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ABSTRACT 26 

Legislation to control nutrient enrichment of inland waters has been developed and 27 

implemented across local, regional and international scales. In the EU, measures 28 

must be identified to ensure that all inland water bodies meet ecological guidelines 29 

as set by the Water Framework Directive (WFD) by 2015 or 2027. However 30 

increasing demand for rural development, associated with projected population 31 

increase, confound existing nutrient management approaches. Here we assess the 32 

efficacy of a rural development policy that was designed to ensure that the private 33 

sewage systems (PSS) of new developments do not increase the phosphorus (P) 34 

load to the environment within a lake catchment. In outline this policy involves 35 

mitigating 125% of their calculated P output of a development by modifying an 36 

existing, third party PSS. The assumption that PSS discharge a hierarchal reduction 37 

in P output with increasing treatment level (i.e. primary treatment (10 mg l-1) > 38 

secondary treatment (5 mg l-1) > tertiary treatment (2 mg l-1)) lies at the core of this 39 

policy. This study assesses the effectiveness of the policy instrument in achieving a 40 

reduction in nutrient discharge from PSS to the catchment. To do this, seven PSS 41 

(four with primary, one with secondary and two with tertiary treatment) were 42 

monitored over a four month period to provide a range of P discharge concentrations 43 

across treatment types. These data were used to assess the potential impact of 44 

future rural development on P losses to the catchment using the expected, and the 45 

hypothetical, population increase rate of 1.3% yr-1 over a 90 year projection. No 46 

significant differences in TP discharge concentration were observed among PSS or 47 

treatment levels of PSS sampled. To ensure this policy meets its aim, improvement 48 

in technology and management of PSS along with alternative mitigation measures 49 

are required. 50 
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1. Introduction 51 

The estimated annual total phosphorus (TP) load to British rivers is 41.6 kt yr-1. 52 

Households contribute 25.3 kt yr-1 (68.7%) of this, with 21.1 kt yr-1 being soluble 53 

reactive phosphorus (SRP), the most bioavailable form of phosphorus (P) in aquatic 54 

ecosystems  (White and Hammond, 2006). Improved nutrient management practices 55 

associated with municipal waste water treatment works and agriculture in recent 56 

decades have led to reductions in nutrient concentrations in receiving waters, a 57 

precursor to effective ecosystem management (Jeppesen et al., 2007). However, in 58 

many cases, ecological recovery lags behind chemical recovery (Jarvie et al., 2006; 59 

Jarvie et al., 2013). This is probably a result of legacy P release from bed sediments 60 

(Spears et al., 2011; Verdonschot et al., 2012)  or insufficient reduction of P inputs 61 

from external sources.  62 

It has been suggested that there are about 1.5 million private sewage systems (PSS) 63 

within the UK. Recent studies suggest that 80% of these are working inefficiently, 64 

potentially causing significant P pollution of freshwater bodies in rural Britain (Selyf-65 

Consultancy, 2002; Kirk et al., 2003). A significant issue in monitoring P discharges 66 

from PSS is the lack of data on their location and state of repair (May et al., 2010). 67 

Under the revised Groundwater Directive (Directive 2006/118/EC), discharges from 68 

PSS are no longer exempt from groundwater protection legislation. To reflect this, 69 

regulations introduced in 2010 outlined a need for registration of PSS in England and 70 

Wales and environmental permits for those located in areas vulnerable to 71 

groundwater pollution (Bennett, 2011).  72 

In England there is still debate over legislation surrounding PSS and their 73 

registration, and environmental permits for PSS are not compulsory. In contrast, in 74 

Wales, registration of PSS is legally required. In Scotland, under The Water 75 
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Environment (Controlled Activities) (Scotland) Regulations 2011, owners are obliged 76 

to register their PSS with the Scottish Environment Protection Agency (SEPA), 77 

although this is only legally imposed if the property is to be sold.  78 

In catchment scale TP export calculations, PSS are rarely accounted for separately 79 

(Wood et al., 2005; White and Hammond, 2006) and, if they are, they are 80 

represented by simplified export coefficients (Smith et al., 2005). These approaches 81 

may underestimate the impacts of PSS and have limited use at a site specific level 82 

