
DEPARTMENT OF MATHEMATICS AND STATISTICS

On Extensions and Variants of Dependence Logic
— A study of intuitionistic connectives in the team semantics setting

Fan Yang

To be presented for public examination
with the permission of the Faculty of Science of the University of Helsinki

in room D123 of Exactum (Gustaf Hällströmin katu 2b)
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Abstract

Dependence logic is a new logic which incorporates the notion of “dependence”, as well
as “independence” between variables into first-order logic. In this thesis, we study exten-
sions and variants of dependence logic on the first-order, propositional and modal level.
In particular, the role of intuitionistic connectives in this setting is emphasized.

We obtain, among others, the following results:

• First-order dependence logic extended with intuitionistic and linear connectives
characterizes all second-order downwards monotone properties.

• First-order independence logic extended with intuitionistic and linear connectives,
and first-order inclusion logic extended with maximal implication are both equiva-
lent to the full second-order logic over sentences.

• Complete axiomatizations for propositional dependence logic, propositional intu-
itionistic dependence logic, propositional independence logic extended with non-
empty atom.

• Intuitionistic connectives are definable, but not uniformly definable in propositional
dependence logic.

• Modal intuitionistic dependence logic has a connection with modal intuitionistic
logic.

• Model checking problem for modal intuitionistic dependence logic is PSPACE-
complete.
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Introduction

In this thesis, we study extensions and variants of dependence logic, in particular, the role
of intuitionistic connectives in this setting will be emphasized.

The two central notions of this thesis are “dependence” and “independence”. De-
pendence and independence are common phenomena in many fields: from computer sci-
ence (databases, software engineering, knowledge representation, AI) to social sciences
(human history, stock markets). Formally, one encounters the issue of dependence and
independence when a first-order sentence such as

∀x1∃y1∀x2∃y2φ(x1,x2,y1,y2)

is being considered: the sentence is true on a given first-order model M if

for all values a1 of x1, there exists a value b1 of y1 (depending on a1) such
that for all values a2 of x2, there exists a value b2 of y2 (depending on a1 and
a2) such that φ(a1,a2, b1, b2) is true on M .

That is, in first-order logic, the value of an existentially quantified variable depends only
on the values of all universally quantified variables that come before it. Such a built-in
linear dependence relation between variables makes the familiar first-order logic a weak
and restricted logic in terms of dependence and independence. The research of developing
an appropriate logical formalism for dependence and independence has been active in
recent years.

The first step in this direction dates back to 1960’s when Henkin [46] characterized
dependence between first-order variables by extending classical first-order logic with par-
tially ordered quantifiers, called branching quantifiers or Henkin quantifiers. A typical
sentence with a branching quantifier is as follows:(

∀x1 ∃y1
∀x2 ∃y2

)
φ(x1,x2,y1,y2), (0.1)

whose semantics is given via Skolem functions: the sentence is true on a given first-order
model M if the Skolem expression

∃f∃g∀x1∀x2φ(x1,x2,f(x1),g(x2))

is true on M . Enderton [19] and Walkoe [83] showed that first-order logic with Henkin
quantifiers has the same expressive power as Σ1

1, the existential second-order logic.
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Table 1: An example of a team

x2 y2
s1 0 1
s2 0 0
s3 1 0

In the second step, Hintikka and Sandu [48], [49] (see also [69]) developed the so-
called independence-friendly logic (IF-logic), which can be easily proved to have the same
expressive power as Σ1

1 over sentences too. IF-logic adds into first-order logic slashed
(linear) quantifiers. For example, the formula in (0.1) is expressed by

∀x1∃y1∀x2∃y2/{x1}φ(x1,x2,y1,y2), (0.2)

which is true on a given first-order model M if intuitively

for all values a1 of x1, there exists a value b1 of y1 such that for all val-
ues a2 of x2, there exists a value b2 of y2, independent of a1, such that
φ(a1,a2, b1, b2) is true on M .

The game-theoretical semantics of IF-logic is defined with respect to imperfect informa-
tion games, which is a generalization of the standard game-theoretical semantics of first-
order logic. However, such semantics is non-compositional, in particular, open formulas
of the logic do not have meanings. It was only until [50], [52], Hodges introduced compo-
sitional semantics for IF-logic, called trump semantics and later also team semantics. The
crucial innovation of the semantics is that the satisfaction relation is defined with respect
to sets of assignments, called teams, instead of single assignments as in the usual seman-
tics of first-order logic. Cameron and Hodges showed in [6] that it is indeed not possible
to obtain compositional semantics for IF-logic with respect to single assignments.

Based on team semantics, Väänänen [78] introduced first-order dependence logic,
which is the topic of this thesis. Dependence logic singles out the dependence between
variables from the use of quantifiers, and incorporates in first-order logic a new type of
atomic formulas

=(x1, . . . ,xn−1,xn),

called dependence atomic formulas or dependence atoms. Intuitively, the above atom is
true on a first-order model if the value of the first-order variable xn is functionally deter-
mined by the values of the first-order variables x1, . . . ,xn−1. As we shall discuss in details
in Section 1.1 that such functional dependence do not manifest in a single assignment, but
in a set of assignments (a team). Given a first-order model M with domain {0,1}. The
dependence atom =(x2,y2) is not true on the set X = {s1,s2,s3} of assignments (a team)
represented by Table 1. This is because the value of y2 is not functionally determined
by the value of x2, as when the value of x2 is 0, the variable y2 may have two different
values, namely 1 (under s1) and 0 (under s2).

Over sentences, dependence logic also has the same expressive power as Σ1
1, therefore

it is equivalent to both first-order logic with Henkin quantifiers and IF-logic. For instance,
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the formula (0.1) or (0.2) can be expressed in dependence logic as:

∀x1∃y1∀x2∃y2(=(x2,y2)∧φ(x1,x2,y1,y2)). (0.3)

Over formulas, dependence logic is downwards closed, meaning that if a formula is true
on a team X , then it is true also on all subteams of X . Making use of the downwards
closure property, Kontinen and Väänänen [60] proved that open formulas of dependence
logic characterize all downwards monotone Σ1

1 properties with respect to non-empty teams
in a certain sense.

An important extension of first-order dependence logic, namely first-order indepen-
dence logic, was developed recently by Grädel and Väänänen [39]. Instead of empha-
sizing dependence, independence logic emphasizes independence. It adds into first-order
logic a new type of atomic formulas, namely independence atoms of the form

x̄⊥z̄ ȳ.

Intuitively, given a first-order model, the above atom is true on a team if with respect to a
fixed value of z̄ the terms x̄ are totally independent of the terms ȳ in the sense that know-
ing the value of x̄ does not tell us anything about the value of ȳ. Clearly, independence
logic is not downwards closed. Galliani proved in [31] that independence logic charac-
terize all Σ1

1 properties with respect to non-empty teams in a certain sense. In particular,
dependence atoms are definable by independence atoms (see Expression (1.1) in Section
1.2), implying that dependence logic is a sublogic of independence logic. Other inter-
esting sublogics of independence logic are inclusion logic [31], [35] and exclusion logic
[31].

The main focus of this thesis is the so-called BID-logic introduced by Abramsky and
Väänänen [1]. BID-logic is an extension of dependence logic obtained by a careful anal-
ysis of team semantics in the presence of the downwards closure property. The proposi-
tional fragment of BID-logic turns out to correspond to the logic of bunched implications
[72], [74] (BI) aiming at providing a semantically based logic of resources. In particular,
the algebraic counterpart of BID-logic is both a commutative quantale (which carries an
interpretation of linear logic) and a complete Heyting algebra (which carries an interpre-
tation of intuitionistic logic). New connectives corresponding to the operations in such
an algebraic structure are then introduced into BID-logic, namely, the intuitionistic im-
plication, the intutionistic disjunction and the linear implication. In this thesis, we study
the properties of these connectives, mainly the intuitionistic ones, on the first-order logic
level (chapters 2-3), the propositional logic level (chapters 4-5), as well as the modal logic
level (chapters 6-7).

The thesis is organized as follows:
In “Note on notation”, we declare basic knowledge and facts on logic that are taken

for granted in the thesis, and fix our choices for commonly used symbols and notations.
Chapter 1 introduces the known properties of all of the first-order logics mentioned

above, namely first-order BID-logic, dependence logic, independence logic, inclusion
logic and exclusion logic.

In Chapter 2, we study the expressive power of first-order BID-logic. In the prepa-
ration sections (sections 2.1-2.2), the so-called first-order intuitionistic dependence logic
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(ID), which is first-order dependence logic extended with intuitionistic connectives is de-
fined. We point out that ID satisfies all axioms of propositional intuitionistic logic, as well
as all axioms of Maksimova’s Logic ND ([68]) and all axioms of Kreisel-Putnam Logic
KP ([63]), together with the double negation law for classical atomic formulas. This also
paves the way for Section 4.2 of Chapter 4 on propositional intuitionistic dependence
logic.

In the main part of Chapter 2, we show that over sentences, BID-logic, or already
first-order intuitionistic dependence logic (a fragment of BID-logic), is equivalent to the
full second-order logic. The content of this section is based on the publication [87]. Gen-
eralizing the method of [60], we also prove that open formulas of BID-logic characterize
all downwards monotone second-order properties with respect to all teams (including the
empty team) in a certain sense. Recall that dependence logic itself is equivalent to Σ1

1,
which is not closed under classical negation. Dependence logic extended with classical
negation is called team logic, and team logic is also equivalent to the full second-order
logic over sentences ([59]). The importance of our result lies in that BID-logic is a char-
acterization of the full second-order logic without having the classical negation in the
language.

In Chapter 3, we study first-order independence logic with implications. Lacking of
the downwards closure property, intuitionistic implication and linear implication do not
behave the same way in independence logic as in dependence logic. However, indepen-
dence logic extended with the two implications is still equivalent to the full second-order
logic over sentences, and its open formulas define (not characterize) all second-order
empty set-closed properties. Moreover, we study the maximal implication, introduced in
[59]. We prove that inclusion logic extended with maximal implication is equivalent to
the full second-order logic.

Chapter 4 is devoted to the study of propositional dependence logic, propositional
independence logic and their variants. We introduce these logics as natural propositional
variants of their first-order counterparts. We give concrete axiomatizations and prove
completeness theorems for these logics.

For a fixed number of propositional variables, there are only finitely many distinct
teams. A consequence of this fact, discussed in Section 4.2, is that in the presence of
intuitionistic disjunction, dependence atoms are eliminatable. Therefore the so-called
propositional intuitionistic dependence logic is essentially equivalent to inquisitive logic
[13]. Such a surprising connection opens the door for future research.

In Chapter 5, we investigate the uniform definability issue in propositional depen-
dence logic. It follows from Theorem 4.4.1 that all instances of any connective is de-
finable in propositional dependence logic, however, we show in this chapter that not all
connectives are uniformly definable in the logic. For instance, intuitionistic implication
and intuitionistic disjunction are two such connectives. This work is inspired by [32].
As a consequence of [13], this phenomenon also occurs in propositional intuitionistic
dependence logic or inquisitive logic.

In Chapter 6, we introduce modal intuitionistic dependence logic, which is a variant
of modal dependence logic [79] having intuitionistic connectives. We prove some prelim-
inary model-theoretic results of the logic, including a translation from modal dependence
logic into the logic. We reveal a connection between modal intuitionistic dependence
logic and intuitionistic modal logic IK defined independently in by Edwald [22], Fischer
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Servi [26] and Plotkin and Stirling [73], and show that modal intuitionistic dependence
logic is complete with respect to a certain set of finite bi-relation Kripke models. We, by
no means, claim that the work in Chapter 6 is complete in any sense for the investigation
of modal intuitionistic dependence logic, however we present this chapter with the hope
that these results will throw some light on the future research in this area.

Chapter 7 is based on the publication [18] in which we analyze the computational
complexity of the model checking problem for modal intuitionistic dependence logic and
its fragments built by restricting the operators allowed in the logics. In particular, we show
that the model checking problem for modal intuitionistic dependence logic in general is
PSPACE-complete and that for propositional intuitionistic dependence logic is coNP-
complete.



Note on Notation

Throughout the thesis, we assume the standard Tarskian semantics of classical first-order
logic (FO), the standard semantics of second-order logic (SO), the truth table semantics
of classical propositional logic (CPL), the Kripke semantics of modal logic (M) and
the Kripke semantics of intuitionistic logic (IPL), as well as that of intermediate logic.
Readers who are not familiar with these are referred to, e.g., [43], [81], [64], [9], [4], [80],
etc.

We consider first-order logic with equality. The negated equation ¬(t1 = t2) is often
written as t1 6= t2. For the treatment of first-order models, we follow [51]. Unless oth-
erwise specified, we use a,b,c,d, . . . with or without subscripts or superscripts to stand
for constants, R,S, . . . with or without subscript or superscripts to stand for relations, and
f,g,h, . . . with or without subscripts or superscripts to stand for functions. A first-order
signature L is a set of constant symbols, relation symbols and function symbols. We
write L(R) for the signature expanded from L by adding a new relation symbolR (whose
arity is always clear from the context); similarly for the expanded signature L(f). An
L-model M is a first-order model with signature L. We write cM for the interpretation of
the constant symbol c in the model M ; similarly for RM and fM . If M is an L-model,
we sometimes write (M,cM1 , . . . , cMk ,f

M
1 , . . . ,fMm ,RM1 , . . . ,RMn ) for the expansion of the

L-model M obtained by adding the symbols c1, . . . , ck,f1, . . . ,fm,R1, . . . ,Rn into the
signature L.

With some abuse of notation, we write M for both the model and its domain. An
assignment s on a model M is a function from a finite set dom(s) of variables into M .
The set dom(s) is called the domain of s, and it will be always clear from the context.
We sometimes use tables to represent assignments, for example, Table 1 in Introduction
contains three assignments s1,s2,s3 defined in the obvious way. Let s be an assignment
on a model M , A a set of variables, a an element of M . We write s � A for the assign-
ment s restricted to the domain A∩ dom(s). We write s(a/x) for the assignment with
dom(s(a/x)) = dom(s)∪{x}which agrees with s everywhere except that it maps x to a.
If {x1, . . . ,xn} ⊆ dom(s), then we write s(x) for the sequence 〈s(x1), . . . ,s(xn)〉. If t is
a first-order term, then we write t〈s〉 for the interpretation of t onM under the assignment
s.

We say that M is a suitable model and s is a suitable assignment on M for a formula
φ if all constant, relation and function symbols occurring in φ are in the signature of M ,
and all free variables of φ are in the domain of s.

A sequence 〈o1, . . . ,on〉 of objects is abbreviated as ō, and the length of the sequence
will always be clear from the context or does not matter. That is, we write t̄, f̄ , R̄, c̄, p̄

6
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for sequences of first-order terms, functions, relations, elements of models, propositional
variables, and so forth. We use the standard abbreviation ∀x to stand for a sequence of
universal quantifiers ∀x1 . . .∀xn (the length of x is always clear from the context or does
not matter); similarly for existential quantifiers.

A formula in negation normal form is a formula in which negations occur only in
front of atomic formulas. Any (classical) first-order, propositional or modal formula
is equivalent to a formula in negation normal form. Let φ(ψ1, . . . ,ψk) be a formula
(first-order, propositional or modal) which has ψ1, . . . ,ψk as subformulas. We write
φ(θ1/ψ1, . . . ,θk/ψk) for the formula obtained by uniformly replacing each ψi in φ with
θi for each 1≤ i≤ k.

The empty set is denoted by /0; the empty sequence is denoted by 〈〉 or ε. The con-
catenation of two sequences x̄ and ȳ is denoted by x̄aȳ or simply x̄ȳ. The notation x⊆ y
means that x is a subset of y or x= y; the notation x⊂ y or x( y means that x is a proper
subset of y.

Natural numbers are defined inductively as:

• 0 := /0;

• n+1 := n∪{n}.

We denote the set of all natural numbers by ω or N. For any set A, denote the cardinality
of A by the standard notation |A|.

The normal form of every second-order Σ1
n-formula is

∃f̄1∀f̄2 · · ·Qf̄n−1Qf̄nQxψ,

where ψ is quantifier free, Q is ∃ or ∀ depending on the parity of n, and Q is the dual of
Q. Similarly, the normal form of every second-order Π1

n-formula is

∀f̄1∃f̄2 · · ·Qf̄n−1Qf̄nQxψ.

We use the standard notations P, PSPACE, EXPTIME in computational complexity
theory to stand for the classes of decision problems whose solutions can be determined by
a deterministic Turing machine in polynomial time, polynomial space, exponential time,
respectively; we write NP, NPSPACE, NEXPTIME for the classes of decision problems
whose solutions can be determined by a non-deterministic Turing machine in polynomial
time, polynomial space, exponential time, respectively.



Chapter 1

First-order logics of dependence and
independence

In this chapter, we give a brief introduction to the first-order logics of dependence and in-
dependence considered in this thesis. In Section 1.1, we introduce first-order dependence
logic [78] and its extension BID-logic [1], as well as team semantics. In Section 1.2, we
present the definitions and basic results of first-order independence logic [39], inclusion
logic and exclusion logic [31].

1.1 First-order dependence logic and BID-logic
In this section, we define first-order dependence logic and BID-logic, as well as team se-
mantics. As discussed in Introduction, dependence logic (D) was developed by Väänänen
in [78] as an alternative approach to independence friendly logic (IF-logic) [48], [49] (see
also [69]). It adds into first-order logic a new type of atomic formulas

=(x1, . . . ,xn−1,xn),

called dependence atomic formulas or dependence atoms. Such a formula, as well as
other formulas of D, are evaluated on a model with respect to a set of assignments (called
teams). A team X satisfies the above formula if the value of the first-order term xn is
functionally determined by the values of the first-order terms x1, . . . ,xn−1, that is, for all
assignments s,s′ ∈X ,[

s(x1) = s′(x1), . . . , s(xn−1) = s′(xn−1)
]
=⇒ s(xn) = s′(xn);

Such semantics is called team semantics (or trump semantics), which was originally in-
troduced by Hodges [50], [52] as a compositional semantics for IF-logic.

A basic property of D is that it is downwards closed, i.e., if a team X satisfies a for-
mula, then every subteam of X also satisfy the formula. In [1] , Abramsky and Väänänen
studied team semantics with the downwards closure property, and defined an extension
of D, called BID-logic (BID). In a general construction of Hodges’ team semantics, the
propositional fragment of BID corresponds to the logic of bunched implications [72],

8
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[74] (BI), which is a semantically based logic of resources. The algebraic counterpart of
BID is both a commutative quantale (which carries an interpretation of linear logic) and a
complete Heyting algebra (which carries an interpretation of intuitionistic logic). Accord-
ingly, BID has both connectives of linear logic, i.e., ⊗ (the additive conjunction) and(
(linear implication), and connectives of intuitionistic logic, i.e., ∨ (the intuitionistic dis-
junction) and→ (the intuitionistic implication). The connective ⊗ was the disjunction of
D (which was inherited from the classical disjunction of first-order logic)1, and we shall
call it tensor disjunction in this thesis, although it corresponds to additive conjunction in
BID.

In this thesis, we will treat D as a fragment or sublogic of BID, Below we define the
syntax of BID and D.

Definition 1.1.1. Well-formed formulas of BID-logic (BID) are given by the following
grammar

φ ::= α | ¬α |=(x1, . . . ,xn) | ⊥ | φ∧φ | φ⊗φ | φ∨φ | φ→ φ | φ( φ | ∃xφ | ∀xφ

where α is a first-order atomic formula and n≥ 1.

Note that in the above definition of the syntax of BID, negations apply only to first-
order atomic formulas. Indeed, in this thesis, we do not view such atomic negation as a
connective of the logic, that is, the expression ¬α should be understood as a whole object
(c.f. Definition 5.2.1). On the other hand, every formula of BID does have its intuitionistic
negation defined in the following Convention. The issues about negation will be studied
in Section 2.1.

Convention 1.1.2. For any formulas φ and ψ of BID, we define

(i) ¬φ := φ→⊥2

(ii) > := ¬⊥

(iii) φ↔ ψ := (φ→ ψ)∧ (ψ→ φ)

For technical simplicity, we use the expression =(· · ·) to stand for a special type of
operator which acts on variables. Any dependence atom =(x1, . . . ,xn) (n≥ 1) is a result
of an application of =(· · ·). Similarly, the expression =(·) is an operator applying to single
variables only, that is, the resulting dependence atoms can only be of the form =(x1).
Moreover, all of the connectives, quantifiers and the constant ⊥ of BID are viewed as
operators as well. Next, we define our notations for sublogics or extensions of a logic
built by restricting or extending the set of eligible operators of the logic.

Definition 1.1.3. Let L be a logic and Ω a set of operators of L.

(i) We write L[Ω] for the sublogic of L built from literals of L using quantifiers and the
operators only from Ω. We sometimes write simply L[o1,o2, . . . ,on] instead of
L[{o1,o2, . . . ,on}].

1In the literature of dependence logic, the disjunction of the logic is usually denoted by the same symbol ∨
as the classical disjunction of first-order logic. However, in this thesis, for the purpose of distinction, we use the
symbol ⊗ for the disjunction of dependence logic, and the symbol ∨ for the intuitionistic disjunction.

