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Abstract: We have investigated how the microbially-driven processes of carbon (C) mineralization
(respiration) and nitrogen (N) mineralization/immobilization in a soil from the northern Maritime
Antarctic respond to differences in water availability (20% and 80% water-holding capacity) and
temperature (5°C and 15°C) in the presence and absence of different organic substrates (2 mg C as either
glucose, glycine or tryptone soy broth (TSB) powder (a complex microbial growth medium)) in a
controlled laboratory experiment over 175 days. Soil respiration and N mineralization/immobilization
in the presence of a C-rich substrate (glucose) increased with increases in water and temperature. These
factors were influential individually and had an additive effect when applied together. For the N-rich
substrates (glycine and TSB), microbial responses to increased water or temperature alone were weak or
not significant, but these factors interacted to give significantly positive increases when applied together.
These data indicate that under the expected changes in environmental conditions in the Maritime
Antarctic, where temperature and the availability of water and organic substrates will probably increase,
soil microbial activity will lead to more rapid C and N cycling and have a positive feedback on these
biogeochemical processes, particularly where or when these factors increase concurrently.
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Introduction

Mean annual air temperatures in the Maritime Antarctic,
particularly along the western Antarctic Peninsula,
have risen at approximately double the rate of the global
mean surface temperature over the past 50–100 years
(up to 0.4ºC decade-1 compared to 0.2ºC decade-1; Hansen
et al. 2006, Adams et al. 2009). The warming of terrestrial
Maritime Antarctic ecosystems has been accompanied
by changes to precipitation patterns, with increases
in snow accumulation in recent decades (Adams et al.
2009, Thomas et al. 2009), and alterations to the population
size and range of plant species (Fowbert & Smith
1994, Smith 1994, Convey & Smith 2006, Convey 2011).
However, Convey et al. (2011) concluded that the
recently established southern limit for flowering plants
in Antarctica was unlikely to be linked to the recent

warming trend. In the coming decades, the expansion
of Maritime Antarctic plant populations will probably
enhance and alter nutrient inputs to soils (Hill et al.
2011), with inputs of carbon (C) and nitrogen (N) leading
to significant increases in soil microbial biomass
(Davey & Rothery 1992, Malosso et al. 2004, 2005,
Dennis et al. 2012).

Warming influences the size and composition of
soil microbial communities in Maritime Antarctic soils,
with substantial increases in cyanobacteria (autotrophs)
and heterotrophic microorganisms being associated
with experimental warming in the northern Maritime
Antarctic (Wynn-Williams 1996, Yergeau et al. 2012).
Dennis et al. (2013a) investigated the effects of increased
soil temperature, water and substrate availability on
soil bacterial communities on Signy Island (60°S) over
12 months. The study showed that bacterial communities
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responded positively to organic substrates, but that
responses to warming alone were limited. Little is known
of the combined effects of warming and changes in water
and substrate availability on the microbial processes in the
Maritime Antarctic; however, this is the more probable
scenario as changes in environmental factors rarely occur
singly. Allison et al. (2010) suggest that the soil microbial
response to warming depends on the efficiency of the soil
microbes in using C, with less C allocated to microbial
growth under warming conditions, and that this response
differs with organic substrate quality.

We report a controlled laboratory-based study on soils
from Signy Island. This study was designed to extend the
field experiments described by Dennis et al. (2013a),
as logistical constraints prevented biogeochemical process
measurements in the field.We tested the effects of warming,
water addition and substrate supply on the key soil
microbial process of C mineralization/soil respiration and
inorganic N dynamics (mineralization/immobilization).

