NERC Open Research Archive

Centre for Ecology & Hydrology TURAL ENVIRONMENT RESEARCH COUNCIL

Article (refereed) - postprint

Chisholm, Ryan A.; Muller-Landau, Helene C.; Rahman, Kassim Abdul; Bebber, Daniel P.; Bin, Yue; Bohlman, Stephanie A.; Bourg, Norman A.; Brinks, Joshua; Bunyavejchewin, Sarayudh; Butt, Nathalie; Cao, Honglin; Cao, Min; Cárdenas, Dairon; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George; Condit, Richard; Dattaraja, Handanakere S.; Davies, Stuart; Duque, Alvaro; Fletcher, Christine; Gunatilleke, Nimal; Gunatilleke, Savitri; Hao, Zhanqing; Harrison, Rhett D.; Howe, Robert; Hsieh, Chang-Fu; Hubbell, Stephen P.; Itoh, Akira: Kenfack, David; Kiratiprayoon, Somboon; Larson, Andrew J.; Lian, Juyu; Lin, Dunmei; Liu, Haifeng; Lutz, James A.; Ma, Keping; Malhi, Yadvinder; McMahon, Sean; McShea, William; Meegaskumbura, Madhava; Razman, Salim Mohd.; Morecroft, Michael D.; Nytch, Christopher J.; Oliveira, Alexandre; Parker, Geoffrey G.; Pulla, Sandeep; Punchi-Manage, Ruwan; Romero-Saltos, Hugo; Sang, Weiguo; Schurman, Jon; Su, Sheng-Hsin; Sukumar, Raman; Sun, I-Fang; Suresh, Hebbalalu S.; Tan, Sylvester; Thomas, Duncan; Thomas, Sean; Thompson, Jill; Valencia, Renato; Wolf, Amy; Yap, Sandra; Ye, Wanhui; Yuan, Zuoqiang; Zimmerman, Jess K.. 2013. Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101 (5). 1214-1224. https://doi.org/10.1111/1365-2745.12132

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society

This version available http://nora.nerc.ac.uk/id/eprint/505274/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at

http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at https://besjournals.onlinelibrary.wiley.com/toc/13652745/2013/101/5

> Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

Appendix S1 Supplementary graphs and tables

Fig. S1. Observed relationships between species richness and coarse woody productivity (CWP) at the study sites at the 0.04 ha spatial scale.

Fig. S2. Observed relationships between species richness and coarse woody productivity (CWP) at the study sites at the 0.25 ha spatial scale.

Fig. S3. Observed relationships between species richness and coarse woody productivity (CWP) at the study sites at the 1.0 ha spatial scale.

Fig. S4. Observed relationships between species richness and aboveground biomass (AGB) at the study sites at the 0.04 ha spatial scale.

Fig. S5. Observed relationships between species richness and aboveground biomass (AGB) at the study sites at the 0.25 ha spatial scale.

Fig. S6. Observed relationships between species richness and aboveground biomass (AGB) at the study sites at the 1.0 ha spatial scale.

Fig. S7. LOESS regressions of coarse woody productivity (CWP) versus stem density at the 0.04 ha spatial scale.

Fig. S8. LOESS regressions of coarse woody productivity (CWP) versus stem density at the 0.25 ha spatial scale.

Fig. S9. LOESS regressions of coarse woody productivity (CWP) versus stem density at the 1.0 ha spatial scale.

Fig. S10. LOESS regressions of aboveground biomass (AGB) versus stem density at the 0.04 ha spatial scale.

Fig. S11. LOESS regressions of aboveground biomass (AGB) versus stem density at the 0.25 ha spatial scale.

Fig. S12. LOESS regressions of aboveground biomass (AGB) versus stem density at the 1.0 ha spatial scale.

Fig. S13. Cross-site relationship of productivity to 1 ha species richness. Each point shows one site. Error bars show 95% confidence intervals on means based on 1 ha data. Red line shows linear regression (y = a x + b; $b = 0.22 \pm 0.50$, p = 0.67; $a = 0.34 \pm 0.11$, p = 0.015). Blue curve shows quadratic regression ($y = a x^2 + b x + c$; $c = -2.58 \pm 2.15$, p = 0.26; $b = 1.71 \pm 1.04$, p = 0.13; $c = -0.16 \pm 0.12$, p = 0.22).

