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Abstract 

In recent years the potential for evolutionary change to drive ecological dynamics, and vice versa, 

has been widely recognized. However, the convincing examples of eco-evolutionary dynamics 

mainly stem from highly artificial experimental systems, with conspicuously few examples 

contributed by field systems. While rarely considered in the eco-evolutionary literature, the gene-

for-gene hypothesis inherently recognizes the tight link between evolutionary and ecological 

dynamics. The boom-and-bust dynamics of some agricultural pathogens are an extreme 

demonstration of this. In this perspective, we place plant-pathogen systems in a spatial eco-

evolutionary framework, which recognizes that ecology and evolution are tightly linked, take place 

at the same time scale and are strongly influenced by spatial structure. Specifically, we i) exemplify 

how the ecological process of dispersal modifies rapid local coevolutionary dynamics and thereby 

shapes spatial variation in resistance, infectivity, and local adaptation; and ii) illustrate how the 

outcome of coevolution (spatial distribution in resistance, infectivity and local adaptation) drives 

ecological metapopulation processes. Overall, we conclude that both agricultural and wild 

pathosystems provide a unique illustration of the high relevance of spatial eco-evolutionary 

feedback in understanding species interactions. 
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Eco-evolutionary dynamics 

The potential for eco-evolutionary feedback loops in determining the dynamics of populations has 

been increasingly recognized in recent years (Pelletier et al. 2009; Post and Palkovacs 2009; 

Schoener 2011; Ellner 2013; Reznick 2013). This feedback is comprised of two pathways: the 

ecology-to-evolution pathway, where ecological change generates genetic and phenotypic 

responses (natural selection); and the evolution-to-ecology pathway, where genetic and phenotypic 

change affects ecological quantities, often measured as the population growth rate. However, while 

the potential of species to adapt to ecological conditions has long been realized, the effect of rapid 

evolutionary change on ecological dynamics is still poorly understood. In part, this is due to the fact 

that traditionally evolution has been viewed as a slow process operating at a timescale that is very 

different from ecological time (Slobodkin 1961; Hutchinson 1965). From such a perspective, 

ecological dynamics would play out as if evolution was not occurring, as evolutionary change 

would be non-significant on the ecological time-scale. Likewise, short-term fluctuations in 

ecological variables would average out over evolutionary time-scales, and only the long-term 

average would affect evolution (Hairston et al. 2005). However, it is becoming increasingly clear 

that evolutionary change can be extremely rapid, and there are compelling examples of this in a 

diversity of traits ranging from life-histories to behaviour and physiology (as reviewed in Thompson 

2013). Moreover, a rapidly increasing number of studies suggest that eco-evolutionary dynamics 

and feedbacks have the potential to play a prominent role in the dynamical behaviour of 

populations and species interactions (Schoener 2011; Farkas et al. 2013).  

To date, the majority of eco-evolutionary studies have been conducted in highly artificial 

micro- or mesocosms (Pimentel 1968; Yoshida et al. 2003; Schoener 2011), or have applied 

treatments that may enforce much stronger selection pressures than may be encountered in 

natural systems (e.g. Agrawal et al. 2012). As another shortcoming, they have usually focused on 

a single facet of the eco-evolutionary feedback, addressing either the impact of ecology on rapid 

evolution (as reviewed in Thompson 2013) or evolution on ecology (Whitham et al. 2006; Bailey et 

al. 2009; Barbour et al. 2009; Harmon et al. 2009; Bassar et al. 2010; Busby et al. 2013). Many of 

the latter demonstrations are also ‘retrospective’ (Losos 1994), where researchers investigate the 
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outcome of historical events on present day ecological processes. As such, these studies do not 

inform us on the temporal scale of ecological and evolutionary changes and their potential 

feedback. Hence, two recent reviews conclude that while mesocosm experiments and associated 

theory tell us that eco-evolutionary interactions may have potential importance, it remains 

unresolved whether such processes are important in nature or whether they are an artefact of 

highly simplified laboratory ecosystems (Schoener 2011; Reznick 2013). 

While eco-evolutionary dynamics and feedback loops only recently emerged as a hotly 

debated and active field of research (Fussmann et al. 2007; Pelletier et al. 2009; Schoener 2011; 

Reznick 2013), plant pathologists have long realized that ecology and evolution are tightly 

interlinked, play out at the same time scale, and are ecologically relevant (Flor 1956; Antonovics 

1992). Such early recognition of eco-evolutionary dynamics in host-pathogen interactions may 

have been fuelled by the early discovery of gene-for-gene interactions (Flor 1942), where 

evolutionary change even at a single locus (in either resistance or avirulence loci) can enable or 

prevent pathogen infection (Thompson and Burdon 1992). Nonetheless, insights gained from 

agricultural and wild plant pathosystems are not alluded to in recent reviews (e.g. Fussmann et al. 

2007; Schoener 2011) or in special features on eco-evolutionary dynamics (Proceedings of the 

Royal Society B volume 366, 2009; American Naturalist volume 181, 2013). Here, we argue that 

the combined experimental and observational evidence from long-term studies in agricultural and 

wild pathosystems does not merely demonstrate the potential for eco-evolutionary feedback, but 

also settles the importance of eco-evolutionary feedbacks for our understanding of species 

interactions. 

 

A coevolutionary and spatial framework 

Studies on wild plant pathosystems have pioneered and excelled at exploring two research fields 

at the heart of ecology and evolution: coevolutionary interactions and ecological spatial dynamics. 

Both of these fields have thus far been largely ignored in the heated debate surrounding the 

relevance of eco-evolutionary dynamics. Therefore, it is here that plant pathology may provide 

novel insights into the mechanisms underlying eco-evolutionary feedback. 
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Few co-evolutionary studies have been published under the header of eco-evolutionary 

dynamics (Jones et al. 2009; Toju 2011). However, an overwhelming number of studies illustrate 

that coevolutionary interactions among host and pathogens play a major role in explaining 

temporal and spatial variation in resistance, pathogenicity and local adaptation (Laine et al. 2011; 

Tack et al. 2012). While we note that coevolution per se does not imply a link between evolutionary 

and ecological timescales (as defined by e.g. Janzen (1980), coevolution refers to how two species 

evolve in response to each other, without regard to the time scale of evolutionary dynamics or the 

impact of evolutionary changes on ecological aspects like population dynamics), several recent 

studies have shown that plant-pathogen coevolution and local adaptation can be rapid (Capelle 

and Neema 2005; Laine 2005; Tack et al. 2012; Thrall et al. 2012) and may therefore impact on 

ecological processes.  