2We will show in Lemma 1.1.8 that for first-order atomic formulas α, under the team semantics, the negated
atomic formula ¬α from Definition 1.1.1 has the same meaning as α→⊥.
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(ii) We write L[Ω] for the logic extended from L by adding the operators in Ω. We some-
times write simply L[o1,o2,...,on] instead of L[{o1,o2,...,on}].

Now, we define D as a sublogic of BID.

Definition 1.1.4. First-order dependence logic (D) is the sublogic

BID[=(· · ·),∧,⊗,∃,∀]

of BID. In other words, well-formed formulas of D are given by the following grammar

φ ::= α | ¬α |=(x1, . . . ,xn) | φ∧φ | φ⊗φ | ∃xφ | ∀xφ

where α is a first-order atomic formula and n≥ 1.

The set Fv(φ) of free variables of a formula φ of BID is defined in the standard way
except that for the case of dependence atoms, we have the following definition:

Fv(=(x1, . . . ,xn)) = {x1, . . . ,xn}.

We call a formula φ of BID a sentence in case Fv(φ) = /0.
As discussed, the satisfaction relation of the logic BID is defined with respect to

teams. We now give the formal definition of a team.

Definition 1.1.5. A team X of a first-order model M is a set of assignments on M with
the same domain. Denote the domain by dom(X).

If A is a set of variables, then we define a team X restricted to A as

X �A= {s �A | s ∈X}.

For example, Table 1 in Introduction represents a team X consisting of three assign-
ments s1,s2,s3 with domain {x2,y2}, i.e., X = {s1,s2,s3}. In particular, the following
sets are teams of a model M :

/0 and {s},

where s is an assignment on M . For the empty domain, there is one and only one assign-
ment on M , namely the empty assignment /0. The singleton of the empty assignment

{ /0}

is a team of M .
To give semantics for the existential and universal quantifiers of BID, we need to

define the following two operations on teams.

Definition 1.1.6. For any team X of M , and any function F :X →M , the team

X(F/x) = {s(F (s)/x) : s ∈X}

is called the supplement team of X by F and the team

X(M/x) = {s(a/x) : a ∈M, s ∈X}
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is called the duplicate team of X .We abbreviate the supplement team

X(F1/x1) . . .(Fn/xn)

as X(F1/x1, . . . ,Fn/xn), and the duplicate team

X(M/x1) . . .(M/xn)

as X(M/x1, . . . ,xn) or X(M/x̄).

Now, we give the semantics for BID. Such semantics is called team semantics. The
logic D also has an equivalent game-theoretical semantics, however, in this thesis, we will
not go into this direction. Interested readers are referred to [78] for details.

Definition 1.1.7. We inductively define the notion of a formula φ of BID being satisfied
in a suitable first-order model M on a suitable team X of M , denoted by M |=X φ, as
follows:

• M |=X α with α a first-order atomic formula iff for all s ∈X , M |=s α in the usual
sense;

• M |=X ¬α with α a first-order atomic formula iff for all s ∈X , M |=s ¬α in the
usual sense;

• M |=X =(x1, . . . ,xn) iff for all s,s′ ∈X[
s(x1) = s′(x1), . . . ,s(xn−1) = s′(xn−1)

]
=⇒ s(xn) = s′(xn);

• M |=X ⊥ iff X = /0;

• M |=X φ∧ψ iff M |=X φ and M |=X ψ;

• M |=X φ⊗ψ iff there exist teams Y,Z ⊆X with X = Y ∪Z such that

M |=Y φ and M |=Z ψ;

• M |=X φ∨ψ iff M |=X φ or M |=X ψ;

• M |=X φ→ ψ iff for any team Y ⊆X ,

M |=Y φ=⇒M |=Y ψ;

• M |=X φ( ψ iff for any team Y with dom(Y ) = dom(X),

M |=Y φ=⇒M |=X∪Y ψ;

• M |=X ∃xφ iff M |=X(F/x) φ for some function F :X →M ;

• M |=X ∀xφ iff M |=X(M/x) φ.
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If M |=X φ holds for all suitable models M and all suitable teams X of M , then
we say that φ is valid in BID, denoted by |=BID φ or simply |= φ. Sentences have no
free variable and the empty assignment /0 is the only assignment for sentences. We say
that a sentence φ is true in M if the team { /0} of the empty assignment satisfies φ, i.e.
M |={ /0} φ.

Let φ and ψ be two formulas of BID. If for any suitable model M and any suitable
team X of M ,

M |=X φ=⇒M |=X ψ,

then we say that ψ is a logical consequence of φ, in symbols φ |= ψ. If φ |= ψ and ψ |= φ,
then we say that φ and ψ are logically equivalent, in symbols φ≡ ψ.

The above defined team semantics deserve some comments. Most importantly, a team,
as in Table 1 in Introduction, can be viewed as a relational database in the obvious way.
With this setting, dependence atoms =(x1, . . . ,xn−1,xn) correspond exactly the func-
tional dependencies {x1, . . . ,xn−1} → xn in database theory (see e.g. [23] for an early
overview). In particular, dependence atoms satisfy Armstrong’s axioms [2]:

(i) =(x,x);

(ii) if =(x,y,z), then =(y,x,z);

(iii) if =(y,z), then =(x,y,z);

(iv) if =(x,y) and =(y,z), then =(x,z).

Following database theory, the implication problem for dependence atoms asks that for a
finite set Γ of dependence atoms and a dependence atom γ, whether

Γ |= γ

holds. From [2], we know that implication problem for dependence atoms can be axiom-
atized by Armstrong’s axioms. We will come back to Armstrong’s axioms in Chapter 4
in the context of propositional dependence logic, where in Example 4.4.11 we will derive
these axioms in the natural deduction system of the logic.

It is possible to allow dependence atoms of the form =(t1, . . . , tn), where t1, . . . , tn
are first-order terms in the syntax of BID, as it is done in [78]. Such an atom is satisfied
by a team X if and only if (naturally) for all s,s′ ∈X ,[

t1〈s〉= t1〈s′〉, . . . , tn−1〈s〉= tn−1〈s′〉
]
=⇒ tn〈s〉= tn〈s′〉.

One sees easily that

=(t1, . . . , tn)≡ ∃x1 . . .∃xn(=(x1, . . . ,xn)∧ (x1 = t1)∧·· ·∧ (xn = tn)),

therefore for simplicity, in this thesis, we will restrict our attention to dependence atoms
of the form =(x1, . . . ,xn) only.

The connectives of BID are of special interests for the following reasons. As discussed
in [1] and the introduction of this section, for a model M and a set V of variables, taking
all of the downwards closed subsets of ℘(MV ), one forms the algebra of the underlying
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propositional logic of BID. Such a structure is a BI algebra, that is, both a commutative
quantale and a complete Heyting algebra. The connectives ∧, ⊗, ∨ and→ of BID cor-
respond exactly to conjunction, multiplicative conjunction, intuitionistic disjunction and
intuitionistic implication of the algebraic structure, respectively. In Chapter 4, we will
study the underlying propositional logic of BID in details.

We invite the reader to check the following lemma which justifies our choice of nota-
tions in Convention 1.1.2.

Lemma 1.1.8.

(i) ¬α≡ α→⊥, whenever α is a first-order atom (c.f. Convention 1.1.2);

(ii) ⊥≡ ¬=(x1, . . . ,xn)≡
(
(x= x)∧ (x 6= x)

)
;3

(iii) >≡ ∀x(x= x).

We now list some known basic properties of BID, all of which also hold for the
sublogic D. All of these properties were proved in [78] and [1].

Theorem 1.1.9 (Locality). The truth of a formula φ of BID on a team of a model M
depends only on the assignments of the variables occurring free in φ. That is, for any
teams X,Y of M satisfying X � Fv(φ) = Y � Fv(φ),

M |=X φ ⇐⇒ M |=Y φ.

Theorem 1.1.10 (Downwards Closure). For any formula φ of BID, any suitable model
M and any suitable teams X,Y of M ,[

M |=X φ and Y ⊆X
]
=⇒M |=Y φ.

Definition 1.1.11 (Flatness). A formula φ of BID is said to be flat if for all suitable
models M and all suitable teams X ,

M |=X φ⇐⇒ (M |={s} φ for all s ∈X).

Lemma 1.1.12. Sentences of BID are flat.

Proof. To evaluate sentences with no free variables, one only considers the singleton team
{ /0} of the empty assignment /0. �

We call the logic
BID[∧,⊗,∃,∀]

first-order logic (of BID), denoted by FO4, and formulas of the logic are called first-
order formulas or classical formulas of BID, i.e., classical formulas are built with only
first-order literals, ∧, ⊗, ∃ and ∀.

3In some literature of dependence logic (e.g. [78]), formulas of the form ¬=(x1, . . . ,xn) are treated as
the (primitive) negation of the dependence atom =(x1, . . . ,xn), and they are satisfied only by the empty team
(i.e. ¬=(x1, . . . ,xn) ≡ ⊥). In this thesis, as in Definition 1.1.4, we do not allow D to have formulas of the
form ¬=(x1, . . . ,xn), and in BID we view ¬=(x1, . . . ,xn) as an abbreviation of the intuitionistic negation
=(x1, . . . ,xn)→ ⊥. The result here shows that both readings of the same formula ¬=(x1, . . . ,xn) induce
actually the same semantical meaning.

4Note that the notation “FO” is different from the notation “FO” we chose for the usual first-order logic.
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Lemma 1.1.13. Formulas of BID which do not contain dependence atoms or intuitionistic
disjunctions are flat. In particular, classical formulas are flat.

Proof. We show that the lemma by induction on the complexity of formulas φ described
in the lemma. The only interesting case is the case φ = ψ( χ. In this case, by the
downwards closure property, it suffices to show that[

∀s ∈X, M |={s} ψ( χ
]
=⇒M |=X ψ( χ

for all suitable models M and suitable teams X of M .
Suppose Y is a suitable team of M with M |=Y ψ. By induction hypothesis, χ is

flat, thus to show M |=X∪Y χ, it suffices to show that for any s0 ∈X ∪Y , M |={s0} χ.
Moreover, as χ is downwards closed, this reduces to showing that for any s ∈X , s′ ∈ Y ,
M |={s,s′} χ.

Now, since M |=Y ψ, by the downwards closure property, M |={s′} ψ. On the other
hand, by assumption, M |={s} ψ( χ. It follows that M |={s,s′} χ, as required. �

Lemma 1.1.14 (Empty Team Property). Formulas φ of BID which do not contain the
linear implication( have the empty team property, that is, for any suitable model M ,
the empty team satisfies φ, i.e. M |= /0 φ.

However, the full BID does not have the empty team property, as for example, for any
modelM , M 6|= /0 (x= x)( (x 6= x). In this thesis, we will mainly focus on BID without
linear implication, we denote this sublogic of BID by BID−.

In the sequel, when comparing the expressive power of logics in the setting of team
semantics, we will use the terminology “expressibility” defined as follows.

Definition 1.1.15.

(i) Let L1 and L2 be two logics with team semantics.

(a) We say that a formula φ of L1 is expressible in L2, if there exists a formula ψ
of L2 such that φ≡ ψ.

(b) We say that the logics L1 and L2 are equivalent, denoted by L1 = L2, if every
formula of L1 is expressible in L2, and vice versa.

(ii) Let LSO be a sublogic of second-order logic and L a logic with team semantics.

• A sentence φ of L is expressible in LSO, if there exists a sentence ψ of LSO
such that for any suitable model M ,

M |= ψ⇐⇒M |={ /0} φ.

• A sentence ψ of LSO is expressible in L, if there exists an sentence φ of L such
that for any suitable model M ,

M |= ψ⇐⇒M |={ /0} φ.
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It was proved in [30] that intuitionistic disjunction ∨ is actually uniformly definable5

in D assuming the models always have cardinality greater than 1. As we do not make this
assumption in this thesis, below we present a slightly different definition.

Lemma 1.1.16. For any formulas φ,ψ of D, putting

θ0 := ∀x∃y(x 6= y)⊗ (φ⊗ψ),

θ1 := ∃x∀y(x= y)⊗∃w∃u
(
=(w)∧=(u)∧

(
(w = u)⊗φ

)
∧
(
(w 6= u)⊗ψ

))
,

where w,u /∈ Fv(φ)∪Fv(ψ), we have that φ∨ψ ≡ θ0∧θ1.

Proof. C.f. [30]. The formula θ0 deals with the case when the model has cardinality 1,
and the formula θ1 deals with the case when the model has cardinality greater than 1. �

Corollary 1.1.17. D = D[∨].

Next, we list the known results concerning expressive power of D. We will investigate
the expressive power of BID in Chapter 2.

Theorem 1.1.18 ([78]). Sentences of D are expressible in Σ1
1, and vice versa.

Definition 1.1.19. Let R be a k-ary relation symbol and φ(R) a second order L(R)-
sentence. We say that φ(R) is downwards monotone with respect to R if for all L(R)-
model (M,Q) and Q′ ⊆Q,

(M,Q) |= φ(R) =⇒ (M,Q′) |= φ(R).

The next lemma gives a syntactical characterization of downwards monotone sen-
tences of Σ1

1. In Lemma 2.4.1, we will generalize this result to the full second order logic.

Lemma 1.1.20 ([60]). An L-sentence φ of Σ1
1 is downwards monotone with respect to a

predicate R iff there exists an equivalent L(R)-sentence ψ of Σ1
1 in which R occurs only

negatively.

Notation 1.1.21. Let X be a team of a model M with domain {x1, · · · ,xk}. The set

rel(X) = {(s(x1), · · · ,s(xk)) | s ∈X}.

defines a k-ary relation of M corresponding to X .

Theorem 1.1.22 ([78], [60]).

(i) For any L-formula φ(x̄) of D, there exists an L(R)-sentence ψ(R) of Σ1
1 which is

downwards monotone with respect to a new predicate R such that for any suitable
L-model M and any suitable team X of M ,

M |=X φ(x̄)⇐⇒ (M,rel(X)) |= ψ(R).

5A connective is uniformly definable in D if it is uniformly definable in the sense of [32]. In chapter 5, we
investigate uniform definability in the context of propositional dependence logic.



16

(ii) For any L(R)-sentence ψ(R) of Σ1
1 which is downwards monotone with respect to a

predicateR, there exists anL-formula φ(x̄) of D such that for any suitableL-model
M and any suitable non-empty team X of M ,

M |=X φ(x̄)⇐⇒ (M,rel(X)) |= ψ(R).

If a logic L with team semantics and a sublogic LSO of second-order logic satisfy item
(ii) of the above theorem with respect to a set T of teams, then we say that formulas of
L define LSO with respect to T; in case items (i) and (ii) are both satisfied, then we say
that formulas of L characterize LSO with respect to T. Formulas of D characterize all Σ1

1
downwards monotone properties with respect to non-empty teams.

As D is equivalent to Σ1
1, “truth” is definable in D, therefore by the Undefinability

of Truth argument of Tarski, logical validity in D is non-arithmetical, and D cannot have
any (effective) complete axiomatization. But it is possible to obtain weak completeness
by making certain restrictions on the semantical consequence relation. Along this line,
Galliani [33] defined a type of general models for D and proved the completeness theorem
for D with respect to these models, and Kontinen and Väänänen [62] axiomatized the first-
order consequences of D.

We know from Fagin [24] that NP corresponds exactly to Σ1
1 over finite structures,

therefore D also characterizes NP over finite structures. Other computational issues of D
are studied in [57], [16], [58], [38], etc.

Many extensions and variants of D are investigated in recent years, including depen-
dence logic with classical (contradictory) negation (team logic) [59], probabilistic depen-
dence logic [28], [36], dynamic dependence logic [29], dependence logic with generalized
quantifiers [20], [21], etc. In particular, the modal variant of dependence logic, namely
modal dependence logic was introduced in [79]. Work on this topic include [76], [66],
[67], [17], etc. In this thesis, we will devote chapters 6-7 to an extension of modal depen-
dence logic, called modal intuitionistic dependence logic. In chapters 4-5, we will study
the underlying propositional logic of first-order and modal dependence logic.

1.2 First-order independence, inclusion and exclusion log-
ics

In this section, we define independence logic, inclusion logic and exclusion logic, and
survey recent developments of these logics.

Dependence logic is a logic with team semantics which highlights the notion of de-
pendence between variables. As mentioned in Introduction, other logics defined along
this line (i.e., first-order logic with Henkin quantifiers [46], independence friendly logic
[48], [49]) emphasize the notion of independence instead. In [39], Grädel and Väänänen
introduced independence atoms into the team semantics setting and defined independence
logic. A typical independence atom is as follows:

x⊥z y.

A team X satisfies the above formula if the value of x is totally independent of the value
of y, given a fixed value of z. This is formulated as, for all assignments s,s′ ∈ X with
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s(z) = s′(z), there exists s′′ ∈X such that s′′(z) = s(z) = s′(z),

s′′(x) = s(x) and s′′(y) = s′(y).

For example, the team {s1,s2,s3,s4,s5} of Table 1.1 satisfies x ⊥z y, and in the team,
fixing a value for z, the value of x is completely undetermined by y as the restricted table
actually induces a Cartesian product with respect to x and y.

One observes from this example that independence logic is not downwards closed, as,
e.g., the subteam {s1} does not satisfy the same independence atom x⊥z y. On the other
hand, we will see that the downwards closed dependence logic is actually a sublogic of
independence logic.

As mentioned in Section 1.1, teams can be viewed as databases. In such context, in-
dependence atoms correspond to embedded multivalued dependencies in database theory.
Moreover, introducing inclusion dependencies [25] and exclusion dependencies [7], [8]
of database theory into the team semantics setting, Galliani [31] (see also [30]) defined in-
clusion logic and exclusion logic. Inclusion logic adds inclusion atoms of the form x̄⊆ ȳ
and exclusion logic adds exclusion atoms of the form x̄ | ȳ into first-order logic. Consider
a team or a database represented in Table 1.2. Typical inclusion atom and exclusion atom
are as follows:

Father⊆ Name and Name | Place of death.

Intuitively, the inclusion atom Father ⊆ Name is satisfied by X if in X , every value of
Father is also a value of Name, or formally, for all s ∈X , there exists s′ ∈X such that

s(Father) = s′(Name).

One sees that this is not the case for the team of Table 1.2. On the other hand, the ex-
clusion atom Name | Date of birth is satisfied by X if no value of Name is a value of
Date of birth and vice versa, or formally, for all s,s′ ∈X ,

s(Name) 6= s′(Place of death).

This is clearly the case for the team of Table 1.2, as the data in the attribute Name is of
different type from that in the attribute Place of death.

Next, we give formal definitions of all these logics. In the sequel, we call all of the
logics with team semantics mentioned so far logics of dependence and independence.

Table 1.1: An example of a team satisfying x⊥z y

z x y
s1 0 1 0
s2 0 0 1
s3 0 1 1
s4 0 0 0
s5 1 1 0
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Name Father Place of death
s1 Isaac Abraham Canaan
s2 Jacob Isaac Canaan
s3 Joseph Jacob Egypt
s4 Judah Jacob Egypt

Table 1.2: An example of a database

Definition 1.2.1. Let α be any first-order atomic formula, x̄, ȳ, z̄ tuples of first-order
terms, where x̄ and ȳ are non-empty and of the same length.

• Well-formed formulas of first-order independence logic (Ind) are given by the fol-
lowing grammar

φ ::= α
∣∣∣ ¬α ∣∣∣ x̄⊥z̄ ȳ ∣∣∣ φ∧φ ∣∣∣ φ⊗φ ∣∣∣ ∃xφ ∣∣∣ ∀xφ

• Well-formed formulas of first-order inclusion logic (Inc) are given by the following
grammar

φ ::= α
∣∣∣ ¬α ∣∣∣ x̄⊆ ȳ ∣∣∣ φ∧φ ∣∣∣ φ⊗φ ∣∣∣ ∃xφ ∣∣∣ ∀xφ

• Well-formed formulas of first-order exclusion logic (Exc) are given by the follow-
ing grammar

φ ::= α
∣∣∣ ¬α ∣∣∣ x̄ | ȳ ∣∣∣ φ∧φ ∣∣∣ φ⊗φ ∣∣∣ ∃xφ ∣∣∣ ∀xφ

• The union of inclusion and exclusion logic is called inclusion/exclusion logic (I/E).

Formulas of the forms x̄⊥z̄ ȳ, x̄⊆ ȳ and x̄ | ȳ are called (conditional) independence
atoms, inclusion atoms and exclusion atoms, respectively. We write the independence
atom x̄⊥〈〉 ȳ simply as x̄⊥ ȳ, and call such independence atoms unconditional indepen-
dence atoms. We call the sublogic of independence logic in which only unconditional
independence atoms are allowed pure (first-order) independence logic.

As mentioned, all of the above logics have team semantics defined as follows. A
game-theoretic semantics for inclusion and exclusion logic was introduced in [31], but in
this thesis, we will not go into this direction.

