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1 INTRODUCTION 

 

The Andean environment is an important center for cultivating different crop species such as 

barley, potatoes and legumes (Repo-Carrasco et al. 2010a). The extreme tolerance of Andean 

crops towards unfavorable conditions has attracted the interest worldwide to cultivate on a 

larger scale (Mujica et al. 2001). The Andean seeds are served as a substitute for animal 

proteins and are still the major source of proteins with well-balanced composition very similar 

to that of casein (Repo-Carrasco et al. 2003). Quinoa, kañiwa and amaranth are considered as 

Andean pseudocereals while the seeds of lupine are grouped under the class of Andean 

legumes (Sujak et al. 2006; Peñarrieta et al. 2008; Repo-Carrasco et al. 2010a). 

 

The nutritional quality of the Andean crops varies widely depending on the species. The 

Andean crops quinoa, kañiwa, amaranth and lupine are suited for people suffering from celiac 

disease (disease due to gluten intolerance) since these seeds are gluten-free (Peñarrieta et al. 

2008).  The protein and fat content of kañiwa is slightly higher when compared to quinoa and 

amaranth (Repo-Carrasco et al. 1992). Quinoa and kañiwa was found to be rich in 

carbohydrates and dietary fiber when compared to the seeds of amaranth. Likewise tarwi (L. 

mutabilis) and L. angustifolius are also rich sources of protein, dietary fiber and fat (Gross et 

al. 1988; Sujak et al. 2006). In fact, the high content of essential amino acids present in 

amaranth makes it an interesting alternative to meat products (Pisarikova et al. 2005). The 

seeds of amaranth, quinoa, kañiwa and lupine also contained higher content of lysine, a 

limiting amino acid amongst the cereals (Repo-Carrasco et al. 1992; Lqari et al. 2002; Stikic 

et al. 2012). 

 

Quinoa, amaranth, kañiwa and lupine are reported to contain high content of micronutrients 

and bioactive compounds (Calhoun et al. 1960; Gamel et al. 2006). The seeds of quinoa, 

kañiwa and amaranth are considered rich sources of α-tocopherols, phenolic compounds that 

plays an important role as an antioxidant and are also beneficial in reducing the risk of 

cardiovascular and cancer diseases (Liu et al. 1999; Geleijnse et al. 2002; Brigelius and Flohé 

2006; Repo-Carrasco et al. 2009b). The antinutrients that are present in the seeds of quinoa, 

kañiwa, amaranth and lupine are saponins, phytic acid and toxic alkaloids that affect the 

nutritional properties of the seeds by lowering starch digestibility, protein and micronutrient 
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absorption (Repo-Carrasco et al. 2003; Valencia 2004; Martínez-Villaluenga et al. 2006). The 

presence of phytates in quinoa seeds was found to decrease the bioavailability of minerals 

such as iron, magnesium and zinc (Ruales and Nair 1993).  

 

Due to desirable nutrient composition of amaranth, quinoa, kañiwa and lupine they can be 

processed by implementing low-cost food processing technique such as extrusion (Brennan et 

al. 2011). Extrusion cooking is a high temperature short residence time process which can be 

used to process a wide variety of raw materials (Singh et al. 2007; Yagci and Gögus 2009). 

Extrusion causes several changes such as starch gelatinization, protein denaturation, alteration 

in the content of dietary fiber, bioactive compounds and vitamins, and elimination of 

antinutrients factors which modifies the nutritional and physical properties of the extrudates 

(Cheftel et al. 1989; Camire et al. 1990; Guy 2001b).  

 

There are several studies on the effect of extrusion on the nutritional properties and the 

stability of bioactive compounds. Extrusion processing increased the retention of total lipids 

in the raw materials containing lower fat content (< 5%) (Nierle et al. 1980). Also due to high 

temperature extrusion processing, the process of lipid oxidation increased in the case of the 

corn extrudates (Camire et al. 1982; Zadernowski et al. 1997). With respect to the bioactive 

compounds, the retention of heat-sensitive vitamins namely α-tocopherol, vitamin B1 and B2 

were better due to milder extrusion temperatures and short residence time during the extrusion 

processing (Killeit and Weidmann 1984; Grela et al. 1999). High temperature extrusion 

cooking increased the content of total phenolics by releasing the bound phenolics from the 

cell matrix (Yagci and Gögus 2009). Therefore, the study of extrusion on nutritional 

properties and the stability of bioactive compounds can provide valuable data for the 

production of gluten-free snacks of high nutritional value. 

 

The literature review discussed on the nutritional properties and the bioactive compounds of 

the flours of amaranth, quinoa, kañiwa and lupine. The effect of extrusion on the nutritional 

properties and the stability of bioactive compounds were also studied in literature review. The 

objective of this study was to determine the effect of extrusion cooking on the nutritional 

properties and the stability of bioactive compounds of extrudates containing quinoa, kañiwa, 

amaranth and lupine.  
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2 LITERATURE REVIEW 

 

2.1 General aspects of amaranth, lupine, kañiwa and quinoa 

 

The term ‘Andean crops’ is generally referred to as cereals, pseudocereals and legumes 

cultivated in Andes and considered as staple food (Mujica et al. 1994). Due to their high 

nutritional quality, the cultivation of Andean grains has increased not only in the Andean 

regions of Ecuador and Bolivia but also in other parts of the world such as Australia, New-

Zealand and Finland (Jacobsen et al. 2011). The seeds of quinoa, lupine, amaranth and kañiwa 

can be milled into flour and can be directly used in a similar way to cereal seeds either as a 

direct addition for extruded snacks or as an ingredient in weaning food mixtures. Quinoa, 

kañiwa, and amaranth are not grouped under the same family as cereals (Gramineae). 

However, since these seeds are used for similar applications as cereals they are termed 

pseudocereals (Repo-Carrasco et al. 2010a). The seeds of lupine are grouped under the 

legume family, Fabaceae. 

 

2.1.1 Origin of amaranth, lupine, kañiwa and quinoa 

 

Quinoa also known as quinua (Chenopodium quinoa Willd) is considered as staple food in the 

Andes region. During the first phase of the 20
th

 century, cultivation of quinoa started to 

decline in the Andes due to introduction of intensive agriculture while the cultivation of wheat 

and barley increased considerably. Chenopodium quinoa, a tetraploid species said to be called 

as ‘mother seed’ by the Incas, is an ancient civilization from South America. Quinoa is annual 

herbaceous, semi-vigorous root in the Andean region (Franc and Martina 2006). Quinoa has 

also been selected as one of the crops to offer food security in the 21st century by Food 

Agricultural Organization (FAO) (Jacobsen et al. 2003). 

 

Amaranth is an ancient crop cultivated for the past 5000-7000 years and is considered as 

staple food for Aztecs (now south-central Mexico). Domestication of amaranth originated 

from the regions of Columbia, Argentina and Peru (Petterson 2004a; Repo-Carrasco et al. 

2009b). In recent times, amaranth plant has been monitored continuously due to its great 
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tolerance; nutritional quality and possessing good biomass yield. The amaranth plant can be 

consumed both as vegetable and the seeds like the cereal (Saunders and Becker 1984).  

 

Kañiwa (Chenopodium pallidicaule) has always been considered as an important crop to the 

people in the Andean region and are cultivated mostly in the rural areas of Peru and Bolivia 

(Repo-Carrasco et al. 2010b). Like quinoa and amaranth, kañiwa can adapt well to extreme 

environmental conditions. Due to its desirable nutritional composition, it can be substituted 

for the animal protein in the normal diet (Repo-Carrasco et al. 2009a).  

 

Lupine, a leguminous seed originated during the pre-Incas civilization more than 3500-4000 

years ago and is being increasingly used as human food due to its nutritional and functional 

properties (Duranti et al. 2008). L angustifolius are the narrow leafed lupines which are 

considered as an alternative rich source of protein for the poultry feed in the Pacific regions 

particularly in Australia (Nalle et al. 2011). Torres et al. (2007) reported that seeds of lupine 

varieties (L.angustifolius, L.albus) are considered as rich source of protein content in human 

nutritional diet which can be replaced for foods of high protein soy diet. Sujak et al. (2006) 

also reported that the L angustifolius has higher amounts of lysine than wheat seed. Andean 

lupine called tarwi (L. mutabilis) was a common food during Pre-Hispanic times and is still 

consumed in some regions of South America 

 

2.1.2 Traditional uses and current utilization of the seeds 

 

The Andean seeds are used traditionally in many different ways. Kañiwa is consumed by 

toasting and milling as a meal called as kañiwako (Repo-Carrasco et al. 2003). Kañiwa is also 

used by mixing the flour with wheat in bread and also used as an ingredient in beverages 

(Peñarrieta et al. 2008). Toasted amaranth is used as a puffed product which is used to make a 

type of snack bar (turrone) and also used as an ingredient in preparing baby foods to make 

porridge (Repo-Carrasco et al. 2009b). With respect to quinoa, the traditional uses comprises 

of bread made of quinoa flour (kispiño), quinoa porridge (katawi lawa) and meal containing 

toasted quinoa and meat (sankhu) (Macedo 2003). Lupine is also toasted or boiled to make a 

snack (kirku) and the lupine seeds are commonly used as to prepare edible refined oil. The 
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application of the Andean seeds is gradually increasing with its introduction as an ingredient 

in the extruded products. Quinoa, kañiwa, amaranth and lupine are regarded as gluten-free 

sources which can help in providing health benefits such as reducing the cholesterol level in 

blood and improving digestion (Repo-Carrasco et al. 2003).  

 

2.2 Nutritional properties  

 

Quinoa, kañiwa, amaranth and lupine have a distinct chemical composition compared to that 

of cereals like wheat, rye and corn. However, the Andean crops can also be used as suitable 

substitutes for cereals in providing highly nutritious product (Repo-Carrasco et al. 2010a). 

The nutritional quality of a product depends on the quality and quantity of the nutrients 

present (Repo-Carrasco et al. 1992). The Andean crops quinoa, kañiwa and amaranth are 

reported to have high content of protein, dietary fibre and specific bioactive compounds such 

as tocopherols and phenolics. The distribution of chemical constituents in the seed varies 

according to species and the cultivars. Nutritional composition of the quinoa, amaranth, 

kañiwa and lupine are presented in Table 1. The protein content of the lupine species was 

higher when compared to cereals as well as pseudocereals, whereas the protein content of 

amaranth, kañiwa and quinoa were comparatively similar to wheat, corn, oats and rye. The 

seeds of amaranth and lupine possessed higher fat content when compared to kañiwa, quinoa 

and most cereals (Lqari et al. 2002; Repo-Carrasco et al. 2009b).  

 

Amaranth, quinoa and kañiwa possessed lower proportion of carbohydrates when compared 

to cereals like oats, corn and wheat whereas there were similarities in the content of 

carbohydrates within the seeds of amaranth, quinoa, kañiwa. Dietary fiber content was higher 

in the species of L. angustifolius when compared to cereals and pseudocereals (Lqari et al. 

2002). There was a three-fold increase in the content of dietary fiber in the results determined 

by Alvarez et al. 2010 when compared to results obtained by Repo-Carrasco et al (2009b, 

2010b). Repo-Carrasco et al (2010a) reported that the high content of dietary fiber was related 

to the presence of perigonium layer, outer covering of the seed which was removed in the 

study performed by Repo-Carrasco et al (2009b; 2010b) explaining the reason for lower 

content of dietary fiber in the seeds of amaranth and quinoa.  
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Table 1. Composition of Andean seeds and cereals  

CONTENT (g/100 g d.m.) 

Material (reference)                 Variety              Protein
d
        Fat           Ash       Dietary fiber          Carbohydrates 

Wheat
 
  

(Kent 1983) 

                                    Manitoba         16            2.9            1.8     2.60                      74.1 

                                   English wheat       10.5            2.6            1.8              2.50                      78.6  

 Rice
                                                               

9.1             2.2            7.2    10.20                   71.2 

(Kent 1983)    

 Maize                                      11.1            4.9            1.7               2.1                       80.2 

(Kent 1983)  

Oats
                                                                                                             

11.6             5.2           2.9              10.4                      69.8 

(Kent 1983)   

 Barley
                                                                                                  

11.8             1.8            3.1               5.3                       78.1 

(Kent 1983)  

Amaranth 
a
          

(Repo-Carrasco et al. 2009b) 

                                         Centenario
              

14.55          10.08          2.39              7.43                     65.55
 

 

                                                 Oscar Blanco 
        

14.70          10.15          2.61              7.27
                                

65.27 

Amaranth
a
                                                            16.50           5.7             2.80              20.6                     61.40   

(Alvarez et al. 2010)    

Quinoa
b
                                                                 15.7            5.7              3.1               10.3                      66.5 

(Wright et al. 2002)                                      

Quinoa
b 
        

(Repo-Carrasco et al. 2010b) 

                                                  Witulla                 12.28          5.32          2.57             2.62                      69.5 

                                                  Ccoito       14.72         5.33           2.83             1.81                       68.1  

Quinoa
b
                                                                 14.50         5.20           2.70             14.2                       64.2 

(Alvarez et al. 2010)                                 

Kañiwa
c
                      

(Repo-Carrasco et al. 2009a) 

                                                   Cupi        14.41         5.68         5.03                11.24                  63.64  

                                     Ramis                  14.88         6.96         4.33                 8.18
 
                    65.6 

Kañiwa
c
                                                                 13.06         5.70         2.90                  n.d.                       n.d. 

(Rosell et al. 2009)    

 Lupine                                                                 

L. angustifolius                                                        34.8           n.d.           4.4                   n.d.                      46 

(Mohamed et al. 1995)  

L. angustifolius                                                       30-40       13.6          2.10                 33-45                    n.d. 

(Lqari et al. 2002) 

L. angustifolius                                                        32.9         n.d.           3.40                  11.6                      n.d. 

(Sujak et al. 2006)  
n.d. - Not determined  
a-Amaranthus caudatus 

b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule  
d- Total protein*6.25 

 

The seeds of amaranth, quinoa, kañiwa and lupine are considered to be better sources of 

dietary fiber, protein, total fat content when compared to common cereals like wheat, maize, 
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oats, and barley. With respect to micronutrients (Table 6), total phenolic acid content in the 

seeds of quinoa was higher when compared to amaranth, kañiwa and lupine (Repo-Carrasco 

et al. 2010b). Kañiwa possessed higher content of flavonoids (144 mg/100 g d.m.), while 

varieties of lupine contained higher content of total tocopherol (8-9.5 mg/100 g d.m.) when 

compared to amaranth and quinoa (Repo-Carrasco et al. 2010b; Torres et al. 2005). 

 

2.2.1 Protein and amino acid composition 

 

Proteins are complex organic biomolecules consisting of a chain of amino acid molecules 

which plays an important role as a principal constituent of protoplasm of the cell structure 

thereby considered essential to life (Morris 1992). The main biological functions of protein 

are replication of DNA, building blocks of cells, formation and stabilization of foams and 

emulsions (Walstra 2003; Guerrieri 2004).  

 

The most abundant component in the Andean seeds is protein (Table 1) (Cai et al. 2004). 

Seeds of blue lupine variety (L. angustifolius) possessed higher content of protein ranging 

between 30-40 g/100 g d.m. when compared to amaranth, quinoa, kañiwa and most cereals 

(Sujak et al. 2006). With respect to pseudocereals, amaranth, quinoa and kañiwa had similar 

content of protein (15-17 g/100 g d.m.) to that of oats, rice and wheat (Repo-Carrasco et al. 

2009a; 2009b; 2010b). 

 

The classes of proteins are grouped as albumins, globulins, prolamins and glutelins based on 

solubility. Scarpati de Briceño (1979) and Lasztity (1985) reported that the amount of 

albumins, globulins, prolamins and glutelins in the seeds of quinoa and kañiwa were 

comparatively higher when compared to wheat, rice and maize (Table 2). The content of 

albumins and globulins in the seeds of amaranth, kañiwa and quinoa were comparatively 

higher than that of rice, wheat and maize. The amount of glutelins and other insoluble proteins 

in the seeds of amaranth, quinoa and kañiwa were comparatively similar, whereas rice 

possessed a higher content of glutelins and insoluble proteins amongst other cereals. With 

respect to prolamins, wheat and kañiwa possessed higher amounts when compared to other 

cereals and pseudocereals.  
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The content of albumins and globulins in the varieties of lupine seeds were also analysed. 

Gulewicz et al. (2008) reported that the seeds of lupine (L.angustifolius) had significantly 

higher content of albumins and globulins (35-39 mg/g of protein d.m.) when compared to 

cereals like wheat, rice and maize. The content of prolamins and glutelins in the lupine seeds 

were about 16 mg/g of protein (d.m.). The addition of lupine seeds in the foods can result in 

the enrichment of nutritional properties thereby resulting in producing high quality foods 

(Torres et al. 2007) 

 

Amino acids which are regarded as ‘building blocks of proteins’ can be classified as 

indispensable, conditionally dispensable and dispensable amino acids based on the availability 

and function in relation to role of amino acids supporting towards protein deposition and 

growth (Reeds et al. 2000). The essential amino acids are the class of amino acids which the 

body cannot synthesize itself and has to be consumed through diet. So the essential amino 

acids are considered to be more necessary for the body to synthesize the protein and carry out 

different biological functions.  

 

Table 2. Albumin, globulin, prolamin and glutelin content in cereals and pseudocereals  

a-Amaranthus caudatus 
b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule  

d- Glutelins+prolamins 

 

The composition of essential amino acids in quinoa, kañiwa, amaranth and lupine were 

compared with cereals and presented in Table 3. The most common limiting amino acid 

 

Material (reference) 

Content (% of total protein) 

 Albumins + 

Globulins 

Prolamins Glutelins+Insoluble 

proteins 

Wheat (Lasztity 1985) 17.1 28.5 54.4 

Rice (Lasztity 1985) 19.2 8.9 71.9 

Maize (Lasztity 1985) 38.3 24.5 37.2 

Amaranth
a 
(Cai et al. 2004) 46-49 3 30-33 

Quinoa
b 

(Scarpati de Briceño 1979) 

45 23 32 

Kañiwa
c 

(Scarpati de Briceño 1979) 

41 28 31 

Lupine (Gulewicz et al 2009) 35-39 6.2
d 

6.2
d 
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among the cereals is lysine and the content of lysine in the amaranth, quinoa and kañiwa were 

nearly 2-3 times higher when compared to wheat and rice. According to Repo-Carrasco 

(1992), leucine and threonine were the limiting amino acids in certain quinoa varieties like 

Nariño and Amarilla de Marangani reported that there was no limiting amino acid. In the 

Andean sweet lupine (tarwi), the limiting amino acids were methionine and cysteine 

(Schöneberger et al. 1982). The limiting amino acid in the amaranth was reported to be 

leucine (Bejosano and Corke 1998).The pseudocereals were reported to contain a balanced 

composition and higher content of essential amino acids when compared to cereals like maize 

and wheat (Gorinstein et al. 2002; Drzewiecki et al. 2003). With respect to indispensible 

amino acids, lupine had higher contents of leucine and lysine when compared to wheat and 

rice (Lqari et al. 2002). Seeds of quinoa possessed higher content of isoleucine, leucine and 

tyrosine while content of lysine and methionine were higher in the seeds of amaranth (Repo-

Carrasco et al. 1992; Stikic et al. 2012). Quinoa also contained good proportion of arginine 

composition followed by lupine, kañiwa and amaranth. 

