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Abstract 
Zebrafish (Danio rerio) is a vertebrate model organism. It is suited for many phases of drug 
development process like toxicological studies. The major advantage of using zebrafish is the 
possibility to conduct high-throughput screens on a whole vertebrate animal. However, there is 
not as much knowledge about zebrafish as there is about other model organisms. Therefore 
there might be differences between zebrafish and humans that affect the use of zebrafish as a 
model in the drug development process. The purpose of this thesis was to characterize the 
structure of the zebrafish oxytocin system and assess the role of oxytocin on zebrafish 
behaviour. In humans defects in the oxytocin system have been linked to many psychiatric 
disorders like autism. If the mammalian and zebrafish oxytocin systems resembled each other 
functionally and structurally, it would enable the use of zebrafish as a model when studying the 
role of oxytocin in pathophysiology of diseases and also in oxytocin system related drug 
development. 
 
The structure and development of zebrafish oxytocin system was studied by staining adult 
zebrafish brain cryosections and larval brains with antibodies made against mammalian 
oxytocin. The specificity of the antibodies to recognize zebrafish oxytocin was determined by 
absorption and cross-reactivity controls. The role of oxytocin on zebrafish locomotion was 
studied by inhibiting the splicing of oxytocin messenger RNA with morpholino 
oligonucleotides (MOs). The MOs were used to address the relevance of the model in 
pharmacology, since the zebrafish oxytocin receptors have not been expressed and 
pharmacologically characterized. 
 
In zebrafish oxytocin was produced in the cells of the preoptic nucleus. There were thick 
oxytocin fibers towards the pituitary and also thinner fibers into areas in the telencephalon, 
diencephalon, mesencephalon and rhombencephalon. One of the MOs was able to inhibit the 
production of oxytocin with a dose that did not cause morphological abnormalities. The MO 
reduced the locomotor activity of the fish, but the specificity of the MO has to be determined. 
The structure of the zebrafish oxytocin system resembles mammalian oxytocin system in terms 
of the location of oxytocin cells and fiber projections. Therefore zebrafish seems a suitable 
model organism for oxytocin research. However, the structure of the zebrafish oxytocin receptor 
system and the effect of oxytocin on other behavioural aspects have to be determined in order to 
further evaluate the applicability of zebrafish for oxytocin research.  
Keywords 
Zebrafish, drug development, oxytocin, immunohistochemistry, morpholino oligonucleotide 
Where deposited 
Division of Pharmacology and Pharmacotherapy 
Additional information 
Supervisor: Pertti Panula 



 

Tiedekunta 
Farmasian tiedekunta 

Osasto 
Farmakologian ja lääkehoidon osasto 

Tekijä 
Anni Yli-Rantala 
Työn nimi 
Seeprakala lääkekehityksessä: seeprakalan oksitosiinijärjestelmän kartoitus 
Oppiaine  
Farmakologia 
Työn laji  
Pro gradu -tutkielma 

Aika 
Maaliskuu 2014 

Sivumäärä 
85 

Tiivistelmä 
Seeprakala (Danio rerio) on selkärankaisiin kuuluva mallieläin, jota voidaan käyttää monissa 
lääkekehityksen eri vaiheissa kuten toksisuuskokeissa. Seeprakalan käytön merkittävin etu on 
mahdollisuus suorittaa laajoja tehoseulontoja selkärankaisella mallieläimellä. Seeprakaloista ei 
kuitenkaan ole yhtä paljon tietoa kuin yleisemmin käytettävistä mallieläimistä. Seeprakalan ja 
nisäkkäiden välillä voikin olla eroja, jotka vaikuttavat seeprakalan käyttöön mallieläimenä 
lääkekehityksessä. Tämän tutkimuksen tarkoitus oli kartoittaa seeprakalan 
oksitosiinijärjestelmän rakenne sekä tutkia oksitosiinin merkitystä seeprakalan 
käyttäytymisessä. Ihmisillä oksitosiinin toiminnan häiriintyminen on yhdistetty moniin 
psyykkisiin sairauksiin kuten autismiin. Jos seeprakalan ja nisäkkäiden oksitosiinijärjestelmät 
vastaisivat rakenteellisesti ja toiminnallisesti toisiaan, tämä mahdollistaisi seeprakalan käytön 
tutkittaessa oksitosiinijärjestelmän osuutta sairauksien patofysiologiassa sekä 
oksitosiinijärjestelmään liittyvässä lääkekehityksessä. 
 
Seeprakalan oksitosiinijärjestelmän rakennetta ja kehitystä tutkittiin värjäämällä aikuisten 
seeprakalojen aivojen kryostaattileikkeitä sekä poikasten aivoja nisäkkäiden oksitosiinivasta-
aineilla. Vasta-aineiden spesifisyys seeprakalan oksitosiinin tunnistamiseen tutkittiin absorptio- 
ja ristireaktiokokeilla. Oksitosiinin merkitystä liikeaktiivisuuteen tutkittiin estämällä 
oksitosiinin lähetti-RNA:n silmukointi morfolino-oligonukleotideilla. Morfolino-
oligonukleotideja käytettiin, koska seeprakalan oksitosiinireseptorien ominaisuudet tunnetaan 
huonosti.  
 
Seeprakaloilla oksitosiinia tuottivat preoptisen tumakkeen solut. Soluista lähti paksuja 
oksitosiinisäikeitä aivolisäkkeeseen sekä ohuempia säikeitä etu-, väli-, keski- ja taka-aivojen 
alueelle. Tutkituista morfolino-oligonukleotideista yksi esti oksitosiinin ilmentymistä 
annoksella, joka ei vaikuttanut kalojen morfologiaan. Kyseinen morfolino-oligonukleotidi 
vähensi kalojen liikeaktiivisuutta. Morfolino-oligonukleotidin spesifisyys täytyy kuitenkin vielä 
selvittää. Seeprakalan oksitosiinijärjestelmä rakenne muistuttaa nisäkkäiden 
oksitosiinijärjestelmää solujen sijainnin ja säikeiden kulun osalta. Tämän perusteella seeprakala 
vaikuttaa sopivalta mallilta oksitosiinitutkimukseen. Seeprakalan oksitosiinireseptori-
järjestelmän rakenne ja oksitosiinin vaikutus käyttäytymisen eri osa-alueisiin tulisi kuitenkin 
selvittää, jotta voitaisiin paremmin arvioida seeprakalan soveltuvuutta oksitosiinijärjestelmän 
tutkimiseen. 
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1 INTRODUCTION 

 

Zebrafish (Danio rerio) is a vertebrate model organism, which has traditionally been 

used as a model in the field of developmental biology and genetics. The use of zebrafish 

as a model organism has been spreading to other areas as well, such as neuroscience. 

Recently also the pharmaceutical industry has become interested in the potential of 

using zebrafish in the drug development process.  

 

Developing a new drug is a long and expensive process and it usually takes more than 

ten years to get a new drug to the market (Dickson and Gagnon 2004). There are also 

many risks associated with the drug development process and the majority of the drug 

candidates do not reach the market at all. For example, the clinical approval success rate 

was estimated to be only 16% in the United States during 1993–2004 (DiMasi et al. 

2010). Another problem related to drug development is that the cost of developing a 

new drug is constantly rising but at the same time there are fewer new drugs coming to 

market each year (Pammolli et al. 2011).  

 

The major reasons for the failure in the drug development process are insufficient 

efficacy and excessive toxicity of the drug candidates (Kola 2008). Therefore the 

methods that are currently being used to discover new drugs, such as in vitro high-

throughput screening (HTS), do not always provide safe and effective drug candidates. 

Thus, new tools for the drug development process are needed. Zebrafish may prove to 

be such a tool because it offers the pharmacological industry a unique possibility to 

combine a vertebrate model organism to HTS. With zebrafish it is also possible to 

conduct the screens on a whole animal. Therefore, the use of zebrafish might lead to 

discovery of drug candidates with high efficacy and low toxicity also in humans.  

 

However, there is not as much knowledge about the basic biology of zebrafish as there 

is about other animal models traditionally used in the drug development process. 

Therefore, the use of zebrafish in the drug development process requires further studies 

about the species. The aim of this thesis was to review the use of zebrafish as a model 

organism and its applicability to the drug development process. In the experimental part 
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of the thesis the zebrafish oxytocin system was characterised. The aim was to assess the 

suitability of this model organism to study the role of oxytocin in the pathophysiology 

of diseases and in the drug development process related to the oxytocin system. 

 

 

I LITERATURE REVIEW: 

ZEBRAFISH IN THE DRUG DEVELOPMENT PROCESS 

 

2 ZEBRAFISH AS A MODEL ORGANISM 

 

Zebrafish (Danio rerio) is a freshwater fish, which is used as a model organism in many 

fields of research ranging from genetics to neuroscience. Zebrafish belongs to the 

teleost infraclass (Teleostei) of the minnow family (Cyprinidae). The use of zebrafish as 

a model organism has many advantages related to its unique characteristics. The use of 

zebrafish as a model organism is constantly increasing. 

 

2.1 Practical considerations 

 

Zebrafish are easy and fast to breed: one female can produce hundreds of eggs at one 

mating and the fish reach maturity in 3–4 months. The average lifespan of zebrafish is 

2–3 years. Zebrafish has external development and the embryos are transparent. Larvae 

hatch about 2–3 days after fertilization and at this stage the organogenesis is mostly 

complete (Kimmel et al. 1995). The larvae develop pigment but this can be prevented 

with phenylthiourea (PTU), an inhibitor of tyrosinase (Karlsson et al. 2001). PTU 

treatment may, however, have toxic and teratogenic effects. At five days post 

fertilization (dpf) the larvae swim freely and certain behavioural characteristics, like 

locomotion, can be assessed already at this stage (Colwill and Creton 2011). 

 

The external development and transparency make it easy to follow the development of 

the embryos and larvae. Observations can be made in real-time, on a living organism. 

The external development also enables easy manipulation, for example genetic 

manipulation with morpholino oligonucleotides (MOs). The MOs inhibit messenger 
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RNA (mRNA) translation to appropriate protein (Nasevicius and Ekker 2000). There 

are many genetic manipulation methods available for zebrafish that further reinforces 

the usefulness of zebrafish as a model organism. The genetic methods are described in 

chapter 3.1.1.  

  

The cost of zebrafish maintenance is low. Zebrafish are small (adults about 3–4 cm 

long) and many individuals can be housed in a same tank. Tanks can be stored in racks 

so large amounts of zebrafish can be fitted into a small area. There are many 

commercially available aquarium systems for zebrafish, which facilitate the zebrafish 

maintenance. Unlike with many other model organisms the zebrafish husbandry 

conditions have not been fully standardized. The small size of zebrafish, especially 

larvae, has also its disadvantages. For example larval brains can be dissected but this 

usually requires fixation. Also getting enough tissue for certain assays may be 

problematic. This problem can, however, be overcome in some instances by pooling 

several individuals into one sample.  

 

In zebrafish research many different wild type lines are being used. There is not much 

knowledge about the specific characteristics of these lines but it is known that different 

lines have differences in gene expression, neurochemical levels and behaviour (Dlugos 

and Rabin 2003; Pan et al. 2012). Thus, studies conducted with different lines might 

give different results. An inbred zebrafish strain with a homogenous genetic background 

would help in getting more reliable and reproducible results. However, zebrafish 

inbreeding has proven to be difficult, leading to high mortality of the embryos and a 

biased sex ratio (Shinya and Sakai 2011). Therefore, only a few inbred zebrafish strains, 

such as SJD and C32, are available (Streisinger et al. 1981; Johnson et al. 1996). On the 

contrary many transgenic and mutant zebrafish, such as the transparent casper mutant, 

are available (Ju et al. 1999; Burns et al. 2005; White et al. 2008).  

 

2.2 Similarity to humans 

 

The overall organ morphology and physiology of zebrafish resembles that of mammals. 

Zebrafish have nearly all the main organ systems that mammals have, including the 
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cardiovascular system, nervous system and gastrointestinal system. The zebrafish heart 

has two chambers, an atrium and a ventricle (Lieschke and Currie 2007). Circulation is 

closed and it consists of arteries and veins. There is also a separate lymphatic system 

(Küchler et al. 2006). The gastrointestinal system includes the alimentary tract, liver, 

gall bladder and pancreas (Lieschke and Currie 2007). The zebrafish immune system 

also resembles that of mammals: zebrafish have both adaptive and innate immunity 

(Trede et al. 2004). Being a marine organism, the zebrafish naturally lack a mammalian 

pulmonary system. Additionally, several other organs, such as the prostate, are not 

found in zebrafish. 

 

The zebrafish central nervous system (CNS) has all the main areas of the mammalian 

CNS and many signalling molecules and neurotransmitters, such as dopamine and 

serotonin, are the same (Kaslin and Panula 2001; Guo 2009). The blood brain barrier of 

zebrafish resembles, both functionally and molecularly, that of mammals (Jeong et al. 

2008). There are, however, also differences between zebrafish and mammalian CNS. 

Zebrafish have for example only one form of monoamine oxidase (MAO) (Setini et al. 

2005). The structure of the mammalian and the teleostean telencephalon differs greatly. 

The structural differences are caused by different development: the mammalian 

telencephalon develops through evagination and the teleostean through eversion 

(Wullimann and Mueller 2004). Many corresponding regions have been identified but 

some mammalian neuroanatomical homologues of the zebrafish telencephalon are still 

unresolved.  

 

The sequence of the zebrafish genome has been resolved (Howe et al. 2013). Zebrafish 

is estimated to have over 25000 protein-coding genes while humans are estimated to 

have 20000–21000 protein-coding genes (Clamp et al. 2007; Collins et al. 2012). 

Approximately 70% of the human genes have a zebrafish orthologue (Howe et al. 

2013). Furthermore, some of the human genes that do not have a clear zebrafish 

orthologue might have a similarly functioning protein even though they are not 

recognized as orthologues. This is supported by the fact that for example human 

interleukin-6 (IL-6) gene does not have a zebrafish orthologue but there is one for IL-6 

receptor gene. The amino acid sequence and function of many proteins is highly 
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conserved between zebrafish and humans (Golling et al. 2002; Ruuskanen et al. 2005; 

Renier et al. 2007). Thus the results of zebrafish studies may be applicable also to 

humans.  

 

The zebrafish genome is duplicated (Amores et al. 1998). In teleosts many of the 

duplicated genes are silenced but some of them have complementary expression 

patterns and functions (Brunet et al. 2006). Zebrafish has for example two genes coding 

for tyrosine hydroxylase, th1 and th2, which are expressed at different times and areas 

(Chen et al. 2009). The genome duplication has to be considered in the zebrafish 

research. For example antibodies might recognize both or just one of the protein 

isoforms. Genome duplication may also offer an advantage when studying the roles of 

different genes: for example if a knockout of a certain gene is lethal in mice, it might 

not be lethal in zebrafish when only the other duplicate gene is knocked out (Panula et 

al. 2010). 

 

The resemblance of zebrafish to humans is not as high as that of mammalian models 

like rodents, but it is much higher compared to invertebrate models like Drosophila. At 

present there is not as much knowledge about the biology of zebrafish compared to 

animal models that have been used more extensively. However, the knowledge about 

zebrafish, and its resemblance to humans, is increasing rapidly. Furthermore, based on 

the knowledge acquired so far, the conservation between zebrafish and human biology 

seems high. 

 

 

3 ZEBRAFISH IN DRUG DISCOVERY AND TOXICOLOGY 

 

In zebrafish the main advantages of both invertebrate and vertebrate models are 

combined. The zebrafish is a vertebrate and therefore it shares some of the complexity 

of the mammalian models. Zebrafish can be used to model many human diseases such 

as cancer, cardiovascular diseases, blood disorders and neurological disorders such as 

Parkinson’s disease and Alzheimer’s disease (Wang et al. 1998; Donovan et al. 2000; 

Langenau et al. 2003; Langheinrich et al. 2003; Bretaud et al. 2004; Paquet et al. 2009). 
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The function of many proteins is conserved between zebrafish and humans and also 

many compounds have a similar pharmacological effect in zebrafish as they have in 

mammals (Golling et al. 2002; Milan et al. 2003; Langheinrich et al. 2003; Ruuskanen 

et al. 2005; Irons et al. 2013). On the other hand zebrafish also shares some of the 

simplicity of invertebrate models. Zebrafish is, for example, suited for HTS and the 

genetic manipulation is easy.  