Fig. S14. Cross-site relationship of biomass to 1 ha species richness. Each point shows one site. Error bars show 95% confidence intervals on means based on 1 ha data. Red line shows linear regression (y = a x + b; $b = 5.10 \pm 0.33$, p = 8.9e-14; $a = 0.12 \pm 0.08$, p = 0.17). Blue curve shows quadratic regression ($y = a x^2 + b x + c$; $c = -5.84 \pm 0.97$, p = 4.9e-6; $b = -0.31 \pm 0.54$, p = 0.57; $c = 0.06 \pm 0.07$, p = 0.43).

Fig. S15. Cross-site relationship of biomass to productivity. Each point shows one site. Error bars show 95% confidence intervals on means based on 1 ha data. Red line shows linear regression (y = a x + b; $b = 4.39 \pm 0.26$, p = 9.8e-9; $a = 0.74 \pm 0.15$, p = 0.00059). Blue curve shows quadratic regression ($y = a x^2 + b x + c$; $c = -3.92 \pm 1.29$, p = 0.014; $b = 1.34 \pm 1.63$, p = 0.43; $c = -0.18 \pm 0.48$, p = 0.72).

Table S1. Methods used to estimate productivity and biomass at each site. WSG = wood specific gravity (g/cm³). Generic allometric equations for dry, moist and wet tropical forests (Chave *et al.* 2005) were based on tree diameter only (not tree height), and were combined with species-specific WSG values unless otherwise noted. Species-specific WSG values were based on site data if available, or otherwise means of species values in global databases (e.g., Chave *et al.* 2006), or otherwise means of genus values, or otherwise means of family values, or else unweighted means of values for species at the site. Sites are ordered by latitude, as in Table 1.

Site name	Allometric equations		
Yasuni	Wet tropical forest (Chave et al. 2005)		
Pasoh	Moist tropical forest (Chave et al. 2005)		
Amacayacu	Moist tropical forest (Chave et al. 2005)		
Lambir	Equations constructed from dipterocarp forest data in		
	Chave et al. (2005) and Niiyama et al. (2010)		
Korup	Moist tropical forest (Chave et al. 2005)		
Sinharaja	Moist tropical forest (Chave et al. 2005)		
Barro Colorado			
Island	Moist tropical forest (Chave et al. 2005)		
Mudumalai	Dry forest (Chave et al. 2005)		
Huai Kha Khaeng	Dry forest (Chave et al. 2005)		
Palanan	Moist forest (Chave et al. 2005)		
Luquillo	Moist tropical forest (Chave <i>et al.</i> 2005) with $WSG = 0.5$		
Xishuangbanna	Equations constructed from dipterocarp forest in Chave et		
	al. (2005) and Niiyama et al. (2010)		
Dinghushan	Site-specific equation (Wen et al. 1997)		

Lienhuachih	See Fushan		
Fushan	Moist tropical forest (Chave et al. 2005) with height		
	parameter estimated from a height-DBH relationship; WSG		
	measured in the field for common species and taken from		
	global database for rare species		
	(http://datadryad.org/handle/10255/dryad.235)		
Ilha do Cardoso	Moist tropical forest (Chave et al. 2005)		
Gutianshan	Site-specific equations (Lin et al. in review)		
Yosemite	Site-specific equations (Lutz et al. 2012)		
SCBI	Moist tropical forest (Chave <i>et al.</i> 2005) with $WSG = 0.5$		
SERC	Moist tropical forest (Chave et al. 2005)		
Dongling	Moist tropical forest (Chave <i>et al.</i> 2005) with WSG = 0.5		
Changbai	Species-specific equations; generic Chinese tree/shrub		
	equations for missing species (Wang 2006; Li et al. 2010)		
Haliburton	Site-specific equations (Jenkins et al. 2003)		
Wabikon	Moist tropical forest (Chave <i>et al.</i> 2005) with $WSG = 0.5$		
Wytham Woods	Species-specific equation for the three canopy dominant		
	species (Bunce 1968); averaged equation for other species		

Table S2. (Excel file) Numerical output from the fits of the generalized least squares models

 of productivity and biomass on species richness.

Table S3. (Excel file) Numerical output from the fits of the generalized least squares models

 of productivity and biomass on species richness in the analysis controlling for stem density.

Table S4. Summary data for species richness, aboveground biomass (AGB), and coarsewood productivity (CWP) of 1 ha quadrats at each site. Numbers show mean \pm standarddeviation computed on a log scale.

