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ABSTRACT 

 

Puberty is governed by ~2000 hypothalamic gonadotropin-releasing hormone (GnRH) 

neurons. GnRH neurons originate from the neural crest and from the olfactory placode. From 

the olfactory placode GnRH neurons migrate to the hypothalamus along the axons of 

developing olfactory nerves. Defects in GnRH neuron development, migration or in GnRH 

secretion or action cause congenital hypogonadotropic hypogonadism (HH), which is a rare 

developmental disorder characterised by delayed or absent puberty. If HH appears with 

defects in sense of smell, the condition is termed Kallmann syndrome (KS). Clinical and 

genetic features of KS and congenital HH with normal sense of smell (normosmic HH) are 

heterogeneous. Only for ~35% of congenital HH patients a molecular genetic diagnosis can 

be given.  

The most common cause of delayed puberty is constitutional delay of growth and puberty 

(CDGP). CDGP is a variant of the normal spectrum of pubertal timing and is characterized by 

first pubertal signs appearing at an age that is 2.0 standard deviations above the mean age for 

pubertal onset. The genetic background of CDGP is unknown. 

 

The aim of this thesis study was to characterize the molecular genetic features of KS patients 

in Finland. We also investigated whether mutations in known holoprosencephaly (HPE) or 

septo-optic dysplasia (SOD) genes could underlie some cases of KS. In addition, we 

investigated the role of congenital HH genes in CDGP.    

 

Thirty-four subjects with KS (6 females, 28 males) were screened for mutation(s) in genes 

involved in development and/or migration of GnRH neurons and in which mutations are 

known to cause KS:  KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7, WDR11, and SOX10. 

The effects of FGFR1 missense mutations G48S, R209H, and E670A on receptor function 

were analysed in vitro. Patients remaining without identified molecular genetic cause in 

established KS genes were also screened for mutation in SOX2, SHH, SIX3, TGIF1, TDGF1, 

FOXH1, and GLI2, in which mutations are known to cause HPE or SOD (SOX2). 

Furthermore, GNRHR, FGFR1, TAC3, and TACR3 were screened in 146 subjects with CDGP 

(TAC3 and TACR3 in females only).  

 

Out of 34 KS patients, 15 got a molecular genetic diagnosis. Nine patients (5 females, 4 

males) had an FGFR1 mutation, three males had a KAL1 mutation, one male of Iraqi origin 



 

11 

 

carried a homozygous PROKR2 mutation, one male with CHARGE (coloboma, heart defects, 

choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) 

syndrome associated features had a CHD7 mutation, and one male with KS and deafness 

carried a de novo SOX10 mutation. FGFR1 missense mutants G48S and E670A displayed 

impaired mitogen-activated protein kinase signalling in vitro. One male KS patient carried 

heterozygous missense variants in GLI2 and in SIX3. One male subject with CDGP carried a 

previously undescribed heterozygous deletion in GNRHR, which segregated with delayed 

puberty in his family.  

 

In conclusion, KS is a male predominant condition. 44% of KS patients received a molecular 

genetic diagnosis. A clear difference was seen in the distribution of molecular genetic 

diagnoses in this study and in those reported previously, as the leading molecular genetic 

cause of KS, mutation in FGFR1, accounted for 26% of the cases, and mutations in PROK2 

and PROKR2 were almost completely absent. Also, a significantly higher proportion of 

women (83%) carried an FGFR1 mutation compared with men (14%). Considerable 

genotypic and phenotypic overlap is seen between KS, Waardenburg syndrome and 

CHARGE syndrome. Therefore hearing impairment and/or ear anomalies in KS patient 

should be considered as an indication for both CHD7 and SOX10 molecular analyses and, in 

case of identified mutation the possibility of more severely affected future children should be 

taken under consideration. Mutations in known HPE genes are not a common cause for KS in 

Finland. Finally, mutations in FGFR1, GNRHR, TAC3 or TACR3 are not a common cause of 

CDGP. 
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1 INTRODUCTION 

 

Intact hypothalamic-pituitary-gonadal axis is essential for normal pubertal development: 

hypothalamic gonadotropin-releasing hormone (GnRH) neurons produce GnRH, GnRH 

stimulates the production and secretion of gonadotropins luteinizing hormone (LH) and 

follicle-stimulating hormone (FSH) from the anterior pituitary, which in turn, stimulate 

gonadal function and secretion of sex steroids.   

 

In a series of adolescents with delayed puberty from a large academic center, more than 50 

reasons for pubertal delay were recorded (Sedlmeyer & Palmert 2002). The most common 

cause for pubertal delay is constitutional delay of growth and puberty (CDGP), which is a 

variant of the normal spectrum of pubertal timing. CDGP tends to aggregate in families, and, 

although many genes may be involved, the inheritance patterns suggest that there are also 

single genes with major effects (Sedlmeyer et al. 2002, Wehkalampi 2008a). 

 

Delayed or absent puberty can also be caused by hypogonadotropic hypogonadism (HH), 

which is a condition characterized by diminished functional activity of the gonads due to an 

impaired secretion of FSH and LH. HH can be acquired or syndromic, or it can be isolated. 

Acquired/syndromic HH is relatively common and results from different causes, including 

brain tumours, head trauma, and certain systemic diseases and syndromes (Palmert & Dunkel 

2012). In contrast, isolated HH, also called as congenital HH, is a rare developmental disorder 

of sexual maturation, which results from GnRH deficiency. Reasons for GnRH deficiency are 

a lack or reduced number of hypothalamic GnRH-producing neurons, disturbed secretion of 

GnRH from the hypothalamus, or inadequate action of GnRH in the anterior pituitary 

(Seminara et al. 1998, Young 2012). When congenital HH occurs with defects in sense of 

smell, the condition is termed Kallmann syndrome (KS), named after an American geneticist, 

Franz Josef Kallmann (Kallmann et al. 1944). Genetics of congenital HH is complex and 

heterogenous. Although several genes have been implicated in the etiology congenital HH, 

still about 65% of the cases remain without identified genetic cause (Mitchell et al. 2011).  

 

The aim of this study is to characterize the molecular genetic features of delayed and absent 

puberty, and it focuses on patients with KS and CDGP. 
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2 REVIEW OF THE LITERATURE 

 

2.1 Function of the hypothalamic-pituitary-gonadal (HPG) axis 

 

The proper function of HPG axis is essential for normal gonadal development, sex steroid 

production and fertility. In short, hypothalamic GnRH neurons secrete GnRH that binds to its 

receptors on the gonadotropic cells of the anterior pituitary. Activation of these receptors 

leads to expression and secretion of LH and FSH, which in turn stimulate the testes and 

ovaries to produce sex steroids estrogen and testosterone. The HPG axis is active already 

during fetal life and in early childhood, but then becomes quiescent until onset of puberty 

(Winter et al. 1975, Wu et al. 1996) 

 

2.1.1 HPG axis in infancy 

 

Hypothalamic GnRH secretion begins by the end of the first trimester. In both sexes, LH and 

FSH are important for proper development of fetal gonadal tissue. At birth, levels of LH and 

FSH are low due to inhibitory effect of placental steroids (Winter et al. 1975, Debieve et al. 

2000) but they rise again when the HPG axis is reactivated within two weeks after birth. This 

“minipuberty” is considered to be important for normal reproductive development especially 

in boys, since during this period, there is an increase in the number of Sertoli cells, growth of 

penis and testes, and increased testosterone secretion. In girls, increase in FSH levels indicates 

maturation of the ovaries. During minipuberty, gonadotropin levels are at their highest level 

between 1 to 3 months, after which they gradually decline to low levels by six months of age. 

(Winter et al. 1975, Kuiri-Hänninen et al. 2011a,b) 

 

2.1.2  Puberty 

 

Puberty is a transitional state between childhood and adulthood when fertility is achieved. 

GnRH pulses followed by LH pulses are evident during sleep from mid-childhood onwards 

(Wu et al. 1996). Approximately two years before the first physical signs of puberty, there is a 

marked increase in the amplitude of these pulses, and finally they occur also during the 

daytime. LH and FSH promote gonadal maturation and production of sex steroids, which are 

essential for the development of secondary sex characteristics and for the pubertal growth 

spurt. 
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Puberty proceeds in specific order, and it is usually described by Tanner stages 1 to 5. In girls, 

the appearance of breast tissue (telarche) is usually the first sign of puberty (Tanner stage B2). 

In boys, the first sign is the enlargement of testes to a volume of 3ml or more (gonadarche, 

Tanner stage G2). In normal situation, gonadarche and thelarche indicate the activation of the 

HPG axis and central onset of puberty. Menarche, the onset of menstruation occurs in girls 

approximately 2 years after reaching B2 (Marshall & Tanner 1969, Marshall & Tanner 1970). 

Pubertal hair growth (pubarche/adrenarche) indicates the activation of the hypothalamic-

pituitary-adrenal axis which occurs independently from HPG axis activation (Sklar et al. 

1980). The gradually increasing secretion of gonadal sex steroids also drives the pubertal 

growth spurt together with rising growth hormone (GH) levels (Tanner & Whitehouse 1976). 

 

An active pulsatile GnRH-stimulated secretion of LH and FSH is important for the 

maintenance of secondary sexual characteristics and for sexual function throughout adult life. 

In men, LH promotes testosterone production from Leydig cells and FSH is needed for 

spermatogenesis supported by Sertoli cells. In women, GnRH secretion is required for a 

normal menstrual cycle, where FSH and LH secretion stimulates folliculogenesis and 

steroidogenesis in ovaries during follicular phase, and LH surge leads to ovulation (Navarro 

& Tena-Sempere 2011).  

 

A global secular trend towards earlier puberty observed in last century reflects improved 

nutrition and health (Wyshak & Frisch 1982, Parent et al. 2003). Novel environmental 

influences, such as endocrine-disrupting chemicals and the increasing problem of childhood 

obesity, have been suggested to explain the more recent observations of earlier pubertal onset 

in developed countries (Herman-Giddens 2001, Aksglaede et al. 2009, Sorensen et al. 2010). 

Overall, the timing of puberty varies greatly in the general population. Based on twin studies 

and similarities in the ages at pubertal onset between family members, it appears that the 

onset is largely regulated by genetic factors, and influenced by environmental and individual 

factors (Figure 1) (Sedlemeyer et al. 2002, Parent et al. 2003, Silventoinen et al. 2008). 
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Figure 1. Timing of puberty is largely regulated by genetic factors, and influenced by 

environmental and individual factors. Modified from Parent et al. 2003. 

 

 

Although regulation of pubertal timing likely derives from modest additive effects of multiple 

genes (Parent et al. 2003), important information may result from identification of single high 

impact genes, in which mutations cause abnormalities in the onset of pubertal development. A 

number of genes important for the onset of puberty have been discovered by investigating 

individuals with congenital HH (chapter 2.3). 

 

2.1.3 Regulation of HPG axis 

 

The reactivation of HPG axis at puberty is under the control of regulatory networks that 

gather and interpret hormonal, nutritional, metabolic, and environmental signals. The balance 

and the interplay of these signals determine the onset of puberty. But what is the exact 

mechanism/factor that ultimately activates GnRH secretion is not known (Sisk & Foster 

2004). One identified upstream regulator of GnRH neurons is kisspeptin. Kisspeptin is 

secreted from Kiss1 neurons located in the arcuate nucleus (ARC) and anteroventral 

periventricular nucleus/rostral periventricular nuclei (AVPV/PeN) of the hypothalamus. 

GnRH neurons express KISS1 receptor, and kisspeptin signalling via this receptor stimulates 

GnRH secretion (de Roux et al. 2003, Seminara et al. 2003, Navarro & Tena-Sempere 2011). 

In response, LH and FSH are released from the anterior pituitary, which in turn, stimulate 
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gonadal function and secretion of sex steroids and Inhibin B. Sex steroids and Inhibin B 

regulate HPG axis activation through a negative feedback loop at the level of hypothalamus 

and pituitary (Cariboni et al. 2007) (Figure 3).  

 

Kisspeptin neurons in the ARC are also called as KNDy-neurons as in addition to kisspeptin 

they co-express neurokinin B (NKB) and dynorphin A (DYN) (Lehman et al 2010). These 

neurons may have an important role in mediating negative feedback of sex steroids to the 

GnRH neurons as they express estrogen receptor α and androgen receptor. KNDy-neurons are 

thought to autoregulate themselves through positive (NKB) and negative (DYN) feedback 

loops. Also Kiss1 neurons located in the AVPV/PeN express estrogen receptor α and may be 

involved in the positive feedback regulation by estradiol, and could be responsible for the 

GnRH - LH surge that leads to ovulation (Figure 2) (Roa et al. 2008, Oakley et al. 2009, 

Navarro & Tena-Sempere 2011).  
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Figure 2. Hypothalamic-pituitary-gonadal axis and its regulation. KNDy neurons and the 

Kiss1 neurons located in the arcuate nucleus (ARC) and anteroventral periventricular 

nucleus/rostral periventricular nuclei (AVPV/PeN) of the hypothalamus secrete kisspeptin 

(KP), which stimulates the Gonadotropin-releasing hormone (GnRH) neurons to produce 

GnRH. GnRH stimulates the production and secretion of gonadotropins luteinizing hormone 

(LH) and follicle-stimulating hormone (FSH) from the anterior pituitary, which in turn, 

stimulate gonadal function and secretion of sex steroids and Inhibin B. Sex steroids and 

Inhibin B regulate the secretion of GnRH and gonadotropins through negative feedback loops. 

KNDy-neurons co-express kisspeptin, neurokinin B (NKB) and dynorphin A (DYN) and are 

thought to autoregulate themselves through positive (NKB) and negative (DYN) feedback 

loops. Before ovulatory LH surge in women, estradiol has a short positive feedback effect on 

pituitary and on the Kiss1 neurons located in the AVPV/PeN. POA, pre-optic area. (Navarro 

& Tena-Sempere 2010). 
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2.2 Embryonic development of GnRH neurons 

 

2.2.1 Dual origin of GnRH neurons  

 

GnRH neurons are viewed as one of the most upstream regulatory components of the HPG 

axis (Wray et al. 1989). The embryonic origin of GnRH neurons has been a matter of debate 

for several decades. Studies with different animal models have provided evidence of both 

placodal and neural crest (NC) origin for these cells (Wray et al. 1989, Forni et al. 2011, 

Sabado et al. 2011, Berghard et al. 2012, Metz & Wray 2010, Whitlock et al. 2003). 

 

Cranial placodes are spelialized regions of the ectoderm, which give rise to the various 

sensory ganglia and contribute to the pituitary gland and the sensory organs of the vertebra 

head (Schlosser 2006). The olfactory placode (OP) gives rise to the olfactory epithelium (OE) 

and epithelium of vomeronasal organs (Whitlock 2004). These epithelia contain 

chemoreceptive sensory cells that project their axons towards the developing olfactory bulb 

(OB), in which they synapse with dendrites of mitral cells to form the olfactory tract 

(Cariboni & Maggi 2006). Historically, GnRH neurons have been thought to originate 

exclusively from the OP. Immunohistochemistry and in situ hybridization experiments with 

mice in two landmark studies showed that GnRH expressing cells could be found only in the 

OP on embryonic day 11.5 (Schwanzel-Fukuda et al. 1989, Wray et al. 1989). Ablation 

studies have both provided support and contradicted the OP origin of GnRH neurons; 

amphibians that undergo OP removal end up lacking GnRH neurons (Murakami et al. 1992, 

Northcutt et al. 1994), whereas OP removal from chick and rat embryos does not result in 

total loss of GnRH neurons (Daikoku-Ishido et al. 1990, Daikoku & Koide 1998), suggesting 

that they do not arise solely from OP.  

 

The NC has been implicated as a possible contributor to the formation of OP (Whitlock & 

Westerfield 2000, Forni et al. 2011, Katoh et al. 2011). The pluripotent NC cells arise at the 

junction between the neural tube and the epidermis, from where they migrate throughout the 

organism and give rise to many different cell types including neurons and glia of the 

peripheral nervous system, bone and cartilage of the skull, and melanocytes (Le Douarin 

1999, Selleck et al. 1993). In addition, NC cells have been shown to migrate towards the 

presumptive OP and are likely to contribute to the developing OP and its derivates (Schilling 

& Kimmel 1994). Studies with zebrafish have shown that when pre-migratory NC cells were 
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labelled, subset of these cells later on expressed GnRH peptide (Whitlock et al 2003). This 

data was recently replicated in mice. Lineage tracing experiment performed in two mouse 

models showed that NC cells indeed intermix in the OP and give rise to all olfactory 

ensheating cells which support the growth and targeting of olfactory axons, and to a 

subpopulations of GnRH neurons (about 30%), olfactory, and vomeronasal cells (Forni 2011, 

Katoh 2011, Forni & Wray 2012).  Thus, GnRH neurons are likely to originate from both of 

the NC and OP. 

 

2.2.2 Migration to the hypothalamus 

 

GnRH neurons migrate from the OP to the hypothalamus in association with olfactory, 

vomeronasal and terminal nerve fibers (Schwanzel-Fukuda et al. 1989, Wray et al. 1989) 

(Figure 3). Once GnRH cells gain motility, they exit from the OP and migrate through the 

nasal compartment. As they move from the nasal compartment through the cribriform plate 

into brain tissue, they travel across the nasal–forebrain junction. At this point, GnRH cells 

appear to pause. The pause may ensure that the cells mature and/or that the correct migratory 

route is established (Wray et al. 2010). When GnRH neurons have crossed the nasal-forebrain 

junction, they follow axons that express peripherin toward the basal forebrain. Once they have 

reached their final destination in the developing hypothalamus, they detach from the 

vomeronasal axons and extend their own axons to the median eminence (Cariboni et al. 2007, 

Wray et al. 2010). In humans, the first GnRH neurons appear in the hypothalamus by 14 

weeks of gestation, and the migration is completed by 19 weeks (Schwanzel-Fukuda et al. 

1989, Quinton et al. 1997). 
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Figure 3. Migratory route of Gonadotropin-releasing hormone neurons (green dots) begins 

from the olfactory/nasal placode (NP) in the region of vomeronasal organ (VNO). They 

migrate along the olfactory, vomeronasal and terminal nerve fibers (VNN), enter the brain in 

the proximity of olfactory bulbs (OB), and continue through the basal forebrain (BF) to the 

hypothalamus. Migratory route takes them through three chemically distinct environments: 1) 

the nasal compartment, 2) the nasal-forebrain junction, and 3) the basal forebrain. Adapted 

from Cariboni et al. (2007). 

 

 

Migratory journey from the OP to the hypothalamus takes GnRH neurons through a changing 

molecular environment with numerous factors controlling different aspects of their movement 

(Wray et al. 2010). Many of these molecules work in multiple areas and may even produce a 

different response depending on the relative dose to which GnRH cells are exposed (Wray et 

al. 2010). These factors include for example anosmin-1, fibroblast growth factor receptor 1 

(FGFR1), semaphorins, necdin and nasal embryonic luteinizing hormone-releasing hormone 

factor (NELF) (see details in chapter 2.4), but many of them still remain elusive.  

