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THE DISORDER PROBLEM FOR COMPOUND POISSON
PROCESSES WITH EXPONENTIAL JUMPS

BY PAVEL V. GAPEEV

Russian Academy of Sciences

The problem of disorder seeks to determine a stopping time which is
as close as possible to the unknown time of “disorder” when the observed
process changes its probability characteristics. We give a partial answer to
this question for some special cases of Lévy processes and present a complete
solution of the Bayesian and variational problem for a compound Poisson
process with exponential jumps. The method of proof is based on reducing the
Bayesian problem to an integro-differential free-boundary problem where,
in some cases, the smooth-fit principle breaks down and is replaced by the
principle of continuous fit.

1. Introduction. Assume that at timet = 0 we begin to observe a continu-
ously updated processX = (Xt )t≥0 whose probability characteristics change at
some unknown timeθ , called thetime of disorder, which cannot be observed di-
rectly. Throughout this paper the random timeθ can take the value 0 with probabil-
ity π ; under the condition thatθ > 0, it is exponentially distributed with parameter
λ > 0. The disorder problem or the problem of quickest disorder detection is to
decide by observing the processX the time instant at which we should give an
alarm to indicate the occurrence of disorder. This time instant should be as close
as possible to the timeθ in the sense that both the probability of false alarm and the
expectation of the time interval between the occurrence of disorder and the alarm
(when the latter is given correctly) should be minimal.

The problem of detecting a change in drift of a Wiener process was formulated
and solved by Shiryaev [12–15] (see also [16] and [17], Chapter IV and page 208,
for historical notes and references). Some particular cases of the problem of
detecting a change in the intensity of a Poisson process were considered by
Gal’chuk and Rozovskii [6] and by Davis [4]. Peskir and Shiryaev [10] presented
a complete solution of the disorder problem for a Poisson process in the Bayesian
formulation. The main aim of this paper is to find an explicit expression of the
optimal stopping boundary for the a posteriori probability process in some special
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cases of the problem for Lévy processes and to present a complete solution to the
problem for a compound Poisson process that has exponentially distributed jumps.
Actually, we give the next example of process for which the quickest disorder
detection problem can be solved in an explicit form. Such processes are used, for
example, in several models of stochastic finance and insurance (see, e.g., [18]). For
some other optimal stopping problems for such processes see, for example, [9].

The paper is organized as follows. In Section 2 we give a formulation of
the Bayesian and variational problem of quickest disorder detection for Lévy
processes. In Section 3 by the examination of the sample-path behavior of
the a posteriori probability process, we find an optimal stopping boundary in
some particular cases of the Bayesian problem. In Section 4 by means of
solving the corresponding integro-differential free-boundary problem, we derive
a complete solution of the Bayesian problem for a compound Poisson process
with exponential jumps, where we can observe the breakdown of the smooth-
fit principle and its replacement by the principle of continuous fit. These effects
can be explained both by the examination of the sample-path properties of the a
posteriori probability process and by the existence of a singularity point of the
integro-differential equation. Note that in models based on jump processes the
situations when the continuous fit replaces the smooth fit were earlier observed,
for example, in bandit problems (see, e.g., [2] for references). In Section 5, passing
from the derived solution of the Bayesian problem, we find an explicit expression
for the optimal stopping boundary in the corresponding variational problem.

We note here that the problem of quickest detection admits different formula-
tions and appears in on-line quality control, radar location, seismology and so forth
(see, e.g., [3, 8]).

2. Formulation of the Bayesian and variational problem. For a precise
probabilistic formulation of the quickest disorder detection problem for Lévy
processes (see [17], Chapter IV, for the Wiener process case), let us suppose that
on some measurable space(�,F ) equipped with a family of probability measures
(P s)s≥0 there exists a nonnegative random variableθ such thatP s[θ = s] = 1
for all s ≥ 0. It is assumed that we observe a continuously updated process
X = (Xt )t≥0 with X0 = 0 and having, under the measureP s , the triplet(

(t ∧ s)b0 + (
(t − s) ∨ 0

)
b1,0, dt

[
I{t<s}ν0(dx) + I{t≥s}ν1(dx)