 

Table 3. Composition of essential amino acids in quinoa, kañiwa, amaranth and lupine  

 Content (g/100 g d.m.) 

 

Amino acid  

Wheat 

 (Repo-

Carrasco et 

al. 1992) 

Rice 

(Repo-

Carrasco et 

al. 1992) 

Amaranth
c 

(Repo-

Carrasco et 

al. 1992) 

Quinoa
d 

(Stikic et 

al. 2012) 

Kañiwa
e 

(Repo-

Carrasco et 

al. 1992) 

Lupine
f 

(Lqari et 

al. 2002) 

Histidine
a
    2 2.2 2.4 2.6 2.7 2.7 

Methionine
a
  1.3 3.6 3.8 2.2 3 1.3 

Valine
a
  4.6 5.1 3.8 5.4 4.2 3.9 

Isoleucine
a
  4.3             3.5 3.2 5 3.4 5.5 

Leucine
a
  6.7             7.5 5.4 8.3 6.1 8.7 

Lysine
a*

  2.8             3.2 6 3.9 5.3 5.4 

Phenylalanine
a
  4.9              4.8 3.7 4.7 3.7 5.2 

Trytophane
a
  1.2    1.1 1.1 n.d. 0.9 0.6 

Tyrosine
a
  3.7 2.6 2.7 3.6 2.3 5.9 

Threonine
a
  2.9 3.2 1.1 3 3.3 4.9 

Arginine
b 

  4.8 6.3 8.2 13.6 8.3 11.5 

Cysteine
b
   2.2 2.5 2.3 n.d. 1.6 3.5 

a-Indispensible amino acids 

b-Conditionally indispensible amino acids 
c-Amaranthus caudatus 

d- Chenopodium quinoa Willd 

e- Chenopodium pallidicaule 
f- L. angustifolius    

*-Limiting amino acid in cereals 

n.d. - not detected 
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2.2.2 Total fat and fatty acid composition 

 

Amaranth, quinoa, kañiwa and lupine are considered to possess higher content of total fat 

when compared to cereals like wheat, rice, oats and maize (Table 1). Lqari et al. (2002) 

reported that the content of fat in the seeds of lupine was 14 g/100 g d.m. respectively. 

Amongst the pseudocereals, varieties of amaranth (Centenario and Oscar Blanco) contained 

higher contents of fat while kañiwa and quinoa contained similar fat content in the range 

between 5-6 g/100 g d.m. (Repo-Carrasco et al. 2009a; 2010b).  

 

The chemical structure of linoleic acid (C 18:2) and linolenic acid (C18:3) are represented in 

Figure 1. The most abundant fatty acid in the Andean seeds and legumes was linoleic acid 

which is considered as a primary product of polyunsaturated fatty acid synthesis (PUFA) 

(Watkins and German 2008). Linoleic acid and linolenic acid also play an important role as a 

precursor in synthesis of producing arachidonic acid (C 20:0). 

 

Figure 1: Chemical structure of (A) linolenic acid (C 18:3) and (B) linoleic acid (18:2) (Stark 2012). 

 

The fatty acid composition of the seeds of amaranth, quinoa, kañiwa and lupine were 

compared against each other and presented in Table 4. The percentage of linoleic acid (C 18:2) 

was higher in the seeds of amaranth, quinoa, kañiwa and lupine when compared to that of 

other fatty acids. The percentage of linoleic acid (C 18:2) in the seeds of quinoa, amaranth 

and kañiwa were comparatively similar to that of wheat (45-55 g/100 g d.m.) (Nikolić et al. 

2008). Oleic acid, a second most prevalent fatty acid was found to be higher in the seeds of 

lupine when compared to the seeds of amaranth, kañiwa and quinoa. Also fatty acids such as 

A B 



15 

 

 

arachidic acid (C 20:0) and behenic acid (C 22:0) were found in small quantities in the seeds 

of lupine and amaranth (Palombini et al. 2013; Sbihi et al. 2013).  

 

Cintra et al. (2006) reported that the presence of high content of monounsaturated fatty acids 

can be beneficial in decreasing the total cholesterol level and is associated with the low 

occurrence of coronary heart disease (CHD). The total monosaturated fatty acids (oleic, 

linoleic and linolenic) in the seeds of quinoa amaranth and lupine was higher when compared 

to wheat (20.3%), while the percentage of total saturated fatty acids and polyunsaturated fatty 

acids were higher in the seeds of amaranth and quinoa when compared to the seeds of lupine 

(Nikolić et al. 2008; Palombini et al. 2013; Sbihi et al. 2013). 

 

Table 4. Fatty acid profile of amaranth, lupine quinoa and kañiwa  

 Percentage of total fatty acid content (%) 

 

Fatty acid  

Amaranth
a 

(Palombini et al 

2013) 

Quinoa
b 

(Palombini et al 

2013) 

Kañiwa
c 

(Espinoza 2002) 

Lupine
d 

(Sbihi et al 

2013) 

Myristic (C 14:0)  0.2 0.2 n.d. 0.1 

Palmitic  (C 16:0) 15.6 9.3 17.9 7.4 

Palmitoleic (C 16:1) 0.3 n.d. n.d. 0.3 

Margaric acid (C 17:0) 0.54 0.2 n.d. n.d. 

Stearic (C 18:0) 2.2 0.64 0.4 1.83 

Oleic (C 18:1) 23.8 23.1 23.5 44.2 

Linoleic (C 18:2)  28.9 51.6 42.6 21.6 

Linolenic (C 18:3) 0.7 2.9 6 7.7 

Arachidic (C 20:0)  0.2 1.4 n.d. 1.13 

Behenic (C 22:0)  0.25 0.6 n.d. 3.2 

Erucic (C 22:1) n.d. 1.3 n.d. 1.42 

Lignoceric (C 24:0)         n.d. 0.2 n.d. n.d. 

Total saturated fatty acids  18.5 12.3 n.d. 13.9 

Monounsaturated fatty acids 25.7 25.5 n.d. 55.8 

Polyunsaturated fatty acids 32.3 55 n.d. 30.3 

n.d. - not detected 
a-Amaranthus caudatus; 

b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule 
d- L.albus     
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2.2.3 Carbohydrates and dietary fiber content 

 

Lupine, quinoa and kañiwa are considered to be rich sources of dietary fiber which are 

generally above 10%, but are not as good sources of carbohydrates when compared to the 

cereals like wheat, rice, maize etc (Table 1). The carbohydrate content was comparatively 

similar in the flours of amaranth, quinoa and kañiwa. Starch, a carbohydrate is composed of 

amylose (α- (1→ 4) glycosidic linkage) amylopectin (α- (1→ 6) glycosidic linkage) and α-

glucan which accounts to about 99% total weight (Tester et al. 2006) (Figure 2). The total 

starch content in the seeds of amaranth (58%) and quinoa (33%) was comparatively higher 

when compared to the cereals like rye bran (13-28%) and wheat bran (14-17%) (Gonzalez et 

al. 1989; Maes and Delcour 2002; Hemery et al. 2007; Kamal-Eldin et al. 2009). The 

digestible form of starch called the resistant starch that can be easily digested by the human 

small intestine and is highly beneficial for better glycemic control, lower the risk of 

cardiovascular diseases and maintaining the bowel health (Fuentes-Zaragoza et al. 2011). The 

content of resistant starch in the seeds of amaranth (0.1-0.12%) and kañiwa (0.24-0.26%) 

were reportedly lower when compared to cereals rice (2.63%) and maize (2.9%) (Repo-

Carrasco et al. 2009a; 2009b). Oligosacchrides namely fructo-oligosacchrides and 

galactooligosacchrides, are grouped under the class of non-digestible carbohydrates which are 

reported to play an important role as prebiotics and other health benefits like reducing the risk 

of obesity, diabetes and the risk of cardiovascular disease (Kunz and Rudloff 2006; Bodi et al. 

2007; Qiang et al. 2009).   
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Figure 2. Structure of amylase and amylopectin (Tester and Karkalas 2002) 

 

According to AACC 2001, “Dietary fibre is an edible part of plant or analogous carbohydrates 

that are resistant to digestion and absorption in the human small intestine with complete or 

partial fermentation in the large intestine. Dietary fibre includes polysaccharides, 

oligosaccharides, lignin and associated plant substances”. The soluble dietary fiber (eg. pectin) 

are class of carbohydrates which are absorbed by the small intestine whereas the insoluble 

dietary are the carbohydrates (eg. hemicellulose) which cannot be absorbed and less 

metabolized by the small intestine (Englyst et al. 2007).  According to Table 5, the seeds of 

kañiwa are considered as a rich source of total dietary fiber when compared to wheat and 

maize (Repo-Carrasco et al. 2009a). The amount of soluble dietary fiber was higher in the 

seeds of kañiwa followed by quinoa, lupine and amaranth. The dietary fiber content in quinoa 

was comparatively similar to common cereals like rice and maize (Pedersen et al. 1987; Repo-

Carrasco et al. 2010a). 
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Table 5.  Dietary fiber content in the seeds of quinoa, kañiwa, amaranth and lupine 

 

Material (reference) 

Content (g/kg d.m.) 

Total dietary fiber Insoluble dietary fiber Soluble dietary fiber 

Wheat (Gélinas and 

McKinnon 2013) 

147 107.2 40 

Maize (Honig and 

Rackis 1979) 

96.8 93.7 3.1 

Amaranth
a
 (Repo-

Carrasco et al. 2010a) 

58 54 4.5 

Quinoa
b
 (Repo-

Carrasco et al. 2010a) 

88.7 78.5 10.2 

Kañiwa
c
 (Repo-

Carrasco et al. 2010a) 

125.6 106.4 19.2 

Kañiwa
ce

 (Repo-

Carrasco et al. 2009a) 

252.4 22.7 29.8 

Kañiwa
cf

 (Repo-

Carrasco et al. 2009a) 

259.5 231.6 27.9 

Lupine
d 
(Martins 

2005) 

84 83 1 

n.d. - not detected 

a-Amaranthus caudatus 

b- Chenopodium quinoa Willd 
c- Chenopodium pallidicaule 

d- L. angustifolius   

e- Cupi variety of Kañiwa 

f- Ramis variety of Kañiwa 

 

2.3 Bioactive components and micronutrients 

 

Bioactive compounds are secondary metabolites that are present abundantly in plants and 

plant foods possessing biological activity (Ho et al. 2007). Some class of bioactive 

compounds (eg. polyphenols) play an important role as an antioxidant and anti inflammatory 

effects in the human diet (Ferrazzano et al. 2011). Recent studies have suggested that 

bioactive compounds, especially polyphenols help in reducing the risk of neurodegenerative 

and diabetic diseases and regulation of apoptosis in tumor cells (Block et al. 1992; Scalbert et 

al. 2005; Ferrazzano et al. 2011). Polyphenols, a class of bioactive compounds in the food, 

attributes to the bitterness, color and flavor of the products (Shahidi and Naczk 1995; Han et 

al. 2007). Moghadasian and Frohlich (1999) reported that phytosterols are an important class 

of bioactive compounds that help in lowering the cholesterol absorption in the human 

intestine. In addition, phytosterols have also shown antiviral and anti-tumor properties (Li and 

Zhang 2001). The seeds of amaranth, quinoa and kañiwa possessed higher content of 
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bioactive compounds (phenolic compounds and flavonoids) when compared to legumes 

(lupine) (Repo-Carrasco et al. 2010b; Siger et al. 2012). Andean pseudocereals and legumes 

also possessed desirable composition of micronutrients (vitamins and minerals) when 

compared to wheat, oats and rice (Kent 1983; Collazos et al. 1993).  

 

2.3.1 Phenolic compounds and flavonoids 

 

Phenolic compounds are classified under the group of bioactive compounds possessing strong 

antioxidant activity (Bonoli et al. 2004). The total phenolic acid content of the seeds of 

amaranth, quinoa, kañiwa and lupine are presented in Table 6. Amongst the pseudocereals, 

quinoa possesses higher contents of total phenolic acids when compared to that of the seeds of 

kañiwa and amaranth (Repo-Carrasco et al. 2010b). Repo-Carrasco also reported that the 

phenolic acid content in the seeds of quinoa (42±1 mg GAE/100 g d.m.) were similar to the 

total phenolic acid content in sorghum (Repo-Carrasco et al. 2010a). However, the content of 

phenolic acids present in the pseudocereals was relatively lower when compared to cereals 

like oats, rye and barley. Pasankalla variety of quinoa had the higher total phenolic acid 

content when compared to other two varieties (Ccoito and Witulla) of quinoa. Amongst the 

varieties of kañiwa, Ayara variety of kañiwa had the higher contents of total phenolic acids 

when compared to Kello variety of kañiwa. The white and lupine varieties (Bojar and Zeus) 

had the least content of total phenolic acids (0.5-6 mg/100 g d.m.) (Kalogeropoulos et al. 2010; 

Siger et al. 2012).  
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Table 6. Total phenolic acid content in amaranth, quinoa, Kañiwa and lupine  

Material (reference) Variety Total phenolic acid content (mg/100 g 

d.m.) 

Amaranth
a
   

(Repo-Carrasco et al. 2010b) 

 32.9±1.3    

Amaranth
a
   

(Repo-Carrasco et al. 2010a) 

 12.1±0.3 

Quinoa
b
  

(Repo-Carrasco et al. 2010a) 

 42±1 

Quinoa
b
  

(Repo-Carrasco et al. 2010b) 

Pasankalla                    59.7±0.5 

Ccoito                                                    35.6±0.4       

Witulla 30.3±0.6   

Kañiwa
c 
(Repo-Carrasco et 

al. 2010a) 

 29.5±0.3 

Kañiwa
c 
(Repo-Carrasco et 

al. 2010b) 

Kello 34.7±2.4 

Ayara 40.1±1.7 

Lupine
d 

(Siger et al. 2012) 

Bojar 5.84±0.1 

Zeus 5.80±0.1 

a-Amaranthus caudatus 

b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule 
d- L. angustifolius   

 

The composition of phenolic acids in the seeds of amaranth, kañiwa, quinoa and lupine 

varieties are presented in Table 7. The pseudocereals and the legumes contained caffeic acid, 

ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and vanillic acid (Repo-Carrasco et al. 

2010b). Ferulic acid also known as hydroxycinnamic acid is widely present in cell wall of 

plants that possess antioxidant activities in food substances (Figure 3). The arrangement of 

aromatic rings determines the extent of antioxidant activity in the structure of ferulic acid and 

its derivatives (Nenadis et al. 2003). Ferulic acid was reported to be higher in the seeds of 

kañiwa while the content of p-coumaric acid and vanillic acid was higher in the seeds of 

quinoa.  
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Figure 3. Structure of ferulic acid (R=OCH3) and p-coumaric acid (R=H) (Harris and Trethewey 2010) 

 

Lupine varieties (Bojar and Zeus) were rich in the contents of p-OH-benzoic acid. The seeds 

of lupine did not contain any traces of ferulic and vanillic acid (Siger et al. 2012). Amongst 

the varieties of quinoa, Pasankalla variety of quinoa had the higher content of phenolic acids 

when compared to Ccoito and Witulla varieties of quinoa seeds.  Ayara variety of kañiwa had 

the higher content of caffeic acid than the Kello variety of kañiwa.  White lupine had traces of 

phenolic acid content when compared to amaranth, quinoa and kañiwa (Kalogeropoulus et al. 

2010). 

 

Table 7. Composition of   phenolic acids in the seeds of amaranth, quinoa, lupine and kañiwa 

 Content (mg/100 g d.m.) 

Material Variety Caffeic 

acid 

Ferulic acid p-

Coumaric 

acid 

p-OH 

benzoic 

acid 

Vanillic 

acid 

Amaranth
ae 

 

 0.85 

 

8.32 0.81 3.2 6.7 

Quinoa
be

 Pasankalla 
Ccoito 
Witulla  

0.61 

0.95 

1.47 

20 

15.3 

14.9 

27.5 

6.5 

2.3 

2.4 

3.9 

2.5 

9.2 

8.9 

9.2 

Kañiwa
ce

  

 

Kello 
Ayara  
 

1.1 

7 

26.1 

23.4 

1.3 

0.7 

1.8 

8 

4.3 

7 

Lupine
df 

 

Bojar 
 Zeus 

0.08 

0.06 

n.d. 

n.d. 

0.04 

0.03 

4.4 

4.3 

n.d. 

n.d. 

White lupine
g
                   0.06 0.09 0.04 0.02 0.03 

n.d. - not detected 
a- Amaranthus caudatus 

b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule 
d- L. angustifolius  

e- Repo-Carrasco et al. 2010b 

f- Siger et al. 2012 
g- Kalogeropoulos et al. 2010 
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Flavonoids are the common class of phenolic compounds which attributes to antioxidant and 

lipid reducing properties which aids in improving cognitive performance and prevention of 

cardiovascular diseases (Stangl et al. 2006; Spencer 2008).  The flavonoid content in the seeds 

of quinoa, kañiwa and lupine varieties are presented in Table 8. Myricetin, quercetin, 

kaempferol, isorhamnetin, rhamnetin were the flavonoids that were present in the 

pseudocereals and legumes (Repo-Carrasco et al. 2010b; Kalogeropoulus et al. 2010). With 

respect to quinoa seeds, Ccoito variety of quinoa had significantly higher contents of 

quercetin, while the Witulla variety of quinoa had higher contents of kaempferol and total 

flavonoid content when compared to other varieties of quinoa. Quinoa varieties (Pasankalla, 

Ccoito and Witulla) did not contain isorhamnetin and rhamnetin. Kello variety of kañiwa 

contained high content of quercetin and isorhamnetin when compared to quinoa and lupine 

varieties.  White lupines possessed lower content of flavonoids, while the amaranth had only 

traces of quercetin when compared to the seeds of quinoa and kañiwa (Repo-Carrasco et al. 

2010b; Kalogeropoulus et al. 2010). Kello variety of kañiwa possessed high content of total 

flavonoid content when compared to quinoa and lupine varieties. 

 

Table 8. Flavonoid content in quinoa, kañiwa and lupine  

       

 Material 

(reference) 

 

Variety 

Content (mg/100 g d.m.) 