 

Despite of their key role in reproduction, the adult hypothalamus has very limited number of 

GnRH neurons, less than 2000 (Quinton et al. 2003). Studies on rodents suggest that original 

number of GnRH neurons is much bigger and that during migration process there is also an 

inherent selection process which pares down the number (Wu et al. 1997). 

 

2.3  Congenital hypogonadotropic hypogonadism (HH) 

 

Congenital HH is a disorder characterized by absent or incomplete sexual maturation by the 

age of 18 years, in conjunction with low levels of circulating gonadotropins and sex steroids 
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and no other abnormalities of the HPG axis. It is caused by defects in GnRH neuron 

development or in GnRH secretion/action (Seminara et al. 1998, Young 2012).  

 

2.3.1 Clinical features and variable reproductive phenotype 

 

Congenital HH is classically defined as 1) absent or incomplete puberty by age 18 years; 2) 

low serum testosterone level in men or estradiol level in women in association with low or 

normal levels of serum gonadotropins; 3) otherwise normal pituitary function; 4) normal 

serum ferritin concentrations; and 5) normal magnetic resonance imaging (MRI) of the 

hypothalamic-pituitary region (Pitteloud et al. 2007b, Raivio et al. 2009). Congenital HH is 

suspected usually on the basis of clinical signs of hypogonadism in infancy, such as 

micropenis and/or cryptorchidism, or failure to undergo pubertal development (Seminara et 

al. 1998, Young 2012). In a large series of adolescents with delayed pubertal development 

assessed in a tertiary center, congenital HH was an underlying cause in ~3% of cases, and the 

condition appears to be 4-5 times more frequent in men (Seminara et al. 1998, Sedlmeyer & 

Palmert 2002).  

 

The reproductive phenotype of the patients with congenital HH can vary from severe to 

milder forms (Figure 4) (Dode et al. 2003, Pitteloud et al. 2006a, Raivio et al. 2009). In severe 

cases, failure of HPG axis activation during fetal life and in early childhood may manifest as 

bi- or unilateral cryptorchidism in association with micropenis (Lee et al. 1980). 

Approximately two-thirds of HH male patients are cryptorchid and one-third has a micropenis 

at birth (Quinton et al. 2001, Pitteloud et al. 2002a). Approximately 70% of male patients 

with congenital HH have no pubertal development (Pitteloud et al. 2002a), whereas up to 50% 

of the female congenital HH patients have spontaneous thelarche and 10% have experienced 

1-2 menses (Shaw et al. 2011). In mild forms of congenital HH, some irregular and / or 

infrequent LH pulsatility may be detected that may be sufficient to activate the HPG axis to 

achieve partial pubertal development (Seminara et al. 1998, Pitteloud et al. 2002a, Shaw et al. 

2011). Differentiating congenital HH from the more common case of delayed puberty, CDPG, 

is complicated and requires evaluation in a pediatric endocrinology unit (see chapter 2.5) 

(Palmert & Dunkel 2012). 

 

Previously, congenital HH was thought to require lifelong hormone therapy, but in recent 

years it has been shown that up to 10% of congenital HH patients may undergo reversal of 
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HH later in life (Raivio et al. 2007, Laitinen et al. 2012). These reversal variants undergo 

spontaneous pubertal development commonly in early adulthood, and some may even attain 

normal fertility. No single phenotypic or genotypic feature predicts the reversal of HH at the 

time of diagnosis, but spontaneous testicular growth during androgen therapy is highly 

indicative (Laitinen et al. 2012). Reasons leading to recovery are elusive, but testosterone 

exposure has been suggested to predispose to recovery of the HPG axis (Raivio et al. 2007, 

Morelli et al. 2009).  

 

After normal pubertal development, central activity of the HPG axis may decline, leading to 

adult-onset HH.  These patients frequently have sexual dysfunction, decreased libido and 

infertility, and low levels of circulating gonadotropins and sex steroids (Nachtigall et al. 

1997). On rare occasions, partial HPG axis activation in men produces sufficient amount of 

LH and FSH to result in testicular maturation and growth. However, the activation is 

inadequate to induce virilization. These patients, also termed fertile eunuchs, lack secondary 

sexual characteristics and have a eunuchoidal body habitus (Williams et al. 1975) 

 

 

 

Figure 4. Reproductive phenotype is highly variable in patients with congenital 

hypogonadotropic hypogonadism (HH). Modified Brioude et al. 2010 and Laitinen 2012.   

 

 

2.3.2 Associated nonreproductive features 

 

Patients with congenital HH occasionally display additional nonreproductive phenotypic 

features listed in Table 1. These features may be suggestive of certain genetic etiologies 

(Costa-Barbosa et al. 2013, see also chapter 2.4).  
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Table 1. Associated features in congenital hypogogonadotropic hypogonadism 

Associated feature Reference(s) 

Midline defects   

       -Cleft lip/palate Dode et al. 2003 

       -High-arched palate Dode et al. 2003, Falardeau et al. 2008 

       -Dental agenesis Dode et al. 2003, Falardeau et al. 2008 

Unilateral renal agenesis Wegenke et al. 1975, Georgopoulos et al. 2007 

Hearing impairment Dode et al. 2003 

Limb and digit anomalies  Dode et al. 2003 

External ear anomalies  Zenaty et al. 2006 

Semicircular canal dysplasia Jongmans et al. 2009 

Coloboma of the eye Kim et al. 2008, Jongmans et al. 2009 

Mirror movements Kallmann et al. 1944 

   

2.3.3 Olfaction defects and Kallmann syndrome (KS) 

 

Congenital HH has been traditionally divided into two entities according to olfactory 

phenotype; congenital HH and normal sense of smell is termed normosmic HH (nHH) 

whereas congenital HH with defective sense of smell is termed Kallmann syndrome (Kallman 

et al 1944, Schwanzel-Fukuda et al. 1989). About 60% of patients with congenital HH present 

with anosmia (Bianco & Kaiser 2009, Lewkowitz-Shpuntoff et al. 2012). 

 

KS is suggested to result from abnormal guidance of olfactory axons, which further leads to 

disturbed migration of GnRH neurons from the OP to the hypothalamus. The evidence for this 

association comes from postmortem findings of a 19-week-old male fetus carrying a 

chromosomal deletion at Xp22.3 including KAL1 and affected by KS. This fetus had no OBs, 

and there was a complete absence of GnRH neurons in the brain, whereas clusters of these 

cells were found in the nasal region and on the dorsal surface of cribriform plate, together 

with entangled fibers of the olfactory and terminal nerves that did not contact the forebrain 

(Schwanzel-Fukuda et al. 1989) (Figure 5). In contrast, nHH results from defects in GnRH 

secretion or action, although the more current view is that anosmia/normosmia and HH form a 

phenotypic continuum and can also result from the same genetic defect (Cadman et al. 2007). 
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Figure 5. Model for Kallmann syndrome (KS) pathogenesis. In normal individuals (A), the 

olfactory neurons (ON) in the olfactory epithelium (OE) send their axons through the 

cribriform plate (CP) to reach the olfactory bulb (OB), where they make synapses with 

dendrites of mitral cells (M, purple triangles) whose axons will form the olfactory tract (OT). 

Gonadotropin-releasing hormone neurons (red dots) migrate along the olfactory nerves until 

they reach the forebrain. In an X-linked KS-affected human fetus (B), the olfactory axons 

were not targeted to the OB, ending their migration between the CP and the forebrain. In 

addition, OB morphogenesis was incomplete (Schwanzel-Fukuda et al. 1989, figure modified 

from Rugarli 1999).  

 

 

Like the reproductive phenotype, the olfaction phenotype can also vary from absent sense of 

smell (anosmia) to decreased sense of smell (hyposmia) in KS patients and their affected 

family members. In addition, anosmia may be present as an isolated symptom without HH in 

KS-families (Dode et al. 2003, Pitteloud et al. 2006b). Although the contact between olfactory 

axons and the developing OB is essential for OB morphogenesis (Cadman et al. 2007), not all 

KS patients with olfactory defects have dysmorphic or absent OBs (Quinton et al. 1996, Sato 

et al. 2004). 

 

2.3.4 Overlapping syndromes 

 

Variable reproductive phenotype and wide range of additional features seen in congenital HH 

complicates the diagnosis of the condition. Although congenital HH together with defective 

sense of smell is highly indicative of KS, HH with or without anosmia can also be part of rare 

syndromes. 

 

Congenital hypopituitarism is a condition with a wide variation in severity and with many 

underlying causes. It may manifest as an isolated deficiency of a single pituitary hormone 

(such as gonadotropin deficiency, leading to HH), or several pituitary hormone axes may be 
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defective, resulting in combined pituitary hormone deficiency (Kelberman & Dattani 2009). 

Mutations in genes that are involved in early development and patterning of the forebrain and 

pituitary (such as HESX1, PITX2, SOX2, SOX3, OTX2, LHX3 and LHX4) or are involved in 

initial stages of pituitary cell differentiation (PROP1 and POU1F1) may cause 

hypopituitarism (Kelberman & Dattani 2009, Pfaffle & Klammt 2011). 

 

HH may also be present in the Bardet Biedl and Prader-Willi syndromes (Aminzadeh et al. 

2010), or in the rare Johnson neuroectodermal syndrome (Johnson et al. 1983) or in the 

Dandy-Walker brain malformation (Aluclu et al. 2007). Mutations in LEP and LEPR, 

encoding leptin and its receptor, cause defective leptin signaling, which leads to obesity and 

HH due to abnormal appetite control and insuffient GnRH secretion (Farooqi et al. 2007). 

Mutations in DAX1 cause abnormal development of adrenal cortex, hypothalamus, pituitary, 

and gonads leading to combined adrenal hypoplasia congenita and HH (Muscatelli et al. 

1994). 

 

In this thesis, CHARGE syndrome, Waardenburg syndrome, holoprosencephaly and septo-

optic dysplasia are studied with more detail, as they all have clear phenotypic and genotypic 

overlap with congenital HH.  

 

2.3.4.1 CHARGE syndrome 

 

CHARGE syndrome is a clinically variable, multiple congenital anomaly condition occurring 

in 1 / 10 000 live births. CHARGE is characterized by ocular coloboma, heart defects, atresia 

of the choanae, retarded growth and development, genital abnormalities, and ear anomalies 

including deafness and vestibular disorders. Patient with CHARGE may also be anosmic and 

have congenital HH. In addition, OB hypoplasia is highly penetrant in CHARGE individuals 

(Pago et al. 1981, Pinto et al. 2005, Sanlaville & Verloes 2007). Patients with KS may also 

display some CHARGE features (Kim et al. 2008, Jongmans et al. 2009, Bergman et al. 

2012). Heterozygous mutations in CHD7, which encodes a chromatin remodeling enzyme 

account for over 70% of CHARGE syndrome cases. As patients with KS may also have 

heterozygous mutations in CHD7 (see chapter 2.4.1), KS can be considered as a milder allelic 

variant of CHARGE syndrome (Kim et al. 2008, Jongmans et al. 2009, Bergman et al. 2012).  
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2.3.4.2 Waardenburg syndrome 

 

Waardenburg syndrome (WS) is characterized by the association of pigmentation 

abnormalities and sensorineural hearing loss, that result from an abnormal proliferation, 

survival, migration, or differentiation of NC-derived melanocytes (Waardenburg 1951, Read 

& Newton 1997). Pigmentation defects include depigmented patches of the skin and hair, 

vivid blue eyes or heterochromia irides. WS has been classified into 4 main types according to 

other features such as dystopia canthorum (lateral displacement of the inner corners of the 

eyes, present in WS1, not present in WS2), musculoskeletal abnormalities of the limbs 

(WS3), and Hirschsprung disease (WS4), found in subsets of patients (Read & Newton 1997, 

Pingault et al. 2010). These main types are yet divided into subtypes according to the 

underlying genetic cause. Mutations in transcription factor SOX10, which is involved in the 

development and differentiation of the NC, cause WS type 4C and WS type 2E (Pingault et al. 

1998, Bondurand et al 2007) and also their neurological variant PCWH (peripheral 

demyelinating neuropathy, central dysmyelination, Waardenburg syndrome, and 

Hirschsprung disease) (Inoue et al. 2004). Recently, a high frequency of OB agenesis was 

found among patients with WS, and SOX10 mutations were identified in KS patients with 

deafness (see 2.4.1) (Pingault et al. 2013). Studies with Sox10-null mutant mice suggested 

that KS in the patients resulted from defects in olfactory ensheating cell differentiation 

(Pingault et al. 2013, Barraud et al. 2013). 

 

2.3.4.3 Holoprosencephaly and septo-optic dysplasia 

 

Holoprosencephaly (HPE) is the most common malformation of the brain and face in humans, 

and it represents a contiguous clinical spectrum of disorders ranging from simple microform 

features such as closely spaced eyes to the extreme of single cyclopic eye (Dubourg et al. 

2007). HPE results from varying degrees of incomplete cleavage of the prosencephalon into 

the cerebral hemispheres and ventricles that occurs between the 18th and the 28th day of 

gestation (Demyer & Zeman 1963, Cohen et al. 2006, Dubourg et al. 2007). Midline defects 

are frequently observed in HPE, including cyclopia, proboscis (elongated nose), median or 

bilateral cleft lip/palate in severe forms, ocular hypotelorism or solitary median maxillary 

central incisor in minor forms (Roessler et al. 2008, Dubourg et al. 2007). The less severe end 

of phenotypic spectrum includes absent olfactoty tracts and bulbs. Patients with HPE often 

have also endocrine disorders like diabetes insipidus, HH, adrenal hypoplasia, thyroid 
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hypoplasia, and GH deficiency because the midline malformation affects the development of 

the hypothalamus and the pituitary gland (Dubourg et al. 2007). HPE occurs approximately in 

1 / 10 000 - 15 000 livebirths, but in 1 / 250 during early embryogenesis, since most affected 

fetuses are miscarried. Besides environmental causes, such as maternal diabetes, an 

abnormality of chromosome number is overall the most frequently identified etiology in HPE 

(up to 50% of cases). Out of these, trisomy 13 is the most common, but trisomy 18, triploidy, 

and small deletions and duplications have been reported (Goetzinger et al. 2008). HPE may 

also be a part of a recognizable syndrome, suc as Smith-Lemli-Opitz syndrome (Kelley et al 

1996). In addition, autosomal dominant or de novo mutations in many genes (including SHH, 

SIX3, TGIF1, TDGF1, FOXH1 and GLI2) have been shown to cause HPE, but a molecular 

genetic diagnosis is attained in only approximately 30% of the patients (Dubourg 2007). KS 

and HPE have been suggested as allelic syndromes, as mutations in FGF8 have been 

identified in both (Arauz et al. 2010, McCabe et al. 2011). 

 

Septo-optic dysplasia (SOD) is a highly heterogeneous condition with variable phenotypes 

including midline and forebrain abnormalities, and optic nerve and pituitary hypoplasia 

(Dattani et al. 1998). Most instances of SOD are sporadic, and several etiologies, including 

alcohol abuse of the mother during pregnancy, have been suggested to account for the 

pathogenesis of the condition. However, an increasing number of familial cases have been 

described, with mutations identified in transcription factors that are essential for normal 

forebrain development (Webb & Dattani 2010, McCabe et al. 2011). One of such factor is 

SOX2, which has a key role both in eye and pituitary development (Kelberman et al. 2006). 

SOX2 mutations have also been identified in patients with congenital HH (Stark et al. 2011) 

(see chapter 2.4.4). In addition, mutations in known KS genes FGFR1 and FGF8 have been 

found in patients with SOD (Webb & Dattani 2010, McCabe et al. 2011, Raivio et al 2012). 

 

In addition, it has also been shown that Sox2 and Chd7 physically interact and regulate a set 

of common target genes that are mutated in human syndromes (Engelen et al. 2011). These 

target genes include for example Gli3, in which mutations cause several diseases, such as 

Pallister-Hall syndrome (PHS). PHS is a rare disorder characterized by benign tumors or 

lesion of the hypothalamus, polydactyly, laryngeal anomalies, and various visceral and genital 

anomalies (Kang et al. 1997). Gli3 also mediates SHH signaling and has been suggested to act 

as a modifier in Sox10-dependent melanocyte defects (Matera et al. 2008) 
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2.4 Molecular genetics of congenital HH 

 

Genetics of congenital HH is complex and heterogenous. Although several genes have been 

implicated in the etiology of congenital HH, still about 65% of the cases remain without 

identified genetic cause (Mitchell et al. 2011). Mutations in genes that are important for 

GnRH neuron development and migration cause congenital HH that is usually, but not 

always, accompanied with defects in sense of smell (KS). Mutations in genes that regulate 

GnRH secretion from hypothalamic neurons or its action at the pituitary level cause nHH 

(Figure 6). Summarizing table of genetics of congenital HH is presented at the end of this 

chapter (Table 2). 

 

 

 

 

Figure 6. The genetic basis of congenital hypogonadotropic hypogonadism (HH). Mutations 

in genes that are important for Gonadotropin-releasing hormone (GnRH) neuron development 

and migration cause congenital HH that is usually, but not always, accompanied with defects 

in sense of smell (Kallmann syndrome). Mutations in genes that regulate GnRH secretion or 

action cause normosmic congenital HH (Bianco & Kaiser 2009).  

 

 

2.4.1 Genes underlying KS 

 

KAL1 (HGNC ID: 6211) located on chromosome Xp22.3, encodes anosmin-1. Anosmin-1 is 

an extracellularly expressed protein, which needs heparan sulphate proteoglycans (HSPGs) in 
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order to bind to adjacent cell surfaces (Franco et al. 1991, Legouis et al. 1991, Soussi-

Yanicostas et al. 2002). Anosmin-1 is expressed during development in the presumptive OB 

region from embryonic week 5 onwards, and is thought to be important for initial OB 

differentiation and innervation of early olfactory axons. Anosmin-1 is also expressed in 

developing kidneys (Hardelin et al. 1999).  The central role of anosmin-1 in GnRH neuron 

migration has been demonstrated by histopathological observations in two fetuses (one with 

KAL1 deletion and one with KAL1 nonsense mutation), both of which showed accumulation 

of GnRH neurons in the nasal region, and lack of them in the hypothalamic regions (chapter 

2.3.3, Figure 5) (Schwanzel-Fukuda et al. 1989, Teixeira et al. 2010). Abnormal development 

of OB and interrupted connection of olfactory axons and terminal nerve fibres within the OB 

were also documented, suggesting that anosmin-1 influences the later migration route when 

GnRH neurons penetrate into the forebrain. This was supported by later studies in a zebrafish, 

showing that anosmin-1 directs terminal targeting of olfactory sensory neuron (OSN) axons 

within OB, and mediates OB mitral cell axons towards the olfactory cortex (Soussi-

Yanicostas et al 2002, Yanicostas et al. 2009, Hu & Bouloux 2011). In addition, anosmin-1 

has shown to be essential for cranial NC formation in chick embryos, where it modulates 

fibroblast growth factor (FGF), bone morphogenenic protein (BMP), and Wingless/INT-

related signalling (Endo et al. 2012). 

