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On the fate of pumice rafts formed during
the 2012 Havre submarine eruption
Martin Jutzeler1,2, Robert Marsh3, Rebecca J. Carey4, James D.L. White2, Peter J. Talling1 & Leif Karlstrom5

Pumice rafts are floating mobile accumulations of low-density pumice clasts generated by

silicic volcanic eruptions. Pumice in rafts can drift for years, become waterlogged and sink, or

become stranded on shorelines. Here we show that the pumice raft formed by the impressive,

deep submarine eruption of the Havre caldera volcano (Southwest Pacific) in July 2012 can be

mapped by satellite imagery augmented by sailing crew observations. Far from coastal

interference, the eruption produced a single 4400 km2 raft in 1 day, thus initiating a gigantic,

high-precision, natural experiment relevant to both modern and prehistoric oceanic surface

dispersal dynamics. Observed raft dispersal can be accurately reproduced by simulating drift

and dispersal patterns using currents from an eddy-resolving ocean model hindcast. For

future eruptions that produce potentially hazardous pumice rafts, our technique allows real-

time forecasts of dispersal routes, in addition to inference of ash/pumice deposit distribution

in the deep ocean.
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P
umice results from intense vesiculation and quenching of
silicic magma. The buoyancy of pumice clasts depends on
their size, shape, vesicularity, permeability and temperature

when introduced into seawater1–6. Centimetre-to-metre thick
rafts form when large volumes of buoyant pumice clasts are
rapidly released into/onto water. The routes followed by pumice
rafts are dependent on source of pumice clasts, initial raft dime-
nsions, oceanic currents and wind direction, nearby coastlines
and the ability of pumice clasts to remain buoyant1,3,7–12.
Although known to coastal and maritime people since anti-
quity7,8,11–22, sightings of pumice rafts remain uncommon and
spectacular. Before satellite imagery23, stranding of pumice clasts
on coasts and reports of floating pumice rafts from ships were the
only signs of eruptions from uninhabited islands and
seamounts7,8,13,16,17,24–26. The sources of pumice rafts previously
recognized were shallow (o100 mbsl) seamounts3,11,12,16,26,27 and
domes28, subaerial pyroclastic flows and fallout2,18–22,29, shore
erosion and fluvial transport30 or volcanic-triggered landslides25.

The 2012 eruption of the Havre caldera volcano was the first to
unambiguously demonstrate that deep submarine (4700 mbsl)31

silicic eruptions can create pumice rafts (Fig. 1). An earthquake
swarm of 18 events M43.5 over 12.5 h occurred at the 5-km-
wide Havre caldera volcano (31�060S/179�020W) on 17 July 2012
coordinated universal time (UTC)32. Moderate-Resolution
Imaging Spectroradiometer (MODIS) images on 18 and 19 July
UTC show an atmospheric plume and a thermal hot spot31. The
atmospheric plume, probably consisting of steam only, was
sourced from a single point, and was not generated by the drifting
pumice raft, evidence of the relatively cool temperature of the raft
components33. In following days, the raft drifted northwest and
was separated from its then-inactive source31. No raft, plume or
discoloured water was produced by the volcano in the next 46
months following the eruption. In mid-August, the raft was up to
60 cm thick and composed of highly vesicular, rounded pumice
clasts31. In October 2012, a bathymetric survey31 revealed a newly
constructed 250-m-high cone (4700 mbsl) on the southeast rim
of the caldera, possible small aligned cones and a bulge on the
800-m-deep caldera crater wall; youthful pumice was dredged31.

The Havre eruption presents us a rare opportunity for testing a
large-scale natural particle release experiment in an area where
interactions with coastlines and strong boundary currents are
negligible. Satellite altimetry reveals a zone of high eddy kinetic
energy (EKE)—associated with strong horizontal dispersal—along
the eastward-flowing surface currents of the South Tropical
Countercurrent34, just to the north of the Havre caldera volcano.
Observations of surface drift with the local currents are limited to a
relatively small number of geo-referenced floats or drifters that
have traversed the region, although suitable high-resolution model
simulations are now available35–37. At basin and global scales, the
dispersal implicit in model current data has been evaluated by com-
paring model ‘particle’ trajectories with selected drifter obser-
vations38,39. In contrast, rare case studies40–42 allow for more
targeted assessment of models’ regional accuracy and precision.