Myricetin Quercetin Kaempferol Isorhamnetin Rhamnetin Total 

Quinoa
b 

(Repo-Carrasco 

et al. 2010b) 

Pasankalla n.d. 35.7 0.45 n.d. n.d. 36.2 

Ccoito n.d. 38.1 16.3 n.d. n.d. 54.5 

Witulla 0.86 23.5 44.7 n.d. n.d. 69 

Kañiwa
c 

(Repo-Carrasco 

et al. 2010b) 

Kello n.d. 84.3 n.d. 60.3 n.d. 144.3 

Ayara n.d. 21.4 6 n.d. 18.7 46.1 

White lupine 

(Kalogeropoulos 

et al. 2010) 

 n.d. 0.045 n.d. n.d. n.d. 0.3 

n.d. - not detected 

a-Amaranthus caudatus 
b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule 

d- L. angustifolius  
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Betalains are considered to be yellow and red compounds that are present in plants like cactus 

pears, beetroots and amaranth (Repo-Carrasco et al. 2010b). These compounds contain 

betaxanthins. Betaxanthins are compounds which are derived from betalamic acid and 

betacyanins. Kanner et al. (2001) and Cai et al. (2003) reported that the species of amaranth 

contained desirable quantity of betacyanins and betaxanthins which exhibited antioxidant 

activity.  

 

Apparently there is not much information about the presence of betalains in other 

pseudocereals and legumes. Table 9 represents the betacyanin content in the seeds of 

amaranth. Betacyanins in the amaranth seed contained amaranthine, iso-amaranthine and 

betanins. The pink variety of amaranth seed resulted in the presence of betacyanins with the 

total amount of betacyanins in the seed was determined to be 1.9±0.4 mg/100 g d.m. (Repo-

Carrasco et al. 2010b).  

 

Table 9. Betacyanin content in amaranth seed  

 

 

Material 

(reference) 

Content (mg/100 g d.m.) 

Variety  Amanranthine Iso-amaranthine                        Betanin Total 

 

Amaranth 
a 

(Repo-Carrasco et 

al. 2010b) 

Black
 

n.d. n.d. n.d. n.d. 

Black
 

n.d. n.d. n.d. n.d. 

Pink
 

1±0.2 0.8±0.2 0.1±0.2 1.9±0.4 

n.d. - not determined 

a-Amaranthus caudatus 

 

2.3.2 Vitamins and minerals 

 

Vitamins and minerals are the essential micronutrients that are required as vital compounds in 

the human diet. Vitamins and minerals play an important role in different biochemical 

functions in the body such providing muscular strength and possessing antioxidant properties. 

Table 10 represents the mineral composition of amaranth, quinoa, kañiwa and lupine. The 

pseudocereals possessed significant composition of minerals when compared to common 

cereals like wheat, oats and rice. Amaranth was rich in calcium and phosphorus while quinoa 

contained relatively high content of magnesium and iron especially compared to other cereals 
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and pseudocereals (Becker et al. 1981; Latinreco 1990; Collazos et al. 1993). With respect to 

the seeds of lupine, the content of calcium and phosphorus were similar to that of amaranth 

and higher when compared to the cereals like wheat, rice and oats (Petterson 2004 b). Only 

traces of iron, copper and zinc were present in the seeds of lupine and amaranth while the 

content of phosphorus in the seeds of kañiwa was found to be higher than the quinoa and rice 

and similar to that of oats and wheat (Collazos et al. 1993; Kent 1983). 

 

Table 10. Mineral composition of amaranth, quinoa, kañiwa and lupine (mg/100 g d.m.) 

 

a-Amaranthus caudatus 

b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule 

d- L. angustifolius  
n.d- not detected 

 

According to Table 11, amaranth is considered to be a rich source of vitamin C and the 

content of α- tocopherols (vitamin E) were higher in the seeds of quinoa (Koziol 1992; 

Guzman et al. 1998). The varieties of lupine (Troll and Emir) containing low content of 

vitamin was determined (Torres et al. 2005). While the content of niacin (vitamin B3) in the 

pseudocereals and legumes were significantly similar to each other but were not as good 

sources of niacin when compared to barley (James 2009). With respect to the seeds of kañiwa, 

 

Material 

(reference) 

Content (mg/100 g d.m.) 

Calcium Magnesium Sodium Phosphorus Iron Copper  Zinc 

Wheat (Kent 

1983) 

48 152 4 387 4.6 0.6 3.3 

Rice (Kent 1983) 15 118 30 260 2.8 0.4 1.8 

Oats (Kent 1983) 94 138 28 385 6.2 0.5 3 

Amaranth
a
 

(Collazos et al. 

1993;Becker et 

al. 1981) 

236 244 31 453 7.5 1.2 3.7 

Quinoa
b
 

(Collazos et al. 

1993; 

Latinreco 1990)  

94 270 11.5 140 16.8 3.7 4.8 

Kañiwa
c
 

(Collazos et al. 

1993) 

110 

 

 

n.d. 

 

 

n.d. 

 

 

375 

 

 

15 

 

 

n.d. 

 

 

n.d. 

 

 

Lupine
d
 

(Petterson 2004b) 

150-310 110-200 30-110 210-430 3.1-15 0.3-0.7 2.4-4.5 
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the content of thiamin (vitamin B1) and riboflavin (vitamin B2) was similar to that of seeds of 

lupine ranging around 0.7 mg/100 g d.m. and 0.3 mg/100 g d.m. respectively (Collazos et al. 

1993; Torres et al. 2005).  

 

Table 11. Vitamin composition of amaranth, quinoa, kañiwa and lupine  

 

 

Content (mg/100 g d.m.) 

Material 

(reference) 

Ascorbic 

acid (C)  

Α--tocopherol 

(E) 

Thiamin (B1) Riboflavin 

(B2) 

Niacin (B3) 

Barley (James 2009) n.d. n.d. 0.2 0.11 4.6 

Amaranth
a
 (Collazos 

et al. 1993) 

1.3 n.d. 0.3 0.01 0.4 

Amaranth
a 

(Guzman 

et al. 1998) 

3-7.1 1.6 0.1-0.14 0.2-0.3 1-1.5 

Quinoa
b 
 (Koziol 

1992) 

4 5.4 0.4 0.4 1.1 

Quinoa
b
 (James 

2009) 

n.d. n.d. 0.3-0.4 0.3-0.32 1.24-1.5 

Kañiwa
c
 (Collazos et 

al. 1993) 

n.d. n.d. 0.7 0.3 1.5 

Lupine
de

 (Torres et 

al. 2005) 

n.d. 0.43 0.71 0.24 n.d. 

Lupine
df 

(Torres et 

al. 2005) 

n.d. 0.9 0.6 0.3 n.d. 

 n.d. – not determined 

a-Amaranthus caudatus 
b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule 

d- L. angustifolius  
e- L. angustifolius variety Troll 

f- L. angustifolius variety Emir 

 

The term α-tocopherol relates to the vitamin E activity. Vitamin E possesses different 

biological functions in relation to human health. It plays a key role as an antioxidant in 

addition to its functioning as regulating the gene expression, cell signaling etc. (Azzi and 

Stocker 2000; Brigelius and Flohé 2006; Nesaretnam et al. 2007). Structure of tocopherol and 

tocotrienol is represented in the Figure 4. The tocopherol consists of three chiral carbon atoms 

(C-2, C-4’ and C-8’) and the four forms of tocopherols (α, β, γ, δ) are differentiated with the 

position and number of methyl groups present in the chromanol ring of the tocopherol 

structure (Munné-Bosch 2007; Pacifico et al. 2012) while the structures of tocotrienols are 

represented by the presence of three double bonds in the side chain molecule (C-3’, C-7’, C-

11’).  
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Figure 4. Structure of (A) tocopherol and (B) tocotrienol and its isomers (Tiwari and Cummins 2009). 

 

Quinoa is considered to be a rich source of α-tocopherol when compared to the seeds of 

amaranth and lupine (Table 12). The content of β-tocopherol and δ–tocopherol was higher in 

amaranth amongst the other pseudocereals and legume seeds. The content of γ-tocopherol was 

higher in the seeds of lupine when compared to amaranth and quinoa respectively (Boschin 

and Arnoldi 2011). The content of total tocopherols in the seeds of lupine was comparatively 

higher when compared to seeds of amaranth and quinoa (Torres et al. 2005; Alvarez et al. 

2005).  

 

Table 12. Tocopherol composition of amaranth, quinoa, kañiwa and lupine  

 

Material (reference) 

Content (mg/100 g d.m.) 

α-tocopherol β-tocopherol γ-tocopherol δ-tocopherol    Total tocopherols 

Amaranth
a
 (Alvarez 

et al. 2009) 

0.58±0.3                                                              1±0.06 0.19±0.02 0.4±0.03           1.74±0.04 

Quinoa
b
 (Alvarez et 

al. 2009) 

1.3±0.02                                                                     0.23±0.04 2.59±0.13 0.16±0.06 1.11±0.05 

Lupine
ce  

(Torres et 

al. 2005) 

0.426±0.02              0.223 ±0.01              1.03±0.04               0.126±0.002 0.6±0.02 

Lupine
cf 

(Torres et 

al. 2005) 

0.861±0.01                 0.312±0.01                 1.243±0.04              0.141±0.003      1.15±0.03 

Lupine
c 
(Torres et al. 

2005) 

0.407 ± 0.02          n.d.                           8.26 ± 0.7                    n.d. 8.7±0.7 

n.d. - not determined 
a-Amaranthus caudatus 

b- Chenopodium quinoa Willd 

c- Chenopodium pallidicaule 
d- L. angustifolius  

e- L. angustifolius variety Troll 

f- L. angustifolius variety Emir 

  

A 

B 
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2.4 Antinutrients 

 

The antinutrients present in the seeds are considered to be undesirable for human health. The 

antinutrients present in the pseudocereals are phytates, saponins, tannins and trypsin inhibitors 

(Trugo et al. 2004; Valencia 2004). Repo-Carrasco et al. (2003) and Stuardo and San Martin 

(2008) reported that the saponins content in quinoa was around 0.1-5% and the level of 

saponins varies according the species of quinoa. The saponins were also reported to provide 

toxic effect on cold blooded animals. The presence of saponins in the seeds also had resulted 

in certain beneficial uses such as membrane permeability and increasing uptake of food at the 

intestinal level in the human nutrition (Gee et al. 1993; Stuardo and San Martin 2008). The 

presence of saponins has led to physiological effects against cells of the small intestine 

resulting in hemolytic activity (Woldemicheael and Wink 2001). Ahamed et al. (1998) and 

Khattak et al. (2007) also reported that the presence of phytic acids in the seeds of quinoa 

resulted in the inhibition of mineral metabolism. It is therefore necessary to remove the 

antinutrients from the seed either by dehulling or pretreatment with water which can decrease 

the presence of antinutrients in the seeds of legumes and pseudocereals 

 

The seeds of lupine contain high content of total alkaloids and various other antinutrients like 

phytates, tannins and saponins which affected the nutritional value of the lupine products by 

inhibiting the digestion of starch, protein and mineral absorption (Martínez-Villaluenga et al. 

2006; Embaby 2010). Table 13 shows that the species of L. angustifolius contains the high 

level of saponins when compared to other two lupine species (L. luteus and L. albus) 

(Petterson 2004b). On the whole, it explains that lupine varieties possessed high content of 

antinutritional factors. The total alkaloid content in the species of L. luteus was comparatively 

higher when compared to other species of lupine (L. angustifolius and L. albus). Only traces 

of tannins, trypsin inhibitors and phytates were detected in the seeds of lupine. In the species 

of Amaranthus muricatus, the antinutritional factors were nitrates (720 mg/100 g d.m.) and 

oxalic acids (4.9 g/100 g d.m.) (Escudero et al. 1999). 
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Table 13.  Antinutrient content in various lupine species 

Content (Unit)                                     L. albus                       L. angustifolius                   L. luteus                              

              (Petterson 2004b)          (Petterson 2004b)              (Petterson 2004b) 

  

Total alkaloids (mg/kg d.m.)               <200                                 <200                                200-500 

Oligosaccharides (%)                             7.5                                     5.2                                    12.3 

Saponins (mg/kg d.m.)                            <1                                    570                                      55 

Condensed tannins (%)                          0.01                                <0.01                                   0.02 

Trypsin inhibitors (mg/g d.m.)               0.13                                  0.14                                   0.29 

Phytate (%)                                             0.79                                  0.58                                   0.96 

 

2.5 Extrusion 

 

Extrusion technology has created a huge impact in the food industries towards shaping and 

deriving ready to eat products (Fellows 2009). The use of extrusion in the food processing has 

increased its popularity due to its versatility, cost-effectiveness, environmental friendliness 

and better product output (Guy 2001a).  

 

The principle of the extrusion process involves the loading of raw materials in the feeding 

hopper where the screw conveys through the raw materials. When the raw materials pass 

down the barrel, the volume is reduced and thereby the food is compressed under pressure 

into a semi-solid, plasticized mass. The selection of right extruder for the production of ready 

to eat (RTE) or cereal snacks depends on the nature of raw materials used, bulk density and 

type of product to be produced (Fellows 2009).  

 

The general differences between the extruders are whether it is single or twin screw extruders.  

The single screw extruders (Figure 5) are classified into 1) low shear forming extruder, 2) low 

shear cooking, 3) medium shear cooking and 4) high shear cooking single screw extruders 

(Riaz 2005). The size and shape of the extrudates and efficiency of the extruder performance 

are interdependent on the operational parameters like temperature, pressure and screw speed 

(Fellows 2009). The residence time in the extrusion plays an important role in the 

performance of the product which can be controlled by screw speed.  
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.Figure 5. Single screw extruder (Tadmor and Klein 1970) 

 

With respect to the twin screw extruders, they are classified based on degree of co-rotation 

and the degree of interconnection between the two screws (Fellows 2009). The twin screw 

extruders are also classified into; 1) Co-rotating intermeshing 2) Co-rotating non-

intermeshing 3) Counter-rotating intermeshing and 4) Counter-rotating non-intermeshing 

twin-screw extruders (Riaz 2005). The advantage of using twin screw extruders is versatility 

to process wide range of products like tortillas, cereal snacks, extruded corn snacks, and 

multigrain snacks. Due to high capital and maintenance costs, single screw extruders are 

considered to be cost-effective when compared to twin screw extruders. 

 

2.5.1 Processing parameters affecting extruded snacks 

 

The processing parameters play an important role in determining the quality output of the 

extruded snacks. Figure 6 illustrates the processing parameters and the raw materials during 

the process of extrusion cooking. The process controlling of the product depends on various 

primary and secondary extrusion process parameters. The primary process parameters include 

feed rate, screw speed, barrel temperature, water content, feed formulation, screw and die 

configuration. The secondary process parameters include die temperature, pressure and torque 

(Chessari and Sellahewa 2001). The pre-conditioning treatment of the raw materials with the 

help of hot water or steam for about 4-5 minutes helps in gelatinization of starch and protein 

denaturation of the raw materials during the extrusion processing (Bailey et al. 1995). Durge 

et al. 2013 also reported that extrusion cooking was used to study the stability of beetroot as a 
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pre-extrusion coloring agent for rice flour. During this cooking, the processing parameters 

that were taken into account were water content, screw speed and die temperature.  

 

 

Figure 6. Interaction of raw materials, process parameters during extrusion (Chessari and Sellahewa 2001). 

 

2.5.2 Physical and chemical changes during extrusion 

 

The changes occurring during the extrusion cooking plays a major role in determining the 

shape and crispness of the extrudates which is an important characteristic for cereal based 

snacks (Guy 2001b). One of the important phenomena during the process of extrusion is the 

process of gelatinization. The process of starch gelatinization helps in gas-holding capacities 

that result in expansion of extrudates (Guy 2001c). 

 

During the process of starch gelatinization, breakage of intermolecular hydrogen bonding 

results in the increase in the absorption of water resulting in swelling of starch granules 

(Figure 7) (Fellows 2009). As the temperature gradually increases, starch molecules are 

gelatinized which results in the formation of viscous fluid melt. The fluid melt forms the outer 

coating for the foam bubbles that contain superheated water vapour. During the exit of 

materials from the extruder die, there is sudden drop in pressure which results in expansion of 
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bubbles by loss of moisture by the process of evaporation. These physical changes during the 

extrusion process increases the viscosity of material followed by formation of glassy state 

depending on the degree of vaporization of water in the extrudate structure (Guy 2001a). The 

expansion of the extrudates greatly depends on the content of amylose and amylopectin 

present in the starch granules (Guy 2001c). Higher content of amylose in the starch results in 

low viscous fluid melt thereby resulting in greater expansion of foods during the extrusion 

processing. With respect to the extrusion parameters, processing temperature, water content in 

the feed and shearing rate plays an important role in the expansion of extrudates during 

extrusion processing (Guy 2001c). 

 

 

Figure 7.  Expansion theory of products by extrusion cooking (Guy 2001 a) 

 

2.5.3 Effect of extrusion on the nutritional properties of extruded snacks 

 

The bioavailability of nutrients during the processing of foods is always considered important 

when obtaining a nutritional snack product. The advantages of extrusion cooking with respect 

to the nutritional content of the final product are the inactivation of antinutrients, destruction 

of aflatoxins and increasing the digestibility of fiber (Singh et al. 2007; Saalia and Phillips 

2011).  

 

Areas (1992) and Kitabatake and Doi (1992) reported that the denaturation of proteins during 

the extrusion processing caused inactivation of antinutrients such as lectin and antitrypsin 

inhibitors resulting in the increase of protein digestibility. During the process, disulphide 
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bonds break and reunite, while the high molecular proteins dissociate into smaller subunits 

(Guy 2001a). It was also reported that the nutritional value was increased in the vegetable 

protein due to mild extrusion processing conditions (Srihara and Alexander 1984, Hakansson 

et al. 1987, Colonna et al. 1989, Areas 1992). Chávez-Jáuregui  et al. (2000) and Repo-

Carrasco et al. (2009a) reported that there was better retention of protein content during the 

extrusion processing on amaranth and kañiwa. Texturization of the protein-based foods was 

resulted due to the effect of extrusion cooking thereby improving taste of the extrudates. 

(Cheftel et al. 1992). According to Areas (1992) the electrostatic interactions and disulphide 

bonding could have an important role in texturization of foods during the extrusion process.  

 

Retention of lysine in the breakfast cereals is considered most important since it is the limiting 

amino acid amongst most of cereal snacks. The lysine content in the extruded soy potato 

blends were around 68-100% depending on the content of feed (Iwe et al. 2004). There was 

increase in the availability of lysine during the extrusion processing with the increase in the 

screw speed and the feed rate. However, with the increase in the processing temperature, die 

diameter and water content during the extrusion processing decreased the lysine availability 

(Noguchi et al. 1982; Pham and Del Rosario 1984). During the extrusion cooking of amaranth 

it was reported that there was no significant effect on lysine availability (6-7 g/100 g d.m.) 