 

KAL1 was the first gene implicated in KS when two independent groups in 1991 identified 

point mutations or intragenic deletions in patients with KS (Franco et al. 1991, Legouis et al. 

1991). Since then, nearly sixty mutations have been identified, most of which are deletion, 

frameshift or nonsense mutations (Kim et al. 2008, Sykiotis et al. 2010). To date, KAL1 is the 

only gene implicated in X-linked recessive KS. KS patients with mutations in KAL1 have 

usually severe HH and they display less variable phenotypes than patients with other 

identified molecular genetic causes (Sato et al. 2004, Salenave et al. 2008). Patients with 

KAL1 mutations are typically anosmic due to abnormal OB development and OSN axon 

guidance defect (Schwanzel-Fukuda et al. 1989). Synkinesia (mirror movements) and 

unilateral renal agenesis are often encountered in patients with KAL1 mutations (Quinton et 

al. 2001, Albuisson et al. 2005). Mutations in KAL1 account for approximately 5-10% of all 

KS cases, and approximately 3-6% of all congenital HH cases (Albuisson et al. 2005, 

Pedersen-White et al. 2008, Bianco & Kaiser 2009). 
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FGF8 (HGNC ID: 3686) and FGFR1 (HGNC ID: 3688), located on chromosomes 

10q24.32 and 8p11.23-p11.22, respectively, encode FGF8 and its receptor, FGFR1. The FGF 

signaling system is essential for the regulation of cell growth, tissue differentiation, and 

organogenesis during development (Cotton et al. 2008). Mouse studies have shown that both 

Fgf8 and Fgfr1 have important roles in GnRH neuron development, especially in promoting 

the formation and maintaining the survival of these neurons in the OP. In homozygous Fgf8 

hypomorphic mice GnRH neurons never emerge from the OP and are absent in every 

subsequent developmental stage (Chung et al. 2008), and  heterozygous Fgf8 and Fgfr1 

hypomorphs have reduced number of GnRH neurons in the pre-optic area and median 

eminence (Meyers et al. 1998, Falardeau et al. 2008, Chung et al. 2008). Targeted expression 

of dominant negative Fgfr1 in mouse GnRH neurons resulted in 30% reduction in the neuron 

population and also in the projection of their axons to the median eminence, and these mice 

displayed delayed puberty and decreased fertility (Tsai et al. 2005, Gill & Tsai 2006).   Fgf8 – 

Fgfr1 signaling is also required for OB morphogenesis, as both Fgf8 and Fgfr1 hypomorphs 

lack normal OBs (Hebert et al. 2003). FGFR1 signaling activation requires binding of FGFs 

and co-receptor HSPGs. Binding is regulated by the N-glykosylation pattern of the receptor 

(Duchesne et al. 2006), and it induces receptor dimerization, followed by the response of 

intracellular signal transduction cascade via three typical downstream pathways: classic 

mitogen-activated protein kinase (MAPK) p42/44, phosphatidylinositide 3-kinase and 

phospholipase C. Of note, anosmin-1 may facilitate FGFR1 signaling and development of 

GnRH neurons by interacting with the FGFR1/FGF complex via HSPGs, or by binding 

directly to FGFR1 with high affinity (Hu & Bouloux 2011, Hu et al. 2013). 

 

Mutations in FGFR1 and FGF8 cause autosomal dominant congenital HH. The first 

mutations in FGFR1 were described in KS patients in 2003 (Dode et al. 2003). To date, 

heterozygous FGFR1 mutations underlie approximately 10% of KS cases and 6-8% of all 

congenital HH cases (Dode & Hardelin 2009, Bianco & Kaiser 2009). Phenotypic variability 

is typical for patients with an FGFR1 mutation, even within families carrying the same 

mutation. The reproductive phenotype may vary from an unaffected mutation carrier via 

delayed puberty via reversal of HH to severe HH, and the olfaction may vary from normal 

sense of smell via hyposmia to anosmia (Dode et al. 2003, Pitteloud et al. 2005, Pitteloud et 

al. 2006a, Trarbach et al. 2006, Xu et al. 2007, Salenave et al. 2008, Raivio et al. 2009). Cleft 

lip/palate, dental agenesis, external ear anomalies, and limb anomalies are seen in FGFR1 

mutation carriers, consistent with several functions and wide expression pattern of the 
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receptor (Dode et al. 2003, Albuisson et al. 2005, Kim et al. 2005, Zenaty et al. 2006, Dode et 

al. 2007). 

 

Mutations in FGF8 are rare; they account for less than 5% of KS cases and less than 2% of all 

congenital HH cases (Bianco & Kaiser 2009). The first heterozygous mutations in FGF8 were 

reported in 2008 in congenital HH patients with variable olfaction (Falardeau et al. 2008). 

Reproductive phenotype of patients with an FGF8 mutation is variable, and associated 

features include cleft lip/palate and hearing impairment (Falardeau et al. 2008, Trarbach et al. 

2010).  

 

PROK2 (HGNC ID: 18455) and PROKR2 (HGNC ID: 15836) are located at chromosome 

3p13 and 20p12.3, respectively, and encode prokineticin-2 and its G-protein coupled receptor 

prokineticin receptor-2. Prokineticin signalling influences several physiological events in the 

central nervous system and peripheral tissues, including intestinal contraction, 

spermatogenesis, neuronal survival, and circadian rhythm (Ngan & Tam 2008). Prok2 is 

expressed in the developing OB where it serves as a chemoattractant for the migrating OB 

neuron progenitors, and both Prok2 and Prokr2 are critical for the establishment of a normal 

OB architecture (Ng et al. 2005, Matsumoto et al. 2006, Pitteloud et al. 2007b). Prok2-/- and 

Prokr2-/- mice show similarity to KS phenotype: Prok2-/- mice have sexual 

immaturity/infertility, severely decreased number of GnRH neurons as the migration is 

arrested after crossing the cribiform plate, and 50% of mice display asymmetric OBs (Ng et 

al. 2005, Pitteloud et al. 2007b). Prokr2-/- mice show severe atrophy of the reproductive 

system, absence of GnRH neurons in the hypothalamus, and OB malformation (Matsumoto et 

al. 2006).  

 

First homozygous and compound heterozygous mutations in PROKR2 were discovered from 

KS patients in 2006 (Dode et al. 2006). A year later, a homozygous PROK2 deletion was 

found in siblings with KS/nHH (Pitteloud et al. 2007b). Since then, biallelic mutations in 

PROK2 and PROKR2 have been reported in congenital HH patients with severe HH and 

various olfactory phenotypes (Abreu et al. 2008, Cole et al. 2008, Leroy et al. 2008, Sarfati et 

al. 2010), accounting together approximately 5-10% of KS cases and 3-6% of all congenital 

HH cases (Bianco & Kaiser 2009). Heterozygous PROK2 or PROKR2 mutations have also 

been suggested to contribute to congenital HH phenotype either alone or in combination with 

mutations in other genes (Dode et al. 2006, Cole et al. 2008, Canto et al. 2009, Sarfati et al. 
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2010). However, the presence of heterozygous PROK2 and PROKR2 mutations in healthy 

carriers (Dode et al. 2006, Pitteloud et al, 2007b, Abreu et al. 2008, Sinisi et al. 2008, Leroy et 

al. 2008), lack of dominant-negative effect of these mutations in in vitro functional studies 

(Monnier et al. 2009) and normal phenotype of heterozygous knock-out mice (Matsumoto et 

all. 2006, Pitteloud et al. 2007b), support the recessive nature of PROK2 and PROKR2 

mutations.  Also, convincing evidence of digenetic inheritance in congenital HH is lacking 

(see chapter 2.4.5) and there are no reports of patients carrying heterozygous mutations in 

both  PROK2 and PROKR2. 

 

CHD7 (HGNC ID: 20626) located on chromosome 8q12 encodes a choromodomain helicase 

deoxyribonucleic (DNA)-binding protein-7. CHD7 functions in the nucleus where it regulates 

access to chromatin by hydrolyzing adenosine triphosphate and altering nucleosome structure 

(Marfella & Imbalzano 2007), and it may also affect DNA binding, cell cycle regulation and 

apoptosis (Zentner et al. 2010). Chd7 is expressed in the developing nervous system and its 

derivates. Particularly high expression levels are seen in mice OP during GnRH neuron 

development, and at later stage in the OE, cochlea, anterior pituitary, and spinal cord (Kim et 

al. 2008). In these tissues, Chd7 promotes neurogenesis by regulating expression of Fgfr1, 

Bmp4 and Otx2 (Layman et al. 2011). Mice with heterozygous loss of Chd7 have genital and 

heart anomalies, hypoplastic semicircular canals, olfactory defects (Bossman et al. 2005, 

Hurd et al. 2007), delayed puberty and reduced number of GnRH neurons in the 

hypothalamus (Layman et al. 2011). In addition, studies with Xenopus and human NC-like 

cells showed that Chd7 is essential for the formation of NC, regulation of NC gene 

expression, and cell migration (Bajpai et al. 2010). 

 

A mutation in CHD7 is found in 70% of patients with the CHARGE syndrome (chapter 

2.3.4.1) (Vissers et al. 2004, Zentner et al. 2010). First CHD7 mutations in patients with 

congenital HH were found in 2008 when Kim et al. hypothesized that congenital HH might be 

a mild allelic variant of CHARGE syndrome, as patients with CHARGE may also have HH 

and olfaction defects (Pinto et al. 2005, Ogata et al. 2006). Kim et al. found a CHD7 mutation 

in 6% of congenital HH patients with variable olfaction defects (Kim et al. 2008) and a year 

later Jongmans et al. described 3 KS patients with CHARGE associated features and a CHD7 

mutation (Jongmans et al. 2009). To date, heterozygous mutations in CHD7 account less than 

5% of all congenital HH cases, and most mutations are de novo (Kim & Layman 2010).  
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2.4.2 Genes underlying normosmic congenital HH 

 

GNRH1 (HGNC ID: 4419) and GNRHR (HGNC ID: 4421) are located on chromosomes 

8p21.2 and 4q13.2, respectively, and encode GnRH and its receptor. GnRH is a decapeptide 

that is synthetized from 92-amino acid preprohormone. Hypothalamic GnRH neurons secrete 

GnRH in pulsatile fashion to the portal circulation, which carries it to the gonadotropic cells 

of anterior pituitary that express GnRH receptor. Binding of GnRH to this G-coupled receptor 

leads to activation of phospholipase C, production of second messenger inositol trisphosphate 

and rise of intracellular calcium, which leads to subsequent release of both FSH and LH (de 

Roux et al. 2006).  

 

Homozygous or compound heterozygous mutations in GNRHR cause autosomal recessive 

normosmic HH (de Roux et al. 1997, Layman et al. 1998). First cases were described in 1997, 

and to date over 20 different mutations have been described (de Roux et al. 1997, Tello et al. 

2012). Most GNRHR mutations are point mutations and have been shown to cause impaired 

cell surface expression of the receptor, ligand binding or intracellular signaling in in vitro 

functional studies (Tello et al. 2012). Reproductive phenotype of nHH patients with biallelic 

GNRHR mutations varies from severe HH via partial puberty to delayed puberty, whereas 

heterozygous carriers are unaffected (de Roux et al. 1997, Layman et al. 1998, Kottler et al. 

2000, Beranova et al. 2001, Lin et al. 2006). In addition, GNRHR mutations have been 

reported among patients with reversal of HH (Pitteloud et al. 2001, Dewailly et al. 2002, 

Raivio et al. 2007, Lin et al. 2006, Laitinen et al. 2011), and it has been suggested that HH 

patients with a R262Q mutation in GNRHR in a compound heterozygous or homozygous state 

are especially prone to reversal of HH (Laitinen et al. 2011). GNRHR mutations are estimated 

to cause 16% - 40% of nHH (Beranova et al. 2001, Bhagavath et al. 2005). 

 

Mutations in GNRH1 are extremely rare cause of nHH. The first, and so far only GNRH1 

mutations were described in 2009, when two independent groups found homozygous GNRH1 

mutations in one sib-pair and in a male patient with nHH (Bouligand et al. 2009, Chan et al. 

2009). Thereafter, no patients with GNRH1 mutations have been reported. 

 

KISS1 (HGNC ID: 6341) and KISS1R (HGNC ID: 4510) are located on 1q32.1 and 

19p13.3, respectively. KISS1 encodes a 145 amino acid long pre-protein, which is cleaved to 

shorter (54, 14, 13 and 10 amino acids) kisspeptins (Kotani et al. 2001). The 54 amino acid 
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kisspeptin and its G-protein coupled receptor KISS1R (previously known as GPR54) are 

expressed in the hypothalamus and the role of kisspeptin signaling in regulation of GnRH 

expression was described in chapter 2.1.3. Both Kiss1r-/- and Kiss1-/- mice display HH 

phenotype, although the phenotype of latter is more variable (Seminara et al. 2003, Lapatto et 

al. 2007).  

 

Mutations in KISS1 and in KISS1R cause autosomal recessive nHH (Seminara et al.2003, de 

Roux et al. 2003, Topaloglu et al. 2012). First homozygous loss-of-function mutations in 

KISS1R in nHH were described in 2003 by two independent groups. In both cases, mutations 

were found in large consanguineous families (de Roux et al. 2003, Seminara et al. 2003) 

Patients with homozygous or compound heterozygous mutations in KISS1R have severe HH 

with little phenotypic variability (de Roux et al. 2003, Seminara et al. 2003, Lanfranco et al. 

2005, Teles et al. 2010, Nimri et al. 2011). Mutations that impair kisspeptin signaling are a 

rare cause of nHH: KISS1R mutations account for less than 5% of nHH cases (Bianco & 

Kaiser 2009), and thus far there has been only one report of KISS1 mutations causing nHH in 

a consanguineous family (Topaloglu et al. 2012).  

 

TAC3 (HGNC ID: 11521) and TACR3 (HGNC ID: 11528). TAC3 is located on 

chromosome 12q13.3 and it encodes preprotachykinin B which is modified into NKB. NKB 

signals most efficiently through tachykinin receptor-3 (TACR3), a G-protein coupled receptor 

encoded by TACR3 located in 4q24 (Patacchini & Maggi 1995). NKB and TACR3 are 

expressed in the KNDy-neurons in the hypothalamus where they are suggested to participate 

in the autoregulation of KNDy-neurons (chapter 2.1.3) (Navarro & Tena-Sempere 2012).  

 

First homozygous mutations in TAC3 and TACR3 causing nHH were found in four Turkish 

consanguineous families in 2009 (Topaloglu et al. 2009). Since then, more homozygous or 

compound heterozygous mutations have been reported (Guran et al. 2009, Young et al. 2010, 

Gianetti et al. 2010, Francou et al. 2011) and they account for approximately 5% of nHH 

cases (Francou et al. 2011). Patients with TAC3 or TACR3 mutations have severe HH 

(Topaloglu et al. 2009, Young et al. 2010, Francou et al. 2011), although few patients have 

reportedly undergone a spontaneous recovery of the HPG axis (Gianetti et al. 2010). 

Unaffected heterozygous carriers of TAC3 or TACR3 mutations support autosomal recessive 

mode of inheritance (Topaloglu et al. 2009, Guran et al. 2010, Young et al. 2010, Francou et 

al. 2011), although heterozygous mutations have been reported in patients with nHH. 



 

35 

 

2.4.3 Recent advances in molecular genetics of KS  

 

In spring 2013, Pingault et al. described a high prevalence of SOX10 (HGNC ID: 11190) 

mutations in patients with KS and deafness (Pingault et al. 2013). Mutations in SOX10 are 

known to cause WS (specifically types WS4C, its neurological variant PCWH, and WS2E) 

which is a rare developmental disorder characterized by pigmentation abnormalities and 

deafness (chapter 2.3.4.2) (Pingault et al. 1998, Inoue et al. 2004, Bondurand et al. 2007). 

Involvement of SOX10 mutations also in KS was suspected when MRI revealed a high 

frequency of OB agenesis among patients with WS. Screening of SOX10 from altogether 103 

KS patients revealed 7 novel loss-of-function mutations. Five mutations were found among 

17 KS patients with one or more WS associated features, and two in 86 KS patients without 

any WS features. Notably, six of these seven mutation carriers had a hearing impairment. As 

in WS, the mutations were found in the heterozygous state together with a dominant mode of 

inheritance (Pingault et al. 2013). 

 

SOX10 is a transcription factor involved in the development and differentiation of the NC by 

regulating several transcriptional targets (Wegner 2005). It is important for the development 

of melanocytes, enteric ganglia neurons, Schwann cells and oligodendrocytes and for the 

formation of the structures of inner ear (Britch et al. 2001, Breuskin et al 2009). Studies with 

Sox10-/- mice revealed that Sox10 is also important for the formation of olfactory ensheating 

cells that arise from NC and support the growth and targeting of olfactory axons (Pingault et 

al. 2013, Forni et al. 2011). Sox10-/- mice lack these ensheating cells, have misrouted 

olfactory nerve fibers, impaired migration of GnRH neuron, and disorganization of the 

olfactory nerve layer of the OB, consistent with the KS phenotype (Pingault et al. 2013).  

 

2.4.4  Other genes associated with congenital HH 

 

In addition to genes listed above, there are a number of other genes in which 

mutations/variants have been reported in patients with congenital HH. Mutations in these 

genes are either extremely rare, and/or their role in the pathophysiology of congenital HH is 

not yet confirmed. 

 

WDR11 (HGNC ID: 13831) encodes WD repeat domain-11 protein, which is involved in 

olfactory neuron development. Kim et al. (2010) identified WDR11 by positional cloning of a 
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translocation breakpoint in a KS patient, and later discovered heterozygous missense 

mutations in this gene in 3% of patients with KS or nIHH. Mutations were absent from 

controls and seemed to be pathogenic in in vitro studies (Kim et al. 2010). Thereafter, no 

mutations in WDR11 have been reported, suggesting that WDR11 mutations are an extremely 

rare cause of congenital HH. 

 

SEMA3A (HGNC ID: 10723) encodes semaphoring 3A. Semaphorins are a class of secreted 

and membrane proteins that act as axonal growth cone molecules (Zhou et al. 2008). Sema3a 

is essential for patterning vomeronasal axons and in Sema3a mutant mice migration of GnRH 

neurons is arrested and OSN axons remain outside the central nervous system – a phenotype 

that resembles X-linked KS (Cariboni et al. 2011). Heterozygous mutations in SEMA3A have 

been recently reported in patients with KS (Young et al. 2012, Hanchate et al. 2012, 

Känsäkoski et al. 2014). As some of these mutations have also been reported in single 

nucleotide polymorphism (SNP) databases (such as exome variant server database), some 

have been found in healthy controls, and some have been found in patients with mutations in 

other HH-associated genes, it has been suggested that heterozygous mutations in SEMA3A are 

not sufficient to cause the disease phenotype alone, but may contribute to it (Hanchate et al. 