Materials and methods

Site and soil

The soil samples were collected at Wynn Knolls (60°41'56"S,
45°38'10"W), Signy Island, South Orkney Islands (northern
Maritime Antarctica) during the 2008–09 summer and
transported frozen at -20°C to the UK. Wynn Knolls is
situated c. 500m from thewestern shoreline of Signy Island at
an altitude of 199 metres above sea level. Signy Island has
an oceanic climate, characterized by dense cloud cover during
the summer and precipitation of between 350–500mm
water equivalent per annum, with much of the water falling
as rain in the summer (Dennis et al. 2013a). Mean air
temperatures at Signy Islandwere between -2–3 °Cduring the
summer and -2– -17°C during the winter (Dennis et al.
2013a). At 1–5 cm depth, the mean annual soil temperature
was -2.5°C, the highestmonthlymean temperaturewas 3.6°C
(January) and the lowest was -9.5°C (July) (Dennis et al.
2013a). The soil contained 1.4mg organic C g-1 soil and
0.4mg total N g-1 soil, and had a pHwater of 7.5. Further site
and soil details are reported in Dennis et al. (2012, 2013a).

Experimental design

The soil samples were thawed and sieved (2 mm) in the
field-moist state then kept at <5°C for no more than
24 hours before the experiment was established.
Sub-samples of soil (40 g dry weight equivalent) were
weighed into 64 glass incubation jars with 125 cm3

volume. The experiment comprised two water addition
treatments, two incubation temperatures and addition of
three different organic substrates plus a no-substrate
control. Each combination was replicated four times (i.e.
two water additions x two temperatures x four substrate

treatments x four replicates = 64). The incubation jars
were fitted with gas-tight septa and incubated for
175 days. These conditions were designed to support the
parallel field experiment (Dennis et al. 2013a) and
broadly simulate increases in soil nutrients associated
with organic input from algae and cyanobacteria.

The water content was adjusted by the addition of
distilled water to achieve either 20% or 80% of the soil
water-holding capacity (WHC; 100%WHCwas determined
on separate sub-samples of the soil). Soil WHC of 20% and
80% were selected to represent the extremes of dryness and
wetness expected on Signy Island. When the soil samples
were collected the WHC was between 80–100%. Water
content was maintained by re-weighing and addition of
distilled water as necessary after each gas sampling occasion
(see below).

The soils were incubated at either 5°C or 15°C
in thermostatically controlled, fan-assisted incubators.
These temperatures were selected to provide a comparison
between a warm day in summer (c. 5°C) and extreme
warming events (15°C).

The substrate treatments included glucose (a simple
C-rich organic substrate; Aldrich, UK), glycine
(a combined organic C and N substrate; Aldrich, UK)
or tryptone soy broth (TSB) powder (a complex organic C
and N substrate; Difco, USA), or no-substrate as a
control. Each substrate provided an additional 2 mg C g-1

dry weight soil. The glycine and TSB supplied organic
N at the rate of 0.58 and c. 0.2 mgN g-1 dry weight soil,
respectively (the N content of TSB is slightly variable
because it is not a defined medium).

Carbon mineralization/soil respiration

Periodically (approximately once every 10–15 days) the
headspace from each incubation jar was sampled (1 ml
volume) with a syringe and CO2 concentration was
determined by gas chromatography (Hopkins & Shiel
1996; Varian 90 GC, fitted with a thermal conductivity
detector, Poropak Q column and using helium as the
carrier gas). After each gas sampling, the septa were
removed from the incubation jars for c. 30 minutes to
allow headspace gas to be refreshed, then the jars were
resealed (as described above, gravimetric water content
was corrected after each sampling occasion). The CO2

concentration was used to calculate respiration rate and
cumulative CO2 production with time. The total CO2

produced over 175 days from the substrate-amended
treatments, minus that from the corresponding
no-substrate controls, were used to estimate the
equivalent proportion of added C lost as CO2.
Incubation for 175 days was selected as this is sufficient
time for the burst of CO2 following substrate addition to
have subsided (Hopkins et al. 2011). Total CO2 could not
be used to accurately estimate the actual substrate C
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mineralization because a correction could not be made for
priming, i.e. the amount of C mineralized from the
indigenous soil organic matter as a result of the added
substrate. The error on the estimate for priming was
probably small due to the low C content of the indigenous
soil. However, it cannot be discounted because significant
priming has been indicated in another soil sample from
Signy Island (Malosso et al. 2004).