(Chávez-Jáuregui et al. 2000).  During high extrusion processing with lower water content of 

the feed initiates non-enzymatic browning reaction termed as Maillard reaction. Noguchi et al. 

1982 reported that the availability of lysine decreased during the Maillard reaction at high 

extrusion processing (≥180 °C) and lower water content (≤15 %) of the feed. Also the 

nutritional effect of protein and amino acid availability was negatively affected by browning 

and caramelization involving proteins and sugars (Singh et al. 2007).  

 

The effects of extrusion on fat were also studied. Raw materials containing less than 5% total 

fat content have resulted in better retention of lipids when compared to raw materials of 

higher fat content (Nierle et al. 1980). The addition of antioxidants (eg. phenolics) also 

reduced the effect of lipid oxidation in the extrudates and thereby resulting in the better 

retention of nutritional properties (Camire et al. 2005). The process of extrusion cooking at 

higher extrusion temperatures also enhanced the process lipid oxidation in extruded corn 

based snacks (Rao and Artz 1989; Martin et al. 1993; Zadernowski et al. 1997). 
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There are also certain effects of extrusion in relation to dietary fiber content. Increase in the 

total dietary fiber content of the extruded barley flours was determined with respect to content 

of soluble dietary fiber. Effect of extrusion on the dietary fiber content led to the 

transformation of insoluble dietary fiber to the soluble dietary form in addition to the 

formation of resistant starch and enzyme resistant glucans through the process of 

transglycosidation (Vasanthan et al. 2002). During the extrusion processing of amaranth 

varieties (Centenario, Oscar blanco), the content of insoluble dietary fiber was decreased 

resulting in the increase in the content of soluble dietary fiber (Repo-Carrasco et al. 2009b). 

The increase in the soluble dietary fiber content during the process of extrusion was reported 

to be due to shear stress and high processing temperatures which caused breakage of chemical 

bonds thereby forming cluster of tiny particles which were soluble in form resulting in the 

increase of soluble dietary fiber content in the extrudates of amaranth varieties (Gualberto et 

al. 1997). 

 

Vitamin losses were also reported in the foods that were produced through extrusion. α-

tocopherol content in the extruded peas decreased with an increase in the extrusion 

temperature (Grela et al. 1999). Also, loss of riboflavin was reported with the increase in 

water content of the feed and screw speed (Harper 1988). Milder extrusion temperatures 

(150 °C) and short residence time resulted in better retention of heat-sensitive vitamins 

(vitamin B1, B2) (Killeit and Weidmann 1984; Pham and Del Rosario 1986). Singh et al. (2007) 

summarized that the heat-sensitive vitamins were lost during extrusion. Athar et al. (2006) 

reported that there was 44-62% retention of B vitamins in snacks during the extrusion 

processing of cereals and resulted in higher stability of riboflavin (vitamin B2) and niacin 

(vitamin B3). Absorption of minerals can be enhanced by the process of extrusion (Alonso et 

al. 2001). From his study he reported that the phytates and tannins form complexes with the 

minerals that inhibit mineral absorption.  Extrusion cooking has resulted in breaking down the 

complex by hydrolysis thereby increasing the mineral availability in the extrudates.  

 

The impact of extrusion on the bioactive compounds is presented in the Table 14. The content 

of total phenolics was reported to be increased during the extrusion of rice-based snacks 

(water content- 12-18%, temperature- 150-175 °C) (Yagci and Gögus 2009). The increase in 

the content of total phenolics was due to the effect of high temperature generated during the 
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extrusion processing which helped in the liberation of bound phenolics from the cell matrix of 

the raw materials. Yagci and Gogus (2009) also reported that the increase in the content of 

feed (defatted hazelnut flour) and fruit waste increased the content of total phenolics thereby 

exhibiting more antioxidant activity. There was an increase in the total phenolics and the 

antioxidant activity in the beans blended with corn flour, whereas the content of phenols and 

tannins decreased during the extrusion cooking of sorghum (Dlamini et al. 2007; Anton et al. 

2009). Sharma et al. (2009) reported a decrease in the content of total phenol acids (8-29%) in 

the extrudates of barley by increasing the water content of the feed (15-20%) during the 

extrusion processing at constant screw speed (400 rpm). From his study, he also reported that 

the decrease in the content of total phenolics might be due to decomposition of phenolic 

compounds in the extrudates of barley at high temperature extrusion processing (≥180 °C).  

 

Repo-Carrasco et al. (2009b) observed a similar decrease in the content of total free phenolics 

in the extrudates of amaranth varieties of Centenario and Oscar Blanco ranging between 80 

and 65% respectively. From her study it revealed that the decrease in the content of total free 

phenolics might be due to high temperature extrusion processing which resulted in the 

decomposition of phenolic compounds thereby resulting in decrease in the content in the 

extrudates of amaranth varieties. 

 

With respect to the anthocyanin content, there was reduction in the total anthocyanin content 

(33-64%) due to the effect of extrusion temperatures (150-190 °C) as the anthocyanins were 

reported to be sensitive to heat in the extrudates containing blueberry and cranberry pomace 

blended with corn starch (Khanal et al. 2009; White et al. 2010). However, White et al. (2010) 

also observed that the level of anthocyanins reduced from 50 to 35% with the increase in 

content of pomace from 30 and 50% irrespective of screw speed during the extrusion 

processing. White et al. (2010) also reported an increase in flavonoid content which ranged 

around 30-34% when compared to the control samples. Chaovanalikit (1999) reported that the 

loss of anthocyanins in the cereal extrudates were due to browning and polymerization in the 

foods during the high temperature extrusion processing.  
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Table 14: Effect of extrusion on bioactive compounds 

Raw materials (reference) Process conditions Bioactive compounds 

Wheat flour (8-20%), Grape seed 

(30%), white sorghum flour (80%) 

and rice grits (3-7%), defatted 

hazelnut flour (5-15%) 

(Yagci and Gögus 2009) 

Temperature (150-175 °C) 

Water content (12-18%) 

Screw speed (200-280 rpm)  

Phenolic compounds (free 

and bound phenolics) (↑) 

Barley flour 

(Sharma et al. 2012) 

Temperature (150-180 °C) 

Water content (15-20%) 

 Screw speed (400 rpm) 

Phenolic compounds (free 

and bound phenolics) (↓) 

Blueberry pomace (30%) and white 

sorghum flour (70%) 

(Khanal et al. 2009) 

Temperature (160 and 180 °C) 

Screw speed ( 150 and 200 rpm) 

Total anthocyanins (↓) 

Total procyanidin (↑) 

Cranberry pomace and corn starch 

(30:70, 40:60 and 50:50) 

(White et al. 2010) 

Temperature (150, 170, 190 °C) 

Screw speed (150 and 200 rpm) 

Total anthocyanins (↓) 

 Flavonols (↑) 

Wheat flour (Zielinski et al. 2001)  Temperature (120-160-200 °C) 

Water content (20%) 

Phenolic compounds (free 

and bound phenolics) (↑) 

 

The extrusion processing at higher extrusion temperatures resulted in the reduction in the total 

content of isoflavones (≤ 20%) in the extrudates of okra (Rinaldi et al. 2000). Effect of 

extrusion on the extrudates containing soybean and acha flour blends resulted in decrease in 

the content of tannins and riboflavin at 150 °C (Anuonye et al. 2010). There was no 

significant difference in the levels of ascorbic acid and total phenolic content in the extrudates 

containing soyabean and acha flour blends. On the whole, extrusion of raw materials 

involving high temperature conditions which short residence time could help in obtaining 

high nutritional snack product. 

 

2.5.4 Effect of extrusion on the antinutritional properties of extruded snacks 

 

Effect of extrusion processing parameters favoring the reduction of antinutritional factors is 

presented in Table 15. Extrusion of faba beans and peas at higher temperature (180 °C) and 

water content (22%) helped in the complete elimination of trypsin inhibitors in the extrudates 

(El-Hady and Habiba 2003). The content of trypsin inhibitors in the extrudates of faba beans 

and peas were reduced to negligible amounts during the extrusion processing. The 

inactivation of lectins and trypsin inhibitors increased with the increase in the processing 
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temperature and water content of the raw materials (Björck and Asp 1983). El-Hady and 

Habiba (2003) also reported that the soaking of beans and peas for a period of 16 hours 

followed by extrusion processing resulted in better elimination of antinutrients in the 

extrudates. Extrusion of cereals was also studied extensively (Kaur et al. 2013). The extrusion 

of wheat, rice and barley at 140 °C and water content (20%) resulted in more than 50% 

reduction in the content of phytates, trypsin inhibitors and oxalates in the extruded cereal 

snacks. Camire (2001) also has summarized the effect of extrusion on antinutritional factors 

against various extrusion parameters. Elimination of protease inhibitors can be successfully 

achieved by the process of extrusion at higher temperatures while the complete inhibition of 

gossypol can be achieved by increasing the water content of the feed during the extrusion 

processing (Camire 2001). 
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Table 15: Effect of extrusion on antinutrients 

Material 

(reference) 

 

Extrusion conditions Phytates (mg 

/g d.m.) 

Trypsin 

inhibitors (U 

/mg d.m.) 

Tannins 

(mg 

/100 g 

d.m.)  

Oxalates 

(%) 

Faba beans      

Raw 
  

6.1 1.85 485 n.d. 

Extruded   Temperature - 180°C, 

Water content- 22%
 

4.8 * 362 n.d. 

(El-Hady and 

Habiba 2003) 

     

Peas       

Raw   8.5 13.7 269 n.d. 

Extruded  Temperature - 180°C, 

Water content- 22% 

7.6 * 200 n.d. 

(El-Hady and 

Habiba 2003) 

     

Wheat  
 

    

Raw 
  

35.9 46.7 n.d. 0.4 

Extruded  Temperature - 140°C,     

Water content- 20% 

16.2 13.4 n.d. 0.2 

(Kaur et al. 2013)      

Rice       

Raw   36.8 46.3 n.d. 0.4 

Extruded  Temperature - 140°C, 

Water content- 20% 

16.3 12.5 n.d. 0.2 

(Kaur et al. 2013)      

Barley       

Raw   34.7 43.3 n.d. 0.3 

Extruded  Temperature - 140°C, 

Water content- 20% 

13.3 17.7 n.d. 0.2 

(Kaur et al. 2013)      
    * - negligible amounts 

     n.d.-not determined 
 

 

2.6 The effect of other processing methods on the nutritional properties of amaranth, 

quinoa, kañiwa and lupine  

 

The processing of amaranth, lupine, quinoa and kañiwa has been expanding widely in order to 

develop nutritious gluten-free cereal snacks. With respect to boiling of amaranth, quinoa and 

kañiwa, the availability of iron, zinc and calcium showed no increase in the seeds of kañiwa 

and in quinoa there was a slight increase in the potential availability of zinc. By roasting 
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method, there was no difference between the original samples with respect to nutritional 

composition (Repo-Carrasco et al. 2010a). The effect of soaking, dehulling and microwave 

cooking increased the levels of phytic acid, tannins and trypsin inhibitors by 1 % in the bitter 

lupine seeds (Lupinus termis) and 16% in sweet lupine seeds (Lupinus albus). But there was 

75% reduction in the lectin activity of bitter lupine seeds and 88% reduction in the sweet 

lupine varieties. The effect of microwave cooking did not favor in the inactivation of 

antinutritional factors (Embaby 2010). 

 

3 Experimental study 

 

3.1 Aims and overview of the study 

 

The main aim of this research study was to determine the effect of extrusion cooking on the 

nutritional properties of amaranth, quinoa, kañiwa and lupine. 

 

The objectives of the experimental study were 

1.  To chemically characterize quinoa, amaranth, kañiwa and lupine before and after extrusion 

processing and, 

2. To find out the effects of extrusion cooking on the stability of bioactive compounds.  

 

The overview of the study is presented in Figure 8.  

 

In the first part of the study the seeds of amaranth, quinoa, kañiwa and lupine were chemically 

characterization to study the moisture content, protein content, ash and total dietary fiber 

content. The raw materials were further analyzed to determine the fatty acid composition, 

tocopherols and total phenolic content. 

 

In the second part of the study, the extrudates were processed at two different extrusion 

temperatures (140 and 160 °C) containing two different content of tested flours (20% and 

50%). The extrudates were further characterized for fatty acid analysis, tocopherol content 

and total phenolic content. The effect of extrusion processing on the nutritional properties and 

the stability of bioactive compounds was further studied. The interactions between the 
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temperature during the extrusion process, content of tested flour and flour type were also 

studied by statistical analysis.  

 

 

 

Figure 8. Overview of the study  
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3.2 Materials 

 

Quinoa (Chenopodium quinoa Willd) (Ziegler,Peru), kañiwa (Chenopodium pallidicaule) 

(Ziegler, Peru) and amaranth (Amaranthus caudatus) (Ziegler,Peru) were commercially 

available and were imported from Peru.  Lupine (Lupinus angustifolius) was obtained from 

the experimental fields of Viikki, Finland. Polenta (Risenta, Prisma, Helsinki, Finland) was 

obtained from a local store. The seeds were milled in VTT Research centre, Finland while the 

extrudate samples were milled into powder form (0.5 mm) (Retsch ZM200, Haan, Germany). 

The flour and the extrudate samples were stored in vacuum-packed polyethylene bags and 

stored at -18 °C. 

 

The extrusion processing was carried out in a twin screw extruder (Thermo Prism PTW24, 

Thermo Haake, Polylab system, Germany). The screw speed was maintained at 500 rpm. The 

water content of the feed (14%) was adjusted by peristaltic pump (Watson Marlow 505S, 

Watson-Marlow ltd. Falmouth, Cornwall, UK). The temperature profile was also adjusted. 

The first section of the extruder was set at 90 °C, second and third at 95 °C, fourth at 100 °C, 

fifth at 110 °C and finally the die section was set either at 140 °C or 160 °C during the 

extrusion process. The extrudates containing 20 and 50% content of tested flours were 

produced at two extrusion temperatures 140°C and 160°C during the extrusion processing. 

The raw materials and extrudates were subjected to chemical characterization and 

determination of bioactive compounds.  

 

3.3 Methods 

 

3.3.1 Chemical characterization of raw materials and extrudates of amaranth, quinoa, 

lupine and kañiwa 

 

All the chemical analyses were conducted according to the instructions of EK125- course with 

slight modifications (Lampi and Ollilainen 2012). 
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Determination of ash content  

 

Fresh samples were weighed and ashed using the muffle furnace at 550 °C overnight. Ashing 

of the samples at 550 °C results in degradation of food matrix. A small volume of nitric acid 

(1-2 ml) was added to the partly dried sample on the following day and the samples were 

placed in sand bath for 2 hours maintained at 40 °C. The samples were again placed in the 

muffle furnace at 550 °C overnight and collected as residues. The residues contained the total 

amount of mineral components present in the sample. The residues were cooled in a 

desiccator and weighed to determine the ash content in the samples. The analyses were carried 

out in triplicates to all the raw materials. 

 

Analysis of protein content 

 

Fresh samples were weighed in a tecator tubes and a Kjell tablet was added to the tubes. 

Concentrated sulphuric acid (95-97%) was added to the tubes and the tubes were placed in a 

heating bath maintained at 400 °C for a period of 2 hours. Addition of concentrated sulphuric 

acid degrades the organic material and converts nitrogen to ammonium sulphate. Distillation 

was carried out using Kjeltec analyzer unit (FOSS ORDIOR 2300, Finland). During the 

distillation process, ammonium sulfate reacts with a strong alkali (35% NaOH) and ammonia 

is liberated. Ammonia reacts with boric acid (1%) and produces ammonium. The titer value 

determines the amount of ammonium present in the sample. The amount of ammonium 

detected was directly proportional to the nitrogen content in the sample. The protein content 

of the raw materials was detected with respect to total nitrogen, since the proteins are main 

constituents of nitrogen compounds. The crude protein present in the raw materials was 

determined by multiplying the obtained value with 6.25 (since proteins contain 16% nitrogen). 

The analyses were carried out in triplicates to all the raw materials. The protein content was 

calculated using equation (1).  

 

Protein content (g/100 g d.m.) = (Vsample – Vreagent blank,ml) x MHCl (mmol/ml) x 14 (mg/mmol) 

x6.25   (1) 

Vsample is Volume of titrant consumed in the sample (ml) 

Vreagent blank is Volume of titrant consumed in the blank (ml) 
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MHCl is Molarity of HCl (0.05 M). 

 

Analysis of dietary fiber content 

 

Fresh samples were weighed in an Erlenmeyer flask and 40 ml buffer solution (pH 8.2, 0.05 

M TRIS) was added. 200 µl of α-amylase (Sigma Aldrich, MO, USA) was added to the 

sample and incubated for 35 min at 95-100 °C in shaking water bath (Grant OLS 200, UK) 

and mixtures were cooled. 10 ml of water and 100 µl of protease (Sigma Aldrich, MO, USA, 

50 mg/ml MES-TRIS buffer) were added to the cooled mixture. The mixtures were again 

incubated for a period of 30 min at 60 °C in the water bath. The mixtures were adjusted to a 

pH 4.1-4.8 with 0.5 M hydrochloric acid (HCl) and 100 µl of amyloglucosidase (Sigma 

Aldrich, MO, USA) was added. After the enzymatic treatment of the samples, the fiber was 

precipitated with ethanol (purity ≥ 78%) (Altia Oyj Ltd., Rajamäki, Finland). The samples 

were dried using the filter suction with ethanol (purity ≥ 95%) (Altia Oyj Ltd., Rajamäki, 

Finland) and acetone and the precipitate was collected in the sinter containing dry celite. The 

sinters were dried over night at 105 °C and cooled in a desiccator before it was weighed to 

determine the content of dietary fiber in the original sample. The analyses were carried out in 

triplicates to all the raw materials. The dietary fiber was then further analyzed for residual ash 

and protein analysis for weight correction. The total dietary fiber content was determined by 

subtracting residual weight from protein content and residual ash and expressed in g/100 g 

d.m.  