Definition 1.2.2. We inductively define the notion of a formula φ of Ind, Inc or Exc being
satisfied in a suitable model M by a suitable teamX of M , denoted by M |=X φ. All the
cases are the same as those of BID as defined in Definition 1.1.7 except the following:

• M |=X x̄⊥z̄ ȳ iff for all s,s′ ∈X ,

s(z̄) = s′(z̄) =⇒∃s′′ ∈X such that s′′(z̄) = s(z̄) = s′(z̄),

s′′(x̄) = s(x̄) and s′′(ȳ) = s′(ȳ).
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• M |=X x̄⊆ ȳ iff for all s ∈X , there exists s′ ∈X such that s′(ȳ) = s(x̄).

• M |=X x̄ | ȳ iff for all s,s′ ∈X , s(x̄) 6= s′(ȳ).

• M |=X ∃xφ iff there exists F :X → ℘(M)\{ /0} such that M |=X[F/x] φ, where

X[F/x] = {s(a/x) | s ∈X, a ∈ F (s)}.

Note that for the sake of Locality, we modify the semantics of existential quantifier.
The semantics for existential quantifier as above is called lax semantics, while the seman-
tics for existential quantifier as in Definition 1.1.7 is called strict semantics. For logics
having the downwards closure property (e.g., dependence logic), lax and strict semantics
coincide, however, for logics lacking of the downwards closure property, only lax seman-
tics respects Locality. For further discussions on lax and strict semantics, see [31] and
[30]. With lax semantics defined as above, all of the logic Ind, Inc and Exc are local,
namely Theorem 1.1.9 holds for these logics. Moreover, all of these logics have the empty
team property, namely Theorem 1.1.14 holds for these logics.

As mentioned in the introduction, the independence atom

x1 · · ·xm ⊥z1···zk y1 · · ·ym

corresponds exactly in database theory to the embedded multivalued dependency

{z1, . . . ,zk}� {x1, . . . ,xm} | {y1, . . . ,ym}.

Atoms x̄� ȳ (called multivalued dependence atom) which correspond to multivalued
dependencies in database theory were introduced in [20], and dependence logic with mul-
tivalued dependence atom is proved in [30] to be equivalent to independence logic.

An independence atom x̄ ⊥z̄ ȳ in which the underlying set of variables of the tuples
x̄, ȳ and z̄ are pairwise disjoint is said to be normal. Any independence atom is shown in
[30] to be expressible by a normal one.

By [37], the implication problem for unconditional independence atoms can be ax-
iomatized by the following Geiger-Paz-Pearl’s axioms:

(i) if x̄⊥ ȳ, then x̄⊥ ȳ;

(ii) if x̄⊥ ȳ and z̄ is a subsequence of x̄, then z̄ ⊥ ȳ;

(iii) if ū is a permutation of x̄, v̄ is a permutation of ȳ, and x̄⊥ ȳ, then ū⊥ v̄;

(iv) if x̄⊥ ȳ and x̄ȳ ⊥ z̄, then x̄⊥ ȳz̄.

In Example 4.7.9 of Chapter 4, we will derive these axioms in the context of propositional
independence logic in the natural deduction system of the logic.

Dependence atoms, as observed in [39], are easily definable by independence atoms
as follows:

=(x1, . . . ,xn−1,xn)≡ xn ⊥x1···xn−1 xn. (1.1)

Therefore D is a sublogic of Ind. From this, one easily derives that Ind = Ind[∨], as it is
not hard to see that the formula θ0∧θ1 in Lemma 1.1.16 can also work as a definition for
φ∨ψ in the logic Ind. Basic results concerning the expressive power of Ind are listed in
the following two theorems.
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Theorem 1.2.3 ([39]). Sentences of Ind are expressible in Σ1
1, and vice versa.

Theorem 1.2.4 ([31]).

(i) For any L-formula φ(x̄) of Ind, there exists an L(R)-sentence ψ(R) of Σ1
1 with a new

predicate R such that for any L-model M and any suitable team X of M ,

M |=X φ(x̄)⇐⇒ (M,rel(X)) |= ψ(R).

(ii) For any L(R)-sentence ψ(R) of Σ1
1 with a predicate R, there exists an L-formula

φ(x̄) of Ind such that for any L-model M and any suitable non-empty team X of
M ,

M |=X φ(x̄)⇐⇒ (M,rel(X)) |= ψ(R).

It follows from the equivalence of independence logic and Σ1
1 that independence logic

is not (effectively) axiomatizable either. In [42] however, the first-order consequences of
Ind were axiomatized. Computational issues concerning hierarchies in Ind are studied in
[34].

Inclusion and exclusion logics are clearly expressible in Σ1
1, therefore they are both

sublogics of Ind. Moreover, as shown in [31], Exc is in fact equivalent to D. As a
consequence, Exc is downwards closed and is equivalent to Σ1

1, namely Theorem 1.1.10,
Theorem 1.1.18 and Theorem 1.1.22 hold for Exc.

As observed in [31], inclusion logic is closed under unions, that is the following the-
orem holds.

Theorem 1.2.5 ([31]). For any formula φ of Inc, any suitable model M , any collection
of suitable teams {Xi}i∈I of M ,

∀i ∈ I, M |=Xi φ=⇒M |=⋃
i∈IXi φ.

Recent result by Galliani and Hella [35] shows that Inc is equivalent to the positive
greatest fixed point logic.

Theorem 1.2.6 ([35]). For any formula φ(R,x̄) of the positive greatest fixed point logic,
there exists a formula ψ(x̄) of Inc, and vice versa, such that for all suitable models M
and all suitable teams X of M ,

M |=X ψ(x̄) ⇐⇒ (M,rel(X)) |=s φ(R,x̄) for all s ∈X.

In particular, over sentences, Inc and positive greatest fixed point logic (GFP+) have the
same expressive power.

Corollary 1.2.7 ([35]). On finite structures, Inc and least fixed point logic (LFP) have the
same expressive power. In particular, on ordered finite structures, Inc captures PTIME.

Proof. It is well-known that over finite structures, LFP is equivalent to GFP+. By Im-
merman [54] and Vardi [82], on ordered finite structures, LFP captures PTIME. �

Below we summarize the most important results concerning expressive powers of the
logics of dependence and independence obtained in the research area so far.
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Figure 1.1: First-order logics of dependence and independence

⊃ ⊂

⊃⊂ Ind

D,ExcInc

FO

Table 1.3: Expressive power of logics of dependence and independence

Logic Expressive power Over finite structures
Ind Σ1

1 NP
D downwards monotone Σ1

1 NP
Exc downwards monotone Σ1

1 NP
Inc GFP+ PTIME

Theorem 1.2.8 ([39], [31], [35]). Relationships between the logics of dependence and
independence considered in this section are as depicted in Figure 1.1 and Table 1.3.



Chapter 2

First-oder dependence logic with
implications

In this chapter, we investigate the expressive power of first-order dependence logic ex-
tended with intuitionistic and linear implications, or that of BID-logic (as by Corollary
1.1.16, intuitionistic disjunction is eliminatable in the logic). In Section 2.1, we sort out
interesting properties concerning negation, flat formulas and singleton teams of the logic
BID− i.e., BID without linear implication (which has the empty team property, by Lemma
1.1.14). Section 2.2 introduces an important sublogic of BID, called first-order intuition-
istic dependence logic. In Section 2.3, we prove that over sentences, BID and first-order
intuitionistic dependence logic are equivalent to the full second-order logic. The content
of this section is based on the publication [87]. Section 2.4 proves that formulas of BID
characterize all second order downwards monotone properties. In Section 2.5, we make
some concluding remarks.

Intuitionistic implication and linear implication are of particular interests in the con-
text of BID, because, among other things, as pointed out in [1], there are Galois connec-
tions between intuitionistic implication→ and conjunction ∧, linear implication( and
tensor disjunction ⊗, that is, for all formulas φ,ψ,χ of BID,

φ∧ψ |= χ⇐⇒ φ |= ψ→ χ,

φ⊗ψ |= χ⇐⇒ φ |= ψ( χ.

In this thesis, we will mainly focus on the properties of intuitionistic implication. As
the name suggested, axioms of intuitionistic propositional logic (IPL) are valid in BID−,
namely the following axiom schemes are valid in BID−:

1. φ→ (ψ→ φ)

2. (φ→ (ψ→ χ))→ ((φ→ ψ)→ (φ→ χ))

3. φ∧ψ→ φ

4. φ∧ψ→ ψ

22
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5. φ→ φ∨ψ

6. ψ→ φ∨ψ

7. φ→ (ψ→ (φ∧ψ))

8. (φ→ χ)→ ((ψ→ χ)→ (φ∨ψ→ χ))

9. ⊥→ φ

Note that the above axioms 1-8 are valid also in BID, while axiom 9 (ex falso) is not valid
in the presence of linear implication(, as the axiom requires the empty team property.

2.1 Negation, flat formulas and singleton teams

In this section, we investigate negation, flat formulas of BID−, and the behavior of BID−
formulas under singleton teams.

As pointed out in the discussion after Definition 1.1.1, BID or any of its sublogic does
not have negation as a preliminary connective. Consider the classical (contradictory)
negation (denoted by ∼) whose team semantics is defined as

• M |=X∼ φ iff M 6|=X φ.

for any formula φ of BID, any suitable team X of any suitable model M. As BID is
downwards closed, the classical negation is clearly not definable in BID1. In this section,
by the term “negation”, we mean the intuitionistic negation φ→⊥ of formulas φ of BID.
Recall that in Convention 1.1.2, we have reserved the usual negation notation ¬φ for such
intuitionistic negations. For issues concerning negations in dependence logic, the reader
is referred to [61],[5].

First of all, one observes easily that the (intuitionistic) negation of BID does not satisfy
law of excluded middle either for tensor disjunction ⊗ or for intuitionistic disjunction ∨,
as, e.g., 6|=BID =(x)⊗¬=(x) and 6|=BID =(x)∨¬=(x). On the other hand, the following
negation-related formulas are derivable in IPL, thus valid in BID−:

1. (φ→ ψ)→ (¬ψ→¬φ)

2. φ→¬¬φ

3. ¬¬¬φ↔¬φ

Next, we prove an easy but useful fact about flat formulas of BID− (recalling Defini-
tion 1.1.11 for flatness).

Fact 2.1.1. Let φ and ψ be formulas of BID−. If ψ is flat, then φ→ ψ is flat.

1Suppose φ is a formula of BID which is equivalent to ∼ ⊥. For any suitable model M and any suitable
non-empty team X , since M 6|=X ⊥, we have that M |=X φ. As the formula φ of BID is downwards closed,
we must have that M |= /0 φ, implying M 6|= /0 ⊥, which is not the case.
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Proof. Suppose ψ is flat. It suffices to show that for any suitable model M , any suitable
team X of M ,

∀s ∈X, M |={s} φ→ ψ =⇒M |=X φ→ ψ.

Assume the antecedent. Let Y ⊆X be a non-empty team such that M |=Y φ. For any
s ∈ Y , by the downwards closure property, we have that M |={s} φ, thus M |={s} ψ by
assumption. Since ψ is flat, it follows that M |=Y ψ, as required. �

An immediate corollary of the above fact is that negated formulas of BID− are flat.
This simple result will play an essential role in Section 4.2 on propositional intuitionistic
dependence logic.

Corollary 2.1.2. Negated formulas are flat, that is ¬φ (i.e. φ→⊥) is flat for any formula
φ of BID−.

The double negation law clearly holds for negated formulas φ of BID−, as we have
that |= ¬φ↔¬¬(¬φ). Next, we show that the validity of the double negation law for a
formula is actually a necessary and sufficient condition for the formula being flat.

Lemma 2.1.3. A formula φ of BID− is flat if and only if it satisfies the double negation
law (i.e., |= ¬¬φ ↔ φ holds). In particular, double negation law holds for classical
formulas (or first-order formulas).

Proof. As |= φ→¬¬φ always holds, it suffices to show that for all formulas φ of BID−,

φ is flat ⇐⇒ |= ¬¬φ→ φ.

“=⇒”: If φ is flat, then ¬¬φ→ φ is flat by Fact 2.1.1. It is easy to see that M |={s}
¬¬φ→ φ holds for any suitable modelM and any suitable singleton team {s} ofM , thus
by flatness we obtain that M |=X ¬¬φ→ φ holds for any suitable team X of M .

“⇐=”: Suppose φ is not flat. Then there exists a suitable model M and a suitable
team X such that

M |={s} φ for all s ∈X, but M 6|=X φ.

For any s∈X , we have thatM |={s} ¬¬φ, thus as¬¬φ is flat, we obtain thatM |=X ¬¬φ.
By assumption, M 6|=X φ, thus M 6|=X ¬¬φ→ φ. �

Lemma 2.1.3 gave a characterization of flat formulas of BID−. An interesting fact
(Fact 4.1.11) which we will not be able to state rigouosly until Chapter 4 is that the un-
derlying propositional logic of BID− is not closed under uniform substitution, as simply,
double negation law fails for non-flat formulas of the logic.

By definition, to determine whether a flat formula φ is satisfied by a team X on a
model M , it is sufficient to check whether φ is satisfied by all singleton teams {s} for
s ∈ X . In this sense, flat formulas of BID− are simple. The next lemma shows that on
singleton teams, quantifier-free BID− formulas behave actually as classical formulas.

Lemma 2.1.4. Let φ and ψ be formulas of BID−. Let M be a suitable model and s a
suitable assignment of M .
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(i) M |={s} φ(>/=(x1, . . . ,xn)) ⇐⇒ M |={s} φ. In particular,

M |={s} =(x1, . . . ,xn)

always holds.

(ii) M |={s} ¬φ ⇐⇒ M 6|={s} φ. In particular, if φ is a sentence, then

M |={ /0} ¬φ ⇐⇒ M 6|={ /0} φ.

(iii) M |={s} φ⊗ψ ⇐⇒ M |={s} φ∨ψ ⇐⇒ M |={s} ¬φ→ ψ.

(iv) M |={s} φ→ ψ ⇐⇒ M |={s} ¬φ⊗ψ.

Proof. Straightforward. �

In Lemma 2.1.4 (i), every occurrence of any dependence atom in the formula φ is
replaced by the constant >. The resulting formula is written as φf in [78] and such a
procedure is called flattening. For formulas φ of dependence logic D, it is shown that
φ |= φf . However, this result cannot be generalized to BID−, as, e.g., φ = ∀x=(x)→⊥
is satisfied by all teams of models with cardinality > 1 (since ∀x=(x) is never satisfied
by any team in such cases), but the flattened formula φf = ∀x>→⊥ is not satisfied by
non-empty teams. Nevertheless, item (i) of the above lemma shows that in BID−, on
singleton teams, φ indeed implies φf . On the other hand, in BID− the flat formula ¬¬φ
can be viewed as a type of flattening of φ, and we know that φ |= ¬¬φ.

Adding the “classical (contradictory) negation” into BID−, we obtain the so-called
team logic ([78]). Definable team properties of team logic correspond exactly to all
second-order properties with respect to non-empty teams, in particular, sentences of team
logic have the same expressive power as sentences of the full second-order logic ([59],
see also [71]). We have pointed out that classical negation is not definable in BID−, but
Lemma 2.1.4 (ii) illustrates that restricted to singleton teams, the intuitionistic negation
behaves as the classical negation.

Moreover, Lemma 2.1.4 (iii) means that on singleton teams, tensor disjunction ⊗ is
definable using intuitionistic implications→. This result can be strengthened as follows.

Lemma 2.1.5. For any formulas φ and ψ of BID−, if φ is flat, then

φ⊗ψ ≡ ¬φ→ ψ.

Proof. It suffices to show that for any suitable model M and any suitable team X of M ,
it holds that

M |=X φ⊗ψ⇐⇒M |=X ¬φ→ ψ.

=⇒: Suppose M |=X φ⊗ψ. Then there exist two teams Y,Z with X = Y ∪Z such
that M |=Y φ and M |=Z ψ. For any non-empty team U ⊆ X with M |=U ¬φ, the
downwards closure property gives that for any s ∈ U , M |={s} ¬φ, i.e. M 6|={s} φ. Since
M |=Y φ, in view of the the downwards closure property we conclude that s 6∈ Y , thus
U ⊆ Z, which implies M |=U ψ by the downwards closure property.
⇐=: Suppose M |=X ¬φ→ ψ. Define
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Y = {s ∈X |M |={s} φ} and Z = {s ∈X |M 6|={s} φ}.

Clearly, X = Y ∪Z. Since φ is flat, we have that Y |= φ. On the other hand, for every
s ∈ Z, M |={s} ¬φ, which implies that M |=Z ¬φ, as ¬φ is flat by Corollary 2.1.2. Thus,
since M |=X ¬φ→ ψ, we obtain that M |=Z ψ. Hence M |=X φ⊗ψ. �

Corollary 2.1.6. Law of excluded middle with respect to tensor disjunction holds for flat
formulas φ of BID−, i.e., |=φ⊗¬φ holds whenever φ is flat. In particular, law of excluded
middle holds for classical formulas.

Proof. Clearly, |= ¬φ→¬φ, which implies |= φ⊗¬φ whenever φ is flat. �

We have shown in Lemma 1.1.16 that intuitionistic disjunction ∨ is uniformly defin-
able in D, therefore it is also definable uniformly in BID− in terms of other connectives.
Lemma 2.1.5 defines tensor disjunction ⊗ uniformly under certain constraint. We now
prove in the next lemma that with an essential use of intuitionistic implication→, tensor
disjunction ⊗ is uniformly definable in BID− in terms of the other connectives.

Lemma 2.1.7. For any formulas φ,ψ of BID−, putting

θ2 := ∃x∀y(x= y)→ (¬φ→ ψ),

θ3 := ∀x∃y(x 6= y)→∃w∃u((w = u→ φ)∧ (w 6= u→ ψ)),

where w,u /∈ Fv(φ)∪Fv(ψ), we have that φ⊗ψ ≡ θ2∧θ3

Proof. If a suitable model M has cardinality 1, then θ3 is trivially satisfied. On M , there
is a unique assignment s. By Lemma 2.1.4(iii),

M |={s} φ⊗ψ ⇐⇒ M |={s} ¬φ→ ψ ⇐⇒ M |={s} θ2∧θ3.

If M has cardinality > 1, then θ2 is trivially satisfied. It is then sufficient to show that
for any suitable team X of M ,

M |=X ∃w∃u((w = u→ φ)∧ (w 6= u→ ψ)) ⇐⇒ M |=X φ⊗ψ.

We leave the proof of the above expression for the reader. �

2.2 First-order intuitionistic dependence logic
In this section, we define an important sublogic of BID, first-order intuitionistic depen-
dence logic, and show some of its basic properties.

Definition 2.2.1. First-order intuitionistic dependence logic (ID) is the sublogic

BID[⊥,=(· · ·),∧,∨,→,∃,∀]

of BID. In other words, well-formed formulas of ID are given by the following grammar

φ ::= α | ¬α |=(x1, . . . ,xn) | ⊥ | φ∧φ | φ∨φ | φ→ φ | ∃xφ | ∀xφ

where α is a first-order atomic formula and n≥ 1.
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By the team semantics, for a dependence atom =(x) with a single variable x,

M |=X =(x) iff for all s,s′ ∈X, s(x) = s′(x). (2.1)

That is, the variable x has a constant value under all assignments in X . We call such
dependence atoms constancy dependence atoms. First-order dependence logic with con-
stancy dependence atoms only is called constancy first-order dependence logic.

Theorem 2.2.2 ([31]). Constancy first-order dependence logic is equivalent to first-order
logic (of BID) over sentences.

The next lemma shows that dependence atoms of the form =(x1, . . . ,xn) can be de-
composed to constancy dependence atoms using intuitionistic implication.

Lemma 2.2.3 ([1]). =(x1, . . . ,xn)≡
(
=(x1)∧·· ·∧=(xn−1)

)
→=(xn).

Alternatively, as shown in [32], one can also decompose dependence atoms using the
so-called announcement operator δx, since

=(x1, . . . ,xn)≡ δx1 . . . δxn−1=(xn).

Putting together all the properties regarding the expressive power of ID we have so
far, we obtain the following equivalent definitions of ID.

Corollary 2.2.4. ID = ID[⊥,=(·),∧,→,∃,∀]
= D[→]

= constancy D[→]

= BID−.
Proof. Follows from Lemma 1.1.16, Lemma 2.1.7 and Lemma 2.2.3. �

Corollary 2.2.5. BID = D[→,(].

In [60], two weak quantifiers ∃1 and ∀1 are introduced. Their team semantics are
defined as follows:

Definition 2.2.6. Let M be a suitable model, and X a suitable team of M for a formula
φ of BID. Define

• M |=X ∃1xφ iff there exists a ∈M such that M |=X(a/x)φ, where

X(a/x) = {s(a/x) : s ∈X}.

• M |=X ∀1xφ iff for all a ∈M , M |=X(a/x)φ.

First-order dependence logic extended with ∃1 and ∀1 is shown in [60] to be equivalent
to D, that is,

D[∃1,∀1] = D.
As a consequence, every instances of the formulas ∃1xφ and ∀1xφ are expressible in D.
A uniform definition for the weak existential quantifier ∃1 was given in [60]:

∃1xφ≡ ∃x(=(x)∧φ).

