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Abstract

Cancers are a heterogeneous group of diseases that cause 7.6 million deaths
yearly worldwide. At the cellular level, cancer is characterized by increased
proliferation and invasion of tissue. These phenotypes are caused by environ-
mental or inherited factors that increase the mutability of the genome, leading
to dysregulation of a number of cellular processes. Identifying the genotypic
changes and their phenotypic consequences is key to accurate diagnosis and
prognosis, as well as improved treatment regimens.

Cancer cells can be investigated at a genome-wide scale using high-throughput
measurement techniques such as DNA sequencing and microarrays. These
rapidly evolving technologies provide experimental data that have two challeng-
ing characteristics: the volume of data is large and data are structurally complex.
These data need to be analyzed in an accurate and scalable manner to arrive at
biomedically relevant conclusions.

I have developed three computational methods for analyzing high-throughput
genomic data, and applied the methods to experimental data from three cancers.
The first computational method is an extensible workflow framework, Anduril,
for organizing the overall software structure of an analysis in a scalable manner.
The second method, SPINLONG, is a flexible algorithm for analyzing chro-
matin immunoprecipitation followed by deep sequencing (ChIP-seq) data from
complex experimental designs, such as time series measurements of multiple
markers. The third method, GROK, is used for preprocessing deep sequencing
data. Its design is based on a mathematical formalism that provides a succinct
language for these operations.

The experimental part studies gene regulation and expression in glioblastoma
multiforme, and breast and prostate cancer. The results demonstrate the ap-
plicability of the developed methods to cancer research and provide insights
into the dysregulation of gene expression in cancer. All three studies use both
cell line and clinical material to connect the molecular and disease outcome
aspects of cancer. These experiments yield results at two conceptual levels.
At the holistic level, lists of significant genes or genomic regions provide a
genome-wide view into genomic alterations in cancer. At the specific level,
we focus on one or a few central genes, which are experimentally validated,
to provide an accessible starting point for understanding the results. Together,
the thesis focuses on understanding the complexity of cancer and managing the
complexity of genome-wide data.



Tiivistelmä

Syövät ovat heterogeeninen joukko sairauksia, jotka aiheuttavat vuosittain
7,6 miljoonaa kuolemaa maailmanlaajuisesti. Solutasolla syövälle on ominaista
lisääntynyt solukasvu sekä leviäminen ympäröivään kudokseen. Nämä solutason
ilmiöt johtuvat ympäristö- ja perinnöllisistä tekijöistä, jotka lisäävät genomin
mutaatioalttiutta ja häiritsevät solun biokemiallisia prosesseja. Syövän hoidolle
sekä diagnoosille on tärkeää tunnistaa geneettiset muutokset syöpäsoluissa sekä
niiden vaikutukset fenotyyppiin.

Syövän solumuutoksia voi tutkia hiljattain kehitetyillä genominlaajuisilla mit-
taustekniikoilla, kuten DNA:n sekvensoinnilla ja mikrosiruilla. Nämä uuden
sukupolven tekniikat tuottavat mittaustietoa, jolla on kaksi ominaispiirrettä: sitä
on määrällisesti paljon ja se on rakenteeltaan monimutkaista. Tällainen mittaus-
tieto on kyettävä analysoimaan täsmällisesti ja laskennallisesti skaalautuvasti,
jotta tutkimuksesta saadaan lääketieteellistä lisäarvoa.

Tässä työssä on kehitetty kolme laskennallista menetelmää genominlaajuis-
ten aineistojen analyysiin, sekä hyödynnetty näitä menetelmiä kokeellisesti
kolmen syövän tutkimuksessa. Ensimmäinen laskennallinen menetelmä on oh-
jelmistokehys Anduril, joka tarjoaa laajennettavan työnkulkuihin perustuvan
alustan suurten ja monimutkaisten aineistojen analysointiin. Toinen menetelmä
on SPINLONG-algoritmi, jolla analysoidaan proteiinien sitoutumista DNA:han
genominlaajuisesti. Kolmas menetelmä, GROK, on ohjelmisto laajojen DNA-
sekvensointiaineistojen tehokkaaseen esikäsittelyyn.

Työn kokeellinen osuus käsittelee geenien ilmentymistä ja säätelyä glioblastoo-
massa sekä rinta- ja eturauhassyövässä. Saadut tulokset osoittavat kehitettyjen
laskennallisten menetelmien soveltuvuutta kokeelliseen tutkimukseen ja lisäävät
tietämystä näissä syövissä tapahtuvista genomitason muutoksista. Kokeellisissa
tutkimuksissa on hyödynnetty sekä soluviljelmiä että potilasnäytteitä kytkemään
molekyylitason muutokset kliiniseen tulokseen. Kokeista saatuja tuloksia voi
tarkastella kahdella abstraktiotasolla. Holistisella tasolla, johon kuuluu listoja
muuntuneista geeneistä sekä kromosomialueista, saadaan kokonaiskuva geno-
minlaajuisista muutoksista syövissä. Spesifisellä tasolla tarkennetaan oleellisim-
piin geeneihin, joiden merkitys on kokeellisesti todennettu, mikä tarjoaa luonte-
van lähtökohdan tuloksien tulkintaan. Kokonaisuutena väitöskirja tutkii syövän
monimutkaisuutta ja kehittää menetelmiä monimutkaisten genominlaajuisten
aineistojen tulkitsemiseen.



1 Introduction

Complex systems are characterized by a large number of interacting components,
emergent behavior, adaptability to change, and memory of past events [1].
Such systems include social structures, human cells, economies, and computer
systems. For scientific fields studying these systems, a basic challenge is how
to observe, interpret and manage the underlying complexity.

Human cells are important examples of complex systems [2]. Their pathological
states, such as those observed in cancer [3, 4], are a major societal issue, leading
to loss of life and economical costs [5]. The goal of biomedical research is to
better observe (diagnose), predict (prognose) and manipulate (treat) the behavior
of diseased cells. As is usual with complex systems, implementing such a goal
is challenging, and requires efforts both at the experimental as well as the
methodological level.

Empirical sciences, such as biomedicine, follow the process of conducting ex-
periments, interpreting the resulting data, drawing conclusions, and altering the
current theories. Biological experiments can be divided into low-throughput biol-
ogy, which observes a small number of variables (e.g., a few genes) concurrently
and generates a small number of total data points [6, 7]; and high-throughput
biology, which observes a high number of variables (e.g., a genome) with a
large number of data points [8, 9]. In this thesis, the focus is on the latter. High-
throughput biology is distinct from sciences such as psychology, which generate
data with a complex structure but small volume [10], and particle physics, which
generates large-scale data with relatively simple structure [11]. A key question
in high-throughput biology is how to efficiently conduct experiments whose
results are complex in both the volume and structure dimensions.

The two dimensions of complexity in high-throughput biology are addressed
in different manners. Processing large volumes of data is predominantly a
computer performance issue, with a human contribution in designing efficient
algorithms. Analyzing structurally complex data, in contrast, is predominantly
a human challenge, requiring the researcher to browse data manually or to use
sophisticated programs to derive results.

The goal of this thesis is to develop automated methods for analyzing biomedical
high-throughput data by taking both complexity dimensions into account, and to
apply these methods to cancer research. The emphasis in method development
is on enabling the researcher to work on structurally complex experiments,
while also ensuring adequate computational efficiency. The cancer experiments
combine high-throughput molecular data with basic phenotypes of patients to
derive clinically relevant results.
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2 Complexity in molecular biology and system design

In this section, we elucidate the foundations of complex systems theory in the
context of molecular biology in order to obtain a schema that binds the themes in
this thesis together. Complexity theory both helps understand the cancer systems
under study, and suggests strategies for solving technical challenges in method
development. This is an illustration of a duality in complexity: it is present
both in evolved biological systems and in rationally engineered technological
systems.

Complexity can be analyzed and characterized using two basic strategies. The
first, qualitative strategy describes common features of complex systems. The
second, quantitative strategy aims to measure complexity using a variety of
metrics.

2.1 Qualitative features of complex systems

Complex systems have a large number of interacting components [1], such
as proteins in a cell or cells in a body [2, 12]. Complexity arises from the
quantity of the components, but also from their interactions and heterogeneity.
For instance, there are more than 20,000 protein-coding genes in the human
genome [13] and 110,000 binary protein-protein interactions (PPIs) in the
proteome [14].

Complex systems retain memory of past events, often established using positive
feedback systems [1]. For instance, a white blood cell has differentiated from a
hematopoietic stem cell and maintains the differentiation state using biochemical
feedback mechanisms [15]. Presence of such a system state indicates that
the system cannot be fully understood solely by enumerating its components.
Cancer cells undergo genetic mutation, enabling plasticity at the genomic
level [3]; thus, their internal state is particularly complex [16].

Complex systems exhibit emergent behavior arising from the interactions of its
components and their current state [1]. Such behavior can be extreme, i.e., a
small perturbation may lead to large, only partially predictable consequences.
In cancer biology, a prime example is the presence of germline single nucleotide
variations in the p53 gene in the Li-Fraumeni syndrome, which leads to a
significantly increased lifetime cancer risk [17, 18]. One functioning copy of
p53 in a given cell is generally sufficient to suppress cancer, but randomly this
functional copy is lost and, due to disrupted interactions between p53 and other
genes, a tumor may develop. Understanding and predicting emergent behavior
is a major challenge in biology.

Complex systems are able to adapt to changes in their environment. Human
cells display adapted features obtained during three billion years of evolution;
for instance, a core set of hundreds of genes is conserved across most known
species [19]. In malignancies, cancer cells have a remarkable ability to develop
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drug resistance using accelerated genetic and epigenetic adaptation [20, 21].
This is a major challenge in cancer treatment.

2.2 Quantifying complexity dimensions

There is no single measure for complexity that is applicable in all situations [22],
but for the purposes of this thesis, we use well-established techniques from
computer science for characterizing the two dimensions of complexity: quantity
(volume) and quality (structure) [23]. Our approach is conceptual: the tech-
niques illustrate strategies for understanding complexity, but the goal is not to
derive specific equations or quantities.

Complexity
dimension:
volume

The first complexity dimension represents the amount of resources required
by an object or a process. Examples include the number of nucleotides in a
genome, or the time and memory required by an analysis program to process
genomic measurements. Analysis of the amount of resources can be done using
an asymptotic approach that is used in the analysis of algorithms [24, 25]. In
this approach, we analyze the system as its size grows indefinitely. The basic
question is: given a computational problem, such as sorting n numeric genomic
coordinates, how many elementary computer steps are required, in the worst
case, when n grows without bounds, i.e., n→ ∞?

To address this question, we select an algorithm that solves this problem and
deduce from its description how rapidly the number of required steps grows.
The sorting problem can be solved, for instance, by a merge sort algorithm [24]
using a number of steps that grows with a rate of the order of n logn, denoted
O(n logn). There are other, less efficient algorithms for this problem that grow
with the rate of n2.

This mathematical framework gives us classes of growth rates that are useful for
characterizing the time and space requirements of a process. An O(n) (linear)
process is less complex than an O(n2) (quadratic) process, which would be
preferable to an O(2n) (exponential) process. As a practical rule of thumb,
processes with polynomial complexity, i.e., O(nk) for constant k, are considered
computationally tractable [25]. For harder complexity classes, exact solutions
can be computed only for small data sets.

Similarly to measuring time, space complexity can also be analyzed using
the O(·) formalism. In biology, the number of distinct proteins encoded by
a genome having n genes, in the absence of alternative splicing, is O(n). In
contrast, the number of PPIs is, in the worst case, O(n2) – a more complex
process. Empirically, however, the number of PPIs is closer to O(n

√
n) [26],

and alternative splicing may increase the number of proteins beyond O(n) [27].

