| 1  | Assessment of storage capacity for CO <sub>2</sub> in saline aquifers                                          |
|----|----------------------------------------------------------------------------------------------------------------|
| 2  | near hydrocarbon fields, <mark>northern Songliao</mark> Basin, China                                           |
| 3  |                                                                                                                |
| 4  | Shu Wang <sup>1,2</sup> Ceri J Vincent <sup>3</sup> Mike H Stephenson <sup>3</sup> Rongshu Zeng <sup>1</sup>   |
| 5  |                                                                                                                |
| 6  | 1. Key Laboratory of Engineering Geomechanics, Institute of Geology and                                        |
| 7  | Geophysics, Chinese Academy of Sciences (IGGCAS), Beijing, PR China                                            |
| 8  | 2. University of Chinese Academy of Sciences, Beijing, PR China                                                |
| 9  | 3. British Geological Survey, Environmental Science Centre, Keyworth, Nottingham,                              |
| 10 | UK                                                                                                             |
| 11 |                                                                                                                |
| 12 | Abstract                                                                                                       |
| 13 | Carbon dioxide Capture and Storage (CCS) is the only technology currently available that can                   |
| 14 | significantly reduce carbon dioxide (CO <sub>2</sub> ) emissions from conventional fossil fuel use. Depleted   |
| 15 | oil/gas fields, unmineable coal seams and deep saline aquifers are generally considered to be the              |
| 16 | main storage options. In this paper, the authors consider opportunities presented by aquifers close            |
| 17 | to hydrocarbon fields in northern Songliao Basin (China) for storage. Data obtained during                     |
| 18 | exploration and production often delineates nearby structures filled with saline water which have              |
| 19 | not been charged with hydrocarbons but could offer an opportunity for CO <sub>2</sub> storage. Based on        |
| 20 | published data and production data from hydrocarbon fields in northern Songliao Basin, the                     |
| 21 | potential for geological storage of CO <sub>2</sub> in these hydrocarbon field saline aquifers (HFSA) has been |
| 22 | assessed and in northern Songliao Basin, the central and western regions offer great potential for             |
| 23 | CO <sub>2</sub> storage in HFSA. Out of the 42 identified oil/gas fields, aquifers near 24 of the fields offer |

promising storage potential with an estimated potential storage capacity of 9.8 × 10<sup>9</sup>tonnes (t) CO<sub>2</sub>,
 which is more than 100 times the current annual emissions of large point sources in the Songliao
 Basin.

4

#### 5 **1 Introduction**

Fossil fuels are expected to remain a key part of the future energy and industrial production mix,
therefore CCS, as the only currently available technology capable of large scale reduction of
emissions from fossil fuels, is seen as essential to reduce CO<sub>2</sub> emissions to the atmosphere.<sup>1</sup>

9

Depleted oil/gas fields, unmineable coal seams, and deep saline formations are generally 10 11 considered the most promising options for geological storage of CO<sub>2</sub>. Deep saline aquifers have 12 the largest potential, but usually, few datasets are available and this increases uncertainty about 13 their suitability for storage. Depleted oil/gas fields are generally well understood and data are 14 available, but in China these fields are often compartmentalized into many small reservoirs, and in 15 many reservoirs numerous boreholes have been drilled to access these small compartments increasing the number of potential leakage pathways if used as a CO<sub>2</sub> storage site. Aquifers are 16 17 often identified above, below or near the hydrocarbon reservoirs during exploration where traps have not been charged and these aquifer formations are rarely considered for their CO<sub>2</sub> storage 18 potential. However, if these hydrocarbon field saline aquifers (HFSA) and hydrocarbon fields are 19 20 considered together, this could offer an excellent storage opportunity.

21

22 Several studies on the potential for CCS in China have been carried out by Chinese scientists. In

many cases, basin-scale assessments and approximate capacity calculations have been published.<sup>2-4</sup> The Songliao Basin is one of the most important sedimentary basins in China, having a wealth of mineral resources supporting a large industrial economy. Some CCS research has already been carried out in the southern part of Songliao Basin where the first CCUS (carbon capture, utilisation and storage) project in China is located.<sup>5</sup> The northern part of the basin has not been studied in detail and so in this paper, the authors focus on the northern Songliao Basin.

8 In order to select the potential area for CO<sub>2</sub> storage in HFSA, a set of 12 basin-scale weighted
9 criteria and a set of 39 regional-scale weighted criteria were considered. The assessment of CO<sub>2</sub>
10 storage suitability and capacity in HFSA in northern Songliao Basin is presented here.

11

#### 12 **2** CO<sub>2</sub> storage in oil/gas field saline aquifers

The hydrocarbon field saline aquifers (HFSA) are defined as the aquifers which are located in close proximity to the hydrocarbon fields but are hydrodynamically unconnected to the hydrocarbon fields. Unlike the deep saline aquifers usually considered for storage, hydrocarbon field saline aquifers may be relatively shallow (though still deeper than 800 m) and smaller. HFSA could be considered as potential CO<sub>2</sub> storage sites as they have the following advantages:

a). As HFSA are located near exploited hydrocarbon reservoirs, it can reasonably be assumed the

19 geological conditions, such as structure, lithology, trapping and seal condition, are similar to those

20 of the reservoirs;

b). During the exploration and development of the reservoirs, HFSA may also be revealed which
makes it possible to obtain more detailed data (without new data acquisition) than for the deep
saline aquifers in unexplored basins;

c). If the wells have been drilled through the HSFA, some of the existing production facilities of
the oil/ gas field could be shared by the CO<sub>2</sub> storage facility which would reduce the costs of
storage and the areal footprint of anthropogenic activities.

4

The security of CO<sub>2</sub> storage in HFSA is extremely important because if CO<sub>2</sub> were to leak into 5 nearby formations it could contaminate existing energy reserves.<sup>6</sup> If the nearby hydrocarbon fields 6 7 are producing, leaking CO<sub>2</sub> might influence production and if CO<sub>2</sub> reaches the production wells it would need to be separated from the produced hydrocarbons. After injection, potential  $CO_2$ 8 9 leakage mechanisms are classified as follows: diffusive loss of dissolved gas through the caprocks, 10 leakage through the pore spaces if capillary entry pressure is exceeded, leakage through faults or fractures and well leakage.<sup>7</sup> If the impermeable seal is suitably thick and unbroken, then leakage 11 12 through the caprock and faults or fractures will not occur. Extensive oil and gas exploration in hydrocarbon fields near HSFA has resulted in a high density of wells, which may present potential 13 migration pathways and permit large scale leakage.<sup>8</sup> Leakage through wells can also be avoided by 14 15 good well cementing practices and leakage through pore spaces can be avoided by managing the 16 injection strategy in order to control intraformational pressure. Therefore, the security of CO<sub>2</sub> 17 storage in HFSA is strongly dependent on detailed site selection and operation.

18

# 3 Calculation method of physical and chemical trapping in hydrocarbon field saline aquifers

Carbon dioxide will be trapped in HFSA through the same mechanisms as CO<sub>2</sub> storage in deep
saline aquifers: structural and stratigraphic trapping, residual CO<sub>2</sub> trapping, hydrodynamic

trapping, solubility trapping and mineral trapping.<sup>9</sup> Most existing calculation methods are based
on these mechanisms.

3

7

The US Department of Energy (USDOE) assumed all pore space in the saline aquifer can be used
for CO<sub>2</sub> storage, i.e. all the saline brine can be forced out of the aquifer.<sup>10</sup> The theoretical formula

6 of effective  $CO_2$  storage in saline aquifer from this, which is widely used is as follows:

$$M_{CO_2} = \rho_{CO_2} \times A \times H \times \emptyset \times E$$
<sup>[1]</sup>

8 Formulae for the theoretical storage capacity of aquifers are given by the CSLF as the following:<sup>11</sup>

9 Theoretical storage capacity of structural/stratigraphical trapping in aquifers:

10 
$$M_{CO_{2S}} = A \times H \times \emptyset \times (1 - S_{wirr}) \times \rho_{CO_2}$$
[2]

11 Theoretical storage capacity of residual trapping in aquifer storage sites:

12 
$$M_{CO_2t} = \Delta V_{trap} \times \emptyset \times S_{CO_2t} \times \rho_{CO_2}$$
[3]

13 The theoretical storage capacity of CO<sub>2</sub> dissolved into aquifer pore water:

14 
$$M_{CO_2d} = A \times H \times \emptyset \times (\rho_s X_s^{CO_2} - \rho_0 X_0^{CO_2})$$
 [4]

15

16 Where,  $M_{CO_2}$  is total CO<sub>2</sub> storage capacity (t);  $M_{CO_2s}$  is structural CO<sub>2</sub> storage capacity (t); 17  $M_{CO_2d}$  is soluble CO<sub>2</sub> storage capacity (t);  $M_{CO_2t}$  is residual CO<sub>2</sub> storage capacity (t);  $S_{CO_2t}$  is 18 trapped CO<sub>2</sub> saturation (%); A is area of aquifer, (m<sup>3</sup>); H is thickness of aquifer (m); Ø is 19 porosity of aquifer (%);  $S_{wirr}$  is irreducible water saturation (%);  $\rho_{CO_2}$  is density of CO<sub>2</sub> in the 20 aquifer (kgm<sup>-3</sup>);  $s_{CO_2}$  is solubility of CO<sub>2</sub> in the aquifer fluid (kgm<sup>-3</sup>);  $\rho$  is density of formation 21 water (kgm<sup>-3</sup>);  $X^{CO_2}$  is CO<sub>2</sub> content (mass fraction) in formation water (%), and the subscripts 0 22 and S stand for initial CO<sub>2</sub> content and CO<sub>2</sub> content at saturation respectively; E is the CO<sub>2</sub> storage efficiency factor which reflects the fraction of the total pore volume that is filled by CO<sub>2</sub>
 (dimensionless);