(May and Dudley, 2007). Limited evidence of PSS impacts on waterbody P 83 

concentrations exist in the literature. High frequency river sampling in a 5 km2 Irish 84 

rural sub-catchment within the Lough Neagh basin that had no obvious industrial or 85 

municipal point sources identified a chronic TP base-flow transfer of c. 0.25 to 0.50 86 

mg l-1 that was characteristic of  pollution from PSS (Jordan et al., 2007). Arnscheidt 87 

et al. (2007) reported a correlation between in stream TP concentrations and 88 

indicators of faecal and grey water from PSS during low-flow conditions in three Irish 89 

rural catchments. Spot sampling conducted in English rivers downstream of PSS 90 

have indicated increases of up to 700% in TP concentrations, with impacted 91 

concentrations of 0.4 mg l-1 being reported (May et al., 2010). The impact of PSS on 92 

P concentrations in receiving waters is expected to increase in rural catchments 93 

under low-flow conditions when dilution levels are reduced (Foy et al., 2003; May et 94 

al., 2010; Macintosh et al., 2011). Evidence suggests that, in some catchments, PSS 95 

may contribute significantly to the net P loading of their drainage waters, driving the 96 

need for legislation to address such potential impacts. 97 

 98 

In east Scotland, UK, a novel planning policy has been put in place to address the 99 

potential increase in P discharges to the Loch Leven catchment from new 100 
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developments with PSS. Under the Town and Country Planning (Scotland) Act 1997; 101 

as amended by the Planning etc. (Scotland) Act 2006 (amended in 2009) (Scottish 102 

Government, 2009), councils and national park authorities must construct a 103 

Development Plan (DP) to manage building development. The Loch Leven 104 

Catchment is covered by the TAYplan Strategic Development Plan (TAYplan, 2012), 105 

which provides guidance for an area of 8,112 km2 with over half a million inhabitants. 106 

Local planning authorities must convert these broad DPs into a more detailed local 107 

development plan (LDP) that details land use policies and proposals for their area 108 

(Figure 1, upper panel). DPs and LDPs may also accept supplementary guidance. 109 

For example, the Kinross Area Local Plan (2004) adopts the principles of the the 110 

Loch Leven Catchment Management Plan (1999) (LLCMP)  for the control of 111 

pollution to Loch Leven (Figure 1).  112 

 113 

The Kinross Area Local Plan (2004) contains novel rural policies that aim to ensure 114 

that new developments do not increase P loading to the Loch Leven catchment. The 115 

policies are aimed at individuals proposing any form of rural development within the 116 

catchment that require a PSS (policy 10). It states that the future P output from the 117 

PSS must be estimated (policy 11) and that measures to mitigate the estimated 118 

output to the catchment by 125% must be proposed (policy 12). This should be 119 

achieved by upgrading third party primary treatment PSS to systems with secondary 120 

or tertiary treatment (Loch Leven Special Protection Area and Ramsar Site, 2011).  121 

In the following text, these policies are, collectively, termed ‘the 125% rule’. The 122 

125% rule assumes that PSS with secondary treatment (i.e. wetlands, reed beds and 123 

mechanical treatment plants) or tertiary treatment (i.e. sand filters, drum filters, 124 

membrane systems or chemical dosing) will produce lower TP discharge 125 
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concentrations than PSS with primary treatment (single septic tank treatment, only) 126 

(SEPA, 2011), thereby reducing the P discharge to the environment. The efficacy of 127 

this new legislation relies on the accuracy of the desk based TP load estimation for 128 

proposed PSS and requires validation in the context of potential benefits or threats to 129 

the net TP load to the Loch. 130 

 131 

In order to better understand the effectiveness of the 125% rule, we quantified 132 

potential uncertainty using the current desk based calculation procedure and 133 

compared it to actual measured TP concentrations from seven PSS within the Loch 134 

Leven catchment. The potential change in P output from projected developments 135 

over the next 90 years was forecast using both of these approaches. The results are 136 

compared and discussed in relation to potential policy appraisal.    137 

 138 

2. Methods 139 

2.1. Site description  140 

Loch Leven is a large shallow lake (mean depth 3.9m; surface area 13.3 km2) with a 141 

surface water catchment of 145 km2 that is dominated (80%) by agriculture (LLCMP, 142 