2012, Känsäkoski et al. 2014). Further studies are needed to clarify the role of semaphorins in 

the etiology of KS.  

 

NELF (HGNC ID: 29843, approved name: NMDA receptor synaptonuclear signaling 

and neuronal migration factor) encodes embryonic LHRH factor. This factor serves as 

common guidance molecule for olfactory axon projections and, either directly or indirectly, in 

the migration of GnRH neurons (Kramer & Wray 2000). Miura et al. (2004) identified a 

heterozygous missense variant in NELF in an nHH patient without previous family history.  

Xu et al. (2011) described an nHH patient with intronic NELF variants in a compound 

heterozygous state. In most cases NELF variants are encountered in congenital HH patients 

with mutation(s) in other HH-associated genes (Miura et al. 2004, Pitteloud et al. 2007a, Xu 

et al. 2011, Tornberg et al. 2011), and it has been suggested that NELF variants contribute to 

the disease phenotype by acting as modifiers (Sykiotis et al. 2010). The significance of NELF 

variants in congenital HH warrants further studies.  

 

HS6ST1 (HGNC ID: 5201) encodes Heparan sulfate 6-O-sulfotranferase-1 which is an 

enzyme that modifies sugar residues of heparan sulfates. This enzyme is important for 
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example for the normal function of anosmin-1 and the FGFR1-FGF complex (Soussi-

Yanicostas et al. 1998). Genetic experiments in C. elegans revealed that heparan-6O-

sulfotransferase cell-specifically regulates neural branching in vivo in concert with kal-1 

(Bülow wt al. 2002). Tornberg et al. (2011) identified rare variants in HS6ST1 in 2% of 

congenital HH patients. Most of these patients carried also mutations in FGFR1 and NELF. 

Tornberg et al. suggested that variants in HS6ST1 may contribute to the disease phenotype 

although alone they are not sufficient to cause the phenotype.  Role of H6ST1 variants in 

congenital HH remains unconfirmed. 

 

NDN (HGNC ID: 7675) encodes necdin, which plays a critical role in neuronal 

differentiation. Loss of necdin function has been reported to cause HH in Prader-Willi 

syndrome (Miller et al. 2009), and in mice necdin has been shown to regulate GnRH neuron 

development and migration, and Gnrh1 gene expression (Muscatelli et al. 2000, Barker & 

Salehi 2002, Miller et al. 2009). Sequencing of NDN in 160 patients with congenital HH did 

not reveal conclusive mutations; only one rare variant was identified in a family with KS and 

FGFR1 mutation (Beneduzzi et al. 2011) 

 

FGF8 synexpression group consists of genes that are similarly expressed and regulated 

during development as FGF8, and which also modulate signaling efficiency of FGF8 through 

FGFR1 as enhancers or inhibitors (Fürthauer et al. 2002, Niehrs & Meinhardt 2002). Miraoui 

et al. (2013) selected five members of this group as candidate genes for congenital HH: 

IL17RD (HGNC ID: 17616), DUSP6 (HGNC ID: 3072), SPRY2 (HGNC ID: 11270), SPRY4 

(HGNC ID: 15533), and FLRT3 (HGNC ID: 3762). These genes were sequenced from 386 

patients with congenital HH and from 155 controls. FGF17 (HGNC ID: 3673) and FGF18 

(HGNC ID: 3674) were also screened due to their high homology to FGF8. Altogether 27 

different mutations in five genes (FGF17, IL17RD, DUSP6, SPRY4, FLRT3) were found in 

30 unrelated patients but not in controls. Most mutations were heterozygous and some were 

accompanied by an FGFR1 mutation. A bioinformatics method, interactome-based affiliation 

scoring, predicted FGF17 and IL17RD as the two top candidates for congenital HH in the 

entire proteome, so mutations in these genes were further characterized in vitro. Authors 

concluded that mutations in genes encoding components of the FGF-pathway act primarily as 

contributors to the phenotype (Miraoui et al. 2013). Future studies are needed to elucidate the 

exact role of these genes in the etiology of congenital HH. 
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SOX2 (HGNC ID: 11195) is a member of the sex-determining region of the Y-chromosome 

related high-mobility group box (SOX) family of transcription factors. SOX2 regulates 

embryonic neurogenesis and is especially critical for eye development (Stevanovic et al. 

1994, Fantes et al. 2003).  Heterozygous mutations in SOX2 are the most common single-gene 

cause of anophtalmia/microphtalmia (Fantes et al. 2003, Ragge et al. 2005), and cause also 

SOD (chapter 2.4.3.3), a heterogeneous condition with midline and/or forebrain abnormalities 

(Dattani et al. 1998, Webb & Dattani 2010). SOX2 mutations have been reported in patients 

with HH, but in these cases HH occurred together with severe ocular anomalies (Kelberman 

et al. 2006, Kelberman et al. 2008). However, Stark et al. (2011) reported a family where 

children had anophthalmia/microphthalmia but their mother had congenital HH without 

ocular phenotype, and they all carried a frameshift mutation in SOX2. This has been thus far 

the only report of SOX2 mutation in a patient with congenital HH without any associated 

features.    

 

HESX1 (HGNC ID: 4877) encodes an embryonic transcription repressor important for organ 

commitment, cell differentiation, and proliferation. Hesx1 is essential for normal forebrain 

development, and homozygous mutations in HESX1 cause SOD (Dattani et al. 1998). 

Heterozygous mutations have been reported in patients with isolated GH deficiency and in 

patients with combined pituitary hormone deficiency (McNay et al. 2007, Coya et al. 2007).  

Newbern et al. (2013) identified three heterozygous missense variants among 83 KS patients 

without any associated features or familial background of congenital HH, and suggested that 

KS could be a milder manifestation of heterozygous HESX1 variants. Further studies are 

needed to elucidate the role of HESX1 mutations in KS.       

 

2.4.5 Inheritance of congenital HH 

 

Approximately ~40% of patients with congenital HH have a positive family history of 

congenital HH or associated features; the remaining 60% appear as isolated cases (Seminara 

et al. 1998, Oliveira et al. 2001). KS may be inherited as an X-linked recessive trait, KS as 

well as nHH can also follow the autosomal dominant or autosomal recessive mode of 

inheritance (Table 2) (Waldstreicher et al. 1996, Oliveira et al. 2001). Variable expressivity 

and incomplete penetrance of the mutations is seen especially in patients and their relatives 

with FGFR1 or GNRHR mutations (Dode et al. 2003, Pitteloud et al. 2005, Pitteloud et al. 
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2006a, Trarbach et al. 2006, Xu et al. 2007, Salenave et al. 2008, Raivio et al. 2009, de Roux 

et al. 1997, Layman et al. 1998, Kottler et al. 2000, Beranova et al. 2001, Lin et al. 2006).  

 

Traditionally, congenital HH has been regarded as a monogenic disorder in which mutation(s) 

in a single gene leads to the phenotype. However, several reports suggesting the presence of 

di- or oligogenic inheritance in congenital HH have been published (Dode et al. 2006, 

Pitteloud et al. 2007a, Canto et al. 2008, Sykiotis et al. 2010, Sarfati et al. 2010, Quaynor et 

al. 2011, Miraoui et al. 2013). In most of these reports, patients harbor heterozygous 

mutations in genes that underlie recessive congenital HH (most commonly PROKR2, 

GNRHR, TACR3, KISS1R), or that still have an uncertain role in the disease pathogenesis 

(such as NELF, HS6ST1, IL17RD, FLRT3), in combination with an autosomal dominant 

mutation in FGFR1 (Pitteloud et al. 2007a, Quaynor et al. 2011 Miraoui et al. 2013) or a 

hemizygous mutation in KAL1 (Dode et al. 2006, Canto et al. 2008, Quaynor et al. 2011). As 

mutations in FGFR1 or KAL1 are sufficient to cause the disease phenotype alone, di- or 

oligogenic inheritance in these cases is questionable. 

 

Sarfati et el. (2010) reported that male patients with biallelic mutations in PROK2 or 

PROKR2 have less variable and more severe reproductive phenotypes than patients with 

monoallelic mutations in these genes, and that nonreproductive/nonolfactory associated 

features appeared to be restricted to patients with monoallelic mutations. Authors suggested 

that this phenomenon is due to di- or oligogenic inheritance in patients with monoallelic 

mutations (Sarfati et al. 2010). However, it is also possible that these patients have causal 

mutations in genes not yet implicated in the etiology of congenital HH, and monoallelic 

mutation in PROK2 or PROKR2 does not contribute to the phenotype. 

 

It appears that patients with congenital HH more often harbor rare protein-altering variants in 

genes associated with congenital HH than the healthy controls. Sykiotis et al. (2010) reported 

that 10 out of 397 (2.5%) patients had rare protein-altering variants in two or more different 

genes, whereas none of the controls (n=179) did. In study of Miraoui et al. (2013) 24 out of 

350 (19%) patients carried at least two rare-protein altering variants in different genes 

whereas none of the controls (n=155) did. These differences between patients and controls 

were considered as possible evidence of oligogenicity. It should be noted that in both studies 

the number of patients far exceeded the number of controls.
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Table 2. Genes in which mutations cause or are suggested to contribute to congenital hypogonadotropic hypogonadism.  

 
Gene Locus HGNC Product Phenotype Mode of  Reference(s)     

     ID     inheritance         

KAL1 Xp22.3 6211 Anosmin-1 KS XR Franco et al. (1991); Legouis et al. (1991) 

FGFR1 8p11.23 3688 Fibroblast growth factor receptor 1 KS, nHH AD Dodé et al. (2003) 

  FGF8 10q24.32 3686 Fibroblast growth factor 8 KS, nHH, HPE AD Falardeau et al. (2007) 

  PROK2 3p13 18455 Prokineticin 2 KS, nHH  AR Dodé et al. (2006), Pitteloud et al. (2007) 

PROKR2 20p12.3 15836 Prokineticin receptor 2 KS, nHH AR Dodé et al. (2006), Pitteloud et al. (2007) 

CHD7 8q12 20626 Chromodomain helicase DNA binding protein 7 KS, nHH, CHARGE AD Kim et al. (2008); Jongmans et al. (2009) 

GNRH1 8p21.2 4419 Gonadotropin releasing hormone 1 nHH  AR Bouligand et al. (2009); Chan et al. (2009) 

GNRHR 4q13.2 4421 Gonadotropin releasing hormone receptor nHH AR de Roux et al. (1997); Layman et al. (1998) 

KISS1  1q32.1 6341 Kisspeptin nHH AR Topaloglu et al. (2012) 

  KISS1R 19p13.3 4510 Kisspeptin receptor nHH AR de Roux et al. (2003); Seminara et al. (2003) 

TAC3 12q13.3 11521 Neurokinin B   nHH AR Topaloglu et al. (2009) 

  TACR3 4q24 11528 Neurokinin B receptor nHH AR Topaloglu et al. (2009) 

  SOX10 22q13.1 11190 SRY (sex determining region Y)-box 10 KS, WS AD Pingault et al. (2013) 

  WDR11 10q25.12 13831 WD repeat domain-11  KS, nHH AD? Kim et al. (2010) 

  SEMA3A 7q21.11 10723 Semaphorin 3A contributes to the KS phenotype? AD? Young et al. (2012), Hanchate et al. (2012) 

NELF 9q34.3 29843 Nasal embryonic LHRH factor contributes to the HH phenotype? NA Miura et al. (2004), Xu et al. (2011) 

 HS6ST1 2q14.3 5201 Heparan sulfate 6-O-sulfotranferase 1 contributes to the HH phenotype? NA Tornberg et al. (2011) 

  NDN 15q11.2 7675 Necdin NA NA Beneduzzi et al. (2011) 

  IL17RD 3p14.3 17616 Interleukin 17 receptor D contributes to the HH phenotype? NA Miraoui et al. (2013) 

  DUSP6 12q21.33   3072 Dual specificity phosphatase 6 contributes to the HH phenotype? NA Miraoui et al. (2013) 

  SPRY2 13q31.1 11270 Sprouty* homolog 2 (Drosophila) contributes to the HH phenotype? NA Miraoui et al. (2013) 

  SPRY4 5q31.3 15533 Sproyty* homolog 4, (Drosophila) contributes to the HH phenotype? NA Miraoui et al. (2013) 

  FLRT3 20p12.1 3762 Fibronectin leucine rich transmembrane protein 3 contributes to the HH phenotype? NA Miraoui et al. (2013) 

  FGF17 8p21.3 3673 Fibroblast growth factor 17 contributes to the HH phenotype? NA Miraoui et al. (2013) 

  FGF18 5q35.1 3674 Fibroblast growth factor 18 contributes to the HH phenotype? NA Miraoui et al. (2013) 

  SOX2 3q26.33 11195 SRY (sex determining region Y)-box 2 HH?, eye anomalies, SOD AD Stark et al. (2011) 

  HESX1 3p14.3 4877 HESX homeobox 1 KS? SOD NA Newbern et al. (2013) 

  HGNC, HUGO gene nomenclature committee; XR, X-linked recessive; AD, autosomal dominant; AR, autosomal recessive; HH, congenital hypogonadotropic 

hypogonadism; KS, Kallmann syndrome; nHH, normosmic HH; CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, 

genital abnormalities, and ear anomalies); HPE, holoprosencephaly; WS, Waardenburg syndrome; SOD, septo-optic dysplasia; SRY, Sex-determining region of the     

Y-chromosome; LHRH, luteinising hormone-releasing hormone; NA, not assessed; TK, tyrosine-kinase; ES cells, embryonic stem cells 

  *Sproyty is an antagonist of FGF-signaling in Drosophila 
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2.5 Constitutional delay of growth and puberty (CDGP) 

 

Clinically, onset of puberty can be assessed only indirectly by recording different physical 

changes related to pubertal maturation, which appear at different ages in healthy individuals, 

with the timing following a normal distribution (Tanner 1962). CDGP is the most common 

cause of delayed puberty. CDGP is a variant of the normal spectrum of pubertal timing and is 

characterized by first pubertal signs appearing at an age that is 2.0 standard deviations (SDs) 

above the mean age for pubertal onset in the absence of any illnesses causing pubertal delay 

(Sedlemeyer & Palmert 2002). According to British reference data (photographed breast, 

genital, and pubic hair stages of 420 institutionalized Caucasian British children from the 

1960s (Marshall & Tanner 1969, 1970)), the mean age at achieving Tanner stage B2 is 10.8 

years in girls and CDGP is diagnosed if no breast development occurs by 13.0 years. The B2 

mean age has been reported to be 10.8 years also in Finland and in other parts of Europe 

(Ojajärvi 1982, Mul et al. 2001, Juul et al. 2006). Based on British reference data the mean 

age for Tanner stage G2 is 11.6 years in boys, and CDGP is diagnosed if no testicular 

enlargement occurs before 13.5 years (Marshall & Tanner 1969, 1970).  The mean age at G2 

in other Western European countries is 11.5 years (Mul et al. 2001, Juul et al. 2006) and 12.2 

in Finland (Ojajärvi 1982).  

 

2.5.1 Differentiating CDGP from congenital HH is challenging 

 

CDGP is a diagnosis of exclusion. It is especially difficult to differentiate adolescents with 

CDGP from those with congenital HH, especially if early signs of gonadotorpin deficiency 

such as microphallus and/or cryptorchidism are absent (Root 2010). During initial evaluations 

adolescents with both etiologies are often prepubertal and have low levels of gonadotropins 

(Harrington & Palmert 2012). LH and FSH levels are low in CDGP because the HPG axis has 

not yet matured to secrete pubertal levels of GnRH, but in congenital HH levels are low 

because of a lack of GnRH secretion or action (Bianco & Kaiser 2009, Shaw et al. 2011). 

Family history of pubertal delay in siblings or parents is typical for CDGP (Sedlemeyer & 

Palmert 2002, Wehkalampi et al. 2008a), but individuals with delayed puberty are also seen 

among pedigrees with congenital HH, especially in those where the underlying genetic cause 

is FGFR1 or GNRHR mutation(s) (Pitteloud et al. 2006b, Raivio et al. 2009, Lin et al. 2007). 

Adolescents with CDGP may have also delayed adrenarche and pubarche, whereas 

adolescents with congenital HH are more likely to have delayed gonadal development alone, 
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but this distinction is often blurred (Sedlemeyer & Palmert 2002, Harrington & Palmert 

2012). To date, there is no diagnostic test that reliably distinguishes CDGP from HH, so in 

many cases only follow-up will reveal whether the condition is permanent HH or transient 

CDGP (Harrington & Palmert 2012, Palmert & Dunkel 2012).  

 

2.5.2 Unknown genetic background of CDGP 

 

Based on twin studies and similarities in the ages at pubertal onset between family members 

and within racial groups, it is evident that much of the variation of pubertal timing is due to 

genetic factors (Sedlemeyer et al. 2002). CDGP also tends to aggregate in families, and, 

although many genes may be involved, the inheritance patterns suggest that there are also 

single genes with major effects (Sedlmeyer et al. 2002, Wehkalampi 2008a). As CDGP is a 

variant of normal pubertal timing, identification of genes underlying CDGP would also 

provide information about genes important for pubertal onset in general, and vice versa.  

 

Leptin is an adipose tissue derived satiety hormone that signals the information from energy 

reserves to the hypothalamic GnRH region (Campfield et al. 1995). Leptin is an important 

regulator of several endocrine functions in humans, and mutations in leptin (LEP,  HGNC ID: 

6553) or in its receptor (LEPR, HGNC ID: 6554) lead to early-onset obesity, but also to 

delayed puberty development, reduced GH and thyrotropin levels (Strobel et al. 1998, 

Clement et al. 1998).  In the late 1990s, leptin was proposed to be the initial trigger for 

pubertal onset based on the observation that leptin induced pubertal pattern of LH release in a 

girl with congenital leptin deficiency (Farooqi et al. 1999) and reversed reproductive failure in 

leptin deficient mice (Chebab et al. 1996). The latter observation was contradicted by later 

studies showing that although leptin advanced puberty in food restricted rodents with delayed 

puberty, advancement was not observed relative to untreated animals (Cheung et al. 1997). 

Banerjee et al. (2006) genotyped LEP and LEPR polymorphisms from 81 CDGP subjects but 

no association with late pubertal development was found. 

 

The acid-labile subunit is a GH-dependent peptide that is involved in carrying insulin-like 

growth factor-1 around in the circulation. Mutation in the acid-labile subunit gene IGFALS 

(HGNC ID: 5468) have been reported in patients with delayed puberty but with only a modest 

degree of growth failure (Domene et al. 2004, Domene et al. 2007). However, no mutations 

were found when IGFALS was screened from 90 subjects with CDGP (Banerjee 2008). 
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Based on animal studies, thyroid transcription factor 1 (Ttf1) and transcription factor 

enhanced at puberty 1 (Eap1) control female sexual development (Mastronardi et al. 2006, 

Heger et al. 2007). Gene expression profiling of the nonhuman primate hypothalamus 

revealed that expression of both Ttf1 and Eap1 increases at puberty, and mice with deleted 

Ttf1/inhibited Eap1 exhibit delayed puberty and reduced reproductive capacity (Mastronardi 

et al. 2006, Heger et al. 2007). Very recently, TTF1 (HGNC ID: 12397) and EAP1 (HGNC 

ID: 14282) were sequenced from 133 patients with pubertal disorders, but no mutations were 

found (Cukier et al. 2013).   