	Species richness in 1		
Site name	ha	AGB in 1 ha (t)	CWP in 1 ha (t/yr)
Yasuni	253.3 [235.8,272]	184.0 [150.1,225.6]	4.52 [3.91,5.22]
Pasoh	214.1 [197.6,232]	307.8 [262.5,360.9]	7.78 [5.51,10.99]
Amacayacu	220.2 [199.2,243.4]	217.9 [189.9,250]	
Lambir	253.7 [228.2,281.9]	524.1 [424.8,646.6]	8.08 [6.92,9.45]
Korup	86.7 [75.7,99.3]	332.2 [259.5,425.2]	5.08 [3.45,7.5]
Sinharaja	73.3 [62.1,86.4]	421.3 [298.6,594.6]	9.09 [6.77,12.2]
Barro Colorado			
Island	88.0 [80.5,96.1]	283.6 [231.9,346.8]	5.84 [4.72,7.23]
Mudumalai	20.1 [17.4,23.2]	169.9 [145.9,197.9]	3.03 [2.32,3.95]
Huai Kha			
Khaeng	67.7 [60,76.4]	359.4 [270,478.4]	6.29 [4.81,8.22]
Palanan	103.2 [94.7,112.3]	371.2 [264.3,521.4]	10.3 [7.27,14.6]
Luquillo	40.5 [36.4,45.1]	316.8 [271.8,369.2]	
Xishuangbanna	113.6 [104.1,124.1]	494.1 [328,744.2]	
Dinghushan	40.1 [33.1,48.7]	172.6 [137.6,216.6]	3.42 [2.36,4.97]
Lienhuachih	48.9 [44.6,53.7]	168.9 [137.6,207.4]	
Fushan	42.4 [39.8,45.1]	165.7 [146,188]	3.10 [2.61,3.69]
Ilha do Cardoso	62.7 [57.6,68.3]	259.5 [229.4,293.4]	
Gutianshan	44.8 [38,52.7]	194.6 [164.1,230.7]	
Yosemite	4.7 [4,5.4]	488.5 [403.8,590.9]	
SCBI	24.4 [21,28.4]	358.7 [304.5,422.5]	
SERC	17.4 [13.9,21.8]	384.2 [324.7,454.5]	
Dongling	15.4 [12.6,18.8]	135.7 [102.8,179.1]	
Changbai	16.3 [14.3,18.6]	264.7 [235.7,297.3]	3.13 [2.66,3.69]
Haliburton	11.5 [9.2,14.3]	175.4 [168.1,183]	
Wabikon	10.8 [8.3,14.1]	227.2 [173.6,297.3]	

References

- Bunce R.G.H. (1968). Biomass and production of trees in a mixed deciduous woodland: I. Girth and height as parameters for the estimation of tree dry weight. *Journal of Ecology*, 56, 759-775.
- Chave J., Andalo C., Brown S., Cairns M.A., Chambers J.Q., Eamus D., Folster H., Fromard F., Higuchi N., Kira T., Lescure J.P., Nelson B.W., Ogawa H., Puig H., Riera B. & Yamakura T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. *Oecologia*, 145, 87-99.
- Chave J., Muller-Landau H.C., Baker T.R., Easdale T.A., Ter Steege H. & Webb C.O. (2006). Regional and phylogenetic variation of wood density across 2456 neotropical tree species. *Ecological Applications*, 16, 2356-2367.
- Jenkins J.C., Chojnacky D.C., Heath L.S. & Birdsey R.A. (2003). National-scale biomass estimators for United States tree species. *Forest Sciences*, 49, 12-35.
- Li X., Guo Q., Wang X. & Zheng H. (2010). Allometry of understory tree species in a natural secondary forest in northeast China. *Scientia Silvae Sinicae*, 46, 22-32.
- Lin D., Lai J., Muller-Landau H.C., Mi X. & Ma K. (in review). Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. *PLoS ONE*.
- Lutz J.A., Larson A.J., Swanson M.E. & Freund J.A. (2012). Ecological importance of largediameter trees in a temperate mixed-conifer forest. *PLoS ONE*, 7, e36131.
- Niiyama K., Kajimoto T., Matsuura Y., Yamashita T., Matsuo N., Yashiro Y., Ripin A., Kassim A.R. & Noor N.S. (2010). Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. *Journal of Tropical Ecology*, 26, 271-284.
- Wang C.K. (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. *Forest Ecology and Management*, 222, 9-16.
- Wen D., Wei P., Kong G., Zhang Q. & Huang Z. (1997). Biomass study of the community of Castanopsis chinesis + Cryptocarya concinna + Schima superba in a southern China reserve. Acta Ecologica Sinica, 17, 497-504.