3

4 Based on these two established methods, the authors decided to calculate the theoretical  $CO_2$ 5 storage capacity in HFSA considering only structural, stratigraphical and solubility trapping. 6 Residual CO<sub>2</sub> trapping, hydrodynamic trapping and mineral trapping have strong and complex 7 interrelationships and occur on very different timescales, which can only really be calculated through complex numerical modelling.<sup>9</sup> Mineralization is a relatively slow process and is not 8 expected to offer a significant amount of storage capacity over the injection lifetime. For solubility 9 10 trapping in HFSA, the following assumptions were made: 11 a). Some water cannot be displaced from the aquifer by the injected  $CO_2$  (irreducible water 12 saturation). CO<sub>2</sub> can dissolve into this connate water; b). Some CO<sub>2</sub> will dissolve into the water which is displaced by the CO<sub>2</sub>; this could then migrate 13 out of the aquifer and could then be produced through any pressure relief wells or production 14 15 wells. 16 Therefore, the calculation method for theoretical  $CO_2$  storage capacity used for this paper was

17 defined as follows:

18 
$$M_{CO_2s} = A \times H \times \phi \times (1 - S_{wirr}) \times \rho_{CO_2}$$
 [5]

19

$$M_{CO_2d} = A \times H \times \phi \times S_{wirr} \times S_{CO_2}$$
<sup>[6]</sup>

20

$$M_{CO_2} = M_{CO_2s} + M_{CO_2d}$$
<sup>[7]</sup>

21 If the aquifer is not a continuous thick layer of potential reservoir formations, the aquifer thickness

22 (denoted by H) was calculated through formation thickness multiplied by net/gross ratio.

#### 2 4 Geological setting of the Songliao Basin

The Songliao Basin lies at latitude 42°25' to 49°23'N and longitude 119°40' to 128°24'E. It is 3 elongated in the NNE-SSW direction and is around 750 km long and 330 - 370 km wide with a 4 total area of around 260 000 km<sup>2</sup>. The northern region considered for this paper covers an area of 5 around 119 500 km<sup>2</sup>. The Songliao Basin is one of the most important basins in north-eastern 6 7 China: The basin has considerable mineral resources and therefore has a well established industrial base as well as the largest oilfield in China, the Daging Oil field. The petroleum, heavy machinery 8 and automotive industries are highly developed<sup>12</sup> and so the Songliao Basin has contributed 9 significantly to the national economy of China since the 1950s. 10

#### 11 4.1 General geology

The basement rocks of Songliao Basin are composed of Palaeozoic metamorphic sandstone,
marble, slate and phyllite, with large-scale granitoid intrusions of Indosinian - early Yanshanian,
Hercynian and Caledonian age.

15

The Songliao basin is an extensional-rift basin,<sup>13, 14</sup> most the basin lies in the fold belt of the southern margin of Siberian plate where early Hercynian and late Hercynian-Indosinian events influenced the tectonic setting.<sup>15</sup> Since the Cretaceous period, the basin has experienced three main evolutionary stages: rifting and extension during the Late Jurassic - Early Cretaceous, thermal sag during the Late Cretaceous period and basin inversion after the Late Cretaceous period.<sup>16, 17</sup>

| 1  | The oldest structural layers which were deposited during rifting are cut by dominantly NNE                               |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 2  | trending normal faults, which are distributed as a series of isolated NNE trending isolated rift                         |
| 3  | faults or as groups of rift faults. In the structural layers deposited during the thermal sag phase of                   |
| 4  | basin formation, the scale of faulting is much smaller. <sup>18</sup> The thermal sag deposits can be divided            |
| 5  | into six tectonic units, four of which are present in the northern Songliao Basin (Fig.1).                               |
| 6  |                                                                                                                          |
| 7  | The Songliao Basin is relatively seismically inactive; only five events with magnitude greater than                      |
| 8  | 6.0 have been recorded since 1918, two of which were in the northern part. <sup>21</sup>                                 |
| 9  |                                                                                                                          |
| 10 | 4.2 Sedimentary geology                                                                                                  |
| 11 | The Songliao Basin is filled with sediments of Upper Jurassic to Cenozoic age with a maximum                             |
| 12 | cumulative thickness of up to 11,000 m. The Cretaceous sediments are more than 7000 m thick in                           |
| 13 | the deepest parts of the basin. During the Cretaceous, fluvial deposition occurred in the basin                          |
| 14 | centre, while the basin margins show lacustrine deposits. Vertically, the sequence shows                                 |
| 15 | alternating fluvial and lacustrine facies (Fig. 2). Two large scale lake transgressions occurred                         |
| 16 | during the Cretaceous period, which connected the basin lake with the Eastern Asian palaeo-sea                           |
| 17 | bringing an influx of marine sediments. <sup>22-24</sup>                                                                 |
| 18 |                                                                                                                          |
| 19 | 4.3 Petroleum Geology                                                                                                    |
| 20 | The proven oil reserves of the Songliao Basin are $58.8 \times 10^8$ tonnes (t). <sup>25</sup> The major source rocks of |
| 21 | the basin are the deeply buried, dark, lacustrine mudstones of the Cretaceous Qingshankou                                |
| 22 | Formation to the 1st member of Nenjiang Formation. Secondary source rocks are mudstones of                               |

the 2nd member of the Nenjiang Formation and 2nd to 3rd members of the Cretaceous Yaojia
Formation. There are five proven source-reservoir-seal pairs in the Songliao Basin (Fig. 2). Most
hydrocarbons accumulated in structural traps and combined structural - stratigraphic traps. The
majority of the oil fields are located in the depocentre of the basin.

- 5
- 6
- 7 5 Delineation of potential storage areas

#### 8 5.1 Assessment of the geological characteristics at basin scale

Bachu advanced a set of criteria for defining the suitability of a sedimentary basin for geological 9 storage.<sup>26</sup> Using these 15 criteria, a sedimentary basin can be given a score to indicate its 10 suitability.<sup>27, 28</sup> For this paper, as recommended by Bachu and to simplify the assessment, the 11 12 criteria were modified and the suitability of the Songliao Basin was judged by the distribution of 13 the HFSA individual scores instead of the total score since only one basin was assessed. 14 15 The Songliao Basin scored more than 3 out of 5 points for each criterion, with an average score of 16 4.5 (Table 1). Therefore, from a basin perspective, Songliao Basin is very suitable for geological 17 storage of CO<sub>2</sub>. 18 19

### 20 5.2 Assessment of suitability for geological storage of CO<sub>2</sub> at reservoir scale

The reservoir properties of the hydrocarbon fields and HFSA were assessed in terms of their
suitability for CO<sub>2</sub> storage.

1 5.2.1 Reservoirs

- 2 The hydrocarbon reservoirs and HFSA were assessed using the criteria set out in Table 1.
- 3

Several sandstone formations were deposited as the Songliao Basin experienced multiple cycles of
water table fluctuations, while the palaeo-climate alternated between wet and warm to hot and dry
during basin subsidence. The main lithology of the potential storage formations is well-sorted,
coarse-siltstone to fine arkose sandstone and feldspathic litharenite sandstone.<sup>22, 29, 30</sup>

8

9 The deepest formations assessed for storage potential in this paper are sandstone layers in the 10 lower Quantou and upper Denglouku formations, and conglomerate layers in the lower Denglouku Formation and deeper Yingcheng and Shahezi formations.<sup>31</sup> These formations were discarded as 11 12 candidate storage targets as generally they lie at depths greater than 3000 m (Fig. 1), which is the advised maximum depth limit for  $CO_2$  storage as at these depths, compaction will most likely have 13 reduced porosity and permeability. A few parts of these formations are shallower than 3000 m, but 14 15 even these limited fragments lie deeper than 2800 m. Porosity and permeability data from these formations are less than 10% and less than 1 mD respectively,<sup>32</sup> which makes them unfavourable 16 17 for CO<sub>2</sub> storage.

18

The most promising reservoirs for  $CO_2$  storage in the northern Songliao Basin are in the Yaojia and Qingshankou formations which are widely distributed throughout the basin (Fig.3). The Yaojia Formation contains reservoirs of mainly deltaic interbedded sands, with a thickness of 40 to 150 m, an average porosity of 20% and permeability of about 200 mD.<sup>33, 34</sup> The period when the Qingshankou Formation was deposited (88±1 to 96±2 million years ago) was the time when the
first large-scale lacustrine transgression occurred in the Songliao Basin and sediments deposited
during this time offer potential storage opportunities in sandstone and siltstone reservoirs. The
Qingshankou Formation has a total reservoir sandstone thickness of 50 to 200 m, an average
porosity of 18.8% and an average permeability of 203 mD.<sup>33, 35</sup>

6

Potential reservoirs are also found in the Nenjiang and upper Quantou formations, the physical characteristics (e.g. depth) are not ideal, but these formations may still have some potential for storage. In the Nenjiang Formation, there are lacustrine sandstone and interbedded deltaic sandstone - shale reservoirs, with a thickness of 40 - 200 m, average porosity of 20.4% and permeability of 193.4 mD.<sup>33, 36</sup> The Quantou Formation comprises mudstone, sandy mudstone and sandstone and has a thickness of 20 - 150 m, an average porosity of 12% and an average permeability of 10 - 30 mD.<sup>33</sup>

14

The Sifangtai and Mingshui formations are the shallowest formations assessed for  $CO_2$  storage in this area. Although these formations are generally quite thick, in some areas they lie at depths less than 800 m, and in some places, the formations are even exposed at outcrop (Fig. 1). Moreover, regional cap rocks are not present on the top of the Sifangtai and Mingshui formations. They are therefore unfavourable for storage; outcrop offers a potential leakage pathway for stored  $CO_2$  as it migrates upward and as these formations are shallow the injected  $CO_2$  would not remain in a highly dense phase for efficient storage.

