).

Fig. 9 (A) A typical measuring cycle of the CO₂-Pro on PAP mooring, Δt_{cell} is the optical cell temperature deviation during the measurement in compared to that during the zero point calibration, pCO_{2,raw} and pCO_{2,tcorr} are the raw sensor outputs and those corrected for the influence of Δt_{cell} ; (B) the errors in xCO₂ measurements resulting from Δt_{cell} for the three standard gases in the laboratory test, and those after correction for the temperature influence. See the text for details.

the laboratory test, and those after correction for the temperature influence. See the text for details.

Fig. 1 Schematic of the flow paths of the ProOceanus CO_2 -ProTM pCO₂ sensor. See the text for

details.

Fig. 2 The results of the ACT test in Kaneohe Bay: (A) the continuously hourly $pCO_{2,Pro}$ from the CO_2 -Pro and the $pCO_{2,pHTA}$ calculated from discrete pH and TA; (B) the correlation between the δpCO_2 ($\delta pCO_2 = pCO_{2,Pro} - pCO_{2,pHTA}$) and $pCO_{2,Pro}$, the linear fit and the 95% prediction bands are shown; (C) δpCO_2 (8.4 ± 14.1 µatm) vs. time; (D) $\delta pCO_{2,corr} = pCO_{2,ProCorr} - pCO_{2,pHTA}$ (0 ± 7.4 µatm) vs. time, where $pCO_{2,ProCorr}$ is the sensor output corrected by $pCO_{2,pHTA}$ using the regression shown in panel B. Figure adapted from ACT (2009a).

Fig. 3 For the 12 Pacific transects during the SNOMS operation, (A) $\delta pCO_2 = pCO_{2,Pro}$ -

pCO_{2,DICTA}, where pCO_{2,Pro} is the raw sensor output and pCO_{2,DICTA} is calculated from DIC and TA, the mean and SD of δpCO_2 are $6.4 \pm 12.3 \mu atm$; (B) $\delta pCO_{2,corr} = pCO_{2,ProCorr} - pCO_{2,DICTA}$, where pCO_{2,ProCorr} is the pCO_{2,Pro} corrected by pCO_{2,pHTA} for individual transects, the mean and SD of $\delta pCO_{2,corr}$ are $0.2 \pm 7.8 \mu atm$. The increasing δpCO_2 in transect 14 and the sudden changes in δpCO_2 in transect 17 are shown in panel (C) and (D), together with the $\delta pCO_{2,corr}$.

Fig. 4 (A) The overlapping route of the two ships of opportunity; the latitudinal distributions of (B) salinity, (C) SST, (D) pCO₂ measured by the PMEL and SNOMS systems; and their differences in (E) SST, salinity and (F) pCO₂. Δ Time is the difference in measuring time at the same location for the two ships.

Fig. 5 The differences of the simultaneous measurements (time difference less than 0.5 day and distance within 250 km) by the SNOMS and PMEL systems: (A) SST and salinity; (B) pCO₂.

Fig. 6 The variations of (A) temperature and salinity, (B) DIC and TA, (C) pCO_2 measured by the CO_2 -Pro and the NOIZ system, (D) salinity normalized nDIC and nTA, (E) nitrate and phosphate, and (F) silicate and ammonia during the Aquatron test. The dashed line and the solid line correspond to the starting of the intercomparison and the substantial water top up event respectively. The arrow lines in panel (C) correspond to the starting of the bubbling of the CO_2 -free gas. See the text for details.

Fig. 7 The results of the two-month intercomparison between the CO₂-Pro and the calibrated NOIZ system: (A) pCO₂; (B) the pCO₂ differences ($\delta pCO_2 = pCO_{2,Pro} - pCO_{2,NOIZ}$) vs. pCO_{2,NOIZ}, the linear fit and the 95% prediction bands are shown; (C) δpCO_2 vs. time; (D) $\delta pCO_{2,corr}$ is the pCO₂ differences between the corrected pCO_{2,Pro} and pCO_{2,NOIZ}.

Fig. 8 (A) The concentrations of TA_{meas} from direct measurement and Alk_{sys} calculated from the measured DIC and pCO₂; (B) pCO₂ measured by the CO₂-Pro (pCO_{2,Pro}) and pCO_{2,DICTA} calculated from the measured DIC and TA; (C) the differences of TA and pCO₂ between direct measurements and the carbonate calculations ($Alk_{excess} = TA_{meas} - Alk_{sys}$, pCO_{2,bias} = pCO_{2,Pro} - pCO_{2,DICTA}); (D) the correlation between the percentage of pCO_{2,bias} and Alk_{excess} in comparison to the measured values (%pCO_{2,bias} = pCO_{2,bias} / pCO_{2,Pro}, %Alk_{excess} = Alk_{excess} / TA_{meas}).

Fig. 9 (A) A typical measuring cycle of the CO_2 -Pro on PAP mooring, Δt_{cell} is the optical cell temperature deviation during the measurement in compared to that during the zero point calibration, $pCO_{2,raw}$ and $pCO_{2,tcorr}$ are the raw sensor outputs and those corrected for the influence of Δt_{cell} ; (B) the errors in xCO_2 measurements resulting from Δt_{cell} for the three standard gases in the laboratory test, and those after correction for the temperature influence. See the text for details.