 

Moisture content analysis 

 

The determination of moisture content of the raw materials and extrudates were performed 

gravimetrically according to hot air oven method. The water content in the sample by oven 

method was determined by evaporation of water lost in the sample. Approximately 2-3 g fresh 

sample was weighted in triplicates and dried in oven at 105 °C overnight and cooled in a 

desiccator. The dried samples were then weighed to calculate the moisture content.  
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Analysis of fat content 

 

The fatty acid samples were subjected to extraction using accelerated solvent extractor 

(Dionex ASE 200, Sunnyvale, CA; Pressure- 1000 psi) using acetone (Sigma Aldrich, MO, 

USA, HPLC grade) as extraction solvent at 100 °C. The extracted lipid samples were 

collected in the extraction vials and an internal standard (C 19:0) (Nu Check Prep, Inc.) was 

added to each of the extraction vials before carrying out further solvent evaporation. The lipid 

samples were collected in 10 ml flasks and dissolved in heptane solution for further 

methylation. The lipid samples were subjected to methylation wherein the fatty acids were 

converted into methyl esters which were volatile and could be subjected to gas 

chromatographic (GC) analysis. During methylation, 5 ml of the extracted lipid extracts were 

evaporated to dryness using nitrogen gas stream at 37 °C. The rest of the extracted lipid 

samples were stored for carrying out the tocopherol analysis. To the extracted lipid samples, 

1ml of 0.5 M sodium hydroxide-methanol solution was added to the test-tubes and was heated 

in a boiling water bath for a period of 5 min. 2 ml of boron triflouride-methanol (10% 

concentration) solution was added to the cooled test-tubes and again heated for 5 min. The 

tubes were once again cooled to room temperature and were mixed with 3ml n-heptane 

(HPLC-grade) (b.p. - 98.4 °C) and 2 ml saturated sodium chloride solution. The samples were 

vortexed and allowed to stand until the phases were separated. The upper phase containing the 

heptane solution was transferred to another test tube containing the drying agent (sodium 

sulfate). The samples were transferred to the GC vials and stored in refrigerator for carrying 

out GC analysis. The analyses were carried out in triplicates to all the raw materials and 

extrudates. The fatty acid samples were analyzed using GC-system (Hewlett Packard 5890, 

Palo Alto, USA) having a flame ionization detector (FID) and autosampler. The samples were 

separated using the silica-fused capillary column (DB-FFAP, 30 m × 0.32 mm, 0.25 µm, 

Agilent technologies). The fatty acid content of the samples was calculated from fatty acid 

method esters present in the samples.  
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3.3.2 Analysis of bioactive compounds of flour samples and extrudate samples of 

amaranth, quinoa, lupine and kañiwa 

 

Tocopherol analysis 

 

Each tocopherol stock solution (α, β, γ and δ) was diluted with AAS-ethanol (≥99.5%) 

(Schwartz et al. 2008). The diluted samples were measured for determining the content of the 

stock solutions using spectrophotometer (Perkin Elmer, Lambda 25, Shelton, USA). The 

diluted samples were stored at -18 °C for preparing the tocopherol standards. 

 

Preparation of tocopherol standards 

 

Diluted samples (1 ml) for the preparation of tocopherol standards were taken in two different 

flasks and were diluted to content of 20 mg/l and 5 mg/l. Ethanol was evaporated under 

nitrogen gas and the solutions were again re-dissolved in heptane. The mixture was again 

diluted to a content of 2 mg/l and 0.2 mg/l and the standards were stored at -18 °C.  

 

Analysis of tocopherol content 

 

The determination of tocopherols was performed according to procedure given by Schwartz et 

al. (2008). The same ASE extracts were used for tocopherol analysis than for fatty acid 

analysis. The ASE extracts were collected and stored in HPLC vials (Filter – 0.45 µm) for 

carrying out tocopherol analysis. The analyses were carried out in triplicates to all the raw 

materials and extrudates. The samples were then detected for the determination of α, β, γ and 

δ tocopherols by HPLC (HPLC system, Waters Corporation, Milford, MA, USA; Column 

DP-FFAP: 30 m × 0.32 mm, 0.25 µm, Agilent Technologies, Varian Inc, Palo Alto, CA, 

USA).  
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Determination of total phenolic content from raw materials and extrudates 

 

Preparation of Gallic acid standards 

 

A stock solution of gallic acid (1 mg/ml) (Extrasynthese, Genay, France) was prepared. The 

gallic acid standards were prepared according to the various dilution factors (1:200, 1:100, 

1:50, 1:33.3, 1:25, 1:10). 200 µl of the standards were taken and mixed with 1ml of Folin 

reagent (1:10) and 0.8ml sodium carbonate (7.5%). The mixture was vortexed and placed in 

the dark for a period of 30 min. The samples were measured spectrophotometrically at 765 

nm using spectrophotometer (Perkin Elmer, Lambda 25, Shelton, USA). The contents of the 

gallic acid standard solutions were calculated to estimate the total phenolic content in the raw 

materials and extrudates of amaranth, quinoa, kañiwa and lupine.  

 

Analysis 

 

The total phenolic content in the raw materials and extrudates were carried according to 

Gorinstein et al. (2007). To determine the free phenolic content of the samples, 50 mg of the 

fresh sample was weighed and mixed with 5 ml 50% methanol-water (1:1) solution. The 

mixture was heated at 90 °C for a period of 3 hours in a hot water bath (Falc Instruments, 

Treviglio, Italy). The samples were cooled in room temperature and diluted to 10 ml with 

methanol. The diluted sample was subjected to centrifugation at 5000 rpm for 5 min. To 

determine the free and bound phenolic content of the samples, approximately 50 mg of the 

fresh sample was weighed and mixed with 5 ml solution containing 1.2 M hydrochloric acid 

in 50% methanol-water (1:1) solution. The samples were then treated with the similar 

procedure as normal treatment involving heating and centrifugation. The supernatants were 

collected from both the extraction methods and were analyzed for the determination of free 

and bound phenolic content by the Folin-Ciocalteu method. During the methanol-water 

treatment, the free phenolics in the raw materials and extrudates was determined, while the 

acid hydrolysis treatment produced free and bound phenolics by breaking the glycosidic bond 

thereby releasing bound phenolics from the cell matrix by the addition of acid in the raw 

materials and the extrudates. The samples were measured using spectrophotometer at 765 nm 
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(Perkin Elmer, Lambda 25, Shelton, USA). The analyses were carried out in triplicates to all 

the raw materials and extrudates. 

 

3.3.3 Statistical analysis 

 

The chemical composition and the content of bioactive compounds of the raw materials and 

the extrudate samples were analyzed in triplicates and the data were reported as means and 

standard deviations (SD). Principal component analysis (PCA) and partial least squares 

regression analysis (PLS) was carried out using the Unscrambler X 10.1 program (CAMO 

software). The corresponding calculated value (T.V) was obtained from the data derived from 

the raw materials depending on the contents of tested flour (20 and 50%) and polenta. The 

T.V was then compared with extrudates processed at 140 and 160 °C in order to determine the 

effect of extrusion processing. The pretreatment of the data in PCA and PLS data analyses 

was to center and scale the data. The other statistical analysis of the data was performed using 

MATLAB (R2012a, The Mathworks, Inc, U.S.A).  A three-way ANOVA and Tukey-Kramer 

test were performed for the data consisting of the experimental and calculated values of  the 

extrudates (140 and 160 °C) and the calculated values for the flour mixture. Physical 

measurements data of the extrudates were obtained from Martin Ramos research study 

(unpublished data).  
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3.4 Results 

 

3.4.1 Chemical composition of amaranth, quinoa, kañiwa, polenta and lupine  

  

Lupine possessed distinctive chemical composition when compared to the flours of amaranth, 

quinoa and kañiwa (Table 16). Moisture content of polenta flour (14.1%) was higher when 

compared to amaranth, quinoa, kañiwa and lupine. Lupine contained higher content of protein 

and ash when compared with pseudocereals like quinoa, kañiwa and amaranth. Amongst the 

pseudocereals, the protein content in kañiwa (17 g/100 g d.m.) and amaranth (15-17 g/100 g 

d.m.) were comparatively similar, while the protein content of quinoa was around 12-14 g/100 

g d.m. respectively. Polenta contained the lowest contents of protein and ash. The dietary 

fiber content was observed to be the highest in the lupine seeds ranging around 50 g/100 g 

d.m. Amongst the pseudocereals, kañiwa contained high dietary fiber content while the 

dietary fiber content of amaranth and quinoa were similar. The dietary fiber content in the 

flours of polenta contained the lowest (5.8 g/100 g) when compared with pseudocereals and 

legumes. 

 

Table 16. Composition of polenta, amaranth, quinoa, kañiwa and lupine flours (n=3) 

  Content (g/100 g d.m.) 

Material Moisture (%) Protein Ash Dietary fiber 

Polenta 14.1±1.0 8.2±1.1 0.4±0.1 5.8±0.3 

Amaranth 11.3±0.5 16.1±1.3 2.41±0.04 8.3±1.9 

Quinoa 11.8±0.4 13.1±0.4 2.2±0.3 9.1±2.6 

Kañiwa 11.4±0.4 16.71±0.03 2.3±0.2 16.1±2.8 

Lupine 11.9±0.3 28.7±0.4 3.61±0.03 50.1±2.6 

 

Fatty acid composition of raw materials and extrudates 

 

The fatty acid composition and total fatty acids of polenta, amaranth, quinoa, kañiwa and 

lupine flours are presented in Table 17. The content of total fatty acids was highest in kañiwa 

(7790 mg/100 g d.m.) when compared to amaranth, lupine and quinoa. Polenta contained the 

lowest content of total fatty acids. Linoleic acid (C 18:2) was higher in the flour samples 
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when compared to other fatty acids. Kañiwa contained higher contents of linoleic acid while 

flours of amaranth, lupine, and quinoa contained almost similar content of the respective fatty 

acids. Oleic acid (C 18:1) and linolenic acid (C 18:3) contents were highest in the flours of 

kañiwa (2120 mg/100 g d.m.) followed by quinoa, lupine and amaranth while polenta 

possessed the lowest content of linoleic, oleic and linolenic fatty acids.  

 

Table 17. Fatty acid composition of flours of amaranth, lupine, kañiwa, quinoa and polenta (n=3) 

 Content (mg/100 g d.m.) 

Fatty acid  Polenta Amaranth Quinoa Kañiwa Lupine 

Palmitic acid (C 16:0) 101±5 934±13 538±64 1080±30 570±24 

Stearic acid  (C 18:0) 16±1 201±3 47±6 12.1±2.1 350±6 

Oleic acid (C 18:1) 190±13 1260±30 1730±50 2120±70 1300±40 

Linoleic acid (C 18:2) 510±40 2450±50 2560±40 3850±170 2740±190 

Linolenic acid (C 18:3) 16.2±1.8 53.1±1.1 270±30 420±20 390±30 

Arachidic acid (C 20:0) 4±0.1 47±1 40±5 60±1 56.2±1.1 

Behenic acid (C 22:0) n.d. 17±9 78±7 51.1±1.2 56.2±0.1 

Lignoceric acid (C 24:0) n.d. 58.2±0.4 18.3±0.9 n.d. n.d. 

Total Fatty acids 830±60 5600±80 5500±520 7790±340 5512±700 

n.d.-not detectable 

 

The fatty acid composition of the extrudates of amaranth, quinoa, kañiwa and lupine are 

presented in Table 18. Extrudates of lupine resulted in containing higher content of total fatty 

acids when compared to amaranth, quinoa and kañiwa. Extrudates of lupine at 50% produced 

at 140 °C exhibited higher contents of oleic acid (C 18:1), linoleic acid (C 18:2) and linolenic 

acid (C 18:3) when compared to other extrudates of kañiwa, quinoa and amaranth at two 

different content of tested flours (20 and 50%) and temperatures (140 and 160°C). 
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 Content ( mg/100 g d.m.) 

Fatty acid Amaranth 20 % Quinoa 20% Kañiwa 20%  Lupine  20% Amaranth 50% Quinoa 50% Kañiwa 50% Lupine  50% 

   

140 °C 

 

160 °C 

 

140 °C 

   

160°C 

     

  160 °C 

 

160 °C 

   

140°C 

     

  160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

  

Palmitic  

(C 16:0) 

  

53±2 

 

52±1 

 

41±0.3 

 

38±2 

 

40±2 

 

63±1 

 

38±2 

 

38±2 

 

160±1 

 

180±7 

 

95±5 

 

102±3 

 

270±4 

 

293±8 

 

347±4 

 

246±2 

  

Stearic 

 (C 18:0)

  

 

11±0.4 

 

11±0.3 

 

8± 0.1 

 

16±0.5 

 

16±1 

 

8±0.1 

 

16±0.5 

 

16±1 

 

34±0.1 

 

44±1 

 

9±1 

 

10±1 

 

30±1 

 

33±1 

 

180±3 

 

140±2 

 

Oleic 

(C 18:1   

n-9) 

 

88±1 

 

88±1 

 

110±3 

 

82±3 

 

83±4 

 

123±1 

 

82±3 

 

83±4 

 

225± 9 

 

260±1 

 

265±14 

 

285±7 

 

505± 

14 

 

550±16 

 

750±9 

 

555±21 

 

Linoleic 

(C 18:2   

n-6) 

 

190±2 

 

200±1 

 

192±1 

 

185±7 

 

185±10 

 

250±2 

 

185±7 

 

185±10 

 

460±1 

 

630±7 

 

455±25 

 

510±   

18 

 

970±8 

 

1070± 

31 

 

1660±

42 

 

1160± 

17 

 

Linolenic  

(C 18:3) 

 

6±0.1 

 

10±5 

 

24±1 

 

18±0.6 

 

18±1 

 

20±0.1 

 

18±0.6 

 

18±1 

 

11±0.1 

 

16±1 

 

44±3 

 

50±3 

 

98±3 

 

110±5 

 

210±8 

 

160±22 

 

Arachidic 

(C 20:0) 

 

3± 0.1 

 

3± 0.1 

 

2.4±0.1 

 

3± 0.1 

 

3±0.1 

 

3±0.02 

 

3±0.1 

 

3±0.1 

 

8±0.1 

 

11±2 

 

6± 0.2 

 

6±0.5 

 

14± 

0.3 

 

21±4 

 

28±0.1 

 

22±0.5 

 

Behenic 

(C 22:0) 

 

1 ±0.1 

 

   n.d. 

 

4±0.2 

 

5±0.2 

 

5±0.2 

 

2±0.1 

 

5±0.1 

 

5±0.2 

 

n.d. 

 

  n.d. 

 

7±0.3 

 

6±1 

 

10±0.3 

   

11±0.4 

 

55±5 

 

44±2 

 

Lignoceric 

(C 24:0) 

 

n.d. 

 

 

   n.d. 

 

 

6±0.1 

 

2±0.1 

 

2±0.1 

  

  n.d. 

 

 

2±0.1 

 

2±0.1 

   

n.d. 

 

 

  n.d. 

 

 

4±0.4 

 

n.d. 

 

 

n.d. 

 

 

n.d. 

 

 

n.d. 

 

 

10±1 

 

Total 

 

 

355±9 

 

285±21 

 

290±2 

 

350±13 

 

355±20 

 

480±4 

 

350±13 

 

355±20 

 

898±8 

 

1145± 

140 

 

940±57 

 

1000± 

26 

 

1955± 

12 

 

2105± 

57 

 

3240± 

46 

 

2345± 

187 

  n.d.-not detectable 

 Table 1 Table 18. Fatty acid composition of extrudates processed at two different contents of tested flours (20 and 50%) at two different extrusion temperatures (140 and 160 °C) (n=3) 
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Oleic acid, linoleic acid and linolenic acid in the extrudates samples were significantly 

different (p<0.05) from the calculated values for the flour mixture (Appendix 9, Appendix 11). 

The increase in the extrusion temperature from 140 to 160 °C had no significant effect on the 

content of oleic, linolenic and linoleic acids. Only traces of behenic (C 22:0) and lignoceric (C 

24:0) fatty acid were detected in the extrudates.  

 

Table 19a. Fatty acid values used for statistical analysis for calculation of ANOVA in the extrudates containing 

20% content of tested flour mixtures. 

Content (mg/100 g d.m.) 

Fatty acid Amaranth 20% Quinoa 20% Kañiwa 20% Lupine 20% 

 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 

Oleic 88 88 404 110 82 499 83 123 576 82 83 414 

Linoleic 190 200 893 192 185 915 185 250 1174 185 185 952 

Linolenic 6 10 23 24 18 65 18 20 97 18 18 90 

 

With respect to the total fatty acid content of the extrudates, lupine 50% at 140 °C contained 

higher content of total fatty acids (3241 mg/100 g d.m.) amongst the other extrudates. The 

interaction between flour type - content of tested flour (%) had a significant effect on the 

content of linolenic acid in the extrudates containing amaranth, quinoa, kañiwa and lupine 

(Table 19c). The temperature, content of tested flour and the flour type had a significant effect 

on the content of oleic and linoleic acid in the extrudates of amaranth, quinoa, kañiwa and 

lupine. Polenta reduced the fatty acid levels in the extrudates. The extrudates produced at 50% 

content of tested flours had higher content of fatty acids when compared against the 

extrudates produced at 20% content of tested flour prepared at both temperatures. 
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Table 19b. Fatty acid values used for statistical analysis for calculation of ANOVA in the extrudates containing 

50% content of tested flour mixtures. 

Content (mg/100 g d.m.) 

Fatty acid Amaranth 50% Quinoa 50% Kañiwa 50% Lupine 50% 

 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 

Oleic 225 260 725 265 285 961 505 550 1154 750 555 759 

Linoleic 460 630 1476 455 510 1533 970 1070 2178 1660 1160 1624 

Linolenic 11 16 34 44 50 140 98 110 218 210 160 202 

 

 

Table.19c Three-way ANOVA showing the significant effect (p< 0.05) between the factors in the contents of 

oleic, linoleic and linolenic acid in the extrudates. 

Factors Oleic Linoleic Linolenic 

Temperature (X1) 0.0002 0.0002 0.0027 

Content of tested flour 

(X2) 

0.0001 0.0001 0.0002 

Flour type (X3) 0.0353 0.0519 0.0009 

X1* X2 0.9121 0.5563 0.8539 

X1* X3 0.376 0.2364 0.2393 

X2* X3 0.0709 0.1074 0.0055 

 

3.4.2 Estimation of bioactive compounds of flour samples and extrudates 

 

Tocopherol content of raw materials and extrudates 

 

Lupine (124 µg/g d.m.) was reported to possess higher content of total tocopherol content 

when compared to amaranth, quinoa and kañiwa respectively (Figure 9). The content of α-

tocopherol was the only active compound possessing vitamin E activity and the flours of 

quinoa and kañiwa exhibited higher contents of α-tocopherol when compared to amaranth and 

lupine. The content of γ-tocopherol (65-85%) exhibited higher proportions of total tocopherol 

composition in the seeds of lupine, quinoa and kañiwa. Lupine was reported to contain higher 

content of γ-tocopherol (108 µg/g d.m.) when compared to quinoa (33 µg/g d.m.), amaranth 

(1.4 µg/g d.m.) and kañiwa (69 µg/g d.m.) flours. With respect to β-tocopherol and δ-

tocopherol, amaranth possessed higher content of the respective tocopherols than quinoa, 
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kañiwa and lupine. α-tocotrienol and γ-tocotrienol were detected only in polenta while β-

tocotrienol was detected only in lupine flours (Appendix 1).  