Complexity
dimension:
structure

The second complexity dimension relates to the structure and information
content of the system. Conceptually, this is a more challenging dimension to
understand and there are multiple potential quantifying approaches [1]. The
simplest approach, used in algorithmic information theory, is Kolmogorov
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complexity (KC): the complexity of an object x is the length K(x) of the smallest
computer program that produces x when executed [28, 1]. For example, the
KC of the human genome is the length of the shortest program that prints the
genome.

Kolmogorov complexity has the technical limitation that its exact value is
uncomputable in the general case. That is, it is possible to establish an upper
bound for K(x) by constructing a program that reaches this bound, but it is not
possible, in general, to be certain that this is the best solution. For the human
genome, an upper bound for KC is approx. 600 megabytes [29]. Repetitive
regions, which comprise half of the genome, have lower KC than other regions.

2.3 Managing complexity

With an understanding of properties and dimensions of complex systems, we
now ask, how can we manage complexity in biomedical research and develop-
ment of methodology for high-throughput cancer experiments? We do so by
observing three common organizational properties for managing complexity in
both evolved (biological) and designed (engineered) systems.

Complexity
management:
parallelism

The first property is parallelism: complex systems often have a large number of
actors that work concurrently. Biological examples include individuals, cells
and proteins. Parallelism is used in high-throughput measurement devices to
increase cost-efficiency, and in computing systems to decrease run time [30].
Parallelism helps solve challenges in the resource complexity dimension.

Complexity
management:
modularity

The second property is modularity: complex systems are divided into distinct
parts that have high internal cohesion and limited coupling to other parts [31, 32].
For example, a cell is chemically isolated from its environment by the semiper-
meable plasma membrane [2]. In software engineering, modularity allows
substituting one software module with another without large-scale refactoring
to the rest of the system [32]. An important instance of modularity is hierarchy,
in which lower-level entities are contained in a higher-level entity. Life is orga-
nized as a hierarchy with levels including: ecosystem→ species→ population
→ individual→ organ→ cell→ organelle→ molecule [33]. Another example
is the structure of proteins, which comprises the following levels: primary
(amino acid chain), secondary (alpha helixes and beta sheets), tertiary (three-
dimensional folding) and quaternary (protein complexes) [2]. Composition and
hierarchies also make complex systems more understandable for humans, and
thus aid in managing the structural complexity dimension.

Complexity
management:
abstraction

The third property is abstraction, in which irrelevant details of an object are
removed and the object is described using a simpler model [34]. Specifically,
when an object possesses a given set of properties, abstraction is the omission
of chosen properties. In molecular biology, an example is cell communication,
in which cells present an interface of plasma membrane receptors and send
messages to other cells using messenger molecules [2]. The internal cellular
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logic is hidden (omitted) from the outside. This property is a key tool in both
understanding biological systems and engineering complex software. Closely
related to abstraction, idealization is the process of misrepresenting some prop-
erties of the object in order to simplify the model [34]. For example, a gene
may in general prevent cancer from occurring, but under certain circumstances,
it can instead promote cancer progression. Describing the gene as having only
anti-cancer properties is an idealization (see Sec. 3.2.3 for a concrete example).
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3 Cancer biology

Complexity
dimension:
structure

Cancer is a group of diseases characterized by abnormal cellular growth and
malignant tissue invasion [4, 35]. It is among the most lethal diseases, leading to
deaths of 7.6 million people yearly worldwide, and this figure is expected to rise
in the future [5]. Cancer is also a highly complex disease [16]: tumors develop
gradually over years or decades, and harbor mutations in numerous genes.
Further, cancer is heterogeneous at three levels, which increases complexity:
First, there are more than a hundred cancer types, grouped by tissue of origin,
each having their distinct molecular characteristics. Second, patients of a given
cancer have individually evolved tumors. Third, cells within a single tumor are
heterogeneous at the genetic level [36]. These factors provide challenges for
systematic characterization of cancer mechanisms.

Cancer incidence and mortality rates differ significantly depending on cancer
type and gender. Worldwide and across genders, the most deadly cancers
are lung (1.4 M deaths), stomach (0.74 M deaths) and liver (0.70 M deaths)
cancers [5]. For men, prostate cancer has the second highest incidence (0.90 M
cases), but relatively low mortality (0.26 M deaths). For women, breast cancer
has both the highest incidence (1.38 M cases) and mortality (0.46 M deaths).
Survival rates, defined as median time until cancer-related death, differ from
12 months in glioblastoma [37] to more than 15 years in prostate cancer [38].
Thus, the heterogeneity of cancer is also manifested in outcomes.

As a genetic disease, cancer has two main causative factors: inherited cancer
risk alleles, and environmentally caused somatic mutations. Although there are
much-publicized inherited cancer risk genes such as BRCA1 and BRCA2 [39],
somatically acquired mutations are the main factor, accounting for the majority
of cancers [4]. Well-known carcinogens, i.e., cancer-inducing physical agents,
include ionizing radiation, tobacco smoke and viral infections [5, 4]. Exposure
to these agents is related to life style and is thus partially avoidable. However,
cancer can arise without exposure to such external agents, as there are also en-
dogenous carcinogens. Examples of such agents are the hydrogen and hydroxyl
ions present in the water solvent inside the nucleus, inducing sporadic DNA
damage [4].

3.1 Glioblastoma, breast and prostate cancer

In this thesis, we focus on three cancers: glioblastoma multiforme (GBM), breast
cancer, and prostate cancer. In the landscape of all cancers, these cancers cover
a wide range of molecular and clinical characteristics, and thus demonstrate
many key properties of cancers.

Glioblastoma multiforme GBM is the most common and most severe brain
cancer, defined as grade IV astrocytic glioma [37]. Despite intensive treatment
regimens including surgery, radiation and drug therapy, median survival is at 12
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months. Histologically, GBM is characterized by highly invasive and diffuse
tumor mass that frequently undergoes necrosis, i.e., cell death under abnormal
conditions. GBM displays heterogeneity both within a tumor and between
patients. GBM tumors are classified into two groups based on their mechanism
of formation [37]. Primary GBM, which comprise 90% of cases, occur de
novo with no previous diagnosis of lower grade gliomas. In contrast, secondary
GBM, with 10% of cases, have a history of lower grade tumors. The latter is
more frequently seen in younger patients (under 45 years). These two types are
clinically similar but differ at the genetic level.

Breast cancer Breast cancer is the most diagnosed cancer and responsible for
most cancer deaths in females [5]. The most common form of breast cancer is
invasive breast cancer (IBC), which accounts for 22% of all female cancers [40].
Histologically, IBC is an adenocarcinoma of the mammary epithelium; 40–50%
of tumors originate in the upper outer quadrant of the breast [40]. Breast cancer
is characterized by multiple subtypes with different survival properties. A
commonly used, and clinically useful, classification of breast cancer is based on
the expression statuses of human epidermal growth factor receptor 2 (HER2),
estrogen receptor (ER) and progesterone receptor (PR) proteins, all of which
increase cell proliferation and cancer progression [41, 21]. Tumors with a
negative status for all three markers, triple-negative breast cancer, have a 77%
five year survival rate, compared to 93% for other subtypes [41].

Prostate cancer Prostate cancer is an adenocarcinoma of the male prostate
gland and is the second most diagnosed cancer in males, although only the
sixth most lethal [5]. Epidemiologically, prostate cancer is associated with
old age, with more than 75% of men of age 85 developing this disease [42].
However, most cases are non-metastatic and relatively harmless; a key goal in
prostate cancer treatment is targeting those tumors that are potentially aggressive.
Whereas breast cancer is associated with ER, most prostate cancers depend
on androgen hormones via the androgen receptor (AR). Tumors that continue
to proliferate after pharmacological castration, i.e., reduction of circulating
androgens, have a poor prognosis of two to three years [43], compared to more
than 15 years for other prostate cancers.

3.2 Molecular hallmarks

Complexity
management:
modularity

At the molecular level, cancer involves hundreds of genes interacting in com-
plex networks. Such mechanisms are better understood by modularization, i.e.,
dividing genes into distinct functional pathways, and abstraction, i.e., assigning
a well-defined cellular function to each gene. Complexity

management:
abstraction

Such a process was followed
by Hanahan and Weinberg, resulting in the “hallmarks of cancer” [35, 3] (Fig-
ure 1). These hallmarks are cellular features that are thought to be required
for malignant cancer to arise and persist. We introduce the features of each
hallmark and also discuss one gene or gene family related to each hallmark,
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Figure 1: Hallmarks of cancer. Reprinted from [3] with permission from
Elsevier, copyright 2011.

focusing on genes that are relevant for the three cancers studied in this thesis.
Discussing specific instances of the hallmarks is an example of concretization,
the complement of abstraction.

3.2.1 Proliferation

The most significant feature of cancer cells is their ability to grow and divide
in an uncontrolled fashion [3]. In healthy tissue, the growth of cells is robustly
regulated in order to maintain proper tissue structure. Mechanistically, this reg-
ulation occurs through signaling molecules and corresponding receptor proteins
that relay the signal to the cells, usually by altering transcription. For example,
an epithelial cell may be normally in a non-dividing state, but is induced by
signaling to divide after wounding of nearby tissue [4]. In cancer, this regulatory
link is broken, and the cell divides regardless of external signals, and is thus
self-sustaining. This can occur through a variety of mechanisms, including over-
expression of receptors leading to hypersensitivity to signals; self-production
of signaling molecules for autocrine signaling; and mutation of receptors or
other signaling proteins for ligand-independent activation [3]. Genes with poten-
tial for inducing uncontrolled division are members of proto-oncogenes; their
mutated, cancer-inducing variants are oncogenes.

Nuclear receptors Both breast and prostate cancer are dependent on female
and male sex steroids, estrogens and androgens, respectively. These steroids
establish their effects through the nuclear receptors ER [44, 45] and AR [46, 43].
For estrogen, there are two known receptors, ERα and ERβ , of which ERα is
better characterized and is thus focused on here.
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Figure 2: Genomic and nongenomic pathways of the nuclear receptors ERα

and AR. MAPK, mitogen-activated protein kinase; NR, nuclear receptor; P,
phosphorylation.

As transcription factors, ERα and AR affect cells in a multitude of ways; we
have here selected their induction of proliferation as the representative hall-
mark. Nuclear receptors reside in the cytoplasm in their passive form, and upon
binding to their cognate steroid ligands, they are phosphorylated, dimerized
and transported to the nucleus, where they bind to DNA and alter gene expres-
sion [47] (Figure 2). In addition to this genomic pathway, nuclear receptors
function in a nongenomic fashion by affecting signal transduction pathways,
such as the mitogen-activated protein kinase (MAPK) pathway, in the cyto-
plasm [47, 45]. Sex steroid signaling is a common therapeutic target in breast
and prostate cancer: treatments include inhibition of receptor function using
drugs such as tamoxifen [48, 21] and bicalutamide [43]. Some tumors, however,
are able to continue using nuclear receptor signaling by over-expressing the
receptors or mutating them to become ligand-independent. Although ERα and
AR are usually considered as “female” and “male” steroid receptors, breast
cancers do respond to androgens and prostate cancers to estrogens, although
using different mechanisms compared to their “native” hormones [49].

3.2.2 Evading growth suppressors

To counter the malignancy risk posed by proto-oncogenes, human cells have
tumor suppressor genes (TSGs) that limit growth and division [3, 4]. Their
presence explains why cancer generally occurs during old age and for only a
subset of the population, despite the cancer risk individually held by 1013 cells
in the body [50]. These genes integrate external signals, as well as monitor
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internal cell states, and are able to halt cell cycle progression when necessary.
Among the internal states monitored is the presence of DNA damage, which
must be repaired before cell division can commence. To become malignant,
cancer cells must inactivate key growth-limiting TSGs, usually with genetic or
epigenetic silencing [3].