1 5.2.2 Seals

Regional seals in the northern Songliao Basin comprise thick mudstone layers in the 2 3 Qingshangkou and lower Nenjiang formations (Fig.2). The mudstones in the lower Qingshankou Formation, which directly overlie the reservoirs of the Quantou Formation, contain dark lacustrine 4 mudstones with a thickness of over 300 m (Fig. 4)<sup>37</sup> which have a diffusion coefficient less than 5  $10^{-5}$  cm<sup>2</sup> s<sup>-1</sup> (the diffusion coefficient can be used alongside the fluid properties to indicate how 6 7 rapidly the fluid will move through the rock and is a measure of permeability) and a displacement pressure of 3.9 MPa for natural gas<sup>33</sup> (Displacement pressure is a measure of the differential 8 9 pressure a rock can support and therefore its ability to act as a caprock for buoyant fluids). For  $CO_2$ , the displacement pressure was theoretically converted to 2.0 - 3.4 MPa. The black mudstone 10 of the Nenjiang formation has a thickness of 200 – 300 m,<sup>38</sup> a diffusion coefficient of 8.4  $\sim$  18  $\times$ 11 10<sup>-6</sup>cm<sup>2</sup> s<sup>-1</sup> and a displacement pressure of 5 MPa for natural gas (equivalent to a displacement 12 pressure of 2.5 - 3.7 MPa for CO<sub>2</sub>). These seals in the lower Qingshankou and Nenjiang 13 formations cover the entire basin. The seals in the upper Qingshankou Formation are present 14 15 across most of the basin, but there are a few regions where these impermeable rocks are absent. 16 Undercompaction is very common in these regional seals, which has enhanced the plasticity of the 17 seals, and as a result, fewer fractures and faults penetrate the sealing formations and transmissivity of faults is reduced (when pore fluids cannot escape in response to increased sediment loading, the 18 19 trapped fluid supports the increased sediment load and pore pressure increases, as a result, the porosity is preserved and the formations are undercompacted and overpressured <sup>39, 40</sup>). 20

21

22 Local seals include highly compacted rock in the uppermost Nenjiang Formation, the middle

| 1  | Yaojia Formation, the lower Mingshui and lower Quantou formations (Fig. 2). In the northern                       |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | Songliao Basin, although there are many potential local seals, their sealing quality is expected to               |
| 3  | be quite poor due to their poor areal distribution (Fig. 4). For example, seals in the lower Mingshui             |
| 4  | Formation are only found in some areas of the western slope and central depression of the basin. <sup>33</sup>    |
| 5  | Additionally, in the seals of the uppermost Nenjiang and lower Quantou Formations, mudstone is                    |
| 6  | interbedded with sandstone which reduces the plasticity of the seals. Despite these drawbacks, the                |
| 7  | local seals are still expected to be effective in some areas.                                                     |
| 8  |                                                                                                                   |
| 9  | Natural gas reservoirs associated with CO <sub>2</sub> are present in the lower Qingshankou, upper Quantou        |
| 10 | and Yingcheng formations <sup>41</sup> . The presence of these naturally-occurring CO <sub>2</sub> reservoirs and |
| 11 | hydrocarbon reservoirs demonstrate the ability of the seals to contain buoyant fluids which                       |
| 12 | suggests this region is very favourable for CO <sub>2</sub> storage.                                              |
| 13 |                                                                                                                   |
| 14 | 5.2.3 Pressure and Temperature (PT)                                                                               |
|    |                                                                                                                   |

High pressure and quite high temperatures are required for CO<sub>2</sub> to exist in its supercritical phase,
however, these conditions also make wellhead engineering more challenging and add to the cost of

17  $CO_2$  storage.

18

Statistical analysis shows that in the northern Songliao Basin, more than 80% of reservoirs have a pressure gradient lower than 1.1 MPa per 100m. Although a few areas have demonstrated abnormal pressures, there is generally a normal pressure regime in northern Songliao Basin.

Statistical analysis also showed that the geothermal gradient of more than 75% of reservoirs in northern Songliao Basin lies between 3.5 - 5°C per 100 m, while only 11% have temperature gradients lower than 3°C per 100 m. According to an assessment carried out by the authors on 19 boreholes distributed across the whole basin, the average heat flow of the whole Songliao Basin is about 69 mWm<sup>-2</sup>,<sup>42,43</sup> a little higher than the world average of 63 mWm<sup>-2</sup>.

6

In order to determine the likely impact of temperature and pressure on the state of the injected CO<sub>2</sub>, statistics about the distribution of the reservoir temperature and pressure in the oil fields of northern Songliao Basin were collated (Fig. 5). These plots show that although lower temperatures are observed at some sites, injected CO<sub>2</sub> would remain in its supercritical phase in most reservoirs under the higher than normal geothermal regime. In the remainder of the reservoirs, CO<sub>2</sub> should achieve a liquid state with high density, very close to its supercritical state. Thus the pressure and temperature conditions are very likely to be suitable for CO<sub>2</sub> storage.

14

15 5.2.4 Salinity

The classification of salinity of underground water in China is shown in the Table 2. Analysis indicated that the salinity of the aquifers in the oil and gas field of northern Songliao Basin is 3000  $-13\ 000\ mgL^{-1}$ . Over 75 % of the aquifers are highly brackish, while all the others are saline. Thus the aquifers are suitable for CO<sub>2</sub> storage in terms of salinity and these aquifers are also not a potable water source, reducing the risk of a conflict of usage (although very high salinities would be unfavourable as viscosity of pore fluid would be increased).

| 1  | In terms of distribution, generally, in the formations above the Quantou Formation, the salinity of                       |
|----|---------------------------------------------------------------------------------------------------------------------------|
| 2  | aquifers is high in the centre of the basin, and tends to be lower near the margins. In the                               |
| 3  | formations below the Quantou Formation, the pattern is reversed (Fig. 6).                                                 |
| 4  |                                                                                                                           |
| 5  | 5.2.5 Hydrodynamic system                                                                                                 |
| 6  | An active hydrodynamic system increases the risk of CO <sub>2</sub> migrating out of the CO <sub>2</sub> storage          |
| 7  | reservoirs along with the groundwater. Thus, the favourable hydrodynamic state for CO <sub>2</sub> storage is             |
| 8  | that of a weak hydrodynamic system with slow flow speed and low hydrostatic head.                                         |
| 9  |                                                                                                                           |
| 10 | The hydrodynamic field in the northern Songliao Basin is asymmetrical. Groundwater migrates                               |
| 11 | towards the basin centre in the northeast uplift area and northern plunge area, where the area is                         |
| 12 | recharged by precipitation. However, in the basin centre (which also includes the Sanzhao,                                |
| 13 | Qijia-Gulong, Changling and Heiyupao depressions) groundwater migrates outwards from the                                  |
| 14 | basin centre. <sup>45</sup> These two different zones meet along a line from Well Lai 271 to Well Du 48, <sup>46</sup> so |
| 15 | the northern Songliao Basin is divided into three regions: 1) hydrodynamic area recharged by                              |
| 16 | precipitation in the northeast which has a strong hydrodynamic drive and a seepage velocity of 10                         |
| 17 | -20 cm a <sup>-1</sup> ; 2) the region with a relatively weak hydrodynamic drive between the Nehe - Baiquan               |
| 18 | - Mingshui and Heiyupao and Wuyu'er depressions, with a seep velocity of $5 - 10$ cm a <sup>-1</sup> ; and                |
| 19 | finally 3) the region in the south of the Heiyupao and Wuyu'er depressions where the                                      |
| 20 | hydrodynamic drive is very weak. <sup>47</sup>                                                                            |
|    |                                                                                                                           |

22 Across the whole basin, the hydrostatic head level is higher than the ground surface, generally

| 1  | only by up to 250 m though there are a few high pressure regions where hydrostatic head is                         |
|----|--------------------------------------------------------------------------------------------------------------------|
| 2  | estimated to be 400 m above the ground surface. When a well is drilled into an aquifer with                        |
| 3  | hydrostatic head level higher than the ground surface, if not controlled, the groundwater can move                 |
| 4  | upwards inside the well casing to a level that is higher than the level of the ground surface <sup>48</sup> , this |
| 5  | may which may increase the risk of CO <sub>2</sub> migration with the groundwater. Thus, the hydrostatic           |
| 6  | head level was considered seriously during the potential area selection and received a relatively                  |
| 7  | high weighting.                                                                                                    |
| 8  |                                                                                                                    |
| 9  | Generally, the hydrodynamic regime is favourable for CO <sub>2</sub> storage, such that large scale leakage        |
| 10 | of CO <sub>2</sub> caused by the movement of groundwater is not expected.                                          |
| 11 |                                                                                                                    |
| 12 | 5.2.6 CO <sub>2</sub> source                                                                                       |
| 13 | After 2003, the CO <sub>2</sub> emissions of the industrial sector in northeast China showed rapid growth.         |
| 14 | The Songliao Basin is the most important industrial area in northeast China, where the machinery,                  |
| 15 | metallurgy, petroleum, chemical industries are highly developed. Long-term industrial production,                  |
| 16 | high population density, and dependence on traditional fossil fuels means the CO <sub>2</sub> emissions in         |
| 17 | this region are very high. Although the emission intensity is being reduced by increased efficiency                |
| 18 | and changing industrial processes, overall the total amount of CO <sub>2</sub> emissions are still increasing as   |
| 19 | the growth of industry is very rapid. <sup>49</sup> In the northern Songliao Basin, the number of both high        |
| 20 | concentration sources (CO <sub>2</sub> concentration higher than 80%) and large stationary point emission          |
| 21 | sources (which emit more than $10 \times 10^3$ t/y) of CO <sub>2</sub> is extremely large. <sup>50, 51</sup> .     |
|    |                                                                                                                    |