Here we sample currents from the southwest subtropical
Pacific region of an eddy-resolving global ocean model hindcast
(NEMO) that spans 1988–2010. NEMO43 is a state-of-the-art,
portable ocean modelling framework developed by a consortium
of European institutions. We use results for the hindcast period to
simulate region-typical patterns of particle drift and dispersal (see
Methods). Our choice of this hindcast is guided by evidence that
eddy-resolving simulations can faithfully reproduce the global
EKE field observed with satellite altimetry44, whereas lower-
resolution eddy-permitting simulations are known to substan-
tially underestimate EKE38,45. We combine MODIS satellite
imagery and hindcast simulation of an eddy-resolving ocean
model to track and forecast dispersion of the pumice raft

generated by a deep (4700 mbsl) submarine eruption in July 2012
of the Havre volcano in the Kermadec arc (Southwest Pacific). The
dispersion of the pumice raft is chiefly dependent on oceanic
surface currents and surface winds. This study demonstrates that
pumice rafts can be tracked in near-real time, allowing hazard
assessment for maritime traffic. Our approach allows prediction of
the extent and thickness of pumice clasts and raft-generated
tephra deposits on the seafloor, and we also characterize features
expected in these deposits.

Results
Tracking and observations of the pumice rafts. Using MODIS
imagery46, we mapped the main raft as it moved and divided over
122 days, from 18 July to 17 November (Fig. 1; Supplementary
Figs 1 and 2). Image pixel size (250 m), cloud cover and
increasing area of drift with time hampered tracking of the small,
complex-shaped rafts (Fig. 2) that prevailed after a few weeks of
drifting. Small rafts could be discerned in images acquired up to
22 December 2012 (that is, 157 days after the eruption). The rafts
until 3 August could be selected by image analysis and ‘manual’
picking based on RGB colour (Fig. 1), whereas polygons outlining
areas containing pumice rafts were manually selected thereafter
(Fig. 3; Supplementary Figs 1 and 2). Despite cloud cover
impeding raft observations by MODIS imagery, we were able to
track the size, number and shape complexity of pumice rafts,
which increased with time, until the rafts dissipated by areal
diffusion and/or sinking of the clasts. The initial raft was 400 km2,
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Figure 2 | MODIS satellite images of the pumice raft from the July 2012 Havre submarine eruption. (a) Syn-eruptive plume (white trail) and pumice

raft (yellow) above the submarine vent (arrow) with initial northwest drift (19 July; 01:26 UTC). Note the discoloured water adjacent to the raft (light blue).

(b) The pumice raft is very elongated and swirls (25 July; 00:50 UTC). Note the persistent discoloured water adjacent to the raft. (c) Effect of wind

shear and/or oceanic surface currents on elongated bands of pumice rafts. The pumice rafts are dispersed into smaller ribbons of pumice clasts;

arrows show a deduced SE-trending wind direction (8 August; 22:08 UTC). (d) Pumice raft is widely dispersed and forms very complex dispersal

patterns (19 August; 00:44 UTC). Satellite resolution is 250 m; true North is up the page. The original images from MODIS46 were filtered (vibrance and

saturation) to increase contrasts; scale bars are 20 km.
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and spread to a plateau size of 0.12–0.27 millions km2 over a
month’s time (Fig. 4), before finally decreasing in size and/or
becoming too dilute for MODIS satellite resolution after 43
months. A minimum total pumice raft volume of 0.11–0.16 km3

is estimated from colour intensity on MODIS images, assuming a
minimum average raft thickness of 50–70 cm just after the
eruption, which is an absolute minimum (see Methods). This
pumice raft volume is equivalent to 0.03–0.05 km3 of dense rock,
and more than 3–4� 1012 pumice clasts12. However, these
numbers are based on few isolated point measurements31 during
the third week of drifting, and are probably not representative of
the thickest rafts at that time of dispersal. In addition, many
pumice clasts may have sunk in the first days of drifting, after
being partly waterlogged during the eruption5 and being abraded
thus further reducing their radii and the raft’s packing density.
We speculate that the total thickness and volume of the pumice
raft was up to five times larger than the minimum values, thus a
total pumice raft volume of 1 km3 (0.15–0.25 km3 dense rock
equivalent), an initial raft thickness of up to 3.5 m and
41.5� 1013 clasts12. The immensity of the Havre raft, which
affected 4550,000 km2 of ocean (more than twice New Zealand’s
subaerial area) in 3 months of drifting, can be compared with the

o0.16 km3 raft from the 2006 Home Reef eruption12 and the
1.25� 10� 4 km3 of pumice clasts stranded on Australian coasts11