])
(2.1)

with respect to the functionh(x) = x, x ∈ R, for all t, s ≥ 0, whereνi(dx) is a
Lévy measure onR such thatνi({0}) = 0 and

∫
(x2 ∧ 1)νi(dx) < ∞ for i = 0,1

(see, e.g., [7], Chapter II.4, or [11], Chapter II.8). Hereθ andX are assumed to be
stochastically independent underP s for all s ≥ 0. Let us fixλ > 0 and define the
measuresPπ = πP 0 + (1− π)

∫ ∞
0 λe−λsP s ds for all π ∈ [0,1], so that we have

Pπ [θ = 0] = π andPπ [θ > t|θ > 0] = e−λt for all t ≥ 0.
Let τ be a stopping time with respect to the filtrationFX = (F X

t )t≥0, where
F X

t = σ {Xs |0 ≤ s ≤ t}. We interpretτ as the time at which the alarm is sounded to
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signal the change in distribution of the observed processX. TheBayesian disorder
problem is to minimize the risk function

V (π) = inf
τ

{Pπ [τ < θ] + cEπ [τ − θ]+},(2.2)

where the infimum is taken over allFX stopping timesτ , and to find an optimal
stopping timeτ∗ at which the infimum in (2.2) is attained. HerePπ [τ < θ] is the
probability of false alarm,Eπ [τ − θ]+ is the average delay in detecting disorder
correctly andc > 0 is some constant.

It is easily shown (see [17], pages 195–197) that the value functionV (π)

can be expressed in terms of the a posteriori probability process(πt), where
πt = Pπ [θ ≤ t|F X

t ] for all t ≥ 0 andPπ [π0 = π ] = 1. Namely, we have

V (π) = inf
τ

Eπ

[
1− πτ + c

∫ τ

0
πt dt

]
.(2.3)

Moreover, it is easily verified (see [17], page 204) that the infimum in (2.3) is
actually taken over the classM(π) of stopping timesτ such thatEπ [τ ] < ∞.

To give the corresponding variational or fixed false-alarm probability formula-
tion, let the numberπ ∈ [0,1) be fixed and letM(π,α) denote the class of stopping
timesτ that satisfy

Pπ [τ < θ] ≤ α,(2.4)

whereα is a given constant from the interval[0,1). The variational disorder
problem is to find in the classM(π,α) a stopping timêτ such that

Eπ [τ̂ − θ]+ ≤ Eπ [τ − θ]+(2.5)

for any other stopping timeτ from M(π,α).

3. Preliminary results and examples. Suppose that the filtrationFX is right-
continuous and the conditions∫

|x|νi(dx) < ∞ (i = 0,1),(3.1)

b1 = b0 +
∫

xν1(dx) −
∫

xν0(dx),(3.2) ∫ (√
Y (x) − 1

)2
ν0(dx) < ∞(3.3)

are satisfied, whereY (x) = ν1(dx)/ν0(dx) for all x ∈ R. Then by means of
Girsanov’s theorem for semimartingales ([7], Theorem III.5.34) and Itô’s formula
([7], Theorem I.4.57), using the schema of arguments in [17], page 202, it can be
verified that the process(πt ) solves the stochastic differential equation

dπt = λ(1− πt ) dt +
∫

πt−(1− πt−)(Y (x) − 1)

1+ πt−(Y (x) − 1)
(µX − νX)(dt, dx),(3.4)
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whereµX is the measure of jumps of the processX and itsFX compensatorνX is
given byνX(dt, dx) = (πt−ν1(dx) + (1− πt−)ν0(dx)) dt . From (3.4) it is easily
seen that(πt ) is a time-homogeneous (strong) Markov process underPπ with
respect to the natural filtration which clearly coincides withFX. The latter implies
that the infimum in (2.3) can be taken over all stopping times of(πt ) playing the
role of a sufficient statistic (see, e.g., [17], Chapter II.15).

It can be also verified (see [17], pages 197 and 198, and [10]) that the value
functionV (π) is decreasing and concave on[0,1], and the optimal stopping time
in (2.3) is given by

τ∗ = inf{t ≥ 0|πt ≥ B∗},(3.5)

whereB∗ is the smallest numberπ from [0,1] such thatV (π) = 1− π .
Using the arguments from [10] we now find an explicit expression for the

optimal stopping boundaryB∗ in some particular cases of the problem.