 

With zebrafish it is possible to conduct high-throughput screens on a whole organism. 

An advantage of using zebrafish instead of other vertebrate models is the possibility to 

screen high numbers of individuals in a cost-effective manner (Chan et al. 2002). 

Especially zebrafish embryos and larvae are well suited for HTS. They are small and fit 

easily in multi-well plates and survive until 6 dpf without additional nutrition. For 

example ten zebrafish embryos can be placed in a single well of a standard 96-well plate 

in a high-throughput screen (Kokel et al. 2010). Another advantage of using zebrafish is 

the ease of drug administration: compounds can be added to the water surrounding the 

fish and they are absorbed into the fish through skin and gills (Peterson et al. 2000). 

Zebrafish embryos and larvae also tolerate many solvents and carriers, like dimethyl 

sulfoxide (DMSO), which can be so used to dissolve compounds with low water 

solubility (Maes et al. 2012). Furthermore, the amount of a compound required for 

zebrafish HTS is low (Chan et al. 2002). These characteristics make zebrafish an 

advantageous model organism for the drug development process, especially for the drug 

discovery phase and the toxicity studies. 

 

3.1 Drug discovery 

 

Genetic screening in zebrafish can be used to study the function of different genes and 

their role in disease processes (Haffter et al. 1996; Donovan et al. 2000). New drug 

targets can be discovered based on the identified phenotype-gene interactions. The ease 

of genetic manipulation makes zebrafish a good model for genetic screening and target 

validation (Haffter et al. 1996; Donovan et al. 2000; Ito et al. 2010). The applicability to 

HTS makes zebrafish an advantageous model also for chemical screening, which can be 

used to identify new hit molecules (Peterson et al. 2004). Zebrafish is well suited for 
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structure-activity-relationship (SAR) studies in the lead optimization phase (Hao et al. 

2010).  

 

An advantage of using zebrafish instead of cell-based assays in these processes is the 

possibility to conduct high-throughput screens on a whole animal: the effect of a 

compound on the entire organism can be assessed. With zebrafish it is possible to 

analyse many parameters, such as complex physiology and behaviour, that cannot be 

analysed using in vitro assays. Whole-animal screening could also enable simultaneous 

assessment of both efficacy and toxicity. This would help in early identification of hits 

with the desired combination of high in vivo efficacy and low toxicity. Use of whole 

animals also enables the detection of compounds working as prodrugs and compounds 

with toxic metabolites. 

 

 Genetic screening 3.1.1

 

There are many methods that can be used to screen gene function in zebrafish. The 

methods can be divided into forward and reverse genetics. In forward genetics random 

mutations are introduced to the zebrafish genome. Then the individuals are screened for 

a wanted phenotype and the genome is characterised to find the mutated gene. Since the 

mutations generated in forward genetics are random, no prior knowledge about the role 

of the gene in different biological processes is needed. Therefore, this approach may 

lead to the discovery of new disease pathways and drug targets.  

 

Random mutations can be generated into zebrafish genome by exposing fish to 

ethylnitrosourea (ENU) (Mullins et al. 1994). ENU is an alkylating agent that produces 

mainly point mutations. Chemical mutagenesis with ENU is suited for large-scale 

genetic screens: in the studies by Driever and others (1996) and Haffter and others 

(1996) over 6000 mutations were isolated and over 1500 of them characterised. ENU 

screens have led to the identification of many zebrafish mutants that resemble 

phenotypically and genetically human diseases. For example, an yquem mutant has a 

porphyria phenotype that is caused by a mutation in the same gene that leads to 

hepatoerythropoietic porphyria in humans (Romana et al. 1991; Wang et al. 1998). 
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Because of the genetic and phenotypic similarities, zebrafish mutants could be useful 

disease models. ENU mutation screens have also lead to the discovery of new human 

disease genes. For example, a weissherbst mutant found in an ENU screen has a 

hypochromic anaemia phenotype that is caused by a mutation in ferroportin1 gene 

(Donovan et al. 2000). Mutations in the ferroportin1 gene were later linked to 

hereditary hemochromatosis in humans (Njajou et al. 2001).  

 

Irradiation and insertional mutagenesis with retroviruses can also be used to introduce 

random mutations into zebrafish genome (Chakrabarti et al. 1983; Lin et al. 1994; 

Gaiano et al. 1996). Insertional mutagenesis is suitable for large-scale screening and the 

cloning of the genes is easier than in the ENU mutagenesis (Amsterdam et al. 1999). 

However, the frequency of mutagenesis in insertional mutagenesis is lower compared to 

ENU mutagenesis (Allende et al. 1996).  

 

A problem related to forward genetic approach is the possibility that the phenotype 

caused by a mutation is so subtle that it is not detected in the screens. Because the 

zebrafish genome is duplicated, the mutation of just one of the duplicated genes might 

not lead to a detectable phenotype. The function of the mutated gene might also be 

replaced by another gene product in the same biological pathway.  

 

Contrary to the forward genetic approach, in reverse genetics the gene of interest is first 

mutated or silenced and then the effect on the phenotype is assessed. The zebrafish 

genome has been fully sequenced (Howe et al. 2013), which is useful for the 

identification of candidate genes. There are many different reverse genetic methods that 

can be used to study gene function in zebrafish. 

 

Targeting induced local lesions in genomes (TILLING) is a reverse genetic method in 

which the DNA of a large, usually ENU, mutagenized zebrafish population is isolated 

and screened to discover mutations in the gene of interest (Moens et al. 2008). After a 

mutation is identified by a high-throughput screening method, the line carrying this 

mutation is recovered and the phenotype analysed. For example mutations in 

recombination activating gene 1 (rag1), which is required for V(D)J recombination in 
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lymphocytes, has been identified by TILLING in zebrafish (Schatz et al. 1989; 

Wienholds et al. 2002). With TILLING it is possible to detect many different kinds of 

mutations like premature stop and missense mutations, which might for instance have 

different viabilities (Wienholds et al. 2002). Another advantage of using TILLING is 

the possibility to collect allelic series of the random mutations. An allelic series includes 

the different alleles of the same gene that often lead to different phenotypes when 

mutated.  

 

In addition to random mutagenesis, targeted mutagenesis and gene knockdown methods 

are available for zebrafish. Artificial restriction enzymes called zinc finger nucleases 

(ZFNs), transcription activator-like effector nucleases (TALENs) and clustered 

regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated (Cas) 

system are used for targeted mutagenesis (Meng et al. 2008; Sander et al. 2011; Hwang 

et al. 2013). MOs are used for targeted gene knockdown (Nasevicius and Ekker 2000).  

 

ZFNs are engineered restriction enzymes, which consist of a DNA cleavage domain and 

a zinc finger DNA binding domain (Kim et al. 1996). The cleavage domain contains a 

non-sequence specific restriction enzyme, such as the type II restriction enzyme FokI 

(Smith et al. 1999). The zinc finger domain contains sequence specific zinc finger 

motifs and it can be modified to target a wanted sequence. The ZFNs induce double-

strand breaks in the target DNA, which can be repaired by non-homologous end joining 

or homologous recombination (Bibikova et al. 2001, 2002). Non-homologous end 

joining is prone to errors and it usually leads to small insertions or deletions at the site 

of the double-strand break, which disrupts the function of the target gene (Bibikova et 

al. 2002). With homologous recombination mediated repair it is possible to use an 

exogenous donor template to insert a DNA sequence into the break site (Urnov et al. 

2005; Moehle et al. 2007). 

 

In zebrafish ZFNs have been used to generate targeted mutations in many genes such as 

dopamine transporter and kdra, a zebrafish orthologue of the vascular endothelial 

growth factor-2 receptor (Meng et al. 2008; Foley et al. 2009; Ben et al. 2011). The 

ZFN mRNAs are microinjected into zebrafish embryos and induced mutations can be 
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transmitted through the germline (Doyon et al. 2008; Meng et al. 2008). In zebrafish the 

ZFN induced mutations have been caused mainly by induced errors in the non-

homologous end joining (Meng et al. 2008; Foley et al. 2009). Homologous 

recombination mediated repair after ZFN treatment has not been reported for zebrafish. 

The main problem related to ZFNs is the insufficient specificity of the zinc finger 

motifs, which leads to off-target cleavage. A method that produces more specific ZFNs, 

oligomerized pool engineering, has been developed and it has been used successfully 

also in zebrafish (Maeder et al. 2008; Foley et al. 2009). However, the specificity of the 

ZFNs remains to be a problem. 

  

Like ZFNs, TALENs are engineered restriction enzymes that can be used for targeted 

mutagenesis in zebrafish (Miller et al. 2011; Cade et al. 2012). They consist of a 

transcription activator-like effector domain and a cleavage domain. The effector domain 

contains repeat units with different repeats binding to different DNA bases (Boch et al. 

2009). By combining these repeats it is possible to target the construct to a certain gene 

sequence. Also TALENs work by introducing double strand breaks into the DNA and 

their gene modification efficiency is similar to ZFNs (Miller et al. 2011).  

 

TALEN induced mutations can be transmitted through the germ line in zebrafish (Cade 

et al. 2012). In zebrafish the reported mutations are caused mainly by insertions and 

deletions but TALEN-mediated targeted knock-in of DNA fragments by homologous 

recombination has also been reported (Huang et al. 2011; Sander et al. 2011; Zu et al. 

2013). If the targeted knock-in approach proves to be effective, it will allow the 

introduction of specific mutations, like point mutations, into zebrafish genome and also 

the production of conditional knockouts. This would be extremely useful for the use of 

zebrafish as a disease model. TALENs have usually higher target specificity and less 

off-target cleavage than ZFNs, also in zebrafish (Hockemeyer et al. 2011; Huang et al. 

2011; Li et al. 2011; Cade et al. 2012). TALENs are also easier to engineer and faster to 

produce than ZFNs. There are even high-throughput methods available for TALEN 

assembly (Briggs et al. 2012; Reyon et al. 2012).  
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The CRISPR-Cas method was developed very recently for targeted mutagenesis (Jinek 

et al. 2012; Cong et al. 2013). It is based on an adaptive immunity mechanism of 

prokaryotes, in which foreign nucleic acids, like plasmids, are detected and silenced by 

small RNAs (Wiedenheft et al. 2012). There are three types of CRISPR-Cas systems of 

which type II is used for gene targeting (Jinek et al. 2012). In type II fragments of 

foreign nucleic acids are incorporated into CRISPR loci and transcribed into pre-

CRISPR RNAs (pre-crRNAs) (Wiedenheft et al. 2012). Trans-activating crRNAs 

(tracrRNAs) recognize the pre-crRNAs by their sequence and form a complex, which is 

cleaved by RNase III to mature CRISPR RNAs (crRNAs). The mature crRNA then 

forms complexes with Cas nucleases, which recognize and cleave the foreign nucleic 

acid. The foreign nucleic acids are recognized by their complementary base pairing with 

crRNAs.  

 

In targeted mutagenesis with CRISPR-Cas a guide RNA, which consists of crRNA and 

tracrRNA, is designed and used to program the Cas9 endonuclease to cleave the 

genomic sequence of interest (Jinek et al. 2012). This method has been used 

successfully also in zebrafish (Hwang et al. 2013). The efficiency of the CRISPR-Cas 

system in zebrafish is similar to that of ZFNs and TALENs. In comparison to ZFNs and 

TALENs, the guide RNAs are easier to engineer and assemble. However, a 

disadvantage of this method is that there are limitations in the target sequence whereas 

with TALENs it is possibly to target nearly any given sequence. Further studies are 

needed to assess the amount of off-target cleavage and germline transmission.  

 

With MOs it is possible to study the function of a particular gene in zebrafish 

(Nasevicius and Ekker 2000). The MOs are nucleic acid analogues that are designed to 

transiently knock down gene function (Corey and Abrams 2001). This can be achieved 

by blocking the translation initiation or the splicing of the RNA with MOs (Nasevicius 

and Ekker 2000; Draper et al. 2001). The MOs bind to complementary sequence in the 

nucleic acid that they are targeted against (Ekker 2000; Corey and Abrams 2001). The 

structure of MOs resembles RNA but in the MOs the sugar moieties are replaced by 

morpholino rings and the anionic phosphates are replaced by non-ionic 

phosphorodiamidates. Thus, in contrast to nucleic acids the MOs are non-ionic. These 
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modifications protect the MOs from degradation by catabolic enzymes and the immune 

system. 

 

Depending on the purpose of the study, the MOs can be microinjected directly into 

zebrafish embryos or into the yolk sac (Nasevicius and Ekker 2000; Amack and Yost 

2004). The MOs can also be delivered by electroporation into adult fish (Thummel et al. 

2006). The knockdown effect of MOs is transient and the duration of the effect varies 

between different MOs. Usually the effect lasts for several days but the duration of each 

MO has to be determined individually. There are also MOs that can be activated by 

light, which enables spatial and temporal control of the gene knockdown (Shestopalov 

et al. 2007). MOs might have off-target effects: they may inhibit other genes than the 

ones they were designed to knockdown. Therefore, the use of MOs requires careful 

controls and rescue experiments to distinguish possible off-target effects from the 

specific ones.  

 

The use of artificial restriction enzymes and MOs is rather laborious and therefore they 

are not well suited for large-scale genetic screens. They can, however, be used to screen 

promising candidate genes. They are also useful in target validation. For example the 

target through which thalidomide exerts its teratogenic activity was verified in zebrafish 

using MOs (Ito et al. 2010). An advantage of using the artificial restriction enzymes 

rather than MOs is that with artificial restriction enzymes the gene is knocked out 

permanently. This enables the role of a gene to be studied also later in the development. 

However MOs are easier to engineer than the artificial restriction enzymes. 

 

 Phenotype screening 3.1.2

 

After the function of a gene is disrupted by genetic methods, the phenotype needs to be 

analysed to assess the gene function. The gene function can be analysed for example 

based on changes in the morphology or physiology. Because zebrafish embryos and 

young larvae are transparent, it is possible to assess the morphology visually. For 

example in the study by Haffter and others (1996) mutated fish were scored by visual 

inspection of the phenotypes. Mutations that do not cause clear, visible morphological 
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abnormalities can be detected using molecular markers. Immunohistochemistry and in 

situ hybridization can be used to detect differences in RNA and protein levels. They are 

however time-consuming methods and usually require sample fixation and dissection. 

Therefore they are not well suited for HTS.  

 

Fluorescence can be used to facilitate the detection of changes in the morphology and 

physiology. Transgenic zebrafish, which have a green fluorescent protein (GFP) linked 

to the gene or promoter of interest, can be produced. There are, for example, transgenic 

zebrafish in which the GFP is linked to tissue specific promoters such as muscle-

specific creatine kinase or in which only certain cell populations, like dopamine 

neurons, are labelled (Ju et al. 1999; Xi et al. 2011). Also fluorescent molecules can be 

used to assess the phenotype. For example fluorescent lipids have been used to screen 

the effect of mutations on lipid metabolism (Farber et al. 2001). A quenched fluorescent 

moiety was attached to a phospholipid cleavage site. Cleaving of this modified 

phospholipid by phospholipase A2 led to detectable fluorescence in fish with normal 

lipid metabolism. Thus, mutations affecting lipid metabolism could be screened based 

on reduced fluorescence. The fat free mutant, with defects in bile synthesis, was 

discovered in this screen based on diminished fluorescence. The mutant was 

morphologically normal and therefore the mutation could not have been detected in a 

screen based solely on morphology.  

 

There are high-throughput methods for the phenotype screening of zebrafish embryos 

and larvae. For example, vertebrate automated screening technology (VAST) is a high-

throughput method that can be used for genetic and pharmaceutical screens (Pardo-

Martin et al. 2010). It is an automated method for zebrafish larvae that can be used to 

study for example organ development and function. With VAST it is possibly to 

perform optical manipulations like localized activation of fluorescent reporters. VAST 

consists of fully automated cycles in which a larva is extracted from a multiwell plate 

into a capillary within the imaging and manipulation system, moved into a wanted 

orientation based on an automated image-processing algorithm, imaged and finally 

removed. The cycle lasts about 20 seconds per well.  
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In order for the image-based screening methods to be high-throughput, the analysis of 

the acquired images needs to be automated. For this purpose an assay combining 

automated imaging with image analysis based on artificial intelligence has been 

developed (Vogt et al. 2009). In the assay, fluorescent transgenic zebrafish embryos are 

imaged with a high-content reader in a multi-well plate. The orientation of the embryos 

does not need to be adjusted for the imaging. The images are analysed with cognition 

network technology.  