 

 

Figure 9. Tocopherol content in the flour samples 

 

The tocopherol content was higher in the extrudates containing 50% content of tested flour 

than the    20% content of tested flour (Figure 10). α- tocopherol was rich in the extrudates of 

kañiwa containing  50% content of tested flour followed by lupine, quinoa and amaranth 

containing 50% content of tested flours indicating that the extrudates of kañiwa (50% content 

of tested flour) possessing higher vitamin E activity when compared to amaranth, quinoa and 

lupine. γ-tocopherol occupied a high percentage (nearly 80%) of tocopherol content in the 

extrudates of lupine containing 50% content of tested flour (29-35 µg/g d.m.) when compared 

to other extrudates. Only traces of β-tocopherol and δ-tocopherol were detected in the 

extrudates of amaranth and kañiwa (Appendix 2). On the whole, the content of tocopherols 

were comparatively lower in all the extrudates (except lupine 50% content of tested flour 

produced at 140 °C) when compared to the calculated values of the flour mixture (Appendix 

12). 

 

With respect to the content of α-tocotrienol and γ-tocotrienol, extrudates of lupine possessed 

higher contents of the respective tocopherols while β-tocotrienols were detected only in the 

extrudates of lupine. The total tocopherol content of the extrudates samples were higher in the 

extrudates of lupine at 50% content of tested flour processed at 160 and 140 °C followed by 

kañiwa and quinoa at 50% content of tested flours produced at both temperatures (Appendix 

10). The content of α-tocotrienol and γ-tocotrienol in the extrudates had good stability 

towards extrusion processing when compared to the content to tocopherols (α, β, γ, δ). 
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Figure 10. Tocopherol content of the extrudate samples  

 

The experimental data of the total tocopherols in the extrudates were significantly different 

(p<0.05) from the calculated values for the flour mixture (Table 20). The content of total 

tocopherols had no significant effect on the extrudates produced at both the temperatures (140 

and 160 °C). The interaction between the temperature (°C) – content of tested flour (%), 

content of tested flour (%) – flour type and temperature (°C) – flour type did have a 

significant effect on total tocopherols in the extrudates containing amaranth, quinoa, kañiwa 

and lupine 

 

Total phenolic content of raw materials and extrudates 

 

The total phenolic content of the raw materials determined by acid hydrolysis treatment had a 

two-fold increase in the total phenolic content when compared to methanol-water treatment 

(Figure 11). Kañiwa was observed to possess high content of phenolics by both treatments 

(methanol- water treatment and acid hydrolysis). The total phenolics (free and bound 

phenolics) content was highest in kañiwa (1662 µg/g d.m.) followed by lupine, quinoa and 

amaranth (Appendix 3). Quinoa and polenta contained similar content of total free phenolic 

contents.  
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Figure 11.  Comparison of total phenolic content of flour samples compared against methanol-water treatment 

(free phenolics) and acid hydrolysis treatment (free and bound phenolics). 

 

The total phenolic content of the extrudates by the acid hydrolysis treatment (free and bound 

phenolics) resulted in higher content of total phenolics when compared to the methanol-water 

treatment (free phenolics) (Figure 12). The extrudates containing 50% content of tested flour 

resulted in higher content of total phenolics than that of extrudates containing 20% content of 

tested flours in the extrudates of lupine, quinoa and kañiwa. However, the content of total 

phenolics in the extrudates of amaranth at two contents of tested flours (20 and 50%) was 

comparatively similar at both treatments (Appendix 4).  

 

The total free phenolics in the extrudates were comparatively lower when compared to the 

calculated values for the flour mixture (Appendix 12). Extrudates of lupine 20% (140 and 

160 °C) contained similar contents of total free phenolics when compared to extrudates of 

amaranth, while the total free phenolics in the extrudates of quinoa (20% content of tested 

flour) contained the lowest ranging around 150 µg/g d.m. The content of total free and bound 

phenolics in the extrudates of amaranth, quinoa, kañiwa and lupine were comparatively higher 

when compared to the calculated values for the flour mixture. The extrudates of kañiwa (50% 

content of tested flour) processed at 140 °C (1230 µg/g d.m.) exhibited higher content of total 

free and bound phenolics (acid hydrolysis) when compared to other extrudates. The content of 

total free and bound phenolics in the extrudates of kañiwa (50% content of tested flour) 

processed at 140 °C was higher when compared to the extrudates of kañiwa (50% content of 

tested flour) processed at 160 °C. Extrudates of lupine and kañiwa containing 50% content of 
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tested flour processed at 160 °C had similar content of total phenolics during the acid 

treatment.  

 

Effect of extrusion temperatures (140 and 160 °C) did not have a significant effect on the 

content of total phenolics. The total free phenolic content in the extrudates containing 

amaranth, quinoa, kañiwa and lupine were significantly different (p<0.05) from the calculated 

values for the flour mixture (Appendix 10).  

 

 

Figure 12. Comparison of total phenolic acid content between methanol-water treatment (free phenolics) and 

acid hydrolysis treatment (free and bound phenolics) in the extrudate samples  

 

The interaction between temperature – content of tested flour (%) and flour type – content of 

tested flour (%) had a significant effect (p<0.05) on the content of free phenolics in the 

extrudates (Table 20c). There was no significant difference between the experimental data and 

the calculated values for the flour mixture on the content of free and bound phenolics. 

However, the interaction between the content of tested flour (%) – flour type had a significant 

effect (p<0.05) on the content of total phenolics determined by acid hydrolysis. 
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Table 20a. Content of total phenolic content and total tocopherols used for statistical analysis for calculation of 

ANOVA in the extrudates containing 20% content of tested flour mixtures. 

Content (mg/100 g d.m.) 

Fatty acid Amaranth 20% Quinoa 20% Kañiwa 20% Lupine 20% 

 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 

Total tocols 5.2 4.9 17 5.3 8.8 19.4 7.6 7.4 26.6 7.9 8 34 

Phenolics-

normal 

199 251 308 149 150 333 201 292 393 215 223 358 

Phenolics- 

acid 

hydrolysis 

686 681 596 550 563 606 684 803 774 690 835 705 

 

Table 20b. Content of total phenolic content and total tocopherols used for statistical analysis for calculation of 

ANOVA in the extrudates containing 50% content of tested flour mixtures. 

Content (mg/100 g d.m.) 

Fatty acid Amaranth 50% Quinoa 50% Kañiwa 50% Lupine 50% 

 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 140 °C 160 °C T.V 

Total tocols 10.2 10.4 24.7 11.2 11.4 30.8 26 27 49 37.5 43.7 67.5 

Phenolics-

normal 

235 213 286 221 212 348 425 369 498 334 341 411 

Phenolics- 

acid 

hydrolysis 

643 677 661 669 681 687 1230 1035 1106 1015 1022 934 

 

 

Table 20c. Three-way ANOVA showing the significant effect (p< 0.05) between the factors in the contents of 

total tocopherols and total phenolic compounds (normal treatment and acid hydrolysis) in the extrudates. 

Factors Total 

tocopherols 

Phenolic compounds 

Normal 

treatment 

Acid 

hydrolysis 

Temperature (X1) 0 0.0001 0.6759 

Content of tested flour 

(X2) 

0 0.0006 0.0004 

Flour type (X3) 0 0.0004 0.0003 

X1* X2 0.05 0.05 0.3206 

X1* X3 0.003 0.352 0.7018 

X2* X3 0 0.0121 0.01 
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3.4.3 PCA and PLS data analysis of extrudates 

 

The PCA analyses on the individual extrudates containing 20% content of tested flour are 

presented (Figure 13a). Three principal components were scaled with respect to validations 

and calibrations in the PCA data analysis in the extrudates containing 20% content of tested 

flour. The explained variances of calibration (R
2
Y) and validation (Q

2
Y) in PCA data model 

of the extrudates containing 20% content of tested flour were found to be high (99.7%, 77.6%) 

suggesting for the model a good fit to the data. The calibration variances for the first principal 

component (35%) and the difference between the first and second principal component (33%) 

in PCA data analysis for 20% content of tested flours were calculated.  

 

Pressure and WCE (water content of extrudates) had a positive correlation with total 

phenolics in the extrudates containing 20% content of tested flour (Figure 13b). With respect 

to the fatty acid content of the extrudates, linolenic and linoleic acids had a negative 

correlation towards pressure while stearic acid had a positive correlation with pressure and 

WCE. Pressure was also observed to be negatively correlated with torque during the 

processing of extrudates. Total phenolic contents and γ-tocopherol had a negative correlation 

with hardness and torque. Torque had a positive correlation with linoleic, oleic acid, α-

tocopherol, β-tocopherol and a negative correlation with linolenic, total phenolic contents, γ-

tocopherol and stearic acid. The expansion of extrudates during the extrusion processing had a 

positive correlation with the β-tocopherol, linoleic and oleic acids and negative correlation 

with linolenic, and α-tocopherol.  
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Figure 13a. PCA-biplot on  the extrudates processed at 20% content of tested flour at two different extrusion 

temperature conditions ( 140 and 160 °C) (Temp-Temperature, TOR-Torque, SEI-Single expansion index, WCE- 

water content of extrudates, PRE-pressure, HARD-Hardness, A-Amaranth, Q-Quinoa, K-Kañiwa, L-Lupine). 

R
2
Y for the first component was 35% and the difference between the first and second principal component was 

33%. 

 

The total phenolic content in the extrudates of lupine (20% content of tested flour) was 

positively correlated with the changes in the pressure, WCE and hardness, while torque had a 

negative correlation towards total phenolic contents and γ-tocopherol in the extrudates of 

lupine (20% content of tested flour). Linolenic acid, linoleic acid, oleic acid and α-tocopherol 

content had a positive correlation with torque and hardness and a negative correlation with 

pressure in the extrudates of kañiwa.  
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Figure 13b. PCA plot explaining the correlation of extrudates containing 20% content of tested flour against 

different extrusión parameters.  

 

Extrudates of kañiwa (20% content of tested flour) were associated with γ-tocopherol, α-

tocotrienol and γ-tocotrienol involving important changes in pressure and hardness during the 

extrusion processing. The changes in the torque during the extrusion processing of kañiwa 

had a negative correlation with total phenolic content and γ-tocopherol in the extrudates of 

kañiwa (20% content of tested flour).  

 

WCE and hardness had a positive correlation towards linolenic acid, oleic acid and linoleic 

acid in the extrudates containing 50% content of tested flour (Figure 14a). With respect to 

fatty acids, linolenic acid, oleic acid and linoleic acid also resulted in negative correlation 

with torque, pressure and SEI of the extrudates. The α-tocopherol, γ-tocopherol and total 

phenolic contents in the extrudates showed a positive correlation with WCE and hardness. 

Pressure, torque and SEI of the extrudates resulted in a negative correlation with α-tocopherol, 

γ-tocopherol and total phenolic contents. With respect to β-tocopherol, there was a strong 

positive correlation with pressure and torque and also was reported to have a negative 

correlation with WCE and hardness of the extrudates.  

 

According to PCA data analysis, the total phenolic contents and γ-tocopherol in the extrudates 

of kañiwa (50% content of tested flour) showed a positive correlation with pressure (Figure 

14b). Three principal components were included in the PCA model for the extrudates 

containing 50% content of tested flour. The explained variances of calibration and validation 
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in PCA data model of the extrudates containing 50% content of tested flour were found to be 

high (0.957, 0.839) suggesting the model a good fit to the data. The calibration variances for 

the first principal component (74%) and the difference between the first and second principal 

component (13%) in PCA data analysis for 50% content of tested flours were calculated. The 

WCE had a negative correlation on total phenolic contents and γ-tocopherol in the extrudates 

of kañiwa (50% content of tested flour). The content of linolenic acid, linoleic acid and oleic 

acid had a strong positive correlation with hardness, torque and SEI in the extrudates of lupine 

(50% content of tested flour). α-tocopherol content in the extrudates of lupine (50% content of 

tested flour) also showed a positive correlation towards the changes in torque, hardness and 

SEI. β-tocopherol in the extrudates of quinoa (50% content of tested flour) had a positive 

correlation towards the WCE and torque, while pressure showed a negative correlation with 

the content of β-tocopherol. 

 

 

Figure 14a. PCA plot explaining the correlation of extrudates containing 50% content of tested flour against 

different extrusión parameters.  

 

With respect to the extrudates of amaranth (50%), the effect of pressure and SEI during the 

extrusion processing was positively correlated towards total phenolic content and γ-

tocopherol and negatively correlated towards the WCE in the extrudates. Torque and pressure 

had a negative correlation on the content of bioactive compounds while hardness and WCE of 

the extrudates resulted in positive correlation on the bioactive compounds during the 

extrusion processing. 
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Figure 14b. PCA-biplot on  the extrudates processed at 50% content of tested flour at two different extrusion 

temperature conditions ( 140 and 160 °C) (Temp-Temperature, TOR-Torque, SEI-Single expansion index, WCE- 

water content of extrudates, PRE-pressure, HARD-Hardness, A-Amaranth, Q-Quinoa, K-Kañiwa, L-Lupine). 

R
2
Y for the first component was 74% and the difference between the first and second principal component was 

13%. 

 

The PLS weight plot with the content of tested flour of tested flour mixtures (%) and 

temperature as independent variables explains the interdependences variables in the 

extrudates  of amaranth, quinoa, kañiwa and lupine (Figure 15).  The most influential variable 

in the total model was determined by variable influence of projection parameter (VIP> 1.0). 

The content of the flour (%) was found notably the most influential variable in the PLS 

regression model (VIP=1.314). However, the effect of temperature did not have an influential 

effect on the extrudates (VIP = 0.522). Two PLS factors were scaled with respect to 

validations and calibrations in the PLS regression model of the extrudates. The coefficient of 

determination (R
2
Yadj (cum)) and the coefficient of prediction (Q

2
Y (cum)) for the total model 

in the PLS regression model of the extrudates were found to be high (0.901, 0.570) suggesting 

the model a good fit to the data. 
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The PLS regression model suggested that temperature had a negative effect on pressure 

during the extrusion processing. Temperature and content of tested flour (%) of tested flours 

had a strong positive effect on the content of linolenic acid, linoleic acid and oleic acid in all 

the extrudates. The content of linolenic, oleic and linoleic acid was reported to have a strong 

positive effect with pressure, WCE and hardness and a negative effect on the torque and SEI 

in the extrudates of lupine. Higher the pressure or water content in the extrudates of lupine 

resulted in better content of unsaturated fatty acids.  

 

The extrudates of amaranth had a positive association on WCE and pressure in the content of 

linolenic, oleic and linoleic acid and a negative association on torque, SEI and pressure. 

Pressure, content of tested flour (%) and hardness had a strong positive effect on the content 

of α-tocopherol and γ-tocopherol, while torque, WCE and SEI had a negative effect on the 

content α-tocopherol and γ-tocopherol in the extrudates of amaranth. Pressure, SEI and torque 

resulted in positive correlation on the content of β-tocopherol in the extrudates of amaranth 

while there was a strong negative correlation with the changes in temperature and WCE 

towards the content of β-tocopherol.  The coefficient of determination and the coefficient of 

prediction for the submodels in the extrudates of amaranth were observed to be high expect in 

case of total phenolic content (pressure (0.907, 0.914), oleic acid (0.957, 0.692), linolenic 

(0.980, 0.974), β-tocopherol (0.994, 0.712), α-tocopherol (0.993, 0.712) and torque (0.968, 

0.917)) (Appendix 5).  

 

In the extrudates of quinoa, the content of linolenic, oleic and linoleic acid had a positive 

correlation towards the changes in torque and a negative correlation towards pressure, 

hardness, WCE and SEI. The effect of temperature and the content of tested flours had a 

tremendous effect on the content of stearic and linolenic acid. With respect to the content of 

α- tocopherol and γ-tocopherol, PLS regression model showed a strong positive correlation 

towards the content of tested flours (%), pressure, hardness and SEI while there was a 

negative correlation with the changes in SEI and torque. Influence of temperature on the 

extrudates of quinoa had a less negative effect in the content of α- tocopherol and γ-

tocopherol. The coefficient of determination and the coefficient of prediction for the 

submodels in the extrudates of quinoa were high (WCE (0.876, 0.722), oleic acid (1.000, 
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0.998), linoleic acid (0.991, 0.817), linolenic (0.975, 0.746), α-tocopherol (1.000, 0.714) and 

total phenolic content (1.000, 1.000)) (Appendix 6). 

 

The content of linolenic, oleic, linoleic acid α-tocopherol and γ-tocopherol in the extrudates of 

kañiwa resulted a positive effect on pressure and WCE and negatively affected on SEI, torque 

and hardness. Temperature changes had a little negative correlation on the fatty acid and 

tocopherol contents in the extrudates of kañiwa. According to PLS-regression data model, the 

coefficient of determination and the coefficient of prediction for the submodels in the 

extrudates of kañiwa were higher except in case of total phenolic content indicating that the 

submodel should be reported as a suggestive submodel (SEI (0.984, 0.740), oleic acid (0.987, 

0.711), linoleic acid (0.991, 0.712) torque (0.976, 0.876) and α-tocopherol (0.996, 0.713)) 

(Appendix 7). 

 

Figure 15. PLS weight plot for independent extrusion parameters (%-tested flours content, Temp-Temperature, 

TOR-Torque, SEI-Single expansion index, WCE- water content of extrudates, PRE-pressure, HARD-Hardness) 

 

Torque, temperature, content (%) and hardness had a strong positive correlation towards the 

content α-tocopherol and γ-tocopherol, while pressure, WCE and SEI had a negative 

correlation towards the content α-tocopherol and γ-tocopherol in the extrudates of lupine. The 
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coefficient of determination and the coefficient of prediction for the submodels in the 

extrudates of lupine were high (pressure (0.949, 0.766), oleic acid (0.920, 0.760) hardness 

(0.821, 0.704), linolenic acid (0.923, 0.764) α-tocopherol (0.970, 0.704) and total phenolic 

content (0.812, 0.578)) (Appendix 8). 

 

The total phenolic content in the extrudates of quinoa and lupine had a positive correlation 

towards the extrusion temperature and torque and a negative correlation with pressure, SEI, 

hardness and WCE. The phenolic content in the extrudates of amaranth had a positive 

correlation with temperature, hardness, WCE and negative correlation with pressure while the 

phenolic content in the extrudates of kañiwa had a positive correlation towards the pressure, 

WCE and torque and a negative correlation on the SEI and hardness of the extrudates.  

 

3.5 Discussion 

 

3.5.1 Chemical composition of raw materials of amaranth, quinoa, kañiwa and lupine 

 

The flours of amaranth, quinoa, kañiwa and lupine resulted in similar chemical composition 

with considerable differences in present study when compared to previous results (Sujak et al. 