LEMMA 3.1. Assume in addition to (2.1)and (3.1)–(3.3)that we have

ν1(dx) ≥ ν0(dx) (x ∈ R),(3.6)

0 <

∫
xν1(dx) −

∫
xν0(dx) ≤ c + λ.(3.7)

Then in the Bayesian problem of quickest disorder detection (2.2)+ (2.3) the
stopping time τ∗ from (3.5) is optimal with B∗ = �B , where we set

�B = λ

λ + c
.(3.8)

PROOF. The assumption (3.7) ensures that�B ≤ B̂, where we set

B̂ = λ
/(∫

xν1(dx) −
∫

xν0(dx)

)
.(3.9)

From (3.4) it is seen that if̂B ≥ 1, then the process(πt) is strictly increasing, and
if B̂ < 1, then the drift rate of the continuous part of(πt) is positive on[0, B̂),
negative on(B̂,1) and equal to zero at̂B. Thus, if(πt ) starts in[0, B̂) or in (B̂,1),
then under the absence of jumps,(πt) never reacheŝB , because its drift tends to
zero the same time with linear order. Therefore, by virtue of the fact that under the
condition (3.6) the process(πt ) can have only positive jumps, it can leave[0, B̂)

only by jumping and, fluctuating in(B̂,1), it cannot enter[0, B̂). If (πt) starts or
ends up at̂B , then it is trapped there (Pπ -a.s.) until the next jump ofX occurs.

From (3.4) it follows that the process(πt ) admits the representation

πt = π + λ

∫ t

0
(1− πs−) ds + Mt,(3.10)
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where(Mt) is a martingale underPπ with respect toFX. Hence, by means of the
optional sampling theorem (see, e.g., [7], Theorem I.1.39), from (3.10) together
with (3.4) and according to (3.1) we obtain thatEπ [Mτ ] = 0 and hence

Eπ

[
1− πτ + c

∫ τ

0
πt dt

]
= 1− π + (λ + c)Eπ

∫ τ

0

(
πt − λ

λ + c

)
dt(3.11)

for all stopping timesτ from M(π). Recalling that the process(πt ) is monotone
increasing in[ �B, B̂) and that after entering[B̂,1] cannot leave it, from (3.11) we
may therefore conclude that it is never optimal to stop(πt ) in [0, �B ) and that(πt )

must be stopped instantly after passing through�B. �

EXAMPLE 3.2. Assume that in (2.1) we havebi = 1/λi and νi(dx) =
I{x>0} exp(−λix) dx/x with λi > 0. ThusX is a gamma process with parameter
changing fromλ0 to λ1 (see, e.g., [18], Chapter III.1). In this case the integrals
in (3.1) and (3.3) are equal to 1/λi and log[(λ0 + λ1)

2/(4λ0λ1)], respectively.
Therefore, by Lemma 3.1 we get that ifλ0 > λ1 > 0 and log(λ0/λ1) ≤ c + λ, then
the stopping timeτ∗ from (3.5) is optimal withB∗ = λ/(λ + c).

EXAMPLE 3.3. Suppose that in (2.1) we havebi = 1/γi and νi(dx) =
I{x>0} exp(−γ 2

i x/2) dx/(2πx3)1/2 with γi > 0. ThusX is an inverse Gaussian
process with parameter changing fromγ0 to γ1 (see, e.g., [1]). In this case the
integrals in (3.1) and (3.3) are equal to 1/γi and [2(γ 2

0 + γ 2
1 )]1/2 − γ0 − γ1,

respectively. Therefore, by Lemma 3.1 we conclude that ifγ0 > γ1 > 0 and
γ0 − γ1 ≤ c + λ, thenτ∗ from (3.5) is optimal withB∗ = λ/(λ + c).

REMARK 3.4. From (3.11) it is seen that one should not stop(πt ) when it is
in [0, �B ], so forB∗ from (3.5) we have�B ≤ B∗ ≤ 1.

