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ABSTRACT 
“Context” is an elusive concept in Information Science –
often invoked, and yet rarely explained. In this paper we 
take a domain analytic approach to examine five sub-
disciplines within Earth Systems Science to show how the 
context of data production and use often impacts the value 
of data. We argue simply that the value of research data 
increases with their use. Our analysis is informed by two 
economic perspectives: first, that data production needs to 
be situated within a broader information economy; and 
second, that the concept of anti-fragility helps explain how 
data increase in value through exposure to diverse contexts 
of use. We discuss the importance of these perspectives for 
the development of information systems capable of 
facilitating interdisciplinary scientific work, as well as the 
design of sustainable cyberinfrastructures. 

Keywords 
Research Data, Domain Analysis, Context, 
Cyberinfrastructure Development.  

INTRODUCTION 
Investment in cyberinfrastructure is proceeding apace with 
the development of trustworthy repositories and other 
digital environments that support the collection and 
discovery of digital research data. A primary objective of 
this investment is to make data a common, shared resource 
that can be used in new ways to answer increasingly 
complex scientific questions (NSF, 2007).  

Previous studies of scientific data practices have 
demonstrated that even when data are made broadly 
accessible, the continued use or re-use of research data is 
highly dependent on knowing the context in which they 
were originally produced  (Zimmerman, 2007). It is widely 
recognized that structured metadata can document some of 
this context by formally recording technical, structural, and 
methodological dimensions of data production. However, 
formal metadata often does not adequately capture the more 
detailed aspects of a research process, including indicators 
that have proven important for re-users to understand the 
potential for data to be used over time – such as the 
reputation of the producer, repository or unique details 
about the site of collection (Faniel & Jacobsen, 2010). 

Studies of data practices have also shown that, as with most 
intellectual pursuits, the processes involved in producing 
and using data can be particular to local conditions and do 
not necessarily generalize across broad disciplines or fields 
of research (Cragin, Palmer, Carlson & Witt, 2010). Data 
practices are shaped by disciplinary norms, educational 
backgrounds, available infrastructure, and local cultures 
(RIN, 2008). 

The qualitative studies of data practices reported on here 
have been conducted as part of the Data Conservancy 
(http://dataconservancy.org/), an initiative aimed at 
developing tools and services for data preservation, sharing 
and discovery across disciplines. Our role in the project has 
been to investigate how researchers in the earth and life 
sciences produce and work with data, as well as the cultures 
of sharing and norms of re-using data that influence what 
and how Data Conservancy systems and services should be 
developed. 

One of the outcomes of this work was a theoretical 
framework for understanding the “analytic potential” of 
data, or the value of a dataset to be used over time, 
especially beyond its original intended purpose (Palmer, 
Weber, & Cragin, 2011). The notion of “fit-for-purpose,” a 
fundamental concept in data curation (Lord, MacDonald, 
Lyon & Giaretta, 2004), is key to the analytic potential of 
data. Data tend to be appropriate for application to 
particular problems using particular methods or processes 
of analysis, and they may need to be represented, 
transformed, or enhanced in a specific way to be made fit 
for a new purpose. Assessing the re-use value of a dataset 
requires a domain analytic understanding of potential user 
communities, including the salient research problems, 
primary methods of analysis, and types of evidence (data) 
that can contribute to answering research questions for that 
community.  

Here we apply a domain analytic approach to examine the 
production and use of data in five sub-disciplines that 
collectively represent the field of Earth Systems Science 
(ESS), explicating the ways data are used and reworked as 
they are applied to new contexts. Addressing the assertion 
that “the value of data increases with their use” (Uhlir, 
2010, p.1), we ask:  How do data change in value as they 
are used over time? Can datasets actually gain in value? If 
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so, how and under what conditions?  And lastly, how do 
these changes effect the design of cyberinfrastructures 
mean to support scientific work? 

Our approach differs from previous domain analytic studies 
in information science in its emphasis on economic 
perspectives, appropriate to our interest in understanding 
the phenomenon of data that change in value. First, we 
draw on Vertesi & Dourish’s (2011) conceptions of data 
production within a broader information economy context. 
The “context of production” for data refers to the practices 
and the setting unique to the time, space, and people 
performing the work of data generation or collection. In our 
domain analysis, we shift “our perspective back to the point 
of [a dataset’s] production,” as suggested by Vertesi and 
Dourish (2011) to document practices that occur across sub-
disciplines in ESS. With an emphasis on production within 
an information economy, interesting challenges arise in 
establishing a single “point” of production or a finished 
“data product.” 

We also consider the notion of “anti-fragility” in relation to 
change in value of data. Coined by economist Nassim Taleb 
(2012), the term refers to the property of a good or system 
capable of not only withstanding dramatic variations in use 
but actually increasing in value as it is exposed to stress. In 
our analyses, we demonstrate that some highly valuable 
research data appear to have an anti-fragile characteristic; 
they generate a resilience-through-use, which allows them 
to actually gain in value as they are exposed to broad 
contexts of use.   