While nothing (or little) makes sense in ecology and evolution without a spatial perspective 

(Hanski and Gaggiotti 2004), spatial complexity is rarely included in experimental studies. As a 

result, eco-evolutionary studies have focused on dynamics in single micro- and mesocosms 

(Pimentel 1968; Bohannan and Lenski 2000; Yoshida et al. 2003; Fussmann et al. 2007; Becks et 

al. 2010), small field plots (Agrawal et al. 2012) or single natural populations (Hairston et al. 2005; 

Grant and Grant 2006; Ezard et al. 2009). Hence, we lack general insights on how spatial 

dynamics affect eco-evolutionary feedbacks (but see Hanski 2011). In contrast, theoretical and 

empirical studies focusing on wild pathosystems have emphasized the ephemeral nature of local 

pathogen populations (Burdon 1987, 1993; Antonovics et al. 1994; Thrall and Burdon 1999; 

Burdon and Thrall 2013). To explain what happens in local populations, pathologists have 

expanded their scope and explored processes at the metapopulation scale like gene flow and 

extinction-colonization dynamics (Jarosz and Burdon 1991; Carlsson and Elmqvist 1992; 

Antonovics et al. 1994; Burdon et al. 1995; Ericson et al. 1999; Thrall et al. 2001; Petrželová and 

Lebeda 2004; Laine and Hanski 2006). In such spatially structured environments, we may expect 

local adaptation to emerge as a result of plant-pathogen coevolution (Kaltz and Shykoff 1998). 

Indicating a potential feedback loop, i) spatial patterns of resistance, infectivity and local adaptation 

may be affected by the spatial scale and magnitude of pathogen and host dispersal, and ii) spatial 
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patterns of resistance, infectivity and local adaptation will affect the magnitude of gene flow and 

local demography (Gandon et al. 1996; Thrall and Burdon 1997, 1999; Gandon 2002; Gandon and 

Michalakis 2002; Lenormand 2002; Thrall and Burdon 2002; Thrall et al. 2002; Tack et al. 2013b). 

In an adapted landscape, spores colonizing new host populations will frequently be maladapted to 

the local host genotypes and environmental conditions in the new habitat patch, with major 

consequences for the settlement probability and ensuing local demography (Lenormand 2002). 

Hence, coevolutionary dynamics and ecological extinction-colonization dynamics may commonly 

influence each other and thereby lead to a coupling of ecological and evolutionary dynamics (cf. 

Hanski et al. 2011). 

In this perspective, we illustrate how plant-pathogen interactions provide a unique 

opportunity for exploring eco-evolutionary feedback within a spatial framework (Fig. 1). We argue 

that accounting for the spatial context is critical for understanding how the eco-evolutionary 

feedback loops play out because of the natural patchy distribution of plants and pathogens. More 

specifically, we i) review how dispersal within the metapopulation affects local coevolutionary 

interactions, which ultimately shape the spatial and temporal distribution of plant resistance, 

pathogen infectivity and aggressiveness and local adaptation (arrow A in Fig. 1), and ii) quantify 

how spatial patterns in resistance, infectivity, aggressiveness and local adaptation may affect 

pathogen extinction-colonization dynamics and spatial spread (arrow B in Fig. 1).  

 

From ecology to evolution: spatial dynamics fuel coevolutionary dynamics 

There is large variation in the rate and scale of dispersal among crop pathogens, where some 

airborne rusts may exhibit intercontinental dispersal (Brown and Hovmøller 2002), whereas genetic 

neighbourhoods of other species, like soil-borne pathogens, may only encompass a section of a 

single field (Agrios 2005). Given such large differences in dispersal ability among species, we may 

use cross-species analyses to explore the consequences of gene flow for pathogen evolutionary 

potential. In a quantitative synthesis of 34 pathosystems, McDonald and Linde (2002) constructed 

a risk model including several key evolutionary forces (mutation rate, effective population size, 

gene flow and reproduction/mating system) to estimate the time to break down of newly deployed 
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major resistance genes in crop plants. These analyses suggest that mutation rate and gene flow 

are the dominant forces driving pathogen evolution. The effect of gene flow may result from a 

larger effective population size and associated higher genetic diversity (McDonald and Linde 2002). 

Moreover, new mutations in pathogens with high gene flow, like rust and powdery mildew fungi, 

may rapidly spread across the landscape, whereas mutations in less dispersive pathogens, like the 

asexual phase of the wheat pathogens Mycosphaerella graminicola and Phaeosphaeria nodorum, 

may not spread beyond several tens of metres within the growing season (McDonald and Linde 

2002). Additionally, new mutations in pathogens with limited dispersal have a higher likelihood to 

disappear due to environmental stochasticity.  

In natural systems, theoretical host-pathogen models have demonstrated how critical gene 

flow among populations is for host-pathogen dynamics, local persistence and the maintenance of 

variation in host resistance and pathogenicity (Thrall and Antonovics 1995; Thrall and Burdon 1997, 

1999, 2002; Brown and Tellier 2011; Tellier and Brown 2011). These predictions are backed up by 

the striking ephemerality of local pathogen populations, where the pathogen can only persist at the 

regional scale (Burdon and Thrall 2013). As many pathogens exhibit metapopulation dynamics, the 

encounter intensity among host and pathogen is spatially variable, ranging from strong pathogen-

mediated selection in some plant populations (‘hotspots’) to the absence of pathogens and 

pathogen-mediated selection pressures in other populations (‘coldspots’), thereby creating 

geographic mosaic patterns of coevolution (Thompson 2005; Smith et al. 2011). The distribution of 

hotspots and coldspots within the metapopulation may not be random, but may depend on the 

spatial structure of the host populations: in general, pathogens may be most likely to colonize and 

persist in large populations (Carlsson and Elmqvist 1992; Burdon et al. 1995; Thrall and 

Antonovics 1995; Ericson et al. 1999; Carlsson-Granér and Thrall 2002; Laine and Hanski 2006; 

Smith et al. 2011). Asynchrony among populations in coevolutionary interactions, as based on 

limited dispersal, may further cause differentiation in the level of resistance and pathogenicity in 

local populations at a particular point in time (Kaltz and Shykoff 1998). Most importantly, the spatial 

variation in pathogen-mediated selection may result in the evolution of resistance genes in some 

populations, whereas costly resistance genes are lost in other populations due to trade-offs 
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between plant resistance and other plant fitness components (Bergelson and Purrington 1996; 

Biere and Antonovics 1996; Tian et al. 2003; Giles et al. 2006). As a result, spatial variation in plant 

resistance may occur, which forms a blueprint for pathogen adaptation and plant-pathogen 

coevolution.  