Retinoblastoma In GBM and other cancers, retinoblastoma (RB1) is a key
negative regulator of the cell cycle and thus a TSG that often undergoes in-
activation [51, 37, 4]. RB1 controls the restriction (R) point of the cell cycle,
a critical decision point that determines whether the cell advances from the
growth phase G1 to DNA synthesis phase S and subsequently to mitosis. RB1
functions by binding to a class of mitogenic E2 transcription factors (E2Fs),
repressing their function. After external mitogenic signals have accumulated,
RB1 is phosphorylated and disassociates from E2Fs, which proceed to advance
the cell cycle past the R point. RB1 can be deactivated by genomic deletion,
promoter DNA methylation, or by alterations in the RB1 pathway that controls
the phosphorylation state of RB1. In GBM, RB1 is mutated in 25% of the cases,
and more than 50% of the tumors have inactivated CDKN2A, a TSG on the RB1
pathway [37].

3.2.3 Evading apoptosis

Some tumor suppressor genes are able to induce programmed cell death, or
apoptosis [3]. This cellular defense mechanism sacrifices the cell in a controlled
fashion in order to prevent aberrant cells to affect the rest of the individual.
Conditions for apoptosis include unrepairable DNA damage and lack of oxygen
(hypoxia). Cancer cells evade apoptosis by silencing apoptosis-inducing genes
or activating apoptosis-repressing genes [3].

p53 The p53 gene, dubbed the “guardian of the genome” [18], is possibly the
most important cancer-associated gene. It is mutated in half of all tumors [18,
52] and indirectly inactivated in most cancers. It is directly mutated in 38% of
GBM [53], 37% of breast cancers [54] and 42% of prostate cancers [55].

p53 is a TF that monitors the health of a cell and its genome, and upon detecting
abnormal conditions, halts cell cycle progression, activates DNA repair machin-
ery, or induces apoptosis [18, 3]. In tumors, p53 is inactivated by missense
(amino acid changing) mutations that change the function of the protein [4].
In the nucleus, p53 forms homotetramers, whose function is disrupted by the
mutant form. In this way, one mutant allele displays dominant-negative be-
havior which disables the functionality of 15/16 tetramer configurations. The
remaining 1/16 configurations are disabled by loss of heterozygosity, i.e., the
loss of the remaining functioning allele. To complicate the interpretation of
p53 mutations, some mutants of p53 gain oncogenic functionality [56]. Under
normal conditions, p53 is continuously transcribed and degraded at a similar and
fast rate. When conditions such as DNA damage, hypoxia or abnormal levels of
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mitotic proteins are detected, p53 is protected from degradation by phosphory-
lation, causing its protein levels to rapidly rise, which leads to modulation of
transcription of the appropriate response genes.

3.2.4 Telomere elongation

Another functionality cancer cells must acquire is elongation of telomeres, the
single-stranded DNA fragments at the ends of each chromosome composed of
a repeating 5’-TTAGGG-3’ sequence in humans [57]. With each cell division,
telomeres are shortened by 30–150 nucleotides because the DNA polymerase
active in mitosis can not fully replicate telomeric DNA [58]. When telomere
length drops below a certain limit, cells enter into senescence, a non-replicative
cellular state, or undergo death if replication is attempted. The human genome
contains an enzyme, telomerase, that is capable of elongating telomeres [58].
However, this enzyme is not normally expressed in adult cells in humans, in
contrast to, e.g., mice. Thus, cancer cells either activate telomerase or use a
less-well understood alternative (ALT) pathway of telomere elongation [59].

Telomerase reverse transcriptase All three cancers studied in this thesis
predominantly use the more common telomerase pathway for telomere elonga-
tion [60]. The telomerase enzyme is a complex composed of multiple units. One
of these units, the human telomerase reverse transcriptase (TERT), is normally
missing in healthy adult cells [58]. TERT, as the name implies, is a reverse
transcriptase that transcribes a complement strand of telomeric DNA from an
RNA template, which is housed within the complex. A regular DNA polymerase
then synthesizes the actual telomere strand. Expression of TERT is re-activated
by cancer cells, leading to immortalization [3].

3.2.5 Angiogenesis

Cancer cells interact with their tissue microenvironment. One crucial interaction
is angiogenesis, the generation of new blood vessels, which provides the tumor
with oxygen and nutrients, and disposes waste products [3, 4]. Angiogenesis is
induced by secreting specific signaling molecules into the stroma. Neovascu-
larization then occurs from existing nearby vasculature. The resulting vessels
differ from those in healthy tissue: they are leaky and irregularly organized, but
nevertheless functional [3].

VEGF In GBM, breast and prostate cancer, angiogenesis is frequently in-
duced using the expression and secretion of vascular endothelial growth factors
(VEGFs) within the tumor [37]. These signaling proteins are involved in het-
erotypic interactions: signaling between cells of different types [3]. VEGF
originating from tumor cells bind to their corresponding receptors, VEGF recep-
tors 1 and 2, in endothelial cells [61]. This promotes proliferation of endothelial
cells in the direction of the VEGF signal, thus extending vasculature towards the
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tumor. In healthy tissue, the growth of functioning vasculature involves several
other signals as well, some of which are usually missing in tumors.

3.2.6 Invasion

A distinctive feature of malignant tumors, compared to premalignant lesions,
is invasion of nearby tissue and metastasis to other tissues [3]. Cancer derives
its lethality from this hallmark. Depending on cancer type, either invasion or
metastasis is more important for disease outcome. For example, glioblastoma is
highly invasive but rarely metastatic [37], whereas in breast and prostate cancer,
death is associated with metastatic disease. Invasion and metastasis are complex
processes that involve increased cell motility. A common metastasis model is
as follows [3, 4, 62]: First, cellular motility is increased at the primary tumor,
termed epithelial-mesenchymal transition (EMT). Next, mobile cancer cells
enter blood or lymphatic vessels, and travel to another tissue. Then, they exit the
vessels and form a new colony at the distant tissue. The EMT may be reversed
via a mesenchymal-epithelial transition (MET). The cells may ultimately form
a macroscopic tumor if they are viable in the new environment. Prediction of
metastatic potential of the primary tumor is still challenging [62].

E-cadherin In several carcinomas, including breast and prostate cancer, E-
cadherin is an important protein involved in invasion of tissue [3, 4]. E-cadherin
is a transmembrane homodimerized protein that forms adherens junctions [2]
with neighboring cells in epithelial tissue. These junctions are formed by
coupling the actin cytoskeletons of cells together; E-cadherin binds to the
cytoskeleton in its host cell and to other E-cadherins in neighboring cells. The
loss of E-cadherin leads to loosening of cell-cell contact, increased motility and
invasion. Tumor cells inactivate E-cadherin by downregulating the expression
of the CDH1 gene encoding this protein, or by mutating the gene [3]. As a non-
carcinoma, GBM generally does not obtain invasiveness through E-cadherin
inactivation; rather, it uses other mechanisms, such as dysregulation of matrix
metalloproteinases [37].

3.3 Genetic mutability

The most important mechanism for cancer cells to obtain the molecular hall-
marks is genetic mutability [3]. Healthy cells maintain highly stable genomes;
the DNA is the most stable component of a cell. This is achieved using multiple
damage protection mechanisms at anatomical, structural and enzymatic levels.
In cancer, some of these mechanisms are damaged, and cells obtain a malignant
phenotype. Thus, understanding DNA protection mechanisms is helpful in
understanding carcinogenic processes.

The damage protection mechanism that cancer actively circumvents is the enzy-
matic mechanism, which is established by numerous enzymes that monitor and
repair DNA damage [63]. For instance, DNA polymerases, which replicate DNA
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during the S phase of the cell cycle, have proof-reading and error correction
capacities that correct many replication errors. As a result, DNA replication has
an error rate of one in 1010 bases in human [64]. Likewise, there are enzymes
that detect abnormal chemical structures in chromatin. These mechanisms are
often deactivated in cancer, resulting in greatly increased mutation rates.

The resulting mutations include both small-scale and large-scale DNA changes.
The former include single nucleotide variations (SNVs), and small insertions
and deletions (indels) [52]. The latter include changes in overall chromo-
some numbers (aneuploidy) as well as changes in chromosomal structure, such
as translocations between chromosomes or large-scale amplification of chro-
matin [65].

3.4 Gene regulation

The effects of genetic changes in cancer cells are translated to cellular behavior
through several mechanisms, one of which is aberrant gene expression, i.e.,
over- or under-expression of genes. Gene expression in healthy cells is a highly
regulated process; multiple regulatory mechanisms control when, where and
how much gene product (protein or RNA) is produced from the gene DNA
template [66, 2]. In fact, a substantial portion of the human genome is thought
to be involved in gene regulation [67], explaining the genomic complexity of
higher eukaryotes despite having a similar number of genes as single-celled
eukaryotes.

Gene expression is a multi-step process that is initiated by transcription factors
(TFs), DNA-binding or associated proteins that modify chromatin conformation
and recruit other TFs to chromatin [66] (Figure 3). TFs can function in a
combinatorial fashion, so that binding of one TF is required for other TFs to
bind. Alternatively, a particular TF may prevent others from binding. TFs
bind either to promoter regions of genes – segments immediately upstream of
transcription start sites (TSSs) – or to enhancer elements further away from
TSSs. TFs recruit to chromatin a protein complex, RNA polymerase, that
catalyzes the transcription of template DNA to RNA. There are three nuclear
RNA polymerases in human. We here focus on RNA polymerase II (PolII),
which transcribes most protein-coding genes [2]. To complement PolII, RNA
polymerase I transcribes ribosomal RNA, and RNA polymerase III transcribes
other non-coding RNA, as well as a subunit of ribosomal RNA.

PolII synthesizes a single-stranded RNA molecule that is then processed by
spliceosomes, RNA-protein enzymes that cut out introns and selected exons [68,
2]. This process gives rise to alternative splicing, i.e., the production of multiple
proteins from one gene. The RNA molecule is matured into messenger RNA
(mRNA) by attaching a polyadenosine tail to its 3’ end and capping its 5’ end
with a modified guanosine. The resulting mRNA molecule is exported from the
nucleus and translated into a protein by ribosomes. Proteins are subject to post-
translational modifications (PTMs), such as covalent attachment of phosphate
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Figure 3: The mechanics of gene expression. The process is initiated by
transcription factors binding to DNA, which recruits a PolII complex to the
transcription start site. PolII synthesizes a nascent RNA molecule which is
subject to splicing by spliceosomes. After both ends of the RNA molecule
are modified, the mature messenger RNA is exported to the cytoplasm and is
translated to protein by ribosomes. Proteins may undergo post-translational
modification, such as phosphorylation (P), and are ultimately degraded.

groups to serine, threonine or tyrosine residues [69, 2].

Regulation of gene expression occurs at multiple phases. TFs are regulated by
their production – whether a given TF is present in a cell – and their molecular
state – for example, whether a particular amino acid is phosphorylated. Cellular
localization is also a TF regulation mechanism: some TFs, such as estrogen
receptor, can reside both in the cytoplasm and in the nucleus [45]. Splicing and
thus the production of specific protein isoforms is a regulated process, as evi-
denced by different isoform distributions in different tissues [70]. For proteins,
the major regulation mechanisms are PTM and, ultimately, degradation.

Epigenetics plays an important role in gene regulation [71]. Epigenetics refers
to non-genetic mechanisms that affect gene expression without affecting the
primary DNA sequence. Two major mechanisms of such are DNA methylation
and histone alterations. DNA methylation is the attachment of methyl groups to
carbon 5 of cytosines [72]. Methylation of cytosines in promoters is associated
with suppression of gene expression, whereas methylation in other parts of
the genome is less well characterized [73]. There is evidence that methylation
regulates alternative splicing [74]. Cancer genomes are aberrantly methylated;
globally, they are hypomethylated, i.e., lack methylated cytosines compared
to healthy cells. However, specific genes, such as tumor suppressors, are
methylated in promoters in order to silence their expression.