DOMAIN ANALYSIS REVISITED 
Our use of a domain analytic framework is aligned with 
Hjørland and Albrechtsen (1995) who argued that 
Information Science (IS) should turn from the study of 
individual users to broader “knowledge domains.” They 
discussed three approaches within the domain analytic 
paradigm:  

1. The Social Approach – IS should be promoted as a 
social science in which theories of knowledge and 
sociology are applied. 

2. The Functional Approach – studies of formal and 
informal communication might be used to study 
mechanisms underlying information behavior. 

3. Embracing Philosophical Realism – a foundation 
for IS must be based on objective practices that reflect 
a world independent of our personal beliefs. This is a 
qualified sense of realism, as information systems are 
not built from discovered ‘information laws’ but in 
reaction to patterned practices observed over time 
(1995, p. 400). 

Applications of domain analysis have been critiqued for 
being too focused on the “Social Approach” – especially in 
IS where researchers unfamiliar with epistemology often 
fail to distinguish between qualified and naïve realism 

(Frohmann, 2004). However, we’ve found that studying 
scientists and their data practices necessarily requires a 
sensitivity to important differences and cultural dynamics 
that influence the production and use of data. These 
“social” observations have been crucial to our interpretation 
of communication patterns (e.g. how information is 
transferred, or how knowledge claims are made and 
accepted) within each individual sub-discipline of the ESS 
domain. In order to simultaneously consider these unique 
sub-disciplinary cultures and those of Earth Systems 
Science as a whole, we’ve combined a Social approach with 
a Functional approach to domain analysis. 

Previous Domain Analytic Studies 
Talja and Maula’s (2003) investigation of e-journal use 
across four disciplines took a largely functional approach to 
domain analysis. Examining the information seeking 
behavior in online databases for nursing, literature/cultural 
studies, history, and ecological environmental science, they 
aimed to generalize ‘practice’ at a disciplinary level. With 
this unit of analysis they could then look comparatively 
across discipline specific search strategies. Interestingly, 
their findings supported the work of Bates (2002) that 
found both the amount and supply of scholarly material in a 
domain had a profound effect on the search strategies a 
scholar employed. 
 
Our own domain analytic framework aligns more closely 
with the blended approach taken by Fry (2006), in terms of 
her attention to both the social and functional aspects of 
information practices. As Fry observed, scholars are 
“producers of information just as much as they are users” 
(2006, p. 309). Thus the design of Information and 
Communication Technologies (ICTs) supporting these 
information practices should be informed by both the 
production and use of scholarly materials. Fry also diverged 
from many previous domain analysis studies by adopting 
what Chubin (1976) called an “intellectual field” as the unit 
of analysis for information practices, noting in particular 
that, “…specialist fields of enquiry are feasible cultural 
entities whose numerous representations more effectively 
capture the process of research than the more conventional 
use of disciplines as a unit of analysis” (Fry, 2006, p. 305). 

Likewise, we examine Earth Systems Science by applying a 
sub-disciplinary unit of analysis. As noted in our previous 
work (Cragin, Palmer, Carlson & Witt, 2010), this level 
best captures generalizable data practices in small, field-
oriented sciences. Focusing on sub-disciplines, instead of 
traditional disciplinary structures, has also been important 
for understanding the context of data production for a 
highly collaborative field like ESS where distinctions 
between data use and re-use (or re-purposing) are often 
unclear. 

METHODS 
Participants in our qualitative study of data practices are 
researchers active in the earth and life sciences with diverse 



research agendas- studying phenomena such as climate 
change, magmatic dynamics, and nutrient cycling. Our 
interaction with a participant begins with a pre-interview 
worksheet used to orient participants to future, detailed 
discussion about their data practices and has also proven 
helpful for identifying domain-specific curation 
requirements. This is followed by a semi-structured 
research interview on data practices with both principal 
investigators, and other personnel involved with data 
management. Cases may also include a follow-up interview 
when appropriate for clarification, to fill gaps, or address 
questions that arose in the initial research interview. Where 
possible lab visits were conducted to observe the sites of 
research, collect sample data sets, and to conduct data 
inventories (Cragin, Chao & Palmer, 2011). 

Data collection and analysis are ongoing, with twenty-one 
research interviews recorded, transcribed, and then coded 
by our research team using Atlas.ti. Our initial code list was 
based on terms and vocabulary from the data practices 
segment of the “Data Curation Framework” (see Cragin, 
Palmer, & Chao, 2011). These codes were then further 
refined to reflect emergent themes from the interviews.  
Extensive discussion among our research team also helped 
build a common interpretive understanding of the data and 
assured that we maintained inter-coder reliability. Team 
members’ previous experience, including fieldwork in earth 
and life sciences, contributed important domain specific 
context to our analytic process.  