2006; Repo-Carrasco et al. 2009a, b, 2010b). Lupine flours had a good content of protein 

ranging around 28-30 g/100 g d.m. and a similar study revealed that the blue lupine 

(L.angustifolius), contained higher content of protein (33g/100 g d.m) (Sujak et al. 2006). The 

protein content of kañiwa, quinoa and amaranth in present study was found to be higher than 

the protein content obtained by Repo-Carrasco et al. (2009a, b, 2010b). Manual titration 

(AOAC 1995) was carried out by Repo-Carrasco et al. (2009a, b, 2010b) while an automated 

Kjeldahl titration method was carried out during present study which might be the reason for 

the slight increase in the protein concentration in kañiwa and amaranth flours due to the 

sensitivity of the automated analysis performed in the present study.  

 

The fat content determined in the flours of kañiwa and quinoa in the present study were 

comparatively similar to the results obtained by Repo-Carrasco et al. (2009a, 2010b). 

However, the fat content in amaranth and lupine flours were lower when compared to the 

results determined by Repo-Carrasco et al. (2009b) and Lqari et al. (2002). Accelerated 
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solvent extraction (ASE) was used in the present study which involved the interaction of the 

lipid samples with high pressure and increased temperature conditions in order to liberate 

faster lipid extraction using acetone as extraction solvent. ASE is considered to be more 

effective and quantitative technique in performing lipid extraction (Shen and Shao 2005). 

Whereas Lqari et al. (2002) and Repo-Carrasco et al. (2009b) used soxhlet extraction method 

(AOAC 1995) in order to determine the fat content as crude fat. Determination of crude fat by 

soxhlet extraction has certain limitations as the determination of crude fat depends on the 

extraction solvent used, type of sample and more importantly the extraction method used 

(Kumoro et al. 2009). Total crude fat determined during the soxhlet extraction method 

contains fat-soluble compounds in the lipid samples which consist of free fatty acids, urea, 

phospholipids, sterols and triacylglycerols (Anderson 2004). This might explain the reason for 

the lower content of fat in amaranth and lupine in the present study when compared to the 

previous results determined by Lqari et al. (2002) and Repo-Carrasco et al. (2009b).  

 

The content of dietary fiber in amaranth and kañiwa flours in the present study were lower 

when compared to the results obtained by Repo-Carrasco et al. (2009a, b) while the dietary 

content of the quinoa flours (9.1±2.6 g/100 g d.m) were similar to the previous results 

obtained by Repo-Carrasco et al. (2010a). Enzymatic-gravimetric measurement was used in 

the present study and in the previous study conducted by Repo-Carrasco et al. (2009a, b, 

2010a). The outer covering of the seed called the perigonium layer greatly influences on the 

content of dietary fiber especially in the seeds of kañiwa (Repo-Carrasco et al. 2010a).  This 

might be the reason for the increased dietary fiber content during the study performed by 

Repo-Carrasco et al. (2009a, b) when compared with the present study. With respect to the 

dietary fiber content in the seeds of lupine, present study revealed (50±3 g/100 g d.m) similar 

results determined by Lqari et al. (2002). Johnson and Gray (1993) reported that lupine 

varieties contain high content of dietary fiber amongst the other legumes. The high content of 

dietary fiber is attributed towards the seed coat of the leguminous cotyledons which contains 

high dietary fiber content in the form of cellulose, hemicelluloses and pectin thereby 

explaining the reason for the high dietary content in the seeds of different lupine varieties 

when compared to pseudo-cereals and cereals (Písaříková and Zralý 2010). 
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Fatty acid composition of amaranth, quinoa, kañiwa and lupine flours had considerable 

differences in the present study in contrast to the previous results (Espinoza 2002; Palombini 

et al. 2013; Sbihi et al. 2013). Fatty acid composition in the flours of amaranth, quinoa and 

kañiwa had major portion of linoleic acids, oleic acids and palmitic acid (C16:0) which were 

similar to the results obtained by Palombini et al. (2013) and Espinoza (2002). Content of 

linoleic acid, oleic acids and palmitic acid resulted in greater proportion in the results 

determined by Espinoza 2002 and Palombini et al. (2013) when compared to flours of 

amaranth, quinoa and kañiwa in our present study. Fatty acid composition in the flours of 

lupine (L.angustifolius) in the present study were similar to that of the previous results 

determined by Trugo et al. (2004) and Sbihi et al. (2013) in the species of L.angustifolius and 

L.albus respectively. There were also slight deviations in the content of tocopherol (α,β,γ,δ) in 

the flours of amaranth, quinoa and lupine flours when compared to previous results (Torres et 

al. 2005; Alvarez et al. 2009). Several studies reveal that the differences in the content of fatty 

acid and tocopherol composition especially in the seeds of quinoa and amaranth varieties 

might be due to genotype selection, year of cultivation and temperature conditions (Alvarez et 

al. 2009; Peiretti et al. 2013; Hlinková et al. 2013). These factors might be the reason for the 

differences in the content of fatty acid and tocopherol composition in the present study to the 

previous results.  

 

The total phenolic content in quinoa was similar to the previous results obtained by Repo-

Carrasco et al. (2010a) while the total phenolic content in the flours of amaranth, kañiwa and 

lupine were higher in the present study when compared to the previous results obtained by 

Repo-Carrasco et al. (2010a) and Siger et al. (2012). Nsimba et al. (2008) reported that the 

changes in the total phenolic content in the species of quinoa and amaranth varieties were due 

to genetic differences, environmental factors such as temperature differences, infections 

which play an important role in affecting the biosynthesis of phenolic compounds thereby 

explaining the reason for a considerable effect on the total phenolic content in present study. 

Also, cell wall bound phenolic compounds are subjected to be released by acid hydrolysis 

treatment (Rommel and Wrolstad 1993). The effect of acid hydrolysis liberates the release of 

esterified phenolic aglycones thereby yielding higher content of generic phenols which exhibit 

antioxidant properties (Krygier et al. 1982; Bonoli et al. 2004). The release of cell bound 
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phenolics might be the reason for the increase in the content of total phenolic content between 

the methanol-water treatment and acid hydrolysis in present study.  

 

3.5.2 Effect of extrusion on fatty acid composition of amaranth, quinoa, kañiwa and 

lupine 

 

The percentage of retention of total fatty acids after extrusion ranged from 16-45% in 

pseudocereals depending on process conditions. On the other hand, lupine extrudates showed 

a no reduction of fatty acids at 50% content of tested flour processed at 140 °C and a 70% 

retention of extrudates processed at 160 °C, but at 20% content of tested flour the retention 

was 19-20% processed at both extrusion temperatures. Similar study on the effect of extrusion 

cooking on the content of total fatty acids was reported by Nierle et al. (1980). They reported 

that the effect of extrusion cooking retained 40% in the extrudates of maize. Also Camire 

(2000) reported that loss of fatty acid content in the extrudates can be attributed towards the 

formation of complexes between lipid and protein during extrusion processing. 

 

The effect of extrusion temperature towards the retention of unsaturated fatty acids (oleic, 

linoleic and linolenic acids) depended on the content of tested flour and the flour type during 

extrusion processing. The percentage of retention in content of unsaturated fatty acids was 

lower at lower content of tested flours in all the extrudates. At 20% addition level the 

retention was much lower for all extrudates.  The content of unsaturated fatty acids the 

retention was lower in the extrudates of amaranth, quinoa and kañiwa. The retention of 

unsaturated fatty acids was 23-41% for amaranth, 26-32% for quinoa and 16-49% for kañiwa. 

However in the case of lupine extrudates, lower content of tested flour had less retention of 

unsaturated fatty acids around 19%, while there was no reduction in the retention of 

unsaturated fatty acids at higher content of tested flour processed at higher extrusion 

temperatures. Grela et al. (1999) studied the effect of high extrusion temperature on the 

content unsaturated fatty acids in extrudates of green peas. From the study, he reported that 

increase in the temperature from 100 to 160 °C caused an increase in the content of linoleic 

and linolenic acid while there was slight difference in content of oleic acid towards high 

temperature extrusion temperature. This might explain the increase in the retention of 

unsaturated fatty acids in the extrudates of lupine processed at 140 and 160 °C. However there 
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were no previous studies on the content of unsaturated fatty acids towards the changes in 

contents of tested flour and flour type in the extrudates of amaranth, quinoa, lupine and 

kañiwa.  

 

Higher extrusion temperatures resulted in higher retention of unsaturated fatty acids in the 

extrudates of amaranth and kañiwa. However with the increase in extrusion temperature in the 

extrudates of lupine at higher content of tested flour reduced the retention of unsaturated fatty 

acids by 25%. Tumuluru et al. (2013) also reported decrease in the lipid content in the 

extrudates of fish and rice flour. From his study, he reported that increase in the processing 

temperature from 100 to 200 °C, decreased the content of the lipids by 15% due to the 

formation of lipid-protein complexes in the extrudates. High processing temperature during 

extrusion also resulted in oxidation of unsaturated fatty acids leading to formation of lipid 

hydroperoxides thereby lowering content of lipid in the fish and rice flour coextrudates (Funes 

and Karel 1981; Van Hoan et al. 2010). This might explain the reason for the decrease in the 

content of the unsaturated fatty acids in the present study. 

 

The retention of unsaturated fatty acids especially polyunsaturated fatty acids (PUFA) also 

was dependent on the content of moisture in the extrudates maintained during extrusion 

processing (Grela et al. 1999). The decrease in the retention of PUFA decreased in all the 

extrudates (except for the lupine extrudates with 50% content of tested flour processed at 

140 °C) in the present study due to water content of the feed (14%) maintained during 

extrusion processing of raw materials. Grela et al. (1999) reported that the high moisture 

content (14-30%) decreased the content of PUFA in the extrudates of grass peas. From his 

study, the presence of high moisture content might have caused an inhibition in the transfer of 

PUFA into monoenoic forms of fatty acids in the lipid complexes thereby resulting in 

increased retention of PUFA in the extrudates of grass peas. This might explain the reason for 

the decrease in the content of PUFA at lower moisture content in the extrudates of amaranth, 

quinoa and kañiwa in the present study. 
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3.5.3 Effect of extrusion on tocopherol content of amaranth, quinoa, kañiwa and lupine 

 

Extrusion cooking resulted in lower retention of total tocopherols and α-tocopherol in the 

extrudates of amaranth, quinoa, kañiwa and lupine. The percentage loss in the extrudates was 

about 40-77%. Zielinksi et al. (2001) reported that the percentage loss due to the effect of 

extrusion cooking of cereal grains processed at 120-200 °C ranged between 63-94%. Mensa-

Wilmot et al. (2003) also reported that the percentage loss towards the content of total 

tocopherols (25%) during the extrusion processing of cereal/legume blends at 150 °C. From 

the above two studies it was explained that the losses of tocopherol content resulted due to the 

effect of high temperature maintained during extrusion processing wherein the content of total 

tocopherols were less stable towards high temperature processing. Killeit 1994 also 

summarized that the percentage losses of total tocopherols were reported higher during high 

heat processing of the raw materials as the tocopherols were sensitive towards high 

temperature processing. Higher temperature extrusion processing of the extrudates might 

explain the reason for the higher percentage losses of total tocopherols and α-tocopherol 

content.  

 

The extrudates of amaranth and quinoa content of tested flour resulted in higher percentage 

losses in the content of α, β, γ, δ tocopherols when compared to the extrudates of lupine and 

kañiwa in the present study. Similar study was determined by Suknark et al. (2001) towards 

the stability of tocopherols in the fish and peanut extrudates processed at 97-100 °C. From the 

above study, the percentage of losses in α, β, γ, δ tocopherol content in the extrudates of fish 

extrudates were higher when compared to the peanut extrudates. The higher losses in the fish 

extrudates were reported due to the presence of predominant content of fatty acids mainly 

comprising of oleic acid and linoleic acid when compared to peanut extrudates (Erickson 

1992).  The higher content of oleic and linoleic acids in the fish extrudates might have led to 

lipid oxidation thereby reducing the level of the tocopherols in extrudates (Hakannson and 

Jagerstad 1990; Li et al. 1996). This might explain the reason for the higher loss of α, β, γ, δ 

tocopherol content where the oxidation of unsaturated fatty acids were higher in the 

extrudates of amaranth and quinoa when compared to lupine and kañiwa.  
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It was observed that the content of the γ-tocotrienol increased in all extrudates while there was 

an increase in the content of α-tocotrienol in the extrudates containing 20% content of tested 

flour. This increase might be due to better extractability of these compounds due to high 

temperature processing. Quereshi et al. (2000) have reported a similar increase in the content 

of tocotrienols in heat treated (130 °C) rice bran. This might be the reason for the increase in 

the content of α and γ-tocotrienols in the extrudates during the present study. 

 

3.5.4 Effect of extrusion on total phenolic content of amaranth, quinoa, kañiwa and 

lupine 

 

Quinoa was most sensitive towards extrusion processing with respect to total free phenolic 

content where the percentage of retention was 40-60% in the extrudates processed at two 

different contents of tested flours at two different extrusion temperatures. However, the 

retention was 51-85% for kañiwa, 65-83% for amaranth and 60-82% for lupine.  Repo-

Carrasco et al. (2009b) reported that the percentage of retention in the content of the total free 

phenolics in the extrudates of amaranth varieties (Centenario and Oscar Blanco) were about 

20 and 35% processed at 180 °C. However, there are no previous studies that report the effect 

of extrusion on the phenolic content of quinoa, kañiwa and lupine. The variations between the 

total phenolic compounds in the present study and the previous results could be due to the raw 

materials, extrusion processing and formulation used between the two studies. Repo-Carrasco 

et al. (2009b) explained that the decrease in the content of total free phenolic compounds 

might be due to the process of decarboxylation of phenolic compounds during high 

temperature extrusion processing. Sharma et al. (2009) summarized that the decomposition of 

total phenolic compounds was higher at higher extrusion temperatures (≥ 180 °C) which 

might be the reason in the higher loss of total phenolics in the study determined by Repo-

Carrasco et al. (2009b) when compared to the present study. 

 

The effect of temperature on total free phenolic content varied depending on the contents of 

tested flour and flour type. The percentage of retention was higher at high extrusion 

temperature in all the extrudates containing 20% contents of tested flour. Zielinski et al. (2001) 

reported that the effect of extrusion processing at high temperature might increase the content 

of some bioactive compounds especially phenolic compounds due to the high thermal and 
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mechanical shear stress caused during the processing of the extrudates. The retention of total 

free phenolic content was higher at lower temperature for extrudates containing 50% tested 

flours. However for lupine extrudates containing 50% contents of tested flour, more retention 

of total free phenolics was observed at high temperature extrusion cooking. The decrease in 

the content of total free phenolic compounds towards high processing extrusion temperature 

was also previously studied in other raw materials (Altan et al. 2009; Brennan et al. 2011; 

Nayak et al. 2011; Sharma et al. 2012). The studies revealed that due the high temperature 

extrusion processing, degree of polymerization causes the decomposition or changes in the 

molecular structure of phenolic compounds leading to reduction in the chemical reactivity and 

extractability of the phenolic compounds thereby resulting in decrease in the content of free 

phenolics in the extrudates. This might explain the reason for the decreased content of total 

free phenolic content at higher extrusion temperatures in the extrudates containing 50% 

contents of tested flour. 

 

It was also noted that the percentage of retention in the content of total free phenolic content 

increased at higher contents of tested flour irrespective of extrusion temperature in all the 

extrudates which were in contrast to the previous results determined by Nayak et al. (2011). 

The percentage of retention in the content of total phenolic compounds in extrudates of 

amaranth, quinoa, kañiwa and lupine increased between 5-21% with respect to increase in the 

content of tested flour of the raw materials from 20 to 50%. Nayak et al. (2011) also reported 

that the percentage of retention in the content of total phenolics increased between 5-10% 

with the increase in the content of potato from 35 to 50% in the extrudates of potato-pea 

blends. Thus the increase in the content of tested flour from 20 to 50% in the raw materials 

could be the reason for the increased content of total phenolics during the extrusion 

processing of amaranth, quinoa, kañiwa and lupine.  

 

The content of total free and bound phenolic compounds slightly increased in extrudates of 

amaranth, quinoa, kañiwa and lupine processed at two contents of tested flours and extrusion 

temperatures when compared to T.V. The results obtained in the present study were in 

contrast to the previous results determined by Sarawong et al. (2014) in the extrudates of 

green banana flour. Sarawong et al. (2014) reported that the disruption of the bound phenolics 

in the cell wall matrix by the effect of high temperature extrusion processing resulted in the 
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increased release of bound phenolics. The increased release of cell bound phenolics from the 

cell wall matrix might explain the reason for the higher content of total free and bound 

phenolics in the extrudates of amaranth, quinoa, kañiwa and lupine when compared to 

calculated values for the flour mixture in the present study.  Zielinski et al. (2001) reported 

that phenolics released from the cell wall matrix during the extrusion processing contribute 

towards high antioxidant property when considered as a dietary antioxidant source.   
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4 Conclusions 

 

The present study provided information on (1) nutritional properties and the bioactive 

compounds of the flours of amaranth, quinoa, kañiwa and lupine and (2) the effect of extrusion 

processing towards the nutritional properties and the stability of bioactive compounds in the 

extrudates of amaranth, quinoa, kañiwa and lupine. 

  

The seeds of amaranth, quinoa, kañiwa and lupine possessed desirable nutritional composition 

in addition to its rich source of bioactive compounds especially phenolic compounds. Lupine 

flours resulted in higher content of protein and dietary fiber content when compared to the 

flours of amaranth, kañiwa and quinoa. The content of oleic and linoleic acid were higher in 

the flours of kañiwa followed by quinoa, lupine and amaranth. The content of α-tocopherol, γ-

tocopherol and total phenolic content were higher in the flours of kañiwa and lupine when 

compared to quinoa and amaranth. Further studies are required to determine on the content of 

individual phenolics and the antioxidant activity in the seeds of amaranth, quinoa, kañiwa and 

lupine.  

 

Extrusion processing considerably increased the composition of fatty acids in in the 

extrudates of lupine containing 50% content of tested flour processed at 140 °C. In contrast, 

higher extrusion temperatures in the extrudates containing amaranth, quinoa and kañiwa 

caused oxidation of unsaturated fatty acids resulting in decreased content of unsaturated fatty 

acids. The retention of unsaturated fatty acids was higher in the lupine extrudates when 

compared to the extrudates of amaranth, quinoa and kañiwa. A detailed study on the effect of 

extrusion cooking on the content of dietary fiber, protein and carbohydrates might help in 

producing snacks rich in high protein and dietary fiber. 