On the other hand, Galliani proved in [32] that the weak universal quantifier ∀1 is not uni-
formly definable in D. But now, in ID, with an essential use of intuitionistic implication,
∀1 is uniformly definable, as shown in the following fact.
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Fact 2.2.7. For any formula φ of ID, we have that

∀1xφ≡ ∀x(=(x)→ φ).

Proof. Easy, by the downwards closure property. �

Corollary 2.2.8. ID[∃1,∀1] = ID.

Another interesting observation is that constancy dependence atoms are definable us-
ing the weak existential quantifier ∃1, as shown in the following fact.

Fact 2.2.9. =(x)≡ ∃1y(y = x).

Proof. Easy. �

ID with weak quantifiers only, i.e., (with some abuse of notation) the logic

WID := ID[⊥,=(· · ·),∧,∨,→,∃1,∀1],

can be viewed as a weak form of ID. An easy consequence of Fact 2.2.9 is that in the
weak ID, dependence atoms can be eliminated, as recorded in the following corollary.

Corollary 2.2.10. WID = ID[⊥,∧,∨,→,∃1,∀1].

Proof. By Fact 2.2.9 and Lemma 2.2.3. �

We have illustrated in Corollary 2.1.4 that on singleton teams, formulas of ID behave
classically. As an easy consequence of this fact, over sentences, WID is in fact equivalent
to first-order logic. However, the expressible power of open formulas of WID is unknown.

Theorem 2.2.11. Sentence of WID are expressible in first-order logic, and vice versa.

Proof. By Corollary 2.2.10, it suffices to prove the theorem for first-order logic and the
logic ID[⊥,∧,∨,→,∃1,∀1].

Let φ be a formula of ID[⊥,∧,∨,→,∃1,∀1], and φ∗ the formula φ viewed as a first-
order formula (view ∃1 as the first-order existential quantifier, etc.). We show by induction
on φ that for any suitable model M , any suitable assignment s of M ,

M |={s} φ ⇐⇒ M |=s φ∗. (2.2)

We only prove the interesting cases. If φ= ∃1xψ(x), then

M |={s} ∃1xψ(x) ⇐⇒ there is a ∈M such that M |={s(a/x)} ψ(x)
⇐⇒ there is a ∈M such that M |=s(a/x) ψ(x)

(by induction hypothesis)
⇐⇒M |=s ∃xψ(x).

The case φ= ∀1xψ(x) is proved similarly.
It follows from (2.2) that for φ being a sentence,

M |={ /0} φ ⇐⇒ M |=FO φ
∗.
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Therefore every WID sentence is expressible in first-order logic.
Conversely, again by (2.2), every sentence ψ of first-order logic is expressible by the

sentence ψ∗ of WID, where ψ∗ is ψ viewed as a sentence of WID (view the first-order
existential quantifier ∃ as ∃1, etc.). �

Returning to the logic ID, in addition to axioms of intuitionistic propositional logic
(IPL), it is easy to check that axioms of intuitionistic first-order predicate logic (IQL) are
also valid in ID, that is, axioms of IPL together with the following ones:

1. ∀xφ(x)→ φ(t), where t a first-order term such that no occurrence of any variable
in t becomes bound in φ(t);

2. φ(t)→ ∃xφ(x), where t a first-order term such that no occurrence of any variable
in t becomes bound in φ(t).

As for inference rules, Modus Ponens, Generlization Rules of IQL listed as follows
are valid rules in ID:

• φ→ ψ ψ

ψ
(MP)

• φ→ ψ(x)

φ→∀xψ(x)
, (∀Gen)

where x is a variable which does not occur free in φ;

• ψ(x)→ φ

∃xψ(x)→ φ(x)
, (∃Gen)

where x is a variable which does not occur free in φ.

However, we will see in Fact 4.1.11 of Chapter 4 that the underlying propositional logic
of ID is not closed under Uniform Substitution.

Moreover, intuitionistic implication admits Deduction Theorem in ID.

Theorem 2.2.12 (Deduction Theorem). For any formulas φ and ψ of ID,

φ |= ψ ⇐⇒ |= φ→ ψ.

Proof. By definition and the downwards closure property of ID. �

We end this section by pointing out that axioms schemes of two intermediate logics,
Maksimova’s Logic ND ([68]) and Kreisel-Putnam Logic KP ([63]), are all valid in ID.
These axioms in the team semantics setting were first studied in [13] in the context of
inquisitive logic, which is essentially equivalent to propositional intuitionistic dependence
logic. We will discuss these axioms in details in the context of propositional intuitionistic
dependence logic in Section 4.2.

Fact 2.2.13. The following axioms are valid in ID.

NDk
(
¬φ→

∨
1≤i≤k¬ψi

)
↔
∨

1≤i≤k(¬φ→¬ψi) for all k ∈ N;

KP (¬φ→ ψ∨χ)→
(
(¬φ→ ψ)∨ (¬φ→ χ)

)
.
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2.3 Expressive power of first-order intuitionistic depen-
dence logic

In this section, we prove that first-order intuitionistic dependence logic is equivalent to
the full second-order logic over sentences. The content of this section is based on the
publication [87].

It was shown in [1] that BID formulas can be translated into second-order logic (SO).
We record the theorem with a proof sketch as follows.

Theorem 2.3.1 ([1]). For any L-formula φ(x̄) of BID, there exists a second-order L(R)-
sentence τR(φ) = ψ(R) which is downwards monotone with respect to a new predicate R
such that for any L-model M and any suitable team X of M ,

M |=X φ(x̄)⇐⇒ (M,rel(X)) |= ψ(R).

Proof. (sketch) We define the translation τR(φ) by induction on φ. Let

τR(θ0∨θ1) =τR(θ0)∨ τR(θ1),

τR(θ0→ θ1) =∀S(∀x̄(S(x̄)→R(x̄))→ (τS(θ0)→ τS(θ1))),

τR(θ0( θ1) =∀S(τS(θ0)→∀T (∀x̄(T (x̄)↔ (S(x̄)∨R(x̄)))→ τT (θ1))).

Other cases are defined in the same way as in [78]. �

It follows from the above theorem that BID sentences are expressible in second-order
logic. We now proceed to prove that the other direction of this statement also holds,
namely, there is a translation from the sentences of the full second-order logic into BID.
From this proof, it will follow that ID is equivalent to the full second-order logic over
sentences too.

A translation from Σ1
1-sentences into D, which is a sublogic of BID, was given in

[78]. Below we include a sketch of the proof of this translation (which is the nontrivial
direction of Theorem 1.1.18). The idea of this proof will be generalized in the sequel.

Theorem 2.3.2 ([78]). Σ1
1-sentences are expressible in D.

Proof. (idea) Without loss of generality, we may assume every Σ1
1 sentence φ is of the

following special Skolem normal form

∃f1 · · ·∃fn∀x1 · · ·∀xmψ,

where ψ is a quantifier-free formula of first-order logic, and for each 1 ≤ i ≤ n, every
occurrence of the function symbol fi is of the same form fixi1 . . .xiq for some fixed
sequence 〈xi1 , . . . ,xiq 〉 of variables from the set {x1, . . . ,xm}. We find a sentence φ∗

of D which expresses φ. The idea behind the sentence φ∗ is that in φ, we replace each
occurrence of the function symbol fi by a new variable yi, and add a dependence atom to
specify that yi is functionally determined by the arguments xi1 , . . . ,xiq of fi. This can be
done because we have required that each occurrence of fi is of the same form fixi1 . . .xiq .
To be precise, the sentence φ∗ of D is defined as follows:

φ∗ := ∀x1 · · ·∀xm∃y1 · · ·∃yn(=(x11 , . . . ,x1q ,y1)∧
·· ·∧=(xn1 , . . . ,xnq ,yn)∧ψ

′ ),
(2.3)
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where ψ′ is a formula of D obtained from the formula ψ of first-order logic by replac-
ing everywhere the classical disjunction by ⊗, and fixi1 . . .xiq by a new variable yi for
each i. In φ∗, the dependence atoms together with the existential quantifiers enable us to
pick exactly those functions corresponding to the functions assigned to the existentially
quantified function variables f1, . . . ,fn in φ. �

Remark 2.3.3. Equation (2.3) with the first-order quantifier-free formula ψ′ in conjunc-
tive normal form is a normal form for sentences of D.

In the remaining part of this section, we give a direction translation from sentences
of the full second-order logic into BID. First, we recall the normal form of second-order
logic formulas.

Theorem 2.3.4 (Normal Form of SO). Every second-order formula is equivalent to a
formula of the form

∀f1∃f2 · · ·∀f2n−1∃f2n∀xψ,

where ψ is quantifier-free, and we assume without loss of generality that for the corre-
sponding Q ∈ {∀,∃}, each Qf i =Qf i1 · · ·Qf ip and each f ij is of arity q.

The basic idea of the translation for sentences of the full second-order logic is gener-
alized from that of the proof of Theorem 2.3.2 for Σ1

1-sentences. For each second-order
sentence in a special normal form (to be clarified in Lemma 2.3.7), we replace each func-
tion variable by a new variable and specify the functionality of the new variable by adding
the corresponding dependence atoms. We have seen in the proof of Theorem 2.3.2 that
dependence atoms together with existential quantifiers enable us to simulate existentially
quantified function variables; on the other hand, universally quantified function variables
can also be simulated using dependence atoms and intuitionistic implications. In this way,
we will be able to express all second-order sentences in BID.

To make this idea work, we need to first turn every second-order sentence φ into a
better normal form than the one given in Theorem 2.3.4, that is we need to guarantee
that for each q-ary function variable f ij , every occurrence of f ij in φ is of the same form
f ijxi,j1 . . .xi,jq for some fixed sequence 〈xi,j1 . . .xi,jq 〉 of variables (this normal form is
inspired by the Σ1

1 normal form in Theorem 2.3.2, see Section 6.3 in [78] for detailed
discussions). To this end, we need three lemmas.

The first lemma removes nesting of function symbols in a formula.

Lemma 2.3.5. Let φ(ft1 . . . tq) be any first-order formula, in which the q-ary function
symbol f has an occurrence of the form ft1 . . . tq for some terms t1 . . . tq . Then we have
that

|= φ(ft1 . . . tq)↔∀x1 · · ·∀xq((t1 = x1)∧·· ·∧ (tq = xq)→ φ(fx1 . . .xq)),

where x1, . . . ,xq are new variables and φ(fx1 . . .xq) is the formula obtained from φ(ft1 . . . tq)
by replacing everywhere ft1 . . . tq by fx1 . . .xq .

Proof. Easy. �

The second lemma unifies the arguments of function symbols in a formula.
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Lemma 2.3.6. Let φ(fx1 . . .xq,fy1 . . .yq) be a first-order formula, in which the q-ary
function symbol f has an occurrence of the form fx1 . . .xq and an occurrence of the form
fy1 . . .yq with {x1, . . . ,xq}∩{y1, . . . ,yq}= /0. Then we have that

|=∀x1 · · ·∀xq∀y1 · · ·∀yqφ(fx1 . . .xq,fy1 . . .yq)

↔∃g∀x1 · · ·∀xq∀y1 · · ·∀yq
(
φ(fx1 . . .xq,gy1 . . .yq)

∧ ((x1 = y1)∧·· ·∧ (xq = yq)→ (fx1 . . .xq = gy1 . . .yq))
)
,

where φ(fx1 . . .xq,gy1 . . .yq) is the first-order formula obtained from the formula φ(fx1
. . . ,xq,fy1 . . .yq) by replacing everywhere fy1 . . .yq by gy1 . . .yq .

Proof. Easy. �

The next lemma gives the intended normal form for second-order formulas.

Lemma 2.3.7. Every second-order formula is equivalent to a formula φ of the form

∀f1
1 · · ·∀f1

p∃f2
1 · · ·∃f2

p · · · · · ·∀f2n−1
1 · · ·∀f2n−1

p ∃f2n
1 · · ·∃f2n

p ∀x1 · · ·∀xmψ,

where

• ψ is quantifier free;

• each function symbol f ij is of arity q, and its every occurrence is of the same form
f ijxi,j , where

xi,j = 〈xi,j1 , . . . ,xi,jq 〉
with {xi,j1 , . . . ,xi,jq} ⊆ {x1, . . . ,xm}.

Proof. Start with a formula in the normal form described in Theorem 2.3.4, apply Lemma
2.3.5 and Lemma 2.3.6 several times, and add dummy quantifiers. �

The next lemma states that under the right valuations, the behavior of functions can be
simulated by new variables. This technical lemma will play a role in the proof of Theorem
2.3.9.

Lemma 2.3.8. Let ψ(f,x) be any quantifier-free formula of first-order logic with

f̄ = 〈f1, . . . ,fp〉 and x̄= 〈x1, . . . ,xm〉,

where each function symbol fj is of arity q, and its every occurrence is of the same form

fjxj1 . . .xjq with {xj1 . . .xjq} ⊆ {x1, . . . ,xm}.

Let (M,F ) be any suitable model with function symbols f1, . . . ,fp interpreted as F1, . . . ,
Fp, respectively. Consider the classical formula ψ′ of BID obtained from φ by replacing
everywhere the classical disjunction by⊗, and fjxj1 . . .xjq by a new variable yj for each
1≤ j ≤ p. Let s be a suitable assignment for ψ′ such that for all 1≤ j ≤ p,

s(yj) = Fj(s(xj1), . . . ,s(xjq )). (2.4)

Then
(M,F ,s(x)) |= ψ(f,x)⇐⇒M |={s} ψ′.
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Proof. It is easy to show by induction that for any term t, t〈s〉= t′〈s〉, where t′ is obtained
from t by replacing everywhere fjxj1 . . .xjq by yj for each 1≤ j ≤ p. Next, we show the
lemma by induction on ψ. The only interesting case is the case ψ = θ0∨ θ1. In this case,
we have that

(M,F ,s(x)) |= θ0∨θ1⇐⇒(M,F ,s(x)) |= θ0 or (M,F ,s(x)) |= θ1

⇐⇒M |={s} θ′0 or M |={s} θ′1
(by induction hypothesis)

⇐⇒M |={s} θ′0⊗θ′1
(since {s}= {s}∪{s}= {s}∪ /0).

�

Now we are in a position to give the translation from second-order sentences into BID.
In the proof of the following theorem, we abbreviate a sequence of the form 〈ui,1, . . . ,ui,p〉
by ui, and 〈F i1 , . . . ,F ip〉 by F i.

Theorem 2.3.9. Second-order sentences are expressible in BID and vice versa.

Proof. It follows from Theorem 2.3.1 that BID sentences are expressible in second-order
logic. For the other direction, without loss of generality, we may assume that every
second-order sentence φ is of the form described in Lemma 2.3.7. For each pair 〈i, j〉
(1 ≤ i ≤ 2n, 1 ≤ j ≤ p), pick a new variable ui,j not occurring in φ. We inductively
define formulas δi of BID for 2n≥ i≥ 1 as follows:

• let
δ2n := ∃u2n,1 · · ·∃u2n,p(Θ2n∧ψ′);

• for 2n > i≥ 1, let

δi :=
{

Θi→ δi+1, if i is odd;
∃ui,1 · · ·∃ui,p(Θi∧ δi+1), if i is even,

where

Θi =
p∧
j=1

=(xi,j ,ui,j)

and ψ′ is the classical formula of BID obtained from the formula ψ of first-order
logic by replacing everywhere the classical disjunction by ⊗, and each f ijxi,j by
ui,j .

Let
φ∗ = ∀u1,1 · · ·∀u1,p∀u3,1 · · ·∀u3,p · · · · · ·∀u2n−1,1 · · ·∀u2n−1,p∀xδ1 (2.5)[

i.e. φ∗ =∀u1,1 · · ·∀u1,p∀u3,1 · · ·∀u3,p · · · · · ·∀u2n−1,1 · · ·∀u2n−1,p∀x
(Θ1→∃u2,1 · · ·∃u2,p(Θ2∧ (Θ3→∃u4,1 · · ·∃u4,p(Θ4∧·· · · · ·
· · · · · ·∧ (Θ2n−1→∃u2n,1 · · ·∃u2n,p(Θ2n∧ψ′ )) · · · · · ·))))︸ ︷︷ ︸

2n

]
.
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The general idea behind the BID formula φ∗ is that the δi’s for i odd, simulate the
∀f i’s, and the δi’s for i even, simulate the ∃f i’s in the second-order sentence φ. The
rest of the proof is devoted to show that such sentence φ∗ does express the second-order
sentence φ, i.e. to show that for any suitable model M ,

M |= φ⇐⇒M |={ /0} φ
∗.

“=⇒”: Suppose M |= φ. Then for any sequence of functions

F 1
1 , . . . ,F

1
p :Mq→M,

there exists a sequence of functions (depending on F 1)

F 2
1 (F 1 ), . . . ,F 2

p (F
1 ) :Mq→M

such that for any . . . . . . for any sequence of functions

F 2n−1
1 , . . . ,F 2n−1

p :Mq→M,

there exists a sequence of functions (depending on F 1,F 3 . . . ,F 2n−1 )

F 2n
1 (F 1,...,F 2n−1), . . . ,F 2n

p (F 1,...,F 2n−1 ) :Mq→M

such that
(M,F 1, . . . ,F 2n) |= ∀xψ(f1, . . . ,f2n ). (2.6)

Let Y1 be a non-empty subteam of

X = { /0}(M/u1,u3, . . . ,u2n−1,x)

such that M |=Y1 Θ1. It suffices to show that

M |=Y1 δ2, i.e. M |=Y1 ∃u2,1 · · ·∃u2,q(Θ2∧ δ3). (2.7)

The team Y1 corresponds to a sequence of functions F 1
1 (Y1), . . . ,F

1
p (Y1) : Mq →M

defined as follows: for any 1≤ j ≤ p, and for some fixed a0 ∈M , let

F 1
j (d) =

{
s(u1,j), if there exists s ∈ Y1 such that s(x1,j) = d;
a0 ∈M, otherwise.

Each F 1
j is well-defined. Indeed, for any d ∈Mq , any s,s′ ∈ Y1 such that

s(x1,j) = d= s′(x1,j),

since M |=Y1 =(x1,j ,u1,j), we must have that

s(u1,j) = s′(u1,j).

Now, using the functions F 2
1 (F 1), . . . ,F 2

p (F
1) given by the assumption, we define a

sequence of functions α2,1(F 2
1 ), . . . ,α2,p(F 2

p) from the corresponding supplement teams of
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Y1 toM such that the supplement team Y1(α2,1/u2,1) . . .(α2,p/u2,p) satisfies Θ2∧δ3. For
each 1≤ j ≤ p, define the function

α2,j : Y1(α2,1/u2,1) . . .(α2,j−1/u2,j−1)→M

corresponding to F 2
j (F

1) by taking

α2,j(s) = F 2
j (s(x

2,j)).

Put
Y2 = Y1(α2,1/u2,1) . . .(α2,p/u2,p).

It suffices to show that M |=Y2 Θ2 and

M |=Y2 δ3, i.e. M |=Y2 Θ3→ δ4. (2.8)

The former is obvious by the definitions of Y2 and α2. To show the latter, repeat the
same argument and construction n− 1 times, and it then suffices to show that for any
non-empty subteams Y3 of Y2, Y5 of Y4, . . . , Y2n−1 of Y2n−2 such that

M |=Y3 Θ3, M |=Y5 Θ5, . . . , M |=Y2n−1 Θ2n−1,

it holds that
M |=Y4 Θ4,M |=Y6 Θ6, . . . ,M |=Y2n Θ2n (2.9)

and M |=Y2n ψ
′, where Y4,Y6 . . . ,Y2n are supplement teams defined in the same way

as above. Clause (2.9) follows immediately from the definitions of Y4,Y6, . . . ,Y2n and
α4,α6, . . .α2n. To showM |=Y2n ψ

′, since ψ′ is flat (classical), it suffices to showM |={s}
ψ′ holds for all s ∈ Y2n.

For the functions F 1(Y1),F 2(F 1), . . . ,F 2n−1(Y2n−1),F 2n(F 2n−1) obtained as above, by
(2.6) we have that

(M,F 1, . . . ,F 2n,s(x)) |= ψ(f1, . . . ,f2n,x).

Now, it follows from the definitions of F 1, . . . ,F 2n that condition (2.4) in Lemma 2.3.8
is satisfied for each F ij , hence, an application of Lemma 2.3.8 gives the desired result that
M |={s} ψ′.

“⇐=”: Suppose M |={ /0} φ
∗. Then

M |=X Θ1→ δ2,

where
X = { /0}(M/u1,u3, . . . ,u2n−1,x).

Let F 1
1 , . . . ,F

1
p : Mq →M be an arbitrary sequence of functions. Take a subteam Y1(F 1)

of X which corresponds to these functions by putting

Y1 = {s ∈ { /0}(M/u1,u3 . . .u2n−1,x)

| s(u1,1) = F 1
1 (s(x

1,1)), . . . ,s(u1,p) = F 1
p (s(x

1,p))}.
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Clearly, M |=Y1 Θ1 holds, thus we have that M |=Y1 δ2 holds (i.e., (2.7) holds). So
there exist functions

α2,1(F 1) : Y1→M,. . . . . . ,α2,p(F 1) : Y1(α2,1/u2,1) . . .(α2,p−1/u2,p−1)→M

depending on F 1 such that M |=Y2 Θ2 and M |=Y2 δ3 holds (i.e., (2.8) holds), where

Y2 = Y1(α2,1/u2,1) . . .(α2,p/u2,p).