In the following sections we include selective interview 
excerpts, modified slightly to improve readability by 
removing “um’s”, “uh’s”, or short affirmative responses 
(e.g. “OK”). The first section presents profiles of five ESS 
sub-disciplines. These profiles are meant to give a brief 
overview of the research methods and unique data practices 
of each sub-discipline, and have been derived from 
interviews with multiple participants, on-site observations, 
and analysis of relevant research artifacts (publications, 
datasets, specimen samples, etc.).  

 The next section examines data practices in greater detail, 
using both a social and functional domain analysis. 
Generalizing across the five sub-disciplines, we discusses 
how an economic perspective on data practices is essential 
to understanding how data are valued and judged within 
ESS. 

THE DOMAIN: EARTH SYSTEMS SCIENCE 
As a domain, ESS integrates knowledge from geology, 
meteorology, oceanography, and biology- combining 
traditional disciplinary methods with diverse collections of 
observational data to study the varied dynamic cycles of the 
earth (Lawton, 2001). ESS emerged from a belief that 
"…the global earth environment can be understood only as 
an interactive system embracing the atmosphere, oceans, 
and sea ice, glaciers, and ice-sheets, as well as marine and 
terrestrial ecosystems" (Asrar, Kaye & Morel, 2001, p. 
1309). Increasingly, knowledge from this domain is being 

applied to the study of human activities and their effect on 
earth systems, which are of particular interest and concern 
for understanding an anthropogenic role in climate change 
and biodiversity loss (e.g. Ellis & Ramankutty, 2008).  

Work in ESS involves the dynamic integration of data 
gained from a microscopic view of the earth to create and 
calibrate a macroscopic, holistic model of the planet and its 
processes (Schellnhuber, 1999). The following profiles 
describe the context of production and use of data that are 
particular to each sub-discipline. We look specifically at 
methodological approaches to data collection that each sub-
discipline takes, how each independent pursuit of 
knowledge contributes a set of research products to ESS, 
and finally, how the norms of use and re-use drive the sub-
disciplines’ data practices. Table 1 summarizes the diverse 
data, methods, practices, and requirements.  
Sub-discipline Profiles 

Soil Ecology 
Soil ecology is concerned with dynamic interactions 
between biological organisms and the physical 
environment, relying on investigations of biotic and abiotic 
aspects of soil. Physical soil samples are the primary 
objects of study, supplemented by maps and data loggers 
that provide environmental context. 

The dynamics of soil and organismal processes are captured 
at targeted and multi-scale sites to understand how these 
dimensions interact in various ecosystems, of particular 
value to ESS as a domain. In conjunction with site-specific 
data collection, lab-based analyses are used to determine 
specific physical, chemical, and biological measures of soil 
properties that reflect these relationships. Results are 
recorded in field and laboratory notebooks and may 
correspond to digital files based on instrument output or the 
implementation of a research protocol. 

The aggregation of raw data for analysis typically relies on 
manual input of measurements from several sources, 
including field collection, lab protocols, and instruments, 
into a unified structure such as a database table. Verifying 
the data is an iterative process that relies on consultation of 
the original recorded source (i.e. quantitative outputs from 
instrument readings, laboratory notebooks, etc.). Informal 
requests for specific measures and methodological 
protocols are common in this sub-discipline, however the 
re-use of physical soil samples is often limited due to their 
deterioration during lab processing.  

Volcanology 
Volcanology is the study of volcanic and magmatic 
systems: the dynamics, processes and underlying physics 
driving the flow of molten rock beneath (and sometimes 
through) the earth's crust. Much of volcanology is focused 
on determining crystallization rates in igneous rocks (rocks 
formed through the solidification of magma or lava), and 
using these “micro” level views of rock samples to inform 
“macro” level models of volcanic system structure.  These 



 
models inform other sub-disciplines within ESS such as 
structural geology, geobiology, and even climatology.  

Though researchers draw from a diverse range of data to 
create mathematical models and maps of magmatic 
systems, data are primarily generated from physical rock 
samples or thin sections (thinly sliced sections of rock on 
glass slides). While secondary data like chemical analyses, 
high-resolution images of thin sections, crystal size 
distributions, and measures of phenocryst abundance are 
likely to be re-used, the physical samples and thin sections 
have the highest potential value for reanalysis.  

The process of integrating these various types of data is 
highly dependent on understanding the data's provenance; 
researchers consult field notes, field photographs, and in 
some cases the data producer when performing secondary 
analyses. The collection of samples involves substantial 
analysis of already published work, resulting in high 
amounts of data re-use. Thus, because old and new data are 
constantly compared, the boundaries between data 
collection and analysis are somewhat fluid. 

Stratigraphy 
Stratigraphers study the ordering, composition and 
relationships of rock strata in order to understand geological 
history. Much of stratigraphy is fundamentally concerned 
with describing and documenting the order of sedimentary 
layers, assigning dates to those layers, and then 
extrapolating the depositional events or environments that 
would create those layers. This is done by iterating between 
the mapping of outcrops (visible exposures of rock faces in 
the field), and analyzing samples from these outcrops to 
better ascertain dates via radioactive isotope analysis. 