 

Behavioural phenotyping, in which the gene function is analysed through its effect on 

zebrafish behaviour, can also be used to assess zebrafish phenotypes. Many different 

aspects of zebrafish behaviour can be analysed. The motility of zebrafish embryos and 

larvae can be easily analysed (Granato et al. 1996). For example touch response and 

opto-kinetic response has been assessed to identify genes related to muscle formation, 

neuronal development and visual-behaviour responses (Granato et al. 1996; Neuhauss et 

al. 1999). More complex behaviours, such as social behaviour, anxiety and learning, can 

also be studied (Peitsaro et al. 2003; Bilotta et al. 2005; Bencan et al. 2009; Braida et al. 

2012). For example anxiety can be studied with novel tank test (Bencan et al. 2009). 

When zebrafish is placed into a new tank, it stays at the bottom of the tank. Over time 

the fish starts to explore upper levels of the tank. Anxiolytic drugs, like diazepam, 

reduce the time that the fish spends in the bottom of the tank. 

 

Conditioned place preference (CPP) and prepulse inhibition (PPI) can be studied in 

zebrafish: weak prepulses attenuate the acoustic startle response of zebrafish larvae in a 

similar manner to mammalian PPI and for example cocaine induces CPP in zebrafish 

(Darland and Dowling 2001; Burgess and Granato 2007). CPP and PPI can be used to 

identify genes and pathways related to many psychiatric disorders such as schizophrenia 

and addiction. When ENU-mutagenized zebrafish were screened based on their cocaine 

induced place preference, dumbfish, jumpy and goody-two-shoes mutants were 

discovered to have an abnormally low response to cocaine (Darland and Dowling 2001). 

The results of further assays suggested that they had mutations in genes related to 

dopaminergic signalling.  
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Different aspects of behaviour, such as learning, anxiety and social behaviour, can be 

studied with high-throughput methods (Blaser and Gerlai 2006; Gerlai et al. 2009; 

Pather and Gerlai 2009). For example Pather and Gerlai (2009) developed a high-

throughput learning assay for adult zebrafish. In this method a zebrafish is presented 

with an animated image of a zebrafish shoal on a computer screen. The zebrafish is a 

shoaling fish species so the fish tries to stay close to the image of the shoal. Two 

computer screens are placed on opposite sides of the tank. The image is shown first on 

one screen for 20 seconds, turned off for 90 seconds and then shown on the other screen 

for 20 seconds. This cycle is repeated for several times and the movement of the fish is 

tracked. In the beginning of the test zebrafish stays close to the screen that last showed 

the image. During the experiment it spends more and more time in the proximity of the 

screen where the image will be shown next. If the image is shown randomly at the 

screens, the behaviour of the fish does not change: the fish stays close to the screen that 

last showed the image. There is also a protocol available for zebrafish CPP with rather 

high throughput (Mathur et al. 2011). The procedure is based on a single exposure and it 

takes about two days to complete. 

 

Biological pathways can be highly complex and therefore finding a direct drug target 

based on phenotype-gene interaction is not always straightforward. In addition, there is 

not as much knowledge about zebrafish biology as there is about the biology of other 

vertebrate models, which might complicate the interpretation of the results even more. 

Furthermore, not all the behavioural traits that can be studied in other model organisms 

can be studied in zebrafish because suitable assays have not yet been developed. To be 

able to develop new behavioural assays that are valid and reliable, more information 

about specific characteristics of zebrafish behaviour is needed. 

 

 Chemical screening 3.1.3

 

Chemical screening in zebrafish can be used to identify new hits and also to assess gene 

function (Peterson et al. 2000; Tran et al. 2007). Chemical libraries that contain small 

molecule compounds can be screened in wild type or transgenic zebrafish to identify 

compounds that alter their phenotype. The phenotypes can be assessed with similar 
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methods that are described in chapter 3.1.2. Since chemical screens are conducted on a 

whole animal, no prior knowledge of a target is necessary for these screens. Therefore 

zebrafish chemical screens can also be used to discover compounds with therapeutic 

potential for diseases without known targets. 

 

Transgenic zebrafish are extremely useful for high-throughput chemical screening. Tran 

and others (2007) used transgenic zebrafish with fluorescent blood vessels to identify 

drugs that affect angiogenesis. They screened the LOPAC1280 compound library and 

identified three hits with dose-dependent anti-angiogenic activity. Two of the hits were 

compounds with known anti-angiogenic effect. One hit was, however, a new anti-

angiogenic compound and it proved to be anti-angiogenic also in human endothelial 

cells. Another example of the use of fluorescence is a study by Burns and others (2005). 

They used transgenic zebrafish embryos that express GFP in the myocardium to screen 

the effect of drugs on heart rate. They found that drugs that prolong the QT interval in 

humans, like astemizole and amiodarone, decrease the heart rate in zebrafish. 

 

Another approach is to screen the ability of different compounds to suppress or enhance 

disease phenotypes achieved with pharmacological or genetic manipulation. For 

example, the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) destroys 

dopaminergic neurons also in zebrafish and can be used as a zebrafish model of 

Parkinson’s disease (Bretaud et al. 2004). MPTP-treated zebrafish can then be used to 

study neuroprotective effect of compounds. Using this method an anti-cancer agent 

SU4312 was found to protect zebrafish against MTPT-induced neurotoxicity (Cui et al. 

2013).  

 

A study by Peterson and others (2004) is an example of combining genetic manipulation 

to phenotype suppressor screen:  a new class of compounds that affect angiogenesis was 

found in a screen with a zebrafish gridlock mutant. Gridlock mutants have a mutation in 

a hey2 gene that causes a deformed aorta and prevents circulation to the trunk. In order 

to identify compounds that suppress the gridlock phenotype, embryos were incubated 

with compounds of a small-molecule library. Two structurally related compounds were 

found to rescue the aorta formation through activating the vascular endothelial growth 
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factor (VEGF) pathway. These compounds also promoted tubule formation in human 

endothelial cells. 

 

The disease phenotype approach and fluorescent markers can also be combined in 

zebrafish. For example transgenic zebrafish expressing fluorescent labelled, mutant 

human tau-P301L protein in its neurons has been created (Paquet et al. 2009). This 

mutation of tau protein has been linked to frontotemporal dementia in humans (Hutton 

et al. 1998). The transgenic zebrafish have many pathological features of tauopathies, 

like tau hyperphosphorylation, tangle formation and neurodegeneration (Paquet et al. 

2009). Glycogen synthase kinase 3β (GSK3β) phosphorylates tau and is therefore 

considered as a therapeutic target for tauopathies (Mazanetz and Fischer 2007). 

Inhibitors of GSK3β were found to reduce the hyperphosphorylation of tau in the 

transgenic zebrafish (Paquet et al. 2009). 

 

Behaviour based chemical screening in zebrafish is also an effective approach. Rihel 

and others (2010) screened small molecule compounds with an automated HTS assay to 

study their effect on the rest-wake behaviour. The assay was conducted with zebrafish 

larvae and many behavioural parameters, such as the number of rest bouts, were 

analysed. Over 5000 compounds were screened and over 500 of them modified the 

behaviour. Each compound was given a behavioural fingerprint based on the individual 

combination of altered parameters. The compounds were then clustered into groups 

based on their fingerprints. Analysis of these clusters revealed that compounds with at 

least one shared target had similar behavioural phenotypes. Furthermore, in almost 

every case the compounds from the same structural or therapeutic class had a highly 

similar behavioural pattern. The detected behavioural effects were also similar to the 

effects these drugs have in humans. Rihel and others identified also new molecules and 

pathways that regulate rest-wake cycle at least in zebrafish. For example two 

structurally related podocarpatrien-3-ones had a specific, rest latency increasing effect.  

  

Kokel at al. (2010) conducted a similar, behaviour-based chemical screen with zebrafish 

embryos. A high-intensity light stimulus evokes a stereotypic series of motor behaviour 

in zebrafish embryos called the photomotor response. The effect of 14000 compounds 
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on different features of the photomotor response was analysed. There were compounds 

with both known and unknown targets. Each compound was given a barcode 

representing the individual effect of the compound on the photomotor response. After 

clustering the compounds based on their barcodes, it was discovered that compounds 

with the same mechanism of action had similar effects on the behavioural parameters. 

They were also able to discover new compounds with potential therapeutic effect like 

novel acetylcholinesterase inhibitors. However, some of the known neuroactive 

compounds did not alter behaviour in this screen. It is not known whether this was due 

to problems in the screening assay, such as inadequate dosage, or differences between 

zebrafish and humans.   

 

The results of Rihel and others (2010) and Kokel and others (2010) indicate that 

combining HTS chemical screens with behavioural phenotyping could be a useful 

method in identifying new drugs.  Based on their results behavioural phenotyping may 

also help in resolving the mechanism of action, which is a common problem related to 

phenotype based chemical screening: The compounds with the same molecular target 

have a similar behavioural phenotype. Therefore the behavioural fingerprint, or barcode, 

of a compound can be compared with the behavioural profiles of known pathways to 

identify its target.  

 

The identified hits usually require optimization to become lead compounds with wanted 

characteristics. In SAR studies the structure of the hit compound is modified in order to 

improve its efficacy, specificity and pharmacokinetic properties. When the SAR studies 

are conducted on zebrafish, it is possible to assess the effect of the structural 

modifications on all the properties simultaneously. Zebrafish have for example been 

successfully used in lead optimization of a compound called dorsomorphin (Hao et al. 

2010). Dorsomorphin was discovered as a hit in a zebrafish chemical screen (Yu et al. 

2008). It inhibits bone morphogenetic protein (BMP) signalling. However 

dorsomorphin had severe off-target effects through inhibition of VEGF signalling (Hao 

et al. 2010). Therefore a SAR study was conducted using zebrafish embryos and 

dorsomorphin analogues with improved specificity were identified.  
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3.2 Toxicology 

 

Zebrafish is emerging as a promising animal model for toxicology studies. The same 

advantages that make zebrafish a good model for drug discovery also support its use in 

toxicology: zebrafish is a vertebrate model that is suited for large-scale, whole animal 

screening. Although zebrafish cannot replace mammalian models in toxicity studies, it 

offers a cost-effective alternative that could be used to assess toxicity early in the drug 

development process. Because zebrafish is suited for HTS, toxicity profiles of many 

compounds could be screened effectively. Zebrafish could also be used later in the 

discovery pipeline, for example to study the toxicity of discovered lead compounds. 

Toxicity could even be assessed simultaneously with efficacy due to the use of whole 

animals.  

 

Many cellular pathways and metabolic enzymes that are related to toxicity, such as 

apoptosis related p53 pathway and many phase I and phase II metabolic enzymes, are 

conserved between zebrafish and mammals (Cheng et al. 1997; Thisse et al. 2000; 

Langheinrich et al. 2002; Bresolin et al. 2005; Jones et al. 2010). There are, however, 

also species-specific differences in human and zebrafish biology, which might lead to 

differences in toxicity. For example, differences in the metabolism might lead to 

production of toxic metabolites in just one of the species.  

 

At present there is not enough knowledge about the differences between zebrafish and 

humans to know how well zebrafish results predict human toxicity. Therefore further 

studies using compounds with known toxicity profiles are needed to fully assess the 

usefulness of zebrafish as a toxicity model. However, based on the studies so far the 

correlation between zebrafish and mammalian toxicity seems high. Many compounds 

have similar toxicological effects in zebrafish as they have in mammals (Parng et al. 

2002; Milan et al. 2003; Berghmans et al. 2008; Brannen et al. 2010). There is also a 

strong correlation between the dose that leads to 50% lethality (LD50) in mammals and 

the concentration that leads to 50% lethality (LC50) in zebrafish of compounds from 

different chemical classes (Parng et al. 2002; Ali et al. 2011). Toxicity related drug-drug 



   
 

 

20 

interactions, such as observed with erythromycin and cisapride, has also been 

reproduced in zebrafish (Milan et al. 2003).  

 

 Mutagenicity and cytotoxicity  3.2.1

 

There are methods to assess mutagenicity and cytotoxicity in zebrafish. One way to 

detect mutagenesis is to use transgenic zebrafish embryos carrying a shuttle vector 

plasmid (Amanuma et al. 2000). The plasmid contains genes related to antibiotic 

resistance. After zebrafish embryos are exposed to a test compound the plasmid is 

isolated and transformed into bacteria. Mutagenesis can be recognized based on changes 

in the antibiotic resistances of the bacteria. Cytotoxicity can be assessed in zebrafish for 

example with acridine orange staining and there are also commercial kits for cell death 

detection (Parng et al. 2002; Li et al. 2012).  

 

Many compounds that are cytotoxic in rodent models, like neomycin and taxon, are also 

cytotoxic in zebrafish assays (Parng et al. 2007; Li et al. 2012). The zebrafish assays 

might be more sensitive to detect mutagenicity and cytotoxicity than the traditionally 

used cell-based assays, like Ames test and MTT assay: in zebrafish mutagenicity and 

cytotoxicity could be assessed in the presence of whole, functional physiological 

systems, such as DNA repair mechanisms (Zon and Peterson 2005). For example, many 

compounds with a known apoptosis-inducing effect were identified as apoptotic also in 

a zebrafish assay but not in the MTT assay (Li et al. 2012). Therefore, zebrafish 

mutagenicity and cytotoxicity assays could be used to detect cytotoxic or mutagenic 

compounds earlier in the drug development. 

 

 Teratogenicity and carcinogenicity 3.2.2

 

Teratogenicity of many compounds, like ethanol and thalidomide, correlates between 

zebrafish and mammals (Reimers et al. 2004; Brannen et al. 2010; Ito et al. 2010). 

There are assays to screen teratogenicity of compounds using zebrafish embryos (Nagel 

2002; Brannen et al. 2010). One of them is called a Danio rerio teratogenicity (DarT) 

assay (Nagel 2002). In the DarT assay the teratogenic potential is assessed based on the 
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ratio of the LC50 value and the half maximal effective concentration (EC50) of 

malformations. The DarT assay predicted the teratogenicity correctly in 88% of the test 

compounds. It also identified teratogens that require metabolic activation. In another 

zebrafish assay, teratogenicity is assessed based on the ratio of the concentration 

resulting in 25% lethality (LC25) and no observed adverse effect level (NOAEL) 

(Brannen et al. 2010). The assay predicted teratogenic potential correctly in 87% of the 

test compounds that represented different teratogenic potencies, pharmacological targets 

and structural classes.  

 

The use of zebrafish in carcinogenicity studies has been limited although many 

mechanisms related to cancer, such as oncogenes and tumour suppressor genes, are 

conserved between zebrafish and mammals (Khodaei et al. 1999; Deltour et al. 2001; 

Spitsbergen and Kent 2003). Also carcinogen-induced alterations in DNA methylation 

are similar in mammals and zebrafish (Mirbahai et al. 2011). The carcinogenicity of 

some compounds is conserved but there are species-specific differences (Khudoley 

1984; Spitsbergen et al. 2000a, 2000b). There are for example differences in the types 

of carcinogen-induced neoplasms between zebrafish and other species. The 

carcinogenic potential of compounds also varies depending on the age of the zebrafish 

used. While there are many zebrafish cancer models available (Langenau et al. 2003; 

Yang et al. 2004), proper zebrafish carcinogenicity assays are still to be developed. 

 

 Organ toxicity  3.2.3

 

Organ toxicity has for long been a major reason for abandoning promising drug 

candidates in the drug development process and withdrawing drugs from the market 

(Shah 2006). Organ toxicity may be missed in preclinical and even clinical studies due 

to its rare occurrence (Dykens and Will 2007). The zebrafish is emerging as a useful 

model for organ toxicity studies because its organ morphology and function are similar 

to humans. Furthermore it is suited for large-scale screens and could therefore reveal 

even rarely observed toxic effects. Cardiotoxicity, hepatotoxicity and neurotoxicity are 

the most studied types of zebrafish organ toxicity. 
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The zebrafish is well suited for cardiotoxicity studies. The zebrafish heart starts to beat 

by 24 hours post fertilization (hpf) and the cardiovascular system is functional around 

48 hpf  (Kimmel et al. 1995). The morphology and function of the cardiovascular 

system can be easily assessed visually or using transgenic zebrafish (Langheinrich et al. 