Histone alterations are PTMs or substitutions of histones [75]. Histones are
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building blocks of nucleosomes, low-level organizational units of chromatin
composed of hetero-octameric histones. Their N-terminal tails are subject to
PTMs such as methylation and acetylation, and the state of modifications affects
transcriptional activity. An example of a histone modification is trimethylation
of lysine 4 of histone H3 (H3K4me3), which is associated with the promoters
of actively transcribed genes [75]. Another type of histone alteration is the
substitution of a histone in the nucleosome octamer. An example of such
substitution is H2A.Z, which can replace histone H2A [76]. Like H3K4me3,
this alteration is also associated with active transcription.
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4 High-throughput measurement techniques

Complexity
management:
parallelism

Given the complexity of the human genome and the variety of genotypic and
phenotypic alterations in cancer, a challenge in cancer research is efficiently
measuring and characterizing these alterations. In principle, this could be done
using low-throughput measurement techniques that query one or a few genomic
loci at a time. However, this is infeasible in practice due to the high cost. Rather,
genome-wide experiments are conducted using high-throughput measurement
techniques that use parallelization at the experimental level to increase efficiency
and lower cost.

Parallelization at the experimental level mirrors the underlying parallelism
present in the subject of measurement, i.e., human cells. In a common experi-
ment, numerous cells of similar phenotype are analyzed together, and each cell
contains a genome comprising 3 billion base pairs and 20,000 protein-coding
genes. This biological parallelism can be utilized at the experimental level
by first dividing cellular samples into aliquots that are analyzed in parallel.
Then, within the aliquots, genomic regions or genes can be measured in parallel.
Prominent technologies using this two-step parallelization are DNA microarrays
and deep sequencing.

4.1 DNA microarrays

DNA microarrays are a popular high-throughput technology for measuring
genome-wide gene expression, genomic variation, and DNA–protein interac-
tions [9, 77, 78] (Table 1). Inspired by protein arrays in late 1980s [9], DNA
microarrays were introduced in 1995 [79]. After the technology matured in late
1990s and early 2000s, microarrays became a standard tool for genome-wide
transcriptomics, single nucleotide polymorphism (SNP) genotyping, and copy
number investigation [80]. In recent years, sequencing-based approaches (Sec-
tion 4.2) have generated comparatively more interest, but microarrays remain a
useful tool, in particular for expression profiling [81]. However, in some areas,
such as DNA–protein profiling, sequencing has replaced microarrays.

Table 1: DNA microarray applications.

Technology References Purpose

Expression arrays [81] Quantifying gene expression (mRNA or mi-
croRNA); splice variants.

SNP arrays [80] Detecting SNPs in a population; copy num-
ber changes.

Array CGH [80] Large-scale copy number changes.
Methylation arrays [80] DNA methylation.
ChIP-chip [80, 82] DNA–protein interactions.
Sequence enrichment [83] Selective deep sequencing of, e.g., whole

exomes.
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Figure 4: DNA microarray protocol. First, target DNA is isolated; in gene
expression profiling, this also includes a reverse transcription step to obtain
DNA from RNA. Next, target DNA molecules are labeled with a fluorescent
dye. Labeled DNA molecules are hybridized with probes fixed on a microarray.
Finally, the dyes are excited using a laser and the fluorescence is imaged.

DNA microarrays are based on fluorescently labeled target DNA hybridizing
with an array of DNA probes attached to a surface, allowing quantification of
target DNA matching each probe [9] (Figure 4). The array surface is a glass
slide or a silicon chip, depending on the manufacturer. Probes in commercial
microarrays are short (25 bases) or medium length (50–70 bases) single stranded
oligonucleotides; long complementary DNA (cDNA) molecules can be used in
home-printed microarrays. Short and medium length probes are synthesized
in situ on the surface using photolithography or ink-jet printing. To increase
fluorescent signal strength, probes are arranged as clusters of identical sequence,
forming spots that are analogous to DNA colonies in second-generation se-
quencing. Spots are 10–100 µm in diameter and over a million spots fit on one
array [77].

The experimental protocol for microarrays includes reverse-transcribing target
RNA to DNA (in expression studies), labeling the resulting molecules with a
fluorescent dye such as Cy3 or Cy5 [84], and allowing the labeled molecules to
hybridize (anneal) with probes on the array. After hybridization, the fluorescent
dye (or dyes for multi-color protocols) is excited with laser, and the array is
imaged. The quantity of emitted photons from a certain spot correlates with
the amount of target DNA whose complementary sequence matches the probe.
The resulting images are quantified and the numerical values are analyzed
statistically.

Probe design is a critical step of microarray manufacturing and is guided by
the intended application for the microarray [9, 80]. For expression profiling,
probes are selected from the sequences present in RNA molecules, such as
3’ untranslated regions (UTRs) and exons. Depending on the design, either
a single or multiple probes target one gene. High-density Affymetrix Human
Exon arrays contain probes for individual exons, thus allowing quantification
of splice variants [85]. A problem inherent with the a priori method of probe
design is that some probes on commercial microarrays may be invalid or difficult
to interpret. For example, a microarray designed based on an earlier version of
a reference genome may have probes that do not align to a newer version of
the reference. For the Agilent 4x44K expression array, 40% of the probes have
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been found to have design defects [86].

Microarrays have a two-way interaction with sequencing technology. First,
probe design for commercial microarrays requires a reference genome for
the species and, for expression microarrays, identification of gene locations.
Thus, the sequencing of the human reference genome greatly increased the
usefulness of microarrays for human studies. Second, microarrays can be used
to select specific genomic regions for targeted deep sequencing, such as exomic
regions [83]. This reduces costs and allows increasing sequencing coverage in
these regions, leading to increased sensitivity for detecting genomic variants.

4.2 Deep sequencing

Deep sequencing technologies enable determination of nucleotide sequences
in a genome-wide fashion. Deep sequencing has numerous use cases from
sequencing genomes of model organisms to quantifying RNA expression levels.

4.2.1 History of DNA sequencing

The need for determining sequences of biological polymers was identified in the
late 1940s, when it was observed that amino acids in peptides are arranged in a
linear sequence that is neither fully arbitrary nor periodic [87]. A critical event
for enabling DNA sequencing was the discovery of the molecular structure
of DNA in 1953, which was accompanied with a realization of how DNA is
replicated [88]. The “Watson–Crick” pairing of nucleotides in DNA replication
is used by all current DNA sequencing technologies. The first nucleotide
polymer to be sequenced was transfer RNA of E. coli in 1965 [87]; DNA
sequencing began maturing in the 1970s.

The first generation of DNA sequencing, Sanger sequencing, was developed in
1977 as an improvement of related earlier techniques [89]. Sanger sequencing
uses a DNA polymerase from E. coli to synthesize a second strand for the
DNA target molecule, and specifically engineered nucleotides that terminate
the synthesis. These dideoxynucleotides (ddNTP) lack hydroxyl groups at both
the 2’ (as in regular DNA) and 3’ (only in engineered nucleotides) carbons
and thus halt further DNA replication. By using four pools of nucleotides
composed of regular and engineered nucleotides, radiolabeled phosphates, and
gel electrophoresis to separate polymers based on length, the original Sanger
sequencing enabled sequencing reads of up to 200 nucleotides [89].

Complexity
management:
parallelism

By mid 1990s, Sanger sequencing had been improved and automated by re-
placing radiolabeling with fluorescent markers and gels with capillaries, and by
using 96 well plates for limited parallelization [87]. This enabled establishing
sequencing “factories” that could sequence millions of bases daily [87]. The
read length increased to 1000 bases and base accuracy was high (99.999%) [90].
Growing data volumes and the need for their interpretation motivated the estab-
lishment of sequence data centers and bioinformatics development efforts. The
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use of Sanger technology culminated in the sequencing of the human genome,
first published in 2001 [91, 92]. Despite its high cost ($3.8 billion), the human
genome project has provided a 65 fold return on investment [93].

Complexity
management:
parallelism

Despite the usefulness of Sanger sequencing, it remains expensive and slow
when considering the size of the human genome. In the mid-2000s, improved
technologies appeared [8]; these are collectively called next-generation sequenc-
ing or second-generation sequencing (SGS). Their main advantage is massively
increased parallelism and lower cost per base. These are obtained from three
improvements to Sanger technology [90]. First, SGS technology uses imag-
ing of arrays of DNA colonies in contrast to capillaries, enabling massively
parallel sequencing of millions of colonies. Second, source DNA is amplified
using specifically engineered DNA polymerase based protocols, instead of in
vivo bacterial plasmid amplification used in shotgun Sanger sequencing. Third,
reagent costs are reduced by using a common reaction volume (e.g., a glass
slide), which distributes reagents to all colonies of the array. The main draw-
back of SGS is the generally reduced read lengths; this is ameliorated by the
presence of reference genomes, which are used for aligning the short reads.
Many commercial SGS technologies are available [8]; in this thesis, we focus
exclusively on the Illumina/Solexa platform (Illumina Inc., San Diego, USA).

4.2.2 Illumina sequencing platform

Illumina is a major provider of second-generation sequencing platforms, with
products such as HiSeq 2500 and HiSeq X for high-throughput sequencing, and
MiSeq for benchtop sequencing [94, 95]. The technology was developed by the
UK-based Solexa Ltd., which was sold to Illumina Inc. in 2006 [96]. Illumina
has refined the technology since its introduction: current HiSeq 2500 systems
can produce up to 600 Gb of sequence per run, compared to 4 Gb of the original
Genome Analyzer [97].

Sample preparation and adapter ligation The general Illumina sequencing
protocol [97] (Figure 5) starts with the preparation of a DNA library, whose
details depend on the deep sequencing application in question. Library prepara-
tion yields two-stranded DNA fragments that are 200–2000 bp in size. To both
ends of these fragments, a proprietary adaptor is ligated, producing blunt-ended
sequencing templates.

Bridge amplification Templates need to be amplified because imaging sen-
sors are not sensitive enough to detect single molecules. This is done using
bridge amplification on a flow cell (glass slide with eight independent lanes), a
protocol that produces spatially clustered colonies of DNA molecules having the
same sequence [97]. First, templates are denatured and adaptors are annealed to
their complementary sequences fixed on the flow cell, producing single-stranded
templates attached to the surface. Then, a second strand is synthesized by DNA
polymerase using the fixed adaptor as primer and the original strand is washed
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Figure 5: Illumina sequencing protocol. (a) DNA is fragmented and a sequenc-
ing library is generated by ligating adapters to both ends of the fragments. (b)
In bridge amplification, a denatured template is annealed to a fixed adapter and
the complement oligonucleotide of the template is synthesized. After washing
away the original template, a bridge is formed and a new strand is synthesized.
The process is repeated several times. (c) In sequencing by synthesis, DNA is
first linearized by cleavage (?) and the first read (dotted) is generated from the
free end of the template. For paired-end sequencing, a bridge is formed and
the second read is generated from the other end of the template. Adapted by
permission from Macmillan Publishers Ltd from [97], copyright 2008.

away. In the “bridge” step that follows, the free end of the template is attached
to the surface by annealing its adapter to a second fixed complementary oligonu-
cleotide. This template, attached to the surface from both ends, is amplified
to yield two templates fixed to the surface. This process is repeated, creating
spatial clusters.

Sequencing by synthesis Sequencing is done using custom nucleotides called
reversible terminators [97, 8]. These nucleotides have an azidomethyl group in
the 3’ carbon, blocking synthesis similar to ddNTP used in Sanger sequencing,
and a fluorescent marker attached to the nucleobase. In contrast to Sanger
sequencing, both of these groups can be chemically cleaved, thus producing
non-blocking nucleotides. There are four distinct fluorescent markers, one of
each base. Sequencing proceeds in cycles, each producing one base of sequence.
At the beginning of a cycle, nucleotides with terminators are incorporated to the
flow cell and a modified DNA polymerase extends the complementary strand of
each template by one base. Then, extra nucleotides are washed and the flow cell
is imaged by exciting each fluorescent dye in turn using laser; this produces the
raw data for further processing. Dyes and terminators are cleaved and the cycle
is repeated for 36 to 150 times.