Now, we define functions F 2
1 (F 1), . . . ,F 2

p (F
1) :Mq→M , which simulate α2,1, . . . ,α2,p as

follows: for each 1≤ j ≤ p and for any d ∈Mq , let

F 2
j (d) = s(u2,j) for some s ∈ Y2 such that s(x2,j) = d.

Note that the definition of Y2 guarantees such s in the above definition always exists, and
moreover, each F 2

j is well-defined since for any s,s′ ∈ Y2 with

s(x2,j) = d= s′(x2,j),

as M |=Y2 =(x
2,j ,u2,j), we must have that

s(u2,j) = s′(u2,j).

Repeat the same argument and construction n−1 times to define inductively for any
sequences of functions F 3,F 5, . . . ,F 2n−1, the subteams Y3 of Y2, . . . , Y2n of Y2n−1 such
that

M |=Y3 Θ3, M |=Y5 Θ5, . . . ,M |=Y2n−1 Θ2n−1,

and the supplement teams Y4,Y6, . . . ,Y2n satisfy

M |=Y4 Θ4, M |=Y6 Θ6, . . . ,M |=Y2n−2 Θ2n−2, M |=Y2n Θ2n∧ψ′,

and to define inductively the sequences of functions

F 4,F 6 . . . ,F 2n :Mq→M,

according to the functions α4,α6, . . . ,α2n obtained from the existential quantifiers ∃u4,
∃u6, . . . ,∃u2n. It then suffices to show that

(M,F 1, . . . ,F 2n) |= ∀xψ(f1, . . . ,f2n).

Let a be an arbitrary sequence in M of the same length as that of x. By the con-
struction of Y2n, there must exists s ∈ Y2n such that s(x) = a. Since M |=Y2n ψ

′, by
the downwards closure property, we have that M |={s} ψ′. Note that by the definitions of
F 1, . . . ,F 2n, condition (2.4) in Lemma 2.3.8 is satisfied for each F ij , hence, an application
of Lemma 2.3.8 gives the desired result that

(M,F 1, . . . ,F 2n,s(x)) |= ψ(f1, . . . ,f2n,x).

�
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Theorem 2.3.10. Second-order sentences are expressible in ID, and vice versa.

Proof. It follows from Theorem 2.3.1 that ID sentences are expressible in second-order
logic. For the other direction, note that in the proof of Theorem 2.3.9, the linear implica-
tion and intuitionistic disjunction did not play any role, thus it follows that second-order
sentences are expressible in D[→], which is equivalent in ID by Corollary 2.2.4. �

Remark 2.3.11. In fact, Lemma 2.3.7 gives a normal form for Π1
2n-sentences (n ∈ ω),

therefore the formula in Equation (2.5) can be viewed as an ID-normal form for Π1
2n-

sentences.
Moreover, every Σ1

2n-sentence φ is equivalent to a sentence ¬ψ, where ψ is a Π1
2n-

sentence. Taking ψ∗ to be the formula in Equation (2.5) for ψ, by Lemma 2.1.4, we have
that

M |= φ ⇐⇒ M 6|= ψ ⇐⇒ M 6|={ /0} ψ
∗ ⇐⇒ M |={ /0} ¬ψ∗,

namely the sentence ¬ψ∗ of ID is the translation of the Σ1
2n-sentence φ.

Obviously, applying the trick of Lemma 2.3.7, one can also obtain a nice normal form
for Σ1

2n−1 sentence, so the above observation holds for Σ1
2n−1- and Π1

2n−1-sentences as
well. In particular, the proof of Theorem 2.3.2 (for Σ1

1-sentences) can then be viewed as a
special case of the proof of Theorem 2.3.9.

As mentioned, team logic [78] (TL), which is dependence logic extended with classi-
cal negation is also equivalent to the full second-order logic over sentences ([59], see also
[71]). The significance of our result here is that the equivalence of BID (or already ID)
and the full SO on the sentence level is established without the presence of the logical
connective classical negation.

We summarize the results of the expressive power of sublogics of BID over sentences
we have obtained so far in Figure 2.1.

Figure 2.1: Expressive power of sublogics of BID over sentences

SO

Σ1
1

FO

BID,ID,D[→], constancy D[→], TL

D

constancy D

2.4 Definability in BID-logic

Formulas of D characterize Σ1
1 downwards monotone properties with respect to non-empty

teams ([78],[60], or Theorem 1.1.22). In this section, we show that formulas of BID
characterize all second-order downwards monotone properties with respect to all teams
(including the empty team). The argument of this section is divided into two parts: in
the first part, we deal with these properties over non-empty teams with formulas of BID−,
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while in the second part, we use linear implication to obtain the missing piece with respect
to the empty team. The method presented in this section combines those in [60] and in
Section 2.3.

We start with giving a syntactical characterization for second order downwards mono-
tone sentences (recall Definition 1.1.19). This generalizes Lemma 1.1.20 ([60]) with es-
sentially the same proof as that of Proposition 4.7 in [60].

Lemma 2.4.1 (due to [60]). A second-order L(R)-sentence φ(R) is downwards mono-
tone with respect to a predicate R iff there exists an equivalent second-order L(R)-
sentence ψ in which R occurs only negatively.

Proof. “⇐=”: Assume φ(R) has only negative occurrences of R and φ(R) is in negation
normal form. It suffices to show by induction on subformulas θ(R) of φ(R) that θ(R) is
downwards monotone. The only interesting case θ = ¬Rt̄ is easily verified.

“=⇒”: Suppose φ(R) is downwards monotone with respect to R. Let φ(S) be the
formula obtained from φ by replacing every occurrence of R by a new predicate-variable
S. Letting

ψ(R) = ∃S(φ(S)∧∀x̄(Rx̄→ Sx̄)),

where R occurs only negatively, it is straightforward to verify by downwards monotonic-
ity that |= φ(R)↔ ψ(R). �

Next, we generalize Lemma 2.3.7 and obtain a normal form for every second-order
downwards monotone sentence.

Lemma 2.4.2. Every second-order downwards monotone sentence with respect to a pred-
icate R is equivalent to a formula of the form

∃g0∃g1∀f1
1 · · ·∀f1

p∃f2
1 · · ·∃f2

p · · · · · ·∃f2n
1 · · ·∃f2n

p ∀x∀y(ψ∧ (Rȳ→ (g0ȳ = g1ȳ))),

where

• ψ is quantifier-free and does not contain the predicate R;

• each function symbol f ij is of arity q, and its every occurrence is of the same form
f ijxi,j , where

xi,j = 〈xi,j1 , . . . ,xi,jq 〉
with {xi,j1 , . . . ,xi,jq} ⊆ {x1, . . . ,xm};

• every occurrence of the function symbol gl (l = 0,1) is of the same form glȳ.

Proof. Let φ(R) be a sentence as described. First, apply Lemma 2.3.7 to obtain an equiv-
alent sentence θ(R) in the normal form described in the lemma. By Lemma 2.4.1, θ(R)
is equivalent to

∃S(θ(S)∧∀ȳ(Rȳ→ Sȳ)),

where S is a new predicate symbol. This sentence is equivalent to

∃g0∃g1(θ(g0t̄= g1t̄)∧∀ȳ(Rȳ→ (g0ȳ = g1ȳ))),

where θ(g0t̄= g1t̄) is obtained from θ(S) by replacing every occurrence of St̄ by (g0t̄=
g1t̄), which is clearly equivalent to a formula of the required form. �
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Let X be a team of M and s an assignment on M such that dom(X)∩dom(s) = /0.
We write Xs for the set

Xs= {tas | t ∈X}.

Next, we prove the main theorem of this section that every second-order downwards
monotone property is definable with respect to non-empty teams by a formula of BID−.

Theorem 2.4.3. For any second-order L(R)-sentence φ(R) which is downwards mono-
tone with respect to a k-ary predicate R, there exists a formula φ∗(w1, · · · ,wk) of BID−
such that for anyL-modelM and any non-empty teamX ofM with domain {w1, · · · ,wk},

(M,rel(X)) |= φ(R)⇐⇒M |=X φ∗(w̄). (2.10)

Proof. We may assume that every downwards monotone L(R)-sentence φ(R) is of the
normal form described in Lemma 2.4.2. The required formula φ∗(w1, · · · ,wk) is the same
as Formula (2.5) in the proof of Theorem 2.3.9, except we now let

δ2n(w1, . . . ,wk) := ∃u2n,1 · · ·∃u2n,p

(
Θ2n∧ψ′∧

( k⊗
i=1

(wi 6= yi)⊗ (v0 = v1)
))
,

where ψ′ is the classical formula of BID− obtained from the formula ψ of first-order logic
by replacing everywhere

• the classical disjunction by ⊗,

• each f ijxi,j by ui,j ,

• each gly1 . . .yk by vl,

and

φ∗(w̄) := ∀u1,1 · · ·∀u1,p∀u3,1 · · ·∀u3,p · · · · · ·∀u2n−1,1 · · ·∀u2n−1,p∀x∀y
∃v0∃v1(=(ȳ,v0)∧=(ȳ,v1)∧ δ1(w̄)).

(2.11)

It remains to show that for any suitable model M , any non-empty team X of M with
domain {w1, . . . ,wk}, (2.10) holds. The proof goes through a very similar argument to
that in the proof of Theorem 2.3.9. We will only show here the different steps.

For the direction “=⇒”, assuming (M,rel(X)) |= φ(R) for X 6= /0, let Y2n+1 be the
team obtained by the same argument as that in the proof of Theorem 2.3.9. We will show
that

M |=Y2n+1 ψ
′∧
( k⊗
i=1

(wi 6= yi)⊗ (v0 = v1)
)
.

SinceR does not occur in ψ and ψ′ is flat, as in the proof of Theorem 2.3.9,M |=Y2n+1
ψ′ follows from Lemma 2.3.8. It then remains to show that

M |=Y2n+1

k⊗
i=1

(wi 6= yi)⊗ (v0 = v1).
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Observe that the above formula is classical, thus it is flat. It then suffices to show that for
all s ∈ Y2n+1,

M |={s}
k⊗
i=1

(wi 6= yi)⊗ (v0 = v1). (2.12)

Indeed, if s(w̄) = s(ȳ), then

s(ȳ) = s(w̄) ∈ rel(X).

By assumption, there exist functions G0,G1 :Mk→M such that

(M,rel(X),G0,G1,s(ȳ)) |=Rȳ→ (g0ȳ = g1ȳ),

thus
s(v0) =G0(s(ȳ)) =G1(s(ȳ)) = s(v1).

Hence (2.12) is obtained.

Conversely, for the direction “⇐=”, assuming M |=X φ∗ for X 6= /0, let G0,G1 be the
team obtained by the same argument as that in the proof of Theorem 2.3.9. Let a and b̄ be
arbitrary sequences of elements in M of the same lengths as x̄ and ȳ, respectively. By the
construction of Y2n+1, there must exists an assignment

s : (dom(Y2n+1)\dom(X))→M

such that Xs⊆ Y2n+1 and
s(x) = a and s(y) = b.

We show that

(M,G0,G1,F 1, . . . ,F 2n,s(x),s(y)) |= ψ(g0,g1,f1, . . . ,f2n)

and
(M,rel(X),G0,G1,s(x),s(y)) |=Rȳ→ (g0ȳ = g1ȳ).

As in the proof of Theorem 2.3.9, the former follows from Lemma 2.3.8. It then
remains to show the latter. Indeed, since

M |=Y2n+1

k⊗
i=1

(wi 6= yi)⊗ (v0 = v1),

there are V,W1, . . . ,Wk ⊆ Y2n+1 such that Y2n+1 = V ∪W1∪·· ·∪Wk,

M |=V v0 = v1 and M |=Wi wi 6= yi,

for each 1≤ i≤ k. Now, assume

(M,rel(X),G0,G1,s(x),s(y)) |= g0ȳ 6= g1ȳ,

then G0(s(ȳ)) 6=G1(s(ȳ)), which by the construction of Y2n+1 means that

s(v0) =G0(s(ȳ)) 6=G1(s(ȳ)) = s(v1).
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It follows that Xs* V . Noting that by the construction,

Y2n+1 � dom(X) =X,

we have that
Xs⊆W1∪·· ·∪Wk,

which means that for each t ∈X , there exists some 1≤ it ≤ k such that ts ∈Wit . Hence

t(wit) 6= s(yit), so t(w̄) 6= s(ȳ),

for each t ∈X , which means that s(ȳ) 6∈ rel(X), i.e.

(M,rel(X),G0,G1,s(x),s(y)) |= ¬Rȳ,

as required. �

Theorem 2.4.4. Formulas of BID− characterize second-order downwards monotone
properties with respect to non-empty teams.

Proof. Follows from Theorem 2.4.3 and Theorem 2.3.1. �

The proof of Theorem 2.4.3 does not work for non-empty teams. In the remaining
part of this section, we investigate the expressive power of the full logic BID, in which
linear implication is present. The empty team property is lost in the full BID, however,
in this case we do obtain a similar theorem to Theorem 2.4.3 for BID which holds with
respect to all teams, including the empty one.

The empty team /0 can be viewed as a team of any modelM with any domain {x1, . . . ,xk},
and we have that

rel( /0) = {(s(x1), . . . ,s(xk)) | s ∈ /0}= /0.

In case a predicate R occurring in a second-order sentence φ(R) is interpreted as the
empty set /0 (or rel( /0)) in a model, one can replace each occurrence of Rt̄ in φ(R) by
the constant ⊥ (falsum) without affecting the truth value of the formula in the model. We
check this observation in the next lemma.

Lemma 2.4.5. Let φ(R) be a second-order L(R)-sentence with a k-ary predicate R.
Then for any suitable L-model M ,

(M, /0) |= φ(R) ⇐⇒ M |= φ(⊥),

where φ(⊥) is obtained from φ(R) by replacing everywhere Rt̄ by ⊥.

Proof. We show by induction on subformulas ψ(R) of φ(R) that for any suitable model
M , any suitable assignment s on M

(M, /0) |=s ψ(R) ⇐⇒ M |=s ψ(⊥).

The only interesting case is the case ψ(R) = R(t̄) for some terms t1, . . . , tk. As
(t1〈s〉, . . . , tk〈s〉) /∈ /0, we always have that (M, /0) 6|=s R(t̄); on the other hand, M 6|=s ⊥,
thus the lemma holds for this case. �
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Next, we show that with an essential use of linear implication, formulas of BID define
second-order properties with respect to the empty team. Note that we do not require these
properties to be downwards monotone. Indeed, this lemma will be re-used in Section 3.1
on independence logic without the downwards closure property.

Lemma 2.4.6. For any second-orderL(R)-sentence φ(R), there is anL-formula>(φ?

of BID such that for any L-model M ,

(M, /0) |= φ(R) ⇐⇒ M |= /0 >( φ?.

Proof. Noting that φ(⊥) is an L-sentence, we let φ? be the L-sentence of BID− obtained
from Theorem 2.3.9 satisfying

M |= φ(⊥) ⇐⇒ M |={ /0} φ
?

for all L-model M . It follows that

(M, /0) |= φ(R) ⇐⇒M |= φ(⊥) (by Lemma 2.4.5)
⇐⇒M |={ /0} φ

?

⇐⇒M |= /0 >( φ?

(by Locality, since Fv(φ?) = Fv(>) = /0).

�

Finally, we combine the results of Theorem 2.4.3 and Lemma 2.4.6 to show that for-
mulas of BID define all second-order downwards monotone properties with respect to all
teams.

Theorem 2.4.7. For any second-order L(R)-sentence φ(R) downwards monotone with
respect to a k-ary predicate R, there is an L-formula ψ(w1, . . . ,wk) of BID such that
for any L-model M and any team X of M (including the empty team) with domain
{w1, . . . ,wk},

(M,rel(X)) |= φ(R) ⇐⇒ M |=X ψ(w̄).

Proof. Let φ∗(w̄) be the BID− formula obtained from Theorem 2.4.3 and >( φ? the
sentence obtained from Lemma 2.4.6. Let

ψ(w̄) := (⊥∧ (>( φ?))⊗φ∗(w̄).

It suffices to show that for anyL-modelM and any teamX ofM with domain {w1, . . . ,wk},

(M,rel(X)) |= φ(R) ⇐⇒ M |=X (⊥∧ (>( φ?))⊗φ∗(w̄).

“=⇒”: Suppose (M,rel(X)) |= φ(R). If X 6= /0, then by Theorem 2.4.3, M |=X
φ∗(w̄). Since /0⊆ rel(X) and φ(R) is downwards monotone with respect to R, we have
that (M, /0) |= φ(R), thus by Lemma 2.4.6, M |= /0 ⊥∧ (>( φ?). Hence M |=X ψ(w̄).

If X = /0, then M |= /0 ⊥∧ (>( φ?) by Lemma 2.4.6. On the other hand, by the
empty team property of BID−, M |= /0 φ

∗(w̄). Hence, we obtain M |= /0 ψ(w̄).
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Conversely, suppose M |=X ψ(w̄). Then, we must have that

M |= /0 ⊥∧ (>( φ?) and M |=X φ∗(w̄).

In case X = /0, that (M,rel( /0)) |= φ(R) follows from Lemma 2.4.6; in case X 6= /0, that
(M,rel(X)) |= φ(R) follows from Theorem 2.4.3. �

Theorem 2.4.8. Formulas of BID characterize second-order downwards monotone prop-
erties.

Proof. Follows from Theorem 2.4.7 and Theorem 2.3.1. �

One should not confuse the above result with that of team logic in [59]: formulas
of team logic are proved to characterize all second-order properties with respect to non-
empty teams. We summarize the results on expressive power of formulas of sublogics of
BID we have obtained so far in Figure 2.2.

Figure 2.2: Expressive power of sublogics of BID over formulas

SO
w.r.t. non-empty teams

downwards monotone SO

downwards monotone SO
w.r.t. non-empty teams

downwards monotone Σ1
1

w.r.t. non-empty teams

TL

BID, D[→,(]

BID−, ID, D[→]

D

2.5 Concluding remarks

The logic D is equivalent to Σ1
1, therefore it characterizes NP. By the result in sections

2.4-2.5, the logic ID or BID characterizes the Polynomial Hierarchy PH. An ID-normal
form for Π1

n-formulas (or Σ1
n-formulas) is obtained in Section 2.4 (see Remark 2.3.11),

but a syntactical characterization for the fragment of ID that is equivalent to Π1
n (or Σ1

n)
is unknown. Or further, an ID-characterization of the complexity classes ΠP

n and ΣP
n is

unknown.
Independence friendly logic (IF-logic) [47][48] is equivalent to Σ1

1, thus to D, on the
level of sentences. This indicates a possibility of obtaining a similar result with that of
sections 2.3-2.4 for an extension of IF-logic. However, the argument we presented in
these two sections relies heavily on the role the intuitionistic and linear implications play
in the translation; that is, it is based on a deep understanding of the general framework of
Hodges’ team semantics. Since the original semantics of IF-logic was given by means of
imperfect information games ([48]), to obtain a similar result for a reasonable extension
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of IF-logic, one may have to seek for different notions, the game-theoretic ones, which
correspond to the intuitionistic and linear implications in the team semantics context.

On the other hand, in the literature, there is dependence friendly logic (DF-logic)
whose semantics is given by imperfect information games as well. DF-logic emphasizes
the dependence between variables with quantifiers with back slashes instead. Formulas of
DF-logic are built from first-order literals using conjunction, disjunction and back-slashed
existential and universal quantifiers. Intuitively, the formula

∃x\x1, . . . ,xnφ

means “there exists an x, dependent completely of x1, . . . ,xn such that φ”; analogously,
the formula

∀x\x1, . . . ,xnφ

means “for all x, dependent completely of x1, . . . ,xn, we have φ”. In [1], a compositional
team semantics for the two back-slashed quantifiers are given as: for all suitable models
M , all suitable teams X of M ,

• M |=X (∃x\x1, . . . ,xn)φ ⇐⇒def M |=X ∃x(=(x1, . . . ,xn,x)∧φ);

• M |=X (∀x\x1, . . . ,xn)φ ⇐⇒def M |=X ∀x(=(x1, . . . ,xn,x)→ φ).

Applying a similar translation with that in the proof of Theorem 2.3.1, DF-logic are easily
seen to be expressible in second-order logic. Conversely, by a similar argument with that
of the proof of Theorem 2.3.9, every second-order sentence is expressible in DF-logic.
Therefore we have the following theorem.

Theorem 2.5.1. DF-logic is equivalent to the full second-order logic over sentences.