1999). Due to its high conservation value, both nationally and internationally, it is 143 

recognised as a Special Site of Scientific Interest (SSSI), a Special Protected Area 144 

(SPA) (UK9004111), a RAMSAR site (UK13033) and is part of the Natura 2000 145 

network.  146 

 147 

Loch Leven has a long and well-documented history of nutrient pollution, catchment 148 

management and recovery (May and Spears, 2012a, 2012b; May et al., 2012). 149 
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Catchment management in the 1980s to 1990s resulted in a significant (c. 60%) 150 

reduction in P inputs to the loch. This was mainly due to reductions in P loads from 151 

waste water treatment works, industrial point sources, and improvements in 152 

agricultural practices leading to reduced diffuse P loadings from diffuse sources 153 

(May et al., 2012). This led to significant ecological improvements (Dudley et al., 154 

2012), although ecological responses were delayed as a result of sediment P 155 

release within the loch (Spears et al., 2011). Central to the success of the 156 

improvements in water quality at Loch Leven has been the LLCMP (1999), which 157 

was based on empirical relationships between P concentrations in the lake and 158 

water quality indicators. The estimated amount of P entering the loch in 2005 was 159 

7.69, 3.57, 2.68 and 4.11 tonnes of TP, total soluble phosphorus (TSP), SRP and 160 

particulate phosphorus (PP), respectively (Defew, 2008). The long term monitoring 161 

program at Loch Leven (> 45 years) has been facilitated by an almost unique 162 

cooperation between researchers, policy makers and stakeholders and makes it an 163 

internationally important research site (May and Spears, 2012a). 164 

 165 

2.2. Implementation of the ‘125% rule’  166 

The 125% rule assessment calculations use pre-defined TP discharge 167 

concentrations of 10.00 mg l-1, 5.00 mg l-1 and 2.00 mg l-1, for PSS with primary, 168 

secondary and tertiary treatment, respectively (Loch Leven Special Protection Area 169 

and Ramsar Site, 2011; SEPA, 2011), a people equivalence (P.E.) value based on 170 

the number of bedrooms (n) (P.E. = n + 2) and an estimated per capita waste water 171 

production rate of 180 l day-1 (British Water: Flows and Loads 3., 2009). Phosphorus 172 

output (mg l-1) is calculated by multiplying the P.E. by the estimated water usage (l) 173 
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and the TP discharge concentration according to the treatment type (Figure 1, lower 174 

panel). 175 

 176 

A case study for rural development in the Loch Leven catchment using these 177 

recommended guidelines is presented in Figure 1. All available mitigation options are 178 

first identified and potential TP load ‘savings’ estimated. Such ‘savings’ must be 179 

greater than 125% of the estimated TP load from the proposed development. 180 

Therefore the number of bedrooms allowed in the proposed development is reliant 181 

on how much the net TP can be reduced. In this case study, the mitigation scheme 182 

proposes an upgrade to the PSS of a five bedroom house with secondary treatment, 183 

resulting in an estimated reduction in TP discharge to the catchment of 6.30 g P day-184 

1. This figure must equate to 125% of the PSS TP load from the proposed 185 

development. Therefore, to meet the requirements of the 125% rule, the proposed 186 

development must produce < 5.04 g P day-1.  187 

 188 

In this way, mitigation options provide guidance on the scale of proposed 189 

developments. In keeping with the ‘TP budget,’ development of a three bedroom 190 

house (P.E. = 5 people) with secondary treatment, discharging an estimated 4.5 g P 191 

day-1 would be allowed. If accurate, this development and associated mitigation 192 

activities would reduce the TP load to the catchment by 0.54 g P day-1. 193 

 194 

2.3. Septic tank sampling methods 195 

To explore the uncertainty of the assumptions for P effluent concentrations of PSS 196 

with different treatment levels, discharges from seven PSS within the Loch Leven 197 

catchment were analysed for TP, SRP and total soluble phosphorus (TSP) content 198 
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over a 5 month period. From these data, particulate phosphorus (PP=TP-TSP) and 199 

soluble un-reactive phosphorus (SURP=TSP-SRP) were calculated. A particularly 200 

challenging and constraining feature of this experimental design was locating 201 

suitable PSS that could be sampled easily and regularly; those chosen represent 202 

systems with primary, secondary and tertiary treatment. Four primary systems were 203 

selected to represent systems eligible for modification under mitigation scenarios; 204 

two constructed from concrete tanks (PSS 1 and 2) and two from fibreglass tanks 205 