4. Solution of the Bayesian problem for a compound Poisson process with
exponential jumps. In the rest of the paper, we assume that the processX is
defined by

Xt =
∫ t

0
θs− dX1

s +
∫ t

0
(1− θs−) dX0

s ,(4.1)

whereXi
s = ∑Ni

s

j=1 ξ i
j and θs = I{s≥θ} for all t, s ≥ 0, Ni = (Ni

t ) is a Poisson

process with intensity 1/λi and (ξ i
j )j∈N is a sequence of independent random

variables exponentially distributed with parameterλi [Ni , (ξ i
j )j∈N and θ are

supposed to be independent] fori = 0,1. Then in (2.1) we havebi = 1/λ2
i and

νi(dx) = I{x>0} exp(−λix) dx, and thusX is a compound Poisson process that
has exponentially distributed jumps with parameter changing fromλ0 to λ1. In this
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case the integrals in (3.1) and (3.3) are equal to 1/λ2
i and(λ0 − λ1)

2/[λ0λ1(λ0 +
λ1)], respectively, and (3.4) takes the form

dπt = λ(1− πt ) dt

+
∫ ∞

0

πt−(1− πt−)(exp(−λ1x) − exp(−λ0x))

πt− exp(−λ1x) + (1− πt−)exp(−λ0x)
(4.2) × (

µX(dt, dx) − (
πt− exp(−λ1x)

+ (1− πt−)exp(−λ0x)
)
dt dx

)
.

Standard arguments imply that in this case the infinitesimal operatorL of the
process(πt) acts on a functionf ∈ C1([0,1]) according to the rule

(Lf )(π) =
(
λ −

(
λ0 − λ1

λ0λ1

)
π

)
(1− π)f ′(π)

+
∫ ∞

0

[
f

(
π exp(−λ1x)

π exp(−λ1x) + (1− π)exp(−λ0x)

)
− f (π)

]
(4.3)

× (
π exp(−λ1x) + (1− π)exp(−λ0x)

)
dx

for all π ∈ [0,1]. Using standard arguments based on the strong Markov property,
it follows that V (π) is C1 on (0,B∗). Therefore, using the results from [17],
Chapter III.8, we can formulate theintegro-differential free-boundary problem for
the unknown functionV (π) from (2.3) and the unknown boundaryB∗ from (3.5)
as

(LV )(π) = −cπ (0 < π < B∗),(4.4)

V (π) = 1− π (B∗ ≤ π ≤ 1),(4.5)

V (B∗−) = 1− B∗ (continuous fit),(4.6)

where the condition (4.6) is satisfied by virtue of the concavity argument above.
Note that the superharmonic characterization of the value function (see [5] and
[17]) implies thatV (π) is the largest function that satisfies (4.4)–(4.6). Moreover,
under some relationships on the parameters of the model which are specified
below, the condition

V ′(B∗) = −1 (smooth fit)(4.7)

may be satisfied or break down. We also observe that, in this case,B̂ from (3.9)
takes the form

B̂ = λλ0λ1

λ0 − λ1
(4.8)

and turns out to be a singularity point of (4.4) whenλ0 > λ1.
Using the schema of arguments in [10], we further show that the system (4.4)–

(4.6) admits an explicit solution which turns out to be a solution of the initial
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optimal stopping problem (2.3). For this, let us consider a continuous function
f (π) that satisfies (4.4) on(0,B) and (4.5) on[B,1] for some 0< B < 1 given
and fixed.

Let us first assume thatλ0 > λ1. Then it follows that the functioñf (y) = f (π)

with π = ey/(1+ ey) solves the system(
λ′(1+ ey)

ey
− 1

γ (γ − 1)

)
f̃ ′(y) − f̃ (y)[γ (1+ ey) − 1]

γ (γ − 1)(1+ ey)

+ eγy

1+ ey

[∫ B̃

y

f̃ (z)(1+ ez)

eγ z
dz + e−γ B̃

γ

]
(4.9)