Dispersal plays a major role in driving plant-pathogen coevolution and patterns of local 

adaptation. Theoretical models have shown that the balance between pathogen and host dispersal 

influences whether the plant or pathogen may gain the upper hand in the coevolutionary race 

(Gandon et al. 1996; Gandon 2002; Gandon and Michalakis 2002). In many of the well-studied 

pathosystems pathogens are wind-dispersed and may gain an evolutionary advantage as 

compared to the plant. Indeed, the majority of studies find that pathogens are ahead in the 

coevolutionary race, likely due to a larger dispersal ability and reduced generation time (Kaltz and 

Shykoff 1998; Tack et al. 2012). However, counter-examples exist: the pollinator-dispersed anther-

smut fungus Microbotryum violaceum is locally maladapted to its host plant Silene latifolia (Kaltz et 

al. 1999). Dispersal can also swamp local adaptation: Laine (2005) demonstrated the presence of 

local adaptation of the powdery mildew Podosphaera plantaginis, which frequently disperses up to 

1 kilometre, to its host plant Plantago lanceolata at the scale of tens of kilometres, whereas no 

consistent pattern of local adaptation was detected at spatial scales ranging from a few hundred 

metres to several kilometres. A follow-up study showed that the spatial configuration of plant 

populations affected host-pathogen coevolution and patterns of local adaptation (Tack et al. 2013b). 

These studies illustrate that the spatial dynamics of plant and pathogen will affect the strength and 

sign of local adaptation. Overall, both agricultural and wild plant pathosystems provide evidence for 

a strong link between dispersal, local (co)evolutionary dynamics and patterns of local adaptation.  

 

From evolution to ecology: Coevolution shapes spatial dynamics 

The previous section exemplified how gene flow affects the level of host resistance, infectivity and 

local adaptation. Such variation in host resistance can be dramatic, with some plants being totally 

resistant whereas others are seemingly entirely susceptible (Burdon 1987). Given such spatial 

heterogeneity in host resistance and pathogen infectivity, strong genetic interaction between host 
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and pathogen, and the resulting patterns of local adaptation, we may then expect that pathogen 

establishment is not randomly distributed in space. At the microscale, variation in resistance of 

individual plants within a single population may explain spore establishment; at the metapopulation 

scale, variation among populations in resistance may affect colonization rates and the magnitude 

of gene flow; and at the regional or continental scale patterns of resistance may affect invasion by 

new pathogen species or specific pathogen genotypes.  

The agricultural literature provides a wealth of examples of how pathogen evolution, 

epidemiology and spatial spread are linked. In fact, the whole concept of resistance breeding is 

based on the underlying assumption of a direct evolution-to-ecology pathway, so that resistance 

will have a direct impact on pathogen epidemiology (Deadman 2006). Boom-and-bust cycles in 

pathogens arguably provide the most convincing and large body of evidence for natural selection in 

action, rapid evolution and its impact on spatial population dynamics. During the ‘boom’ phase, a 

resistant cultivar with a single major resistance gene is introduced into an agricultural system to 

reduce disease levels. When disease is significantly reduced and farmers are convinced of the 

agronomic value of the variety, the cultivar may soon be planted across a large area. However, the 

‘boom’ phase is frequently followed by a ‘bust’ phase when an evolutionary change in the pathogen, 

like the loss of the elicitor recognized by the resistance gene, breaks down the resistance 

(McDonald and Linde 2002; Deadman 2006). Consequently, the virulent pathotypes rapidly spread 

and infect all fields with the ‘resistant’ cultivar. Half a decade ago, the development of resistant 

wheat varieties fuelled the Green Revolution, and scientists, breeders and farmers alike believed 

they had beaten the previously devastating stem rust Puccinia graminis for good. Hence, 

researchers and breeders were caught off-guard when the new strain Ug99, which can defeat the 

resistance of most of the world’s wheat varieties, appeared in Uganda in 1999 (Pretorius et al. 

2000; Stokstad 2007). In 2005, one of the Green Revolution pioneers Norman Borlaug sounded 

the alarm and urged for action (CIMMYT 2005), which resulted in a global research initiative to 

address the serious threat for world food security. Ug99 has since spread into South Africa, Yemen 

and Iran and threatens wheat crops throughout the Middle East and West Asia (Singh et al. 2011; 

http://wheatrust.cornell.edu). In 2000, canola (Brassica napa) cultivars with major resistance genes 
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derived from Brassica rapa ssp. sylvestris against blackleg disease (Leptosphaeria maculans) 

were commercially released and grown extensively in some areas of Australia. Within three years 

from commercial release, resistance was rendered ineffective due to a large increase in the 

frequency of virulence alleles in the pathogen populations, which resulted in up to 90% yield losses 

and 5-10 million AUD damage in the Lower Eyre Peninsula, South Australia (Sprague et al. 2006; 

Van de Wouw et al. 2010a; Van de Wouw et al. 2010b). These boom-and-bust cycles illustrate the 

ubiquitous nature of rapid evolution in crop pathogens, and the profound consequences that such 

evolutionary change can have on disease epidemiology in agriculture (McDonald and Linde 2002).  