The understanding of the Earth’s geological history 
provided by stratigraphy is an important foundation on 
which other sub-disciplines in ESS build; stratigraphers 
construct a time-line by which other earth scientists date 
their data. In turn, stratigraphy relies on the data generated 
by these same sub-disciplines to refine the geological time 
scale. This is done by comparing qualitative data describing 
sedimentary layers to quantitative chemical analyses and 
other complementary signals of age or time (e.g. evidence 
of astronomical cycles).  The idiosyncrasies of the materials 
being studied (e.g. the composition, location and context of 
the sediments) dictate what signals of age will be most 
useful or appropriate in studying them.  

Because of the large amount of data needed in this work, 
and the high cost or difficulty involved in collecting new 
samples, stratigraphers rely heavily on existing data to 
construct complete maps and geological time scales. These 
data include rock samples, chemical data, isotopic data, and 
even numerical data extracted from printed graphs. The 
process of using one type of data to calibrate another signal 
is highly iterative, and involves a substantial amount of 
computational work on the part of stratigraphers. As in 

volcanology, this process requires frequent consultation 
with field notes, original data collectors, and other means of 
understanding the data’s original context of production. 

Sensor and Network Engineering 
Sensor and network engineering uses coordinated arrays of 
instruments that allow scientists to remotely carry out 
autonomous field measurements of environmental 
properties. Sensor studies is a research area drawing upon 
engineering, computer science, telecommunications, and 
various domain sciences in order to optimize the 
performance of these technologies in recording and 
communicating data. A network is typically made up of a 
set of spatially distributed instruments equipped to monitor 
the environment at programmed intervals, to record 
measurements onto a data logger, and eventually send 
recorded data to a center for further analysis. Investigations 
use data collected about the sensors as well as about the 
environment in which instruments are deployed.  

Development and deployment of individual sensors and 
sensor networks involves a high degree of interface with 
domain scientists regarding data collection and the 
arrangement of sensors. As a result network development 
proceeds in an iterative cycle of configure-prototype-
analyze. Important tools include data loggers for data 
capture and databases for data storage, processing, and 
query. With large-scale collaborative programs funded to 
“instrument the field” and steward time-series datasets as 
community resources, autonomous instrumentation 
becomes an important component of many ESS sub-
disciplines. Within-project and multi-project comparative 
studies are often carried out to improve understanding of a 
network. For dissemination, data may be available online 
via an ftp file repository or a website providing 
visualization. There is often informal sharing of the whole 
database or selected tables with an individual to whom the 
rationale for data arrangements is explained.  

Ocean and Costal Modeling 
Computational models in the earth sciences are increasingly 
used to forecast and now-cast events in natural systems like 
the ocean, atmosphere and climate. As the reliability and 
accuracy of modeling techniques have improved they’ve 
been adapted to study increasingly specific research 
questions, in ever more targeted settings. As a sub-
discipline in ESS, these groups attempt to create formal 
mathematical models for dynamics in estuary, limnological  
and oceanic systems. This process is computationally 
intensive, depending, almost exclusively, on re-using data 
that has been gathered by field researchers with whom 
modelers have little to no direct communication. 

While specific fields, funding agencies, and repositories are 
known to serve high-quality data, the process of finding 
useful, accurate data to develop ocean and coastal models is 
typically ad-hoc and dependent on informal channels of 
communication. Work practices are exceptionally varied in  



 Soil Ecology Volcanology Stratigraphy RS Engineering C/O Modeling 

Study 
approach 

Biotic and 
abiotic properties 
of soil 

Chemical and 
textural properties 
of rock samples 
combined with 
geospatial data 

Range of signals 
compared to refine 
the geological time 
scale 

Prototyping and 
designing field 
sensors to optimize 
field data collection 

Computational or 
mathematical 
modeling of aquatic 
dynamics.  

Kinds of 
data used 

Physical soil 
samples, maps 
(paper & digital), 
biological 
species 
inventory, lab-
based outputs 

Whole rock 
samples; thin slices 
of rock samples on 
glass slides; 
chemical data; 
maps 

Numerical data and 
graphs pulled from 
papers; physical 
samples; chemical, 
radioactive isotope, 
and astronomical 
cycle data 

Autonomous field 
measurement of 
sensor and 
environmental data 
recorded on data 
loggers or transferred 
directly to a database 

Water sample, 
meteorological, and 
remote sensing data 
downloaded; diverse 
models’ output at 
many spatial & 
temporal scales 

Patterns 
of data 
use 

Systematic 
review of data 
for quality where 
values are 
checked against 
multiple sources 

Iterative reference 
to & comparison of 
data sources, 
including chemical 
data, field notes, 
papers & maps 

Highly iterative 
comparison of 
datasets and 
modeling of signals 
of time 

Regular review of 
data for investigating 
various sensor 
configurations and 
contexts of data 
collection 