= −c(λ0 − λ1)e
y

1+ ey
(y < B̃),

f̃ (y) = 1

1+ ey
(y ≥ B̃),(4.10)

where we setγ = λ0/(λ0−λ1) > 1,λ′ = λ(λ0− λ1) > 0 andB̃ = log[B/(1−B)].
It can be easily shown that the system (4.9)+ (4.10) has a unique solution which
is given by

f̃ (y; B̃) = 1

1+ eB̃
−

∫ B̃

y

γ (γ − 1)F̃ (z, B̃)eγ z

γ (1+ ez) − 1
dz,(4.11)

F̃ (y, B̃) = 1

Ã(y)

(
C̃(y, B̃) −

∫ B̃

y

C̃(z, B̃)

Ã(z)

G̃(z)

G̃(y)
dz

)
,(4.12)

Ã(y) = 1+ ey

ey

(
λ′γ (γ − 1)(1+ ey) − ey

γ (1+ ey) − 1

)
,(4.13)

C̃(y, B̃) = e−(γ−1)B̃

γ (γ − 1)(1+ eB̃)
− cλ0e

−(γ−1)y

γ
,(4.14)

G̃(y) =



∣∣∣∣ey − B̂

1− B̂

∣∣∣∣a(1+ ey), if B̂ 
= 1,

exp[−γ ey](1+ ey), if B̂ = 1,

(4.15)

for y ≤ B̃ , anda = (B̂ + γ − 1)/(1 − B̂ ) if B̂ 
= 1. Using (4.11)–(4.15) we may
thus conclude that the functionf (π;B) = f̃ (y; B̃) given by

f (π;B) = 1− B −
∫ B

π

γ λ1F(x,B∗)(1− x)[x/(1− x)]γ
λ1 + (λ0 − λ1)x

dx,(4.16)

F(π,B) = 1

A(π)π(1− π)

(
C(π,B) −

∫ B

π

C(x,B)G(x) dx

A(x)G(π)x(1− x)

)
,(4.17)

A(π) = λλ0λ1 − (λ0 − λ1)π

π [λ1 + (λ0 − λ1)π ] ,(4.18)
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C(π,B) = 1− B

γ (γ − 1)

(
1− B

B

)γ−1

− c(λ0 − λ1)

(
1− π

π

)γ−1

,(4.19)

G(π) =




∣∣∣∣ λλ0λ1 − (λ0 − λ1)π

(λ0 − λ1 − λλ0λ1)(1− π)

∣∣∣∣a 1

1− π
, if

λλ0λ1

λ0 − λ1

= 1,

exp
(

λ0π

(λ1 − λ0)(1− π)

)
1

1− π
, if

λλ0λ1

λ0 − λ1
= 1,

(4.20)

a = λ1(1+ λλ0)

λ0 − λ1 − λλ0λ1
if

λλ0λ1

λ0 − λ1

= 1,(4.21)

for π ∈ (0,B] is a unique solution of the system (4.4)+ (4.5).
Let us now assume thatλ0 < λ1. In this case it follows that the function

f̃ (y) = f (π) with π = ey/(1+ ey) solves the equation(
λ′(1+ ey)

ey
− 1

γ (γ − 1)

)
f̃ ′(y) − f̃ (y)[γ (1+ ey) − 1]

γ (γ − 1)(1+ ey)
(4.22)

− eγy

1+ ey

∫ y

−∞
f̃ (z)(1+ ez)

eγ z
dz = −c(λ0 − λ1)e

y

1+ ey
(y < B̃)

and satisfies (4.10), whereγ = λ0/(λ0 − λ1) < 0, λ′ = λ(λ0 − λ1) < 0 and
B̃ = log[B/(1− B)]. It can be easily verified that the system (4.22)+ (4.10) has a
unique solution which is given by

f̃ (y) = 1

1+ eB̃
+

∫ y

−∞
γ (γ − 1)F̃ (z)eγ z

γ (1+ ez) − 1
dz,(4.23)

F̃ (y) = −c(λ0 − λ1)

Ã(y)

(
e−(γ−1)y +

∫ y

−∞
e−(γ−1)z

Ã(z)

G̃(z)

G̃(y)
dz

)
(4.24)

for y ≤ B̃ , whereÃ(y) andG̃(y) are defined in (4.13) and (4.15), respectively.
Using (4.23)+ (4.24) and (4.13)+ (4.15) we may therefore conclude that the
functionf (π;B) = f̃ (y) given by (4.16) with

F(π) = − c(λ0 − λ1)

A(π)π(1− π)

((
1− π

π

)γ−1

+
∫ π

0

G(x)(1− x)γ−2

A(x)G(π)xγ
dx

)
(4.25)

for π ∈ (0,B] is a unique solution of the system (4.4)+ (4.5).
Taking into account the facts proved above, we are now ready to formulate the

main assertion of the section.