1 year after their eruption in Tonga in 2002. The Havre raft
remained mostly coherent during the first week and spread
northwest (Fig. 1). Over the next months, it then separated into
many domains that spilled in divergent directions (mostly with a
northward component), some domains being quickly streamed
into 4100-km-long tongues (Fig. 3). The fastest bulk drifting
speeds (calculated in straight trajectories) were to the northeast
and occurred in August (Fig. 4). The Havre raft drifted at
0.02–0.19 m s� 1 (B2–17 km day� 1), approaching the bulk
drift speeds known globally (calculated from first arrivals)
of 0.07–0.28 m s� 1; global bulk drift speeds (first arrivals)
for pumice rafts are 0.20 m s� 1 on average7,9,11,12,17,25.
Estimates of bulk surface current velocities in the NEMO
hindcast are in accordance with these speeds, with maximum
drift speed at 0.17 m s� 1 (Fig. 4).

Observations by sailing crews in October 2012 show that
pumice rafts get disseminated into narrow, metre-to-kilometre-
long single-clast-thick ribbons and isolated pumice clasts. On
5 October, MODIS images show rafts 800 km southwest from
Tongatapu island (Fig. 1; Tonga islands, 41,100 km north-

NWSW

W

30

60

18090

0

0.1

0.2

0.3

0.4

M
ax

im
um

 b
ul

k 
dr

ift
 s

pe
ed

 (
m

 s
–1

)

7 9 11 12 17 25 25

a b c d e f g E

NE

N

NW

W Aug

Sep 120

DecOct

Nov

AustraliaTonga

NZ

NE SE

N SE

Havre 2012World

StrandingMODIS NEMO hindcast

10E02

10E04

10E06

0 20 40 60 80 100 120
Days after eruption

A
re

a 
(k

m
2 )

Polygon outlining rafts

Rafts

a

b

Figure 4 | Dispersal rates of rafts from the 2012 Havre eruption compared with NEMO simulations and worldwide data. (a) Maximum bulk (straight
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images. Extent (dispersal) of the raft reaches a plateau after 3–4 weeks of drifting; after 4 months, dilution of the rafts and possible pumice clast sinking

does not allow further tracking with MODIS, and dispersal area decreases. Rafts were too complex to identify separately after 11 August.
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northeast from Havre caldera volcano), while ribbons of pumice
clasts were encountered as close as 230 km southwest from the
island. On 4 November, ribbons of pumice clasts were encoun-
tered southwest of Tongatapu, and stranded on local beaches,
whereas rafts visible with MODIS were 190 km behind the
southwest on the same day. Such major discrepancies between
sailor observations and MODIS images indicate complex
dispersing effects from both oceanic surface currents and wind
shear that extend ribbons of pumice clasts, which become too
small or/and thin to be detected with MODIS’ resolution.

Drift and dispersal rates for rafts and ribbons are influenced by
their windage (susceptibility to wind) and draft (susceptibility to
ocean surface currents). A floating object’s windage and draft will
vary with its area and height above water, which for a pumice
clast is related to its shape and density (that is, degree of
vesicularity and waterlogging). During dispersal, rafts can become
elongated and vertically thinned into ribbons. Wind and oceanic
surface currents may broaden or degrade rafts by efficiently
dispersing pumice clasts into ribbons when blowing/flowing
perpendicularly to the thick raft’s length (Fig. 2c). Thin ribbons
travelled faster than thick rafts, out-running them by hundreds of
kilometres, which implies that wind in this case hindered, rather
than helped drive, raft movement.

In early October, sailing crews encountered ribbons of pumice
clasts that varied in grain size. Freshly stranded pumice clasts on
Tongatapu Island were mostly 5–15 cm in diameter; 200 km
southwest of Tongatapu were solitary clasts, or clasts in ribbons
of a few m2 that consisted of o2 cm clasts. Further (4400 km)
southwestward, larger ribbons (a few metres by 200 m long) that
comprised coarse pumice clasts (up to 75 cm) were encountered.
These observations of contrasting pumice clast sizes suggest clast
sorting by grain size, or more precisely by clasts’ individual
windage/draft ratio, during transport out of a thick raft.