Extractable organic carbon

Extractable organic C in the soil was determined prior to
substrate addition and after 175 days of incubation.
Organic C was extracted from 10 g (wet weight) soil

with 40 cm3 of 1.0M potassium chloride shaken for
30 minutes, centrifuged and frozen prior to flow injection
analysis (Skalar Analytical BV, The Netherlands).

Nitrogen mineralization/immobilization

The same samples prepared for the extractable organic C
analyses were used to determine extractable NH4

+-N
(ammonium) and NO3

--N (nitrate) plus NO2
--N (nitrite) by

flow injection analysis (Skalar Analytical BV). These data
were used to estimate net mineralization/immobilization of
inorganic N in the soil, but could not be used to reliably
estimate totalNmineralized from the added substrates due to
errors from primed N mineralization and N loss to the
gaseous phase by denitrification which was not determined.

Statistical analyses

The data for Cmineralization/soil respiration rate and the
concentrations of extractable organic C and inorganic
N ions were each subject to three-way ANOVA with two
timepoints using SPSS-21. The significance differences
between means were determined using Tukey’s Honestly
Significant Difference calculated at P< 0.05.

Results

Carbon mineralization/soil respiration

The addition of water to 20% and 80% WHC led to a
significantly increased basal soil respiration rate. The
effect of warming on the basal soil respiration rate was

Fig. 1. Carbon (C) mineralization/soil respiration for soil
fromWynn Knolls, Signy Island after treatment with no
substrate, glucose, glycine or tryptone soy broth (TSB)
incubated under cold and dry (CD) conditions (5°C and 20%
water-holding capacity, WHC), cold and wet (CW) conditions
(5°C and 80% WHC), warm and dry (WD) conditions
(15°C and 20% WHC), or warm and wet (WW) conditions
(15°C and 80% WHC) for 175 days. Each value is the mean
of four replicates and the bars are± standard error. a. The
respiration rate. b. The net C mineralization expressed as the
proportion of substrate C mineralized (i.e. the additional
CO2 produced over 175 days above that produced in the
no-substrate control) with no allowance for priming. Columns
with the same letter are not significantly different (P< 0.05).

Fig. 2. Extractable organic carbon (C) concentrations for soil
from Wynn Knolls, Signy Island after treatment with no
substrate, glucose, glycine or tryptone soy broth (TSB)
incubated under cold and dry (CD) conditions (5°C and 20%
water-holding capacity, WHC), cold and wet (CW) conditions
(5°C and 80% WHC), warm and dry (WD) conditions (15°C
and 20% WHC), or warm and wet (WW) conditions (15°C
and 80% WHC) at day 0 and day 175. Each value is the mean
of four replicates and the bars are± standard error.
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not significant. However, there was a significant positive
interaction between water addition and warming, i.e.
water and warming operated additively to increase the
basal respiration rate (Fig. 1a).

Addition of glucose, glycine or TSB led to increased
respiration rate for all warming and moisture combinations
relative to the no-substrate control (Fig. 1a). In the presence
of glucose, both water addition and warming increased
respiration rate when applied singly, and there was a
positive interaction between water addition and warming
(Fig. 1a). Contrasting with the glucose treatment, addition
of water or warming alone had no significant effect
on respiration in the presence of either glycine or TSB
(Fig. 1a). However, both treatments demonstrated
significant positive interactions between water addition
and warming.

The total C mineralized to CO2, expressed as the
proportion of the substrate C, followed the same pattern
as the respiration rate (Fig. 1b). Under optimal conditions
of water and warming, the total C mineralized was
equivalent to 66% for glucose, 85% for glycine and 48%
for TSB (Fig. 1b).