Wild plant pathogens are patchily distributed across the landscape, with variation in disease 

incidence between plants, between populations, and across larger regions and continents (Burdon 

1987, 1993). Such spatial distributions may be attributed to spatial variation in plant resistance, 

which is present at each of these spatial scales (Laine et al. 2011). At a small spatial scale, Tack et 

al (2013a) recently demonstrated that plant resistance and the spatial structure of plant genotypes 

have a major impact on disease spread in the powdery mildew Podosphaera plantaginis on its 

plantain host. At a larger spatial scale, variation across the plant metapopulation in the level of 

plant resistance may strongly affect the likelihood of successful colonization of non-infected plant 

populations (Thrall and Antonovics 1995; Carlsson-Granér 1997; Laine 2004). Using an elegant 

combination of computer simulations and empirical studies, Thrall & Antonovics (1995) showed 

that high population turnover, low resistance costs and rapid loss of the pathogen with increasing 

host resistance results in higher plant resistance in healthy populations. Likewise, Laine (2004) 

showed that healthy plant populations of Plantago lanceolata had a two-fold higher resistance than 

pathogen-infected plant populations against four powdery mildew strains, suggesting that high 

resistance levels may prevent colonization by the pathogen. At the (inter)continental scale, long-

distance pathogen dispersal and hosts jumps may result in rapid disease spread on the non-

coevolved plant populations or plant species (Desprez-Loustau et al. 2007). A classic example is 

the accidental introduction in 1904 of the pathogen Cryphonectria parasitica from Japan, which 

rapidly spread throughout the American chestnut tree (Castanea dentata) populations resulting in 
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the destruction of the dominant canopy tree throughout the Appalachian forests (Anagnostakis 

1987). 

While relatively few studies have compared healthy and diseased populations, a larger 

number of studies have focused on variation in plant resistance and pathogen infectivity among 

diseased populations. Here, reciprocal replant-transplant experiments and reciprocal inoculation 

studies have explored spatial variation in resistance and pathogenicity, frequently with the ultimate 

aim to demonstrate local adaptation of the plant or pathogen. Local adaptation turns out to be 

relatively common (roughly half of the studies) and is detected across spatial scales ranging from 

single plant individuals to metapopulations and continents (Kaltz and Shykoff 1998; Tack et al. 

2012). Moreover, variation in plant resistance and infectivity is also common in study systems 

where no local adaptation is detected (Laine et al. 2011; Tack et al. 2012). Such spatial patterns of 

resistance, infectivity and local adaptation may directly impact on the level of gene flow across the 

landscape. First, when the average level of resistance varies across the landscape, we may expect 

non-random establishment success. For example, Springer (2007) detected a latitudinal cline in 

resistance structure of the California dwarf flax (Hesperolinon californicum), which mirrored almost 

identically a cline in infection prevalence detected in field surveys across the same biogeographic 

range. Such clines may create not only highly asymmetrical patterns of dispersal (from low 

resistance populations to high resistance populations), but variation in resistance would also affect 

parasite establishment. Notably, asymmetry in dispersal would itself have important consequences 

for further host-parasite coevolution (Vogwill et al. 2010; Gibert et al. 2013). While the example by 

Springer involved a resistance cline, non-clinal spatial variation in plant resistance will also create 

predictable variation in spore establishment and colonization. Second, patterns of local adaptation, 

represented by a match between resistance and pathogenicity, have the potential to change gene 

flow across the landscape. A recent synthesis by Laine and colleagues (2011) may allow for a 

tentative quantification of how local adaptation affects spore establishment or colonization success 

after spore dispersal. This cross-study comparison showed that pathogens are, on average, able to 

infect 68% of the local plant genotypes (i.e. present within the same population). However, the 

number of successful infections dramatically decreases with distance, where pathogens infect 61% 
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of the plant genotypes located at distances ranging from a few hundred metres to several 

kilometres, and only 53% of plant genotypes collected from several kilometres up to several 

hundreds of kilometres. As a result, we may conclude that patterns of adaptation alone can explain 

7 to 15% of the ecological variation in colonization success between plants located at a range of 

distances from the focal pathogen individual. Such patterns of local adaptation would effectively 

reduce the success of both intermediate and long-distance dispersal. Moreover, the decreased 

settlement success with increasing dispersal distance will also modify the shape of the effective 

dispersal kernel. 

Pathogens may also adapt to plants growing in a particular ecotype. For example, the wild 

flax Melampsora lini shows strong local adaptation to plant genotypes collected from the same 

ecotype (Carlsson-Granér et al. 1999; Laine et al., in preparation). Reciprocal inoculation 

experiments demonstrate that ecotypic adaptation is very strong even across small spatial scales 

(several hundred metres); moreover, small-scale ecotypic adaptation is much stronger than 

adaptation among spatially widely spread populations (tens of kilometres) of the same ecotype 

(Laine et al., in preparation). In such cases, pathogen colonization and the fraction of spores that 

establish after immigration will be lower for plant populations that are surrounded by plant 

populations from a distinct ecotype. While the majority of local adaptation studies have focused on 

the metapopulation scale, similarly strong patterns of local adaptation within populations may 

explain the spatial distribution of pathogens within populations. A study by Capelle & Neema (2005) 

indicates strong adaptation of Colletotrichum lindemuthianum to individual bean plants Phaseolus 

vulgaris separated by only a few metres. At a slightly larger spatial scale, Roslin et al (2007) 

detected local adaptation of oak mildew to individual oak trees distributed across a 5 km2 island. 

The latter study suggests that gene flow and colonization within the oak stand is reduced by an 

average of 7% due to patterns of pathogen local adaptation to single tree individuals. 

 While we here discussed the impact of evolution on patterns of spatial spread, we 

recognize that extinction, which underlies metapopulation dynamics, may likewise be strongly 

affected by evolution. Indeed, pathogen extinction may be affected by inbreeding or the lack of 

evolutionary potential (themselves strongly affected by gene flow). A combination of modelling and 
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empirical data on multi-year changes in the numbers of healthy and anther-smut infected white 

campion (Silene latifolia) individuals in experimental field plots suggested that the disease would 

eventually be purged from resistant plant populations while host-pathogen coexistence was likely 

in susceptible plant populations (Thrall and Jarosz 1994). Susi and Laine (2013) found that newly 

established populations of Podosphaera plantaginis were more likely to go extinct than older 

pathogen populations, suggesting that adaptation plays a role in pathogen extinction. Finally, one 

common mechanism may involve the smaller pathogen population size in more resistant plant 

populations, which would significantly reduce the likelihood of pathogen survival during the highly 

stochastic overwintering season.  