Hindcast simulation of eddy-resolving ocean model. The
detailed observations of the 2012 Havre raft provide a rare
opportunity to evaluate simulations of oceanic dispersal in an
eddying regime, and to predict the dispersal of buoyant objects
over the oceans. To isolate the influence on pumice rafts of mean
ocean current advection and stirring by oceanic eddies, we
determine representative pumice clast trajectories by ‘tracking’
simulated particles with the software package ARIANE (http://
www.stockage.univ-brest.fr/Bgrima/Ariane/). The simulated
particles are entrained in water with motion assigned from output
of the NEMO 1/12� hindcast (see Methods). On the basis of
proposed packing of clasts12 in pumice rafts, the 2012 Havre
submarine eruption naturally released about 3–15� 1012 pumice
clasts (plus ash) in o1 day31 from a single point (Supplementary
Figs 1 and 2). Evenly distributed in a 717-m2 patch centred on the
Havre (31�605000S/179�101000W), 100 simulated particles are
released at the surface every hour, for 24 h (a total of 2,400
particles) on 18 July of each year in the hindcast (spanning 1988–
2010; Supplementary Figs 3–25). The particles are specified as
buoyant and are advected in a surface current field that is updated
every 5 days. Positions of particles for each year are composited
together to account for substantial interannual differences and the
chaotic influence of eddies on dispersal. The composite locations
of the 2,400 particles for each hindcast year are shown after
dispersal over 30, 60, 90, 120 and 180 days (Fig. 5), and compared
with MODIS observations during windows of good weather.
NEMO is forced with 6-hourly winds supplied by the DFS4.1
(1988–2006) and DFS5.1.1 (2007–2010) data sets47. Such
frequent updating of the winds is sufficient to resolve individual
storms. Year-to-year variations in dispersal over 1988–2010 are
thus in part attributed to stochastic (storm related) variability in

wind-forced surface drift. Although the pumice raft formed in
2012 and data more recent than 2010 are not yet available, we
determined that oceanic conditions in 2012 fell within the 1988–
2010 range. The Southwest Pacific region is affected by the El
Niño Southern Oscillation, which could contribute to abnormal
drifts; however, the El Niño Southern Oscillation index was close
to zero for July–December 2012, indicating climatologically
neutral winds, supporting that our model of pumice dispersal
over July–December 2012 should be ‘contained’ within the 23-
year composite of trajectories.

Overall, the hindcast simulation matches most of the pumice
drift and directions of propagation described by MODIS imagery,
with the exception of northern and northeastern components that
affected the raft in the first 3 months (Fig. 5). At 4 months, only a
few years in the hindcast model show drift to such low latitudes.
By 180 days, dispersal is more indicative of isotropic stirring by
eddies, and exceeds most of the MODIS observations at 122 days.
Minor strandings of Havre pumice clasts occurred in the Bay of
Plenty in April 2013 (North Island, New Zealand, B260 days),
matching the simulated rafts approaching New Zealand at 180
days (Fig. 5). Minor strandings also occurred on the Great Barrier
Reef in September and October 2013 (northeast Australia, B440
days) and were followed by stranding on numerous beaches in
New South Wales (east Australia). The ensemble mean advection
of the particles (sampling all 23 hindcast years) is encapsulated in
rose diagrams (Fig. 5). The vast majority of particles move in an
east/northeast direction, again consistent with the MODIS
observations. In summary, simulated dispersal is broadly
comparable to the MODIS observations, although with discre-
pancies to the north and northeast owing to some additional
influences (such as normal forces and tangential stresses owing to
the wind acting on the pumice raft itself, any changes in winds
and currents due to vertical momentum fluxes associated with the
rafts themselves). To investigate direct forcing of the rafts by local
winds, we considered daily mean surface winds in the vicinity of
the Havre caldera volcano over 6 months available from the
NCEP/NCAR reanalysis project (Supplementary Figs 26–30). The
prevailing wind direction is westward for the first 2 months after
which synoptic variability increases. There is no clear evidence for
Ekman drift in the northward direction (that is, winds blowing
northeastwards). Other explanations for the discrepancy between
observed and simulated drift include: unresolved submesoscale
stirring in the ocean surface layer; rafts acting against winds and
currents (see Methods); an unusually strong northeastward
component in the oceanic currents of 2012 (not captured in the
1988–2010 hindcast).