THEOREM 4.1. Suppose that the observed process X is given by (4.1).Then
in the Bayesian problem of quickest disorder detection (2.2)+ (2.3) the value
function V (π) coincides with the function

V∗(π) =
{

f (π;B∗), π ∈ (0,B∗),
1− π, π ∈ [B∗,1],(4.26)



ON THE DISORDER PROBLEM 495

[with V∗(0) = f (0+;B∗)] and the optimal stopping time τ∗ is explicitly given
by (3.5),where f (π;B) and the boundary B∗ are specified as follows:

(i) If λ0 > λ1 and c > 1/λ1 − 1/λ0 − λ, then f (π;B) is given by (4.16)+
(4.17)and B∗ = �B ≡ λ/(λ + c).

(ii) If λ0 > λ1 and c = 1/λ1 − 1/λ0 − λ, then f (π;B) is given by (4.16)+
(4.17)and B∗ = �B = B̂ ≡ λλ0λ1/(λ0 − λ1).

(iii) If λ0 > λ1 and c < 1/λ1 − 1/λ0 − λ, then f (π;B) is given by (4.16)+
(4.17)and B∗ > �B is a unique root of H(B∗) = 0, where we set

H(B) =
∫ B

B̂

C(x,B)G(x)

A(x)x(1− x)
dx.(4.27)

(iv) If λ0 < λ1, then f (π;B) = f (π) is given by (4.16)+ (4.25) and B∗ is
uniquely determined from the equation

f ′(B∗) = −1.(4.28)

PROOF. (i) and (ii) In these cases the conditions (3.6)+ (3.7) are satisfied and
thus�B ≤ B̂ . Hence, by Lemma 3.1 we get thatB∗ coincides with�B and, by means
of the uniqueness arguments for solutions of the first-order ordinary differential
equations, we may conclude thatV∗(π) = V (π) for all π ∈ [0,1].

(iii) In this case we havêB < �B, and thus, according to Remark 3.4, we see
that the optimal boundaryB∗ is located to the right of̂B . Taking an arbitraryB
from (B̂,1), by means of the arguments above we obtain that the functionf (π;B)

from (4.16)+ (4.17) is a unique solution of the system (4.4)–(4.6) forπ ∈ (B̂,B].
Observe that in the given case there exists a unique pointB ′ ∈ (B̂,1) such that
limπ↓B̂ f (π;B) = ±∞ for B ∈ (B̂,B ′) ∪ (B ′,1) and limπ↓B̂ f (π;B ′) is finite.
Hencef (π;B) together withF(π,B) from (4.17) can be uniquely extended to
the interval(0, B̂], where by l’Hôpital’s rule, we may letF(B̂,B ′) = F(B̂±,B ′)
and thusf ′(B̂;B ′) = f ′(B̂±;B ′) ≡ −cλ2

1/(λ0−λ1−λλ0λ1). Then from (4.16)+
(4.17) it follows thatB ′ can be characterized by means ofH(B ′) = 0, where
H(B) is defined in (4.27). SinceH(B̂+) = +0 and the derivativeH ′(B) > 0 for
B ∈ (B̂, �B ) andH ′(B) < 0 forB ∈ ( �B,1), the functionH(B) increases on(B̂, �B )

and decreases on( �B,1). Thus, by virtue of the property limB↑∞ H(B) = −∞, we
get thatB ′ belongs to the interval(�B,1) andH(B ′) = 0 has a unique solution.