 

The content of total tocopherols decreased due to the effect of high temperature extrusion 

processing in all the extrudates. The content of tocotrienols was observed to possess better 

stability towards extrusion processing when compared to tocopherols. Indeed, more extrusion 

studies on the retention of tocopherols and tocotrienols towards lower extrusion temperatures 

might be helpful in obtaining higher retention of tocopherol content in the extrudate samples.   
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Higher temperature extrusion processing might have resulted in decrease in the content of 

total free phenolic content due to decomposition and decarboxylation of phenolics. More 

retention of total free phenolics was observed at higher temperatures in the extrudates of 

lupine containing higher contents of tested flours. Further explanatory studies are needed 

determine the effect of extrusion cooking on the content of antioxidant activity in the 

extrudates of amaranth, quinoa, kañiwa and lupine which might help in producing snacks 

possessing dietary antioxidant source. 

 

Very few studies on the quantification of bioactive compounds and their effect of extrusion on 

the flours of amaranth, quinoa, kañiwa and lupine have been studied. With this research, it is 

possible to modify the extrusion conditions in obtaining milder effects to result in high 

retention of nutritional compounds in the extrudates. This research might provide supportive 

information for deriving gluten-free cereal snacks with low glycemic index. Even though this 

research is not much researched at present, it has the potential to be the one for the future.  
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Appendix 

Appendix 1 . Tocopherol composition of polenta, amaranth, quinoa, kañiwa and lupine (n=3) 

 Content (µg/g d.m.) 

Sample α-

tocopherol 

α-

tocotrienol 

β-

tocopherol 

γ-

tocopherol 

β-

tocotrienol 

γ-

tocotrienol 

δ-

tocopherol 

Total 

Polenta 

 

1.5±0.2 2.3±0.3 n.d 3.9±0.9 n.d 4.1±0.6 n.d 11.76 

Amaranth 

 

7.9±0.5 n.d 20.5±1.3 1.36±0.09 n.d n.d 8.1±0.6 37.72 

Quinoa 

 

13.2±0.5 n.d 1.01±0.17 33.2±2.7 n.d n.d 2.45±0.17 49.87 

Kañiwa 

 

13.9±1.1 n.d 0.48±0.02 68.8±2.2 n.d n.d 2.80±0.07 86.06 

Lupine 10.1±0.2 n.d n.d 107.4±0.4 4.90±0.03 n.d 0.87±0.01 123.16 

 

n.d.- not determined 
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Content (µg/g  d.m.) 

 

 

Tocopherols 

 

 Lupine  20% 

 

Amaranth 20 % 

 

Quinoa 20% 

 

Kañiwa 20% 

 

Lupine 50% 

 

Amaranth 50 % 

 

Quinoa 50% 

 

Kañiwa 50% 

    

140°C 

     

  160 °C 

 

  140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

 

140 °C 

 

160 °C 

  

α-tocopherol 

 

0.72± 

0.07 

 

0.83± 

0.23 

 

 0.78±                   

0.04 

 

0.75± 

0.07 

 

0.99± 

0.11 

 

1.11± 

0.04 

 

1.04± 

0.05 

 

1.02± 

0.04 

 

2.81± 

0.08 

 

3.39± 

0.09 

 

1.66± 

0.10 

 

1.72± 

0.02 

 

2.91± 

0.14 

 

2.99± 

0.13 

 

4.15± 

0.23 

 

4.38± 

0.08 

  

α--tocotrionol 

 

0.92± 

0.06 

 

0.94± 

0.09 

 

0.92± 

0.03 

 

0.89± 

0.08 

 

0.85± 

0.08 

 

0.91± 

0.04 

 

0.98± 

0.04 

 

0.96± 

0.05 

 

1.29± 

0.05 

 

1.48± 

0.04 

 

0.86± 

0.05 

 

0.89± 

0.01 

 

0.75± 

0.03 

 

0.77± 

0.03 

 

1.15± 

0.06 

 

1.16± 

0.04 

 

β-tocopherol 

 

n.d. 

 

n.d. 

 

0.83± 

0.03 

 

0.76± 

0.08 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

3.58± 

0.18 

 

3.58± 

0.05 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

γ-tocopherol 

 

4.73±  

0.3 

 

4.73± 

0.48 

 

1.18± 

0.07 

 

1.10± 

0.11 

 

2.16±  

0.21 

 

2.39± 

0.04 

 

3.91±  

0.16 

 

3.72± 

0.18 

 

29.61±

0.77 

 

34.58±

1.13 

 

1.24± 

0.06 

 

1.34± 

0.02 

 

6.29±  

0.28 

 

6.43± 

0.31 

 

17.52±  

0.88 

 

18.2±  

0.36 

 

β-tocotrionol 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

1.38± 

0.03 

 

1.61± 

0.06 

 

     n.d. 

 

n.d. 

 

n.d. 

 

n.d. 

 

0.50± 

0.05 

 

0.49± 

0.01 

 

γ-tocotrionol 

 

1.5± 

0.09 

 

1.5± 

0.16 

 

1.49± 

0.06 

 

1.41± 

0.15 

 

1.33± 

0.15 

 

1.42± 

0.05 

 

1.69± 

0.08 

 

1.65± 

0.08 

 

2.38± 

0.04 

 

2.64± 

0.08 

 

1.42± 

0.1 

 

1.43± 

0.02 

 

1.22± 

0.05 

 

1.22± 

0.06 

 

2.00± 

0.16 

 

2.01± 

0.03 

 

δ-tocopherol 

 

n.d. 

 

   n.d. 

 

n.d. 

 

   n.d. 

 

n.d. 

 

   n.d. 

 

n.d. 

 

   n.d. 

 

n.d. 

 

   n.d. 

 

1.46± 

0.08 

 

1.42± 

0.02 

 

n.d. 

 

   n.d. 

 

0.7± 

0.03 

   

0.72± 

0.01 

 

Total 

 

7.88 

 

   8.01 

 

5.21 

 

   4.91 

 

 5.33 

 

  5.82 

 

7.62 

 

 7.35 

 

 37.47 

 

 43.69 

   

10.23 

 

  10.38 

 

 11.17 

 

 11.42 

 

 26.02 

 

 26.96 

n.d.-not determined                 

Appendix 2. Tocopherol composition of extrudates processed at two different contents of tested flours (20 and 50%) at two extrusion temperatures (140 and 160 °C) (n=3). 
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Appendix 3. Phenolic Composition of quinoa, lupine, polenta, amaranth and kañiwa (n=3) 

  

GAE equivalent (µg/g d.m.) 

 

Sample 

 

Normal Treatment Acid hydrolysis 

 

Polenta 

 

322.4±32.4 

 

552.1±28.6 

 

Kañiwa 

 

 

674.4±11.2 

 

                     

                      1661.8±33.3 

Lupine 

 

499.7±39.9 

 

1314.9±34.7 

 

Quinoa 

 

374.1±20.7 

 

821.4±39.9 

 

Amaranth 

 

249.7±20.6 

 

769.3±35.7 
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Appendix 4. Phenolic Composition of extrudates (µg/g  d.m.) (n=3) 

GAE equivalent (µg/g) d.m. 

Sample Normal Treatment Acid Hydrolysis 

  Lupine 20% 140 C 215.7± 14.4 689.8± 51.1 

Lupine 20% 160 °C 223.1± 32.8 834.8± 35.7 

Lupine 50% 140 °C 334.1± 24.1 1015.4± 24.1 

Lupine 50% 160 °C 341.1± 37.1 1021.9± 32.9 

Amaranth 20% 140°C 198.6± 24.5 686.1± 33.8 

Amaranth 20% 160°C 251.1± 22.6 680.7± 19.9 

Amaranth 50% 140°C 234.6± 29.2 642.9± 28.2 

Amaranth 50% 160°C 212.7± 5.3 676.9± 24.9 

Kañiwa 20% 140°C 201.2± 6.3 684.2± 16.4 

Kañiwa 20% 160°C 291.9± 16.7 803.3± 33.1 

Kañiwa 50% 140°C 425.4± 40.8 1230.4± 43.1 

Kañiwa 50% 160°C 368.9± 15.9 1035.1± 36.1 

Quinoa 20% 140°C 149.3± 16.8 549.6± 9.3 

Quinoa 20% 160°C 150.1± 3.8 562.5± 11.4 

Quinoa 50% 140°C 220.5± 6.8 668.5± 31.6 

Quinoa 50% 160°C 212.1± 18.2 680.5± 58.7 
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Appendix 5. Parameters of  the multiple linear regression submodels (two PLS components) computed from 

PLS regression models for response variables determined from values of untransformed variable values 

describing coefficient of determination and prediction (R
2
and Q

2
) in the extrudates of amaranth.  

 

Parameters Constant
a
 Content of 

tested flour (%)
a
 

Temperature 

(°C)
 a
 

R
2
Y (cum)

b 
R

2
Y adj 

(cum)
c 

Q
2
Y 

(cum)
d 

SEI 20.655 -0.089 -0.051 1.000 1.000 1.000 

Hardness 26.192 0.042 0.028 0.019 -1.945 0 

Torque 88.692 -0.320 -0.178 0.990 0.968 0.917 

Pressure 102.820  0.230 -0.393 0.970 0.907 0.914 

WCE 4.775 -0.055 0.028 0.961 0.883 0.800 

α-tocopherol 0.036 0.031 0.001 0.998 0.993 0.712 

α-tocotrienol 1.042 -0.002 -0.001 0.909 0.727 0.523 

β-tocopherol 1.588 -0.027 -0.002 0.998 0.994 0.712 

γ-tocopherol 0.970 0.005 0.001 0.736 0.208 0.484 

γ-tocotrienol 1.729 -0.001 -0.002 0.477 -0.568 0 

Total phenolic 

acid 

591.980 -0.781 0.714 0.660 -0.020 0.130 

Palmitic acid -101.540 3.9147 0.502 0.991 0.972 0.703 

Stearic acid -49.645 0.940 0.279 0.9721 0.916 0.656 

Oleic acid -160.370 5.133 0.971 0.986 0.957 0.692 

Linoleic acid -706.050 11.660 4.462 0.952 0.855 0.613 

Linolenic acid -29.562 0.182 0.227 0.993 0.980 0.974 

Arachidic acid -14.868 0.242 0.084 0.961 0.884 0.633 

a- Values obtained using untransformed variables 

b- Cumulative explained variances of calibration 

c- Adjusted cumulative explained variances of calibration 

d- Cumulative coefficient of prediction in the PLS model 
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Appendix 6. Parameters of  the multiple linear regression submodels (two PLS components) computed from 

PLS regression models for response variables determined from values of untransformed variable values 

describing coefficient of determination and prediction (R
2
and Q

2
) in the extrudates of quinoa.  

 

Parameters Constant
a 

Content of 

tested flour 

(%)
a 

Temperature 

(°C)
a 

R
2
Y

 

(cum)
b 

R
2
Y

 
adj 

(cum)
c 

Q
2
Y

 
(cum)

d 

SEI 22.566 -0.024 -0.081 0.660 -0.021 0.297 

Hardness 71.092 -0.038 -0.217 0.372 -0.885 0.000 

Torque 27.592 -0.348 0.263 0.772 0.317 0.283 

Pressure 101.700 0.010 -0.400 0.847 0.542 0.727 

WCE 7.475 0.055 -0.018 0.959 0.876 0.722 

α-tocopherol -0.967 0.063 0.005 1.000 1.000 0.714 

α-tocotrienol 0.660 -0.004 0.002 0.976 0.927 0.867 

β-tocopherol -2.387 0.119  3.09 e-10 1.000 1.000 1.000 

γ-tocopherol -1.836 0.136 0.009 1.000 1.000 0.714 

γ-tocotrienol 1.141 -0.005 0.002 0.928 0.784 0.646 

Total phenolic acid 459.020 -0.001 0.647 1.000 1.000 1.000 

Palmitic acid -38.353 1.827 0.302 1.000 1.000 0.977 

Stearic acid -0.225 0.035 0.052 0.885 0.655 0.607 

Oleic acid -133.560 5.256 0.983 1.000 1.000 0.998 

Linoleic acid -258.890 9.294 1.842 0.997 0.991 0.817 

Linolenic acid -15.532 0.732 0.170 0.992 0.975 0.746 

Arachidic acid   1.766 0.113 -0.001 0.981 0.942 0.685 

a- Values obtained using untransformed variables 

b- Cumulative explained variances of calibration 

c- Adjusted cumulative explained variances of calibration 

d- Cumulative coefficient of prediction in the PLS model 
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Appendix 7.  Parameters of  the multiple linear regression submodels (two PLS components) computed from 

PLS regression models for response variables determined from values of untransformed variable values 

describing coefficient of determination and prediction (R
2
and Q

2
) in the extrudates of kañiwa.  

 

Parameters Constant
a 

Content of 

tested  flour 

(%)
a
 

Temperature 

(°C)
a 

R
2
Y

 

(cum)

b 

R
2
Y

 
adj 

(cum)
c 

Q
2
Y

 
(cum)

d 

SEI 13.575 -0.619 0.006 0.995 0.984 0.740 

Hardness 34.775 -0.083 0.063 0.279 -1.164 0.000 

Torque 65.197 -0.267 0.092 0.992 0.976 0.867 

Pressure 80.541 0.029 -0.223 0.882 0.646 0.786 

WCE 10.236 0.000 -0.021 0.300 -1.101 0.000 

α-tocopherol -1.914 0.108 0.005 0.999 0.996 0.713 

α-tocotrienol 0.884 0.006 0.000 0.993 0.980 0.734 

γ-tocopherol -7.386 0.468 0.012 0.999 0.997 0.784 

γ-tocotrienol 1.559 0.011 -0.001 0.994 0.983 0.805 

Total 

phenolic acid 

770.310 12.965 -1.906 0.861 0.582 0.568 

Palmitic acid -155.860 7.208 0.511 0.996 0.998 0.711 

Stearic acid -18.541 0.800 0.068 0.996 0.989 0.711 

Oleic acid -258.380 13.304 0.801 0.996 0.987 0.711 

Linoleic acid -553.840 25.900 1.903 0.997 0.991 0.712 

Linolenic 

acid 

-69.748 2.749 0.241 0.994 0.982 0.709 

Arachidic 

acid 

-31.862 0.488 0.168 0.951 0.853 0.625 

a- Values obtained using untransformed variables 

b- Cumulative explained variances of calibration 

c- Adjusted cumulative explained variances of calibration 

d- Cumulative coefficient of prediction in the PLS model 
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Appendix 8. Parameters of  the multiple linear regression submodels (two PLS components) computed from 

PLS regression models for response variables determined from values of untransformed variable values 

describing coefficient of determination and prediction (R
2
and Q

2
) in the extrudates of lupine.  

. 

Parameters Constant
a
 Content of 

tested 

flour (%)
a
 

Temperature 

(°C)
 a
 

R
2
Y

 
(cum)

b 
R

2
Y

 
adj (cum)

c 
Q

2
Y

 
(cum)

d 

SEI 18.764 -0.280 0.025 0.998 0.993 0.711 

Hardness 425.480 7.495 -3.526 0.940 0.821 0.704 

Torque 40.403 -0.120 0.018 0.683 0.048 0.413 

Pressure 80.541 0.029 -0.223 0.983 0.949 0.766 

WCE 10.888 -0.009 -0.017 0.974 0.922 0.921 

α-tocopherol -3.363 0.078 0.017 0.990 0.970 0.704 

α-tocotrienol -0.168 0.015 0.005 0.968 0.904 0.659 

γ-tocopherol -32.151 0.912 0.124 0.992 0.976 0.704 

γ-tocotrienol -0.148 0.034 0.007 0.984 0.952 0.689 

Total 

phenolic acid 

23.184 8.547 3.788 0.937 0.812 0.578 

Palmitic acid -155.860 7.208 0.511 0.965 0.894 0.735 

Stearic acid 76.621 4.734 -1.055 0.979 0.957 0.692 

Oleic acid 415.880 18.980 -4.753 0.973 0.920 0.760 

Linoleic acid 1225.700 40.756 -12.367 0.962 0.885 0.726 

Linolenic 

acid 

109.500 5.509 -1.343 0.974 0.923 0.764 

Arachidic 

acid 

11.033 0.738 -0.153 0.981 0.942 0.782 

a- Values obtained using untransformed variables 

b- Cumulative explained variances of calibration 

c- Adjusted cumulative explained variances of calibration 

d- Cumulative coefficient of prediction in the PLS model 
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Appendix 9. Comparison of calculated values for the flour mixture (T.V) and the experimental values of oleic 

acid, linoleic acid and linolenic acid content in the extrudates of amaranth (A), quinoa (B), kañiwa (C) and 

lupine (D). 
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Appendix 10. Comparison of calculated values for the flour mixture (T.V) and the experimental values for the 

content of total tocopherols (E) and total phenolic acid content (F and G) 
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Appendix 11. Theoretical values of fatty acid composition of the extrudates. 

 

 Content (mg/100 g d.m.) 

Fatty acid Amaranth 

20% 

Amaranth 

50% 

Quinoa 

20% 

Quinoa 

50% 

Kaniwa 

20% 

Kaniwa 

50%  

Lupine 

20% 

Lupine 

50% 

Palmitic 

acid (C 

16:0) 

267.1 517.2 187.9 319.2 296.1 589.8 194.2 334.9 

Stearic 

acid  (C 

18:0) 

53.3 108.8 22.6 31.8 15.4 14.1 83.1 183.3 

Oleic acid 

(C 18:1) 

404.0 724.6 498.5 960.8 575.9 1154.3 413.9 749.4 

Linoleic 

acid (C 

18:2) 

892.7 1475.9 915.5 1532.8 1173.5 2177.9 951.9 1623.8 

Linolenic 

acid (C 

18:3) 

22.9 34 65.5 140.4 96.6 218.2 90.3 202.5 

Arachidic 

acid (C 

20:0) 

12.7 25.6 10.5 20.2 14.9 31.3 14.4 30 

Behenic 

acid (C 

22:0) 

3.3 8.4 15.7 39.3 10.1 25.3 11.2 27.9 

Lignoceric 

acid (C 

24:0) 

11.6 29.1 3.5 8.8 0 0 0 0 

Total 

Fatty acids 

1784 3215 1764 3165 2222 4310 1766 3171 
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Appendix 12. Theoretical values of extrudates for the content of total tocopherols and total phenolic compounds. 

 

Sample 

Content (µg/g d.m.) GAE equivalent (µg/g d.m.) 

Total tocopherol content Normal treatment  Acid hydrolysis 

Amaranth 20% 16.95 307.9 595.5 

Amaranth 50% 24.74 286.1 660.7 

Quinoa 20% 19.38 332.8 605.9 

Quinoa 50% 30.81 348.3 686.7 

Kañiwa 20% 26.62 392.8 774 

Kañiwa 50% 26.96 498.4 1106.9 

Lupine 20% 34.04 357.9 704.6 

Lupine 50% 67.46 411.1 933.5 

 

 