2003; Burns et al. 2005). The electrocardiogram of adult zebrafish can also be recorded 

(Milan et al. 2006). The zebrafish orthologue of the human ether-à-go-go-related gene 

(HERG) is highly conserved (Langheinrich et al. 2003). HERG is related to QT interval 

prolongation, which is a common and severe type of drug-induced cardiotoxicity: 

HERG encodes a potassium ion channel, which is involved in the repolarization phase 

of the cardiac action potential (Taglialatela et al. 1998). Most of the studied drugs that 

induce QT prolongation in humans, such as haloperidol, also increase the QT interval in 

adult zebrafish and cause bradycardia and atrioventricular block in larval zebrafish 

(Langheinrich et al. 2003; Milan et al. 2003, 2006).  

 

Zebrafish can be used for hepatotoxicity studies. The zebrafish liver organogenesis is 

ready by 72 hpf (Pack et al. 1996). The overall structure of the zebrafish liver is similar 

to mammals but there are also differences, like the lack of portal lobules. Zebrafish has 

orthologues to many CYP enzymes, like CYP3A4, and drug-induced enzyme inhibition 

and induction can be represented in zebrafish (Bresolin et al. 2005; Li et al. 2009; Jones 

et al. 2010). Hepatotoxicity can be assessed based on histopathology but some forms of 

liver damage, such as apoptosis, can be assessed visually without dissection (Zhang et 

al. 2003). Therefore zebrafish could be used to assess hepatotoxicity even with high-

throughput. Serum levels of enzymes related to liver function, such as alanine 

transaminase (ALT), have been characterized in zebrafish (Murtha et al. 2003), and they 

could be used to assess hepatotoxicity.  

 

Many compounds, such as paracetamol, induce similar hepatotoxicity in zebrafish and 

mammals (Braunbeck et al. 1990; Zhang et al. 2003; North et al. 2010). Furthermore, a 

zebrafish hepatotoxicity assay identified 84% of the tested drugs correctly as 

hepatotoxic and nonhepatotoxic (Jones et al. 2009; Hill et al. 2012). Troglitazone, 

which was withdrawn from the market in 2000 due to hepatotoxicity, was identified as 

hepatotoxic in a zebrafish assay (Fung et al. 2001; Jones et al. 2009; Hill et al. 2012). 
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Thus, zebrafish appears to be a promising hepatotoxicity model. Nevertheless, the liver 

function of zebrafish, especially larvae, still requires further characterization in order to 

validate the use of zebrafish as a hepatotoxicity model. 

 

Zebrafish is an advantageous model for neurotoxicity studies. Neurotoxicity on specific 

neuron classes can be examined using immunohistochemistry and in situ hybridization 

(Parng et al. 2007). Because zebrafish embryos and larvae are transparent, neurons 

could be examined visually using transgenic zebrafish. Neurotoxicity can also be 

assessed based on behaviour (Bretaud et al. 2004). Glial fibrillary acidic protein 

(GFAP) can be used as a marker of neurotoxicity and its structure and function is highly 

conserved in zebrafish (O’Callaghan 1991; Nielsen and Jørgensen 2003). Therefore 

GFAP could be used to assess neurotoxicity also in zebrafish. The use of zebrafish in 

neurotoxicity studies is further supported by the fact that neurotoxicity profiles of many 

compounds are similar in mammals and zebrafish. For example 6-hydroxydopamine (6-

OHDA) and MPTP destroy dopaminergic neurons, ethanol damages motoneurons, 

acrylamide causes demyelination and taxol induces neuron apoptosis in zebrafish 

(Anichtchik et al. 2004; Bretaud et al. 2004; Parng et al. 2007).  

 

3.3 Future directions 

 

Zebrafish will not replace other models like cell-based assays and mammalian models 

in the drug development process: cell-based assays are important for the early phases of 

the drug development process due to their high throughput and reduction of animal use 

whereas mammalian models are important later in the process due to their high 

similarity to human physiology. The unique properties of zebrafish, however, make it a 

compromise between cells and mammalian models. Therefore the use of zebrafish as a 

complementary model would benefit the drug development process. 

 

The use of zebrafish along with cell-based assays would have many advantages. By 

using zebrafish the effect of a gene or a compound on whole animal can be assessed. 

Therefore the results obtained with zebrafish will probably be more relevant to humans 

than the results obtained with cell-based assays. For example compared to cell-based 



   
 

 

24 

assays, the lead compounds discovered with zebrafish assays would more likely be 

effective and non-toxic also in humans. Whereas cell-based assays usually rely on 

known, druggable targets, zebrafish could also be used to model diseases with no 

validated targets. Therefore zebrafish genetic or chemical screening might lead to 

discovery of new targets and effective drugs for the disease of interest. Use of zebrafish 

would also enable the discovery of compounds with more than one target because of the 

whole-animal approach.  

 

In comparison to mammalian models zebrafish offers an opportunity to study the 

efficacy and safety of many compounds quickly and cost-effectively. If the efficacy and 

toxicity of compounds were screened in zebrafish prior to mammalian models, it would 

reduce the number of mammals needed and lower the time and costs. In the future 

zebrafish could be used between cell-based assays and mammalian models. For 

example, the efficacy and toxicity of hits discovered in in vitro HTS could then be 

assessed in zebrafish. Also the SAR studies could be conducted in zebrafish to optimize 

the efficacy and toxicity simultaneously. Then the acquired lead compounds could be 

assessed in mammalian models. Screening first with cell-based assays might, however, 

result in hits with efficacy only in in vivo models being missed. This could be avoided 

by using zebrafish, especially zebrafish embryos, as the first screening tool. This would 

require further development of validated, high-throughput zebrafish assays.  

 

The main question concerning the use of zebrafish in the drug development process in 

the future is how well zebrafish represents human physiology and can the results 

obtained using zebrafish be translated to humans. Many aspects of zebrafish biology are 

similar to humans and for example many genes and physiological processes are highly 

conserved between zebrafish and humans (Cheng et al. 1997; Njajou et al. 2001; Paquet 

et al. 2009; Jones et al. 2010). Also the efficacy and toxicity profiles of many drugs and 

chemicals are similar in zebrafish and humans (Peterson et al. 2004; Burns et al. 2005; 

Milan et al. 2006; Parng et al. 2007; Tran et al. 2007; Brannen et al. 2010; Irons et al. 

2013).  
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However, not all of the compounds that are effective or toxic in humans are identified in 

zebrafish assays (Milan et al. 2003; Jones et al. 2009; Kokel et al. 2010). The observed 

differences may be due to problems in the assay design. For example, many of the false 

negative results in zebrafish assays were due to lack of absorption from the water 

surrounding the fish: when the compounds were injected, their effect in zebrafish was 

similar the effect observed in humans (Milan et al. 2003; Jones et al. 2009). Another 

factor in the assay design that can affect the results is the dose: the dose may be too low 

and thus ineffective or it may be too high and toxic. These features have to be 

considered when developing zebrafish assays for drug development. 

 

The observed differences in the efficacy and toxicity may also be due to differences 

between zebrafish and human biology, such as differences in the metabolism or in 

receptor subtypes. The overall predictability of zebrafish results to human is difficult to 

assess because of the limited number of studies conducted so far. There may also be 

publication bias towards publishing only results with similarity to human results. 

Furthermore, the relevance of the zebrafish assays to humans has to be considered: does 

the assay really recapitulate complex human functions. For example how well does 

zebrafish shoaling behaviour represent social behaviour of humans? Future studies 

about the similarity of zebrafish and humans and the predictability of the results are 

needed to assess for which research areas and drug development stages zebrafish would 

be most advantageous.  

 

 

4 CONCLUSIONS 

 

Zebrafish is a vertebrate model organism that is suited for large-scale whole animal 

screening. The overall organ morphology and physiology of zebrafish is similar to 

mammals and many distinct molecular pathways and genes are highly conserved 

between zebrafish and humans. In addition, the efficacy and toxicity profiles of many 

compounds are similar in zebrafish and humans. These characteristics make zebrafish 

an ideal model for the drug development process, especially for drug discovery and 

toxicology studies. In the drug development process zebrafish can be regarded as a 
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compromise between cell-based and mammalian models and therefore in the future 

zebrafish will likely be used to complement the existing models. However, more 

research is needed to determine the overall predictability of zebrafish results to human 

efficacy and toxicity and to further assess the applicability of zebrafish to the drug 

development process. 

 

 

II EXPERIMENTAL PART:  

CHARACTERIZATION OF THE ZEBRAFISH OXYTOCIN SYSTEM 

 

5 OXYTOCIN 

 

Oxytocin is a neuropeptide, which consists of nine amino acids (Du Vigneaud et al. 

1953).  In mammals oxytocin is produced in the magnocellular neurons of the 

paraventricular and supraoptic nuclei of the hypothalamus and also in the smaller 

parvocellular neurons of the paraventricular nucleus (Swaab et al. 1975; Buijs et al. 

1978; Sawchenko and Swanson 1982). The majority of oxytocin fibers are directed 

towards the neurohypophysis where oxytocin is released into the circulation. Besides 

this hypothalamo-neurohypophyseal tract, oxytocin fibers are found in many other brain 

areas such as the amygdala and hippocampus (Buijs 1978; Knobloch et al. 2012). 

Oxytocin receptors are also found in several brain areas, for example in the lateral septal 

nucleus (Loup et al. 1991).  

 

Oxytocin is best known for its effect on uterine contraction and milk ejection (Dale 

1906; Schafer and Mackenzie 1911). Besides these peripheral effects, oxytocin also 

affects many aspects of social behaviour like pair bonding and social memory (Cho et 

al. 1999; Savaskan et al. 2008). Oxytocin affects also non-social behaviour. For 

example, it attenuates memory and reduces anxiety and stress (Kovács et al. 1978; 

Neumann et al. 2000; Ring et al. 2006). The effect of oxytocin on behaviour is regulated 

by a central release of oxytocin, either through axonal or dendritic release (Ludwig and 

Leng 2006; Knobloch et al. 2012). Deficits in the oxytocin system have been linked to 

many psychiatric disorders such as autism, schizophrenia and depression (Beckmann et 
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al. 1985; Scantamburlo et al. 2007; Wermter et al. 2010). It is therefore no surprise that 

the role of oxytocin in the pathophysiology of diseases and the therapeutic potential of 

affecting the oxytocin system are being studied extensively (Meyer-Lindenberg et al. 

2011). 

 

Zebrafish is emerging as a potential vertebrate model for human disease modelling and 

drug discovery. Because the use of zebrafish as a model organism has many advantages, 

it might be a valuable tool for oxytocin research. The oxytocin system has been highly 

conserved in the vertebrate evolution and zebrafish oxytocin shows a high degree of 

sequence similarity to mammalian oxytocin (Acher et al. 1997; Unger and Glasgow 

2003). The amino acid sequences of zebrafish oxytocin and mammalian oxytocin differ 

by two amino acids. Oxytocin has also been shown to affect similar functions in teleost 

fish as it does in humans, such as social behaviour (Thompson and Walton 2004). These 

facts reinforce the use of zebrafish in the oxytocin research. However, there is only little 

knowledge in the literature about the structure and function of the zebrafish oxytocin 

system. 

 

The aim of the experimental part of this thesis was to determine the structure of the 

zebrafish central oxytocin system and to study the role of oxytocin on zebrafish 

behaviour by manipulating oxytocin expression. This was expected to be a better 

approach than oxytocin receptor ligands, because zebrafish oxytocin receptors have not 

been expressed and pharmacologically characterized yet. If the zebrafish oxytocin 

system was structurally and functionally similar to that of humans, it would enable the 

use of zebrafish as a model in oxytocin research.  

 

 

6 MATERIALS AND METHODS 

 

6.1 Animals  

 

Adult and larval wild-type zebrafish of the Turku strain (Kaslin and Panula 2001; 

Sundvik et al. 2011) were used in the experiments. Fish were kept under a 14/10-hour 
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light-dark cycle at 28,5 °C. Zebrafish embryos and larvae were raised in E3 medium (5 

mM NaCl, 0,17 mM KCl, 0,44 mM CaCl, 0,33 mM MgSO4 in H2O). Breeding and 

feeding were done according to Westerfield (2000).  

 

6.2 Immunohistochemistry 

 

The structure of the zebrafish oxytocin system was determined by staining adult 

zebrafish brain cryosections with mammalian oxytocin antibodies. The development of 

the oxytocin system was studied by staining 1–14 dpf larval zebrafish with the 

mammalian oxytocin antibodies. 

 

 Cryosections 6.2.1

 

Adult wild type zebrafish were euthanized by immersion in water containing an 

overdose of tricaine methane sulfonate (0,4 mg/ml, Sigma). The brains were dissected 

on ice and fixed in 4% paraformaldehyde (PFA) in 0,1 M phosphate buffer (PB, recipe 

in Appendix 1) overnight at 4 °C. The brains were washed three times with phosphate-

buffered saline (PBS, recipe in Appendix 1), transferred to 30% sucrose in PBS and 

kept at 4 °C until they sank. The brains were frozen in Shandon M-1 Embedding Matrix 

(Thermo Scientific) on dry ice and sectioned with a cryostat to 16–20 µm sagittal and 

horizontal sections. Sections were collected on SuperFrost Plus –slides and stored in -20 

°C until further use.   

 

The specimens were washed with PBS containing 0,1% Triton x-100 (PBS-T) for five 

minutes and blocked with 3% normal goat serum (NGS) in 0,3% PBS-T for 60 minutes 

to prevent unspecific binding of the antibodies. The primary antibodies were diluted in 

1% NGS in 0,3% PBS-T. The specimens were incubated with the primary antibody for 

22–24 hours at 4 °C. After the incubation the specimens were washed with 0,1% PBS-T 

(3 x 10 min) and incubated with Alexa Fluor secondary antibody (Invitrogen) in 1% 

NGS for 60 minutes. The secondary antibody was chosen according to the species in 

which the primary antibody was produced. The specimens were washed again with 

0,1% PBS-T (3 x 10 min) and mounted on 50% glycerol in PBS. 
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The specimens were examined with a Leica TCS SP 2 confocal microscope. For Alexa 

Fluor 488 the excitation wavelength used was 488 nm and the emission was collected 

from 500 nm to 550 nm. For Alexa Fluor 568 the excitation wavelength used was 561 

nm and the emission was collected from 600 nm to 650 nm. Acquired image stacks 

were transformed to maximum projection images using Leica software. The image 

stacks and the maximum projection images were analysed. 

 

 Whole mounts 6.2.2

 

Larvae older than 4 dpf were stained as brain whole mounts. The larvae were 

euthanized on ice and fixed in 1,5 ml 4% PFA in PB overnight at 4 °C. PFA was 

replaced with 1,5 ml PB (pH 7,4) and incubated for three hours at 4 °C. The brains were 

dissected under a preparation microscope and put into baskets in a 24-well plate 

containing PBS. The plate was kept on ice. The specimens were washed with 0,3% 

PBS-T (3 x 60 min) and incubated with preincubation solution (1% DMSO and 4% 

NGS in 0,3% PBS-T) overnight at 4 °C. The specimens were incubated with the primary 

antibody for 20–24 hours 4 °C and washed with 0,3% PBS-T (10 min + 3 x 30 min). 

They were incubated with Alexa Fluor secondary antibody for 20–24 hours at 4 °C. 

Primary and secondary antibody solutions were made in 2% NGS in 0,3% PBS-T. The 

specimens were washed in 0,3% PBS-T (10 min), in PBS (3 x 30 min) and in 50% 

glycerol in PBS (2 x 60 min). The specimens were then infiltrated in 80% glycerol in 

PBS overnight at 4 °C and mounted ventral side up in 80% glycerol in PBS.  

 

Larvae younger than 4 dpf were stained as larval whole mounts and they were raised in 

0,003% PTU in E3 to prevent pigment formation. The staining procedure was the same 

as for the brain whole mounts. Yolk sac and lower jaw were removed before mounting. 