Summarizing the facts proved above, we see that the value functionV (π) and
the optimal boundaryB∗ should necessarily solve the system (4.4)–(4.6) and there
is only one pointB ′ such that the solutionf (π;B ′) taken atπ = B̂ is finite. We
may therefore conclude thatB∗ coincides withB ′ and the uniqueness argument
for solutions of first-order differential equations implies thatV∗(π) = V (π) for all
π ∈ [0,1], thus proving the claim.

(iv) Taking into account the fact that in this case the process(πt ) can increase
only continuously, following the arguments in [17], Chapter IV.4, and [10] we may
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guess that the smooth-fit condition (4.7) is satisfied and thus (4.28) holds. Using
straightforward calculations it is shown thatf ′′(π) < 0 for π ∈ (0,1); hence, the
functionf (π) from (4.16)+ (4.25) is concave on[0,1] and its derivativef ′(π)

is decreasing on(0,1). Therefore, by virtue of the facts thatf ′(0+) = 0 and
f ′(1−) = −∞, we may conclude that (4.28) admits a unique solution.

Let us now show that the functionV∗(π) defined in (4.26)+ (4.16)+ (4.25)
coincides with the value functionV (π) and thatB∗ being a unique root of (4.28)
is an optimal stopping boundary. For this, applying Itô’s formula, we get

V∗(πt ) = V∗(π) +
∫ t

0
(LV∗)(πs−) ds + M∗

t ,(4.29)

where the process(M∗
t ) defined by

M∗
t =

∫ t

0

∫ ∞
0

[
V∗

(
πs− exp(−λ1x)

πs− exp(−λ1x) + (1− πs−)exp(−λ0x)

)
− V∗(πs−)

]
(4.30) × (

µX(ds, dx) − (
πs− exp(−λ1x) + (1− πs−)exp(−λ0x)

)
ds dx

)
is a martingale underPπ with respect toFX.

Since V∗(π) is a bounded function, from (4.30) by means of the optional
sampling theorem we get thatEπ [M∗

τ ] = 0 for all τ from M(π). Thus, taking
the expectation on both sides in (4.29) withτ instead oft and using the fact that a
direct verification yields(LV∗)(π) ≥ −cπ andV∗(π) ≤ 1− π , we obtain

V∗(π) ≤ Eπ

[
1− πτ + c

∫ τ

0
πt dt

]
(4.31)

for all τ from the classM(π), and henceV∗(π) ≤ V (π) for all π ∈ [0,1].
Observe that straightforward calculations above imply that the functionV∗(π)

and the boundaryB∗ solve the system (4.4)–(4.6); hence we haveV∗(πτ∗) =
1− πτ∗ and(LV∗)(πt ) = −cπt for all 0≤ t ≤ τ∗. Therefore, taking the expectation
on both sides in (4.29) witht replaced byτ∗ and using the obvious fact thatτ∗
belongs toM(π), we see that the equality in (4.31) is attained atτ = τ∗. This
implies thatV∗(π) = V (π) for all π ∈ [0,1] and thatB∗ is an optimal stopping
boundary. Thus the proof is complete.�

REMARK 4.2. We observe that in case (i) of Theorem 4.1 we can verify
that f ′(B∗−;B∗) = −1 and in the case (iv) we have proved that (4.28) holds,
so that the smooth-fit condition (4.7) is satisfied. This can be explained by the
facts that the process(πt ) may pass throughB∗ continuously and that (4.4) has no
singularity point. On the other hand, in case (ii) it is shown thatf ′(B∗−;B∗) =
−cλ2

1/(λ0 − λ1 − λλ0λ1) > −1 and in case (iii) it can be also proved that the
smooth-fit condition (4.7) breaks down. This can be explained by means of the
facts that the process(πt ) may pass throughB∗ for the first time only by jumping
and that (4.4) has a singularity point̂B .
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REMARK 4.3. We note that the functionf (π;B) for differentB ∈ (0,1) and
the functionV∗(π) in cases (i)–(iv) look the same as in [10], Figures 2–5.

5. Solution of the variational problem for a compound Poisson process with
exponential jumps. Let us first note that ifα ≥ 1− π , then lettingτ̂ = 0 we get
Pπ [τ̂ < θ] = Pπ [θ > 0] = 1− π ≤ α andEπ [τ̂ − θ]+ = 0, whence it is seen that
τ̂ = 0 is optimal in the formulation (2.4)+ (2.5).