 

Closing the loop: eco-evolutionary feedback 

Hairston and colleagues (2005) defined rapid evolution as a genetic change occurring rapidly 

enough to have a measurable impact on simultaneous ecological change. In such a scenario, a 

feedback loop between ecology and evolution may drive spatial dynamics. In agriculture, a human-

mediated eco-evolutionary feedback loop, described above as the boom-and-bust cycle, has been 

ongoing for many crop-pathogen systems (McDonald and Linde 2002). Since the discovery of 

Mendelian inheritance of major resistance genes by Biffen over a century ago (1905), these cycles 

may have increased in spatial scale and amplitude due to increased plant breeding techniques and 

genetic modifications speeding up plant adaptation to the contemporary pathogen population; at 

the same time, increased gene flow and monocultures may increase the rate of pathogen evolution 

and the breakdown of plant resistance. Notably, major investments may be aimed at breaking or 

slowing down the eco-evolutionary feedback loop in agriculture. A classic example is the battle 

against wheat stem rust in the northern USA. With one of the aims to decrease the evolutionary 

potential of the pathogen, a massive public campaign led to the eradication of over 500 million 

barberry bushes (which are the site of sexual reproduction for the rust pathogen). As a result, the 

evolutionary potential of the wheat stem rust has decreased (as reflected in the lower pathogen 

diversity and increased temporal stability of the dominant pathogen races) and the eco-

evolutionary feedback loop has significantly slowed down (Roelfs 1982; Peterson et al. 2005). 
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Other attempts to slow down pathogen evolution, and therefore the need to develop cultivars with 

new major resistance genes, consist of the optimal deployment of multilines and cultivar mixtures 

(Wolfe 1985; Mundt 2002) and crop rotation. While large-scale boom-and-bust cycles may be 

contingent on the widespread deployment of major resistance genes in modern agriculture 

characterized by monoculture and genetic uniformity (McDonald and Linde 2002), there is 

emerging evidence of ongoing coevolution between resistance and avirulence genes since the 

dawn of agriculture. For example, new resistance genes effective against powdery mildew have 

been rapidly generated after wheat domestication (Yahiaoui et al. 2006). These new resistance 

genes may explain the proliferation since domestication of large numbers of avirulence genes in 

parasite genomes like the powdery mildew Blumeria graminis, where subsequent mutation of these 

genes would allow new isolates to escape recognition by these new resistance genes (Sacristán et 

al. 2009).  

 For wild plant-pathogen systems, we reviewed a large number of studies that demonstrate 

the ecology-to-evolution and evolution-to-ecology pathways. The ubiquitous nature of local 

adaptation and ecological extinction-colonization dynamics in plant pathogen interactions, and the 

reciprocity between local adaptation and ecological extinction-colonization dynamics, provide a 

strong argument that eco-evolutionary feedback loops will be a common and relevant force in 

plant-pathogen interactions. Notably, such eco-evolutionary dynamics do not generally have to 

result in directional evolutionary changes; however, interactions between spatial ecology and 

coevolution within metapopulations may play a crucial role in maintaining genetic and phenotypic 

variation due to fluctuating selection in space and time (cf. Hanski 2012). Given the presence of 

several long-term and detailed surveys on pathogen population dynamics in wild plant populations, 

and the rapid advance of molecular techniques to analyse genetic changes (e.g. Thrall et al. 2012), 

a promising approach to further investigate eco-evolutionary feedback loops may be to explore the 

interface between eco-evolutionary models and epidemiological data (cf. Luo and Koelle 2013). 

Fascinatingly, plant pathosystems have a long history of such data-driven eco-evolutionary 

modelling. In the early nineties, an eco-evolutionary model incorporating variation in host 

resistance of the white campion Silene latifolia could explain the empirical data on local population 
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trajectories (coexistence, extinction) in experimental plots of the plant and its anther-smut 

pathogen (Thrall and Jarosz 1994). A follow-up model instigated by the empirical observation of 

frequent local population extinctions and colonizations explored how among-patch movement 

could explain variation in resistance and infectivity at the metapopulation scale (Thrall and 

Antonovics 1995). Similar simulations at an even larger spatial scale in a related pathosystem (the 

anther-smut Microbotryum violaceum on the host plant Lychnis alpina) revealed that eco-

evolutionary models well fitted the empirical pattern of higher incidence but lower prevalence of the 

pathogen in relatively continuous plant metapopulations as compared to more fragmented 

landscapes (Carlsson-Granér and Thrall 2002). In contrast, ecological models assuming that the 

plant is uniformly susceptible failed to explain the empirical pattern (Carlsson-Granér and Thrall 

2002). While the anther-smut fungus may lack genetic diversity in some regions, the widespread 

variation in infectivity and aggressiveness in the majority of plant pathogens (Tack et al. 2012) will 

necessitate the incorporation of coevolutionary dynamics within future spatially explicit eco-

evolutionary models. 

Overall, our perspective illustrates that plant-pathogen systems provide unique insights into 

the role of coevolution and spatial dynamics in driving ecologically relevant eco-evolutionary 

feedback loops. Given the detailed and long-term studies available, pathologists are in an excellent 

position to further advance the study of eco-evolutionary feedbacks in wild systems. From an 

applied perspective, an increased understanding of eco-evolutionary dynamics may, as envisioned 

by Pimentel 45 years ago (1968; see also Luo & Koelle, 2013), be crucial for improvement of 

integrated control strategies.  

 

Acknowledgments 

This work was supported by funding from the Academy of Finland (Grant Nos 250444, 136393, 

133499) and European Research Council (PATHEVOL; 281517) to ALL and a grant from the 

Academy of Finland to AT (Grant No 265761). 

 

References 



16 
 

Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L., & Salminen, J.-P. (2012). Insect 

herbivores drive real-time ecological and evolutionary change in plant populations. Science, 

338, 113-116. 

Agrios, G. N. (2005). Plant pathology (5th ed.). New York, USA: Academic press. 

Anagnostakis, S. L. (1987). Chestnut blight: the classical problem of an introduced pathogen. 

Mycologia, 79, 23-37. 

Antonovics, J. (1992). Toward community genetics. In R. S. Fritz, & E. L. Simms (Eds.), Plant 

resistance to herbivores and pathogens: ecology, evolution and genetics. (pp. 426-449). 

Chicago, USA: University of Chicago Press. 

Antonovics, J., Thrall, P. H., Jarosz, A. M., & Stratton, D. (1994). Ecological genetics of 

metapopulations: the Silene-Ustilago plant-pathogen system. In L. A. Real (Ed.), Ecological 

genetics (pp. 146-170). Princeton, New Jersey, USA: Princeton University Press  

Bailey, J. K., Schweitzer, J. A., Úbeda, F., Koricheva, J., LeRoy, C. J., Madritch, M. D., et al. 