Paired-end sequencing To extend both the sequencing depth (total number
of reads) and physical coverage (portions of the genome queried), paired-end
sequencing (PES) is often employed. Introduced for Sanger sequencing [87],
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this technique involves sequencing both ends of a template, usually with a
gap between the obtained sequences. This allows obtaining information from
a longer genomic region than with single-end sequencing. On the Illumina
platform, PES is done after synthesizing the primary short read by creating a
bridge from the template and sequencing the resulting oligonucleotide [97].

Common bioinformatics workflow Computational processing of sequenc-
ing data is a major challenge for deep sequencing experiments and the methods
vary depending on the application. However, there are some common bioinfor-
matics steps in Illumina-based experiments. First, raw images are analyzed by
identifying and quantifying fluorescent clusters; artifacts such as shifted image
coordinates between cycles are accounted for [97]. Then, bases are called from
the quantified images, taking into account cross-talk between dyes. In this im-
portant step, each base is assigned a quality score that represents the probability
of an incorrect base call [98]. From this point, workflows diverge based on the
application. A common step, however, is short read alignment to a reference
genome. In this step, the called sequence is compared against all or the relevant
locations of a reference genome and, ideally, assigned to a certain location. In
practice, some reads do not align to the reference genome, some align to multi-
ple locations, and some align with one or more mismatches. Longer and higher
quality reads are easier to align, thus motivating the refinement of sequencing
technology. Short read alignment is done with specialized heuristic software
such as ELAND [97], Bowtie [99] or BWA [100], because exact alignment
algorithms [101] and general-purpose heuristics, such as BLAST [102], are
inefficient.

4.2.3 Sequencing application: ChIP-seq

In addition to reduced cost, the improvement of sequencing technology has
allowed broadening the scope of its applications. Whereas in the Sanger era the
focus was on determination of reference sequences for model organisms, today
deep sequencing is used for several other purposes (Table 2).

One important application, and a focus in this thesis, is the genome-wide mea-
surement of DNA–protein interactions and histone alterations using chromatin
immunoprecipitation followed by deep sequencing (ChIP-seq) [82]. This tech-
nology allows investigation of gene regulation mechanisms during the early
stages of gene expression: transcription factor binding, histone response, and
activation and progression of the PolII complex. ChIP-seq is thus suitable for
detecting, for example, what is the immediate response of a cancer cell to an
external proliferative signal. ChIP-seq was one of the earliest second-generation
sequencing applications [113] due to its relatively modest requirement for se-
quencing depth; the technology is also partially based on an earlier ChIP on
microarray (ChIP-chip) technology, aiding in the transition.

ChIP-seq is based on chromatin immunoprecipitation, the purification of DNA
fragments bound to a certain protein [114]. In the ChIP protocol, DNA–protein
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Table 2: DNA sequencing applications.

Technology References Purpose

DNA reference sequencing [91, 92] Assembly of a reference genome.
DNA resequencing [103] Genetic variation in a population; personal

genomics; disease susceptibility.
Tumor DNA sequencing [104, 105, 54] Somatic mutations and chromosomal aber-

rations; putative causative factors.
RNA sequencing [106] Quantification of gene expression (mRNA

or microRNA); novel transcripts; fusion
genes.

ChIP sequencing [82, 67] DNA–protein interactions; histone alter-
ations.

Global run-on sequencing [107, 108] Quantification of nascent RNA.
Bisulfite sequencing [109] DNA methylation.
HiC [110] DNA–DNA interactions (chromatin confor-

mation).
ChIA-PET [110] Chromatin conformation related to a protein

of interest.
Ribosome profiling [111] Translation profiling at single codon resolu-

tion.
Metagenomics [112] Identification of microbial species in an en-

vironment; phylogenetics.

bonds are first fixed using formaldehyde (CH2O), a chemical agent capable of
reversibly crosslinking both DNA and protein molecules. Following formalde-
hyde treatment, DNA is fragmented using sonication to yield oligonucleotides
with a length range of 200–600 bp [82]. Using an antibody against the protein of
interest, the DNA–protein–antibody complexes are immunoprecipitated using a
centrifuge and the formaldehyde crosslinking is chemically reversed. Finally,
the isolated DNA fragments are sequenced to obtain the primary data.

ChIP-seq derives flexibility from the use of antibodies, which allows querying
various types of DNA-binding proteins. At the same time, proper selection
and validation of the antibody is important for a successful experiment, as
up to a third of commercially available antibodies are suboptimal for ChIP-
seq, and antibodies from different batches may have different properties [82].
Another important experimental factor is the correct duration of formaldehyde
treatment [114].

Like most experiments, ChIP-seq needs a control experiment to account for
factors not related to the research question [82]. For ChIP-seq, an adequate
control sample is particularly important because the technology is quantita-
tive. Factors affecting the validity of results include biases in sequencing and
alignment of particular DNA regions. For example, open chromatin is easier to
sequence, and short reads in repetitive genomic regions are difficult to align to
the reference genome [82]. Several options are available for a control sample.
A commonly used method is the sequencing of input DNA, i.e., direct genomic
sequencing without immunoprecipitation. This controls for sequencing, copy
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number and alignment biases, but also requires sufficient sequencing depth as
the whole genome is covered [82]. A second option is the use of a nonspecific
(mock) antibody or immunoprecipitation without an antibody. A challenge
with this approach is that limited DNA material is pulled down and results are
stochastic [82].

Bioinformatics analysis of ChIP-seq data starts with aligned short reads and the
methods used depend on the type of protein used in ChIP and on the research
goals. For TFs, the usual goals are to determine their binding sites (BSs) and
putative DNA response elements. BSs are visible as peaks in the coverage
of short reads along the genome. Statistically, the aim is to find regions with
significantly more reads in the ChIP sample than in the control sample. There
are numerous methods for detecting peaks [115]; a popular one is MACS [116].
Peak discovery can be followed by identification of DNA sequence motifs
enriched at BSs [117, 118], or mapping peaks to genes [119], followed by
gene-level analysis.

In contrast to TFs, ChIP-seq profiling of PolII usually has different goals
and methodology. Although the goal may be to identify novel PolII binding
sites [120], a more common goal is to identify actively transcribed genes and to
quantify changes in transcription rates between samples [121]. ChIP-seq using a
PolII antibody results in broad regions of short read enrichment, corresponding
to actively elongating PolII complexes, as well as peaks at promoters. Methods
tuned for TFs are not optimal to PolII [82]. For quantifying transcription, a
common analysis method is to count short reads along each gene body and to
compare these counts between samples.
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5 Aims of the study

To goals of the thesis are to develop computational methods for analysis of
genome-wide experimental data, and to apply these methods to cancer research.
The specific goals are to:

1. Complexity
dimensions:
volume and
structure

Develop an umbrella software that manages the overall structure of
genome-wide data analyses, is scalable in both complexity dimensions,
and facilitates reuse of analysis code.

2. Develop methods for analyzing ChIP-seq data from experiments that
profile PolII and histone alterations using a time series.

3. Develop modular and well-structured methods for preprocessing deep
sequencing data.

4. Identify molecular aberrations in GBM, breast and prostate cancer and
assess the significance of these aberrations to patient survival.
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6 Material and methods

6.1 Biological material and methods

Biological material and methods are summarized in Tables 3 and 4, and full
details are in the publications.

Table 3: Biological sample material.

Publication Type Samples

Publication I Patient 338 primary GBM patients; public data set [53]
Publication I Cell line A172, U87MG, LN405 and SVGp12 (control) GBM cell

lines; three replicates
Publication II Cell line MCF-7 breast cancer cell line [122]; time series
Publication II Patient 150 primary breast cancer post-menopausal ER+/HER2–

patients [54]; for validation, 130 [123] and 159 [124]
primary breast cancer patients; all public data sets

Publication III &
Related Publ. I

Cell line LNCaP-1F5 [125] prostate cancer cell line

Related Publ. I Cell line VCaP prostate cancer cell line
Related Publ. I Patient 350 prostate cancer patients with prostatectomy treatment

Table 4: Biological experimental methods. “Public” indicates that the exper-
iments were done by authors of published articles and we (re)analyzed the
data.

Publication Samples Method

Publication I GBM patients DNA microarrays: gene expression
(mRNA, exon and miRNA), array CGH,
SNP, DNA methylation (public)

Publication I GBM cell lines Gene silencing by siRNA for 11 genes
Publication I GBM cell lines Proliferation and apoptosis assays
Publication II MCF-7 ChIP-seq for PolII, H3K4me3, H2A.Z and

ER
Publication II MCF-7 RNA-seq
Publication II Breast cancer patients Gene expression microarrays (public)
Related Publ. I LNCaP-1F5 and VCaP Gene silencing by siRNA for FOXA1
Related Publ. I LNCaP-1F5 and VCaP ChIP-seq for AR, FOXA1, GR (LNCaP-

1F5 only) and IgG (control)
Related Publ. I LNCaP-1F5 and VCaP ChIP-qPCR for AR
Related Publ. I LNCaP-1F5 ChIP-seq for H3K4me2
Related Publ. I LNCaP-1F5 Deep sequencing for DNaseI hypersensitiv-

ity
Related Publ. I LNCaP-1F5 and VCaP Gene expression microarrays
Related Publ. I Prostate cancer patients Immunohistochemistry for AR for FOXA1
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6.2 Scientific workflow management systems

Used in:
Publication I,
Publication II,
Publication III,
Related
Publication I

High-throughput measurement techniques produce complex data sets that must
be analyzed computationally. Construction and execution of analysis implemen-
tations can be done using several approaches that range from manual ad hoc
interactive methods to fully automated structured methods. For the latter, two
often used techniques are scripting in a programming environment, such as R
and Python, and the use of workflow technologies. In this thesis, we use the
workflow approach to organize the large-scale structures of analysis implemen-
tations.

A workflow is a structured collection of tasks to implement a business (e.g.,
scientific) process [126, 127] (Figure 6). This broad definition includes man-
ual and semi-automated workflows, but here the focus is on fully automated
workflows. The structure of a workflow defines dependencies, and thus valid
execution orders, of tasks. A common representation of a workflow is a directed
network [128].

Complexity
management:
parallelism

Advantages of workflows include the following [127]. Workflows increase
effectiveness through automation, as well as reuse of existing workflows and
building blocks for tasks. The dependency structure of tasks allows automat-
ically parallelizing workflow execution, speeding up execution and reducing
manual parallelization effort [129]. Workflows aid in reproducibility of analyses
through the formal definition of tasks and their relationships. Complexity

management:
abstraction

Intermediate
results of each step can be stored and inspected, which aids in diagnosing prob-
lems and allows using the cached results on repeated workflow executions. The
formal structure of workflows is amendable for analysis and identification of
common patterns [128, 130, 131], generating abstractions that facilitate under-
standing and communication of complex workflows, as well as comparison
of workflow engines. Complexity

management:
modularity

One particularly useful pattern for structurally complex
workflows is decomposition of the workflow into a hierarchy of sub-workflows,
each of which is simpler to understand in separation.