| 1  | In addition to these anthropogenic sources, the amount of naturally sourced CO <sub>2</sub> produced from            |
|----|----------------------------------------------------------------------------------------------------------------------|
| 2  | this basin is quite large. Gas reservoirs in the northern Songliao Basin are often associated with                   |
| 3  | mantle-derived CO <sub>2</sub> gas. Analysis of the wells and layers containing CO <sub>2</sub> shows that in 21% of |
| 4  | cases, CO <sub>2</sub> accounts for more than 80% of the produced gas; and for $5 - 30\%$ of the produced gas,       |
| 5  | the percentage of $CO_2$ will be as high as 63%. <sup>52</sup> The $CO_2$ is removed during gas processing to        |
| 6  | purify the produced gas and prevent pipeline corrosion. The removed CO <sub>2</sub> could be stored in a             |
| 7  | geological reservoir, presently it is released into the atmosphere. The gas reservoirs associated                    |
| 8  | with high concentration $CO_2$ are mainly found in the Yingcheng Formation <sup>52, 53</sup> which lies at           |
| 9  | depths greater than 3000 m was therefore not considered for CO <sub>2</sub> storage. A few gas reservoirs            |
| 10 | associated with low CO <sub>2</sub> concentrations can be found in the upper Quantou formation and upper             |
| 11 | Qingshankou Formation <sup>51</sup> where the seals are good enough to separate HFSA from other                      |
| 12 | formations and prevent the injected CO <sub>2</sub> from migrating into the surrounding reservoirs.                  |
| 13 |                                                                                                                      |
| 14 | 5.3 Selected regions                                                                                                 |
| 15 | The areas with the most advantageous characteristics for CO <sub>2</sub> storage in northern Songliao Basin          |
|    |                                                                                                                      |

16 were delimited based on the geological conditions described in the previous sections:

17

The potential storage reservoirs in the Nenjiang Formation reservoir have a wide areal distribution and great thickness, but are too shallow in some places. North of Daqing, for example, near the Well Gu 2 in the Qijia-Gulong Depression, the depth of reservoir rocks in the Nenjiang Formation is less than 800 m. This was also the case in the west of the Longhupao Terrace and east of the Qijia-Gulong Depression. Meanwhile, the salinity of aquifers in the Nenjiang Formation decreases

| 1  | gradually from east to west to 3000 mgL <sup>-1</sup> in the area east of Daqing and Da'an. Therefore, the          |
|----|---------------------------------------------------------------------------------------------------------------------|
| 2  | most promising area for CO <sub>2</sub> storage in the Nenjiang Formation is bounded to the west by the             |
| 3  | West Slope area and by the Daqing anticline to the east and lies to the south of Daqing and to the                  |
| 4  | north of Zhaoyuan (Fig.7).                                                                                          |
| 5  |                                                                                                                     |
| 6  | The depth to the Yaojia and Qingshankou formations is generally more than 800 m. The reservoirs                     |
| 7  | with the greatest thickness are distributed to the north along Qinggang - Anda - Da'an, where                       |
| 8  | salinity is also quite high. However, in the area to the west of Qiqiha'er and Tailai, the thickness of             |
| 9  | both the Yaojia and Qingshankou formations decreases to less than 50 m and the thickness of seals                   |
| 10 | decreases to less than 60 m. Thus these areas were selected as the east and west bounds for most                    |
| 11 | promising area of CO <sub>2</sub> storage in the Yaojia and Qingshankou formations. The north boundary is           |
| 12 | marked by the Heiyupao-Wuyu'er depression based on the hydrodynamic regime (Fig. 7).                                |
| 13 |                                                                                                                     |
| 14 | The reservoirs in the Quantou Formation are concentrated in the Central depression and overlain                     |
| 15 | by thick mudstone caprocks from Taikang - Qinggang to Baicheng - Zhaoyuan, where the salinity                       |
| 16 | and hydrodynamic regime are also favourable (Fig. 7).                                                               |
| 17 |                                                                                                                     |
| 18 | 5.4 Detailed assessment of potential storage areas                                                                  |
| 19 | The most promising areas for storage identified by the authors were then studied in more detail. A                  |
| 20 | set of 39 criteria, each with several categories, was developed for the assessment and ranking of                   |
| 21 | localised areas in terms of their suitability for CO <sub>2</sub> storage (at oil/gas field scale). The weightings, |

22 which express the relative importance of the different criteria, were determined by the AHP

| 1 | (Analytic Hierarchy Process) method (Table 3). <sup>54</sup> This set of criteria was applied then used to rank |
|---|-----------------------------------------------------------------------------------------------------------------|
| 2 | the potential storage sites in HSFA in the primary and secondary areas recommended for storage.                 |
| 3 | After detailed data analysis, for each criterion, a score between 1 and 5 was given to every                    |
| 4 | candidate hydrocarbon field with HFSA. Then the weighted average score was calculated using                     |
| 5 | the scores for each criterion and its weight listed in Table 3.                                                 |

The authors considered HFSA in 42 hydrocarbon fields which lie within the areas identified as most promising for CO<sub>2</sub> storage. From this dataset, HFSA near nine hydrocarbon fields scored over 8 using the assessment criteria in Table 3 and are therefore defined as the primary recommended area for storage locations in the northern Songliao Basin (Fig. 7), 15 scored 7 - 8, which was used to define the secondary area recommended for geological storage of CO<sub>2</sub> in northern Songliao Basin (Table 4). All of these HFSA are concentrated in the Daqing placanticline, north of the Longhupao, Qijian-Gulong and Sanzhao depressions (Fig. 7).

14

#### 15 **6.** Storage capacity calculation

16 The storage capacity of the HFSA identified in section 5.4 was calculated using equation [7].

17

#### 18 6.1 Determination of irreducible water saturation

19 Irreducible water saturation is one of the most difficult parameters to quantify when calculating 20 storage capacity. For the HSFA where irreducible water saturation data were not available, the 21 parameter was estimated using the formula [8] and porosity and permeability data.<sup>55</sup> The 22 calculation has been verified by comparison with actual data from core testing.

$$K^{\frac{1}{2}} = c \frac{\phi^3}{S_{wi}}$$
 [8]

Where, *K* is permeability (mD); S<sub>wi</sub> is irreducible water saturation; Ø is porosity; *c* is a constant
(for oil with medium density, *c*=250).

4

#### 5 6.2 Determination of CO<sub>2</sub> density and solubility

The solubility of  $CO_2$  in the formation water is related to temperature, pressure, ion type and content of the formation water. A calculation model of  $CO_2$  solubility, which considered the content of Cl<sup>-</sup> (Chloride) and HCO<sup>3-</sup> (Bicarbonate) ions, temperature and pressure was used in this paper.<sup>56, 57</sup> This model was used to calculate the CO<sub>2</sub> solubility in the HFSA (Table 5). The density of the formation water at subsurface conditions, used to calculate the CO<sub>2</sub> solubility, was determined through the Nomograph given by Schowalter<sup>58</sup>, using temperature, pressure and salinity data.

13

The CO<sub>2</sub> density in the different HFSA was determined in relation to a chart of CO<sub>2</sub> density with
 temperature and pressure, which was presented by Bachu (Table 5).<sup>59</sup>

16

#### 17 6.3 Results

The total capacity of the HFSA in the primary recommended storage area was calculated to be 7.7  $\times 10^9$  t CO<sub>2</sub> using equation [7]. The largest HFSA has a potential storage capacity of  $4.9 \times 10^9$  t CO<sub>2</sub>. For the 15 HFSA in the secondary recommended storage area, the total calculated storage potential is  $2.1 \times 10^9$  t CO<sub>2</sub>, with the largest having a calculated capacity of  $732.1 \times 10^6$  t CO<sub>2</sub>. Based on these calculations, the total potential storage capacity of the primary and secondary

| 1 | storage areas identified in Fig. 7 is $9.8 \times 10^9$ tCO <sub>2</sub> , which could theoretically contain more than            |
|---|-----------------------------------------------------------------------------------------------------------------------------------|
| 2 | 100 years of emissions from the large-scale sources in the whole Songliao Basin if they were to                                   |
| 3 | remain at present levels, as the current annual CO <sub>2</sub> emissions in Songliao Basin are $95 \times 10^6$ t. <sup>60</sup> |
| 4 | There are 11 HFSA in this region with a total $CO_2$ storage capacity over $100 \times 10^6$ t, accounting                        |
| 5 | for about 50% of the total number of hydrocarbon fields, but their total capacity accounted for                                   |
| 6 | about 95% of the calculated total for the primary and secondary storage areas (Table 5).                                          |
| 7 |                                                                                                                                   |
| 8 | Some of the smaller HFSA scored highly as the weighting of reservoir conditions such as reservoir                                 |
| 9 | characteristics and security of storage is higher than the weighting of reservoir area and thickness,                             |

10 which are very important for capacity. Thus, the total score of these smaller HFSA is higher than

some HFSA which have a large volume but less favourable other characteristics.