(2009). From genes to ecosystems: a synthesis of the effects of plant genetic factors 

across levels of organization. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 364, 1607-1616. 

Barbour, R. C., O'Reilly-Wapstra, J. M., De Little, D. W., Jordan, G. J., Steane, D. A., Humphreys, 

J. R., et al. (2009). A geographic mosaic of genetic variation within a foundation tree 

species and its community-level consequences. Ecology, 90, 1762-1772. 

Bassar, R. D., Marshall, M. C., López-Sepulcre, A., Zandonà, E., Auer, S. K., Travis, J., et al. 

(2010). Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings 

of the National Academy of Sciences of the United States of America, 107, 3616-3621. 

Becks, L., Ellner, S. P., Jones, L. E., & Hairston Jr, N. G. (2010). Reduction of adaptive genetic 

diversity radically alters eco-evolutionary community dynamics. Ecology Letters, 13, 989-

997. 

Bergelson, J., & Purrington, C. B. (1996). Surveying patterns in the cost of resistance in plants. 

The American Naturalist, 148, 536-558. 



17 
 

Biere, A., & Antonovics, J. (1996). Sex-specific costs of resistance to the fungal pathogen Ustilago 

violacea (Microbotryum violaceum) in Silene alba. Evolution, 50, 1098-1110. 

Biffen, R. H. (1905). Mendel's laws of inheritance and wheat breeding. The Journal of Agricultural 

Science, 1, 4-48. 

Bohannan, B. J. M., & Lenski, R. E. (2000). Linking genetic change to community evolution: 

insights from studies of bacteria and bacteriophage. Ecology Letters, 3, 362-377. 

Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and 

continental scales and its impact on plant disease. Science, 297, 537-541. 

Brown, J. K. M., & Tellier, A. (2011). Plant-parasite coevolution: bridging the gap between genetics 

and ecology. Annual Review of Phytopathology, 49, 345-367. 

Burdon, J. J. (1987). Diseases and plant population biology. Cambridge, UK: Cambridge University 

Press. 

Burdon, J. J. (1993). The structure of pathogen populations in natural plant communities. Annual 

Review of Phytopathology, 31, 305-323. 

Burdon, J. J., Ericson, L., & Müller, W. J. (1995). Temporal and spatial changes in a 

metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula 

ulmaria. Journal of Ecology, 83, 979-989. 

Burdon, J. J., & Thrall, P. H. (2013). What have we learned from studies of wild plant-pathogen 

associations?—the dynamic interplay of time, space and life-history. European Journal of 

Plant Pathology, 10.1007/s10658-10013-10265-10659. 

Busby, P. E., Newcombe, G., Dirzo, R., & Whitham, T. G. (2013). Genetic basis of pathogen 

community structure for foundation tree species in a common garden and in the wild. 

Journal of Ecology, 101, 867-877. 

Capelle, J., & Neema, C. (2005). Local adaptation and population structure at a micro-geographical 

scale of a fungal parasite on its host plant. Journal of Evolutionary Biology, 18, 1445-1454. 

Carlsson-Granér, U. (1997). Anther-smut disease in Silene dioica: variation in susceptibility among 

genotypes and populations, and patterns of disease within populations. Evolution, 51, 

1416-1426. 



18 
 

Carlsson-Granér, U., Burdon, J. J., & Thrall, P. H. (1999). Host resistance and pathogen virulence 

across a plant hybrid zone. Oecologia, 121, 339-347. 

Carlsson-Granér, U., & Thrall, P. H. (2002). The spatial distribution of plant populations, disease 

dynamics and evolution of resistance. Oikos, 97, 97-110. 

Carlsson, U., & Elmqvist, T. (1992). Epidemiology of anther-smut disease (Microbotryum 

violaceum) and numeric regulation of populations of Silene dioica. Oecologia, 90, 509-517. 

CIMMYT (2005). Sounding the alarm on global stem rust. 

http://www.globalrust.org/traction/permalink/about37@1. 

Deadman, M. L. (2006). Epidemiological consequences of plant disease resistance. In B. M. 

Cooke, D. Gareth Jones, & B. Kaye (Eds.), The epidemiology of plant diseases (2nd ed., pp. 

139–157). Dordrecht, the Netherlands: Springer. 

Desprez-Loustau, M.-L., Robin, C., Buée, M., Courtecuisse, R., Garbaye, J., Suffert, F., et al. 

(2007). The fungal dimension of biological invasions. Trends in Ecology & Evolution, 22, 

472-480. 

Ellner, S. P. (2013). Rapid evolution: from genes to communities, and back again? Functional 

Ecology, 27, 1087-1099. 

Ericson, L., Burdon, J. J., & Müller, W. J. (1999). Spatial and temporal dynamics of epidemics of 

the rust fungus Uromyces valerianae on populations of its host Valeriana salina. Journal of 

Ecology, 87, 649-658. 

Ezard, T. H. G., Côté, S. D., & Pelletier, F. (2009). Eco-evolutionary dynamics: disentangling 

phenotypic, environmental and population fluctuations. Philosophical Transactions of the 

Royal Society B: Biological Sciences, 364, 1491-1498. 

Farkas, T. E., Mononen, T., Comeault, A. A., Hanski, I., & Nosil, P. (2013). Evolution of camouflage 

drives rapid ecological change in an insect community. Current Biology, 23, 1835-1843. 

Flor, H. H. (1942). Inheritance of pathogenicity in Melampsora lini. Phytopathology, 32, 653-669. 

Flor, H. H. (1956). The complementary genic systems in flax and flax rust. Advances in Genetics, 8, 

29-54. 

http://www.globalrust.org/traction/permalink/about37@1


19 
 

Fussmann, G. F., Loreau, M., & Abrams, P. A. (2007). Eco-evolutionary dynamics of communities 

and ecosystems. Functional Ecology, 21, 465-477. 

Gandon, S. (2002). Local adaptation and the geometry of host-parasite coevolution. Ecology 

Letters, 5, 246-256. 

Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y., & Olivieri, I. (1996). Local adaptation and 

gene-for-gene coevolution in a metapopulation model. Proceedings of the Royal Society B: 

Biological Sciences, 263, 1003-1009. 