(PSS 3 and 4). One tank with secondary treatment (mechanical mixing) (PSS 5) and 206 

two with tertiary treatments, one injected daily with 5ml of concentrated iron chloride 207 

to bind orthophosphate (PSS 6) and one fitted with an aeration system and filter 208 

system using BauxsolTM pellets (containing Al and Fe compounds) to bind P (PSS 7), 209 

were sampled. Samples were collected between October 2011 and February 2012. 210 

Restricted access to some sites, lead to less frequent sampling with PSS 3 and 4 211 

sampled eight times; PSS 1, 2, and 6 sampled seven times and PSS 5 and 7 212 

sampled five times.  213 

Samples were collected in 250 ml sample bottles previously cleaned with 10% 214 

hydrochloric acid and rinsed thoroughly with distilled water. Samples were taken 215 

from the last or only settling tank of each PSS, accessed by opening their hatch and 216 

lowering a sample tube attached to a rod to 60 cm below the surface to avoid 217 

collection of surface scum. Concentrations reported here are ‘in tank’ concentrations; 218 

as these are closed systems it is considered that the samples taken closely 219 

resemble P concentrations of actual discharging liquor. Discharge pipes from the 220 

final tanks of all PSS were buried underground making them inaccessible for sample 221 

collection.  222 

 223 
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Samples for SRP and TSP analyses were filtered through a Whatman® GF/F filter 224 

paper then stored with unfiltered samples for TP analysis at 4°C in darkness, 225 

overnight. All samples were analysed within 48 hours of collection. TP and TSP 226 

samples were digested using potassium persulfate (K2S2O8) acid hydrolysis 227 

digestion based on methods by Eisenreich et al. (1975). Samples were then 228 

analysed for orthophosphate-P according to the methods of Murphy and Riley 229 

(1962).  230 

 231 

2.4. Statistical analysis 232 

Data were analysed using the statistical software R version 2.51.1 (R-CORE-TEAM, 233 

2012). Linear models were used to test for significant differences in TP, SRP and 234 

SURP effluent concentrations of individual PSS and between treatment types. To 235 

account for the residual spread of the data within the categories of PSS and 236 

treatment type, the generalised least squares (‘gls’) function within the ‘nlme’ 237 

package (Pinheiro et al., 2012) of R was used.  To test for significant differences in 238 

SRP:TP and SURP:TP concentration ratios between PSS and between treatments, 239 

data were transformed with the ‘arcsin’ square root transformation to meet linear 240 

model assumptions prior to analysis. 241 

 242 

2.5. Modelled scenarios and uncertainty analysis 243 

Uncertainty analysis of the modelled TP discharge concentration from PSS using the 244 

125% rule assessment procedure was conducted. The following analysis is based on 245 

the assumption that all P discharged from PSS represents an increase in the P load 246 

to the Loch Leven catchment, and is therefore potentially delivered to Loch Leven.  247 

In this study, no significant difference in TP concentration between treatments was 248 
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observed, therefore all samples irrespective of treatment type were combined to give 249 

a median TP concentration (9.28 mg l-1). The net TP load from PSS to the catchment 250 

was calculated using assumed (i.e. by the 125% rule) TP discharge concentrations 251 

for those with primary, secondary and tertiary treatment as well as the median TP 252 

concentration of all ‘in tank’ samples collected in this survey. A projected population 253 

increase of PSS users within the Loch Leven catchment allowed comparison of the 254 

increase in net P discharge from PSS to the catchment using each modelled 255 

scenario between 2010 and 2100.  256 

 257 
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2.6. Population projections 258 

The number of properties not connected to mains sewerage in the Loch Leven 259 

catchment in 2001 was estimated to be 654. This figure was compiled by the 260 

Scottish Environment Protection Agency (SEPA), Scottish Natural Heritage (SNH), 261 