12

#### 13 7 Conclusions

(1) Cretaceous strata are favourable for CO<sub>2</sub> storage in Hydrocarbon Field Saline Aquifers (HFSA)
in the northern Songliao Basin. The sandstone reservoirs in the Yaojia and Qingshankou
formations are the most favourable, while the Nenjiang and Quantou formations are reasonably
favourable.

(2) The Daqing placanticline and the region north of the Longhupao and Qijia-Gulong Depression
and the Sanzhao Depression are the most promising areas and so are identified as the primary area
recommended for storage in the northern Songliao Basin. The central depression and west western
slope also have advantageous characteristics for CO<sub>2</sub> storage and so are identified as the secondary
area recommended for storage in the northern Songliao Basin.

| 1  | (3) The calculated storage capacity of the primary area recommended for storage is $7.7 \times 10^9$ t                         |
|----|--------------------------------------------------------------------------------------------------------------------------------|
| 2  | CO <sub>2</sub> ; while the secondary area recommended for storage has a calculated capacity of 2.1 $\times$ 10 <sup>9</sup> t |
| 3  | $\mathrm{CO}_2$ . Theoretically, these areas offer a combined storage capacity that could store the $\mathrm{CO}_2$            |
| 4  | emissions from large-scale sources in the Songliao Basin for more than 100 years (at current                                   |
| 5  | emission rates).                                                                                                               |
| 6  |                                                                                                                                |
| 7  |                                                                                                                                |
| 8  | Acknowledgments                                                                                                                |
| 9  | The first author wishes to thank Academician of CAS, Professor Sun Shu for his guidance during                                 |
| 10 | the research. This work has been supported by the Chinese Ministry of Science and Technology                                   |
| 11 | (MOST) (project: 2011CB707303). Ceri J Vincent and Michael H Stephenson publish with the                                       |
| 12 | permission of the Director, British Geological Survey (NERC).                                                                  |
| 13 |                                                                                                                                |
| 14 |                                                                                                                                |
| 15 | References                                                                                                                     |
| 16 | 1. Working Group III of the Intergovernmental Panel on Climate Change (IPCC). IPCC Special                                     |
| 17 | Report on CO <sub>2</sub> Capture and Storage. Cabbridge University Press, Cambridge, pp.341 (2005).                           |
| 18 | 2. Dahowski RT, Li X, Davidson CL, Wei N, Dooley JJ, Gentile RH. A preliminary cost curve                                      |
| 19 | assessment of carbon dioxide capture and storage potential in China. Energy Procedia 1(1): 2849-2856                           |
| 20 | (2009).                                                                                                                        |
| 21 | 3. Zhou D, Zhao ZX, Liao J, Sun Z. A preliminary assessment on CO <sub>2</sub> storage capacity in the Pearl                   |
| 22 | River Mouth Basin offshore Guangdong, China. International Journal of Greenhouse Gas Control 5(2):                             |
| 23 | 308-317 (2011).                                                                                                                |

| 1  | 4. Zhang HT, Wen DG, Li YL, zhang JQ, Lu JC. Conditions for CO <sub>2</sub> geological sequestration in    |
|----|------------------------------------------------------------------------------------------------------------|
| 2  | China and some suggestion. Geological Bulletin of China 24(12): 1107-1110 (2005).                          |
| 3  | 5. The Ministry of Science and Technology (MOST) of China. Carbon Capture, Utilization and                 |
| 4  | storage: Technology Development in China.[Online]. Available at:                                           |
| 5  | http://www.ccuschina.org.cn/uploadfile/Other/2012011612022743347777.pdf [16 February 2013].                |
| 6  | 6. Celia MA, Bachu S, Nordbotten JM, Gasda SE, Dahle HK. Quantitative estimation of CO <sub>2</sub>        |
| 7  | leakage from geological storage: Analytical models, numerical models, and data needs. Proceedings of       |
| 8  | 7 <sup>th</sup> International Conference on Greenhouse Gas Control Technologies (GHGT - 7), Vancouver,     |
| 9  | Canada, September 5-9, 2004, The IEA Greenhouse Gas R&D programme (IEAGHG). Elsevier                       |
| 10 | Science Ltd, Oxford (2005).                                                                                |
| 11 | 7. Song J, Zhang DX. Comprehensive review of caprock-sealing mechanisms for geologic carbon                |
| 12 | sequestration. Environmental science & technology 47: 9-22 (2013).                                         |
| 13 | 8. Ide ST, Friedmann SJ, Herzog HJ. CO <sub>2</sub> leakage through existing wells: current technology and |
| 14 | regulations. Proceeding of International Conference on Greenhouse Gas Control Technology (GHGT             |
| 15 | -8), Trondheim, Norway, June 19-22, 2006, The IEA Greenhouse Gas R&D programme (IEAGHG).                   |
| 16 | Elsevier Science Ltd, Oxford (2006).                                                                       |
| 17 | 9. Shen PP, Liao XW. The Technology of Carbon Dioxide Stored in Geological Media and Enhanced              |
| 18 | Oil Recovery. Petroleum Industry Press, Beijing, pp.239 (2009).                                            |
| 19 | 10. Capacity and Fairways Subgroup of the Geologic Working Group of the DOE Regional Carbon                |
| 20 | Sequestration Partnerships. Methodology for Development of Geologic Storage Estimates for Carbon           |
| 21 | Dioxide. [Online]. Avaiable at :                                                                           |
| 22 | http://www.netl.doe.gov/technologies/carbon_seq/refshelf/methodology2008.pdf [16 February 2013].           |

- 1 11. Task Force on CO<sub>2</sub> Storage Capacity Estimation for the Technical Group (TG) of the Carbon
- 2 Sequestration Leadership Forum (CSLF). Estimation of CO<sub>2</sub> Storage Capacity in Geological Media,
- 3 *Phase 2*. Avaiable at:
- 4 <u>http://www.cslforum.org/publications/documents/PhaseIIReportStorageCapacityMeasurementTaskForc</u>
- 5 <u>e.pdf</u> [16 February 2013].
- 6 12. Editorial Committee of Petroleum Geology in Daqing Oilfield. Petroleum Geology of China,
- 7 Volume 2, Daqing Oilfield. Petroleum Industry Press, Beijing, pp.785 (1993).
- 8 13. Zhang GC, Cai XY, Zhou ZB. Rift basin analysis principles and methods: Case Study of Songliao
- 9 Basin. Petroleum Industry Press, Beijing, pp.293 (1996).
- 10 14. Hu WS, Lv BQ, Zhang WJ, Mao ZG, Leng J, Guan DY. An Approach to Tectonic Evolution And
- 11 Dynamics of The Songliao Basin. *Chinese Journal of Geology* **40(1)**: 16-31 (2005).
- 12 15. Zhang WJ. Xushen1 Sub-area Gas Reservoir Character and Economic Evaluation in the Nothern
- 13 Part of Songliao Basin. Heilongjian Province, China. Dissertation of Master Degree. Northeast
- 14 Petroleum University (2007).
- 15 16. Liu DL, Chen FJ, Guan DF, Tang JR, Liu CR. A Study on Lithospheric Dynamics of the Origin
- and Evolution in the Songliao Basin. *Scientia Geologica Sinica* **31(4)**: 397-408 (1996).
- 17 17. Hou GT, Feng DC, Wang WM, Yang MH. Reverse structures and their impacts on hydrocarbon
- 18 accumulation in Songliao Basin. Oil & Gas Geology 25(1): 49-53 (2004).
- 19 18. Chi YL, Yun JB, Meng QA, Yin JY, Men GT. Dynamics and hydrocarbon accumulation in the
- 20 deep structures of Songliao Basin. Petroleum Industry Press, Beijing, pp.274 (2006).
- 21 19. Chen JL, Li ZQ, Ying DL, Lin CH. 3D Tectonophysical Modelling of the Inversion Structures in
- the Latest Cretaceous in the Northern Songliao Basin. *Chinese Journal of Geology* 44(1): 63-73 (2009).