Gandon, S., & Michalakis, Y. (2002). Local adaptation, evolutionary potential and host-parasite 

coevolution: interactions between migration, mutation, population size and generation time. 

Journal of Evolutionary Biology, 15, 451-462. 

Gibert, J. P., Pires, M. M., Thompson, J. N., & Guimarães, P. R. (2013). The spatial structure of 

antagonistic species affects coevolution in predictable ways. The American Naturalist, 182, 

578-591. 

Giles, B. E., Pettersson, T. M., Carlsson-Granér, U., & Ingvarsson, P. K. (2006). Natural selection 

on floral traits of female Silene dioica by a sexually transmitted disease. New Phytologist, 

169, 729-739. 

Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin's finches. 

Science, 313, 224-226. 

Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., & Fox, J. A. (2005). Rapid evolution and 

the convergence of ecological and evolutionary time. Ecology Letters, 8, 1114-1127. 

Hanski, I. (2012). Eco-evolutionary dynamics in a changing world. Annals of the New York 

Academy of Sciences, 1249, 1-17. 

Hanski, I., & Gaggiotti, O. (2004). Ecology, genetics and evolution of metapopulations. Amsterdam: 

Elsevier Academic Press. 

Hanski, I., Mononen, T., & Ovaskainen, O. (2011). Eco-evolutionary metapopulation dynamics and 

the spatial scale of adaptation. The American Naturalist, 177, 29-43. 

Hanski, I. A. (2011). Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. 

Proceedings of the National Academy of Sciences, 108, 14397-14404. 



20 
 

Harmon, L. J., Matthews, B., Des Roches, S., Chase, J. M., Shurin, J. B., & Schluter, D. (2009). 

Evolutionary diversification in stickleback affects ecosystem functioning. Nature, 458, 1167-

1170. 

Hutchinson, G. E. (1965). The ecological theater and the evolutionary play. New Haven, CT: Yale 

University Press. 

Janzen, D. H. (1980). When is it coevolution. Evolution, 34, 611-612. 

Jarosz, A. M., & Burdon, J. J. (1991). Host-pathogen interactions in natural populations of Linum 

marginale and Melampsora lini: II. Local and regional variation in patterns of resistance and 

racial structure. Evolution, 45, 1618-1627. 

Jones, Emily I., Ferrière, R., & Bronstein, Judith L. (2009). Eco-evolutionary dynamics of mutualists 

and exploiters. The American Naturalist, 174, 780-794. 

Kaltz, O., Gandon, S., Michalakis, Y., & Shykoff, J. A. (1999). Local maladaptation in the anther-

smut fungus Microbotryum violaceum to its host plant Silene latifolia: evidence from a 

cross-inoculation experiment. Evolution, 53, 395-407. 

Kaltz, O., & Shykoff, J. A. (1998). Local adaptation in host-parasite systems. Heredity, 81, 361-370. 

Laine, A.-L. (2004). Resistance variation within and among host populations in a plant–pathogen 

metapopulation: implications for regional pathogen dynamics. Journal of Ecology, 92, 990-

1000. 

Laine, A.-L. (2005). Spatial scale of local adaptation in a plant-pathogen metapopulation. Journal of 

Evolutionary Biology, 18, 930-938. 

Laine, A.-L., Burdon, J. J., Dodds, P. N., & Thrall, P. H. (2011). Spatial variation in disease 

resistance: from molecules to metapopulations. Journal of Ecology, 99, 96-112. 

Laine, A.-L., & Hanski, I. (2006). Large-scale spatial dynamics of a specialist plant pathogen in a 

fragmented landscape. Journal of Ecology, 94, 217-226. 

Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology & Evolution, 

17, 183-189. 

Losos, J. B. (1994). Integrative approaches to evolutionary ecology: Anolis lizards as model 

systems. Annual Review of Ecology and Systematics, 25, 467-493. 



21 
 

Luo, S., & Koelle, K. (2013). Navigating the devious course of evolution: the importance of 

mechanistic models for identifying eco-evolutionary dynamics in nature. The American 

Naturalist, 181, S58-S75. 

McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and 

durable resistance. Annual Review of Phytopathology, 40, 349-379. 

Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. 

Annual Review of Phytopathology, 40, 381-410. 

Pelletier, F., Garant, D., & Hendry, A. P. (2009). Eco-evolutionary dynamics. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 364, 1483-1489. 

Peterson, P. D., Leonard, K. J., Roelfs, A. P., & Sutton, T. B. (2005). Effect of barberry eradication 

on changes in populations of Puccinia graminis in Minnesota. Plant Disease, 89, 935-940. 

Petrželová, I., & Lebeda, A. (2004). Occurrence of Bremia lactucae in natural populations of 

Lactuca serriola. Journal of Phytopathology, 152, 391-398. 

Pimentel, D. (1968). Population regulation and genetic feedback: evolution provides foundation for 

control of herbivore, parasite, and predator numbers in nature. Science, 159, 1432-1437. 

Post, D. M., & Palkovacs, E. P. (2009). Eco-evolutionary feedbacks in community and ecosystem 

ecology: interactions between the ecological theatre and the evolutionary play. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1629-1640. 

Pretorius, Z. A., Singh, R. P., Wagoire, W. W., & Payne, T. S. (2000). Detection of virulence to 

wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant 

Disease, 84, 203. 

Reznick, D. N. (2013). A critical look at reciprocity in ecology and evolution: introduction to the 

symposium. The American Naturalist, 181, S1-S8. 

Roelfs, A. P. (1982). Effects of barberry eradication on stem rust in the United States. Plant 

Disease, 66, 177-181. 

Roslin, T., Laine, A.-L., & Gripenberg, S. (2007). Spatial population structure in an obligate plant 

pathogen colonizing oak Quercus robur. Functional Ecology, 21, 1168-1177. 



22 
 

Sacristán, S., Vigouroux, M., Pedersen, C., Skamnioti, P., Thordal-Christensen, H., Micali, C., et al. 

(2009). Coevolution between a family of parasite virulence effectors and a class of LINE-1 

retrotransposons. PLoS ONE, 4, e7463. 

Schoener, T. W. (2011). The newest synthesis: understanding the interplay of evolutionary and 

ecological dynamics. Science, 331, 426-429. 

Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., et al. (2011). The 

emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. 

Annual Review of Phytopathology, 49, 465-481. 