Extractable organic carbon

In the no-substrate controls, the extractable organic
C concentrations declined with time (Fig. 2). Addition
of glucose, glycine or TSB led to significantly increased
extractable organic C concentrations after 175 days
compared with the no-substrate control (Fig. 2). For the
cold and dry conditions, the concentration of extractable
organic C was greater after 175 days compared with
day 0, but for all other water addition and warming
combinations the extractable organic C concentration
after 175 days was the same as at day 0 (Fig. 2).

Nitrogen mineralization/immobilization

For both the no-substrate control and the glucose treatment,
the NH4

+ concentration declined significantly with time for
all water addition and warming combinations (Fig. 3a). For
the glycine treatment, the NH4

+ concentration after 175
days was significantly less than at day 0 for the cold and dry
treatment, but there were no significant differences for
the other combinations (Fig. 3a). For the TSB treatments,
the NH4

+ concentrations all declined significantly with
time (Fig. 3a). For both the glycine and TSB treatments, the
NH4

+ concentration was significantly greater than the no-
substrate control after 175 days, except under cold and dry
conditions (Fig. 3a).

In all cases, the NO2
- concentrations were very small

(often undetectable), thus they are described alongside the
NO3

- data. In the no-substrate control, NO2
- and NO3

--N
concentrations increased with time, there were positive
effects of water addition and warming, and a significant

Fig. 3. Inorganic nitrogen (N) concentrations for soil from
Wynn Knolls, Signy Island after treatment with no
substrate, glucose, glycine or tryptone soy broth (TSB)
incubated under cold and dry (CD) conditions (5°C and
20% water-holding capacity, WHC), cold and wet (CW)
conditions (5°C and 80% WHC), warm and dry (WD)
conditions (15°C and 20% WHC), or warm and wet
(WW) conditions (15°C and 80% WHC) at day 0 and day
175. Each value is the mean of four replicates and the bars
are ± standard error. a. Ammonium (NH4

+) concentration.
b. Sum of the nitrate (NO3

-) and nitrite (NO2
-)

concentrations (NO2
- was present in trace concentrations or

undetectable). c. Combined inorganic N concentrations
(sum of NH4

+, NO3
- and NO2

- concentrations).
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interaction between these factors (Fig. 3b). In the presence
of glucose, warming led to a significant increase in NO2

-

and NO3
--N concentrations (Fig. 3b). For the glycine and

TSB treatments, there were significant increases in NO2
-

and NO3
--N concentrations for both water addition and

warming treatments, with a significant interaction between
these two factors with glycine (Fig. 3b).

Significant declines in total inorganic N concentration
(sum of NH4

+, NO3
- and NO2

-) were observed over time
for all of the water addition and warming combinations
for the no-substrate control and glucose treatment
(Fig. 3c). For the glycine and TSB treatments, the total
inorganic N concentration increased with time in all
cases, except under the cold and dry conditions (Fig. 3c).

Discussion

Carbon mineralization/soil respiration

The addition of an organic substrate increased C
mineralization, but the respiratory response to water
addition and warming differed according to the substrate.
The proportion of C mineralized was consistent with
previous studies, where the total amount of C mineralized
was equivalent to c. 80% of the C added as glucose or
amino acids, these studies were comparatively short-term
and had warmer incubation temperatures (Hopkins et al.
1997, Meli et al. 2003). Mineralization of the indigenous
soil organic C increased significantly with water addition
alone but not warming alone. By contrast, in the presence
of glucose mineralization of C responded positively to
both water addition and warming. This observation is
supported by the higher concentration of extractable
organic C in cold and dry conditions in the presence of
glucose. The organic substrates that supplied both organic
C and N (glycine and TSB) only responded to water
addition and increased temperature when these factors
were combined. These results may be the consequence of
differential responses within the soil microbial community,
with some organisms able to utilize glucose at low
temperatures provided water is not limiting, and other
organisms able to utilize glucose when water availability is
low provided the temperature is high enough (Newsham
et al. 2010).