Perth and Kinross Council (PKC) and Scottish Water using ordinance survey data to 262 

count the number of properties located in postcode areas not served by mains 263 

sewerage. Assuming that these properties are served by PSS, and using 2.22 as the 264 

average number of people per household (2010 estimate in The National Records of 265 

Scotland, 2012), 1452 people are served by PSS. Population growth within the Perth 266 

and Kinross area is projected to be 1.28% per annum between 2010 and 2035 267 

(National Records of Scotland, 2012); assuming that growth in PSS users occurs at 268 

the same rate, an estimated 5114 people will be served by PSS in 2100. This figure 269 

is used to demonstrate the scale of uncertainty in predicting phosphorus discharge 270 

from PSS in line with potential population increases. 271 

 272 

 3.0 Results 273 

3.1. Loch Leven catchment private sewage system survey 274 

Total phosphorus concentrations of all samples taken from PSS with primary 275 

treatment (PSS 1 to 4) ranged from 4.45 to 18.01 mg l-1 with a median 9.06 mg l-1. 276 

The median TP discharge concentration of individual PSS ranged from 6.19 to 12.81 277 

mg l-1. Soluble reactive phosphorus concentrations in all samples taken from PSS 278 

with primary treatment ranged from 0.32 to 10.56 mg l-1, with a median of 4.83 mg l-1. 279 

The SRP median concentration of individual PSS ranged from 1.83 to 8.82 mg l-1. 280 

For SURP, concentrations of all samples taken from PSS with primary treatment 281 
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ranged 0.04 to 6.14 mg l-1 with a median of 0.67 mg l-1, whilst the median SURP 282 

discharge concentration of individual PSS ranged from 0.12 to 0.94 mg l-1 (Figure 2).  283 

 284 

Total phosphorus concentrations from all samples taken from the PSS with 285 

secondary treatment (PSS 5) ranged from 5.79 to 14.43 mg l-1, with a median 286 

concentration of 11.86 mg l-1 (as only one PSS with secondary treatment was 287 

accessible in this trial no range of median concentrations could be calculated). SRP 288 

concentrations ranged from 2.26 to 11.91 mg l-1 with a median concentration of 8.82 289 

mg l-1, whilst SURP concentrations ranged from 0.41 to 1.44 mg l-1 with a median of 290 

0.86 mg l-1 (Figure 2).  291 

 292 

Total phosphorus concentrations of all samples taken from PSS with tertiary 293 

treatment (PSS 6 and 7) ranged from 1.91 to 14.44 mg l-1, with a median 294 

concentration of 9.31 mg l-1. The median concentration of PSS 6 and 7 was 10.57 295 

mg l-1 and 8.26 mg l-1, respectively. The SRP concentration of all samples taken from 296 

PSS with tertiary treatment ranged from 1.42 to 10.60 mg l-1, with a median average 297 

of 5.54 mg l-1. The median SRP discharge concentration of PSS 6 and 7 was 7.28 298 

and 3.76 mg l-1, respectively. Soluble unreactive phosphorus concentration of all 299 

samples taken from PSS with tertiary treatment ranged from 0.10 to 1.71 mg l-1 with 300 

a median of 0.36 mg l-1. The median SURP concentration of PSS 6 and 7 was 0.29 301 

and 0.44, respectively (Figure 2).   302 

 303 

No significant difference was observed in TP concentrations (linear model, F (6,40) = 304 

1.36 P = 0.25, n = 47) or SURP concentrations (linear model, F (6,40) = 1.80 P = 0.12, 305 

n = 47) among PSS, although SRP concentrations were significantly different (linear 306 
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model, F (6,40) = 12.91, P = < 0.001, n = 47). No significant differences were 307 

observed in TP (linear model, F (2,44) = 0.27, p = 0.76, n = 47), SRP (linear model, F 308 

(2,44) = 0.99, p = 0.38, n = 47)  or SURP concentrations (liner model F (2,44) = 2.11,  P 309 

= 0.13 n = 47, respectively) among treatment types (Figure 2).  310 

 311 

The ratio of SRP:TP was significantly different among individual PSS (Figure 8; 312 

linear model F(6,40) = 6.20, p = <0.001, n = 47), but not among treatments (linear 313 

model, F(2,44) = 0.98, p = 0.38, n = 47). The median SRP contribution to TP was 314 