Hazards associated with pumice rafts. From a hazard-forecast-
ing perspective, we calculated the statistical likelihood of
encountering pumice rafts in the vicinity of the Havre caldera
volcano, using the 23 different patterns of simulated particle
dispersal (for 1988–2010) within nominal B50 km grid squares
(Fig. 6). After 30 days, when the particles are little dispersed,
particles drifting together in different directions and at different
speeds for each year give rise to a small scatter of low likelihood.
In contrast, particles are widely dispersed after 180 days and in
some grid squares we find particles from up to 8 of the 23 years,
equating to a likelihood of B35%, considering that a likelihood of
100% corresponds to encountering particles from all 23 years in a
given grid square. This indicates the areas where encounters with
pumice rafts are most likely (for different elapsed times after the
eruption) associated with the climatological mean surface cur-
rents and eddy stirring. Statistical assessment of risk could be
refined to account for regional variations in the time-varying
‘concentration’ of particles (per unit area) in each year.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4660 ARTICLE

NATURE COMMUNICATIONS | 5:3660 | DOI: 10.1038/ncomms4660 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.stockage.univ-brest.fr/~grima/Ariane/
http://www.stockage.univ-brest.fr/~grima/Ariane/
http://www.nature.com/naturecommunications


Discussion
A number of important shipping routes pass near volcanic arcs
(for example, Aleutians, Izu-Bonin, Mariana, Indonesia, South-
west Pacific and South Sandwich Islands). The spread of pumice
rafts over thousands of km2 is common12, but is not currently
forecast by any agency/country, and its late detection can result in
economic losses to important shipping and fishing
industries11,12,15,22. Future submarine eruptions and their
products are more likely to be observed via satellite imagery
than by humans23, and there will be delays between the eruption
and its official assessment (for example, 3 weeks for Havre). There
is a need for operational detection and forecasting of pumice raft
dispersal to mitigate hazards by preparing communities and
industries. This service does not currently exist, which is in
contrast to the well-established Volcanic Ash Advisory Centres
that provide detection and reporting to the International Civil
Aviation Organization to mitigate risks from atmospheric ash
plumes. As velocity fields are sampled from a global model,
trajectory calculations can be repeated for any specific eruption,
anywhere in the World Ocean, at short notice. Our high-fidelity
simulations of particle drift and dispersal using eddy-resolving
(1/12�) global ocean model hindcast demonstrate a novel method
for future hazard analysis and warning for prediction of broad

areas that may be affected by pumice rafts in the future, and can
be used in conjunction with MODIS imagery on most parts of the
oceans for not only rapid-response drift forecasts of pumice raft
hazards but also for drift of anthropogenic waste, icebergs and
marine organisms. For direct predictions, however, appropriate
ocean forecast data and daily tracking of pumice rafts using
satellite imagery are required. As an example, the UK National
Centre for Ocean Forecasting uses NEMO for short-range (6-day)
ocean forecasts. Global forecasts have been recently made
available at the resolution necessary (1/12�) to simulate realistic
dispersal of objects in the ocean35,37. Our model can thus be used
to forecast the main raft components, which are the most
disruptive.

Apart from direct hazards from the explosive eruption itself in
the vicinity of an eruption column, which include entrance of
pyroclastic flows into the sea, tsunamis, ballistics, fallout and
eventual shoaling of a new volcanic island18,20,48–51, pumice rafts
from such eruptions can block harbours15, and disrupt or divert
coastal and transocean navigation/traffic over large areas at
distances of thousands of kilometres from the eruption site over
periods of months to years9,15,20–22. Water intake systems are
critical components of any motorized vessel, and have been
reported to get clogged by small pumice clasts during crossings of
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pumice rafts by both small and large watercraft52. For example,
the yacht Maiken motored into a thin pumice raft in 2006 ‘yand
within seconds Maiken slowed down from seven to one knotywe
plowed a couple of hundred metres into this surreal floating stone
field before we realized that we had to turn back. Just as we came
out of the stone field and entered reasonably normal water we
noticed that there was no cooling water coming from the
enginey’53. Failure of a boat’s engine threatens all electric and
electronic systems onboard, which are essential for navigation and
communications. Hulls can also be damaged by abrasion.
Environmental hazards from rafts include modification of the
food web by killing photosynthetic organisms by shading, and by
fostering and carrying invading exotic species11,12,54.