The positive effect of water addition could be due
to more rapid diffusion of the substrate, thus under
wetter conditions substrates are more readily available
to a larger proportion of the soil microbial community.
Such effects have been observed for other organic
substrates, the mineralization of which is influenced by
the antecedent water content (Zak et al. 1999, Newsham
et al. 2010).

Mineralization of C from glucose and the basal
respiration rate were more sensitive to temperature than
mineralization from the N-rich substrates. Mineralization

of C from the N-rich substrates only responded positively
to temperature in the presence of additional water. The
variable temperature sensitivity of C mineralization in soils
is associated with substrate complexity; mineralization of
more complex substrates shows a stronger temperature
response than is seen with simple substrates based on
thermodynamic theory (Hartley & Ineson 2008, Hartley
et al. 2008, Allison et al. 2010). This probably applies to
TSB, which contains an undefined mixture of peptides,
possibly requiring several different catabolic enzymes for
complete mineralization. However, glycine is a relatively
simple molecule which deaminates to ethanoate (acetate), a
precursor in the tricarboxylic acid pathway. It would
appear that there is either a thermodynamic constraint on
glycine catabolism or that this amino acid is not being
mineralized but being used in anabolic metabolism
incorporated into microbial biosynthetic processes. Hill
et al. (2011) identified plants in theMaritimeAntarctic with
a high affinity for amino acids as an N source, thus it is
possible that at least some of the soil microorganisms in this
environment do the same.

Irrespective of the mechanism, it is clear that C
mineralization is limited by both water and temperature
to a greater extent in the presence of the N-rich substrates
than C-rich substrates.

Nitrogen mineralization/immobilization

The decline in NH4
+ and total inorganic N over time in

the no-substrate control and with glucose treatment is
evidence for net N immobilization, the result of the soil
microbial community being more limited by N supply
than C supply, thus N is immobilized from the external
environment (Harmsen & van Schreven 1955). Such a
response in soils is not uncommon, especially following
the addition of a C-rich substrate such as glucose
(Dungait et al. 2013). Total inorganic N also declined
over time in response to water addition and warming in
the no-substrate control, a finding consistent with an N
limitation to microbial activity.

With the glycine and TSB treatments, the effect of the
organic N in the added substrate on net N mineralization
is evident. Total inorganic N concentration increased
over time in nearly all cases for the glycine treatments
and did not decline over time in nearly all cases for TSB,
with the exception of cold and dry conditions for
both treatments. This is broadly consistent with the C
mineralization responses. Constraints on microbial
activity probably explain the decline in total inorganic
N concentration under cold and dry conditions. Fraser
et al. (2013) demonstrated a clear temperature sensitivity
for enzymes that contribute to N mineralization in soils.

The increases in NO3
- concentrations in nearly all

cases coincide with the C mineralization responses to
water addition and warming for the different treatments.
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This indicates that nitrification was constrained by the same
factors as both C mineralization and net N mineralization/
immobilization. Net nitrification (i.e. accumulation of
NO3

-) in closed soil incubation is frequently observed (e.g.
Hopkins et al. 1988), particularly in soils with near neutral
pH, because leaching losses are absent and oxygen diffusion
in soil is rarely limited over the small distances that occur
in laboratory microcosms. Nitrate accumulation suggests
that N losses from the soil to the gaseous phase were
minor, consistent with the lack of anoxic conditions, and
that chemoautotrophic nitrifying bacteria are active in
these soils, an observation consistent with an earlier
report (Wilson et al. 1997). The amount of CO2 fixed
by nitrifying bacteria is usually small by comparison
with the amount of CO2 released by heterotrophic
microorganisms and, therefore, probably does not
influence the interpretation of the C mineralization data,
not least because nitrification rates can be temporarily
suppressed by high CO2 concentrations that could occur
in closed incubation vessels (Keeney et al. 1985,
Kinsbursky & Saltzman 1990).