 

Ghrelin is primarily secreted by gastric cells, and through interaction with its receptor GH 

segretagogue receptor (GHSR), it stimulates GH secretion and has a potent appetite 

stimulating effect (Sun et al. 2004).  GHSR is mainly expressed in the hypothalamus and 

pituitary. Mutations in GHSR (HGNC ID: 4267) have been implicated in the etiology of 

idiopathic short stature (Pantel et al. 2003) and in 2009, Pantel et al. reported an isolated GH 

deficiency patient with delayed puberty and compound heterozygous GHSR mutations (Pantel 

et al. 2009).  Pugliese-Pires et al. (2011) sequenced GHSR in 96 patients with idiopathic short 

stature, of which 31 also had CDGP. They found five different heterozygous mutations, all in 

patients with CDGP, suggesting a possible link between GHSR and CDGP. However, future 

studies with larger cohorts of CDGP patients, including family members, are needed to verify 

this connection.  

 

Besides candidate gene-based mutation screening strategies, linkage analyses and association 

analyses have also been employed in order to identify gene(s) important for pubertal onset. 

 

Genes underlying congenital HH (chapter 2.4) are obvious candidates for CDGP. In 2005, 

Sedlmeyer et al. investigated the association of GNRH1 and GNRHR sequence variants or 

haplotype structures in subjects with CDGP as well as in a large multiethnic cohort 

representing the full spectrum of normal pubertal timing. No association was found in either 

group. Gajdos et al. (2008) explored the association between common variants in KAL1, 

FGFR1, PROK2, PROKR2, GNRH1, GNRHR, KISS1, KISS1R, LEP, and LEPR and early or 

late menarche in 1801 girls, but no association was detected in this study, either. Genome-

wide linkage study of 52 Finnish families with CDGP suggested that the pericentromeric 

region of chromosome 2 harbors a gene predisposing to pubertal delay (Wehkalampi et al. 

2008b), but no significant signal was detected from this region in large genome-wide 
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association studies published in 2009, when four different research groups found that 

variation in or near the LIN28B (HGNC ID: 32207) was associated with pubertal timing in 

humans (Perry et al. 2009, Ong et al. 2009, He et al. 2009, Sulem et al. 2009). A year later, 

Widen et al. (2010) identified two distinct variants near and in LIN28B that were associated 

with human postnatal growth, especially with pubertal growth. However, subsequent 

sequencing of LIN28B from 145 subjects with CDGP revealed no sequence variation, so 

mutations in coding region of LIN28B are not causing CDGP (Tommiska et al. 2010). In 

2011, meta-analysis combining data from 32 genome-wide association studies in over 87 000 

women identified 30 novel loci for the timing of menarche, and provided evidence for a 

further 10 possible loci (Elks et al. 2011). In 2013, genome-wide association analyses in 18 

737 European samples that utilized longitudinally collected height measurements identified 

significant associations at 10 loci, including LIN28B. Five loci associated with pubertal timing 

(Cousminer et al. 2013). However, despite the numerous loci identified in these studies, the 

actual causal variants and implicated genes remain unidentified, both in CDGP and in 

pubertal timing in general. 



 

45 

 

3 AIMS OF THE STUDY  

 

 

 

* To characterize the molecular genetic features of KS patients in Finland (I, II, III) 

 

* To investigate the genetic overlap between HPE and KS (IV)   

 

* To further investigate the role of genes underlying congenital HH in CDGP (V) 
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4 SUBJECTS AND METHODS 

 

4.1 Subjects 

  

4.1.1 Patients with KS (I – IV) 

 

Patients diagnosed with congenital HH were enrolled from all five university hospitals in 

Finland. Discharge registers of Helsinki, Turku, Tampere, Kuopio and Oulu university 

hospitals were queried by International classification of disease (ICD) edition 8 (if 

applicable), 9 and 10 codes for HH (ICD-8: 253.1; ICD-9: 253.4; ICD-10: E23.04). Patients 

previously diagnosed with congenital HH on the basis of 1) absent or incomplete puberty by 

the age of 18 years, 2) low sex hormone levels in association with normal or subnormal 

gonadotropin levels, 3) otherwise normal anterior pituitary function, 4) no organic cause for 

their condition, and, in case of KS, 5) defective sense of smell detected by formal testing, 

anamnesis, or absent or rudimentary OB in MRI, were requested to participate. In addition to 

adult patients, 12–18 year-old patients with unequivocal signs of severe HH (boys with a 

history of cryptorchidism and/or micropenis), absent puberty, and anosmia/hyposmia were 

enrolled. Relatives of patients were contacted with the permission of the proband.  

 

Patients willing to participate were asked for a detailed medical history including history of 

cryptorchidism, micropenis, prior pubertal development, prior treatment, associated 

phenotypes, and the sense of smell. Patients underwent a complete physical examination. 

Olfaction was assessed by a 40-item smell identification test (University of Pennsylvania 

smell identification test, Sensonic Inc), and defective sense of smell was defined by score 

<5th percentile of age. Renal structures were assessed by abdominal ultrasound scan. 

Olfactory bulbs, sulci, and inner ears were visualized with MRI. Blood was drawn for serum 

biochemical testing (testosterone, estradiol, LH, FSH) and for DNA extraction for genetic 

analyses. The family members willing to participate were interviewed for prior pubertal 

development, fertility, associated phenotypes, and sense of smell. 

 

Out of 102 patients who were identified from hospital registers and contacted by a letter, 38 

(31%) agreed to participate. In addition, 17 patients were recruited during normal follow-up 

visits and 3 patients contacted our research group via webpage, so altogether 58 HH patients 
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were phenotyped. Recruitment yielded 45 patients meeting the criteria of congenitall HH 

(nHH or KS), and 34 KS patients were included in this thesis study.   

 

The incidence of KS in Finland (I) was assessed separately by register searches in the five 

university hospitals (ICD codes 9 and 10 for HH, years 1996 to 2007). Patients of Finnish 

origin, born between 1976 and 1987, and diagnosed with KS between 1996 and 2007 were 

included. To estimate the incidence of KS, the observed number of KS patients was compared 

with the number of live-born children in Finland between 1976 and 1987 

(http://pxweb2.stat.fi/database/StatFin/vrm/synt/synt_en.asp; Statistics Finland register 

database).   

 

In study III, one KS patient was from Estonia. He was diagnosed at the age of 17 years, based 

on anosmia from history, lack of puberty, low circulating basal testosterone in association 

with low gonadotropin levels. At the age of 19 years, he participated in a study investigating 

KS in Estonia.  

 

4.1.2 Subjects with CDGP (V) 

 

The enrolment, clinical details and workup of 146 subjects with CDGP analysed in study V 

have been previously described in detail (Wehkalampi et al. 2008a,b). In short, all subjects 

(116 males and 30 females) fulfilled the diagnostic criteria for CDGP; Tanner genital stage II 

(testis volume of more than 3 ml) beyond the age 13.5 years in boys and Tanner breast stage 

II beyond the age 13.0 years in girls (Marshall et al. 1969, Marshall et al. 1970). The mean 

age for acceleration of pubertal height growth and the mean age for peak height velocity were 

more than 2 SDs later than the average for both sexes (Karlberg et al. 2003, Tanner et al. 

1976). Medical history, clinical examination, and routine laboratory tests excluded chronic 

illnesses accounting for the delayed puberty. HH was excluded by GnRH testing and by 

clinical follow-up ensuring spontaneous pubertal development. Of the subjects 133 had 

familial background of CDGP.  In 13 subjects familial occurrence was not known.  
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4.1.3 Controls 

 

Controls used in genetic studies were from the same geographical region as the cases. 

Controls used in study I, IV and V were healthy anonymous blood donors obtained from the 

Finnish Red Cross Blood Service. Estonian controls were used in study III. 

 

4.2 Mutation analyses (I -V) 

 

Genomic DNA from blood leukocytes of the patients was extracted using NucleoSpin Blood 

XL kit (Macherey-Nagel). Genes implicated in congenital HH (I-V), HPE (IV) SOD (IV), and 

PHS (IV) (Table 3) were screened for mutations by direct sequencing. The coding exons and 

exon-intron boundaries of each gene were amplified with polymerase chain reaction using 

primers that were designed with Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/, 

Untergrasser et al. 2012, Koressaar et al. 2007) or previously published (most exons of 

FGFR1, Dode et al. 2003; most exons of CHD7, Lalani et al. 2005; all exons of PROK2, 

PROKR2 Dode et al. 2006; and WDR11, Kim et al. 2010). The correct size of polymerase 

chain reaction products were verified with agarose gel electrophoresis before purifying the 

products with ExoSAP-IT (Amersham Biosciences) or Illustra ExoProStar (GE Healthcare) 

treatment. Samples were bi-directly sequenced using the ABI BigDyeTerminator Cycle 

Sequencing Kit (v3.1) and ABI Prism 3730xl DNA Analyzer automated sequencer (Applied 

Biosystems). The sequences were aligned and read with Sequencher® 4.9 software (Gene 

Codes Corporation).  

 

In addition to direct sequencing, FGFR1 and CHD7 were screened by multiplex ligation-

dependent probe amplification assay (MLPA, Salsa MLPA Kits P133 Kallmann-2 and P201-

B1 CHARGE, MRC-Holland) according to the manufacturer’s protocol (I). MLPA is able to 

detect large deletions, insertions, or duplications that could be missed with direct sequencing. 

MLPA was performed only for CHD7 and FGFR1 as in other KS genes such aberrations are 

very rare. Overview of mutation analyses is presented in table 3. 
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Table 3. Mutation analyses. 

Gene HGNC ID RefSeq Coding exons Method Subjects Sudy 

KAL1 6211 NM_000216.2   1-14 DS KS  I - IV 

FGFR1 3688 NM_023110.2   2-18 (8A, 8B) * DS, MLPA KS, CDGP  I - V 

FGF8 3686 NM_033163.3   1-6 DS KS  I - IV 

PROK2 18455 NM_001126128.1  1-4 DS KS  I - IV 

PROKR2 15836 NM_144773.2  1-2 DS KS  I - IV 

CHD7 20626 NM_017780.2   2-38 DS, MLPA KS  I, III, IV 

WDR11 13831 NM_018117.11 1-29 DS KS  I, III, IV 

NELF 29843 NM_001130969.1  1-16 DS KS  I 

SOX10 11190 NM_006941.3 2-4 DS KS  III 

SOX2 11195 NM_003106.3  1 DS KS  IV 

SHH 10848 NM_000193.2  1-3 DS KS  IV 

SIX3 10889 NM_005413.3 1-2 DS KS  IV 

TGIF1 11776 NM_170695.3 1-3 DS KS  IV 

TDGF1 11701 NM_003212.3  1-6 DS KS  IV 

FOXH1 3814 NM_003923.2  1-3 DS KS  IV 

GLI2 4318 NM_005270.4  2-14 DS KS  IV 

GLI3 4319 NM_000168.5  2-15 DS KS  IV 

GNRHR 4421 NM_000406.2 1-3 DS CDGP V 

TAC3 11521 NM_013251.3 2-6 DS CDGP (females) V 

TACR3 11528 NM_001059.2 1-5 DS CDGP (females) V 

HGNC, HUGO gene nomenclature commitee; RefSeq, the reference sequence database; DS, direct sequencing;  MLPA 

multiplex ligation-dependent probe amplification assay; KS, Kallmann syndrome; CDGP, subjects with 

constitutional delay of growth and puberty. * In FGFR1, both exons 8A and 8B, generating isoforms 

FGFR1-IIIb and FGFR1-IIIc by alternative splicing were screened (Miura et al. 2010).  

 
 

 
  Nonsense mutations (changes of one nucleotide in the DNA sequence that introduce a 

premature stop codon in the transcript), frameshift mutations (caused by deletions, 

duplications or insertions of one or more nucleotides in the protein-coding sequence, and 

result in disrupted reading-frame) and splice-site mutations (nucleotide changes that occur in 

the highly conserved splice donor sites, branch sites or splice acceptor sites and cause 

incorrect splicing of the following exon) were categorized as pathogenic mutations. FGFR1 

and PROKR2 missense mutations (nucleotide changes in the DNA sequence that cause amino 

acid to change), that were absent from the SNP databases were further characterized by 

functional in vitro studies. 
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4.3 Functional studies (I, II) 

 

4.3.1 Mutagenesis (I, II) 

 

To evaluate the functional consequences of FGFR1 (G48S, R209H, E670A) and PROKR2 

(G234D) missense mutations in vitro, mutant construcs were created. Expression plasmid 

pcDNA3.1+ containing N-terminally myc-tagged FGFR1c wild type (WT) complementary 

DNA (cDNA) (I) was received from Dr. Nelly Pitteloud (Centre Hospitalier Universitaire 

Vaudois, Switzerland), and expression plasmid pcDNA3.1+ containing N-terminally HA 

(human influenza hemagglutinin) -tagged PROKR2 WT cDNA (II)  was received from Dr. 

Yisrael Sidis (University of Lausanne, Switzerland). Mutations were created using 

QuikChange II XL site-directed mutagenesis kit (Stratagene) according to manufacturer’s 

instructions. The nucleotide sequences of the mutants were confirmed by sequencing. 

 

4.3.2 Cell lines, culture conditions and transfections (I, II) 

 

COS-1 cells, are a fibroblast-like cell line derived from African green monkey kidney tissue, 

were used for FGFR1 expression and maturation studies (I) and for PROKR2 

immunocytochemistry analysis (II). L6 cells, rat thigh myoblasts, were used for FGFR1 

MAPK signalling studies (I). Both cells were maintained in Dulbecco's modified eagle 

medium (Sigma) supplemented with penicillin (25 U/ml), streptomycin (25 U/ml), 10% fetal 

bovine serum (v/v) and L-glutamine. For functional studies these cells were seeded on 24-

well plates, 3 x 10
4
 COS-1 cells/well or 1 x 10

4
 L6 cells/well.  Both cell lines were from 

American type culture collection. 

 

Transfections were performed using Fugene HD transfection reagent (Roche) according to 

manufacturer’s recommendation. For each 24-well plate well total of 300ng of DNA was 

transfected containing 50ng of Myc-FGFR1 or HA-PROKR2 expression vector and 250ng of 

empty pcDNA3.1+ vector (EV) or 300ng of EV alone (negative control). Transfection 

optimatization for both COS-1 and L6 cells was performed using expression plasmid 

containing green fluorescent protein. COS-1 cells were transfected at sub-confluent stage and 

L6 cells at 10% confluence stage.  
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4.3.3 FGFR1 receptor expression and maturation studies (I) 

 

One day after COS-1 cells were transfected with Myc-tagged wild-type (WT) or mutated 

FGFR1 cDNA, cells were washed twice with PBS (phosphate buffered saline) and lysed with 

100 µl of radioimmunoprecipitation assay buffer (Sigma) containing 1X Halt protease 

inhibitor cocktail (Pierce) and lysates of 3 replicate wells were pooled to one sample. Protein 

concentration of each sample was measured with Protein Quantification kit-Rapid (Sigma) 

and 5µg of protein was subjected to PNGasef or EndoHf endoglycosidase digestion according 

to manufacturer’s recommendations (New England Biolabs). PNGase digestion removes all 

N-linked carbohydrate chains from the receptor whereas EndoHf treatment removes only 

high-mannose N-linked sugars, which are typical for immature forms of the receptor. Samples 

were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (Gold Precast 4-

20% Tris-Glycine Gels, Lonza) and transferred onto nitrocellulose membrane (GE 

Healthcare). Immunoblotting was performed with anti-Myc primary antibody (1:1000, clone 

4A6, Millipore) and a goat anti-mouse horseradish peroxidase (HRP) -conjugated secondary 

antibody (1:3000, Bio-Rad). Immunoreactivity was visualized using Amersham western 

blotting detection reagents (GE Healthcare). To control for equal loading, blots were stripped 

using Restore western blot stripping buffer (Pierce) and reprobed using an anti-β-actin 

primary antibody (1:1000, sc-47778, Santa Cruz Biotechnology), and the secondary antibody 

(see above). Receptor expression levels were visualized from the PNGase treated samples and 

receptor maturation patterns from the EndoHf treated samples. Experiment was performed 

three times. 

 

4.3.4 FGFR1 cell surface expression (I) 

 

One day after COS-1 cells were transfected with Myc-tagged WT or mutated FGFR1 cDNA, 

cell were washed with PBS and fixed with 4% paraformaldehyde in PBS for 15 minutes. Cells 

were then blocked with 1% bovine serum albumine in PBS for 1 hour. FGFR1 cell-surface 

expression levels were determined using an anti-Myc primary antibody (1:1000, clone 4A6, 

Millipore) and a goat anti-mouse HRP-conjugated secondary antibody (1:3000, Bio-Rad) and 

assayed using 3,3`,5,5`tetramethylbenzidine (Sigma). HRP catalyzes the conversion of 

3,3`,5,5`tetramethylbenzidine into coloured product. Reaction was stopped by adding 0.5 M 

H2SO4 and intensity of coloured product was measured with spectrophotometer (450nm). 

Experiment was performed in triplicates and repeated three times. 
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4.3.5 FGFR1 MAPK-signalling studies (I) 

 

After 5 hours of transfecting L6 myoblasts with Myc-tagged WT or mutated FGFR1 cDNA, 

culture media was replaced with starvation media containing only 2% fetal bovine serum. 20 

hours later, the cells were stimulated with FGF2 (Cell Signaling Technology) 50ng/ml for 

0/2/10/30 min. At each time point, the stimulation was stopped by washing the cells with ice-

cold PBS. Cells were then lysed with 50µl of radioimmunoprecipitation assay buffer buffer 

(Sigma) containing 1X Halt phosphatase inhibitor cocktail (Pierce), and lysates of 3 replicate 

wells at each time point were pooled. Samples containing 8µg of protein (Protein 

Quantification kit-Rapid, Sigma) were resolved as described above and subjected to western 

blot using a Phospho-p44/42 MAPK (Thr202/204) primary antibody (1:1000, Cell Signaling 

Technology), and a HRP-conjugated secondary antibody (1:3000, Bio-Rad Laboratories). 

Immunoreactivity was visualized as described above. To control for equal loading, blots were 

stripped as described above, and reprobed using a p44/42 MAPK primary antibody (1:1000, 

Cell Signaling Technology). Experiment was performed three times. 

 

4.3.6 Immunocytochemistry (II) 

 

COS-1 cells on 3,5mm coverslips were transfected with HA-tagged WT or mutated PROKR2 

cDNA. After 24 h, cells were washed with PBS and fixed with 4% paraformaldehyde for 10 

minutes. The cells were blocked with 1% bovine serum albumin in PBS with or without 0.1% 

Triton-X for one hour.  The cells were then treated with anti-HA-antibody (1:1000, H9658, 

Sigma) and Alexa Fluor 568-conjugated secondary antibody (1:500, Invitrogen) and mounted 

with mounting solution containing Dapi (Vector Labs). Images were captured with an 

Axioplan 2 fluorecence microscope (Carl Zeiss Light Microscopy). Experiment was 

performed twice. 