68.48% (from a range of 2.36 to 91.32%). The ratio of SURP:TP did not show 315 

significant differences among individual PSS (linear model F(6,40) = 1.74, p = 0.14, n 316 

= 47), or treatments (linear model, F(2,44) = 1.57, p = 0.22, n = 47). The median 317 

SURP contribution to TP was 7.24% (from a range of 0.25 to 47.53%) (Figure 3).  318 

 319 

3.2. Uncertainty analysis of the ‘125% rule’ with future population growth  320 

Using the assessment methods outlined by the 125% rule, if the 3486 extra people 321 

served by PSS between 2010 and 2100 are connected to PSS with primary, 322 

secondary or tertiary treatment an additional TP discharge to the catchment of 3.36, 323 

1.68 or 0.67 t TP yr-1 is expected, respectively (Figure 10). Using the average 324 

median TP discharge concentration from PSS sampled an increase of 3.12 t TP yr-1 325 

is estimated, with a range of 1.78 to 4.94 t TP yr-1 (based on the 5th and 95th 326 

percentile) (Figure 4).  327 

 328 

4. Discussion 329 
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4.1. Variation in P concentrations in PSS 330 

No significant difference in TP concentration was observed between PSS or between 331 

treatment types of PSS in this study. The median TP concentration of all samples 332 

(9.28 mg l-1) most closely resembled concentrations expected from PSS with primary 333 

treatment (10mg l-1) under the 125% rule assumptions (Loch Leven Special 334 

Protection Area and Ramsar Site, 2011; SEPA, 2011). These results indicate that 335 

secondary and tertiary treatments do not significantly reduce TP concentration in the 336 

sampled tanks, suggesting that the assumptions used in the 125% rule may not 337 

reflect reality.  338 

 339 

Phosphorus reduction is not required for the E.U. Standard for PSS (E.U. Standard 340 

(EN12566-1-7:2000). Gill et al. (2009) states that package treatment plants (septic 341 

tanks with secondary or tertiary treatment) are not specifically designed to remove P. 342 

It has been reported that the aerobic environment provided by secondary treatment 343 

aeration can cause c. 15% reduction in PSS effluent P via assimilation, precipitation 344 

and adsorption (Metcalf and Eddy, 2003). In this study, reductions were not 345 

observed and this would not be enough to accommodate the TP reduction assumed 346 

in the 125% rule from upgrading from primary to secondary treatments. Gill (2009) 347 

reported similar (12%) reduction in SRP through biological assimilation under 348 

secondary treatment and, although SRP concentration did vary significantly between 349 

PSS sampled in this study, this was not significantly related to treatment type. 350 

Human domestic behaviour such as detergent choice (sodium tri-polyphosphate 351 

(STPP) is a common source of SRP from detergent), water usage and maintenance 352 

regime of PSS (i.e. desludging interval) may account for this observed variation. 353 
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Quantifying the impacts of human behaviour on SRP discharge concentration may 354 

identify options that can be used to reduce P discharge concentration.  355 

 356 

The ratio of SRP:TP varied significantly between PSS but not among treatment 357 

levels, with no significant difference being observed in SURP:TP ratio between PSS 358 

or treatment. In samples analysed, a median of 68.48% of TP was present in the 359 

form of SRP whilst 7.24% was present as SURP. Bouma (1979) reported studies 360 

that found more than 85% of TP in septic tanks was SRP whilst Whelan and 361 

Titamnis (1982) found 93-100% of TP was SRP. Although delivery from PSS may be 362 

relatively small (in comparison to other sources), PSS have the potential to cause 363 

persistent inputs (Arnscheidt et al., 2007), raising concern that, during low flow 364 

summer months when dilution capacity is reduced and ecological sensitivity is 365 

greatest, such SRP delivery could promote eutrophication  (Macintosh et al., 2011). 366 

It is unclear whether high domestic SRP input or in-tank biological conversion of 367 

organic P to SRP is responsible for this SRP dominance. What is evident is that 368 

treatment aimed at reducing TP discharge concentration will be most effective if 369 

designed to target SRP. Flocculation of soluble P compounds by adding alum to 370 

primary settling tanks in PSS can reduce SRP in septic tank effluent by 96% 371 

(Brandes, 1977). This could provide SRP reductions that meet the required P 372 

reduction targets outlined in the 125% rule, but difficulty in creating flocculant in ‘real 373 

life’ systems (i.e. pH can affect flocculation (Reitzel et al., 2009)) and the implications 374 

that aluminium delivery has for the environment may make safe and effective 375 

application challenging.  376 

 377 
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4.2. Relative contribution of PSS to catchment P load  378 