Proof. By Theorem 2.3.9, every second-order sentences is equivalent to a formula φ∗ of
BID. Observe that all occurrences of dependence atoms and intuitionistic implication in
this formula are (essentially) of the forms

∃y1 · · ·∃yk(=(x1,1, . . . ,x1,n1 ,y1)∧·· ·∧=(xk,1, . . . ,xk,nk ,yk)∧θ)

and
∀y1 · · ·∀yk(=(x1,1, . . . ,x1,n1 ,y1)∧·· ·∧=(xk,1, . . . ,xk,nk ,yk)→ θ)2

The former can be replaced equivalently by

(∃y1\x1,1, . . . ,x1,n1) · · ·(∃yk\xk,1, . . . ,xk,nk)θ,

and the latter can be replaced equivalently by

(∀y1\x1,1, . . . ,x1,n1) · · ·(∀yk\xk,1, . . . ,xk,nk)θ.

�

2In the formula φ∗, all of the universal quantifiers are in the front, but each ∀ui,j for i odd can be moved to
the front of δi.



Chapter 3

First-order independence logic with
implications

First-order independence logic (Ind) is equivalent to Σ1
1 over sentences ([39]), and over

formulas, it characterizes all Σ1
1 properties with respect to non-empty teams ([31]). As in

Chapter 2, in this chapter, we will obtain the expressive power of the full second-order
logic by adding implications to the logic Ind. However, Ind is not downwards closed, so
intuitionistic and linear implications do not behave the same way in Ind as in BID. In
Section 3.1, we show by a similar argument with that in Chapter 2 that over formulas,
Ind extended with intuitionistic implication still characterizes all second-order properties
with respect to non-empty teams; and with respect to all teams, Ind extended with both
intuitionistic and linear implication defines (not characterizes) all second-order empty set-
closed properties. In Section 3.2, we study the maximal implication introduced in [59],
and show that first-order inclusion logic extended with maximal implication is equivalent
to the full second-order logic. In Section 3.3, we make some concluding remarks and list
the main open problems.

3.1 Definability in first-order independence logic with in-
tuitionistic and linear implications

Based on the downwards closure property, intuitionistic and linear implications were de-
fined in the context of first-order dependence logic [1]. The lack of the downwards closure
property in first-order independence logic makes it less interesting for the study of these
two implications in the context of this logic. However, in this section we show by a simi-
lar argument with that in Chapter 2 that Ind extended with the two implications does have
some nice properties: Ind[→] still characterizes all second-order properties with respect
to non-empty teams; and with respect to all teams, Ind[→,(] defines (not characterizes)
all second-order empty set-closed properties.

We start with clarifying some basic facts about intuitionistic and linear implications
in the context of Ind.

45
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Fact 3.1.1. In the logic Ind[→,(],

φ⊗ψ |= χ ⇐⇒ φ |= ψ( χ,

but
φ∧ψ |= χ 6=⇒ φ |= ψ→ χ.

Proof. We only give a counterexample to the second clause. Consider the model M =
{0,1}, and the four assignments s0,s1,s2,s3 : {x,y}→M defined by Table 3.1. Clearly,
(x⊥ y)∧> |= x⊥ y. However,

M |={s0,s1,s2,s3} x⊥ y but M 6|={s0,s1,s2,s3} >→ (x⊥ y),

as , e.g., M 6|={s0,s1} x⊥ y. �

In the remaining part of this section, we investigate the expressive power of the logic
Ind[→,(]. First of all, we know from Chapter 2 that D[→,(] is equivalent to the full
second-order logic over sentences. By [39], dependence atoms are expressible in Ind,
therefore we obtain the following immediate corollary.

Corollary 3.1.2. Second-order sentences are expressible in Ind[→,(], and vice versa.

Proof. Follows from Theorem 2.3.10 and [39]. �

Next, we proceed to generalize the argument in Section 2.4 to determine the expressive
power of open formulas of Ind[→,(]. We first show that formulas of Ind[→] characterize
all second-order properties (not necessarily downwards monontone) with respect to non-
empty teams. This is proved by generalizing Theorem 2.4.4 and the result in [31].

By [39], [1], every formula of Ind[→] can be translated into second-order logic (c.f.
Theorem 1.2.4 and Theorem 2.3.1).

Theorem 3.1.3. For any L-formula φ(x̄) of Ind[→,(], there exists a second-order L(R)-
sentence ψ(R) with a new predicate R such that for any L-model M and any team X of
M ,

M |=X φ(x̄)⇐⇒ (M,rel(X)) |= ψ(R).

Proof. Follows from [39], [1]. �

To give the translation of the other direction, analogous to Section 2.4, we need to
obtain a normal form for any second-order sentences with a new relation symbol that can
occur both positively and negatively.

Table 3.1

x y
s0 0 1
s1 1 0
s2 0 0
s3 1 1
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Lemma 3.1.4. Let φ(R) be any second-order L(R)-sentence. Then

|= φ(R)↔∃S(φ(S)∧∀ȳ(Rȳ↔ Sȳ)).

where φ(S) is obtained from φ(R) by replacing everywhere R by a new predicate symbol
S.

Proof. Easy. C.f. Lemma 2.4.1. �

Lemma 3.1.5. Every second-order L(R)-sentence is equivalent to a formula of the form

∃g0∃g1∀f1
1 · · ·∀f1

p∃f2
1 · · ·∃f2

p · · · · · ·∃f2n
1 · · ·∃f2n

p ∀x∀y(ψ∧ (Rȳ↔ (g0ȳ = g1ȳ))),

where

• ψ is quantifier-free and does not contain the predicate R;

• each function symbol f ij is of arity q, and its every occurrence is of the same form
f ijxi,j , where

xi,j = 〈xi,j1 , . . . ,xi,jq 〉

with {xi,j1 , . . . ,xi,jq} ⊆ {x1, . . . ,xm};

• every occurrence of the function symbol gl (l = 0,1) is of the same form glȳ.

Proof. Apply Lemma 2.3.7 and Lemma 3.1.4. C.f. Lemma 2.4.2. �

Now, we prove that formulas of Ind[→] define all second-order properties with respect
to non-empty teams. Recall that first-order dependence logic and inclusion logic are
sublogics of Ind (see Section 1.2, or Figure 1.1), therefore in the following proof, we will
freely use dependence atoms and inclusion atoms in the constructed formula φ∗. Readers
can also view these atoms as shorthands for the equivalent formulas in the language of
Ind.

Theorem 3.1.6. For any second-order L(R)-sentence φ(R) with a k-ary predicate R,
there exists a formula φ∗(w1, · · · ,wk) of Ind[→] such that for any L-model M and any
non-empty team X of M with domain {w1, · · · ,wk},

(M,rel(X)) |= φ(R)⇐⇒M |=X φ∗(w̄). (3.1)

Proof. We may assume that every L(R)-sentence φ(R) is of the normal form described
in Lemma 3.1.5. The required formula φ∗(w1, · · · ,wk) is the same as Formula (2.5) in the
proof of Theorem 2.3.9, except we now let

δ2n := ∃u2n,1 · · ·∃u2n,p

(
Θ2n∧ψ′∧

( k⊗
i=1

(wi 6= yi)⊗ (v0 = v1)
)

∧
(
(ȳ ⊆ w̄)⊗ (v0 6= v1)

))
,

where ψ′ is the classical formula of Ind obtained from the formula ψ of first-order logic
by replacing everywhere
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• the classical disjunction by ⊗,

• each f ijxi,j by ui,j ,

• each gly1 . . .yk by vl,

and

φ∗(w̄) := ∀u1,1 · · ·∀u1,p∀u3,1 · · ·∀u3,p · · · · · ·∀u2n−1,1 · · ·∀u2n−1,p∀x∀y
∃v0∃v1(=(ȳ,v0)∧=(ȳ,v1)∧ δ1(w̄)).

(3.2)

It remains to show that for any suitable model M , any non-empty team X of M with
domain {w1, . . . ,wk}, (3.1) holds. The proof goes through a very similar argument to
those in the proofs of Theorem 2.3.9 and Theorem 2.4.3.1 We will only show here the
different steps.

For the direction “=⇒”, assuming (M,rel(X)) |= φ(R) for X 6= /0, let Y2n+1 be the
team obtained by the same argument as that in the proof of Theorem 2.3.9. We will show
that

M |=Y2n+1 ψ
′∧
( k⊗
i=1

(wi 6= yi)⊗ (v0 = v1)
)
∧
(
(ȳ ⊆ w̄)⊗ (v0 6= v1)

)
.

By the construction, we have that

(M,rel(X),G0,G1,F 1, . . . ,F 2n) |= ∀x∀y
(
ψ(g0,g1,f1, . . . ,f2n)

∧ (Rȳ↔ (g0ȳ = g1ȳ))
)
.

(3.3)

Thus, that

M |=Y2n+1 ψ
′∧
( k⊗
i=1

(wi 6= yi)⊗ (v0 = v1)
)

follows from the corresponding part in the proof of Theorem 2.4.3. It remains to show
that

M |=Y2n+1 (ȳ ⊆ w̄)⊗ (v0 6= v1).

Define
V = {s ∈ Y2n+1 | s(v0) 6= s(v1)},

and W = Y2n+1 \V . Clearly, M |=V v0 6= v1. We show that M |=W ȳ ⊆ w̄. Let s ∈W
be arbitrary. Since M |=W v0 = v1, we have that s(v0) = s(v1), thus by the definition of
Y2n+1,

G0(s(ȳ)) = s(v0) = s(v1) =G1(s(ȳ)).

1The proofs of Theorem 2.3.9 and Theorem 2.4.3 do not reply on the downwards closure property of the
logic, except the fact that the classical formula ψ′ is downwards closed is used, but classical formulas are
downwards closed in all logics based on team semantics.

Moreover, note that in this proof, lax semantics is applied to existential quantifiers. But this does not give rise
to an essential difference in the proof, since in the direction “=⇒” of the proof, one can define each function
αi,j by taking αi,j(s) = {F ij (s(xi,j))}; for the other direction “⇐=” of the proof, when defining each function
F ij , the construction of φ∗(w̄) guarantees that the corresponding s(ui,j) has always a single value.
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Now, by (3.3), we have that

(M,rel(X),G0,G1,s(ȳ)) |= (g0ȳ = g1ȳ)→Rȳ,

hence (M,rel(X),G0,G1,s(ȳ)) |=Rȳ, i.e.

s(ȳ) ∈ rel(X).

It follows that there exists t ∈ X such that t(w̄) = s(ȳ). Now, let s0 be s restricted to
dom(Y2n+1)\dom(X). By the construction of Y2n+1, we know that Xs0 ⊆ Y2n+1, thus
ts0 ∈ Y2n+1 and

ts0(w̄) = t(w̄) = s(ȳ),

as required.

Conversely, for the direction “⇐=”, assuming M |=X φ∗ for X 6= /0, let G0,G1 be the
team obtained by the same argument as that in the proof of Theorem 2.3.9. Let a, b̄ be ar-
bitrary sequences in M with the same length as x̄ and ȳ, respectively. By the construction
of Y2n+1, there must exists an assignment

s : (dom(Y2n+1)\dom(X))→M

such that Xs⊆ Y2n+1 and
s(x) = a and s(y) = b.

We show that

(M,G0,G1,F 1, . . . ,F 2n,s(x),s(y)) |= ψ(g0,g1,f1, . . . ,f2n),

(M,rel(X),G0,G1,s(x),s(y)) |=Rȳ→ (g0ȳ = g1ȳ),

and
(M,rel(X),G0,G1,s(x),s(y)) |= (g0ȳ = g1ȳ)→Rȳ.

The first two of the above three expressions follow from the corresponding part in the
proof of Theorem 2.4.3. It remains to show the last expression.

Since
M |=Y2n+1 (ȳ ⊆ w̄)⊗ (v0 6= v1),

there are V,W ⊆ Y2n+1 such that Y2n+1 = V ∪W ,

M |=V v0 6= v1 and M |=W ȳ ⊆ w̄.

Now, assume
(M,rel(X),G0,G1,s(x),s(y)) |= g0ȳ = g1ȳ,

then G0(s(ȳ)) =G1(s(ȳ)), which by the construction of Y2n+1 means that

s(v0) =G0(s(ȳ)) =G1(s(ȳ)) = s(v1).

Thus, Xs* V and Xs⊆W . For any ts ∈Xs, since M |=W ȳ ⊆ w̄, there exists s′ ∈W
such that

s′(w̄) = ts(ȳ) = s(ȳ).
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Note that by the construction of Y2n+1, we have that

Y2n+1 =
⋃

s∈Y2n+1

Xs0,

where s0 is s restricted to dom(Y2n+1)\dom(X). Hence, we must have that

s′ = t′s′0,

for some t′ ∈X . Thus for such t′ ∈X

t′(w̄) = s′(w̄) = ts(ȳ) = s(ȳ), so s(ȳ) ∈ rel(X),

i.e.
(M,rel(X),G0,G1,s(x),s(y)) |=Rȳ,

as required. �

Theorem 3.1.7. Ind[→] formulas characterize all second-order properties with respect to
non-empty teams.

Proof. Follows from Theorem 3.1.6 and [39] [1]. �

Next, we generalize Theorem 2.4.7 and show that formulas of Ind[→,(] define all
second-order properties that are closed under empty set.

Definition 3.1.8. Let R be a k-ary relation symbol and φ(R) a second order L(R)-
sentence. We say that φ(R) is closed under empty set with respect to R if for all L(R)-
model (M,Q),

(M,Q) |= φ(R) =⇒ (M, /0) |= φ(R).

Theorem 3.1.9. For any second-order L(R)-sentence φ(R) closed under empty set with
respect to the predicate R, there is an L-formula ψ(w̄) of Ind[→,(] such that for any
L-model M and any team X of M (including the empty team),

(M,rel(X)) |= φ(R) ⇐⇒ M |=X ψ(w̄).

Proof. Apply Lemma 2.4.6 (noting that BID⊆ Ind[→,(]) and Theorem 3.1.6, use a sim-
ilar argument to that of the proof of Theorem 2.4.7. �

However, in the absence of the downwards closure property, the logic Ind[→,(] does
not characterize2 the empty set-closed second-order properties. The following Fact illus-
trates that the converse of the above theorem fails.

Fact 3.1.10. There exists an L-formula φ(w̄) of Ind[→,(] such that the second order
L(R)-sentence ψ(R) obtained from Theorem 3.1.3 is not closed under empty set with
respect to R.

Proof. It suffices to find a formula φ, a model M , a team X of M such that M |=X φ but
M 6|= /0 φ. Let M = {0,1} and the four assignments s0,s1,s2,s3 : {x,y}→M defined by
Table 3.1. Clearly, M |={s0,s1,s2,s3} >( (x⊥ y), but M 6|= /0 >( (x⊥ y). �

2See the discussion after Theorem 1.1.22 of Chapter 1 for the difference between “defining” and “character-
izing”.
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3.2 First-order inclusion logic with maximal implication
In this section, we show that inclusion logic (Inc) extended with maximal implication
(introduced in [59]) is equivalent to the full second-order logic.

It is pointed out in [30] that maximal implication can be interpreted as minimal skep-
tical implication in the framework of the logic of belief revision (see e.g. [3]), but in this
thesis, we will not go into this direction.

We first recall the definition of maximal implication from [59].

Definition 3.2.1 (Maximal implication). The binary connective ↪→ is called the maximal
implication, and its team semantics is defined as follows. For any formulas φ,ψ of first-
order independence logic, for any suitable model M , any suitable team X of M ,

• M |=X φ ↪→ψ iff for all maximal Y ⊆X such thatM |=Y φ, it holds thatM |=Y ψ.

The logic Ind[ ↪→] clearly has the empty team property. By the above definition, if the
family

F = {Y ⊆X |M |=Y φ}

does not have any maximal element, then M |=X φ ↪→ψ is trivially true. Now, we show
that the maximal implication is nontrivial when applied to formulas closed under unions
of chains.

Definition 3.2.2. A formula φ with team semantics is said to be closed under unions of
chains if for any suitable model M , any suitable teams {Xi}i<α of M with Xi ⊆Xj for
all i < j < α, it holds that

M |=Xi φ for all i < α=⇒M |=⋃
i<αXi

φ.

Lemma 3.2.3. (Axiom of Choice) Let φ be a formula which is closed under unions of
chains. IfM |=Y φ for some Y ⊆X , then there always exists a maximal extension Z ⊆X
of Y such that M |=Z φ.

Proof. Suppose M |=Y φ for some Y ⊆X . Consider the family

F = {Z ⊆X |M |=Z φ and Z ⊇ Y }.

Clearly, (F ,⊆) forms a partial order. Since φ is closed under unions of chains, every
chain {Xi}i<α in F has an upper bound

⋃
i<αXi. Therefore by Zorn’s lemma, F has a

maximal element. �

Corollary 3.2.4. For formulas of first-order inclusion logic, Lemma 3.2.3 holds and the
maximal extension is unique.

Proof. By Theorem 1.2.5, formulas of Inc are closed under unions, thus closed under
unions of chains. Moreover, in this case, the family F in the proof of Lemma 3.2.3 has a
unique upper bound

⋃
F . �

Lemma 3.2.5. Lemma 3.2.3 holds for formulas of Ind or D without any occurrence of ⊗
and ∃.
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Proof. It suffices to show that the formulas satisfying the requirement in the lemma are
closed under unions of chains. We will show by induction on φ that for any suitable model
M , any suitable teams {Xi}i<α of M with Xi ⊆Xj for all i < j < α, it holds that

M |=Xi φ for all i < α=⇒M |=X φ,

where X =
⋃
i<αXi.

We only show the non-trivial cases. If φ= x̄⊥z̄ ȳ, then for any s,s′ ∈X with s(z̄) =
s′(z̄), there exists k < α such that s,s′ ∈ Xk. Since M |=Xk x̄ ⊥z̄ ȳ, there exists s′′ ∈
Xk ⊆X such that

s′′(z̄) = s(z̄) = s′(z̄),

s′′(x̄) = s(x̄) and s′′(ȳ) = s′(x̄).

Hence M |=X x̄⊥z̄ ȳ.
The case =(x) is checked similarly as the above case.
If φ= ∀xψ, then for each i < α, since M |=Xi ∀xψ, M |=Xi(M/x) ψ. For any i < j <

α, as Xi ⊆Xj , we have that Xi(M/x)⊆Xj(M/x). Note that⋃
i<α

Xi(M/x) = (
⋃
i<α

Xi)(M/x) =X(M/x).

Hence, by induction hypothesis, M |=X(M/x) ψ holds, thereby M |=X ∀xψ. �

The next fact shows that maximal implication is transitive only with respect to valid
formulas.

Fact 3.2.6. For any formulas φ,ψ,χ of Ind[ ↪→],

[ |= φ ↪→ψ and |= ψ ↪→χ ] =⇒|= φ ↪→χ.

However,
(φ ↪→ψ)∧ (ψ ↪→χ) 6|= φ ↪→χ.

Proof. Suppose |= φ ↪→ψ and |= ψ ↪→χ. We show that for any suitable model M , any
suitable team X of M , M |=X φ ↪→χ. Let Y be a maximal subset of X such that M |=Y
φ. Since M |=X φ ↪→ψ, M |=Y ψ. On the other hand, since M |=Y ψ ↪→χ and Y is
obviously the maximal subset of Y satisfying M |=Y ψ, we obtain that M |=Y χ, as
required.

However, consider the model M = {0,1}, and the four assignments s0,s1,s2,s3 :
{x,y,z}→M defined by the following table:

x y z
s0 0 1 0
s1 0 0 0
s2 0 0 1
s3 1 0 0

Clearly,

M |={s0,s1,s2,s3} (x= z) ↪→(z ⊆ y) and M |={s0,s1,s2,s3} (z ⊆ y) ↪→(y ⊆ x),

but M 6|={s0,s1,s2,s3} (x= z) ↪→(y ⊆ x). �
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Dependence atoms of the form =(x1, . . . ,xn) are definable uniformly from constancy
dependence atoms using either the announcement operator ([32]) or intuitionistic impli-
cation (see [1] or Lemma 2.2.3). However, such definitions make heavy use of the down-
wards closure property of first-order dependence logic, therefore it cannot be generalized
directly to the case of first-order independence logic. In the next lemma, we present a de-
composition of conditional independence atoms to unconditional ones using the maximal
implication instead. A simple form of this decomposition can be found in Section 7.5 of
[30].

Lemma 3.2.7. If z̄ = 〈z1, . . . ,zk〉, then

x̄⊥z̄ ȳ ≡

(
k∧
i=1

(zi ⊥ zi)

)
↪→(x̄⊥ ȳ).

Proof. Suppose M |=X x̄⊥z̄ ȳ. Let Y ⊆X be a maximal subteam such that

M |=Y
k∧
i=1

(zi ⊥ zi).

For any s,s′ ∈ Y , we have that s(z̄) = s′(z̄), thus by assumption, there exists s′′ ∈X such
that

s′′(z̄) = s(z̄) = s′(z̄),

s′′(x̄) = s(x̄) and s′′(ȳ) = s′(ȳ). (3.4)

It follows that

M |=Y ∪{s′′}
k∧
i=1

(zi ⊥ zi),

thus by the maximality of Y , we must have that s′′ ∈ Y , as required.
Conversely, suppose M |=X

(∧k
i=1(zi ⊥ zi)

)
↪→(x̄ ⊥ ȳ). Let s,s′ ∈ X be arbitrary

elements such that s(z̄) = s′(z̄). Then we have that

M |={s,s′}
k∧
i=1

(zi ⊥ zi).