 

4.4 Statistical and bioinformatical analyses (I – V) 

 

4.4.1 Statistical significance (I, V) 

 

Fisher’s exact test was used to compare the frequency of FGFR1 mutations in males and 

females (I), the incidence of KS between boys and girls (I), and the frequency of GNRHR 
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mutations in CDGP subjects vs. controls (V). All p-values are two-sided, and p < 0.05 was 

accepted to indicate statistical significance.  

 

4.4.2 Freely available databases (I – IV)  

 

Several databases listing human genetic variation were utilized troughout this thesis: The 

National center for biotechnology SNP database dbSNP 

(http://www.ncbi.nlm.nih.gov/projects/SNP/),  the 1000 Genomes Project database 

(http://www.1000genomes.org/), Exome variant server (http://evs.gs.washington.edu/EVS/), 

and Leiden open variation database (http://grenada.lumc.nl/LOVD2/WS/home.php?select).   

 

PolyPhen (I), PolyPhen2 (Adzhubei et al. 2002, http://genetics.bwh.harvard.edu/pph/; 

http://genetics.bwh.harvard.edu/pph2/), and MutPred (Li et al. 2009, 

http://mutpred.mutdb.org/) were used to evaluate the functional significance of the missense 

variants found. PolyPhen (=Polymorphism Phenotyping) is a tool which predicts possible 

impact of an amino acid substitution on the structure and function of a human protein using 

straightforward physical and comparative considerations. MutPred is a web application tool 

that is developed to classify amino acid substitutions as disease-associated or neutral in 

human. MutPred is based upon SIFT (web tool that predicts whether an amino acid 

substitution affects protein function, http://sift.jcvi.org/) and a gain/loss of 14 different 

structural and functional properties. 

 

4.5 Ethics 

 

The study was carried out according to the declaration of Helsinki and Finnish legislation and 

performed with appropriate permissions from each university hospital in Finland and approval 

from the Ethics Committee of the Hospital for Children and Adolescents and the Department 

of Psychiatry (E7). Written informed consents were obtained from the participants, and also 

from their guardian if the participant was less than 16 yrs of age. The genetic analyses of KS 

patient and his parents from Estonia (III) had the appropriate permissions. 

 

The collection of data and DNA of subjects with CDGP (V) were also approved by the Ethics 

Committee E7. All participants or their parents or guardians provided their written informed 

consents. 



 

54 

 

5 RESULTS 

 

5.1  Incidence of KS and phenotypic features of KS patients in Finland (I) 

 

Altogether 17
1
 KS patients (14 boys, 3 girls) were diagnosed between 1996 and 2007. They 

were born between 1976 and 1987, when a total of 767 778 live-born infants (392 900 boys, 

374 878 girls) were born. The overall minimal incidence of KS was 1 in 45 000 new-borns. 

Incidence estimates differed significantly between boys (1 in 28 000) and girls (1 in 125 000) 

(p=0.01).  

  

Thirty-four KS patients (6 women, 28 men) were included in the molecular genetic part of 

this study. The phenotypic features of these patients are presented in Table 4. In short, five 

female patients had absent pubertal development, whereas one had mild form of congenital 

HH (secondary amenorrhea, infertility). Reproductive phenotype of KS men varied from 

severe (cryptorchidism and/or micropenis in childhood) to reversal of HH later in life. 

Twenty-one (62%) patients had a family history of congenital HH or associated features. 

Three patients had CHARGE associated features (KS19, KS20 and KS25) and six had a 

hearing impairment (KS14, KS20, KS24, KS25, KS27, KS_E). Four men were of other than 

Finnish origin (KS26, KS30, KS37, KS_E).   

 

 

 

 

 

 

 

 

                                                 
1
 Incidence calculations have been updated to include one male KS patient, born in 1978, who was identified 

after publication I was published. 
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Table 4. Phenotypic features of Kallmann syndrome patients in Finland. 

Proband Sex Age Evidence of KS Family History MRI Additional Features Mutated Gene Study 

KS1 F 16 Absent puberty, anosmia None NA Dental agenesis FGFR1 I 

KS2 F 27 Absent puberty, anosmia KS, nHH NA None FGFR1 I 

KS3 F 26 Absent puberty, anosmia nHH, infertility Absent OB and  None FGFR1 I 

     

sulci l.a. 

   
KS4 F 33 Absent puberty, anosmia KS Absent OB l.a. Cleft lip, dental agenesis FGFR1 I 

KS5 F 41 Absent puberty, infertility, anosmia KS Absent OB l.a. None FGFR1 I 

KS6  F 35 Secondary amennorrhea, infertility, anosmia Anosmia, infertility Absent OB l.a. None 

 

III, IV 

KS7 M 48 Bilateral CO, MP, absent puberty, anosmia KS NA Synkinesia, dental agenesis KAL1 I 

KS8 M 41 Absent puberty, infertility, anosmia Anosmia NA None 

 
I, III, IV 

KS9 M 46 Bilateral CO, MP, absent puberty,  KS NA Synkinesia, renal agenesis KAL1 I 

   

infertility, anosmia 

     
KS10 M 25 MP, absent puberty, anosmia None NA None 

 
I, III, IV 

KS11 M 56 MP, absent puberty, anosmia None NA Cleft lip and palate 

 
I, III, IV 

KS12 M 50 Partial puberty, anosmia Cleft lip NA None 

 
I, III, IV 

KS13 M 30 Unilateral CO, absent puberty, infertility, anosmia KS NA Dental agenesis 

 
I, III, IV 

KS14 M 49 Unilateral CO, absent puberty, infertility, anosmia KS NA Synkinesia, hearing impairment KAL1 I 

KS15 M 13 Unilateral CO, MP, anosmia None NA None 

 
I, III, IV 

KS16 M 25 Unilateral CO, absent puberty, anosmia None NA None 

 
I, III, IV 

KS17 M 41 MP, absent puberty, anosmia None NA None FGFR1 I 

KS18 M 61 Partial puberty, inferility, anosmia KS absent OB l.a. None FGFR1 I 

KS19 M 48 Bilateral CO, absent puberty, anosmia None NA Cup-shaped ears, upper body  

 
I, III, IV 

      

muscular atrophy 

  
KS20 M 37 Partial puberty, anosmia Coloboma absent OB l.a. Reversal of HH, SCC hypoplasia CHD7 I 

      

hearing impairment, unspecified   

  
            atrophicarea in retina     
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KS21 M 18 Bilateral CO, MP, absent puberty, anosmia None NA High arched palate   I, III, IV 

KS22 M 49 Bilateral CO, MP, absent puberty, anosmia None Absent OB,  None 

 
I, III, IV 

     

hypoplastic sulci l.a. 

   
KS23 M 52 MP, absent puberty, anosmia nHH,  NA Cleft lip and palate FGFR1 I 

    

limb anomalies 

    
KS24 M 15 Bilateral CO, MP, absent puberty, anosmia Deafness NA Bilateral sensorineural hearing loss 

 

I, III, IV 

KS25 M 24 Bilateral CO, absent puberty, anosmia DP Rudimentary OB,  Cleft lip and palate, cup-shaped   

 
I, III, IV 

     

absent sulci l.a. ears, SCC dysplasia, bilateral 

  

      

hearing impairment, unilateral 

  

      

coloboma and microphthalmia 

  
KS26* M 22 Absent puberty, anosmia None NA None 

 
I, III, IV 

KS27 M 56 Absent puberty, anosmia Anosmia Absent OB l.a. Unilateral hearing loss,  

 
I, III, IV 

      

color blindness 

  
KS28 M 28 Unilateral CO, MP, absent puberty, anosmia Anosmia Small/absent OB High arched palate 

 
I, III, IV 

KS29 M 41 MP, absent puberty, anosmia None Absent OB l.a. None 

 
I, III, IV 

KS30* M 45 Absent puberty, anosmia KS, nHH, cleft lip NA None FGFR1 I 

KS31 M 42 Absent puberty, anosmia Inner ear anomalies Absent OB l.a. None 

 
I, III, IV 

KS36 M 17 MP, CO, absent puberty, anosmia None Rudimentary OB None 

 
III, IV 

KS37* M 15 MP, absent puberty, anosmia KS None None PROKR2 II 

KS_E* M 17 Absent puberty, anosmia None Absent OB l.a. Unilateral hearing loss, early   SOX10 III 

      

grayin, broad nasal bridge,  

  

      

mild dystopia canthorum 

  
KS, Kallmann syndrome; nHH, normosmic HH; F, female; M, male; MRI, magnetic resonance imaging; OB, olfactory bulbs; NA, not assessed; CO; cryptorchidism; MP, micropenis;    
DP delayed puberty; SCC, semicircular canal. Patient KS_E is diagnosed and treated in Estonia. 

* Other than Finnish origin  
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5.2 Molecular genetic features of KS patients (I-IV) 

 

Out of 34 KS patients in this study, 15 (44%) got a molecular genetic diagnosis. Overview of 

conclusive mutations is presented in Table 5 and more detailed information about the results 

of the mutation analyses below. 
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Table 5. Kallmann syndrome patients with conclusive mutations.  

Proband Gene Nucleotide change Amino acid change Type Predicted effect In vitro  Reference Study 

            functional      

            studies     

KS1 FGFR1 c.246_247delAG p.E84GfsX26* frameshift Leads to premature stop codon  

 

Dode & Hardelin 2009 I 

KS2 FGFR1 c.142G>A p.G48S missense Impaired MAPK signalling X Trabach et al. 2006 I 

KS3 FGFR1 c.961_962delAA p.K321RfsX13 frameshift Leads to premature stop codon  

 

Dode & Hardelin 2009 I 

KS4 FGFR1 c.1825C>T p.R609X nonsense Premature stop codon  

 

Riley et al. 2007 I 

KS5 FGFR1 c.1305_1306dupAT p.S436YfsX3 frameshift Leads to premature stop codon  

  

I 

KS7 KAL1 g.2357_2360delAgta 

 

splice site Abolishes the splice site 

  

I 

KS9 KAL1 c.784C>T p.R262X nonsense Premature stop codon  

 

Söderlund et al. 2002 I 

KS14 KAL1 c.471_472delCT p.S158WfsX45 frameshift Leads to premature stop codon  

  

I 

KS17 FGFR1 c.626G>A p.R209H missense ? X 

 

I 

KS18 FGFR1 c.961_962delAA p.K321RfsX13 frameshift Leads to premature stop codon  

 

Dode & Hardelin 2009 I 

KS20 CHD7 c.151C>T p.Q51X nonsense Premature stop codon  

  

I 

KS23 FGFR1 c.2009A>C p.E670A missense Impaired MAPK signalling X 

 

I 

KS30 FGFR1 c.11G>A p.W4X nonsense Premature stop codon  

  

I 

KS37 PROKR2 c.701G>A/c.701G>A p.G234D/p.G234D missense Possibly impairs the cell-surface targeting X 

 

II 

KS_E SOX10 c.184G>T p.E62X*  nonsense Premature stop codon      III 

MAPK, mitogen-activared protein kinase 

      * confirmed de novo mutation 
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5.2.1 Mutations in FGFR1 (I) 

 

Nine KS patients had an FGFR1 mutation (9/34, 26%). A significantly higher proportion of 

women (5/6, 83%) carried an FGFR1 mutation compared with men (4/28, 14%, p=0.002). All 

female probands with an FGFR1 mutation had severe HH (Table 4). Men with FGFR1 

mutation had variable reproductive phenotypes. All FGFR1 mutations found were 

heterozygous. 

 

Proband KS1 carried a frameshift mutation c.246_247delAG (p.E84GfsX26) that has been 

previously reported in KS (Dode & Hardelin 2009). She had no family history of congenital 

HH and was the only proven carrier of de novo FGFR1 mutation.  Proband KS2 carried a 

missense mutation c.142G>A (G48S) previously described in a patient with nHH (Trarbach et 

al. 2006). She had severe HH but her anosmic father carrying the same mutation had had four 

children during testosterone therapy representing a rather mild reproductive phenotype. Her 

healthy son with minipuberty was also a carrier (unpublished result). Her brother had nHH 

but he was unavailable for mutation analysis (Figure 7). Proband KS3 with severe HH carried 

a frameshift mutation c.961_962delAA (p.K321RfsX13) previously reported in KS (Dode & 

Hardelin 2009). Her sister, mother, aunt and cousin carried the same mutation and had milder 

phenotypes (Figure 7). This same mutation was also found in the male proband KS18 who 

had partial puberty, infertility and anosmia. Proband KS4 carried a nonsense mutation 

c.1825C>T (p.R609X). This mutation has been previously described in a family with KS and 

clef lip and palate (Riley et al. 2007), and also proband KS4 had cleft lip and palate. Proband 

KS5 with severe KS carried a novel frameshift mutation c.1305_1306dupAT (p.S436YfsX3). 

This mutation was passed on to her children born after assisted reproductive techniques, and 

her daughter had KS and her son had nHH. Proband KS23 with history of micropenis and his 

brother with nHH and limb anomalies carried a novel missense mutation c.2009A>C 

(p.E670A). They both also had cleft lip and palate. Another novel missense mutation 

c.626G>A (p.R209H) was found in male proband KS17. Proband KS30 carried a novel 

nonsense mutation c.11G>A (p.W4X). He had siblings with KS and nHH but they were 

unavailable for mutation analysis. 

 

Autosomal dominant mode of inheritance was apparent in almost all families where proband 

carried an FGFR1 mutation (7/9, presented in figure 7). Proband KS17 had no previous 

family history, but unlike with proband KS1, his mutation could not be confirmed as de novo 
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as parents were unavailable for testing. Variable expressivity, typical for FGFR1 mutations, 

was seen both within families (KS2, KS3, KS5 and KS23, figure 7), and in unrelated 

probands carrying the same mutation (KS3 and KS18, figure 7).   

 

All frameshift and nonsense mutations lead to premature stop codons. Missense mutations 

G48S, R209H and E670A were absent from the dbSNP database, from at least 100 controls, 

and were further characterized by functional in vitro studies (see below). No intragenic 

aberrations were found in MLPA analysis of FGFR1. 
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Figure 7. Pedigrees of families where the proband carried an FGFR1 mutation. Autosomal 

dominant mode if inheritance and variable expressivity of the mutations is apparent. Families 

are named according to the proband. Proband is marked with an arrow.  
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5.2.1.1 Functional characterization of mutant FGFR1s (I) 

 

FGFR1 expression and maturation studies  

The overall expression and maturation patterns of FGFR1 mutants G48S, R209H and E670A 

were analysed in COS-1 cells. Western blot from the cell lysates shows two immunoreactive 

specific bands for WT FGFR1 at 140 kDa and 120 kDa (Figure 8). PNGase digestion 

removed all N-linked carbohydrate chains from the receptor and reduced these differently 

glycosylated bands into a single one of ~100kDa. The overall expression of the mutant 

receptors as compared to expression of WT receptor was judged from the PNGase treated 

samples, and no clear difference was seen. EndoHf treatment, which removes only sugars that 

are typical for immature forms of the receptor, changed the mobility of only the minor 

120kDa band (Figure 8), which indicates that it represents the partially processed receptor. 

The 140kDa band resistant for EndoHf treatment represents the fully glycosylated, mature 

form of the receptor. Mutant receptors G48S, R209H, and E670A had a similar maturation 

pattern as the WT receptor.  

 

 

 
 

Figure 8. Fibroblast growth factor receptor 1 (FGFR1) expression and maturation studies. 

COS-1 cells were transiently transfected with wild-type (WT), G48S, R209H, or E670A 

FGFR1 complementary DNA. Cell lysates were subjected to PNGase or EndoHf treatment. 

The overall expression of the mutants was not significantly decreased as compared to WT 

(upper panel, PNGase treated bands) and no difference in maturation pattern was observed 

(lower panel). EV, empty vector pcDNA3.1+. 
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FGFR1 cell surface expression 

Cell surface expression of the WT receptor and the mutants G48S, R209H, and E670A were 

also examined in COS-1 cells. Consistent with the results of total expression and maturation 

studies, the G48S, R209H, and E670A mutants had similar cell surface expression levels as 

the WT (Figure 9).  

 

 

 
 

Figure 9. Cell surface expression. COS-1 cells were transiently transfected with wild-type 

(WT), G48S, R209H, or E670A fibroblast growth factor receptor 1 (FGFR1) complementary 

DNA. Cell-surface expression levels were determined from fixed cells with enzyme linked 

immunosorbent assay-based method. The mutant FGFR1s have a similar cell surface 

expression levels as the WT receptor. EV, empty vector pcDNA3.1+. 

 

 

FGFR1 MAPK-signaling studies 

The signalling activity of the FGFR1 mutants G48S, R209H and E670A as compared to WT 

receptor was analysed in L6 myoblasts. L6 cells were used as they are largely devoid of 

endogenous FGFRs and FGFs (Newberry et al. 1996). Cells expressing WT FGFR1 receptor 

showed a clear phosphorylation of MAPK after 10 and 30 min of FGF2 treatment (50ng/ml) 

(Figure 10). No ligand-induced phosphorylation of MAPK was seen in any of the time points 

(2/10/30min) in cells transfected with G48S and E670A mutant receptors, whereas the R209H 

mutant responded to FGF2 treatment similarly to WT (Figure 10). All untreated samples (0 

min) were also run on the same gel, and they did not display differences in MAPK 

phosphorylation indicating similar base-line activities. 
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Figure 10. Mitogen-activated protein kinase (MAPK) signalling studies. L6 cells were 

transiently transfected with wild-type (WT), G48S, R209H, or E670A fibroblast growth factor 

receptor 1 (FGFR1) complementary DNA and stimulated with fibroblast growth factor 2 for 

0/2/10/30 min. WT and mutant receptor R209H show clear phosphorylation of MAPK after 

10 minutes. No clear phosphorylation was seen with mutants G48S and E670A.  

 

 

5.2.2 Mutations in KAL1 (I) 

 

Three male probands (3/34, 9%) had a KAL1 mutation. They all had severe KS (history of 

cryptorchidism and micropenis) and also synkenisia (mirror movements). Proband KS7 

carried a novel splice site mutation g.2357_2360delAgta. This deletion of four nucleotides in 

the exon 8 - intron 8 boundary most likely abolishes the splice site, and results in an aberrant 

transcript. Unfortunately cDNA was not available for testing. Probands nephew and uncle had 

KS and his sister was an unaffected carrier of the mutation (Figure 11). Proband KS9 carried 

a previously described nonsense mutation c.784C>T (p.R262X) (Söderlund et al 2002).  In 

addition to severe KS and synkinesia, he also had unilateral renal agenesis. Proband KS14 

carried a novel frameshift mutation c.471_472delCT (p.S158WfsX45). His uncle had had KS 

and his mother and sister were both unaffected carriers of the mutation (Figure 11). Both the 

nonsense mutation and the frameshift mutation lead to premature stop codons. X-linked 

recessive mode of inheritance was apparent in families of probands KS7 and KS14 (Figure 

11).  
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Figure 11. Pedigrees of families where the proband carried a KAL1 mutation. X-linked 

recessive mode of inheritance was apparent in families KS7 and KS14. Families are named 

according to the proband. Proband is marked with an arrow. 