Variation in the transport of P from PSS can be attributed to site characteristics such 379 

as the chemical adsorption capacity and physical texture of draining soils, hydrology, 380 

soil microbiology and the slope and distance to proximal water courses (Rea and 381 

Upchurch, 1980; Harper, 1992; Beal et al., 2005). Currently site characteristics are 382 

not specifically considered in the 125% rule, although building regulations deem that 383 

new PSS must be 10m from a water course, with soakaways constructed in free 384 

draining soils (H.M. Government, 2000). Much of the soil in the Loch Leven 385 

catchment is not suited to soakaway construction and many older installations 386 

discharge directly to a water course (Frost, 1996). In older soakaways, long term P 387 

laden discharge can fully saturate soils, over riding their P buffering capacity 388 

(Heathwaite et al., 2006). Improvement and management of soil adsorption systems 389 

(i.e. soakaways) may yield a greater percentage reduction of PSS P from delivery to 390 

the Loch. However, evidence of irreversible sorption has been questioned in a long 391 

term monitoring site, suggesting that P in groundwater may not be permanently 392 

immobilised (Robertson, 2008). Such considerations should be included in policies 393 

aimed at reducing P delivery from PSS. 394 

 395 

4.3 Implications for local policy development and implementation  396 

The 125% rule invokes ‘The Precautionary Principle’ (Commission of the European 397 

Communities, 2000; European Union, 2010) allowing rapid preventative decision-398 

taking in the face of possible threat to the environment where scientific data does not 399 

allow full risk assessment, and carries a ‘polluter must pay’ policy. The use of a 400 

‘125%’ reduction offers a buffer against a net increase of P to the catchment from 401 

development where data are lacking, acknowledging uncertainty in estimation of 402 
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PSS P load. At the core of the assessment procedure is the assumption that P 403 

output from PSS decreases with increasing treatment level. Whilst the 125% rule is 404 

conceptually strong, the PSS sampled here do not display any significant reduction 405 

with increasing treatment level, albeit we are considering a small population of tanks. 406 

A larger number of PSS need to be sampled and a better understanding of P 407 

processing within PSS is required to reveal whether such policy instruments can 408 

cause nutrient loss reduction. 409 

 410 

Using the 125% rule assumptions and substituting the median effluent TP 411 

concentration of PSS sampled (9.28mg l-1), to offset 125% of the P from the 3486 412 

extra people predicted to be connected to PSS by 2100, developers would be 413 

required to mitigate 2.19 t TP yr-1. Currently this must come from improvement to 414 

third party PSS. This exceeds the current estimate of 0.99 t TP delivered annually to 415 

the catchment from PSS, capping mitigation potential. If increasing treatment level 416 

does not make suitable reductions, future developments will need to rely on 417 

improved technology and management of PSS (to significantly reduce TP), reduction 418 

of domestic P loading and/or alternative mitigation measures such as change in land 419 

use (Abell, 2011) or removal of PSS systems into municipal waste water treatment 420 

works.  421 

 422 

The 125% rule aims to ensure that new developments do not increase P load to the 423 

catchment (Loch Leven Special Protection Area and Ramsar Site, 2011). Although 424 

Wakida and Lerner (2002) observed greater transfers of nitrates as a result of soil 425 

disruption during housing construction (65 kg ha-1) than ploughing temporary 426 

grassland (50 kg ha-1) (Cameron and Wild, 1984), little or no research has 427 



19 
 

addressed equivalent P losses (Lubliner, 2007). Other potential P sources 428 

associated with development (non-PSS associated) may also need to be assessed, 429 

such as garden fertiliser, car washing detergents and domestic livestock waste. 430 

 431 

To improve the efficacy of this policy further information is required: 432 

 433 

• high frequency monitoring of PSS at all stages of effluent treatment to 434 

ascertain process P reduction profiles (i.e. primary septic tank, after 435 

secondary and tertiary treatment, soakaway etc.), 436 

• site specific risk analysis of proposed and existing PSS, 437 

• identification and quantification of domestic behaviours that reduce P load to 438 