In bioinformatics, workflows have been used for integrating heterogeneous
data from public databases and WWW resources [127], and analyzing high-
throughput data. Published scientific workflow management systems include
graphical approaches, such as Galaxy [132], Taverna [133], GenePattern [134],
Chipster [135], Kepler [136] and KNIME [137], as well as programming-
based approaches, such as Biopipe [138], Pegasus [139] and Ruffus [140].
The differences between these two approaches are twofold. On the one hand,
graphical approaches are easier to learn and use by non-programmers. On the
other hand, programming-based approaches scale better to complex workflows.
Differences between various workflow implementations include suitability for
analysis of large data volumes, choice of programming language(s) or web
service protocols for implementing elementary analysis steps, and availability of
ready-made tools for specific experimental techniques, such as deep sequencing.
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Figure 6: Example workflow with ten tasks, one of which (T6) is a com-
posite task. The workflow demonstrates several workflow control and data
patterns [128, 130]. Each task produces a certain output data, which is passed
as input to the subsequent task(s): for example, the data item B, produced by
task T2, is passed to tasks T3 and T4. The simplest control pattern is sequence,
which is a linear dependency between two tasks. A parallel split separates the
workflow into independent flows, which are joined by a synchronization task
(T5). A block task enables composition of the workflow into sub-workflows.
The parent task T6 passes input to the child task T6A and the result from the
sub-workflow (H) is passed back to the main workflow.

6.3 Kaplan-Meier survival analysis

Used in:
Publication I,
Publication II,
Related
Publication I

In fields such as medicine, there is often a need to estimate the time “survived”
by a subject of study, such as a patient, until an event, such as death from a
disease. Statistical methods for working with such use cases are called survival
analysis methods. Two basic goals in survival analysis are the estimation
of survival times (curves) of a population, and the comparison of survival
times of two or more groups [141]. A challenge in survival analysis is the
presence of incomplete data: a subject may be removed from the study before
the event occurs because the follow-up time ends, the person withdraws, or dies
from causes not related to the study. Collectively, these are called censoring
the subject. Kaplan-Meier (KM) survival analysis is a popular method that
estimates survival times by accounting for missing information [142]. Often
coupled to KM is the log-rank statistical test used to compare survival times
between subject groups.

Formally, the random variable T > 0 is the survival time of a subject before
the event, and δ ∈ {0,1} indicates whether the subject was censored (0) or
experienced the event (1) [141]. In case of censoring at time t, the precise
survival time T is unknown; it is only known to be greater than t. Central
to survival analysis is the survival function S(t) = P(T > t), which is the
probability that a subject survived beyond time t; this function is estimated by
KM. Survival functions are decreasing, i.e., survivorship stays the same or drops
over time, and their theoretical limits are S(0) = 1 and S(∞) = 0. Empirical
survival functions are step-wise functions with discontinuous drops at times of
events.

KM obtains the maximum likelihood estimate Ŝ(t) of the survival function S(t),
i.e., it derives a statistical model that maximizes the probability of observed
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data [142]. It does so by computing survival probabilities at each time of event
separately, based on subjects observed at that time; probability of survival at
time t is then the product of survival probabilities up to t [141]. That is,

Ŝ(t( j)) =
j

∏
i=1

P(T > t(i)|T ≥ t(i)) = Ŝ(t( j−1))×P(T > t( j)|T ≥ t( j)), (1)

where t( j) denotes the time of the j’th event in the ascendingly ordered list of
event times. We define Ŝ(t(0)) as 1. The KM method is illustrated in Figure 7.

In addition to the survival point estimates Ŝ, it is also important to estimate the
variability of survival, i.e., confidence intervals. This is done separately for
each time of event. The widths of confidence intervals are proportional to the
variance of the point estimate Ŝ at each time point:

Var(Ŝ(t( j))) = Ŝ(t( j))
2

j

∑
i=1

di

ni(ni−di)
, (2)

where di and ni are the number of events and the number of remaining subjects
at time t(i), respectively [142]. From this formula, we can see that confidence
intervals intuitively become wider as the number of subjects ni decreases. They
also tend to widen in later time points due to summing of variances from earlier
time points, although this effect is compensated by the decreasing survival
estimate term Ŝ(t( j))

2.

The log-rank test is used for comparing survival times from two or more subject
groups, such as treatment and control groups [141, 143], and thus it comple-
ments the KM method. It tests the null hypothesis that all KM curves are
derived from the same distribution, i.e., there are no significant differences in
survival. The log-rank test computes expected counts of events at each event
time point based on aggregate events in all groups, and compares these to
observed counts. With k ∈ {2,3, . . .} subject groups, a statistic derived from
expected and observed counts asymptotically follow the χ2 distribution [144]
with k−1 degrees of freedom, which allows computing a p-value for testing
the null hypothesis [143].

Despite their usefulness, the KM and log-rank methods have a number of
potential pitfalls and limitations. First, the interpretation of results is affected
by the extent of the time axis, i.e., the last time point at which survival analysis
is conducted [145]. Although it is possible to extend the analysis to the longest
follow-up time, it is often better to exclude the most extreme time points because
they have more statistical uncertainty and may be based on a limited number
of subjects. In studies with a low number of total subjects, KM analysis is
infeasible because the variance of survival estimates is too large (see Equation 2).
When high-throughput molecular experiments are combined with KM analysis,
care must be taken to avoid false discoveries. For example, one study found that
90% of transcription profiles of random sets having a hundred genes or more are
statistically significant predictors of breast cancer outcome, and many published
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Subject Time t δ

A 1 0
B 3 1
C 3 1
D 4 0
E 6 1
F 7 1
G 9 0

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Kaplan−Meier survival estimates

survival time

Group

(7)

Event time t Events Censorings Risk set: T ≥ t Ŝ(t)

0 0 1 7 (A,B,C,D,E,F,G) 1
3 2 1 6 (B,C,D,E,F,G) 1× 4

6 = 0.667
6 1 0 3 (E,F,G) 0.667× 2

3 = 0.444
7 1 1 2 (F,G) 0.444× 1

2 = 0.222

Figure 7: Illustration of the Kaplan-Meier method. Top row, left: Raw generated
survival data of seven subjects. Four subjects have an event and three are
censored. The time scale for this example is arbitrary; for real data, it is often
days, weeks or years. Top row, right: Visualization of Kaplan-Meier survival
estimates for the illustration data. Bottom row: Processed survival data and
numerical Kaplan-Meier survival function estimates. Data points have been
aggregated into four time points corresponding to events; in addition, the zero
time point is included to account for one censoring before the first event. For
each time point, the second column shows the number of events at that time
point. The third column shows the number of censorings between that and
the next time point, i.e., during the half-open interval [t( j), t( j+1)). The fourth
column shows the subjects surviving until at least the given time. Finally, the
last column shows the survival estimates computed using the rightmost part of
Equation 1, noting that P(T > t( j)|T ≥ t( j)) = P(T > t( j))/P(T ≥ t( j)).

predictor gene sets are no better at predicting outcome than random [146].
Finally, careful interpretation of log-rank test results is needed when two survival
curves are similar in some time points but different in others [145]. Log-rank
computes the overall survival similarity by averaging differences over all time
points, in this case in two qualitatively different time segments.
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7 Results

In this thesis, I present six main results, which include three contributions to
bioinformatics method development and three contributions to cancer biology
(Table 5).

7.1 Anduril workflow framework

Complexity
dimensions:
volume and
structure

Anduril (http://anduril.org) is a software framework for implementing
and executing complex analysis workflows. It is capable of executing completely
automated bioinformatics workflows from sample importing and preprocessing,
to statistical analysis, annotation with biodatabases, and generation of high-
quality reports. Anduril provides scalability in both complexity dimensions:
data volume and structural complexity. Anduril is extensible by third parties
and can thus be adapted to rapidly changing technologies, such as novel deep
sequencing analysis methods. All analyses in this thesis are executed with
Anduril, and the methods developed in other publications have been integrated
to Anduril.

As a bioinformatics framework that provides multiple levels of scalability and
extensibility, Anduril is intended to be used by researchers who are familiar
with programming, such as R scripting. However, the reports generated by
Anduril are targeted at bench biologists with no computational background.
Such reports include colored Excel sheets for numeric data, generated web sites
with searching and sorting functionality, and data visualization using multiple
types of plots (Figure 8). Although the focus here is on biomedical applications,
Anduril is a general-purpose framework that could be applied to data from other
fields, such as “big data” generated by companies [147].

Complexity
management:
abstraction

Table 5: List of contributions in the thesis.
Publication Type Summary

Publication I Methodological Workflow framework for analyzing com-
plex high-throughput data.

Publication I Biomedical Integrative analysis of transcriptomics, ge-
nomics, epigenomics and survival in GBM.

Publication II Methodological Algorithm for analyzing multi-marker time-
series ChIP-seq data.

Publication II Biomedical Identification and elucidation of estrogen-
responsive genes in breast cancer.

Publication III Methodological Software for flexible preprocessing of deep
sequencing data; mathematical framework
for encoding hypotheses.

Related Publ. I Biomedical Genome-wide analysis of AR and FOXA1
binding in prostate cancer, with clinical as-
sociations.
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Figure 8: Examples of Anduril-generated reports. (A) Visualization of Gene
Ontology [148] enrichment [149] results for members of the epidermal growth
factor receptor pathway [150]; data from WikiPathways [151]. (B) Box plot of
quantified gene expression values. (C) DNA consensus sequence logo [152].
(D) Kaplan-Meier survival curve; data from Publication I. (E) Heat map of
quantified gene expression values.

Architecturally, Anduril is composed of three parts. First, Anduril components
are executable software routines that each implement a well-defined part of an
analysis, such as statistical inference. These components are important building
blocks that can be reused between projects; thus, carefully designed and tested
components reduce analysis time requirements. Anduril components imple-
ment a well-defined interface based on ports: a component reads data from
one or more input ports (files) and writes results to one or more output ports.
In addition to ports with complex data, simple parameters, such as integers,
allow modulating component functionality. For the analyst, components are
abstractions that hide implementation details and are accessed through an inter-
face. Anduril components can be written in any programming language capable
of reading and writing files; thus, Anduril allows reusing libraries in multiple
languages, including R/Bioconductor [153], Java, Python and Matlab.

Complexity
management:
modularity

Second, workflow construction is the definition and configuration of a custom
workflow for a particular project. This is done using a custom high-level domain-
specific language, AndurilScript, designed for rapid construction of complex
workflows. When executed, an AndurilScript program yields a workflow struc-
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ture that is later validated and executed. The use of a domain-specific language
is the most distinctive feature of Anduril, differing from graphical workflow
construction (e.g., GenePattern and Taverna) and the use of general-purpose
programming languages (e.g., Biopipe). The advantages of a custom language
is integration of language features with workflow structure; the disadvantages
are increased maintenance load for Anduril developers and a steeper learning
curve for users. Nevertheless, AndurilScript is syntactically and semantically
close to mainstream programming languages and thus relatively easy to learn.
AndurilScript provides scalability for complex analyses through modularization:
large workflows can be divided into parametrized sub-workflows. Common pro-
gramming constructs, such as if-else statements and for loops, also increase
workflow flexibility.

Complexity
management:
parallelism

The third architectural feature is workflow execution using a custom workflow
engine. The Anduril engine supports parallel execution both within a single ma-
chine (threads) and distributed over a cluster (remote execution). Parallelism is
limited by a user-configurable limit for processes, as well as natural constraints
in the workflow topology. The engine is optimized for the iterative, “agile”
nature of data analysis: results from all workflow steps are cached on disk, and
upon a second execution of the workflow, only those steps are executed whose
configuration has changed. This allows executing time-consuming preprocess-
ing steps once and iteratively develop the downstream steps of statistics and
report generation.

Computational overhead of Anduril workflow execution is relatively low, as
Anduril is mainly used to launch external processes. Compared to manually
executing analysis applications, Anduril overhead comes from managing the
output files of each component and evaluating AndurilScript programs. The disk
space occupied by components outputs can be significant; therefore, Anduril
includes an option to automatically clean up output files as soon as they are not
required by any further component.

7.2 Integrative analysis of heterogeneous “omics” data in GBM

Complexity
dimensions:
volume and
structure

Understanding the complex molecular signature of glioblastoma is facilitated by
genome-wide experiments that measure several molecular markers in parallel.
Such experiments produce large-scale heterogeneous data that provide chal-
lenges for managing the bioinformatics analysis workflow as well as prioritizing
statistical findings to find the “needle in the haystack”.