Slobodkin, L. B. (1961). Growth and regulation of animal populations. New York: Holt, Rinehart and 

Winston. 

Smith, D. L., Ericson, L., & Burdon, J. J. (2011). Co-evolutionary hot and cold spots of selective 

pressure move in space and time. Journal of Ecology, 99, 634-641. 

Sprague, S. J., Balesdent, M.-H., Brun, H., Hayden, H. L., Marcroft, S. J., Pinochet, X., et al. 

(2006). Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in 

virulence of populations of Leptosphaeria maculans in France and Australia. European 

Journal of Plant Pathology, 114, 33-40. 

Springer, Y. P. (2007). Clinal resistance structure and pathogen local adaptation in a serpentine 

flax-flax rust interaction. Evolution, 61, 1812-1822. 

Stokstad, E. (2007). Deadly wheat fungus threatens world's breadbaskets. Science, 315, 1786-

1787. 

Susi, H., & Laine, A.-L. (2013). Pathogen life-history trade-offs revealed in allopatry. Evolution, 67, 

3362-3370. 

Tack, A. J. M., Hakala, J., Petäjä, T., Kulmala, M., & Laine, A.-L. (2013a). Genotype and spatial 

structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology, 

10.1890/1813-0518.1891. 

Tack, A. J. M., Horns, F., & Laine, A.-L. (2013b). The impact of spatial scale and habitat 

configuration on patterns of trait variation and local adaptation in a wild plant parasite. 

Evolution, doi:10.1111/evo.12239. 



23 
 

Tack, A. J. M., Thrall, P. H., Barrett, L. G., Burdon, J. J., & Laine, A.-L. (2012). Variation in 

infectivity and aggressiveness in space and time in wild host–pathogen systems: causes 

and consequences. Journal of Evolutionary Biology, 25, 1918-1936. 

Tellier, A., & Brown, J. K. M. (2011). Spatial heterogeneity, frequency-dependent selection and 

polymorphism in host-parasite interactions. BMC Evolutionary Biology, 11, 319. 

Thompson, J. N. (2005). The geographic mosaic of coevolution. Chicago, USA: University of 

Chicago Press. 

Thompson, J. N. (2013). Relentless evolution. Chicago, USA: University Of Chicago Press. 

Thompson, J. N., & Burdon, J. J. (1992). Gene-for-gene coevolution between plants and parasites. 

Nature, 360, 121-125. 

Thrall, P. H., & Antonovics, J. (1995). Theoretical and empirical studies of metapopulations: 

population and genetic dynamics of the Silene–Ustilago system. Canadian Journal of 

Botany, 73, S1249-S1258. 

Thrall, P. H., & Burdon, J. J. (1997). Host-pathogen dynamics in a metapopulation context: the 

ecological and evolutionary consequences of being spatial. Journal of Ecology, 85, 743-753. 

Thrall, P. H., & Burdon, J. J. (1999). The spatial scale of pathogen dispersal: consequences for 

disease dynamics and persistence. Evolutionary Ecology Research, 1, 681-701. 

Thrall, P. H., & Burdon, J. J. (2002). Evolution of gene-for-gene systems in metapopulations: the 

effect of spatial scale of host and pathogen dispersal. Plant Pathology, 51, 169-184. 

Thrall, P. H., Burdon, J. J., & Bever, J. D. (2002). Local adaptation in the Linum marginale - 

Melampsora lini host-pathogen interaction. Evolution, 56, 1340-1351. 

Thrall, P. H., Burdon, J. J., & Bock, C. H. (2001). Short-term epidemic dynamics in the Cakile 

maritima–Alternaria brassicicola host–pathogen association. Journal of Ecology, 89, 723-

735. 

Thrall, P. H., & Jarosz, A. M. (1994). Host-pathogen dynamics in experimental populations of 

Silene alba and Ustilago violacea. II. Experimental tests of theoretical models. Journal of 

Ecology, 82, 561-570. 



24 
 

Thrall, P. H., Laine, A.-L., Ravensdale, M., Nemri, A., Dodds, P. N., Barrett, L. G., et al. (2012). 

Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen 

metapopulation. Ecology Letters, 15, 425-435. 

Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-

mediated resistance in Arabidopsis thaliana. Nature, 423, 74-77. 

Toju, H. (2011). Weevils and camellias in a Darwin's race: model system for the study of eco-

evolutionary interactions between species. Ecological Research, 26, 239-251. 

Van de Wouw, A. P., Cozijnsen, A. J., Hane, J. K., Brunner, P. C., McDonald, B. A., Oliver, R. P., 

et al. (2010a). Evolution of linked avirulence effectors in Leptosphaeria maculans is 

affected by genomic environment and exposure to resistance genes in host plants. PLoS 

Pathogens, 6, e1001180. 

Van de Wouw, A. P., Stonard, J. F., Howlett, B. J., West, J. S., Fitt, B. D. L., & Atkins, S. D. 

(2010b). Determining frequencies of avirulent alleles in airborne Leptosphaeria maculans 

inoculum using quantitative PCR. Plant Pathology, 59, 809-818. 

Vogwill, T., Fenton, A., & Brockhurst, M. A. (2010). How does spatial dispersal network affect the 

evolution of parasite local adaptation? Evolution, 64, 1795-1801. 

Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., Leroy, C. J., et al. 

(2006). A framework for community and ecosystem genetics: from genes to ecosystems. 

Nature Reviews Genetics, 7, 510-523. 

Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for 

disease resistance. Annual Review of Phytopathology, 23, 251-273. 

Yahiaoui, N., Brunner, S., & Keller, B. (2006). Rapid generation of new powdery mildew resistance 

genes after wheat domestication. The Plant Journal, 47, 85-98. 

Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F., & Hairston Jr, N. G. (2003). Rapid 

evolution drives ecological dynamics in a predator-prey system. Nature, 424, 303-306. 

 

 

  



25 
 

Figure legends 

 

Fig. 1 Schematic overview of the spatial eco-evolutionary feedback loop. Arrow A illustrates the 

impact of spatial ecology on local (co)evolution, where gene flow affects the level of plant 

resistance, pathogen infectivity and aggressiveness and local adaptation. In turn, the evolution of 

plant resistance, pathogen infectivity, pathogen aggressiveness and local adaptation may have a 

strong impact on the likelihood of colonizations, extinctions, and local demography 
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