 

The brain and larval whole mounts were examined with a Leica TCS SP 2 confocal 

microscope. The excitation wavelengths used were the same as described for 

cryosections. Acquired image stacks were transformed to maximum projection images 

using Leica software. The image stacks and the maximum projection images were 

analysed. 
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  Characterization of the oxytocin antibodies 6.2.3

 

The sensitivity and specificity of two mammalian oxytocin antibodies to detect 

zebrafish oxytocin was studied with immunohistochemistry. The immunostaining was 

conducted on cryostat sections of adult zebrafish brains according to the protocol 

described above. The primary antibodies tested were polyclonal rabbit anti-oxytocin and 

monoclonal mouse anti-oxytocin clone 4G11 (Table 1). The efficiency of the staining 

protocol was ensured by using anti-tyrosine hydroxylase (anti-TH) antibody (Table 1) 

as a positive control and the omission of the primary antibody as a negative control. 

Dilutions 1:100, 1:1000, 1:5000 and 1:10 000 of both oxytocin antibodies were tested. 

The optimal dilution for both antibodies was 1:1000 and that dilution was used in 

further experiments. For the anti-TH antibody dilution 1:1000 was used based on 

previous studies (Chen et al. 2009; Sallinen et al. 2009). Alexa Fluor 488 Goat Anti-

Rabbit IgG (Invitrogen A11034, diluted 1:1000) was used to detect rabbit anti-oxytocin 

and Alexa Fluor 488 Goat Anti-Mouse IgG (Invitrogen A11001, diluted 1:1000) to 

detect mouse anti-oxytocin and anti-TH.  They were also used in the negative controls.  

 

Table 1. Primary antibodies 

 

 
The specificity of the antibodies was studied with absorption and cross-reactivity 

controls. In the absorption control oxytocin antibody was incubated with oxytocin 

peptide (Peninsula Laboratories 8152) and in cross-reactivity control with arginine-

vasopressin peptide (Peninsula Laboratories 8103) for 24 hours at 4 °C. Three different 

Antigen Immunogen Host 
Company/ 
Catalog number 

Oxytocin Synthetic oxytocin (Sigma) 
conjugated to thyroglobulin 

Rabbit Millipore/ 
AB911  

Oxytocin Oxytocin conjugated to 
thyroglobulin 

Mouse Millipore/ 
MAB5296 

Tyrosine 
hydroxylase 

Tyrosine hydroxylase purified from 
rat PC12 cells 

Mouse Immunostar/ 
22941 

Orexin-A Synthetic peptide corresponding to 
the C-terminal portion of the bovine 
Orexin-A peptide 

Rabbit Chemicon/ 
AB3704 
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peptide dilutions (1 µM, 10µM, and 100 µM) were used. After the incubation 

immunostaining was conducted with the antibody-peptide-solutions on adult zebrafish 

brain cryosections according to the protocol described above. 

 

 Double staining 6.2.4

 

Double staining with rabbit anti-oxytocin and mouse anti-TH antibodies and with 

mouse anti-oxytocin and rabbit anti-orexin A antibodies were conducted to study the 

colocalization and correlative distribution of oxytocin and other neurotransmitters. 

Adult zebrafish brain cryosections were incubated simultaneously with both primary 

antibodies and simultaneously with highly cross-adsorbed Alexa Fluor 488 and 568 

secondary antibodies (Invitrogen). The rabbit anti-oxytocin was detected with Alexa 

Fluor 488 goat anti-rabbit IgG (A11034, diluted 1:1000), the mouse anti-oxytocin with 

Alexa Fluor 488 goat anti-mouse IgG (A11029, diluted 1:1000), anti-orexin A with 

Alexa Fluor 568 goat anti-rabbit IgG (A11036, diluted 1:1000) and anti-TH with Alexa 

Fluor 568 goat anti-mouse IgG (A11031, diluted 1:1000). Otherwise the protocol for 

double staining was the same as described above for the cryostat sections. To study 

possible colocalization overlay images acquired with Leica confocal microscope were 

analysed plane by plane. 

 

6.3 Inhibition of oxytocin splicing with morpholino oligonucleotides 

 

Two morpholino oligonucleotides, oxytocin MO1 (oxtMO1) and oxytocin MO2 

(oxtMO2), were used to inhibit the splicing of zebrafish oxytocin precursor mRNA 

(pre-mRNA) (Table 2).  OxtMO1 was targeted at the splicing site between intron one 

and exon two of the zebrafish oxytocin pre-mRNA (Figure 1).  OxtMO2 was targeted 

between intron two and exon three based on a study by Gutnick and others (2011) 

(Figure 1). Standard control MO (Table 2, cntrlMO) injected larvae and uninjected 

larvae were used as controls. 
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Table 2: The sequences of the morpholino oligonucleotides (MOs) used in the study. 
The sequence of oxtMO2 was designed by Gutnick and others (2011). 
 
MOs Sequence (5'-3') Company 
Zebrafish oxytocin 1 
(oxtMO1) 

ACA TTA CTG TGG AGG AAG AGA CGT A GeneTools 

Zebrafish oxytocin 2 
(oxtMO2) 

CAC TGC AGA TGG TAA GGG AAA CCT A 
 

GeneTools 

Standard control-
MO (cntrlMO) 

CCT CTT ACC TCA GTT ACA ATT TAT A GeneTools 

 

Figure 1. The target sites of oxytocin morpholino oligonucleotide 1 (oxtMO1) and 
oxytocin morpholino oligonucleotide 2 (oxtMO2) in the zebrafish precursor messenger-
RNA.  
 

Different amounts of the oxytocin MOs ranging from 0,5 ng to 8 ng/embryo were tested 

to determine the optimal dose of the MOs. The dose of the cnrtlMO was 6,8 ng/embryo. 

The MOs were diluted to right concentrations with sterile water and 0,1% of Phenol red 

solution (Sigma). 4 nl of the MO-solution was microinjected into the yolk sack of 

zebrafish embryo at one to four cell stage. The MOs were labelled with 3’-fluorescein 

and the succession of the MO delivery was assessed six hours after the injection with a 

fluorescent microscope. The development of the embryos was followed daily.  

 

The efficacy of the MOs was assessed using reverse transcription polymerase chain 

reaction (RT-PCR) and immunohistochemistry. If the MOs inhibited the splicing of 

oxytocin pre-mRNA, that would be detected in the RT-PCR as a band shifting to 

another mass or as a decrease in the intensity of the oxytocin mRNA band. In the 

immunohistochemistry it would be detected as weaker intensity of the oxytocin staining 

and as a decrease in the number of oxytocin producing cells compared to the control 

groups. 
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 Reverse transcription polymerase chain reaction  6.3.1

 

At 2 dpf 35 larvae per group were pooled and euthanized on ice for the RT-PCR. The 

RNA was extracted using the RNeasy Mini Kit (Qiagen). The extraction was performed 

according to the protocol given by the manufacturer. The amount and quality of the 

isolated RNA was analysed spectrophotometrically with an Eppendorf BioPhotometer. 

The extracted RNA was turned into complementary DNA (cDNA) using the 

SuperScript III reverse transcriptase kit (Invitrogen). The amount of RNA needed for 

the reaction varied between experiments because of differences in the RNA yield. The 

amount of RNA was calculated so that it was between 10 pg – 5 µg and it was the same 

between groups to ensure the comparability of the results. RNA was mixed with 2 µl of 

50 ng/µl random primers (Roche), 1 µl of 10 mM deoxyribonucleotide triphosphate 

(dNTPs) mix (Fermentas) and sterile water to a total volume of 11 µl. The mixture was 

heated for five minutes at 65 °C and incubated on ice for five minutes. 4 µl of 5X First 

Strand buffer (Invitrogen), 1 µl of 0,1 M DTT (Invitrogen) and 1 µl of SuperScript III 

reverse transcriptase (Invitrogen) was added. The samples were incubated at room 

temperature for five minutes and 60 minutes at 50 °C. The reaction was inactivated by 

heating for 15 minutes at 70 °C after which the samples were incubated on ice for five 

minutes. 

 

The cDNA was amplified using polymerase chain reaction (PCR). For the oxytocin 

samples 8 µl of the cDNA template was added to a mixture containing 2,5 µl of 10X 

optimized DyNazyme buffer (ThermoScientific), 0,5 µl of 10 mM dNTPs (Fermentas), 

1 µl of 10 µM zebrafish oxytocin forward primer, 1 µl of 10 µM zebrafish oxytocin 

reverse primer, 0,5 µl of DyNazyme II DNA polymerase (ThermoScientific) and 11,5 

µl of sterile water. For the control samples 3 µl of the cDNA template was added to a 

mixture containing 2,5 µl of 10X optimized DyNazyme buffer, 0,5 µl of 10 mM dNTPs, 

1 µl of 10 µM zebrafish elongation factor 1-alpha forward primer, 1 µl of 10 µM 

zebrafish elongation factor 1-alpha reverse primer, 0,5 µl of DyNazyme II DNA 

polymerase and 16,5 µl of sterile water. In the negative control cDNA was replaced 

with sterile water. The sequences of the primers used are presented in table 3. 
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Table 3. The sequences of zebrafish oxytocin (oxt) and zebrafish elongation factor 1-
alpha (ef1α) primers used in the reverse transcription polymerase chain reaction.  
 
Gene Forward primer (5'-3') Reverse primer (5'-3') Accession No. 
oxt TCG GTG TCA GCC TTG 

GTG AA 
GCG GCT CCT CCT GAG 
ATG AT 

NM_178291.2 

ef1α GTT GCC TTC GTC CCA 
ATT TC 

AGC AAA GCG ACC AAG 
AGG A 

NM_131263.1 

 

 
The PCR program consisted of initial denaturation (94 °C, two minutes), 35 cycles of 

denaturation (94 °C, 30 seconds), annealing  (57 °C, 30 seconds) and polymerization 

(72 °C, 70 seconds) and final extension (72 °C, seven minutes). The PCR products were 

analysed with gel electrophoresis. The samples were mixed with 3 µl of 10X DNA 

Loading Dye (ThermoScientific) and run in 40 ml of 1% agarose gel in TBE buffer (0,1 

M Tris, 0,1 M boric acid, 2 mM EDTA) containing 3 µl of Sybr Safe DNA gel stain 

(Invitrogen). GeneRuler 100 bp DNA ladder (Fermentas) was used to aid in the 

assessment of the band sizes.  

 

 Cell number quantification 6.3.2

 

Immunohistochemistry was conducted with 5 dpf and 7 dpf larvae according to the 

staining protocol described above for the brain whole mounts. The acquired image 

stacks were imported to Fiji (an Open Source imaging software: Schindelin et al. 2012) 

and the number of oxytocin immunoreactive neurons was counted manually. Results 

were analysed in SPSS 15.0 with one-way ANOVA and Tukey’s post hoc test. The 

significance limit was p<0,05. 

 

6.4 Locomotor activity test 

 

The locomotor activity of 5 dpf larvae was studied for groups injected with 2,5 ng 

oxtMO2, 4 ng oxtMO2 and 6,8 ng cntrlMO. Uninjected larvae were also used as 

controls. 12 larvae per group were placed individually into wells in a 48-well plate 

containing 1 ml of E3 medium. The experiment was conducted three times with 

different larvae so the total number of animals per group was 36. The movement of 
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larvae was tracked for 15 minutes using a video camera connected to Ethovision 3.1 

software as described earlier (Sallinen et al. 2009). The sample rate used was five 

samples per second. If the fish was detected in less than 90% of the frames of the track 

file, the track was excluded from the analysis. Tracks containing reflection artefacts 

were also excluded. After the exclusion the number of larvae per group was 20 in 2,5 ng 

oxtMO2, 15 in 4 ng oxtMO2, 29 in cntrlMO and 24 in uninjected group. Parameters 

analysed were total distance moved, mean turn angle, mean meander and mean angular 

velocity. Results were analysed in SPSS 15.0 with one-way ANOVA followed by 

Tukey’s post hoc test. The significance limit was p<0,05. 

 

 

7 RESULTS 

 

7.1 Specificity of the oxytocin antibodies 

 

Both oxytocin antibodies were able to recognize zebrafish oxytocin. The mouse anti-

oxytocin antibody proved to be more specific than the rabbit anti-oxytocin antibody. In 

the absorption control of the mouse anti-oxytocin antibody incubation with 1 µM of 

oxytocin was enough to block the staining (Figure 2A). Incubation with vasopressin in 

the cross-reactivity control did not affect the staining even at a concentration of 100 

µM.  In the absorption control of the rabbit anti-oxytocin antibody the staining was only 

blocked by 100 µM of oxytocin (Figure 2B). Incubation with vasopressin weakened the 

intensity of the staining. This indicates that the rabbit anti-oxytocin antibody recognizes 

also vasopressin, in addition to oxytocin. Because of the higher specificity the mouse 

anti-oxytocin antibody was used in further studies. 
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Figure 2. Absorption and cross-reactivity controls of the mouse anti-oxytocin antibody 
(A) and rabbit anti-oxytocin antibody (B). Sagittal cryosections of adult zebrafish brains 
were stained with the mouse and rabbit anti-oxytocin antibodies. Both antibodies were 

A	
  

B	
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able to recognize zebrafish oxytocin. In the figures A and B the upper row represents 
the results of the absorption control in which the antibodies were incubated with 
oxytocin prior to the staining. In the figures A and B the lower row represents the 
results of the cross-reactivity control in which the antibodies were incubated with 
vasopressin prior to the staining. With mouse oxytocin antibody the staining was 
blocked with 1 µM of oxytocin and not affected with 100 µM of vasopressin as seen in 
figure A. With the rabbit oxytocin antibody 100 µM of oxytocin was required to block 
the staining and the staining was affected by vasopressin as seen in figure B.  

 

7.2 Oxytocin immunoreactive neurons and fibers 

 

The zebrafish oxytocin immunoreactive neurons were located in the preoptic nucleus in 

the preoptic area (Figure 3). More dorsally situated larger oxytocin neurons comprised 

the magnocellular preoptic nucleus (PM) and more ventrally situated smaller neurons 

the parvocellular preoptic nucleus (PP) (Figure 3D and 3E). The neurons were arranged 

into two cell clusters that were situated on both sides of the diencephalic ventricle (DiV) 

(Figure 3B and 3C). Oxytocin neurons were not found in any other brain region besides 

the preoptic area.  
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Figure 3. Oxytocin immunoreactive neurons in the zebrafish brain. Cryosections of 
adult zebrafish brains were stained with mouse anti-oxytocin antibody and examined 
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with a confocal microscope. The results are represented as maximum projection images. 
Figure A is a sagittal section of the whole zebrafish brain from near the midline. Figure 
B is a horizontal section of the preoptic area and figure C is a higher magnification of 
the area. Figure D is a sagittal section of the preoptic area and figure E is a higher 
magnification of the area. Oxytocin immunoreactive neurons were located in preoptic 
area (PA) as shown in figure A. There were prominent oxytocin fibers in the 
hypothalamus (H) toward the pituitary (Figures A and D). Two clusters of oxytocin 
cells were found on both sides of the diencephalic ventricle (DiV) as shown in figures B 
and C. Oxytocin neurons were found in both magnocellular (PM) and parvocellular (PP) 
preoptic nuclei (Figures D and E). Abbreviations: DiV=diencephalic ventricle, 
H=hypothalamus, PA=preoptic area, PM=magnocellular preoptic nucleus, 
PP=parvocellular preoptic nucleus. 

 

Oxytocin immunoreactive fibers were found in all major brain areas: telencephalon, 

diencephalon, mesencephalon and rhombencephalon (Figure 4A). In the ventral part of 

the telencephalon fibers projected though the anterior parvocellular preoptic nucleus 

(PPa) towards the dorsal and ventral nucleus of ventral telencephalic area (Vd and Vv) 

(Figure 4B). In the dorsal part of the telencephalon fibers were detected in the medial 

zone of the dorsal telencephalic area (Dm) (Figure 4C).  

 

There were widespread oxytocin fiber projections in the diencephalon (Figure 4E). The 

most prominent fibers projected to the pituitary. These thick fibers travelled from the 

preoptic area to the pituitary along the ventral surface of the hypothalamus (Figure 3D). 