Assuming that 0< α < 1 − π and following the arguments from [17],
pages 198–200, we further show that the solution of the variational problem
(2.4)+ (2.5) can be obtained using the solution of the Bayesian problem. For this,
let us introduce the function

u(π;B∗) = Pπ [τ∗ < θ] ( = Eπ

[
1− πτ∗

])
.(5.1)

To find an explicit expression for the functionu(π;B) in the case whenλ0 > λ1,
we observe that, by virtue of the strong Markov property, it should solve the system

(Lu)(π;B) = 0 (0 < π < B),(5.2)

u(π;B) = 1− π (B ≤ π ≤ 1).(5.3)

By means of the same arguments as in the text that accompanies the formulas
(4.9)–(4.21), it is shown that the system (5.2)+ (5.3) admits the unique solution

u(π;B) = 1− B −
∫ B

π

γ λ1D(x,B)(1− x)

λ1 + (λ0 − λ1)x

(
x

1− x

)γ

dx,(5.4)

D(π,B) = 1− B

γ (γ − 1)A(π)π(1− π)

G(B)

G(π)

(
1− B

B

)γ

(5.5)

for π ∈ (0,B), π 
= B̂, whereγ = λ0/(λ0 − λ1) > 1, the functionsA(π) and
G(π) are given by (4.18) and (4.20), respectively, and by l’Hôpital’s rule, we can
let D(B̂,B) = D(B̂±,B) ≡ 0 as well asu(0;B) = u(0+;B).

It is not difficult to verify that ∂u(π;B)/(∂B) < 0 for B ∈ (π,1), so that
the functionu(π;B) is strictly decreasing on(π,1) for 0 < π < 1 − α fixed.
Therefore, by virtue of the obvious facts thatu(π;0) = 1 − π andu(π;1) = 0,
we may conclude that there exists a pointB(α) ≤ 1 − α that is a unique solution
of the equation

u
(
π;B(α)

) = α.(5.6)

Let us now formulate the main result of the section.

THEOREM 5.1. Suppose that the observed process X is given by (4.1).Then
in the variational problem of quickest disorder detection (2.4)+ (2.5),the optimal
stopping time τ̂ is explicitly given by

τ̂ = inf{t ≥ 0|πt ≥ B(α)},(5.7)

where the boundary B(α) ≤ 1− α is specified as follows:
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(i) If 0< α < 1− π and λ0 > λ1, then B(α) is a unique root of (5.6).
(ii) If α ≥ 1− π or λ0 < λ1, then B(α) = 1− α.

PROOF. (i) Let us consider the functionB∗ = B∗(c) as an optimal boundary
in the corresponding Bayesian problem which is uniquely determined from parts
(i)–(iii) of Theorem 4.1. It can be easily shown thatB∗(c) is continuous and strictly
decreasing on(0,∞), and it satisfies limc↓0B∗(c) = 1 and limc↑∞ B∗(c) = 0.
Then there exists a constantc(α) such thatB(α) = B∗(c(α)) and by the
definition (2.2), we have

Pπ [τ̂ < θ] + c(α)Eπ [τ̂ − θ]+ ≤ Pπ [τ < θ] + c(α)Eπ [τ − θ]+(5.8)

for all stopping timesτ . Since from (5.6) together with (5.1) and (3.5) it is seen
thatPπ [τ̂ < θ] = α, we may thus conclude that (5.8) directly yields

c(α)Eπ [τ̂ − θ]+ ≤ c(α)Eπ [τ − θ]+(5.9)

for all τ from M(π,α). Therefore, by virtue of the obvious fact thatc(α) > 0 for
0 < α < 1− π , we obtain that̂τ from (5.7) is optimal in (2.5).

(ii) Since wheneverλ0 < λ1, the process(πt ) can increase only continuously,
we get that{πτ̂ ≥ B(α)} = {πτ̂ = B(α)}, and from (5.1) it thus follows that in this
case we haveu(π;B) = 1 − B. Hence, from (5.6) it is seen thatB(α) = 1 − α,
and the arguments from the previous part (i) complete the proof.�
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