 

 

5.2.3 Mutations in CHD7 (I) 

 

One male proband (KS20, 1/34, 3%) carried a novel mutation c.151C>T (p.Q51X) in CHD7.  

This nonsense mutation leads to a premature stop codon. Mutation was not reported in the 

dbSNP database. In addition to KS, proband had semicircular canal hypoplasia, hearing 

impairment and an unspecified atrophic area in retina, which are CHARGE associated 

features. He had no previous family history of KS or CHARGE but his daughter had 

unilateral microphthalmia and bilateral coloboma. Later on, he underwent reversal of HH 

(Laitinen et al. 2012). 

 

5.2.4 Mutations in PROKR2 (II) 

 

One male proband (KS37, 1/34, 3%) and his brother carried a novel homozygous missense 

mutation c.701G>A (p.G234D) in PROKR2. Both of them had severe KS but no additional 

phenotypic features. Their parents were healthy heterozygous carriers of the mutation in 

accordance with recessive mode of inheritance (Figure 12). Brothers had four more siblings 

but their phenotypic features are unknown. This family was from Iraq. 
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Figure 12. Pedigree of a family with autosomal recessive PROKR2 mutation. Proband is 

marked with an arrow. 

 

The c.701G>A (p.G234D) mutation was not reported in the dbSNP database, and was 

predicted ‘probably damaging’ by Polyhen2. Mutation was further characterized by 

immunocytochemistry analysis in COS-1 cells using a HA-tagged PROKR cDNA. Compared 

to the WT receptor, G234D mutant receptor seems to have an impaired cell surface targeting 

(Figure 13). 

 

 

Figure 13. Cell surface and intracellular expression of wild type (WT) and G234D mutant 

prokineticin receptor 2.  Fluorescence immunocytochemistry analyses were performed in 

COS-1 cells transiently transfected with either the WT or mutant (G234D) constructs. WT 

receptor was mainly localized at the cell membrane (upper left corner). The mutant receptor 

appeared to be localized more at the cytoplasmic compartments (middle panels). Empty 

vector (pcDNA3.1+) was used as a negative control.    
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In addition to the c.701G>A (p.G234D) mutation, a PROKR2 polymorphism c.802C>T 

(R268C) (rs 78861628; MAF (minor allele frequency) 0.01) segregated in the family. 

Brothers were homozygous and their parents were heterozygous for this variant. 

 

5.2.5 Mutations in SOX10 (III) 

 

Proband KS_E with KS and hearing loss carried a heterozygous nonsense mutation c.184G>T 

(p.Glu62X) in the first coding exon of SOX10. This mutation was not present in 90 control 

individuals or reported in relevant databases (dbSNP, 1000 Genomes Project database, Exome 

Variant Server, Leiden Open Variation Database). MRI examination revealed OB aplasia. He 

had quite many gray hairs, broad nasal bridge, and mild dystopia canthorum. He had complete 

hearing loss on the right side, present from birth, and mild sensorineural hearing loss in high 

frequencies was noted in his left ear audiogram. Proband had no family history of KS or WS 

and the mutation was confirmed as de novo. 

 

5.2.6 Additional findings (I) 

 

Two probands with conclusive mutations in FGFR1 carried also variants in NELF, gene 

suggested to be associated with KS. Proband KS17 (FGFR1: c.626G>A (p.R209H)) carried a 

missense variant c.280 G>A (p.G94S) in NELF. This variant was also present in the controls 

(6/100) and is now reported in the dbSNP database (rs199887535). Proband KS4 (FGFR1: 

c.1825C>T (p.R609X)) carried a missense variant c.1514 C>T (p.T505M) in NELF. This 

variant was also present in the controls (1/100). 

 

Proband KS8 carried a missense variant c.7988C>T (p.A2663V) in CHD7. This variant was 

not present in the controls (0/100) and is not reported in dbSNP database.  Proband had no 

additional phenotypic features. His mother’s father had had anosmia. Unfortunately his 

parents were unavailable for mutation analysis.  
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5.3 Mutation analysis of HPE genes in KS patients (IV) 

 

Eight genes (SOX2, SHH, SIX3, TGIF1, TDGF1, FOXH1, GLI2 and GLI3) in which 

mutations are known to cause HPE, SOD, (SOX2) and PHS (GLI3) were screened in nineteen 

KS probands without mutations in the known KS genes. Male proband KS22 carried two 

heterozygous missense variants, one in SIX3 (c.428G>A, p.G143D) and the other in GLI2 

(c.2509 G>A, p.E837K). These variants were not present in 200 controls, but the GLI2 

E837K was reported in the dbSNP database (rs193090538; MAF 0.001). According to 

MutPred probability of a deleterious mutation is 0.5 for the SIX3 variant and 0.284 for the 

GLI2 variant, but both of them were predicted to be possibly damaging by PolyPhen2. 

Probands MRI revealed absent OBs and partially hypoplastic olfactory sulci. He had no 

additional phenotypic features and no family history of KS. Other found variants were known 

polymorphisms. 

 

5.4 Mutation analysis of FGFR1, GNRHR, TAC3 and TACR3 in subjects CDGP (V) 

 

Altogether 146 subjects (116 males and 30 females) with CDGP were analysed for mutations 

in FGFR1 and GNRHR. Females were also analyzed for TAC3 and TACR3. One male subject 

carried a heterozygous missense change c.1307 C>G, (p.S436C) in FGFR1. This variant is 

not reported dbSNP database but it was also present in the subject’s mother with normal 

timing of puberty and in the controls (1/100).  

 

Two heterozygous missense mutations were found in GNRHR; c.317 A>G (p.Q106R) in one 

female and c.785G>A (p.R262Q) in 3 males and in 2 females. Both of these mutations are 

known to cause autosomal recessive normosmic HH (de Roux et al. 1997). Heterozygous 

carriers were also found among controls with the same frequencies as the cases (Q106R: 

1/146, 0.7% in cases vs. 2/200, 1.0% in controls, p=1.0; R262Q: 5/146, 3.4% in cases vs. 

3/200, 1.5% in controls, p= 0.3). Also, a novel deletion mutation, c.924_926delCTT 

(p.Phe309del), was found in GNRHR in one male subject. This deletion was not present in the 

controls and it segregated with delayed puberty in subjects’ family: it was also carried by the 

father and sister who both had delayed puberty, whereas the mother and brother with normal 

timing of puberty were not carriers (Figure 14).   
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In TACR3 two females carried a synonymous change c.303G>A (p.L101L).   No 

nonsynonymous changes were found in TAC3 or TACR3. 

 

 

 

 

Figure 14. A novel deletion mutation in GNRHR segregated with delayed puberty in a male 

subject’s family. Grey colour indicates delayed pubertal development. Index subject is 

marked with an arrow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

70 

 

6   DISCUSSION  

 

6.1 Male predominance in KS 

 

The nationwide incidence of KS in Finland was 1:45 000. This is the first nationwide 

incidence estimate of KS, as previous estimates were made from male military conscripts in 

France (1:10 000) (Fromantin et al. 1973), and in Sardinia (1:84 000) (Filippi 1986). Military 

conscript screening is not the optimal method to ascertain the incidence of KS because the 

sense of smell is not typically asked for, and patients with mild reproductive phenotype may 

escape detection.  Incidence estimates differed significantly between Finnish boys (1:28 000) 

and girls (1:125 000), which suggests that KS in four times more frequent in men than in 

women in Finland.  

 

Fourfould difference between sexes was also seen in the patient seriers of this study, with 

male to female ratio being exactly 4:1 when 4 male patients other than Finnish origin were 

excluded (24:6). This difference is in line with previous studies showing that the condition is 

of 4-5 times more frequent in men worldwide (Seminara et al. 1998, Sedlemeyer & Palmert 

2002, Hardelin & Dode 2008, Bianco & Kaiser 2009, and Dode & Rondard 2013). The reason 

for this male predominance is unclear. The X-linked recessive inheritance of KAL1 mutations 

can explain only a small fraction of this difference, as KAL1 mutation are found only in 5-

10% of male patients (Bianco & Kaiser 2009). One reason might be the underdiagnosis of 

female patients, especially in the case of partial pubertal development (Brioude et al. 2010, 

Shaw et al. 2011). It has also been suggested that for some reason the male HPG axis might 

be more vulnerable to environmental or genetic disturbances during development. For 

example, KAL1 escapes X-inactivation and it has been proposed that higher concentrations of 

anosmin-1 could somehow protect female embryos (Hardelin & Dode 2008). Also, as more 

than half of KS patients remain without molecular genetic diagnosis (see below), sex-

dependent penetrance of mutations in still unidentified genes could explain, at least in part, 

this phenomenon. 

 

6.2   Molecular genetic causes of KS in Finland 

 

Overall 44% of KS patients in this study received a molecular genetic diagnosis. This 

percentage is slightly higher than in previous studies. According to the review by Bianco & 
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Kaiser (2009), 60-75% of KS patients remain without identified mutation, and in a large U.S. 

study consisting of 397 congenital HH patients 68% remained without genetic diagnosis 

(Martin et al. 2011). A clear difference was seen in the distribution of mutations in established 

KS genes between the patients of this study and those reported in previous studies (Figure 

15). The leading molecular genetic cause of KS in this study was a mutation in FGFR1, which 

accounted for 26% of the cases, when the overall estimate of FGFR1 mutations in KS patients 

worldwide is 10% (Bianco & Kaiser 2009, Dode & Rondard 2013). Also, mutations in 

PROK2 and PROKR2 that account for 5-10% of KS worldwide (Bianco & Kaiser 2009, Dode 

& Rondard 2013) were almost completely absent. Only one male patient, originally from Iraq, 

carried a homozygous PROKR2 mutation. Lack of mutations in the prokineticin pathway 

probably reflects the unique genetic heritage of the Finnish population (de la Chapelle 1993, 

Peltonen et al. 1995, Peltonen et al. 1999, Norio 2003). Of note, quite opposite situation with 

PROKR2 mutations is seen in Maghrebian population, where 23% of KS patients carry non-

synonymous mutations in this gene, possibly due to a balancing selection of the mutations 

(Sarfati et al. 2013).  

 

Estimates of CHD7 mutations in KS patients vary between 1-5%. In this patient series, one 

KS patient with CHARGE syndrome associated features carried a conclusive CHD7 mutation. 

However, two other patients with such features were not found to have a CHD7 mutation, 

implying that there may be other genes associated with both syndromes (Bergman et al. 

2012). One male patient without any associated features carried a rare missense variant 

A2663V in CHD7. This variant was absent from the controls and is not reported in relevant 

databases. In contrast to Polyphen, Polyphen2 predicts this variant as probably damaging. 

However, as patient´s parents were unavailable for testing, the causality of this mutation 

remains uncertain. 

 

One male patient carried a de novo nonsense mutation in SOX10. To the best of our 

knowledge, this is the first study where SOX10 has been analysed in a series of KS patients 

since Pingault et al. (2013) identified a high frequency of SOX10 mutations in patients with 

KS and deafness. Accordingly, the patient with SOX10 mutation in this study had KS and 

hearing loss. The prevalence of deafness in KS patients has been estimated to be 

approximately 5% (Quinton et al. 2001). To date, leading molecular genetic cause for this 

association has been a mutation in CHD7, but deafness is also seen in patients with mutations 

in FGFR1, FGF8, KAL1, and PROKR2 (Costa-Barbosa et al. 2013). In patient series of this 
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study, six male patients had a hearing impairment, one of them had mutation in CHD7, one in 

KAL1, and one in SOX10 while three remained without an identified mutation(s). The fact that 

a novel SOX10 mutation was identified among only six patients with KS and hearing 

impairment suggests that SOX10 should be screened whenever KS is associated with 

deafness. Future studies are needed to assess the true prevalence of SOX10 mutations among 

patients with KS. 

 

None of the patients in this series were found to have conclusive mutations in more than one 

screened gene. Two KS patients with an FGFR1 mutation carried also variants in NELF. 

Given that the incidence of KS in Finland is 1:45 000, and these variants were also present in 

the controls (in 1% and 6%), it is apparent that these variants are not causing KS. Absence of 

rare variants in more than one gene associated with KS is opposite result to those of Sykiotis 

et al. (2010) and Miraoui et al. (2013), who reported that 2.5 – 19% of patients with 

congenital HH carried at least two rare-protein altering variants in different genes. Although 

this study is smaller, the fact that no evidence of di- or oligogenic inheritance was seen among 

Finnish KS patients suggests that di- or oligogenic inheritance in KS probably involves genes 

not yet implicated in KS.  
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Figure 15. Molecular genetic causes of Kallmann syndrome (KS). A) Distribution of 

mutations in established KS genes according to reviews by Bianco and Kaiser (2009) and 

Dode and Rondard (2013). B) Distribution of mutations among 34 KS patients in this study.  
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6.3   FGFR1 mutations 

                 

6.3.1   Variable expressivity and sex-dependent penetrance              

 

Eight different heterozygous FGFR1 mutations were found in nine unrelated patients. The 

reproductive phenotypes varied substantially even within families. In two families (KS2 and 

KS3, figure 7) the probands had severe KS whereas their family members carrying the same 

mutation had much more milder reproductive phenotype. Variable expressivity and 

incomplete penetrance is typical for FGFR1 mutations (Dode et al. 2003, Pitteloud et al. 

2005, Trarbach et al. 2006, Dode et al. 2007, Raivio et al. 2009). In KS, most of the 

phenotypic variability has been suggested to derive from actions of modifier genes (Sykiotis 

et al. 2010, Tornberg et al. 2011, Hanchate et al. 2012, Miraoui et al. 2013). However, since 

the disease phenotype can vary even between monozygotic twins (Hermanussen & Sippel 

1985, Hipkin et al. 1990), it suggests that also epigenetic mechanisms and/or environmental 

factors influence on the development of the disease.   

 

It has been estimated that 30% of FGFR1 mutations are de novo mutations (Dode & Hardelin 

2008). This percentage is low considering that FGFR1 mutations are dominant and cause 

infertility (Strachan & Read 2011), but transmission to the next generation is possible because 

of the incomplete penetrance of the mutations. Accordingly, in this series only one of the nine 

FGFR1 mutations was confirmed as de novo (KS1), whereas in 3 out of seven familial cases 

it was confirmed that FGFR1 mutation was passed from parent to child (KS2, KS3, KS5, 

figure 7). However, in two cases the familial transmission occurred via assisted reproductive 

techniques.  

 

A significantly higher proportion of women (5/6, 83%) carried an FGFR1 mutation compared 

with men (4/28, 14%, p=0.002). A similar sex-specific difference was also found among a 

large series of nHH patients from US with heterogeneous genetic background (Raivio et al. 

2009). The reason for this is unclear. It has been suggested that since anosmin-1 is directly 

involved FGFR1 signalling, the higher dose in female embryos would compensate for 

impaired FGFR1 signaling (Cadman et al. 2007), and this could explain the overall higher 

male to female ratio of KS. Results of this study do not support this theory: if some 

mechanism exists that protects female embryos, it is not able to compensate for deficient 

FGFR1 signaling, at least not in Finnish females. Dode et al. (2003, 2007) have suggested 
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that sex-dependent penetrance of FGFR1 mutations lead to a more severe phenotype in male 

offspring of unaffected female carriers. On the contrary, 83% of the Finnish female KS 

patients had an FGFR1 mutation and tended to have more severe reproductive phenotypes 

than men with an FGFR1 mutation. Especially apparent this was in family KS2, where the 

female proband had severe KS, her father had rather mild reproductive phenotype, and her 

healthy son had had normal minipuberty. However, comparison of reproductive phenotypes 

between sexes is not straightforward, as in females there are no suggestive phenotypic 

features in infancy, such as cryptorchidism or micropenis. Also, normal minipuberty in males 

is not necessarely indicative of normal pubertal development (Quinton et al. 2001, Pitteloud et 

al. 2002a).  

    

6.3.2   Functional consequences       

 

All eigh FGFR1 mutations identified in this study are located in different domains of the 

receptor (Figure 16). Four of them were previously undescribed (W4X, R209H, E670A, and 

S436YfsX3). Both the nonsense mutations and the frameshift mutations lead to premature 

stop codons and the messenger ribonucleic acids are therefore predicted to undergo nonsense 

mediated decay (Nicholson et al. 2010), although this was not verified. Effects of missense 

mutations G48S (Trarbach et al. 2006), R209H, and E670A on receptor function were studied 

in vitro with COS-1 and L6 cells. In these studies, no difference between the WT and the 

mutant receptors was seen in expression or in maturation patterns (Figures 8 and 9). However, 

both missense mutations G48S and E670A displayed weakened downstream signaling as 

assessed by MAPK phosphorylation (Figure 10). G48S is located in the first immunoglobulin-

like domain, which is involved in the receptor autoinhibition, and interacts with the second 

and the third immunoglobulin -like domains. These interactions alter the affinity for FGFs and 

HSPGs (Groth & Lardelli 2002, Olsen et al. 2004). E670A, located in the intracellular 

tyrosine kinase domain of the receptor, is anticipated to disrupt autophosphorylation of the 

tyrosinase kinase domain (Groth & Lardelli 2002). These results were consistent with loss-of-

function mutations. On the other hand, R209H, located also in the tyrosine kinase domain, 

displayed relatively normal p42/44 MAPK signaling, which suggests that another signaling 

pathway may be impaired by this mutation. Also, relatively simple functional in vitro studies 

also have limitations in predicting consequences of the mutations, because most proteins have 

multiple functions that can contribute to entirely different processes and are often cell or 

tissue-dependent (Zaghloul and Katsanis, 2010).  
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Figure 16. Schematic of the FGFR1 mutations at protein level. SP, signal peptide; IG 1-IG 3, 

immunoglobulin-like domains; TM, transmembrane domain; JM, juxtamembrane domain; 

TK1-2, tyrosine kinase domains.  

 

 

6.4   Overlap between KS and other rare syndromes 

 

KS and CHARGE. KS can be considered as a milder allelic variant of CHARGE syndrome 

(Kim et al. 2008, Jongmans et al. 2009, Bergman et al. 2012). CHARGE syndrome belongs to 

a class of neurocristopathies, which are a diverse class of pathologies that arise from defects 

in the development of tissues containing cells derived from NC (Bolande 1974). All tissues 

involved in CHARGE syndrome are derived from cranial NC, and Siebert et al. (1985) 

suggested almost three decades ago that the anomalies seen in CHARGE result from 

abnormal development, migration or interaction of NC cells. More recently, it has been 

suggested that KS may also in part be a neurochristopathy (Forni et al. 2011), as patients with 

KS can also present with NC-associated defects such as cleft palate, dental agenesis, and 

deafness (Seminara et al., 1998, Forni et al. 2011). Indeed, it has been shown that Chd7 is one 

of the key genes for controlling the formation of cranial NC (Bajpai et al. 2010, Patten et al. 