In Publication I, we analyzed heterogeneous microarray data from The Can-
cer Genome Atlas (TCGA) [53] from 338 primary GBM patients to identify
clinically relevant molecular markers. The microarrays included all publicly
available TCGA data at the time of publication, including multiple types of
expression arrays (exon, mRNA and miRNA), SNP arrays, array CGH and DNA
methylation arrays. In addition, we used survival data for assessing clinical
relevance.
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Our answer to the challenge of managing the bioinformatics analysis was the use
of Anduril; this study was, in addition to providing cancer research value, also
intended to validate the applicability of Anduril to complex analysis projects.
For finding the clinically relevant needle in the haystack of microarray data, we
used a three-step strategy. First, we conducted statistical analysis on individual
microarray platforms and integrated the results into gene-level summaries. This
allows, for instance, identifying amplified genes that are overexpressed and
also have hypomethylated promoters. Using results from the first step, we next
conducted Kaplan-Meier survival analysis to identify genes that are candidate
clinical markers and may have a functional role in cancer. Finally, we validated
selected clinical markers in vitro in three GBM cell lines to assess whether the
associated genes have functional roles in the cell. The results from the first and
second steps are presented as a browsable web site that includes metrics such as
gene expression changes and survival p-values, as well as related plots.

Our strongest result from step three is moesin (MSN), a gene coding for an actin
cytoskeleton associated protein [154]. We found this gene to be overexpressed at
the mRNA level and its overexpression had a negative effect on patient survival.
In validation, MSN knockdown by siRNA resulted in decreased proliferation
and increased apoptosis. Together, these features suggest an oncogenic function
for MSN in GBM. Additional support for this hypothesis was provided by Zhu
et al., who elaborated the molecular function of MSN and further established
the proliferative and clinical associations of the gene [155].

7.3 SPINLONG for complex ChIP-seq experiments

Complexity
dimension:
structure

SPINLONG (Spatial Pattern Identification by Non-Linear OptimizatioN with
Global constraints; http://csbi.ltdk.helsinki.fi/spinlong/) is an al-
gorithm for analyzing complex ChIP-seq and global run-on sequencing [107]
(GRO-seq) data. SPINLONG is designed for ChIP targets that produce wide
signal profiles, such as PolII and histone alterations, and is thus complementary
to approaches that are optimized for sharp TF peaks [156].

SPINLONG has an expressive configuration schema that supports in vitro time
series experiments and simultaneous analysis of multiple ChIP targets. As a
configurable algorithm, SPINLONG has several use cases. A basic use case
of SPINLONG is gene classification into transcribed, induced or repressed
genes based on the state of the epigenome and transcription machinery. SPIN-
LONG also allows differential transcription analysis based on quantification
of PolII occupancy in gene bodies. A more complex use case is using the
detailed SPINLONG output metrics to estimate elongation speed of the PolII
machinery [157]. A drawback of the broad applicability of SPINLONG is its
conceptual complexity and laborious configuration.

SPINLONG uses a spatio-temporal analog in which successive base pairs in
a genome form the spatial dimension and samples from different time points,
if any, form the temporal dimension. Short reads are assigned to fixed-width

33

http://csbi.ltdk.helsinki.fi/spinlong/


genomic bins, and these read counts are the input to the algorithm. Whereas in
algorithms such as MACS [116] the spatial pattern to be searched – peak – is
predefined, in SPINLONG it is configurable by the user. Multiple patterns can
be searched simultaneously, and gene classification can be done based on the
best match. Each pattern encodes a hypothesis, such as “a gene is activated at
10 minutes after stimulus”, in machine-readable form. In SPINLONG, a sample
denotes a distinct sequencing library that may be a time point in a time series of
the same ChIP target; a biological replicate; or a sample from a different ChIP
target.

A concrete example of a spatio-temporal pattern is the activation of PolII
machinery as a function of time in a gene induced by a stimulus. At the pre-
stimulus sample, there is little PolII binding along the inactive gene. Shortly
after the stimulus, PolII starts accumulating at the promoter and a short distance
towards the gene body. After a while, PolII complexes have progressed halfway
through the gene and thus the first half of the gene body is occupied by PolII.
Finally, transcription of the first transcripts has been completed, and the gene
body is fully occupied by PolII.

In SPINLONG, patterns are defined in the context of a pre-defined genomic
region, such as the body of a gene; multiple independent regions are processed
in parallel. Each region is divided by the user into one or more segments, which
are contiguous genomic intervals with a homogeneous short read distribution.
Specifically, each segment is expected to contain either a “high” or “low” amount
of reads, as specified by the user. SPINLONG dynamically selects thresholds
for low and high counts. Each sample has an independent division into segments.
For increased expressiveness, there can be linear constraints between the lengths
of segments, either within a single sample or between different samples.

Complexity
management:
parallelism

Based on the segment configuration and constraints defined by the user, the
SPINLONG runtime optimization algorithm assigns lengths to each segment
so that actual read counts within segment boundaries most accurately match
the expected (low or high) counts. The segment length vector producing the
optimal score is the “raw” result of the method. Pattern scoring is configurable
by the user: for example, certain time points or ChIP targets can be given higher
weight. The optimization algorithm is parallelized to speed up processing large
data sets.

Scores and segment lengths are used in subsequent analysis steps to obtain
answers to the higher-level research question. Gene classification is done by
matching multiple patterns simultaneously, such as for induced and repressed
(deactivated) genes, and assigning the class based on the highest score. Tran-
scription quantification is done by counting reads in the segment that corre-
sponds to the actively transcribed gene body; this allows adjusting the region
to account for alternative promoters. Likewise, PolII elongation speed can
be estimated from segment lengths corresponding to “high” count of PolII in
successive time points.
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7.4 Estrogen early response genes in breast cancer

Over half of breast cancers over-express the receptor for estrogen, ER(α), and
are dependent on hormone signaling for proliferation [44]. Nevertheless, the
cellular effects of estrogen are poorly understood. ER is a transcription factor
having both genomic and nongenomic pathways for modulating transcription
and cellular phenotype [45]. Thus, there are several methods for measuring
the effects of estrogen on breast cancer cells. An often used in vitro method
is mRNA profiling, in which the RNA products are measured after a delay
of several hours to a few days after estrogen stimulation. The challenge with
this approach is the selection of the appropriate time point(s): short genes are
transcribed faster than long genes, and secondary transcriptional responses may
be present by the time long genes have finished the primary transcription. A
more direct measure of transcription modulation is the activity of PolII and
certain histone alterations, which occur rapidly after the stimulus. PolII binding
can be measured using ChIP-seq; alternatively, the nascent RNA strands can be
profiled using GRO-seq.

Complexity
dimension:
structure

Using ChIP-seq, we measured PolII, H3K4me3, H2A.Z and ER activity in
the MCF-7 breast cancer cell line [122] at time points 0, 10, 20, 40, 80, 160,
320, 640 and 1280 minutes after estradiol stimulus. Our goal was to identify
early response genes and to assess their clinical relevance in an independent
TCGA breast cancer cohort [54]. Analyzing a time-series ChIP-seq experiment
measuring several markers in parallel is methodologically challenging, as most
existing software are tuned for single samples of TF-like ChIP profiles. To
address this challenge, we used the SPINLONG algorithm, which is scalable to
complex ChIP-seq experiment designs.

We identified 777 estradiol early response genes, of which 699 are induced and
78 are repressed. Interestingly, many of these genes show a response in PolII
binding patterns already at 10 minutes after stimulus, which implies rapid signal
transduction using either the genomic or nongenomic pathway, and subsequent
modification of chromatin amendable for transcription. Possibly, some of
the early response genes are in a readiness state, with pre-assembled PolII
complexes at the promoter. When comparing our 777 genes against published
estrogen response gene sets from literature [158, 159, 160], we observed low
overlaps both between our set and sets from literature, and between sets from
different publications. One reason for the low overlaps is experimental design,
as most published gene sets are based on mRNA profiling at a relatively late
time point (e.g., 24 hours). This highlights the difficulty of unambiguously
describing the “estrogen response”: which experimental method should be
selected to provide a canonical response gene set?

To filter the haystack of 777 genes, we searched for survival associations in the
gene expression data from TCGA. The strongest result from this analysis was
ATPase Family, AAA Domain Containing 3B (ATAD3B), which is induced in
MCF-7 cells and whose overexpression is associated with decreased survival.
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Figure 9: Use cases for GROK. Circles represent sets of genomic regions,
which can be derived from aligned sequencing reads or output of sequence
analysis algorithms. (a) File format conversion, in which core content of data
remains unchanged. In this example, the conversion is from BAM to BED.
(b) Filtering of genomic data, such as quality control for sequencing reads.
(c) Combining genomic regions from several samples using elementary set
operations. (d) Combining samples using a complex formula. In this example,
the result set (green) is the intersection of samples C and D from which E and
the union of A and B are removed, i.e., ((C∩D)\E)\ (A∪B).

Induction of transcription led to increased mRNA levels as profiled using RNA-
seq. We validated the survival association in two further published cohorts [123,
124]. ATAD3B is a mitochondrial protein whose molecular function in not
known in detail; its role in tumorigenesis has previously been suggested [161].

7.5 GROK for flexible processing of deep sequencing data

Bioinformatics methods for analyzing deep sequencing data are developing
rapidly and the tools are rarely standardized into formal workflows. Rather,
state-of-the-art tools are often accessed from the command line or programming
frameworks, such as Bioconductor, and combined into usable workflows using
ad hoc scripting. This is aided by a degree of standardization in sequencing file
formats, such as BAM [162], FASTQ [163] and VCF [164]. In these ad hoc
workflows, there is often a need for “glue tools” that enable binding successive
workflow step together. Such tools provide functionality for file format con-
version, short read filtering and transformation, and sample comparison and
combination (Figure 9). Published glue tools for scripting purposes include the
BEDTools family [165, 166], BEDOPS [167] and CGAT [168].

Complexity
management:
abstraction

We took a systematic approach to constructing a flexible and extensible deep
sequencing glue tool. First, we developed a mathematic formalism based on set
algebra [169] that allows succinctly expressing analysis goals such as “select
ChIP-seq peaks present in both samples A and B that do not overlap with peaks
in sample C”. This is an example of using abstraction for managing complexity
in experimental design: a suitable formal language simplifies analysis specifica-
tion and communication by providing high-level constructs for experimental
features.
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Based on the formalism, we designed and developed a practical sequenc-
ing toolkit, Genomic Region Operation Kit (GROK; http://csbi.ltdk.
helsinki.fi/grok/), that implements the mathematical operations and sup-
ports various use cases for glue tools. Compared to other tools, GROK has
a more orthogonal design: a relatively rich set of elementary operations are
efficiently implemented, and complex operations are built by combining these.
In addition, GROK is not bound to a specific programming interface, as it
supports multiple programming languages (R, Python and Lua) as well as the
command line.

7.6 AR and FOXA1 in prostate cancer

Analogously to estrogen in breast cancer, the majority of prostate tumors are
dependent on androgen signaling for proliferation [43]. Androgens establish
their transcriptional modulation mainly through the transcription factor AR,
whose downstream targets, however, are not known in detail. We followed a
similar general strategy as in the breast cancer study by first identifying molec-
ular markers genome-wide in vitro and then assessing their clinical relevance
using patient samples.

Using modified LNCaP human prostate cancer cells [125], we first measured AR
binding sites (ARBSs) two hours after stimulation with the most potent natural
androgen, dihydrotestosterone (DHT), using ChIP-seq. By analyzing the >8000
ARBSs identified using MACS [116], we identified enrichment of FOXA1
binding motifs within ARBS sequences. FOXA1 is a TF in the forkhead family
that is associated to growth and differentiation of various tissues, including
prostate and breast [170]. It is a co-regulator of expression together with other
TFs, including AR [171]. In particular, FOXA1 is known to be a pioneer factor
that binds to chromatin before other TFs. Thus, we focused on the AR–FOXA1
interaction by silencing FOXA1 expression by siRNA and conducting ChIP-seq
for AR and FOXA1 in both parental (non-silenced) and FOXA1 silenced cells.