Thinner fibers projected through dorsal and medial parts of the diencephalon (Figure 

4E). In the dorsal part the fibers ascended to the thalamus and the pretectum. Some of 

the fibers turned caudally and ran along the tectal ventricle towards the locus coeruleus 

(LC). Others continued to the optic tectum (TeO) (Figure 4D). In the medial part the 

fibers projected through the posterior tuberculum towards the rhombencephalon. Fibers 

were detected also in the ventral rhombencephalon but the projection could not be 

traced back to the preoptic area.  
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Figure 4. Fiber projections of the zebrafish oxytocin system. Cryosections of adult 
zebrafish brains were stained with mouse anti-oxytocin antibody and examined with a 
confocal microscope. The results are represented as maximum projection images. 
Oxytocin (oxt) fiber projections of the zebrafish central nervous system are summarized 
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in figure A (anterior to the left, dorsal up).  Some of the fibers could not be traced back 
to the preoptic area and the dashed lines represent possible projection patterns of these 
fibers. Figure B shows the projections in the more ventral telencephalic area and figure 
C in the more dorsal telencephalic area. Fiber projections in the optic tectum (TeO) are 
shown in figure D, which is an image of a sagittal section near the midline. Fiber 
projections in the diencephalon are shown in figure E, which is an image of a sagittal 
section near the midline. Abbreviations: CCe=corpus cerebelli, D=dorsal telencephalic 
area, DIL=diffuse nucleus of the inferior lobe, DiV=diencephalic ventricle, Dm= medial 
zone of the dorsal telencephalic area, H=hypothalamus, LC=locus coeruleus, 
OB=olfactory bulb, ON=optic nerve, PPa= anterior parvocellular preoptic nucleus, 
PPv=ventral part of the periventricular pretectal nucleus, R=raphe nuclei, 
TelV=telencephalic ventricles, TeO=optic tectum, TeV=tectal ventricle, TPp= 
periventricular nucleus of posterior tuberculum, V=ventral telencephalic area, Vd/Vv= 
dorsal and ventral nucleus of the ventral telencephalic area, VT=ventral thalamus. 
 

7.3 Development of the oxytocin system 

 

No oxytocin was detected in 1–3 dpf larval whole mounts but oxytocin could be 

detected in 3 dpf sagittal cryosections (Figure 5). In the 3 dpf cryosections both the 

oxytocin producing cells and the projections to the pituitary were visible. Using 

zebrafish brain whole mounts oxytocin could be first detected at 5–6 dpf. At this stage 

the staining was strongest in the pituitary, although weak staining could also be seen in 

the preoptic area (Figure 5). The cells in the preoptic area became more visible after 7 

dpf and the number of oxytocin immunoreactive neurons could be calculated more 

reliably from larvae older than 6 dpf. At 10–14 dpf the projections from the preoptic 

area to the pituitary became visible. No other projections were detected.  
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Figure 5. The development of the zebrafish oxytocin system. The development of the 
oxytocin system was studied by staining larval whole mounts (1–3 dpf), 3 dpf sagittal 
cryosections and brain whole mounts (over 4 dpf) with mouse anti-oxytocin antibody. 
In the whole mounts oxytocin staining was detected at 5–6 dpf while no specific 
oxytocin staining occurred during 1–3 dpf. At 6–14 dpf oxytocin staining was most 
prominent in the pituitary but oxytocin immunoreactive neurons in the preoptic area and 
projections to the pituitary could also be detected. Oxytocin immunoreactive neurons 
and oxytocin staining in the pituitary were detected in the 3 dpf sagittal cryosection. In 
the figures 1–14 dpf anterior is to the left and in the figure of the 3 dpf cryosection 
dorsal is up and anterior to the left. 

 

7.4 Colocalization 

 

No colocalization of anti-oxytocin and anti-TH immunoreactivities was detected in the 

zebrafish brain (Figure 6). The TH positive cells were situated ventrally compared to 

the oxytocin immunoreactive cells. There was also no colocalization in the fiber 

projections although the fibers were situated close to each other and projected through 

the same tract. 
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Figure 6. Oxytocin (OXT) and tyrosine hydroxylase (TH) were not colocalized in 
zebrafish brain. Sagittal cryosections of adult zebrafish brains were stained with mouse 
anti-TH antibody and rabbit anti-oxytocin antibodies and imaged with a confocal 
microscope to determine whether oxytocin colocalizes with TH. In the upper row are 
images from the cells in the preoptic area and in the lower row fibers in the 
hypothalamus. The left-most column represents the maximum projection images of 
oxytocin staining and the middle column the maximum projection images of TH 
staining. The right-most column represents the overlay images of the oxytocin and TH 
staining. There was no colocalization between oxytocin and TH staining either in the 
cells or the projections. In the figures anterior is up and ventral to the left. 

 

Anti-oxytocin and anti-orexin-A-like immunoreactivities were colocalized in the 

zebrafish brain (Figure 7). Colocalization was evident in both the preoptic cells and the 

hypothalamic projections. The cells and projections recognized with oxytocin antibody 

were also recognized with the anti-orexin-A antibody. There were also distinct cells and 

projections that were recognized only with the anti-orexin-A antibody. These were in 

locations which are known to express orexin mRNA (Kaslin et al. 2004). 
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Figure 7. Oxytocin (OXT) colocalized with orexin-A (ORX) in zebrafish brain. Sagittal 
cryosections of adult zebrafish brains were stained with mouse anti-oxytocin antibody 
and rabbit anti-orexin-A antibody to determine whether oxytocin colocalizes with TH. 
In the upper row are confocal images from the cells in the preoptic area and in the lower 
row from fibers in the hypothalamus. The left-most column represents the maximum 
projection images of oxytocin staining and the middle column the maximum projection 
images of orexin-A staining. The right-most column represents the overlay images of 
both of the oxytocin and orexin-A staining. In the figures anterior is up and ventral to 
the left. 
 

7.5 Morpholino oligonucleotides 

 

OxtMO1 was lethal at a dose of 8 ng and doses between 0,75–5 ng led to abnormal 

development. At a dose of 0,6 ng the larvae developed normally but there was no effect 

on the production of oxytocin: The number of oxytocin producing cells did not 

significantly differ between the oxtMO1-injected larvae and the control groups (one-

way ANOVA F(2,10)=1,255, P>0,05). There was also no difference in the intensity of the 

oxytocin band in the RT-PCR or in the intensity of the oxytocin staining between 

groups (Figure 8). 
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Figure 8. Oxytocin morpholino oligonucleotide 1 (oxtMO1) did not affect the 
production of oxytocin. To prevent the splicing of oxytocin precursor mRNA zebrafish 
embryos were microinjected with 0,6 ng of oxtMO1, which was the highest dose that 
did not cause developmental abnormalities. Uninjected and controlMO (cntrlMO) 
injected embryos were used as controls. Figure A: 7 dpf brain whole mounts were 
stained with mouse anti-oxytocin antibody and imaged with a confocal microscope. The 
figures represent the average staining pattern of all of the samples in one group. There 
was no difference in the intensity of the staining between groups. Figure B: The number 
of oxytocin immunoreactive cells was counted from the 7 dpf brain whole mounts. The 
number of samples per group was five in the uninjected group, three in the cntrlMO 
group and five in the oxtMO1 group. The cell numbers are presented as means ± SEM. 
The number of oxytocin immunoreactive neurons did not significantly differ between 
groups (one-way ANOVA F(2,10)=1,255, P>0,05). Figure C: The amount of oxytocin 
mRNA was analyzed from 2 dpf larvae with RT-PCR. There was a minor difference in 
the oxytocin band intensity of the oxtMO1 group compared to cntrlMO group. However 
there was also a similar difference between ef1α bands which act as internal controls.  

 

OxtMO2 reduced the production of oxytocin at doses of 2,5 ng and 4 ng. The number of 

oxytocin immunoreactive neurons was significantly lower in the oxtMO2-injected 

groups compared to the control groups (one-way ANOVA F(3,47)=53,7, P<0.001). Also 

the intensity of the oxytocin band in RT-PCR and the oxytocin staining in the 7 dpf 
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brain whole mounts was reduced in the oxtMO2 injected groups (Figure 9). At a dose of 

2,5 ng the morphology of the larvae was normal but increasing the dose to 4 ng led to 

developmental abnormalities such as pericardial edema and brain malformation (Figure 

9). Control groups developed normally.  
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Figure 9. Oxytocin morpholino oligonucleotide 2 (oxtMO2) reduced the production of 
oxytocin. Zebrafish embryos were microinjected with 2,5 ng and 4 ng of oxtMO2 in 
order to prevent the splicing of oxytocin precursor mRNA. Uninjected and controlMO 
(cntrlMO) injected embryos were used as controls. Figure A: 7 dpf brain whole mounts 
were stained with mouse anti-oxytocin antibody and scanned with a confocal 
microscope. The figures represent the average staining patterns of all of the samples in 
one group. The intensity of the staining was lower in both oxtMO2-injected groups 
compared to controls. Figure B: The morphology of 5 dpf larvae was normal in all 
groups except the 4 ng oxtMO2 group. Figure C: The number of oxytocin 
immunoreactive cells was counted from 7 dpf brain whole mounts. The cell number is 
presented as means ± SEM. The number of samples per group was 14 in both the 
uninjected and cntrlMO group, 12 in the 2,5 ng of oxtMO2 group and 11 in the 4 ng of 
oxtMO2 group. The number of oxytocin producing cells differed significantly between 
groups (one-way ANOVA F(3,47)=53,7, P<0.001). The cell number was significantly 
different between uninjected and 2,5 ng oxtMO2 (Tukey HSD P<0,05), between 
uninjected and 4 ng oxtMO2  (Tukey HSD P<0,001), between cntrlMO and 2,5 ng 
oxtMO2 (Tukey HSD P<0,05), between cntrlMO and 4 ng oxtMO2  (Tukey HSD 
P<0,001) and between 2,5 ng oxtMO2 and 4 ng oxtMO2 (Tukey HSD P<0,001) groups. 
Figure C: The amount of oxytocin RNA was analyzed from 2 dpf larvae with RT-PCR. 
The amount of oxytocin RNA was lower in the oxtMO2-injected groups compared to 
controls. *) P<0,05. 

 

7.6 Locomotor activity 

 

The locomotor activity of oxtMO2-injected groups was reduced (Figure 10). There was 

a significant difference in the total distance moved between groups (one-way ANOVA 

F(3,84)=6,719, P<0,001). With a dose of 4,0 ng the total distance moved was significantly 

lower compared to the uninjected group (Tukey HSD p<0,01) and the cntrlMO group 

(Tukey HSD P<0,05). With a dose of 2,5 ng the total distance moved was significantly 

lower compared to the uninjected group (Tukey HSD P<0,01) but not compared to the 

cntrlMO group. There was no difference in the mean turn angle, mean meander or mean 

angular velocity among the groups.  
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Figure 10. The locomotor activity of oxytocin morpholino oligonucleotide 2 (oxtMO2) 
injected larvae was reduced compared to controls. Zebrafish embryos were injected 
with 2,5 ng or 4 ng of oxtMO2 to prevent the splicing of oxytocin precursor mRNA. 
Uninjected and controlMO (cntrlMO) injected larvae were used as controls. The 
locomotor activity of 36 larvae per group was tracked for 15 minutes in a 48-well plate 
at 5 dpf. After excluding the data according to exclusion criteria set beforehand, the 
number of larvae per group was 20 in 2,5 ng of oxtMO2 group, 15 in 4 ng of oxtMO2 
group, 29 in the cntrlMO group and 24 in the uninjected group. Figure A represents the 
total distance moved during the experiment. The values are presented as means ± SEM. 
The total distance moved differed significantly between groups (one-way ANOVA 
F(3,84)=6,719, P<0,001). The total distance moved was significantly lower in the 4 ng of 
oxtMO2 group compared to both the uninjected group (Tukey HSD p<0,01) and the 
cntrlMO group (Tukey HSD P<0,05). The total distance moved was significantly lower 
in the 2,5 ng oxtMO2 compared to the uninjected group (Tukey HSD P<0,01) but not 
compared to the cntrlMO group (Tukey HSD P>0,05). Figure B represents the typical 
swimming pattern of each group. *) P<0,05 
 

 

8 DISCUSSION   

 

8.1 The structure of the zebrafish oxytocin system  

 

The results of this study showed that in zebrafish oxytocin neurons are situated in two 

cell clusters on both sides of the diencephalic ventricle and they are found in both 

magnocellular and parvocellular preoptic nuclei in the preoptic area. This arrangement 

of oxytocin neurons is similar to the oxytocin neuron arrangement of other teleost 
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species (Holmqvist and Ekström 1995; Goodson et al. 2003; Saito et al. 2004). The 

detected neuroanatomy of oxytocin neurons is also in accordance with previous 

knowledge about the zebrafish oxytocin system: Unger and Glasgow (2003) showed 

with in situ hybridization that in zebrafish larvae aged 36–120 hpf oxytocin mRNA is 

expressed in bilateral cell clusters in the anterior hypothalamus, which gives rise to the 

adult preoptic nucleus.   

 

The zebrafish brain had extensive oxytocin immunoreactive fiber projections. Besides 

the very prominent projections to the pituitary, extra-hypothalamic thinner oxytocin 

fibers were also detected. The structure of the zebrafish oxytocin fiber system resembles 

that of other teleost species. Based on previous studies, there are also differences in the 

oxytocin fiber structures between different teleosts. Projections to the pituitary, the 

thalamus and the pretectum seem to be a common feature for teleosts and they are 

reported, for example, for Atlantic salmon, plainfin midshipman and rainbow trout 

(Holmqvist and Ekström 1995; Goodson et al. 2003; Saito et al. 2004). These 

projections were also found in zebrafish.  

 

In the forebrain of the rainbow trout and the plainfin midshipman, the oxytocin fibers 

run in both dorsal and ventral parts of the telencephalon, as was also the case in the 

zebrafish (Goodson et al. 2003; Saito et al. 2004). In the rainbow trout and the plainfin 

midshipman the oxytocin fibers terminate at the olfactory bulb but no oxytocin fibers 

were detected at the olfactory bulb in zebrafish. No oxytocin forebrain projections were 

reported for the Atlantic salmon (Holmqvist and Ekström 1995).  

 

In the zebrafish, the plainfin midshipman and the rainbow trout oxytocin fibers are 

found in optic tectum and posterior tuberculum, but these projections were not reported 

for the Atlantic salmon (Holmqvist and Ekström 1995; Goodson et al. 2003; Saito et al. 

2004). The rainbow trout have oxytocin fibers also in the raphe nuclei, the cerebellum 

and the spinal cord but these fiber projections were not detected in zebrafish nor have 

they been reported in the Atlantic salmon or in the plainfin midshipman.  
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The zebrafish oxytocin fiber structure is very similar to the fiber structure reported for 

the rainbow trout and plainfin midshipman (Goodson et al. 2003; Saito et al. 2004). 

There are, however, differences so it is possible that not all zebrafish oxytocin fibers 

were detected in this study. Even though a similar oxytocin projection pattern was 

found in all samples studied, the method might not have been sensitive enough for the 

detection of all oxytocin fibers: the signal of the thin extra-hypothalamic fibers was very 

weak so some fibers might have been undetected. This is further supported by the fact 

that fibers were detected going towards the areas innervated by oxytocin producing 

neurons in other teleosts although they were not detected directly in these areas in 

zebrafish.  

 

Changes in the staining protocol, like longer incubation time with the primary and 

secondary antibodies, might have improved the sensitivity and revealed more fibers. 

The sensitivity might also be improved by using tyramide signal amplification (TSA), 

which has been used previously for signal amplification in zebrafish (Filippi et al. 

2007). This study was conducted with sagittal and horizontal cryosections so studying 

coronal sections might have revealed more fibers.     

 

Immunohistochemistry might not be the best method for studying the oxytocin system 

in teleosts. Duarte and others (2001) studied the oxytocin system of a teleost white 

seabream (Diplodus sargus) with a rabbit anti-teleost oxytocin antibody. No extra-

hypothalamic projections were observed. Because extra-hypothalamic projections are 

reported for other teleost species, the authors suggest other methods to confirm the 

result. It would be interesting to know whether the result is correct because detecting the 

extra-hypothalamic oxytocin immunoreactive fibers proved to be demanding in this 

study.  