| T                                                        | 20. Lei M, Wang JG, Wang TQ, Shi ZS, Liu CY, Han XQ, et al. Isolation of Hydrocarbon-generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                        | Kitchen in Anda Sag of Northern Songliao Basin and Its Petroleum Geological Significance. Acta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                        | Petrolei Sinica 21(2): 211-217 (2010).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                                                        | 21. Li EZ, Liu C, Zhang LH, Zeng ZF. The correlation of structure and earthquake in Songliao Basin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                                                        | Progress in Geophysics 27(4): 1337-1349 (2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6                                                        | 22. Liu ZJ, Wang DP, Liu L, Liu WS, Wang PJ, Du Xd, et al. Sedimentary Characteristics of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7                                                        | Cretaceous Songliao Basin. Acta Geologica Sinica 66(4): 327-338 (1992).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8                                                        | 23. Gao RQ. Characteristics of the Continental Cretaceous in the Songliao Basin. Acta Geologica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9                                                        | <i>Sinica</i> <b>1</b> : 9-23,85-86 (1980).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10                                                       | 24. Li W. Research on Lithofacies Palaeogeography of Cretaceous in Songliao Basin. ShanDong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11                                                       | Province, China. Dissertation of Master Degree. Shandong University of Science and Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12                                                       | (2010).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12<br>13                                                 | <ul><li>(2010).</li><li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in</i></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12<br>13<br>14                                           | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12<br>13<br>14<br>15                                     | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> <li>26. Bachu S. Screening and ranking of sedimentary basins for sequestration of CO<sub>2</sub> in geological</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12<br>13<br>14<br>15<br>16                               | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> <li>26. Bachu S. Screening and ranking of sedimentary basins for sequestration of CO<sub>2</sub> in geological media in response to climate change. Environmental Geology 44(3): 277-289 (2003).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12<br>13<br>14<br>15<br>16<br>17                         | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> <li>26. Bachu S. Screening and ranking of sedimentary basins for sequestration of CO<sub>2</sub> in geological media in response to climate change. Environmental Geology 44(3): 277-289 (2003).</li> <li>27. Viljoen JHA, Stapelberg FDJ, Cloete M. <i>Technical Report on the Geological Storage of Carbon</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12<br>13<br>14<br>15<br>16<br>17<br>18                   | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> <li>26. Bachu S. Screening and ranking of sedimentary basins for sequestration of CO<sub>2</sub> in geological media in response to climate change. Environmental Geology 44(3): 277-289 (2003).</li> <li>27. Viljoen JHA, Stapelberg FDJ, Cloete M. <i>Technical Report on the Geological Storage of Carbon Dioxied in South Africa</i>.[Online]. Available at:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19             | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> <li>26. Bachu S. Screening and ranking of sedimentary basins for sequestration of CO<sub>2</sub> in geological media in response to climate change. Environmental Geology 44(3): 277-289 (2003).</li> <li>27. Viljoen JHA, Stapelberg FDJ, Cloete M. <i>Technical Report on the Geological Storage of Carbon Dioxied in South Africa</i>.[Online]. Available at:</li> <li>http://www.sacccs.org.za/wp-content/uploads/2011/02/CO2%20Technical%20Report%20on%20th</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20       | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> <li>26. Bachu S. Screening and ranking of sedimentary basins for sequestration of CO<sub>2</sub> in geological media in response to climate change. Environmental Geology 44(3): 277-289 (2003).</li> <li>27. Viljoen JHA, Stapelberg FDJ, Cloete M. <i>Technical Report on the Geological Storage of Carbon Dioxied in South Africa</i>.[Online]. Available at:</li> <li>http://www.sacccs.org.za/wp-content/uploads/2011/02/CO2%20Technical%20Report%20on%20th</li> <li>27. Score and Sco</li></ul> |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | <ul> <li>(2010).</li> <li>25. Editorial Committee of The Development of Oilfields in China. <i>The Development of Oilfields in China, Volume 1, Daqing Oilfield</i>. Petroleum Industry Press, Beijing, pp.624 (2011).</li> <li>26. Bachu S. Screening and ranking of sedimentary basins for sequestration of CO<sub>2</sub> in geological media in response to climate change. Environmental Geology 44(3): 277-289 (2003).</li> <li>27. Viljoen JHA, Stapelberg FDJ, Cloete M. <i>Technical Report on the Geological Storage of Carbon Dioxied in South Africa</i>.[Online]. Available at:</li> <li>http://www.sacccs.org.za/wp-content/uploads/2011/02/CO2%20Technical%20Report%20on%20th comments [10</li> <li>Kay 2013].</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 1  | Opportunities for Carbon Capture and Storage (CCS) in Victoria. [Online]. Available at:           |
|----|---------------------------------------------------------------------------------------------------|
| 2  | http://www.co2crc.com.au/dls/pubs/regional/victoria_06_0506.pdf [10 May 2013].                    |
| 3  | 29. Yin DK. The Cretaceous Stratigraphic Features of the Songliao Basin. Jilin Geology 23(3): 1-5 |
| 4  | (2004).                                                                                           |
| 5  | 30. Wang RH, Huang FT, Jiang HQ. Characteristics of Non-Marine Sandstone Reservoir in Songliao    |
| 6  | Basin. Petroleum Geology & Oilfield Development in Daqing 17(5): 10-13, 54 (1998).                |
| 7  | 31. Wang C, Ma MX, Zhang M, Shao HM, Hong SX, Liu J, et al. Characteristics of Deep Gas           |
| 8  | Reservoirs in the Northern Songliao Basin. Natural Gas Industry 26(6): 25-28, 155-156(2006).      |
| 9  | 32. Liao QS, Xu HJ, Yang JG, Liu ZL, Mu XZ. Unconventional natural gas potentials of the Daqing   |
| 10 | Oil Field and its peripheral basins. Natural Gas Industry 31(3): 26-30, 108 (2011).               |
| 11 | 33. Hou QJ, Feng ZQ, Feng ZH. Continental Petroleum Geology of Songliao Basin. Petroleum          |
| 12 | Industry Press, Beijing, pp. 654 (2009).                                                          |
| 13 | 34. Zhuo HC, Lin CM, Li YL, Feng ZQ, Zhang S, Zhao B. Characteristics of Sedimentary Facies and   |
| 14 | Sequence Boundary in Upper Cretaceous Qingshankou-Yaojia Formation of Northern Songliao Basin.    |
| 15 | Acta Sedimentologica Sinica 25(1): 29-38 (2007).                                                  |
| 16 | 35. Liu Y, Wu CD, Zhang S. Color changes of Upper Cretaceous stratum and the depositional         |
| 17 | environment implication in northern Songliao Basin. Chinese Journal of Geology 47(1): 139-153     |
| 18 | (2012).                                                                                           |
| 19 | 36. Mo WL, Wu CD, Zhang S, Peng GL. Provenance and palaeocurrent direction of Upper               |
| 20 | Cretaceous Nenjiang Formation in northern Songliao Basin. Petroleum Geology & Experiment 34(1):   |
| 21 | 40-46 (2012).                                                                                     |
| 22 | 37. Fu G, Lv YF, Fu XF. Evolutional Stages of Hydrocarbon Concentration Seal in Mudstone          |

- 1 Caprocks. Chinese Journal of Geology 38(2): 165-171 (2003).
- 2 38. Shu LS, Mu YF, Wang BC. The Oil-Gas-Bearing Strata and the Structural Features in the
- 3 Songliao Basin, NE China. Journal of Stratigraphy 27(4): 340-347 (2003).
- 4 39. Mitchell A, Grauls D. Overpressures in Petroleum Exploration: Workshop Proceedings. Editions
- 5 TECHNIP, Pau, France, pp.248(1998).
- 6 40. Liu CG, Guo SM, Xu YS, Zhou HC. Division of seal evolution stages of shale caprocks to gas in
- 7 each phase and its research significance. *Petroleum Geology & Oilfield Development in Daqing* **26(3)**:

8 13-17 (2007).

- 9 41. Guo ZQ, Liu JF, Li GS. A discussion on gas sources in deep gas fields Daqing Oil field. Oil &
- 10 Gas Geology 28(4): 441-448 (2007).
- 12 42. Wu QF, Xie YZ. Geothermal Heat Flow in the Songhuajiang-Liaoning Basin. Seismology and
- **12** *Geology* **7(2)**: 59-64 (1985).
- 13 43. Wang M. Thermal History Reconstruction of Upper Paleozoic in the North of Songliao Basin.
- 14 Dissertation of Doctor Degree. Jilin University (2004)
- 15 44. Cao HF, Xia B, Zhang D, Xiang CF, Zhang H. Geochemistry of Formation Water and Its
- 16 Controlling Factors, Case Studies on the Songliao Basin. Natural Gas Geoscience 17(4): 566-572

17 (2006).

- 18 45. Lou ZH, Cheng JR, Jin AM. Origin and Evolution of the Hydrodynamics in Sedimentary Basins-
- 19 A Case Study of the Songliao Basin. Acta Sedimentologica Sinica 24(2): 193-201 (2006).
- 20 46. Kang DJ, Pang WQ, Lv YF, Fu G. Hydrodynamic Field and Hydrocarbon Accumulation on the
- 21 West Slope of the Songliao Basin. Acta Geoscientica Sinica 29(2): 205-212 (2008).
- 22 47. Zhang SL, Guo SM, Guo S. Supply of Groundwater Under the Geothermal Resource Formation

- 1 and of Hydrodynamic Conditions in Lindian Region. Journal of Daqing Petroleum College 22(4):
- **2** 82-84, 105 (1998).
- 3 48. Ministry of Environment, Government of British Columbia. Flowing Artesian Wells. [Online].
- 4 Avaiable at:
- 5 http://www.env.gov.bc.ca/wsd/plan protect sustain/groundwater/flowing artesian wells.pdf [2
- 6 November 2013]
- 7 49. Li H. Evolution and Decomposition Analysis of Industrial CO<sub>2</sub> Emissions in Northeast China
- 8 during the Period 1995-2009. *Resources Science* **34(2)**: 309-315 (2012).
- 9 50. Wei N, Li XC, Wang Y, Dahowsk RT, Davidson CL, Bromhal GS. A preliminary sub-basin scale
- 10 evaluation framework of site suitability for onshore aquifer-based CO<sub>2</sub> storage in China. International
- 11 Journal of Greenhouse Gas Control 12: 231-246 (2013).
- 12 51. Bai B, Li XC, Liu YF, Zhang Y. Preliminary study on CO<sub>2</sub> indr\ustrial point sources and their
- 13 distribution in China. *Chinese Journal of Rock Mechanics and Engineering* **25(Supp 1)**: 2918-2923
- 14 (2006)
- 15 52. Lu XS, Wang ZH, Wei LC, Liu SB, Hong F. Origin and distribution patterns of carbon dioxide in
- 16 the Songliao Basin. Oil & Gas Geology **30(1)**: 97-101, 107 (2009).
- 17 53. Fu XF, Sha W, Wang L, Liu XB. Distribution law of mantle-origin CO2 gas reservoirs and its
- 18 controlling factors in Songliao Basin. *Journal of Jilin Univer sity (Earth Science Edition)* 40(2):
- 19 253-263 (2010)
- 20 54. Zhu Y, Meng ZY, Kan SY. Determination of weight value by AHP. Journal of Northern Jiaotong
- **21** University **23(5)**: 119-122 (1999).
- 22 55. Wang TL. Relationship of Permeability with Porosity, Bound water and Saturation. Coal