We found that FOXA1 has three distinct roles in co-regulating transcription
with AR. Some ARBSs are independent from FOXA1, i.e., they are present in
both parental and silenced cells. Some require the presence of FOXA1: they
disappear in silenced cells, which corresponds to the pioneering functionality of
FOXA1. Finally, a substantial number of ARBSs are masked by FOXA1 and
only appear in silenced cells. The findings were validated with ChIP followed by
quantitative polymerase chain reaction (ChIP-qPCR), and in a another prostate
cancer cell line, VCaP. We further measured gene expression in both cell types
and observed three transcriptional profiles that are consistent with the three
classes of FOXA1–AR interaction. These results indicate that FOXA1 has a
more complex interaction with AR than previously thought, as in addition to the
pioneer role, it has two additional roles that are also reflected at the RNA level.

To assess the clinical relevance of FOXA1, we constructed a cohort of 350
prostate cancer patients to find correlations between protein levels and survival.
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As a positive control, we verified that high AR protein expression is associated
with reduced survival. Our main clinical finding was that high FOXA1 protein
levels are associated with reduced survival, and low FOXA1 levels increase
survival even in the presence of high AR protein levels. Together, these results
indicate that FOXA1 has a multifaceted and clinically relevant role in prostate
cancer.
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8 Discussion

Malignant cells have numerous alterations in their genomes and epigenomes that
alter the cellular phenotype in a heterogeneous and complex fashion. Identifying
these alterations and their causal role in tumorigenesis forms a basis for more
accurate diagnosis and prognosis, and improved therapeutic regimens, such
as rational development of targeted anti-cancer drugs. As cancer cells have
undergone mutations in various genomic regions, genome-wide measurement
techniques are required for obtaining a holistic view of tumorigenic processes.

We developed software at multiple conceptual levels for scalable analysis of
structurally complex genome-wide experimental data. The Anduril framework
(Publication I) forms an umbrella system that manages the overall structure of
analysis programs. Complexity

management:
parallelism

It obtains scalability by parallelizing workflow execution,
by leveraging libraries in multiple programming ecosystems in an integrated
fashion, and by using a domain-specific language for constructing complex
workflows. Complexity

management:
modularity

Anduril has enabled the analysis of several large-scale biomedical
data sets. For instance, in Publication I, using a team of analysts, we constructed
a large GBM analysis workflow that consisted of 350 distinct steps, and we
have since extended the approach to three other TCGA-supplied cancers (http:
//anduril.org). So far, Publication I has been cited 43 times (Thomson
Reuters, Web of Science), including in two commentaries [172, 173].

Complexity
dimension:
structure

The other methodological contributions, SPINLONG (Publication II) and GROK
(Publication III), provide new workflow building blocks for analyzing complex
ChIP-seq data and flexible preprocessing of deep sequencing data, respectively.

Complexity
management:
abstraction

SPINLONG expands the scope of ChIP-seq analysis algorithms by supporting
multiple ChIP targets and time series experiments. GROK is based on a math-
ematical language that allows formulating common preprocessing tasks in a
succinct manner.

Our three experimental contributions (Publication I, Publication II and Related
Publication I) highlight three useful strategies in high-throughput experiments.
In all experiments, we used both patient and cell line material, as these distinct
approaches support each other. In patient material, we integrated molecular and
survival data to combine the microscopic (cellular) level with the macroscopic
(individual). In the GBM study, we started with patient material and validated
results in cell lines. In the breast and prostate cancer studies, we followed an
opposite strategy by conducting primary experiments in cell lines and assessing
clinical relevance in patient cohorts.

In all publications, we started with genome-wide measurements whose initial
analysis provided large result sets of genes or genomic regions, and then focused
on one or a few genes as the primary result. These focus genes are MSN
(Publication I), ATAD3B (Publication II) and FOXA1 (Related Publication I).
Focusing on a few genes makes the results more comprehensible for humans by
reducing complexity, although it may also hide interesting details of the other
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genes. To compensate for this, we also released the full results in tabular and
WWW formats, using the reporting facilities of Anduril.

In the GBM and breast cancer studies, we utilized publicly available data sets
from TCGA [53, 54] and other literature sources in addition to custom ex-
periments. Other public data sources relevant for cancer research include the
Encyclopedia of DNA Elements (ENCODE) [67] and International Cancer
Genome Consortium (ICGC) [174]. Complexity

dimension:
volume

Such data sets allow economical access
to large patient cohorts, which facilitates deriving robust statistical conclusions
on patient survival and molecular features of tumors. They also often use stan-
dardized laboratory protocols to enable comparison of experiments from several
laboratories. On the other hand, public data sets are subject to competitive anal-
ysis from the worldwide biomedical community, which emphasizes early access
to data and rapid development of analysis workflows. For the latter, Anduril can
speed up development due to the reuse of existing analysis tools and workflows,
and a workflow construction environment designed for programmers.

In this thesis, we have focused the experimental and development efforts at
the genomic, epigenomic and transcriptomic levels. It is important to remem-
ber, however, that much of cellular phenotypes, including malignancy, are
established at the proteomic level [175]. Phenomena such as post-translational
modifications and protein degradation are not observable at the DNA or RNA
levels. High-throughput measurement techniques for nucleotides, such as deep
sequencing and DNA microarrays, are more mature technologically than the
corresponding techniques for proteomics, such as mass spectrometry [176] and
protein arrays [177]. This is because nucleotide polymers are more amendable
than proteins for sequencing and quantifying due to base pairing. However, as
high-throughput proteomics technologies mature, they are expected to provide
a new data layer for genome-wide cancer experiments. Anduril can be ex-
tended to support integrative analysis of such new data layers. Indeed, Anduril
has already been extended for analysis of fluorescence activated cell sorting
(FACS) data [178] and microscopy images (Ville Rantanen et al., in preparation,
http://anduril.org/anima).

In the future, high-throughput measurement technologies, such as deep sequenc-
ing, continue to be refined, and new technologies, such as third generation
sequencing [179], will be deployed. These will not replace earlier technologies:
for example, low-throughput PCR continues to be useful for targeted experi-
ments and validation. As technology matures, the data generation step (e.g.,
sequencing) becomes a commodity and the bottleneck is in sample preparation
and, in particular, data analysis and interpretation. New bioinformatics methods
are needed for analyzing complex data sets [180], integrating heterogeneous
data, and combining results from custom experiments with the literature. The
most challenging step in high-throughput data analysis is identifying the needle
in the haystack of results, i.e., obtaining biomedically relevant conclusions.

As data volume and complexity continues to grow, both in custom and published
data sets, methods based on artificial intelligence (AI) [181, 182] may be useful

40

http://anduril.org/anima


for aiding researchers in interpreting results. Computers are able to process
large amounts of data, but often their internal model of the data is rudimentary:
for example, a gene may be considered as a non-structured “black box”. In
contrast, an AI based analysis system could have a more flexible internal data
model, which would help to integrate experimental data and make inferences in
ways that are not as rigidly constrained as for one-purpose analysis algorithms.
An early example of this paradigm is the Watson knowledge base system
(IBM, New York, USA), which aids medical doctors in diagnosing and treating
patients [183]. In basic biomedical research, an AI system could integrate a
literature knowledge base with analysis and planning algorithms to flexibly
explore data and suggest novel testable hypotheses to researchers.
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[102] Altschul, S. F, Madden, T. L, Schäffer, A. A, Zhang, J, Zhang, Z, Miller, W, & Lipman, D. J. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25,
3389–3402. 21

[103] The 1000 Genomes Project Consortium. (2012) An integrated map of genetic variation from 1,092 human
genomes. Nature 491, 56–65. 22

[104] Meyerson, M, Gabriel, S, & Getz, G. (2010) Advances in understanding cancer genomes through second-
generation sequencing. Nature Reviews Genetics 11, 685–696. 22

[105] Ellis, M. J, Ding, L, Shen, D, Luo, J, Suman, V. J, Wallis, J. W, Van Tine, B. A, Hoog, J, Goiffon, R. J, Goldstein,
T. C, et al. (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486,
353–360. 22

[106] Wang, Z, Gerstein, M, & Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews
Genetics 10, 57–63. 22

[107] Core, L, Waterfall, J, & Lis, J. (2008) Nascent RNA sequencing reveals widespread pausing and divergent
initiation at human promoters. Science 322, 1845–1848. 22, 33

[108] Hah, N, Danko, C, Core, L, Waterfall, J, Siepel, A, Lis, J, & Kraus, W. (2011) A rapid, extensive, and transient
transcriptional response to estrogen signaling in breast cancer cells. Cell 145, 622–634. 22

[109] Krueger, F, Kreck, B, Franke, A, & Andrews, S. R. (2012) DNA methylome analysis using short bisulfite
sequencing data. Nature Methods 9, 145–151. 22

[110] de Wit, E & de Laat, W. (2012) A decade of 3C technologies: insights into nuclear organization. Genes &
Development 26, 11–24. 22

[111] Ingolia, N. T, Ghaemmaghami, S, Newman, J. R, & Weissman, J. S. (2009) Genome-wide analysis in vivo of
translation with nucleotide resolution using ribosome profiling. Science 324, 218–223. 22

[112] Wooley, J. C, Godzik, A, & Friedberg, I. (2010) A primer on metagenomics. PLoS Computational Biology 6,
e1000667. 22

[113] Barski, A, Cuddapah, S, Cui, K, Roh, T.-Y, Schones, D. E, Wang, Z, Wei, G, Chepelev, I, & Zhao, K. (2007)
High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837. 21

[114] Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunopre-
cipitation. Trends in Biochemical Sciences 25, 99–104. 21, 22

[115] Wilbanks, E & Facciotti, M. (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE
5, e11471. 23

[116] Zhang, Y, Liu, T, Meyer, C, Eeckhoute, J, Johnson, D, Bernstein, B, Nussbaum, C, Myers, R, Brown, M, Li, W,
et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biology 9, R137. 23, 34, 37

[117] Bryne, J, Valen, E, Tang, M, Marstrand, T, Winther, O, Da Piedade, I, Krogh, A, Lenhard, B, & Sandelin, A.
(2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the
2008 update. Nucleic Acids Research 36, D102–D106. 23

[118] Bailey, T. L, Boden, M, Buske, F. A, Frith, M, Grant, C. E, Clementi, L, Ren, J, Li, W. W, & Noble, W. S. (2009)
MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37, W202–W208. 23

[119] Ouyang, Z, Zhou, Q, & Wong, W. H. (2009) ChIP-Seq of transcription factors predicts absolute and differential
gene expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the USA 106,
21521–21526. 23

[120] Sun, H, Wu, J, Wickramasinghe, P, Pal, S, Gupta, R, Bhattacharyya, A, Agosto-Perez, F, Showe, L, Huang, T, &
Davuluri, R. (2011) Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq. Nucleic
Acids Research 39, 190. 23

[121] Welboren, W, Van Driel, M, Janssen-Megens, E, Van Heeringen, S, Sweep, F, Span, P, & Stunnenberg, H. (2009)
ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands. The EMBO Journal
28, 1418–1428. 23

[122] Soule, H, Vazquez, J, Long, A, Albert, S, & Brennan, M. (1973) A human cell line from a pleural effusion derived

48



from a breast carcinoma. Journal of the National Cancer Institute 51, 1409–1416. 25, 35

[123] Miller, L, Smeds, J, George, J, Vega, V, Vergara, L, Ploner, A, Pawitan, Y, Hall, P, Klaar, S, Liu, E, et al. (2005)
An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and
patient survival. Proceedings of the National Academy of Sciences of the USA 102, 13550–13555. 25, 36
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