 

Other methods than immunohistochemistry have been used previously to study the 

zebrafish oxytocin system. Coffey and others (2013) used a transgenic zebrafish line 

that expresses GFP from the oxytocin promoter. They recorded GFP expressing 

oxytocin cell bodies in the neuroendocrine preoptic area. An interesting result was that 

alcohol exposure induced oxytocin gene expression in a small group of hindbrain 
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neurons. The authors reported oxytocin fibers to the pituitary, the midbrain, the 

hindbrain and the spinal cord but they did not describe these projections in more detail.  

Contrary to the results of this study, Coffey an others (2013) were able to detect 

projections in the spinal cord with the transgenic zebrafish line. Therefore it is likely 

that zebrafish have oxytocin projections also in the spinal cord, as do other teleosts 

(Saito et al. 2004), although spinal projections were not detected in this study. There is 

no mention about oxytocin projections to the forebrain in the transgenic line (Coffey et 

al. 2013). Forebrain projections are, however, reported for other teleost species 

(Goodson et al. 2003; Saito et al. 2004) and they were also detected in this study. 

Different methods seem to give different results so combining different methods would 

be the best way to confirm the results. In addition to immunohistochemistry and 

transgenic approach one could also try for example anterograde tracing of the axons. 

 

 Antibodies made against mammalian oxytocin can be used to study zebrafish 8.1.1

oxytocin system 

 

Antibodies against the mammalian oxytocin were able to recognize zebrafish oxytocin 

but there were differences in the specificity of the antibodies. The mouse anti-oxytocin 

antibody was specific to oxytocin over vasopressin but the rabbit anti-oxytocin antibody 

recognised both peptides. Cryosections proved to be better than whole mounts for 

studying larval zebrafish with the mouse anti-oxytocin antibody. According to a 

previous study by Unger and Glasgow (2003) oxytocin mRNA is first detected at 36 hpf 

with in situ hybridization, so oxytocin might also be detected with 

immunohistochemistry around this age. In this study oxytocin immunoreactivity was 

not detected until 5–6 dpf using the whole mounts. With larval cryosections oxytocin 

was detected at 3 dpf. This was the only age of which cryosections were made so 

oxytocin could possibly be detected even earlier by staining cryosections.  

 

 Colocalization studies 8.1.2

 

TH is an enzyme that catalyses the rate-limiting step in the synthesis of catecholamines 

and it is often used as a marker of dopaminergic, noradrenergic and adrenergic cells 
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(Levitt et al. 1965; Molinoff and Axelrod 1971; Pickel et al. 1975). In humans almost 

40% of the neurons in the paraventricular and supraoptic nucleus are immunoreactive 

for TH (Li et al. 1988). A subclass of these TH immunoreactive neurons express also 

oxytocin but most TH cells are distinct from the oxytocin or vasopressin neurosecretory 

cells. No colocalization between oxytocin and TH immunoreactivity was detected in 

zebrafish. In teleosts two genes coding for TH have been described: th1 and th2 (Candy 

and Collet 2005). The anti-TH antibody used in this study detects only TH1 protein in 

zebrafish (Chen et al. 2009), so this study only shows that no colocalization exists 

between TH1 and oxytocin in zebrafish. The colocalization between TH2 and oxytocin 

should be studied to further evaluate the colocalization of TH and oxytocin in zebrafish.  

 

Orexin-A is a neuropeptide, which is linked to feeding and sleep-wake states (Sakurai et 

al. 1998; Chemelli et al. 1999). In mammals it is produced in hypothalamic neurons. In 

a study by Kaslin and others (2004) orexin-A-immunoreactive neurons were detected in 

the preoptic area and in the anterior hypothalamus in zebrafish. However, with orexin-A 

in situ hybridization they were able to detect only the hypothalamic neurons. Thus, 

according to these results the neurons in the preoptic area were immunoreactive for 

orexin-A but not expressing orexin-A mRNA. The authors considered that the orexin-

A-antibody might have recognized another epitope in the zebrafish orexin-like peptide 

or the antibody might have detected another structurally similar, unidentified peptide. 

 

The mouse anti-oxytocin antibody was colocalized with the rabbit orexin-A antibody in 

most of the oxytocin immunoreactive neurons and fibers. However, it is not certain 

whether this detected colocalization is true colocalization or not. Kaslin and others 

(2004) used the same orexin-A antibody as was used in this study. The detected 

colocalization of oxytocin and orexin-A immunoreactivity suggests that the orexin-A 

antibody might recognize oxytocin or another peptide in these cells in addition to 

orexin-A. This would explain the colocalization found in this study and also why the 

orexin-A preoptic neurons identified in the study by Kaslin and others (2004) were only 

identified with immunohistochemistry. Furthermore, the orexin-A immunoreactive 

preoptic neurons correspond anatomically to the oxytocin immunoreactive neurons in 

the preoptic nucleus. Since oxytocin immunoreactive objects were also identified by 
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orexin-A antibody and there were more orexin-A immunoreactive objects than oxytocin 

immunoreactive objects, the results of this study indicate that the oxytocin antibody 

does not recognize orexin, but the orexin-A antibody recognises both orexin and 

oxytocin or another protein domain in the same cells. It is also possible that the orexin-

A antibody recognises the neurophysin in the precursor protein of oxytocin instead of 

oxytocin itself. Absorption controls, in which the orexin-A antibody was incubated with 

oxytocin or its neurophysin, would be useful to study whether the orexin-A antibody 

binds to either of these peptides. 

 

 The structure of the zebrafish oxytocin system resembles that of mammals 8.1.3

 

In mammals oxytocin neurons are located in the supraoptic and paraventricular nuclei 

of the hypothalamus (Swaab et al. 1975; Buijs et al. 1978; Sawchenko and Swanson 

1982). The zebrafish oxytocin neurons were found to be located in the preoptic nucleus. 

The preoptic nucleus of fish is considered to correspond to the supraoptic and 

paraventricular nuclei of mammals based on for example electrophysiological studies 

(Hayward 1974; Peter 1977). The homology of these nuclei is further supported by the 

fact that their development is regulated by the same regulatory genes, such as Sim1 and 

Otp, in both mammals and zebrafish (Eaton and Glasgow 2007; Eaton et al. 2008). 

Thus, oxytocin is produced in corresponding nuclei between mammals and zebrafish. 

Oxytocin is also produced in magnocellular and parvocellular neurons in both species. 

 

Both mammals and zebrafish have oxytocin fibers projecting to the pituitary but they 

both also have extra-hypothalamic oxytocin fibers (Table 4). Some brain areas, such as 

the amygdala superior colliculus, thalamus, locus coeruleus and brainstem, are 

innervated in both zebrafish and mammals (Buijs 1978; Sofroniew 1980; Portavella and 

Vargas 2005; Griffin and Flanagan-Cato 2011; Knobloch et al. 2012). In mammals 

oxytocin fibers are found in the lateral septum, which is thought to correspond the 

ventral and lateral nuclei of the ventral telencephalic area  (Vv/Vl) in zebrafish 

(Sofroniew 1980; Wullimann and Mueller 2004). In zebrafish oxytocin fibers were 

found in the Vv.  
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Oxytocin fibers have also been reported in the mammalian substantia nigra (Sofroniew 

1980). The exact zebrafish homolog of the substantia nigra is currently unknown, but 

dopaminergic cells in the periventricular nucleus of posterior tuberculum (TPp) have 

been suggested to be homologous to the substantia nigra (Kaslin and Panula 2001). TPp 

was innervated by oxytocin in zebrafish so if this area proves to be susbtantia nigra 

homolog, it is innervated in both mammals and zebrafish.  

 

There are also differences between the oxytocin fiber projections reported in mammals 

and those detected in zebrafish (Table 4). In mammals oxytocin fibers are found in the 

olfactory bulb, hippocampus, raphe nuclei, and spinal cord but these fibers were not 

detected in zebrafish. However, oxytocin fibers in the spinal cord have been reported 

previously in zebrafish and oxytocin fibers in the olfactory bulb, raphe nuclei and lateral 

zone of the dorsal telencephalic area (Dl, a hippocampus homolog) have been reported 

in the rainbow trout (Saito et al. 2004; Portavella and Vargas 2005; Coffey et al. 2013).  

 

Oxytocin fibers in the bed nucleus of stria terminalis (BNST) have been reported in 

mammals (Knobloch et al. 2012). The ventral part of the postcommissural and 

supracommissural nuclei of the ventral telencephalic area (Vp and Vs) are thought to 

correspond to the BNST in zebrafish (Maximino et al. 2013). No oxytocin fibers were 

detected in this area in zebrafish but in other teleosts they have been described 

(Goodson et al. 2003; Saito et al. 2004). It is possible that not all zebrafish oxytocin 

fibers were detected in this study, which might explain some of the differences found 

between zebrafish and mammals and between zebrafish and other teleosts. In zebrafish 

oxytocin fibers were found in the pretectum and Vd, which is a partial striatum 

homolog, but these fibers have not been reported in mammals. 

 
Table 4. The brain areas innervated by oxytocin fibers in zebrafish according to the 
results of this study and in mammals (Buijs 1978; Sofroniew 1980; Wullimann and 
Mueller 2004; Portavella and Vargas 2005; Griffin and Flanagan-Cato 2011; Knobloch 
et al. 2012; Maximino et al. 2013). Abbreviations: Dm/Dl=medial and lateral zone of 
dorsal telencephalic area, VMH=ventromedial hypothalamus, TeO=optic tectum, 
Vv/Vl/Vd/Vc/Vs/Vp=ventral, lateral, dorsal, central, supracommissural and 
postcommissural nuclei of ventral telencephalic area, TPp=periventricular nucleus of 
posterior tuberculum, BNST=bed nucleus of stria terminalis. (*) reported in rainbow 
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trout (Saito et al. 2004) (**) reported in a previous study in zebrafish (Coffey et al. 
2013)  
 
Brain area (mammals/zebrafish homolog) Zebrafish Mammals 
Olfactory bulb     − (*) + 
Amygdala/Dm + + 
Hippocampus/DI     − (*) + 
Pituitary + + 
Thalamus + + 
Pretectum + − 
Superior colliculus/TeO + + 
Locus coeruleus + + 
Raphe nuclei     − (*) + 
Septal formation/ Vv and Vl         + (Vv) + 
Substantia nigra/TPp + + 
Striatum/Vd and Vc          + (Vd) − 
BNST/ventral Vs and Vp     − (*) + 
Brainstem + + 
Spinal cord      − (**) + 

 

The oxytocin fiber system of zebrafish resembles the oxytocin fiber system reported for 

mammals. The results of this study combined to previous knowledge about the structure 

of the oxytocin system in different species indicate that the fiber projections of the 

oxytocin system are evolutionary conserved. 

 

8.2 The role of oxytocin in zebrafish behaviour 

 

Oxytocin affects behaviour in both mammals and teleosts. In mammals oxytocin for 

example reduces anxiety and stress and modulates social memory and pair bonding 

(Cho et al. 1999; Neumann et al. 2000; Ring et al. 2006; Savaskan et al. 2008). In 

teleosts oxytocin affects reproduction and social behaviour such as social approach 

response and reproduction-related vocalization (Goodson and Bass 2000; Thompson 

and Walton 2004). Oxytocin has been shown to modulate social and anxiety related 

behaviour also in zebrafish (Braida et al. 2012). In addition, oxytocin controls ion 

regulation by regulating ionocyte progenitor differentiation and proliferation in 

zebrafish and it is required for the formation of the neurovascular interface of the 

pituitary (Chou et al. 2011; Gutnick et al. 2011). However, the zebrafish oxytocin 

receptors have not been cloned and characterized. 
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In mammals the effect of oxytocin has been studied with oxytocin or oxytocin receptor 

knockout mice (Ferguson et al. 2000; Lee et al. 2008). Pharmacological studies with 

oxytocin and its agonists and antagonists have also been conducted (Ring et al. 2006; 

Savaskan et al. 2008). The pharmacological approach has also been used to study the 

role of oxytocin in zebrafish behaviour (Braida et al. 2012).  

 

In this study a new approach was used and the effect of oxytocin on zebrafish behaviour 

was studied by transiently inhibiting the splicing of oxytocin with MOs. However, 

knocking down of oxytocin with MOs proved to be demanding. Of the two oxytocin 

MOs tested, only oxtMO2 was able to reduce the amount of oxytocin with a dose that 

did not cause developmental abnormalities. The oxtMO2 was able to significantly 

reduce the amount of oxytocin at doses of 2,5 ng and 4,0 ng. The reduction of oxytocin 

was greater in the higher dose group but it also led to severe morphological 

abnormalities. However, oxytocin knockout mice, which lack oxytocin entirely, develop 

normally (Nishimori et al. 1996). This indicates that at least in mammals the lack of 

oxytocin does not cause abnormal morphology. Therefore the morphological 

abnormalities observed were likely due to off-target effects of the MO. On the other 

hand it is possible that in zebrafish oxytocin is necessary for normal development for 

example through its effect on ion regulation.  

 

 Reduced locomotor activity with oxytocin morpholino oligonucleotide 2 8.2.1

 

With a dose of 4,0 ng the oxtMO2 significantly reduced the total distance moved 

compared to control groups. However the morphology of the 4,0 ng oxtMO2-injected 

fish was abnormal and this probably affected the swimming ability of the fish. Thus, the 

reduced swimming distance does not necessarily reflect reduction in the locomotor 

activity per se. In the 2,5 ng oxtMO2 group the total distance moved was reduced 

compared to the uninjected group but not compared to the cntrlMO group. The total 

distance moved did not significantly differ between the uninjected and cntrlMO groups 

but the distance moved was lower in the cntrlMO group. This leads to greater, and thus 

significant, difference between the oxtMO2 and uninjected group than the difference 

between the oxtMO2 and cntrlMO groups. The MO-injection might have caused some 
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small abnormality in the cntrlMO-larvae that slightly affected their swimming 

performance compared to the uninjected ones. Because the locomotor activity was also 

reduced in the cntrlMO group, the test should be repeated with a different batch of 

larvae to determine whether the total distance moved really is reduced in the 2,5 ng 

oxtMO2 group. 

 

Although the morphology of the 2,5 ng oxtMO2 group seemed normal, it is possible 

that the detected reduction of locomotor activity was caused by some off-target effect 

rather than a specific reduction of oxytocin. Although the oxtMO2 successfully 

inhibited oxytocin formation, it may have additional unrelated effects. Thus, the 

specificity of the oxtMO2 should be studied. It could be studied by a rescue experiment 

in which oxytocin RNA that was modified to be resistant to the oxtMO2 would be 

injected simultaneously with the oxtMO2. If the effect of the oxtMO2 were specific, the 

phenotype would be rescued. This method has been used in other studies (Sundvik et al. 

2011). Another method for assessing the specificity of MOs would be to study whether 

another MO directed against oxytocin caused a similar phenotype than oxtMO2. The 

specificity could also be studied by creating an oxytocin -/- CRISPR-Cas mutant. If the 

oxtMO2 proves to be specific in knocking down oxytocin, it would indicate that the 

reduction of oxytocin attenuates locomotor activity in zebrafish.  

 

In mammals oxytocin acts as an anxiolytic: Oxytocin increases the number of punished 

crossings in the four-plate test and increases the time spent in the open quadrants in the 

elevated zero maze (Ring et al. 2006). In an open field test oxytocin decreases 

peripheral activity at low doses and reduces locomotion and rearing at high doses 

(Uvnäs-Moberg et al. 1994). The locomotor activity test used in this study corresponds 

to an open field test of mammals. If oxytocin had similar effect in zebrafish as it has in 

mammals, oxytocin should decrease the locomotor activity in an open field –setting. 

Thus, a decrease in oxytocin should increase the locomotor activity. However, reduction 

in the amount of oxytocin by oxtMO2, led to decrease in the total distance moved. So if 

this was due to specific blocking of oxytocin by oxtMO2, oxytocin would have an 

opposite effect on anxiety in zebrafish than it has on mammals. 
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In an open field –test a better indicator of an anxiolytic effect would be the increase in 

the time spent in the middle of the open field arena since the decrease in the distance 

moved might be caused by a sedative effect. Like mammals, also zebrafish prefer the 

edges of the arena to the centre (Colwill and Creton 2011). So if oxytocin would be 

anxiolytic, the oxtMO2 injected larvae should be spending more time in the edges and 

less time in the centre of the well. The time spent in different parts of the well should be 

studied to better evaluate the role of oxytocin in anxiety in zebrafish.  