- **1** *Technology* **29(1):** 172-173 (2010).
- 2 56. Duan ZH, Li DD. Coupled phase and aqueous species equilibrium of the H<sub>2</sub>O-CO<sub>2</sub>-NaCl-CaCO<sub>3</sub>
- 3 system from 0 to 250 degrees C, 1 to 1000 bar with NaCl concentrations up to saturation of halite.
- 4 *Geochimica et Cosmochimica Acta* **72(20)**: 5128-5145 (2008).
- 5 57. Li J; Duan ZH. Thermodynamic model for the prediction of phase equilibria and speciation in the
- 6  $H_2O-CO_2$ -NaCl-CaCO<sub>3</sub>-CaSO<sub>4</sub> system from 0 to 250 C, 1 to 1000 bar with NaCl concentrations up to
- 7 halite saturation. *Geochimica et Cosmochimica Acta* **75(19)**: 4351-4376 (2011).
- 8 58. Schowalter T. Mechanics of secondary hydrocarbon migration and entrapment. *The American*
- **9** Association of Petroleum Geologists Bulletin **60( 5)**: 723-760 (1979)
- 10 59. Bachu S. Sequestration of  $CO_2$  in geological media: criteria and approach for site selection in
- 11 response to climate change. *Energy Conversion & Management* **41**: 953-970 (2000).
- 12 60. Li XC, Liu YF, Bai B, Fang ZM. Ranking and Screening of CO<sub>2</sub> saline aquifer storage zones in
- 13 China. Chinese Journal of Rock Mechanics and Engineering 25(5): 963-968 (2006).
- 14

#### Tables

## Table1 Suitability assessment criteria of $CO_2$ storage for basin scale (Modified After Bachu<sup>26</sup>)

| Cuitorian                        |                                                             |                                                                     | Classes                                     |                                                     |                                                              |
|----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| Criterion                        | 1                                                           | 2                                                                   | 3                                           | 4                                                   | 5                                                            |
| Tectonic<br>setting              | Very unstable<br>(e.g.<br>subduction)                       | Unstable<br>(e.g.<br>syn-rift,<br>intramontan<br>e,<br>strike-slip) | Intermediate<br>(e.g. foreland)             | Mostly stable<br>(e.g. passive<br>margin)           | Stable *<br>(e.g. cratonic)                                  |
| size                             | Very small<br>(<1 000 km <sup>2</sup> )                     | small<br>(1000–5000<br>km <sup>2</sup> )                            | medium<br>(5000–25 000<br>km <sup>2</sup> ) | large<br>(25000– <u>50 000</u><br>km <sup>2</sup> ) | Very Large *<br>(>50 000 km <sup>2</sup> )                   |
| Depth                            | Very shallow<br>(<300 m)                                    | shallow<br>(300-800 m)                                              | deep<br>(2500-3500m)                        | Very deep<br>(>3500 m)                              | Moderate * (800-2500 m)                                      |
| Reservoir-<br>seal<br>assemblage | Very poor                                                   | Poor                                                                | Moderate                                    | good                                                | Very good *                                                  |
| Faults &<br>Fractures            | Extensive                                                   |                                                                     | Moderate *                                  |                                                     | Limited                                                      |
| Hydrogeology                     | Shallow, short<br>flow systems,<br>or<br>Compaction<br>flow |                                                                     | Intermediate flow systems *                 |                                                     | Regional flow<br>systems;<br>topography or<br>erosional flow |
| Geothermal                       | Very warm<br>(>100 °C/km)                                   | Warm<br>(100-40<br>°C/km)                                           | Moderate *<br>(30-40 °C/km)                 | Cold<br>(20–30 °C/km)                               | Very cold<br>(<20 °C/km)                                     |
| Hydrocarbon<br>potential         | None                                                        | Small                                                               | Medium                                      | Large                                               | Giant *                                                      |
| Maturity                         | Unexplored                                                  | Exploration                                                         | Developing                                  | Mature *                                            | Over Mature                                                  |
| Resources                        | None                                                        | Few                                                                 | Intermediate *                              | Many                                                | Very many                                                    |
| On/offshore                      | Deep offshore                                               |                                                                     | Shallow<br>offshore                         |                                                     | Onshore *                                                    |
| Climate                          | Arctic                                                      | Subarctic                                                           | Desert                                      | Tropical                                            | Temperate *                                                  |

\* indicates the score given to Songliao Basin 

Salinity <1 g/L 1.0-3.0 g/L 3.0-10.0 g/L 10.0-50.0 g/L >50.0 g/L Classificatio Highly Fresh Brackish Saline water Brine brackish water water n water 2 3 4 5

1 Table 2: Classification of salinity of groundwater in China

| <u>C</u>              | Caal(10)                | Indones all'-4-(5)        | De e= (1)               | Watel  |
|-----------------------|-------------------------|---------------------------|-------------------------|--------|
| Criteria              |                         | Intermediate(5)           | roor(1)                 | weight |
| Seal continuity       | Regional                | Local (large scale)       | Local (small scale)     | 0.0628 |
| Seal lithology        | Mudstone                | Mudstone interbedded      | Shale, dense            | 0.0593 |
|                       |                         | with shale                | limestone               |        |
| Seal thickness        | >200m                   | 50-200m                   | <50m                    | 0.0559 |
| Number of             | Several                 | Single                    | None                    | 0.0528 |
| seals                 |                         |                           |                         |        |
| Number of             | None                    | few                       | more                    | 0.0498 |
| faults                |                         |                           |                         |        |
| Sealing gas           | >200m                   | 100-200m                  | <100m                   | 0.0470 |
| ability               |                         |                           |                         |        |
| Pressure              | 0.9 -1.1                | <0.9                      | >1.1                    | 0.0444 |
| coefficient           |                         |                           |                         |        |
| hydrostatic           | Lower than              | Slightly higher than      | Higher than surface     | 0.0419 |
| head                  | surface                 | surface                   |                         |        |
| Reservoir             | >50md                   | 10-50md                   | <10md                   | 0.0395 |
| permeability          |                         |                           |                         |        |
| Reservoir             | >0.2                    | 0.1-0.2                   | < 0.1                   | 0.0373 |
| porosity              |                         |                           |                         |        |
| Reservoir             | >50m                    | 20-50m                    | <20m                    | 0.0342 |
| thickness             |                         |                           |                         |        |
| <b>Reservoir area</b> | $>200 \text{km}^2$      | 20-200km <sup>2</sup>     | <20km <sup>2</sup>      | 0.0342 |
| Reservoir             | Gritstone and           | Medium-fine sandstone     | Siltstone-shaly         | 0.0296 |
| lithology             | more porous and         |                           | sandstone               |        |
|                       | permeable rocks         |                           |                         |        |
| Depositional          | Fluvial                 | Deltaic                   | Lacustrine              | 0.0296 |
| environment           |                         |                           |                         |        |
| Net/gross ratio       | >0.6                    | 0.2-0.6                   | < 0.2                   | 0.0296 |
| Geothermal            | <3°C/100m               | 3-4°C/100m                | >4°C/100m               | 0.0249 |
| gradient              |                         |                           |                         |        |
| Heat flow             | $<50 \text{mW/m}^2$     | $50-70 \text{mW/m}^2$     | $>70 \text{mW/m}^{2}$   | 0.0249 |
| Depth                 | 800-3000m               | >3000m                    | <800m                   | 0.0249 |
| Salinity              | >6g/L                   | 3-6g/L                    | <3g/L                   | 0.0222 |
| Hydrodynamic          | Weak, stagnant          | Relatively weak, slow     | Relatively strong,      | 0.0209 |
| - •                   |                         | flow                      | rapid flow              |        |
| Source scale          | $>25 \times 10^{4} t/a$ | 10-25×10 <sup>4</sup> t/Y | <10×10 <sup>4</sup> t/a | 0.0198 |
| Transport             | Pipeline                | Road transport            | Ship                    | 0.0186 |
| Well spacing          | $<10/km^{2}$            | $10-30/km^2$              | $>30/km^{2}$            | 0.0176 |
| density               |                         |                           |                         |        |
| Cementing of          | Cased and               | Cased but not cemented    | Open hole               | 0.0166 |
| well                  | cemented                |                           | *                       |        |
| Earthquake            | <6Ma                    | 6-8                       | >8                      | 0.0157 |
| intensity             |                         |                           |                         |        |
| Earthquake            | No earthquake>          | Occasional                | Frequent                | 0.0148 |
| frequency             | 6Ma in 100 years        | earthquakes>6Ma in        | earthquakes>6Ma in      |        |
| - •                   | -                       | 100 years                 | 100 years               |        |
| Volcanicity           | None                    |                           | More                    | 0.0140 |
| Geological            | None                    |                           | More                    | 0.0132 |
| hazard                |                         |                           |                         |        |
| Wind direction        | Unique dominant         | Multiple dominant         | No dominant wind        | 0.0124 |
|                       | wind direction          | directions                | direction               |        |
| Physiognomy           | Simple (e.g. plane)     | Normal (e.g. hills,       | Complex (e.g.           | 0.0117 |
|                       | /                       | wash)                     | Plateau, mountain       |        |
|                       |                         | ,                         | area)                   |        |
| Surface               | <10 °C                  | 10-20 °C                  | >20 °C                  | 0.0111 |
| temperature           |                         |                           |                         |        |
| Facilities            | Good                    | Normal                    | None                    | 0.0105 |
| Area prone to         | Na                      |                           | Vaa                     | 0.0000 |
| flooding              | INO                     |                           | res                     | 0.0099 |