By Lemma 3.2.5, {s,s′} has a maximal extension Y ⊆X such that

M |=Y
k∧
i=1

(zi ⊥ zi),

thus by the assumption, M |=Y x̄ ⊥ ȳ, which implies that there exists s′′ ∈ Y ⊆X such
that (3.4) holds. �

Next, we show that independence atoms, exclusion atoms, dependence atoms are all
expressible in the logic Inc[ ↪→].
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X:
x̄ ȳ

s0 ā b̄
s1 c̄ d̄

Y :

x̄ ȳ w̄ v̄
s00 ā b̄ ā b̄
s01 ā b̄ ā d̄
s02 ā b̄ c̄ b̄
s03 ā b̄ c̄ d̄
s10 c̄ d̄ ā b̄
s11 c̄ d̄ ā d̄
s12 c̄ d̄ c̄ b̄
s13 c̄ d̄ c̄ d̄

Table 3.2

Lemma 3.2.8. Let x̄= 〈x1, . . . ,xk〉, ȳ= 〈y1, . . . ,yk〉 be two tuples. Let w̄= 〈w1, . . . ,wk〉,
v̄ = 〈v1, . . . ,vk〉 be two other tuples, neither of which has common variables with x̄ and
ȳ.

(i) x̄ | ȳ ≡ ∀w̄∀v̄
((

(w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ)
)
↪→

k⊗
i=1

(wi 6= vi)
)

(ii) x̄⊥ ȳ ≡ ∀w̄∀v̄
((

(w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ)
)
↪→(w̄v̄ ⊆ x̄ȳ)

)
(iii) =(x)≡ ∀y

(
(y ⊆ x) ↪→(x= y)

)
(iv) =(x1, . . . ,xm,y)≡

(
=(x1)∧·· ·∧=(xm)

)
↪→=(y)

Proof. For any team X , and any sequence z̄ = 〈z1, . . . ,zm〉 of variables in the domain of
X , define

X � z̄ := {s(z̄) | s ∈X}= {〈s(z1), . . . ,s(zm)〉 | s ∈X}.3

We first prove the following claim.

Claim: Let M be any model, X a team of M with {x1,y1, . . . ,xk,yk} ⊆ dom(X). Then
there exists a unique maximal subteam Y ⊆X(M/w̄, v̄) such that

M |=Y (w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ), (3.5)

and we have that
(Y � x̄)× (Y � ȳ) = Y � w̄v̄4 (3.6)

(see Table 3.2).

Proof of Claim. The existence and uniqueness of the required maximal team Y are guar-
anteed by Corollary 3.2.4. It remains to check (3.6).

For any s(w̄v̄) ∈ Y � w̄v̄, by (3.5), there exist s0,s1 ∈ Y such that

s0(x̄) = s(w̄) and s1(ȳ) = s(v̄).

3Note that X � z̄ is different from X � {z1, . . . ,zm} defined in Definition 1.1.5.
4Here, with some abuse of notation, we identify a pair (ā, b̄) of sequences with the concatenation āb̄ of the

two sequences.
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Since (s0(x̄),s1(ȳ)) ∈ (Y � x̄)× (Y � ȳ), we have that

s(w̄)s(v̄) = s0(x̄)s1(ȳ) = (s0(x̄),s1(ȳ)) ∈ (Y � x̄)× (Y � ȳ).

Conversely, for any (s0(x̄),s1(ȳ)) ∈ (Y � x̄)× (Y � ȳ), letting s : dom(X)∪{w1,v1,
. . . ,wk,vk}→M be any assignment satisfying

s(w̄) = s(x̄) = s0(x̄), s(v̄) = s(ȳ) = s1(ȳ),

we have that
M |=Y ∪{s} (w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ).

It then follows from the maximality of Y that s ∈ Y , thus

s0(x̄)s1(ȳ) = s(w̄)s(v̄) ∈ Y � w̄v̄.

a

Now, let M be any suitable model, and X a suitable team of M . We proceed to prove
the lemma.

(i) It suffices to show that

M |=X x̄ | ȳ ⇐⇒ M |=X ∀w̄∀v̄
((

(w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ)
)
↪→

k⊗
i=1

(wi 6= vi)
)
.

“=⇒”: Suppose M |=X x̄ | ȳ. Let Y ⊆ X(M/w̄, v̄) be the maximal subteam such
that M |=Y (w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ). It suffices to show that M |=Y

⊗k
i=1(wi 6= vi).

For any s ∈ Y , since M |=Y (w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ), there exist s0,s1 ∈ Y satisfying

s(w̄) = s0(x̄) and s(v̄) = s1(ȳ). (3.7)

As M |=X x̄ | ȳ, we must have that s0(x̄) 6= s1(ȳ), thus s(w̄) 6= s(v̄). It follows that there
exists 1≤ i≤ k such that s(wi) 6= s(vi). Hence M |=Y

⊗k
i=1(wi 6= vi).

“⇐=”: Suppose M |=X ∀w̄∀v̄
((

(w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ)
)
↪→
⊗k
i=1(wi 6= vi)

)
. By Claim,

there exists a unique maximal Y ⊆ X(M/w̄, v̄) such that (3.5) and (3.6) hold. For any
s0,s1 ∈ X , by (3.6), there exists s ∈ Y such that (3.7) holds. By assumption, M |=Y⊗k
i=1(wi 6= vi), thus s(w̄) 6= s(v̄), thereby s0(x̄) 6= s1(ȳ). Hence M |=X x̄ | ȳ.

(ii) It suffices to show that

M |=X x̄⊥ ȳ ⇐⇒ M |=X ∀w̄∀v̄
((

(w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ)
)
↪→(w̄v̄ ⊆ x̄ȳ)

)
.

“=⇒”: Suppose M |=X x̄ ⊥ ȳ. Let Y ⊆X(M/w̄, v̄) be the maximal subteam such
that M |=Y (w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ). It suffices to show that M |=Y w̄v̄ ⊆ x̄ȳ.

For any s ∈ Y , since M |=Y (w̄ ⊆ x̄)∧ (v̄ ⊆ ȳ), there exist s0,s1 ∈ Y such that (3.7)
holds. As M |=X x̄⊥ ȳ, there must exists s′ ∈X such that

s′(x̄) = s0(x̄) and s′(ȳ) = s1(ȳ).



56

It follows that there exists s′′ ∈ Y such that

s′′(x̄)s′′(ȳ) = s′(x̄)s′(ȳ) = s0(x̄)s1(ȳ) = s(w̄)s(v̄).

Hence M |=Y w̄v̄ ⊆ x̄ȳ.
“⇐=”: Suppose M |=X ∀w̄∀v̄

((
(w̄⊆ x̄)∧ (v̄ ⊆ ȳ)

)
↪→(w̄v̄ ⊆ x̄ȳ)

)
. By Claim, there

exists a unique maximal Y ⊆X(M/w̄, v̄) such that (3.5) and (3.6) hold. For any s0,s1 ∈
X , by (3.6), there exists s ∈ Y such that (3.7) holds. By assumption, M |=Y w̄v̄ ⊆ x̄ȳ,
thus there exists s′ ∈ Y such that

s′(x̄ȳ) = s(w̄v̄),

which implies that form some s′′ ∈X ,

s′′(x̄) = s′(x̄) = s(w̄) = s0(x̄) and s′′(ȳ) = s′(ȳ) = s(v̄) = s1(ȳ).

Hence M |=X x̄⊥ ȳ.

(iii) It suffices to show that

M |=X =(x) ⇐⇒ M |=X ∀y
(
(y ⊆ x) ↪→(x= y)

)
.

“=⇒”: Suppose M |=X =(x). Let Y ⊆X(M/y) be the maximal subteam such that
M |=Y y ⊆ x. It suffices to show that M |=Y x= y.

Since M |=X =(x), there exists a ∈M such that for all s0 ∈X , s0(x) = a. Now, for
any s ∈ Y , since M |=Y y ⊆ x, there exists s′ ∈ Y such that s(y) = s′(x) = a = s(x).
Hence M |=Y x= y.

“⇐=”: Suppose M |=X ∀y
(
(y ⊆ x) ↪→(x = y)

)
. Let Y ⊆X(M/y) be the maximal

subteam such that M |=Y y ⊆ x. For any s0,s1 ∈X , letting s : dom(X)∪{y} →M be
any assignment satisfying

s(x) = s0(x), s(y) = s1(x),

we have that M |=Y ∪{s} y ⊆ x. By the maximality of Y , s ∈ Y . By assumption, M |=Y
x= y, thus

s0(x) = s(x) = s(y) = s1(x).

Hence M |=X =(x).

(iv) Easy, c.f. Lemma 2.2.3. �

We now proceed to investigate the expressive power of first-order inclusion logic ex-
tended with maximal implication. First, we give a translation from Inc[ ↪→] into second-
order logic.

Theorem 3.2.9. For any L-formula φ(x̄) of Inc[ ↪→], there exists a second-order L(R)-
sentence τR(φ) = ψ(R) with a new predicate R such that for any L-model M and any
suitable team X of M ,

M |=X φ(x̄)⇐⇒ (M,rel(X)) |= ψ(R).
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Proof. (sketch) We define the translation τR(φ) of φ by induction. For the only interesting
case, we let

τR(θ0 ↪→θ1) = ∀S
((
τS(θ0)∧∀S′(τS′(θ0)→∃x̄(Sx̄∧¬S′x̄))

)
→ τS(θ1)

)
.

�

By examining the role the intuitionistic implications play in the proof of Theorem
3.1.6, one obtains the expressive power of inclusion logic extended with maximal impli-
cation.

Theorem 3.2.10. Formulas of Inc[ ↪→] characterize all second-order properties with re-
spect to non-empty teams. In particular, Inc[ ↪→] sentences are expressible in SO, and vice
versa.

Proof. In the proof of Theorem 3.1.6, if one replace all the intuitionistic implications
in the formula φ∗(w̄) by maximal implications, the argument still works. The direction
“=⇒” of the proof still works because φ→ ψ |= φ ↪→ψ. The other direction “⇐=” still
works because the Yi’s in the proof of Theorem 3.1.6 are in fact maximal teams satisfying
M |=Yi Θi.

Moreover, by Lemma 3.2.8, all dependence atoms in the formula φ∗(w̄) can be re-
placed equivalently by a formula in Inc[ ↪→].

Putting the arguments together, we conclude that the theorem holds. �

3.3 Concluding remarks
We conclude the main results obtained in Chapter 2 and Chapter 3 concerning the expres-
sive power of logics of dependence and independence extended with linear and intuition-
istic implication in Figure 3.1 and Figure 3.2.

Below we list two main open problems of this chapter:

1. In Theorem 3.1.9, we proved that the logic Ind[→,(] defines all empty set-closed
second-order properties. But the precise expressive power of formulas of the logic,
i.e., the properties that the logic characterizes, is unkown.

2. Maximal implication is transitive only with respect to valid formulas (Fact 3.2.6).
The properties of maximal implication need to be further studied.
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Figure 3.1: Expressive power of logics over sentences
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Chapter 4

Propositional dependence,
independence logics and their variants

In this chapter, we consider the logics of dependence and independence concepts in propo-
sitional logic. We define the underlying propositional logic of first-order dependence
logic, intuitionistic dependence logic, independence logic, as well as first-order inclusion
logic and exclusion logic. We give axioms and prove completeness theorems for these
logics and their variants.

In Section 4.1, we discuss motivations and philosophical backgrounds of the propo-
sitional logics of dependence and independence. Formal definitions and basic properties
of propositional dependence and independence logic are given in this section. In sec-
tions 4.2-4.5, we study downwards closed propositional logics with team semantics. In
Section 4.2, we introduce propositional intuitionistic dependence logic. We reveal its sur-
prising connections with inquisitive logic ([13]): the two logics are essentially equivalent.
As a consequence, propositional intuitionistic dependence logic is complete with respect
to the axioms given in [13] for inquisitive logic, and one extra axiom for dependence
atoms. We also point out that it is a maximal downwards closed logic. In Section 4.3, we
axiomatize another natural maximal downwards closed logic, namely propositional de-
pendence logic extended with intuitionistic disjunction. Based on this, in Section 4.4, we
axiomatize propositional dependence logic. Moreover, this section contains a proof (due
to Taneli Huuskonen) that propositional dependence logic is also a maximal downwards
closed logic. In Section 4.5, we generalize the method used in Section 4.4 to axiomatize
propositional exclusion logic. In sections 4.6-4.8, we study propositional logics with team
semantics which are not downwards closed. In Section 4.6, we introduce and axiomatize
a natural maximal such logic, namely propositional dependence logic extended with intu-
itionistic disjunction and non-empty atom (a new atom that is satisfied only by non-empty
teams). Based on this, in Section 4.7, we axiomatize propositional independence logic
extended with non-empty atom. In Section 4.8, we generalize the method in Section 4.8
to axiomatize propositional inclusion logic extended with non-empty atom. Finally, in
Section 4.9, we list some open problems of this chapter.

59
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4.1 Introduction
Studying the logics of dependence and independence concepts in propositional logic is
similar to the case of predicate logic in that we use the method of teams. A team in this
case is defined to be a set of valuations. There are, however, also grave differences. Most
importantly, propositional dependence and independence logics are decidable because for
any given formula of the logics with n propositional variables, there are in total 2n valu-
ations and 22n teams. The method of truth tables has its analogue in these logics, but the
size of such tables grows exponentially faster than in the case of traditional propositional
logic, rendering it virtually inapplicable. This emphasizes the role of the axioms and
the completeness theorem in providing a manageable alternative for establishing logical
consequence.

Classical propositional logic is based on propositions of the form

p
not p
p or q
If p, then q

and more generally
If pi1 , . . . ,pik , then q. (4.1)

We present extensions of classical propositional calculus in which one can express, in
addition to the above, propositions of the form “q depends on p” and “q is independent of
p”, or more generally

q depends on pi1 , . . . ,pik , (4.2)

and
pi1 , . . . ,pik are independent of pj1 , . . . ,pjm . (4.3)

In our setting, both (4.2) and (4.3) are expressed as atomic facts. The former is character-
ized formly by a new atomic formula

=(pi1 , . . . ,pik , q),

called dependence atom, while the latter by the so-called independence atom

pi1 , . . . ,pik ⊥ pj1 , . . . ,pjm .

Intuitively, (4.2) means that to know whether q holds it is sufficient to consult pi1 , . . . ,pik .
Note that as in the first-order dependence logic case, (4.2) says nothing about the way in
which pi1 , . . . ,pik are logically related to q. It may be that pi1 ∧ . . .∧pik logical implies q,
or that ¬pi1 ∧ . . .∧¬pik logical implies ¬q, or anything in between. Technically speaking,
this is to say:

The truth value of q is a function of the truth values of pi1 , . . . ,pik . (4.4)

Given the huge amounts of data available nowadays, arising from DNA, astronomical
data, Google data, etc, with no clear picture what the functions in action are, it seems—
and we suggest—that the propositions (4.2) and their logic would deserve a mathematical



61

treatment just as the simpler propositions (4.1) have deserved in classical propositional
logic.

Examples of natural language sentences of this kind are the following:

1. Whether it rains depends completely on whether it is winter or summer.

2. Whether you end up in the town depends entirely on whether you turn here left or
right.

3. I will be absent depending on whether he shows up or not.

4. Whether the earth will be destroyed depends only on whether there is another planet
that crashes into the earth.

Another basic ingredient of classical propositional calculus is, as in (4.3), the a pri-
ori independence of the atomic propositions. Knowing the truth value of the sequence
pi1 , . . . ,pik gives no information of the truth value of pj1 , . . . ,pjm . Any individual valu-
ation s fixes the true value of both pi1 , . . . ,pik and pj1 , . . . ,pjm , but if we have a set of
valuations (called a team), the truth value of neither of the two sequences needs to be
fixed, and we can ask are these truth values independent of each other in the sense that
knowing one does not reveal, in the light of the given team, the other. This is, of course,
the matter in the maximal team of all valuations s for all relavant propositional variables.
The maximal team represents the world of all logical possibilities. However, in practice
we may be interested in a particular team and the manifestation of independence in that
team.

For example, if we have a pool of human chromosomes arising from a group of actual
people, we may ask whether certain traits are independent of each other in this pool of
chromosomes. Knowing that they would be independent, if all logically possible chro-
mosomes were present, would be of no interest what so ever. Of course, such a team of all
logically possible chromosomes would densely fill every cubic millimeter of the physical
universe.

Here are some other examples:

1. Whether it rains is completely independent on whether it is winter or summer.

2. As to whether you end up in the town or not it makes no difference whether you turn
here left or right.

3. I will decide whether I come to the party independently of whether he decides to
show up or not.

4. Whether the earth will be destroyed is independent of whether the sea level rises
over 50 cm or not.

In this chapter we give exact mathematical meanings to “dependence” and “indepen-
dence”. Below we give formal definitions of propositional dependence and independence
logic.

Definition 4.1.1. Let pi,pi1 , . . . ,pik ,pj1 , . . . ,pjm be propositional variables, and k,m≥ 1.
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• Well-formed formulas of propositional dependence logic (PD) are given by the
following grammar

φ ::= pi | ¬pi |=(pi1 , . . . ,pik) | φ∧φ | φ⊗φ

• Well-formed formulas of propositional independence logic (PInd) are given by the
following grammar:

φ ::= pi | ¬pi | pi1 . . .pik ⊥ pj1 . . .pjm | φ∧φ | φ⊗φ,

Definition 4.1.2.

(i) A valuation s is a function s :N→{0,1}.1 For any n ∈N, an n-valuation s0 on N is
a restriction of a valuation s to an n-element subset N ⊆N, that is, s0 = s �N with
|N |= n.

(ii) A team is a set of valuations. An n-team on N is a set of n-valuations on N .

(iii) We write φ(pi1 , . . . ,pin) to mean that the propositional variables occurring in the
formula φ are among pi1 , . . . ,pin . A formula of the form φ(pi1 , . . . ,pin) is called
an n-formula.

Fix an n-element subset N ⊆ N, there are in total 2n distinct n-valuations, and 22n

distinct n-valuations, among which there exists a maximal team consisting of all of the
n-teams on N , denoted by 2n.

Definition 4.1.3. We inductively define the notion of a formula φ of PD or PInd being
true on a team X , denoted by X |= φ, as follows:

• X |= pi iff for all s ∈X , s(i) = 1;

• X |= ¬pi iff for all s ∈X , s(i) = 0;

• X |= =(pi1 , . . . ,pik) iff for all s,s′ ∈X

〈s(i1), . . . ,s(ik−1)〉= 〈s′(i1), . . . ,s′(ik−1)〉 =⇒ s(ik) = s′(ik);

• X |= pi1 . . .pik ⊥ pj1 . . .pjm iff for all s,s′ ∈X , there exists s′′ ∈X such that

〈s′′(i1), . . . ,s′′(ik)〉= 〈s(i1), . . . ,s(ik)〉

and
〈s′′(j1), . . . ,s

′′(jm)〉= 〈s′(j1), . . . ,s
′(jm)〉.

• X |= φ∧ψ iff X |= φ and X |= ψ;

1In literature of propositional logics, a valuation is usually a function s from a set of propositional variables
to {0,1}. In this thesis, for technical reasons, we choose to define valuations as in this definition. Each natural
number in the set N stands for an index of a propositional variable.
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• X |= φ⊗ψ iff there exist teams Y,Z ⊆X with X = Y ∪Z such that

Y |= φ and Z |= ψ;

Let L be the logic PD or PInd. For any formula φ of L, if X |= φ holds for all teams
X , then we say that φ is valid in the logic, denoted by |=L φ or simply |= φ. The notions
of logical consequence and logical equivalence are defined analogously to the first-order
case.

We call the independence atom pi1 . . .pik ⊥ pj1 . . .pjm an unconditional independence
atoms. As in the first-order case, we can also define conditional independence atoms of
the form pi1 . . .pia ⊥pk1 ...pkc

pj1 . . .pjb , whose team semantics is as follows: for any team
X ,

• X |= pi1 . . .pia ⊥pk1 ...pkc
pj1 . . .pjb iff for all s,s′ ∈X with s(k1) · · ·s(kc) = s′(k1)

· · ·s′(kc), there exists s′′ ∈X such that

〈s′′(k1), . . . ,s
′′(kc)〉= 〈s(k1), . . . ,s(kc)〉= 〈s′(k1), . . . ,s

′(kc)〉,

〈s′′(i1), . . . ,s′′(ia)〉= 〈s(i1), . . . ,s(ia)〉

and
〈s′′(j1), . . . ,s

′′(jb)〉= 〈s′(j1), . . . ,s
′(jb)〉.

But in this case, conditional independence atoms are definable by unconditional ones, as
the next lemma shows, where if pi is a propositional variable, then we let

p1
i := pi and p0

i := ¬pi.

Lemma 4.1.4.

pj1 . . .pja ⊥pi1 ...pic pk1 . . .pkb ≡
⊗
s∈2c

(
p
s(i1)
i1
∧·· ·∧ps(ic)ic

∧ (pj1 . . .pja ⊥ pk1 . . .pkb)
)
,

where 2c is the maximal c-team on {i1, . . . , ic}.