Irregular patterns of 
use, based on need 
for model calibration 
or benchmarking for 
reliability 

Norms of 
data re-
use 

Informal sharing 
of processed data 
and methods, 
though 
perceptions on 
re-use vary 

High expectation of 
data re-use, 
particularly with 
physical samples 
and thin sections 

Moderate 
expectation of re-
use aiming to find 
new ways of 
determining 
geological time 
scales for re-use 

Diverse, informal re-
uses: optimizing 
sampling design; 
providing data to 
project researchers; or 
for public posting 

Informal sharing of 
data inputs and 
software code; 
Informal and formal 
mechanisms for re-
use and sharing of 
model 

Table 1. A matrix of ESS sub-discipline data practices relating to the production and use of data 

this sub-discipline; modelers iterate over observational data 
to create exploratory visualizations, or assimilate data to fit 
model parameters using a number of different granularities 
and grid densities as well as a variety of interpolation 
methods. There is often a near constant monitoring of 
experimental procedures because of a sensitivity of models 
to data and of data to empirical methods used in gathering 
field-based observational data. Although this sub-discipline 
is largely dependent on open sharing, and high-quality 
metadata that accompanies the data they re-use in building 
a model, their own practices of describing and sharing 
personal archives of processed data are highly irregular and 
infrequent.  

THE ANALYSIS: SOCIAL & FUNCTIONAL  
Working from Hjørland and Albrechtsen’s original 
framework, our analysis first explores the Social and then 
the Functional approach to domain analysis. 

The Social Approach: Context of Production 
Across the sub-disciplines of ESS, our participants 
repeatedly described the context of gathering or collecting 
data as being the most important indicator of value. As one 
researcher put it, with data, “context is everything.” How, 

when, where, and under what conditions data are produced 
have enormous implications for their regenerative value.  
 
In stratigraphy, for instance, well logging data collected 
through industrial drilling activities are known to be of 
higher or more detailed resolution and are thus of 
potentially greater value than samples gathered by informal 
methods (as detailed below). However, because these 
datasets are proprietary and often unpublished, they are 
typically more difficult to obtain and may not be in an 
easily usable form. One stratigrapher reported only being 
able to find this type of “high resolution” data in graph 
form within a journal publication. Therefore, she had to 
resort to using software to semi-automatically extract the 
numerical data from scanned graphs, essentially recreating 
tabular data from an image. The elaborate and time-
consuming process of converting these data to a usable 
form compounds their worth. In this instance, value was 
also tightly coupled with the reputation of the data 
collectors or institutions responsible for its production. 
 
In some cases, value was determined by the uniqueness of 
the place where the data were originally gathered. For 



 
example, if a site is ecologically unique, or requires special 
permitting to study, then the rarity of this context, quite 
intuitively, will positively affect the value of the data. As 
one soil ecologist explained, collecting soil samples from a 
foreign country requires not only a government-issued 
permit but also a specific space within their own laboratory 
to process, analyze, and store samples that might otherwise 
contaminate related experiments. Volcanologists reported 
placing similarly high value on samples collected at rarely 
studied sites or politically volatile regions. Value is 
indicated by the uniqueness of the scientific site, but it is 
also inherently tied to the broader political and geographical 
location in which the data were originally gathered.  
 
A unique context of production can also prompt innovation, 
for which the researchers who originally collected the data 
have an “at-hand” advantage in processing and cleaning 
them for secondary analysis. For instance, participants from 
the sensor engineering sub-discipline were constantly 
tailoring and creating “workarounds” to accommodate new 
ideas for domain specific research. Below a sensor engineer 
constrained by existing protocols describes creating an 
alternative delivery mechanism for data: 

“Some of the researchers ask me to get different 
data from different instruments. I have managed 
to make a special program for them in our data 
loggers in a way that new data doesn’t go into 
the [existing] database but into a different place. 
Because we cannot touch how the database has 
been structured. So they are able to get the data 
but it doesn’t go to the main webpage.”  

In this example, the context of production has shifted from 
the “point” of collection to the point of access. In a sense, 
the data were only valuable after this shift occurred, and the 
constraints of the protocols in place spurred innovation that 
increased the value of the data across a network of 
researchers. 

Documentation about the context of production also adds 
value to data, both in terms of increased discoverability and 
more accurate appraisal by secondary parties. Ocean and 
coastal modelers stressed that there was a need for thorough 
documentation of datasets from repositories. Formal 
metadata, however, was rarely enough to make a dataset 
trustworthy for re-use. Most modelers noted that either 
spatial coverage amenable to their model’s grid or informal 
“word-of-mouth” reputation about quality were most 
important when deciding between comparable datasets.  

This informal appraisal was true for instrument generated 
data as well as data gathered by field campaigns. Without 
the “being-there” of fieldwork, modelers sought context in 
every imaginable detail – from the weather during a plane’s 
flight pattern, to a satellite’s serial number, to irregularities 
in taking mooring data in the open sea. In the latter case, 
one modeler noted the importance of establishing context 
with a scientist in the field: 

“…you have to go back to the data gatherer and 
ask them, “What’s this value? This doesn’t seem 
to be right. Do you remember what happened? 
Did a shark hit your boat or something?” …the 
quality control doesn’t exist really well. So one 
has to work back and forth with the data 
collector.” 