Relation to field conditions

Water fluctuations in the field are highly variable
depending upon melting and precipitation, both of
which can be sudden and lead to rapid changes. During
establishment of the field work, the liquid water content
of the soil increased to approximately 100% WHC as a
result of a rapid rise in temperature leading to snow melt
followed by rain (Dennis et al. 2013a). For these reasons,
the contrast between 20% and 80%WHC can be regarded
as representative of field conditions.

The incubation temperatures selected for the laboratory
study reflect the difference between mean soil temperatures
on a warm day in summer (3.6°C; Dennis et al. 2013a) and
extreme warming events during which the surface
temperature may rise to more than 20°C (Convey 2013).

The additional C and N supplied by the substrates
(2 mg C g-1 soil and 0.58 mgN g-1 soil or c. 0.2 mgN g-1

soil for glycine and TSB, respectively) represent an
approximate doubling in the organic C and total N
contents (the soil organic C content was 1.4 mg C g-1 soil
and the total N content was 0.4 mgN g-1 soil). Although
this is a large increment, it is not unrealistic for discrete
sites of nutrient deposition in an otherwise resource-poor
environment, such as at the sites of guano deposition or
directly beneath and surrounding plants (Hopkins et al.
2006). For these reasons, the laboratory conditions are
considered to be representative of the field conditions.

Comparison with other Antarctic studies

Positive responses to warming have been reported for
microorganisms (Yergeau et al. 2012) and nematodes

(Simmons et al. 2009) in Antarctic soils. The field-based
research with analogous treatments reported by Dennis
et al. (2013a) demonstrated microbial responses in terms
of concentration of lipid biomarkers, i.e. growth, rather
than physiological responses, over approximately one
year. They showed a positive response to organic
substrate additions, but no responses were observed with
either water addition or warming and no interactions
between factors were identified (Dennis et al. 2013a). Soil
saturation early in the experiment may account for
the lack of any measured effect of water addition in the
field. The passive warming method (open-top chambers)
employed by Dennis et al. (2013a) had a significant effect
on temperature by increasing the monthly minimum, mean
and maximum temperatures by 0.3, 0.6 and 0.7°C,
respectively. However, by comparison with the incubation
temperatures in the laboratory, warming in the field was
relatively modest. Furthermore, passive warming did not
have a significant effect on the number of freeze-thaw cycles
in the soil (i.e. the periods when the soil was above 0°Cwere
no more frequent with warming than for the control).
This may explain the absence of a microbial response to
warming in the field.

An analogous substrate-addition study in the more
environmentally extreme Dry Valleys region of Antarctica
showed increases in microbial activity (respiration and
enzyme activities) over several years (Hopkins et al. 2008,
Sparrow et al. 2011, Dennis et al. 2013b). The study
included addition of inorganic N (NH4Cl) and reported
microbial responses to inorganic N when glucose was
added, this is consistent with our observations of net
N immobilization when a C-rich substrate was added, but
net N mineralization when N-rich substrates were added
(Hopkins et al. 2008, Sparrow et al. 2011). Thus, the
availability of N in these soils influences microbial activity
alongside other factors, including organic C supply. These
results are consistent with our findings and those of Dennis
et al. (2013a). This study did not include warming or
effective water addition (temperatures in the Dry Valleys
are often too low for meaningful water manipulations
except over very short periods), thus there are no results
from other water addition or warming experiments with
which to compare our results.

Conclusions

In a soil from the northern Maritime Antarctic, soil
respiration and N mineralization/immobilization in the
presence of a C-rich substrate (glucose) are positively
affected by increases in water and temperature. These
factors were influential individually and had an additive
effect when applied together. For N-rich substrates
(glycine and TSB), microbial responses to increased
water or temperature alone were weak or not significant,
but these factors interacted to give significantly positive
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increases when applied together. These data indicate that
under the expected changes in environmental conditions
in the Maritime Antarctic, where temperature and the
availability of water and organic substrates will probably
increase, soil microbial activity will lead to more rapid
C and N cycling and have a positive feedback on these
biogeochemical processes, particularly where or when
these factors increase concurrently.
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