Marine ash beds are extremely useful stratigraphic markers55

since they can be dated and correlated over thousands of km2. In
addition, thickness and dispersal of ash in oceans are often
correlated with eruption style and magnitude, and used to infer
distance and direction to the source vent56–60, as in on-land
studies61. Estimations of eruption location and magnitude using
marine ash-deposit dispersal can be problematic when thick
voluminous pumice rafts are produced. The significance and
origins of marine ash beds and pumice clasts on the sea floor have
to be considered with caution. Pumice rafts will produce ash by a
secondary process of comminution, whereby adjacent pumice
clasts within the raft gently but repeatedly collide with one
another. Attrition during rafting may generate widespread ash
beds with facies that share some similarities with water-settled
aerially transported ash. The extent of secondary ash beds from
clast attrition in pumice rafts will depend on raft size, velocity and
dispersal by oceanic surface currents rather than on eruption size
and wind direction, and their distribution may not follow
conventional isopach/isopleth ellipses of dispersal from
atmospheric volcanic plumes. Even in cases where simple
unidirectional dispersal takes place, isopach maps would reveal
ocean current directions, and any calculation of eruption
magnitude and atmospheric plume dynamics from such a
distribution would be spurious. Raft-generated ash is not
necessarily directly related to primary input from a subaerial or
shallow water explosive eruption25. For the study of marine ash

beds, complimentary analysis of the particles’ shapes, composition
and of deposit sorting are critical, as these attributes can reveal a
complex history of ash generation and transport processes,
including rafting. Unlike ash previously sorted during subaerial
floods off volcanic islands and/or transported in water-supported,
seafloor-hugging density currents, raft-generated ash is likely to
produce relatively poorly sorted marine ash beds, with crystals
mixed with fine glass shards. Raft-generated ash will contain small
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pumice fragments and glass shards mixed with unbroken to
slightly broken crystals (phenocrysts released from pumice
clasts during low-energy comminution); a near-zero abundance
of dense lithic grains in raft-generated ash contrasts strongly with
water-settled fall deposits from ash delivered by atmospheric
plumes. Ash settled from subaerial or submarine eruption plumes
will contain glass shards, eruptively broken phenocrysts, and lithic
clasts from conduit and vent walls. Importantly, raft-generated ash
beds are likely to coexist with discrete outsized pumice clasts62,
which sank from the rafts after reaching negative buoyancy in
water through slow but continuous waterlogging.

Until 6 August, MODIS images showed water discoloured
(Fig. 2a,b) by the presence of ash and possible chemical
compounds dissolved from ash63; pumice clasts collected in
mid-August (3 weeks after eruption) were already rounded31.
Comminution is most efficient on angular pyroclasts64, implying
that secondary ash from the pumice rafts was chiefly produced
during the first 3 weeks of drifting, and in particular the first week
(Fig. 7). Over the first 3 weeks, the pumice rafts spread over a
total area of 110,000 km2 (Supplementary Figs 1 and 2), and the
estimated thickness of raft-generated ash beds expected to have
accumulated on the sea floor averages 0.1–0.2 mm (see Methods),
although the first days of rafting should have produced most of
the ash64, generating much thicker beds, up to 15 mm thick,
depending on the abrasion rate (see Methods) over many
hundreds of km2. More accurate calculation of bed thickness is
difficult because it is dependent on multiple unknown factors,
such as abrasion rates (strongly dependent on wave motion) in
this pumice raft, grain size distribution in the raft, raft thickness,
and weather and wave heights. Unlike ash beds, seafloor deposits
of pumice clasts that become sufficiently waterlogged and/or
overloaded by sea life to sink1,2,12 consist of discrete clasts (with
possible encrusting carbonate shells) spread over hundreds of
thousands to millions of km2 on the sea floor, and are occasionally
collected in piston cores65 and observed by submersible vehicles.