2012), Fgf8 is required for early NC survival and differentiation (Chen et al. 2012), and Fgfr1 

signalling in cranial NC is essential for palatogenis (Wang et al. 2013). Moreover, it has been 

recently shown that NC gives rise to a subpopulation (30%) of GnRH neurons (Barraud 2010, 

Forni 2011, Katoh 2011). Reduced number GnRH cells due to disrupted development of NC 

might explain some of the milder reproductive phenotypes seen in KS patients. For example, 

the male KS patient in this study with CHARGE associated features and a conclusive CHD7 

mutation later on underwent reversal of HH (Laitinen et al. 2012). Screening of CHD7 has 

been recommended for those KS patients with CHARGE-associated features (Jongmans et al. 

2009, Bergman et al. 2012). However, as KS patients without these features may also carry 
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CHD7 mutations (Kim et al. 2008, Costa-Barbosa et al. 2013, this study) and even have 

children with CHARGE syndrome (Feret et al. 2010), should CHD7 mutation analysis be 

considered to all KS patients.  

 

KS and WS. Another link between KS and NC was offered by Pingault et al. when they 

discovered that mutations in SOX10, transcription factor essential for NC development and 

differentiation, cause KS with deafness (Pingault 2013). Involvement of SOX10 mutations 

also in KS was suspected when MRI revealed a high frequency (88%) of OB agenesis among 

patients with WS (Pingault et al. 2013). Previously, there have been very few reports of 

anosmia and hypogonadism among WS patients with SOX10 mutations, but these features 

might be underestimated in WS since ability to smell is not typically asked for and WS is 

often diagnosed before puberty (Pingault et al. 2013). Deafness is a known associated feature 

of KS (Dode et al. 2003, Costa-Barbosa et al. 2013), but to our knowledge, no pigmentation 

abnormalities have been reported. However, features like early greying of hair could have 

been easily overlooked before this association between WS and KS was discovered. Indeed, 

one the KS patients in the study by Pingault et al. had early greying in addition to deafness, 

and in retrospect fulfilled the diagnostic criteria for WS. The KS patient in this thesis study 

with deafness and SOX10 mutation had also quite many grey hairs, broad nasal bridge, and 

mild dystopia canthorum, which could also be considered as subtle WS associated features. 

 

Sox10 is widely expressed during early inner ear development (Breuskin et al. 2009, Breuskin 

et al. 2010). Besides deafness, a proportion of WS individuals with SOX10 mutation have an 

enlarged vestibule, agenesis or hypoplasia of semicircular canals, and an abnormally shaped 

cochlea (Elmaleh-Berges et al. 2013). These features were also seen in three of the KS 

patients with a SOX10 mutation (Pingault et al. 2013). As the association between ear 

anomalies, OB agenesis and HH is also found in CHARGE, it might be difficult to 

differentiate individuals affected with mild forms of CHARGE from those with WS or KS 

and a SOX10 mutation. Thus, the existence of semicircular canal hypoplasia or agenesis in KS 

patient should be considered as an indication for both CHD7 and SOX10 molecular genetic 

analyses (Pingault et al 2013). Also, in case of identified SOX10 mutation the possibility of 

more severely affected future children should be taken under consideration and offer genetic 

testing and counseling, as with CHD7 mutations.  
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KS, HPE and SOD. Midline defects of variable severity are common in all three syndromes 

(Seminara et al. 1998, Dode et al. 2003, Dattani et al. 1998, Dobourg et al. 2007). Mutations 

in FGFR1, which are the leading identified molecular genetic cause of KS (Bianco & Kaiser 

2009, this study), have been identified in also patients with SOD (Raivio et al. 2012) and in 

Harstfield syndrome, which is a rare association of HPE and ectrodactyly (Simonis et al. 

2013). Ectrodactyly involves deficiency or absence of central digits and is also known as split 

hand/split foot malformation, or lobster claw syndrome (Moerman et al. 1998). Of note, limb 

anomalies have also been reported in patients with KS (Dode et al. 2003), and in this study 

brother of proband KS23 had an FGFR1 mutation, nHH and fusion of 3
rd

 and 4
th

 metatarsal 

bones and lack of the 2
nd

 and 3
rd

 toes in both feet.  

 

Due to the phenotypic and genotypic overlap between these three syndromes, we screened 19 

KS patients without mutations in the known KS genes for mutations in SHH, SIX3, TGIF1, 

TDGF1, FOXH1, GLI2 and SOX2, in which mutations are known to cause HPE and SOD 

(SOX2). We found 2 heterozygous missense changes, one in GLI2 and one in SIX3 in one 

male KS patient. These rare variants were predicted possibly damaging by PolyPhen2, and 

they were absent from 200 controls. The patient had severe KS, but no additional features, 

and the MRI did not reveal any signs consistent with HPE. Although there is no direct 

evidence that these rare variants are cause of patients KS, it cannot be ruled out as GLI2 

mutations have been described in families with variable pituitary hormone deficiencies and 

midline defects without signs of HPE (Franca et al. 2010), and SIX3 mutations causing 

variable phenotypes including subtle microform of HPE have been reported (Solomon et al. 

2010). No mutations were found in SOX2. Overall these results suggest that mutation in SHH, 

SIX3, TGIF1, TDGF1, FOXH1, GLI2 and SOX2 are not a common cause for KS, but as one 

patient harbored a novel missense change in SIX3 and another rare missense variant in GLI2, 

a genetic overlap also in these genes between KS and HPE might exist. However, this finding 

needs to be confirmed by studies in different patient groups and populations. 

 

6.5   FGFR1, GNRHR, TAC3 and TACR3 in CDGP 

 

CDGP, a variant of the normal spectrum of pubertal timing, is the most common cause for 

delayed puberty (Sedlemeyer & Palmert 2002). In one large series of adolescents with 

delayed puberty, approximately 65% of boys and 30% of girls had CDGP (Sedlemeyer et al. 

2002). Overall, CDGP is seen more often in boys than in girls, the male-to-female ratio has 
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been reported to range from 2:1 to 5:1 (Crowne et al. 1991, Sedlemeyer et al. 2002, 

Sedlemeyer & Palmert 2002). No physiological explanation for this exists. One reason could 

be the vulnerability of male HPG axis during development, as suggested in KS. Another 

explanation might be that boys request further investigation for their delayed puberty more 

easily than girls (Crocket & Petersen 1987).   

 

The genetic background of CDGP is unknown. As delayed puberty is also seen among 

pedigrees with congenital HH, especially in those where the underlying genetic cause is 

FGFR1 or GNRHR mutation(s) (Pitteloud et al. 2006b, Raivio et al. 2009, Lin et al. 2007), we 

hypothesized that variation in FGFR1 and GNRHR could underlie some cases with CDGP.  

 

Thesis publication V is the first study where FGFR1 has been sequenced among patients with 

CDGP. Out of 146 patients, one male with CDGP and his mother with normal timing of 

puberty carried a previously undescribed heterozygous missense change (S436C) in FGFR1. 

The S436C missense was also present in one female control (1/30, 100 controls in total), 

suggesting that S436C may be a rare Finnish variant. However, it is also possible that S436C 

is a mutation underlying the male patients CDGP, but not sufficient to cause the CDGP 

phenotype in females. This would be consistent with the theory of vulnerable male HPG axis 

during development. 

 

In GNRHR, 3 different heterozygous mutations were identified (in 7/146 cases, ~5%). Two of 

these (Q106R and R262Q) have been previously described in patients with autosomal 

recessive nHH, and shown to partially inactivate the GnRH receptor (de Roux et al. 1997). 

However, as only heterozygous carriers of Q106R and R262Q were found among the CDGP 

subjects, and both mutations were present in the controls with same frequencies as in the 

cases, it is evident that these heterozygous mutations are not underlying CDGP. In contrast, 

one male carried a previously undescribed heterozygous deletion in GNRHR (Phe309del), not 

present in 200 controls, which segregated with delayed puberty in his family (Figure 14). 

Phe309, located in the seventh and last transmembrane domain of the receptor, is highly 

conserved across species, and Phe309del has been found in a Finnish nHH patient in 

compound heterozygous state (Laitinen et al. 2012) providing evidence that this mutation is 

deleterious when accompanied by another mutation in GNRHR. Since GNRHR mutations 

causing nHH are recessive, and all heterozygous mutation carriers reported so far have normal 

reproductive phenotype (de Roux et al. 1997, Layman et al. 1998, Kottler et al. 2000, 
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Beranova et al. 2001, Lin et al. 2006) it is questionable whether this heterozygous mutation 

alone is sufficient to cause CDGP. However, we cannot completely rule out this possibility, as 

it has been suggested that some GNRHR mutations can regulate WT receptor in a dominant-

negative fashion (Leanos-Miranda et al. 2003).   

 

NKB signaling appears indispensable for HPG axis function in boys during minipuberty, as 

evidenced by high frequency of microphallus among male nHH probands with TACR3 

mutations (Gianetti et al. 2010). Because microphallus is not a phenotypic feature of CDGP, it 

seems unlikely that TAC3 or TACR3 mutations would underlie CDGP in males. In females, 

there are no phenotypic features relating to early infancy that would help to differentiate 

between CDGP and nHH. As reversal of HH has been reported in females with nHH and a 

homozygous frameshift mutation in TAC3 (Gianetti et al. 2010), TAC3 and TACR3 were 

sequenced from females with CDGP. However, no mutations were found, suggesting that 

mutations in these genes are not a common cause of CDGP in females. 
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7   CLINICAL IMPLICATIONS AND FUTURE PERSPECTIVES 

 

The ever growing locus heterogeneity in KS presents a considerable challenge in prioritizing 

of genetic screening and providing optimal genetic counselling to patients and their families 

(Costa-Barbosa et al. 2013). Due to large number of isolated cases, small families and 

incomplete penetrance and variable expressivity of the mutations, mode of inheritance is often 

difficult or impossible to determine. Therefore, there is a need for identifying those 

phenotypic features that can guide prioritization of mutation analyses. In the large study of 

Costa-Barbosa et al. (2013) this need was addressed by performing a detailed phenotypic 

evaluation in a study group of over 200 KS patients from US, carrying rare sequence variants 

(RSVs) (MAF <1% in controls) in genes implicated in KS. In US, dental agenesis and limb 

anomalies in patients with FGFR1 or FGF8 RSVs, synkinesia in patients with KAL1 RSVs, 

and hearing impairment in patients with CHD7 RSVs stood out as discriminatory features 

(Table 6) (Costa-Barbosa et al. 2013). Based on the result of this thesis study, in Finland, 

female KS patients should be screened for FGFR1 mutation, and presence of synkinesia is a 

strong indicator of KAL1 mutation (Table 6, figure 16). Other additional features such as cleft 

lip and/or palate, limb anomalies, renal agenesis, and hearing impairment should also guide 

mutation analyses (Table 6, figure 16), although presence of additional features in general is 

not indicative of mutation in known KS gene (42% of patients without identified molecular 

genetic cause had additional features). A step-wise mutation analyses algorithm for congenital 

HH patiens has already been proposed previously (Dode & Hardelin 2009, Young 2012, 

Laitinen 2012), and with small modifications and utilizing the result of this thesis study it is 

applicable for Finnish KS patients (Figure 16).  

 

Futhermore, this thesis study addressed the role of congenital HH genes FGFR1, GNRHR, 

TACR3 and TACR3 in CDGP, and although mutations in these genes are not a common cause 

of CDGP it is possible that variation in FGFR1 and GNRHR could contribute to the 

phenotype (Figure 16). Overall, genetic backgroud of CDGP remains elusive.
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Table 6. Prevalence of nonreproductive phenotypes across genetic groups in Finnish 

Kallmann Syndrome patients of this study* (Fin) and in a large U.S. study (Costa-Barbosa et 

al. 2013). 

  FGF
1
 KAL1 CHD7 No identified mutation / 

              RSV 

                  

  Fin US Fin
2
 US Fin US Fin US 

Number of cases 9   6   1   19   

Sex (F/M) 5/4** NA 0/6 NA 0/1 NA 1/18 NA 

                  

No additional  66% NA 17% NA 0 NA 58% NA 

features (6/9)   (1/6)   

 

  (11/19) 

                   

Cleft lip/palate 22% 11% 0 0 0 9% 11% 6% 

  (2/9) (5/47)   (0/30)   (2/22) (2/19) (4/64) 

Limb anomalies
3
 10% 9-23% 0 5-10% 0 5-10% 0 4-13% 

  (1/10)
4
 (3-8/35)   (1-2/20)   (1-2/20)   (2-7/55) 

Dental agenesis 22% 39% 17% 0 0 13% 3% 3% 

  (2/9) (13/33) (1/6) (0/9)   (2/15) (1/19) (3/36) 

Synkinesia 0 7% 83%*** 43% 0 5% 0 11% 

  

 

(3/44) (5/6) (13/30) 

 

(1/20) 

 

(6/53) 

Renal agenesis 0 0 17% 18% 0 0 0 17% 

    (0/20) (1/6) (3/17)       (4/23) 

Deafness 0 16% 17% 14% 100% 40% 16% 11% 

    (7/43) (1/6) (3/21) (1/1) (8/20) (3/19) (6/55) 

CHARGE 0 3% 0 0 100% 5% 11% 2% 

features   (1/34)   (0/11) (1/1) (1/20) (2/19) (1/52) 

   

1) In U.S. study, patients with FGFR1 or FGF8 RSVs were grouped together.  

All Finnish patients in this group had an FGFR1 mutation.  

  2) This group includes three additional KS males with KAL1 mutation (unpublished observation). Their genotypic or 

 phenotypic features are not included in other parts of this thesis. 

    3) Clinodactyly, syndactyly/polydactyly/camptodactyly, short limb bones, and short fourth metatarsal. 

4) Brother of proband KS23 with limb anomalies and an FGFR1 mutation included.  

  KS, Kallmann syndrome; RSV, rare sequence variant; F, female; M, Male; CHARGE features: coloboma, heart 

defects, choanal atresia, or ear anomalies such as cup shaped ears or semicircular canal hypoplasia/dysplasia. 

 

* In addition, one male from Estonia, with KS, deafness and pigmentation defects carried a SOX10 mutation, and one  

male KS patient, originally from Iraq, with no additional features carried a homozygous PROKR2 mutation.  

 
** A significantly higher proportion of females (5/6) carried an FGFR1 mutation compared with males (4/28, 

p=0.002)  

 

*** Presence of synkinesia in patients with KAL1 mutation was statistically significant (present in 5/6 males 

with KAL1 mutation vs. in 0/25 males without KAL1 mutation, p < 0.0001) 
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Figure 16. Proposed model for first-line molecular genetic analyses in Finnish patients 

diagnosed with Kallmann syndrome or constitutional delay of growth and puberty (CDGP) 

based on the results of this thesis and the data presented in Table 6 (Finnish patients). The 

triangle symbolizes the prevalence of mutations in this study. Thick lines indicate statistically 

significant findings (Table 6). In case of CDGP, the genetic background remains elusive. 

Updated and modified from Laitinen 2012.  
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Despite of growing locus heterogeneity, still more than 50% of KS patients remain without 

identified molecular genetic cause. The recent observation that NC gives rise to a 

subpopulation of GnRH neurons, and the precence of NC associated defects in KS patients 

suggest that novel genes underlying KS may be found amongst those that are involved in the 

development and differentiation of NC. Causal mutations may also exist in the (distant) 

promoter and regulatory regions of the known KS genes, and those may be identified as our 

knowledge about the organization of the human genome increases. In the future, next-

generation sequencing (NGS) techniques will propably reveal novel genes underlying KS. 

Methods such as targeted exome sequencing will facilitate mutation analyses, as established 

KS genes, suggested KS genes and additional candidate genes can be simultaneously 

sequenced. Indeed, NGS techniques have proven to be powerful tools for detecting underlying 

genetic defects in other rare Mendelian diseases (Ng et al. 2010, Baple et al. 2013, Sousa et al. 

2013). However, as mentioned above, in KS, the mode of inheritance varies and is not easy to 

determine, and mutations may have imcomplete penetrance and variable expressivity. 

Therefore, filtering sequencing data in order to identify disease causing mutations is 

extremely challencing. Whether mutation is identified with traditional method or with NGS 

technique the pathogenicity must still be proven.  

 

So far there has been little success in identifying genes that contribute to the variation in age 

at pubertal onset. Screening of candidate genes in patients with CDGP has identified 

mutations only in rare instances. Although in the past five years genome-wide association 

studies have identified numerous loci that associate with timing of puberty, the actual causal 

variants remain unidentified. Moreover, in most of these studies identified loci associate with 

age of menarche, which indicates the completion of puberty in females. It remains to be seen, 

if causal variants are identified, whether these loci also influence timing of other pubertal 

phenotypes, especially in CDGP boys. 
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8   CONCLUSIONS  

 

KS is a male predominant condition, with male to female ratio being 4:1 among patients of 

Finnish origin. The reason for this male predominance is unknown. Overall 44% of KS 

patients received a molecular genetic diagnosis. A clear difference was seen in the distribution 

of molecular genetic diagnoses in this study and in those reported previously, as the leading 

molecular genetic cause of KS, mutation in FGFR1, accounted for 26% of the cases, and 

mutations in PROK2 and PROKR2 were completely absent among Finnish patients. A 

significantly higher proportion of women (83%) carried an FGFR1 mutation compared with 

men (14%). Female KS patients with an FGFR1 mutation also tended to have more severe 

reproductive phenotypes than men with an FGFR1 mutation, a result opposite to previous 

studies. One KS patient with CHARGE syndrome associated features carried a conclusive 

CHD7 mutation. Two other patients with such features were not found to have a CHD7 

mutation, implying that there may be other genes associated with both syndromes. One male 

with KS and deafness carried a de novo nonsense mutation in SOX10, gene recently 

implicated in KS with hearing impairment. Three men had a mutation in KAL1, and they all 

had synkinesia. No evidence of di-or oligogenic inheritance was observed.  

 

Considerable genotypic and phenotypic overlap is seen between KS, WS and CHARGE 

syndrome. From now on, hearing impairment and/or the existence of semicircular canal 

hypoplasia or agenesis in KS patient should be considered as an indication for both CHD7 

and SOX10 molecular genetic analyses and, in case of identified mutation the possibility of 

more severely affected future children should be taken under consideration and offer genetic 

testing and counselling. 

 

Mutations in known HPE genes are not a common cause for KS in Finland. However, one 

male with severe KS carried heterozygous missense changes, one in GLI2 and one in SIX3, 

suggesting the possibility of additional genetic overlap between KS and HPE.  

 

Finally, mutations in FGFR1, GNRHR, TAC3 or TACR3 are not a common cause of CDGP, 

although one male carried a previously undescribed heterozygous deletion in GNRHR, which 

segregated with delayed puberty in his family.  
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