This same sentiment was echoed in the volcanology group. 
When using data collected by others, researchers 
emphasized the need for “a full repertoire of data,” as one 
volcanologist put it, as well as the ability to replicate the 
experience of “being there” in the field. Many expressed a 
strong need to “create context” by continually consulting 
field notes or photographs, and, whenever possible, to 
speak with the original collectors before reusing their 
samples. One researcher expressed serious concerns about 
scientists who did not make the effort to understand the 
context of production, saying,  

“[non-field researchers] get a bunch of data. 
And they’ve never seen them in the field, they’ve 
never seen the rocks in the field, they never saw 
how they fit in the system.”   

This ties understanding the context of production to the 
ability to understand the actual “system” of ESS. We heard 
repeatedly that data are neither trustworthy nor justifiably 
usable without understanding how and why they were 
collected or created.  
 
Clearly, capturing sub-discipline specific context is 
necessary to support secondary analysis or re-use. 
However, supporting personal interaction between data 
producers and users is also essential. In some cases, the 
rarity or value of data forces unlikely relationships between 
otherwise disparate groups, and enabling these interactions 
are especially important in a collaborative domain like ESS.  

From Ecologies to Data Economies 
It has been previously suggested that the emergence of a 
data-intensive paradigm in science is evidence of a larger, 
more sophisticated “ecological” approach to transferring, 
managing, curating, and preserving data (Choudhury, 2010; 
Smith, 2010). But as Vertesi and Dourish (2011) point out, 
a “data economy” is perhaps a more appropriate metaphor 
for describing the current environment of data-intensive 
work. 

Similar concepts like “knowledge economy” have been 
invoked since Taylor first promoted scientific management 
at the beginning of the 20th century (Drucker, 1969), but 
what is meant by a data economy here is more specific to 
data practices, where systems are designed in a patchwork 
process to interoperate between small groups, or diverse 
sub-disciplines like those in ESS. As we saw in the analysis 
above, our participants consistently noted that knowing 
context was highly valuable when using their own data, but 



equally important to their work in re-using data was the 
ability to create or discover the context of production.  

Part of the challenge then for a networked data economy is 
to design interoperable systems that capture sub-
disciplinary data practices as they are enmeshed in a larger-
scale or domain-wide context of production. In an ESS 
setting, where most studies are only capable of being 
conducted through discovery and use of others’ data, this 
means accounting for the context of production by 
explicitly documenting workflows and provenance, and by 
dynamically or statically linking tabular data to field notes, 
processing scripts, simulations, photographs, physical 
specimens, and other research products necessary for 
creating context.  

Technical systems capable of creating context are not 
natural or pre-assembled constructions; they are 
purposefully and uniquely tailored to scientific inquiries 
within the domains they are meant to coordinate. Hence, 
many of these systems require that values inherent to a sub-
discipline are “designed-in,” such that, “the technological 
infrastructures that we introduce to each new information 
economy context must respect and enhance – or at least, not 
directly challenge – the processes by which the data they 
handle gains currency and value: including those specific to 
the context of data production” (Vertesi and Dourish, 2011, 
p. 541). 

The social approach to domain analysis provides a 
comprehensive understanding of ESS as a whole domain, 
but this macroscopic view is only made possible through a 
thorough the investigation of individual sub-disciplinary 
data practices. At this level of analysis, it is clear that 
documenting context allows data to, as Vertesi and Dourish 
put it,  “gain currency and value” in a data economy.  

The Functional Approach: Resilience through Use 
In our study of the data practices of ESS sub-disciplines, we 
also found that participants frequently described a 
phenomenon in which data that are repeatedly or iteratively 
used gain in value over time. In some cases this increase in 
value was a result of transforming the data into a more 
reliable or trustworthy product through debugging or 
cleaning. In other cases increased value was a result of 
applying data to a novel context that shed light on other 
domains of scientific – or even societal – interest. 

For instance, instrumentalists consistently noted the need to 
make data accessible to exceptionally diverse groups – from 
discipline-specific research teams, to triathletes, or even 
search-and-rescue professionals. The variability in use by 
these groups influenced the way data were normalized and 
packaged for dissemination: 

“We have people who are participating in 
triathlons…and they want to know about the 
water temperature and want to know about 
patterns. We’ve had Search and Rescue teams 
download our data to be able to predict what 

will be going on…fishermen will request data to 
look at trends…We also have industry people, 
need to know what the typical water level will be 
so they can get their boat in there.” 

The path of data from sensor to scientist is here extended to 
include a larger population, which necessarily taxes both 
the data and the data producer. Formats, file transfers, and 
“finished products” are necessarily reconsidered when the 
audience of the sensor data becomes more diverse. The 
content of the data then demonstrates value by withstanding 
this expansion of use and adapting to reconfigurations that 
provide both value and wider accessibility. 