 

In oxytocin knockout mice total activity or frequency of rearing are not affected in an 

open field test (DeVries et al. 1997). This might imply that oxytocin acts as an 

anxiolytic but only after a certain stimulus, like a stressful event. This idea is further 

supported by the fact that stress increases the production of oxytocin and oxytocin 

reduces the release of stress hormones (Jezova et al. 1995; Stachowiak et al. 1995). 

Oxytocin also modulates the effect that restraint stress causes in spontaneous behaviour 

in an open field –test (Klenerova et al. 2009). Stress can affect fear response and anxiety 

also in zebrafish (Champagne et al. 2010) and thus it would be interesting to study how 

the oxtMO2-injected larvae react to a stressful stimulus in the locomotor activity test.  

 

On the other hand, even if oxytocin requires stimuli to exert its anxiolytic effect, this 

does not explain why decrease in oxytocin reduced locomotor activity. It is possible, 

that even though the oxtMO2 blocked oxytocin synthesis, the seen effect may be due to 

some off-target effect. However, Gutnick and others (2011) used an oxytocin MO 

similar to oxtMO2 in their study. They showed that it was effective in reducing the 

amount of oxytocin and they did not report any off-target effects. There was, however, 

no mention about specificity controls for the MO. They also used a transgenic reporter 

line, oxtl:EGFP, whereas in this study the Turku strain was used. Although only a little 

is known about specific properties of different zebrafish strains, there are significant 

differences for example in gene expression and neurochemical levels between strains 

(Pan et al. 2012). It is therefore possible that differences between the strains could cause 

differences in the effect of the oxtMO2.  
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 Oxytocin innervation and behaviour 8.2.2

 

The different aspects of behaviour that oxytocin modulates in mammals can be divided 

into three main groups: social behaviour, anxiety and memory. These are also the areas 

in which oxytocin might have therapeutic potential. Based on the similarities in the fiber 

projection pattern demonstrated between mammals and zebrafish in this study, it is 

likely that oxytocin modulates similar behaviour also in zebrafish. Only one article 

about the role of oxytocin in zebrafish behaviour has been published. Braida and others 

(2012) showed that in zebrafish oxytocin reduces fear to predator response and 

increases social preference. This indicates that oxytocin increases sociality and reduces 

anxiety also in zebrafish as it does in mammals.  

 

Many brain areas are involved in the regulation of social behaviour in mammals. The 

core structure of the social behaviour network is thought to consist of seven limbic 

system areas: the medial amygdala, BNST, lateral septum, preoptic area, anterior 

hypothalamus, ventromedial hypothalamus and certain midbrain areas such as the 

periaqueductal gray (Newman 1999). In rodents oxytocin has been shown to modulate 

social behaviour, such as approach and avoidance behaviour and social recognition, 

especially through the medial amygdala (Ferguson et al. 2001; Choleris et al. 2007; 

Arakawa et al. 2010). Both oxytocin fibers and receptors are found in the medial 

amygdala of rats and oxytocin has an excitatory effect on these neurons (Tribollet et al. 

1992; Terenzi and Ingram 2005; Knobloch et al. 2012). In humans oxytocin also affects 

social memory and social approach behaviour for example by increasing trust to other 

people (Kosfeld et al. 2005; Savaskan et al. 2008). However, although oxytocin fibers 

are detected in the human amygdala, oxytocin receptors are not (Fliers et al. 1986; Loup 

et al. 1989, 1991). The studies by Loup and others (1989, 1991) are the only studies that 

have studied the distribution of oxytocin receptors in the human brain. It is possible that 

high oxytocin concentration in the amygdala has led to downregulation of oxytocin 

receptors and therefore the oxytocin receptors were not detectable by autoradiography 

in the amygdala in these studies. However, many mismatches between the distribution 

of peptide fibers and their receptors have been reported (Herkenham 1987) and 

therefore the presence of oxytocin fibers in the amygdala does not necessitate the 
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presence of oxytocin receptors. Thus, it is possible that the social effect of oxytocin is 

mediated through a different brain area in humans than in rodents. 

 

The social behaviour network in teleosts is very similar to mammals (Goodson 2005). 

In this study oxytocin fibers were detected in the zebrafish Dm, which is the area 

corresponding to the amygdala. The pro-social effect of oxytocin in zebrafish 

demonstrated by Braida and others (2012) could be mediated through these projections. 

Also fibers in the Vv, area corresponding to the lateral septum, could mediate this 

effect, as the lateral septum is known to affect social behaviour in mammals (Newman 

1999). However, in rodents oxytocin does not affect social behaviour via the septum 

(Popik and van Ree 1991), so the probable target in zebrafish is also the Dm. If the 

effect was mediated through the Dm, it would require the existence of oxytocin 

receptors in this area. At the moment there is no knowledge about the distribution of 

oxytocin receptors in the zebrafish brain. Determining the location of oxytocin receptors 

would be crucial for determining the brain areas through which oxytocin exerts its effect 

in zebrafish.  

 

The anxiolytic and fear reducing effect of oxytocin is mediated, at least partly, through 

the central amygdala in rodents (Bale et al. 2001; Viviani et al. 2011; Knobloch et al. 

2012). The medial part of the central amygdala sends projections to the brainstem that 

evoke fear responses while activated (Hitchcock and Davis 1991; LeDoux 2000). 

Oxytocin has been shown to excite especially the neurons in the lateral part of the 

central amygdala (Huber et al. 2005). These neurons are γ-aminobutyric acidergic 

(GABAergic) and they have projections to the medial part of the central amygdala. 

Thus, the activation of the lateral neurons by oxytocin leads to inhibition of the neurons 

in the medial part and therefore inhibits the formation of the fear response.  

 

In rodents oxytocin fibers are detected in the central amygdala (Knobloch et al. 2012). 

Similar to the medial amygdala, the oxytocin receptors in the central amygdala have 

been detected only in rodents, not in humans (Freund-Mercier et al. 1987; Loup et al. 

1991). Yet oxytocin has been shown to reduce the activation of the amygdala in humans 

after looking at fearful faces (Kirsch et al. 2005). This was studied by functional 
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magnetic resonance imaging and it was not possible to distinguish the effects in 

different parts of the amygdala. However, it was demonstrated that oxytocin 

significantly reduced the connectivity between the amygdala and the brainstem, which 

indicates that the effect of oxytocin might be similar in humans and rodents. 

 

Though there are many assays to test anxiety and fear in zebrafish, very little is known 

about the brain networks behind these traits. Many anxiolytic drugs, like diazepam and 

buspirone, have an anxiolytic effect also in zebrafish (Bencan et al. 2009; Egan et al. 

2009). This indicates that regulation of anxiety could be similar between mammals and 

zebrafish, at least on a transmitter level. The anxiolytic effect of oxytocin in zebrafish 

could be mediated through amygdala also in zebrafish, as oxytocin fibers were detected 

in the Dm in this study. It is not known whether the Dm affects anxiety in zebrafish but 

it is likely since Dm affects many similar functions in teleosts that amygdala does in 

mammals (Portavella and Vargas 2005). Furthermore in another teleost species, 

Siamese fighting fish, lesion in the Dm leads to increase in the frequency of the startle 

response (Marino-Neto and Sabbatini 1983). This can be regarded as a sign of increased 

anxiety and therefore it suggests a link between Dm and anxiety in teleosts. 

 

One brain area that has been proposed to contribute to fear and anxiety behaviour in 

zebrafish is habenula. The disruption of neural circuits involving the habenula inhibits 

avoidance learning: during conditioning the fish do not escape a shock but freeze (Lee 

et al. 2010). The fish also display a startle response more often than controls when 

subjected to shock. These results suggest that the habenula might be involved in 

modification of fear and anxiety in zebrafish. However, it is not likely that oxytocin 

affects anxiety through the habenula, because no oxytocin fibers were detected there. 

Future studies about the distribution of oxytocin receptors and especially about the 

involvement of different brain areas in anxiety in zebrafish are needed.  

 

In mammals oxytocin attenuates memory and learning: oxytocin for example shortens 

step-down latency (Kovács et al. 1978). A probable target of these effects is the 

hippocampus, which is known to have an important role in memory formation (Zola-

Morgan et al. 1986). This is supported by the fact that the hippocampus is innervated by 
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oxytocin fibers, oxytocin receptors are detected in the hippocampus and oxytocin can 

excite hippocampal neurons (Mühlethaler and Dreifuss 1983; Insel et al. 1991; 

Knobloch et al. 2012). Oxytocin has also been shown to enhance long-term synaptic 

potentiation in the hippocampus, which is an essential mechanism in memory formation 

and learning (Bliss and Collingridge 1993; Tomizawa et al. 2003).  Behavioural studies 

also indicate that oxytocin affects memory through the hippocampus: oxytocin 

attenuates passive avoidance behaviour when administered into the hippocampal dentate 

gyrus (Kovács et al. 1979). Interestingly, oxytocin also attenuates passive avoidance 

when injected into raphe nucleus. Serotonin affects the electrical activity of 

hippocampal cells (Colino and Halliwell 1987), so oxytocin might modulate memory 

also through affecting the serotonin release from the raphe nucleus. This is possible 

because oxytocin receptors are detected in the raphe nucleus (Yoshimura et al. 1996). 

Other brain areas may also contribute to the memory attenuating effect of oxytocin. For 

example, oxytocin inhibits spatial learning in the cholinergic nucleus basalis of Meynert 

where also oxytocin receptors are expressed (Loup et al. 1991; Wu and Yu 2004). 

 

In teleosts the Dl is considered to be a hippocampus homolog. Lesions in this area 

attenuate spatial learning and conditioned avoidance response (Portavella et al. 2002), 

which suggests that the Dl has a role in memory processes. It is not known whether 

oxytocin affects memory and learning in zebrafish or in other teleosts. In zebrafish 

oxytocin fibers were not detected in the Dl or in the raphe nucleus. If future studies 

show that oxytocin affects memory also in zebrafish, the results of this study suggest 

that the effect is not mediated through hippocampus, at least not directly. 

 

8.3 The applicability of zebrafish for oxytocin research 

 

Based on the similarities between mammalian and zebrafish oxytocin systems zebrafish 

seems to be a suitable model organism for oxytocin research. The structure of the 

zebrafish oxytocin system resembles that of mammals in terms of oxytocin cell location 

and fiber projections. Oxytocin has also been shown to affect similar functions in 

zebrafish as it does in mammals, most importantly to reduce anxiety and increase 

sociality (Braida et al. 2012). Furthermore, it is possible that some of the behavioural 
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effects might be mediated through similar structures in both species, although this 

requires further studies. Especially the oxytocin receptor distribution should be studied.  

 

The highly social nature of zebrafish and the availability of many behavioural tests also 

support the use of zebrafish in the oxytocin research. Zebrafish is a social, shoaling fish 

and is therefore well suited for studies concerning the effect of oxytocin on social 

behaviour. Many different things, like shoal joining tendency, dominant-subordinate 

relationship and social interactions can be analysed to evaluate social behaviour 

(Delaney et al. 2002; Saverino and Gerlai 2008; Pavlidis et al. 2011). Besides the tests 

that measure social behaviour, tests to assess non-social behaviour like anxiety and 

learning are also available for zebrafish (Bilotta et al. 2005; Bencan et al. 2009). 

However, oxytocin has also been shown to affect higher functions, like trust, in humans 

and these traits are difficult, if not impossible, to model in zebrafish.  

 

Another advantage of using zebrafish is the possibility to easily modify the oxytocin 

system. The transient inhibition of oxytocin production with MOs proved to be difficult 

in this study and other methods will probably be more effective. There are many, both 

peptide and non-peptide, oxytocin agonists and antagonists available (Manning et al. 

2012). Only a little is known about the zebrafish oxytocin receptor system but unlike 

mammals zebrafish seems to have two genes coding for oxytocin receptor, itnpr-like 1 

and itnpr-like 2 (Chou et al. 2011). A highly selective oxytocin antagonist desGly-NH2-

d(CH2)5-[D-Tyr2,Thr4]OVT is the only oxytocin antagonist that has been studied in 

zebrafish but it was effective and selective in zebrafish (Braida et al. 2012). An 

advantage of using a pharmacological approach is its feasibility for HTS because many 

of the non-peptide agents could be dissolved to the swimming water. Another approach 

would be to create a mutant fish line lacking oxytocin for example using the CRISPR-

Cas method.   

 

The pharmacological agents and the mutant fish could be used to study the role of 

oxytocin on further aspects of zebrafish behaviour. Then the achieved phenotypes could 

be compared with rodent and human disease phenotypes to find out whether or not there 

is a resemblance. They could also be used in the discovery of new drugs for oxytocin 
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related disorders by evaluating the effect of compounds on the achieved disease 

phenotypes. 

 

Behavioural tests should be suitable for HTS to really take advantage of using zebrafish 

instead of rodent models in the oxytocin research. Sociality, memory and anxiety are 

probably the most studied effects of oxytocin in relation to its therapeutic potential, so it 

is useful that there are high-throughput methods for zebrafish to measure learning, 

anxiety and social behaviour (Blaser and Gerlai 2006; Gerlai et al. 2009; Pather and 

Gerlai 2009). However, the tests need to be developed further and validated for them to 

be really useful in the actual screening processes.  

 

Most of the zebrafish HTS assays rely on the use of embryos or larvae instead of adult 

zebrafish. The results of this study showed that in zebrafish oxytocin is expressed 

already at early stages of development. Also oxytocin receptors are expressed early in 

the development (Chou et al. 2011). However, the behavioural studies concerning 

oxytocin have been conducted only on adult zebrafish so it is not certain whether the 

behavioural effects of oxytocin would be seen already at larval stages. It is also possible 

that not all the effects can be studied with larvae because all the behavioural 

characteristics are not necessarily present at that age. For example shoaling behaviour is 

age-dependent and young larvae only form loose aggregates (Buske and Gerlai 2011). 

The larvae may thus not be as good as adults when studying the effect of oxytocin on 

sociality through shoaling behaviour. Therefore, high or medium throughput assays 

using adult zebrafish might be best suited for oxytocin research. 

 

The use of zebrafish in the oxytocin research offers many advantages compared to other 

model organisms but it also has its drawbacks. More information about the structure and 

function of the zebrafish oxytocin system are needed to further assess its similarity to 

mammals. Additional high-throughput methods to analyse different aspects of zebrafish 

behaviour are needed to fully exploit the potential of this unique model organism in the 

oxytocin research. 
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9 CONCLUSIONS 

 

The zebrafish oxytocin system resembles the mammalian oxytocin system both 

structurally and functionally: zebrafish have both hypophyseal and extra-hypothalamic 

oxytocin projections like mammals and oxytocin affects similar functions in zebrafish 

and mammals. The specificity of antibodies made against mammalian oxytocin to 

recognize zebrafish oxytocin differs, but the mouse anti-oxytocin antibody described in 

this study is specific for zebrafish oxytocin. A transient knockdown of oxytocin using 

MO successfully prevented oxytocin synthesis and reduced locomotor activity, but the 

specificity of the MO has to be studied further. The structure of the zebrafish oxytocin 

receptor system and the effect of oxytocin on different aspects of zebrafish behaviour 

should be studied in order to further assess the applicability of zebrafish for oxytocin 

research. 
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APPENDIX 1 

Solution recipes   

 
Phosphate-buffered saline (PBS) 
 
10xPBS: 
80 mg NaCl (anhydrous) 
2 g KCl (anhydrous) 
14 g Na2HPO4 x 2 H2O 
2 g KH2PO4 (anhydrous) 
 
Add mQ-H2O to a final volume of 1000 ml (the pH will be 6,8; pH adjustment is not 
needed). Dissolve 1:10 to make 1xPBS. The pH for 1xPBS will be 7,4. 
 

0,1 M phosphate buffer (PB) 
 
Solution 1: 
Na2HPO4 x 2 H2O 35,6 g/2 l 
Solution 2: 
NaH2PO4 x H2O 6,9 g/500 ml 
 
The pH of the solution 1 is adjusted to 7,4 with solution 2. 
 
 
 

 

 