| 1 | Table 3 Suitability | criteria for CO <sub>2</sub> | storage at local | l (hydrocarbo | n field contai | ins HFSA) s | cale |
|---|---------------------|------------------------------|------------------|---------------|----------------|-------------|------|
|   |                     | -                            |                  |               |                |             |      |

| Population<br>density   | Scarce                     | Normal                                                  | Dense                                             | 0.0093 |
|-------------------------|----------------------------|---------------------------------------------------------|---------------------------------------------------|--------|
| Usable<br>groundwater   | Without usable groundwater | Usable groundwater<br>with good seals                   | Usable groundwater without good seals             | 0.0088 |
| Usable surface<br>water | No rivers or reservoirs    | Rivers or reservoirs<br>exist, but at<br>distance >50km | Rivers or reservoirs<br>exist at<br>distance<50km | 0.0083 |
| Public<br>acceptance    | well                       | normal                                                  |                                                   | 0.0078 |
| Protected area          | None                       | few                                                     | more                                              | 0.0074 |
| Vegetation              | few                        | normal                                                  | more                                              | 0.0070 |

1 Table 4 HFSA in different oilfields and their storage potential rank

| 2 | (HF* is an arhitrar               | v character used t | o identify | different hy  | vdrocarbon  | fields) |
|---|-----------------------------------|--------------------|------------|---------------|-------------|---------|
| 2 | (III <sup>··</sup> IS all alblual | y character used t | 0 luciulty | unificient in | yulucaluuli | neius)  |

|              | Oil/gas Ranking Oil/gas Ranking Oil/gas |                    |       |                    |        |      |  |
|--------------|-----------------------------------------|--------------------|-------|--------------------|--------|------|--|
|              | field                                   |                    | field |                    | field  |      |  |
| Primary Area | HFX-3                                   | 9.3 <mark>0</mark> | HFL-1 | 8.56               | HFX-1  | 8.67 |  |
| Recommended  | HFS-1                                   | 8.92               | HFP-1 | 8.33               | HFJ-1  | 8.62 |  |
| for storage  | HFL-3                                   | 8.06               | HFX-5 | 8.26               | HFS-2  | 8.09 |  |
| Secondary    | HFA-1                                   | 7.92               | HFZ-1 | 7.61               | HFY-3  | 7.54 |  |
| Secondary    | HFY-4                                   | 7.62               | HFY-2 | 7.55               | HFT-8  | 7.49 |  |
| Area         | HFW-2                                   | 7.48               | HFX-2 | 7.42               | HFQ-1  | 7.35 |  |
| Kecommended  | HFC-3                                   | 7.42               | HFW-1 | 7.35               | HFS-4  | 7.34 |  |
| for storage  | HFG-1                                   | 7.23               | HFG-2 | 7.12               | HFT-11 | 7.08 |  |
|              | HFT-10                                  | 6.98               | HFB-1 | 6.62               | HFE-1  | 6.43 |  |
|              | HFX-7                                   | 6.9 <mark>0</mark> | HFF-1 | 6.6 <mark>0</mark> | HFL-2  | 6.41 |  |
| No           | HFA-2                                   | 6.78               | HFS-3 | 6.56               | HFS-5  | 6.26 |  |
| Potential    | HFO-2                                   | 6.75               | HFO-1 | 6.45               | HFP-1  | 6.22 |  |
|              | HFX-6                                   | 6.22               | HFC-1 | 6.13               | HFT-9  | 5.99 |  |
|              | HFS-6                                   | 6.19               | HFC-2 | 6.02               | HFW-3  | 5.92 |  |

|           |            | S <sub>CO2</sub><br>(kg/m <sup>3</sup> ) | Ф<br>(%) | Swi<br>(%) | ρ <sub>CO2</sub><br>(Kg/m <sup>3</sup> ) | M <sub>CO2s</sub><br>(10 <sup>6</sup> t) | M <sub>CO2d</sub><br>(10 <sup>6</sup> t) | M <sub>CO2</sub><br>(10 <sup>6</sup> t) |
|-----------|------------|------------------------------------------|----------|------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|
| Primary   | Max(HFS-1) | 57.28                                    | 25.50    | 0.13       | 743.38                                   | 4645.2                                   | 219.03                                   | 4864.2                                  |
| Potential |            |                                          |          |            |                                          | 6                                        |                                          | 9                                       |
| Area      | Min(HFJ-1) | 49.60                                    | 16.50    | 0.09       | 594.34                                   | 1.74                                     | 0.08                                     | 1.82                                    |
|           | Total      | 51.91                                    | 21.27    | 0.20       | 623.93                                   | 7272.5                                   | 438.15                                   | 7710.6                                  |
|           |            |                                          |          |            |                                          | 2                                        |                                          | 7                                       |
| Secondary | Max(HFZ-1) | 48.27                                    | 16.25    | 0.31       | 560.74                                   | 516.62                                   | 215.50                                   | 732.12                                  |
| Potential | Min(HFY-2) | 46.92                                    | 18.90    | 0.07       | 469.95                                   | 5.09                                     | 0.18                                     | 5.27                                    |
| Area      | Total      | 47.75                                    | 19.30    | 0.25       | 679.41                                   | 1562.8                                   | 510.03                                   | 2072.9                                  |
|           |            |                                          |          |            |                                          | 9                                        |                                          | 2                                       |

1 Table 5 CO<sub>2</sub> storage potential of HFSA in Songliao Basin

#### 1 Figures



- 4 Fig.1 Tectonic units and cross-section of the northern Songliao Basin (Section A-A' was modified
- 5 from Chen J et al., 2009;<sup>19</sup> Section B-B' and C-C' were modified from Lei P et al.,  $2010^{20}$ )



2 Fig.2 Summary stratigraphy column of Cretaceous sediments in the northern Songliao Basin. (The

3 size of circle under 'source' column indicates the scale of source rock; the size of circle under

- 4 'seal' column indicates the ability of seals to trap hydrocarbon/ $CO_2$ ; the size of circle under
- 5 'reservoir' column indicates the suitability and potential for hydrocarbon trapping/CO2 storage.)
- 6
- 7



2

3 Fig. 3 Isopach maps of sandstone thickness in potential storage formations in the northern

4 Songliao Basin (Modified after Hou Qijun, 2009<sup>33</sup>) (a) 3<sup>rd</sup>, 4<sup>th</sup> member of Nenjiang Formation (b)

- 5 2<sup>nd</sup>, 3<sup>rd</sup> member of Yaojia Formation (c) 1<sup>st</sup> member of Yaojia formation (d) Qingshankou
- 6 Formation (e) 4<sup>th</sup> member of Quantou Formation (f) 3<sup>rd</sup> member of Quantou Formation
- 7
- 8
- 9



1

2 Fig. 4 Isopach map of mudstones in the northern Songliao Basin (Modified after Hou Qijun,

2009<sup>33</sup>) (a) 1<sup>st</sup> member of Nenjiang Formation (b) 2<sup>nd</sup> member of Nenjiang Formation (c) 1<sup>st</sup>
 member of Qingshankou Formation (d) 2<sup>nd</sup>, 3<sup>rd</sup> members of Qingshankou Formation





2 Fig. 5. Statistical analysis of PT conditions in northern Songliao Basin (a) distribution of

- 3 temperature and pressure in different oilfields (b) statistical analysis of geothermal gradient (c)
- 4 statistical analysis of pressure gradient
- 5





8 Fig.6 Salinity of HFSA in different formations in northern Songliao Basin<sup>44</sup> (a) 3<sup>rd</sup>, 4<sup>th</sup> member of

9 Nenjiang Formation (b) 2<sup>nd</sup>, 3<sup>rd</sup> member of Yaojia Formation (c) 1<sup>st</sup> member of Yaojia formation (d)

- 1 Qingshankou Formation (e) 4<sup>th</sup> member of Quantou Formation (f) 3<sup>rd</sup> member of Quantou
- 2 Formation
- 3



- 5 Fig.7 Areas recommended for geological storage of CO<sub>2</sub> in northern Songliao Basin
- 6

#### **1** Author biographies

#### 2 Shu Wang



- 4 Shu Wang has studied as a PhD candidate in the Institute of Geology and Geophysics, Chinese
- 5 Academy of Sciences for six years. Current research interests include CO<sub>2</sub> storage and Enhanced Oil
- 6 Recovery potential in the sedimentary basins of East China
- 7

3

8 Ceri Vincent



- 10 Ceri J Vincent has worked for the British Geological Survey for over 12 years on geological storage of
- 11 CO<sub>2</sub>. Current research interests include storage potential in the Europe, China and South Africa.
- 12

9

#### 13 Mike Stephenson



14

15 Mike Stephenson is the Director of Science and Technology at the British Geological Survey (BGS).

- 16 He is Editor-in-Chief of an Elsevier geological journal and has honorary professorships at the
- 17 Universities of Nottingham and Leicester.

### 2 Zeng Rongshu



- 4 Zeng Rongshu is participating in the Chinese National Basic Research Program on a project relating to
- 5 geological storage of CO<sub>2</sub>. He is also involved in three international projects studying geological
- 6 storage of CO<sub>2</sub>. Zeng is a member of the International Advisory Panel of the Global CCS Institute.

1