In domain specific instances of data use and re-use we often 
noted that particular requirements for factors like 
frequency, accuracy, or precision were reconfigured 
between groups of researchers. In the following example, 
data shared by one community are improved when a second 
team of researchers worked closely with the original data 
collectors. Sensor engineers developing network sensors for 
use in the Brazilian rainforest provided a dataset using an 
average or “block” calibration to a group of researchers at 
the University of São Paulo who then compared the dataset 
with their own temperature observations, eventually 
improving the individual instrument level calibration. The 
sensor engineers could then communicate the particulars of 
this adjustment back to those that originally generated the 
data, and they were in turn able to recalibrate their own 
work and present more accurate data to the public: 

“What we did for [Group Name] is that we were 
collecting the data and then we were processing 
it.... But then at the end of the project they went 
back and made this recalibration...up to 0.5 
degrees Celsius difference [from] what we call a 
block calibration, which is something that was 
applied to all the hundred temperature sensors... 
they did this very arduous task of actually going 
and calibrating each one.”        

This iterative cycle of processing-analyzing-improving-
reprocessing is common in most scientific pursuits, but 
what the above scenario illustrates is the way in which 
networked researchers improve data by exposing them to 
broader contexts of use. In a sense, no improvement in the 
temperature calibration would have been considered had the 
data not been shared. And it was this back-and-forth 
transfer of data that lead to more accurate measurements by 
forcing the data gatherers to painstakingly improve the data 
through re-calibration. 

Data quality improves not just through normal, repetitive 
use, but also by being stressed or taxed by application to 
novel problems. Stratigraphers have what might be thought 
of as “circuits of data” – wherein various forms of data are 
transferred between spreadsheets, tables, publications, and 
sometimes back to spreadsheets once again. It is not simply 
the act of extrapolating numerical data from printed graphs 
that improves data through “context creation” (as described 



 
in the previous section) – it’s also that these extracted data 
are then compared to other datasets to more accurately 
“triangulate-in” on what information a time signal is 
conveying, thereby improving the overall efficacy of future 
analysis. This process of comparison between different time 
signals (isotopic, astronomical) is central to stratigraphy 
work in general, but is also what makes its data so robust 
and valuable within the domain of ESS.  

Similarly, ocean and coastal modelers discussed the idea of 
iteratively tuning a model to “reality” – where exposing the 
model to field data or coupling the model with a new 
physical system (e.g. tidal dynamics) forced them to seek 
new, often very diverse data sources to reanalyze, or even 
recalibrate interpolated data. The stress of tuning a model 
improves output data for the researcher, but importantly 
also has the potential to contribute to data archives by 
building collections of gridded data for reference and re-
use.  

Ocean and coastal modelers often referred to the process of 
performing inter-comparisons, or validating separate 
branches of a model with highly reliable, well-known 
datasets of similar temporal and spatial coverage. This 
process iteratively improved a model’s ability to accurately 
forecast or simulate a given phenomena, but at the same 
time checked the “reality” of the methods used in collecting 
this observational data. Like the stratigraphers, this work is 
performed on diverse data sources – often comparing output 
from ocean models against atmospheric models – leading to 
more robust and valuable collections of processed data that 
can be shared and re-used in future inter-comparison 
projects. 

These cases are just a few examples of what was expressed 
across ESS: data sharing is not just important for 
regenerative scientific work but is also crucial to improving 
the quality and value of data. When we discussed data 
sharing with participants who conducted fieldwork (Soil 
Ecology, Volcanology and Stratigraphy), most of their 
reluctance to share data wasn’t for fear of being scooped, or 
undermined by competitors – it seemed to be a feeling that 
their data were too messy, or an insistence that their data 
were too specific in scope to be used meaningfully by 
another researcher. In a sense, they considered their data 
too fragile for re-use.  

But when we discussed using, appraising, or discovering 
data that is created by others, in particular with researchers 
who routinely re-use data (Ocean and Coastal modelers, 
Sensor Engineers and Stratigraphers), we heard how 
important reputation was in trusting data. And as one 
modeler explained, reputation was established through 
“data referendums” – the vetting of quality was established 
most firmly with data that are tested, well shared and well 
debated amongst experts in a variety of research settings. 

Throughout the sub-disciplines of ESS, we also found that 
value isn’t necessarily static or self-determined. The data 

practices described above indicate that data improve in 
value through repeated use, and also through application to 
new or novel contexts. At first blush, this notion seems 
obvious – as the saying goes, “many eyes make for better 
seeing.” However, it’s important to note that widely used 
data don’t just improve in reliability or quality – they 
actually become more valuable and in a sense, less fragile.  