Millimetric to centimetric-sized pumice clasts from stranded
pumice rafts are very rarely recognized in the geological record2,3,66–
70, despite the rafts’ abundance over geological time (for example at
least 17 marine pumice rafts in the last century12). If not washed
onto high ground by tsunamis68,70 or large storms, pumice is
quickly abraded in the tidal zone and rarely preserved. Stranded
pumice raft deposits consist of distinctively rounded pumice clasts,
although coarse clasts may float on a preferred (more stable) side,
their top part remaining subangular67; lithic clasts are absent from
the deposit. Long-drifting clasts will be colonized by marine life and
encrusted by shells12, particularly in tropical latitudes. If stranded on
high ground, pumice clasts may be reworked by surficial water,
resulting in further modification of their shape and of the
depositional facies. As comparison, lacustrine pumice raft deposits
consist of well-rounded pumice clasts interbedded with relatively
thick beds of ash2,28,29, reflecting extensive attrition of pumice clasts
during rafting due to the confined environment preventing their
gradual dispersion, in addition to shoreline-derived abrasion; giant
blocks of pumice are present locally.

Methods
Hindcast model. The NEMO model43 was used for hindcasting. NEMO was used
in eddy-resolving (1/12�) configuration to provide 5-day averages of the eddying
surface currents, a time window appropriate to model realistically and with high
precision the advection of an ensemble of particles mimicking pumice clasts
released from this volcano. We simulate release of particles above the Havre
location on 18 July in each year of the period 1988–2010, and then produce a
composite trajectory ensemble representing average current motions in the Havre
region. To mimic pumice behaviour, modelled particles are specified as buoyant
and the simulated trajectories are thus subject only to surface advection. We
consider that pumice clasts that sank by waterlogging did not affect the raft’s
dispersal pattern. The sampled current field evolves annually in response to
seasonal and interannual variability of geostrophic and Ekman currents, and is also

subject to chaotic eddying. We neglect normal forces and tangential stresses due to
the wind acting on the pumice raft itself, as well as any changes in winds and
currents due to anomalous vertical momentum fluxes associated with the presence
of the rafts themselves.

Raft volume. The maximum raft thickness from isolated point measurements31 was
60 cm on 10 August. Taking this thickness into account, and from colour radiance
and brightness on MODIS images over the same day, we estimate that the thickest
part of the raft (averaged at 50 cm) was spread over 200 km2, and that this main thick
raft was surrounded by a 10–20-cm-thick raft edge covering 1,000 km2. From this,
the total pumice raft volume is estimated at 0.18–0.26 km3. Considering that the
isolated point measurements31 are unlikely to have been taken in the thickest part of
the raft, and that many pumice clasts may have sunk1,2,30 or were partly abraded in
the first weeks of drifting following their partial waterlogging during the eruption, a
total pumice raft volume up to five times larger (that is, 1 km3) is more realistic than
these minimum values. The 1-day-old post-eruption minimum raft thickness of 50–
70 cm after the eruption is calculated by dividing the minimum total pumice raft
volume (0.18–0.26 km3) per the raft area on the 19 July UTC (400 km2). Considering
a realistic 1 km3 volume (see above), the 1-day-old post-eruption expected raft
thickness would approximate 2.5–3.5 m, which is not exceptional18.

A packing of clasts at 60% of solids gives a minimum total rafted pumice
volume of 0.11–0.16 or 0.03–0.05 km3 dense rock equivalent. From image
analysis on SEM images of pumice clasts, an average vesicularity of 70% is used for
dense rock equivalent calculations. Density of clasts per m3 follows previous
methods12.

Thickness of raft-generated ash beds. Discoloured water, which is a sign of
sediment (ash) in water63, was seen surrounding the raft until 6 August on MODIS
images. The mid-August (3 weeks post eruption) pumice raft samples were
reported as rounded31. A pumice clast becomes rounded by losing 20–40% of its
volume64 to abrasion. The average thickness of a seafloor ash bed (0.1–0.2 mm)
produced only by comminution is estimated by dividing the volume of
comminuted pumice (20–40 vol% of the total rafted pumice volume, see above) by
the cumulated dispersal area (110,000 km2) of the raft until the morning of 9
August (UTC). Comminution of pumice mostly produces non-to-poorly vesicular
glass shards, and their packing in ash beds is estimated to be 60% solids. Favouring
quick pumice abrasion64, raft-generated ash beds are likely to be 1–2 mm thick if
most of the abrasion occurred during the first week of drifting (cumulated spread
of 9,740 km2), or 5–15 mm thick in the case abrasion chiefly occurred in the first 2
days (cumulated spread of 1,290 km2). The dispersal and reworking of ash by deep
and bottom water currents is neglected in these estimations.
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