PSS, 439 

• quantification of alternative mitigation options, and  440 

• regular policy auditing based on monitoring data. 441 

 442 

To aid monitoring, future installation and retrofitting of PSS should incorporate easily 443 

accessible sample collection points at each stage of treatment.  444 

 445 

4.4. Implications for wider policy development and implementation   446 

In terms of wider policy development there is a well recognised lack of information 447 

surrounding PSS, such as number, location, age, condition, efficiency, maintenance 448 

and frequency of desludging of PSS, downstream processing of P in soils, 449 

hydrological variation and proximity of watercourses at a site level, and the impacts 450 

of human domestic behaviour on P loading (Harper, 1992; Withers et al., 2012). 451 

Without such information, estimation of the relative contribution PSS make to 452 
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catchment TP loads will suffer potential inaccuracies whilst policy aiming to reduce 453 

such contributions may misrepresent the problem and the solution. Where data are 454 

limited and problems are complex, normal planning and policy making processes 455 

may not be equipped to offer timely intervention. Reducing P output with expensive 456 

engineering solutions (treating the effects of the problem) may be less effective than 457 

reducing domestic P inputs to PSS in the first place (reducing the causes of the 458 

problem). Detergent P forms between 9% and 50% of P in wastewater (Morse et al., 459 

1993). Sale of detergents with more than 0.5% P is banned in sixteen states in the 460 

U.S. due to the risks they pose to freshwaters (Lusk et al., 2011), resulting in a 461 

reduction of P in wastewaters by 40-50% (U.S. Environmental Protection Agency, 462 

2002). In June 2013, similar bans in the E.U. will prohibit sale of consumer laundry 463 

detergents that provide ≥ 0.5 g P per standard dosage and bans on sale of 464 

dishwasher detergents with ≥ 0.3 g P per standard dosage in 2017; (European 465 

Commission, 2011). Use of low P detergents and reductions in the volume of 466 

detergents used will reduce P entering PSS, in the UK this could potentially offer a < 467 

28% reduction of wastewater P (Comber et al., 2012) and is a positive step towards 468 

reducing our human P footprint.  469 

 470 

To make significant reductions in TP discharge concentration from PSS (as required 471 

by policies such as the 125% rule), a holistic approach covering user inputs, PSS 472 

outputs and downstream processing is required. With a better understanding of the 473 

risks PSS pose to the environment, pioneering policies such as the 125% rule can 474 

be developed using more quantitative approaches to provide a vehicle to support 475 

new sustainable rural development. 476 

 477 
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5. Conclusions 478 

 479 

• The range of TP, SURP and PP in all seven PSS sampled were 1.91 to 18.01 480 

mg l-1, 0.04 to 6.14 mg l-1 and 0.23 to 16.13 mg l-1, respectively. 481 

• No significant differences in TP concentration between PSS with primary, 482 

secondary or tertiary treatment were observed in the PSS sampled in this 483 

study. 484 

• Our results indicate that PSS treatment type may not be an accurate indicator 485 

of TP discharge. 486 

• Policy changes should be made to encourage efficient and routine monitoring 487 

of all PSS. 488 

• The importance of human domestic behaviour and tank treatment type and 489 

design should be combined to assess the drivers of variability in the quantity 490 

and quality of P discharged from PSS.491 
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FIGURE LEGENDS 

Figure 1. Figure showing the current structure of planning and development 

legislation in Scotland, including the 125% rule. The assessment calculation of the 

“125 rule” for a case study example is also shown (with assumptions used).  

Figure 2. Boxplots showing TP (top panel), SRP (middle panel) and SURP (bottom 

panel) discharge concentrations (mg l-1) between individual PSS and between 

primary, secondary and tertiary treatments of 7 PSS within the Loch Leven 

Catchment  

Figure 3. Ternary plot showing the proportion of SRP, SURP and PP found in all 

samples taken from 7 PSS in the Loch Leven catchment during this study 

Figure 4. Graph showing additional TP load from septic tanks to the Loch Leven 

catchment under the projected population increase until 2100 
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