Anti-Fragile Data  
As Nassim Taleb explains (2012), most languages lack an 
antonym for the word “fragile.” Robust is often suggested, 
but this implies a kind of simple brute strength, and fragility 
doesn’t necessarily imply that a system or good is weak, but 
instead that it is brittle, and suffers structurally when 
directly stressed. For instance, a wine glass is fragile in the 
sense that even if it were to survive a fall from a dinner 
table, it would be irreversibly weakened by that impact, and 
would never regenerate or recoup its lost strength.  

As we’ve observed in ESS, a fragile dataset is one that 
cannot be improved through recalibration, or is not worthy 
of being painstakingly re-engineered from plotted graphs. 
The lack of a “fitness-for-use” here inhibits the data from 
generating new or improved understanding. 

The opposite of fragile data would be a dataset that not only 
withstands deterioration over time, but also benefits from 
being broadly used. Instead of simply being resistant to 
external forces, these datasets can actually gain density 
through different kinds of use, exposure to new contexts, 
and by being stretched to accommodate broader audiences.  

In ESS, one example of this resilience-through-use is 
shown by researchers’ painstaking improvements of their 
data through a process of sharing and iterative calibration of 
measurements. However, the property that allows these 
kinds of data to gain in value through repeated use- 
therefore, becoming less fragile- seems to lack a formal 
moniker.  

By mathematically modeling fragility in terms of path-
dependent payoffs, Taleb demonstrated that the inverse of 
fragile is convexity, or what he explains might best be 
thought of as “anti-fragile” (2011). An anti-fragile entity 
will respond positively to unpredicted, unplanned, and 
unexpected uses. The same is true for goods that are 
capable of being valuable in contexts that stretch far beyond 
their patterned or particular use.   

 



 
 

Figure 1. Upper and lower bounds of systems and 
goods. As goods become more dense the reaction to 
variability improves.  

 

So on the one hand, goods and systems that are susceptible 
to breakdown and deterioration are fragile – like wine 
glasses or, from our examples above, soil sediment 
samples. These fragile goods maintain structural integrity 
by avoiding stress. On the other hand, we have goods and 
systems that are anti-fragile – like skeletal systems, or from 
our own ESS analyses, ocean models. These types of 
objects benefit structurally in terms of both strength and 
resilience though variations in use and stress.   

 
THE CYBERINFRASTRUCTURE PERSPECTIVE 
If, as our ESS examples show, data gain strength through 
exposure to use, recalibration, normalization, interpolation 
or even assimilation, then there are important implications 
for the technical systems meant to preserve and provide 
long-term access to these data products.  

Traditional information systems are designed to treat data 
as fragile goods—that is, they have an upper bound of “not 
breaking” and a lower bound of degradation (see Figure 1). 
In the case of digital datasets, for example, the upper bound 
would be persistent access in a repository system and the 
lower bound would be degradation of the files integrity, 
such as susceptibility to digital bit-rot. In systems oriented 
to fragile data the best we can hope for is that a data 
collection persists, and in the worst case there could be loss 
of intelligible access to the content. Now, if the goal of 
cyberinfrastructure is to connect disparate knowledge bases 
in hopes of producing new knowledge (Atkins, 2003), then 
it seems antithetical to treat data – the currency in which 
cyberinfrastructures interoperate – as a fragile good.  

If access to data that doesn’t degrade is the design goal for 
cyberinfrastructure then the benefit of data being re-used or 
reanalyzed for a new purpose will always exist outside the 
information network. To put it more simply, if the upper 
bound or best case scenario for data is “not breaking” then 
how will interdisciplinary scholars ever harness the 
networked capability of a cyberinfrastructure to produce 
new knowledge? Building networked systems around 
fragile data essentially compounds the complexity that 
cyberinfrastructure development is currently envisioned to 
address – namely isolated collections not usable or 
discoverable by scientists attempting to cross traditional 
disciplinary boundaries.  

TOWARDS ANTI-FRAGILE SYSTEMS 
How to design effective and efficient information systems 
has been a central question in IS for decades (e.g. Taylor, 
1986; Bates, 1999). In the data-intensive practice of 
contemporary science work, our research indicates that 
efficient systems are those that accommodate the context of 
production alongside effective systems that reliably preserve 
and transfer data across increasingly complex, 
interdisciplinary networks. 

 In our social and functional domain analyses of ESS, we 
saw that capturing the context of production at the sub-
discipline level was crucial for establishing trust, sharing 
resources, and motivating further data analysis. We also 
observed that highly valuable data actually gained value as 
they were used in diverse contexts or transferred across a 
network of diverse actors. Of crucial importance then for 
future work supporting interdisciplinary data practices is 
the development of efficient and effective systems that are 
designed to function beyond the traditional notions of a 
static dataset so as to respond and evolve new datasets. We 
propose that it’s only by designing cyberinfrastructures and 
information systems that are capable of accommodating, 
and attracting anti-fragile data – those that benefit from the 
stress of use, computational innovation, and variability in 
methodological approaches – that the transformative 
potential of widespread data sharing and re-use will be fully 
realized. 
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