Proof. Easy. �

As in the first-order logic case, dependence atoms are definable in terms of conditional
independence atoms as follows:

=(pi1 , . . . ,pik−1 ,pik)≡ pik ⊥pi1 ,...,pik−1
pik (4.5)

(c.f. Equation (1.1)), thus by Lemma 4.1.4, they are definable by unconditional indepen-
dence atoms as well.

The team semantics of the above defined logics is a natural adaption of the first-order
team semantics, therefore, not surprisingly, many of the relevant properties of the first-
order dependence logics are true for the propositional dependence logics. Most impor-
tantly, analogous to the first-order case, all of the above defined logics have the empty
team property, locality property, and PD has the downwards closure property.
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Lemma 4.1.5 (Empty Team Property). PD and PInd have the empty team property, that
is, /0 |= φ for every formula φ in any of the logics.

Proof. Easy, by induction on φ. �

Lemma 4.1.6 (Locality). Let φ(pi1 , . . . ,pin) be an n-formula of PD or PInd. For any
teams X,Y such that X � {i1, . . . , in}= Y � {i1, . . . , in}, we have that

X |= φ ⇐⇒ Y |= φ.

Proof. Easy, by induction on φ. �

Theorem 4.1.7 (Downward Closure). For any formula φ of PD, any teams X,Y ,

[X |= φ and Y ⊆X ] =⇒ Y |= φ.

Proof. Easy, by induction on φ. �

Corollary 4.1.8. For any downwards closed n-formula φ(pi1 , . . . ,pin),

2n |= φ ⇐⇒ |= φ,

where 2n is the maximal n-team on {i1, . . . , in}.

Proof. The direction “⇐=” follows from Locality. For the direction “=⇒”, if 2n |=
φ(pi1 , . . . ,pin), then X |= φ for all n-teams X on {i1, . . . , in}, since X ⊆ 2n and φ is
downwards closed. By Locality, this means that |= φ. �

Fix an n-element set N = {i1, . . . , in} ⊆N. Let 2n be the maximal n-team on N . The
semantic truth set of an n-formula φ(pi1 , . . . ,pin) of PD or PInd is defined as the set JφK
of all n-teams satisfying φ, namely

JφK := {X ⊆ 2n |X |= φ}.

Clearly, for any two n-formulas φ(pi1 , . . . ,pin) and ψ(pi1 , . . . ,pin), φ ≡ ψ if and only
if JφK = JψK. Let ∇N be the family of all non-empty downwards closed collections of
n-teams on N , i.e.

∇N = {K ⊆ 22n | K 6= /0, and X ∈ K, Y ⊆X imply Y ∈ K}.

For any n-formula φ(pi1 , . . . ,pin) of PD, since it is downwards closed, JφK ∈ ∇N .
As in the first-order case, formulas φ satisfying

X |= φ ⇐⇒ ∀s ∈X, {s} |= φ

for all teams X are called flat formulas. A formula built from propositional variables
and negated propositional variables by conjunction ∧ and tensor disjunction ⊗ is called a
classical formula. That is, a classical formula of PD or PInd is a formula that does not
contain dependence atoms or independence atoms, or a formula of the logic PD[∧,⊗] or
PInd[∧,⊗].
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Lemma 4.1.9. Classical formulas of PD or PInd are flat.

Proof. Easy, by induction. �

Classical formulas behaves classically on singleton teams, as the following lemma
shows.

Lemma 4.1.10. If φ is a classical formula of PD or PInd, then identifying tensor dis-
junction ⊗ with the classical disjunction ∨, for any valuation s,

s |=CPL φ ⇐⇒ {s} |= φ.

Proof. We prove the lemma by induction on φ. The only interesting case is the case
φ= ψ⊗χ. In this case, we have that

{s} |= ψ⊗χ ⇐⇒ {s} |= ψ or {s} |= χ

⇐⇒ s |=CPL ψ or s |=CPL χ (by induction hypotheis)
⇐⇒ s |=CPL ψ∨χ.

�

We end this section by pointing out that none of the logics PD and PInd is closed
under Uniform Substitution:

φ(pi1 , . . . ,pin)

φ(ψ1/pi1 , . . . ,ψn/pin)
(Sub)

We will discuss this fact in the next section and Section 5.1.

Fact 4.1.11. Neither of PD and PInd is closed under Sub.

Proof. In the definition of the syntax of the logics PD and PInd, we only allow negations
occur in front propositional variables, therefore strictly speaking, for example the formula
pi⊗¬pi cannot have substitution instances of the form φ⊗¬φ in the logics PD and PInd,
as ¬φ is simply not a well-formed formula. Even if we define ¬φ as the formula obtained
by pushing negation all the way to the front of atomic formulas and define

¬=(pi1 , . . . ,pik) :=⊥ and ¬(pi1 . . .pik ⊥ pj1 . . .pjm) :=⊥,

still we have that |= pi⊗¬pi, but

6|==(pi)⊗¬=(pi) and 6|= (pi ⊥ pi)⊗¬(pi ⊥ pi).

�
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4.2 Propositional intuitionistic dependence logic and in-
quisitive logic

Before we investigate propositional dependence and independence logic, in this section,
we introduce a natural and interesting variant of propositional dependence logic, namely
propositional intuitionistic dependence logic.

As in the first-order logic case, “classical (contradictory) negation” is not definable
in the downwards closed propositional dependence logic (c.f. Footnote 1 of Section 2.1).
This raises the question of how to define implications, or how to express conditional
statements in PD. One natural solution is to intrepret the conditional statement

“if φ, then ψ” (4.6)

as
φ⊆ ψ := φ−⊗ψ,

where φ− stands for the literal negation of φ, that is the formula ¬φ with negation ¬
pushed inside φ all the way to the front of atomic formulas. This way, for example, “if
(p∧¬q), then r” is expressed by the formula

(p∧¬q)⊆ r := (¬p⊗ q)⊗ r.

However, despite of the intuitive meaning of this treatment for conditional statements, this
solution has a technical drawback: it is not able to express conditionals of dependence
statements. For example, the following conditional statement

If whether the earth will be destroyed depends only on whether there is
another planet that crashes into the earth, then whether the human being will
migrate to other planets depends only on whether the crash will occur.

will be interpreted as

=(p,q)⊆=(p,r) :=
(
¬=(p,q)

)
⊗=(p,r).

But ¬=(p,q) is (by definition) equivalent to ⊥ (see Footnote 3 in Lemma 1.1.8), thus we
have (

=(p,q)⊆=(p,r)
)
≡ =(p,r),

which is certainly unreasonable.
A better treatment of conditional statements is, as we suggest, to read (4.6) as

φ |= ψ (φ logically implies ψ). (4.7)

Given that the logic is downwards closed (as with PD), the above expression is (by the
Deduction Theorem of intuitionistic implication, c.f. Theorem 2.2.12) equivalent to

|= φ→ ψ (“φ intuitionistically implies φ” is valid).

In view of this, we propose to interpret (4.6) as

φ→ ψ,
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where→ is the intuitionistic implication studied in the preceding chapters.
In this section, we define propositional intuitionistic dependence logic (PID), in which

conditional statements about dependence can have a reasonable interpretation. Moreover,
we will reveal a surprising connection between PID and inquisitive logic [13]: the two
logics are essentially equivalent. We present a complete axiomatization of PID due to
[13].

Below we give formal definition of propositional intuitionistic dependence logic.

Definition 4.2.1. Well-formed formulas of propositional intuitionistic dependence logic
(PID) are given by the following grammar:

φ ::= pi | ¬pi | ⊥ |=(pi) | φ∧φ | φ∨φ | φ→ φ

To simplify notations, we apply Convention 1.1.2 to PID too, in particular, φ→⊥ is
abbreviated as ¬φ for any formula φ.

Definition 4.2.2. We inductively define the notion of a formula φ of PID being true on
a team X , denoted by X |= φ. All the cases are the same as those of PD as defined in
Definition 4.1.3 except the following:

• X |=⊥ iff X = /0;

• X |= =(pi) iff for all s,s′ ∈X , s(i) = s′(i);

• X |= φ∨ψ iff X |= φ or X |= ψ;

• X |= φ→ ψ iff for any team Y ⊆X ,

Y |= φ =⇒ Y |= ψ.

It is straightforward to verify that PID has the empty team property, the locality prop-
erty and the downwards closure property defined in Section 4.1. Next we show that PID
is not closed under Sub.

Fact 4.2.3. PID is not closed under Sub.

Proof. We have that |= ¬¬pi→ pi, but by Lemma 2.1.3, |= ¬¬φ→ φ fails for non-flat
formulas (e.g. 6|= ¬¬=(pi)→=(pi)). �

One observes that propositional intuitionistic dependence logic is the underlying propo-
sitional logic of first-order intuitionistic dependence logic. As a consequence, PID inher-
its all relevant properties from ID, including the following:

• Dependence atoms of the form =(pi) are called constancy dependence atoms. By
the same proof as that of Lemma 2.2.3, non-constancy dependence atoms are de-
finable by constancy ones, as

=(pi1 , . . . ,pik)≡
(
=(pi1)∧·· ·∧=(pik−1)

)
→=(pik).

• All axioms of intuitionistic propositional calculus (IPL), all axioms of Maksi-
mova’s Logic ND, all axioms of Kreisel-Putnam Logic KP are valid in PID, i.e.,
Fact 2.2.13 holds for PID as well.
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• Deduction Theorem holds in PID (c.f. Theorem 2.2.12).

• A formula is flat iff it satisfies the double negation law; in particular, negated for-
mulas are flat. That is Lemma 2.1.3 and Corollary 2.1.2 hold for PID as well.

• Lemma 2.1.4 and Lemma 2.1.5 are true for PID and tensor disjunction.

The disjunction of IPL has the so-called disjunction property, the same is true for
PID, as shown in the next theorem.

Theorem 4.2.4 (Disjunction Property). For any formulas φ and ψ of PID,

if |= φ∨ψ, then |= φ or |= ψ.

Proof. By Corollary 4.1.8. �

Unlike in ID, where intuitionistic disjunction is superfluous as it is uniformly defin-
able (Lemma 1.1.16), intuitionistic disjunction of PID turns out to be so useful that in its
presence, dependence atoms are, in fact, eliminatable.

Lemma 4.2.5. =(pi)≡ pi∨¬pi;

Proof. Easy. �

The above lemma shows that PID is equivalent to PID[⊥,∧,∨,→], the fragment of
PID which has no occurrences of dependence atoms. Dick de Jongh and Tadeusz Litak
observed2 that this fragment of PID is essentially equivalent to propositional inquisitive
logic [13] (see also [11]).

Inquisitive logic is a new logic based on the so-called inquisitive semantics. Inquisi-
tive semantics is a new type of formal semantics, first conceived by Groenendijk [41] and
Mascarenhas [70]. It develops a new notion of semantic meaning that directly reflects the
use of language in exchanging information. The central aim of inquisitive semantics is to
develop a new notion of semantic meaning that captures both informative and inquisitive
content of natural language. This enriched notion of meaning is intended to provide a new
foundation for the analysis of discourse that is aimed at the exchange of information.

Early work on inquisitive logic was done by Mascarenhas [70] and Sano [75]. A gen-
eralized formal system for inquisitive semantics and logic was developed by Groenendijk
[40], Ciardelli and Roelofsen [13]. One of the basic formal notions of this generalized
inquisitive semantics is the notion of information states. An information state is a set of
models for the language, that is, a set of possible worlds. One thinks of an information
state as the set of configurations that the subject considers possible for the actual world. It
turns out that in terms of mathematical content, an information state is essentially a team.
Exactly as in team semantics, the satisfaction relation

“s |= φ”

of inquisitive logic (called the “support” relation) is defined between teams (i.e. informa-
tion states) s and formulas φ. In the setting of inquisitive semantics, an information state
s embodies a potential update of the common ground, and the proposition expressed by

2In a private conversation with the author in September 2011.
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a sentence φ captures both inquisitive and informative content. That an information state
s supports a sentence φ is interpreted as “s settles the issue raised by φ”. This way, the
nature of information exchange is reflected in the semantics as a cooperative process of
raising and resolving issues, achieving the goal of inquisitive semantics.

As seen from the above, although inquisitive logic has a completely different motiva-
tion from that of dependence logic, it uses essentially and independently team semantics.
Moreover, propositional inquisitive logic (InqL) [13] has exactly the same syntax as the
logic PID[⊥,∧,∨,→], and it interprets the corresponding atomic formulas and logical
constants the same ways as in PID. This way, InqL and PID are essentially equivalent.

Below we present important properties and a complete axiomatization of PID ob-
tained essentially in [13] and [11]. For simplicity, we will stick on our notations and refer
to InqL only indirectly.

In PID, we stipulate
∨

/0 := ⊥. Next lemma shows that every n-team X is definable
up to subteams by an n-formula ΨX of PID (or InqL).

Lemma 4.2.6 (due to [13]). Let X be an n-team on N = {i1, . . . , in}. Define a formula
ΨX of PID (or InqL) as

ΨX := ¬¬
∨
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

).

Then for any n-team Y on N ,

Y |= ΨX ⇐⇒ Y ⊆X.

Proof. Easy, or see [13]. �

PID (or InqL) is a maximal downwards closed logic in the sense of the following
definition.

Definition 4.2.7. A logic L with team semantics is called a maximal downwards closed
logic if for every n-element set N = {i1, . . . , in} ⊆ N,

∇N = {JφK : φ(pi1 , . . . ,pin) is an n-formula of L}

Theorem 4.2.8 (due to [13]). PID (or InqL) is a maximal downwards closed logic.

Proof. It suffices to show “⊆”. For every K ∈ ∇N , noting that K is finite (it has at most
22n elements), we obtain by Lemma 4.2.6 that

Y |=
∨
X∈K

ΨX ⇐⇒ ∃X ∈ K(Y ⊆X) ⇐⇒ Y ∈ K,

i.e., J
∨
X∈K ΨXK =K. �

The above theorem also shows that every formula of PID (or InqL) can be expressed
as a formula in the so-called disjunctive-negative normal form:∨

j∈J
¬¬

∨
s∈Xj

(p
s(i1)
i1
∧·· ·∧ps(in)in

),
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where J is a set of indices and each Xj is an n-team on {i1, . . . , in}. Interested readers
are referred to [13] for more details on this normal form, we only remark here that in the
above formula in the normal form, each (double) negated formula is flat (Corollary 2.1.2).

A set L of formulas is called a weak intermediate logic if IPL ⊆ L ⊆ CPL and L is
closed under MP ([13]); a weak intermediate logic L is called an intermediate logic if L
is closed under Sub. Using the normal form, it was proved in [13] that InqL is a weak
intermediate logic.

Definition 4.2.9 ([13]).

• Let φ be a formula. The negative variant φ¬ of φ is obtained from φ by replacing
any occurrence of a propositional variable p with ¬p.

• The negative variant L¬ of a logic L is defined as L¬ = {φ | φ¬ ∈ L}.

The logic InqL, as shown in [13], is equivalent to the negative variant of Maksimova’s
logic [68]

ND = IPL⊕{NDk | k ∈ N}, 3

and also to the negative variant of Kreisel-Putnam logic [63]

KP = IPL⊕KP,

where NDk and KP are defined in Fact 2.2.13.

Theorem 4.2.10 ([13]). InqL = ND¬ = KP¬.

This is then also true for PID, in particular, the logic PID is complete with respect to
the following Hilbert style deductive system:

Definition 4.2.11 (A Deductive System for PID). We write `PID φ if the PID formula φ
is derivable from the following axioms using the following rules:

Axioms:

1. all substitution instances of IPL axioms

2. ¬¬pi→ pi for all propositional variables pi
3. axiom schemes of NDk for all k ∈ N:

(NDk)
(
¬φ→

∨
1≤i≤k

¬ψi
)
→

∨
1≤i≤k

(¬φ→¬ψi).

or axiom scheme of

(KP) (¬φ→ (ψ∨χ))→ ((¬φ→ ψ)∨ (¬φ→ χ)).

4. =(pi)↔ (pi∨¬pi)

Rules:
3Denote by L1⊕L2 the smallest set of formulas containing all axioms of the two propositional logics L1 and

L2 and is closed under MP and Sub.
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Modus Ponens: φ→ ψ ψ

ψ
(MP)

Theorem 4.2.12 (Completeness Theorem of PID). For any formula φ of,

`PID φ ⇐⇒ |=PID φ.

Proof. Axiom 4 eliminates dependence atoms. The rest of the proof is due to [13]. �

An important feature of PID (or InqL), as pointed out in Fact 4.1.11, is that it is not
closed under uniform substitution, however, it is closed under the so-called flat substitu-
tion described in the following lemma.

Lemma 4.2.13 (due to [13]). PID is closed under flat substitution, that is, for any formula
φ(pi1 , . . . ,pin) of PID,

|= φ(pi1 , . . . ,pin) =⇒ |= φ(ψ1/pi1 , . . . ,ψn/pin),

whenever ψ1, . . . ,ψn are flat formulas of PID.

Proof. See [13]. �

It was proved in [11] that InqL is strongly complete with respect to negative saturated
intuitionistic Kripke models. This is then also true for PID. We will come back to this
issue in Chapter 6.

Definition 4.2.14. An intuitionistic Kripke model is a triple M= (W,≥,V ) consisting of
a non-empty setW , a partial ordering≥ onW , a function (a valuation) V : Prop→℘(W )
satisfying monotonicity with respect to ≥, that is,

[w ∈ V (p) and w ≥ v] =⇒ v ∈ V (p).

The pair F= (W,≥) is called the underlying frame of M.

Definition 4.2.15. A point w in an intuitionistic Kripke model M = (W,≥,V ) is called
an endpoint iff there is no point v ∈W such that w ≥ v. Denote the set of all endpoints
seen from w by Ew, i.e.,

Ew = {v ∈W | w ≥ v and v is an endpoint}.

Definition 4.2.16. An intuitionistic Kripke model M = (W,≥,V ) is called a negative
saturated model iff

• the valuation V is negative, namely

M,w |= p ⇐⇒ M,w |= ¬¬p;

• the underlying frame of M is saturated, that is, for every point w ∈W ,

– Ew 6= /0;

– for every non-empty subset E ⊆Ew, there exists v ≤ w such that Ev =E.
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Theorem 4.2.17 (due to [11]). PID is strongly complete with respect to negative saturated
intuitionistic Kripke models.

Theorem 4.2.18 (Strong Completeness Theorem). Let Γ be a set of formulas and φ a
formula of PID. Then

Γ `PID φ ⇐⇒ Γ |=PID φ.

Proof. Due to [11]. �

Theorem 4.2.19 (Compactness Theorem). For any set Γ of formulas and any formula φ
of PID, if Γ |= φ, then there exists a finite set ∆⊆ Γ such that ∆ |= φ.

4.3 Axiomatizing propositional dependence logic with in-
tuitionistic disjunction

We showed in Theorem 4.2.8 that PID is a maximal downwards closed logic. In this sec-
tion, we study another naturally arisen maximal downwards closed logic, that is proposi-
tional dependence logic extended with intuitionistic disjunction (PD[∨]). We give axioms
and prove a completeness theorem for the logic.

We start with analyzing the expressive power of PD[∨]. For logics based on team
semantics which have the empty team property (such as PD, PD[∨] and PID), we define

•
⊗

/0 :=
∨

/0 :=⊥,

where ⊥ is a shorthand for pi ∧¬pi for any pi. In the next lemma, we prove that all
n-teams X are definable up to subteams in PD[∨] by a very similar formula ΘX to the
formula ΨX of PID in Lemma 4.2.6.

Lemma 4.3.1. Let X be an n-team on N = {i1, . . . , in}. Define a formula ΘX of PD[∨]

as
ΘX :=

⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

).

Then for any n-team Y on N ,

Y |= ΘX ⇐⇒ Y ⊆X.

Proof. “=⇒”: Suppose Y |= ΘX . If X = /0, then ΘX := ⊥ and we must have that Y =
/0 =X . Otherwise, if X 6= /0, then for each s ∈X , there exists Ys such that

Y =
⋃
s∈X

Ys and Ys |= p
s(i1)
i1
∧·· ·∧ps(in)in

.

Then, either Ys = /0 or Ys = {s} implying Y ⊆X .
“⇐=”: By the downwards closure property, it suffices to show thatX |= ΘX . Clearly,

if X = /0, then ΘX :=⊥ and X |= ΘX . Otherwise, clearly, for each s ∈X , we have that
{s} |= p

s(i1)
i1
∧·· ·∧ps(in)in

, which implies that X |= ΘX . �

Now we show that PD[∨] is a maximal downwards closed logic by a very similar
argument to that in the proof of Theorem 4.2.8.
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Theorem 4.3.2. PD[∨] is a maximal downwards closed logic.

Proof. It suffices to show that

∇N = {JφK : φ(pi1 , . . . ,pin) is an n-formula of PD[∨]}

for any N = {i1, . . . , in} ⊆ N. The direction “⊇” follows from the fact that PD[∨] is
downwards closed. For the other inclusion “⊆”, for every K ∈ ∇N , K = J

∨
X∈K ΘXK

(note that K is finite). �

Corollary 4.3.3. PD[∨] = PID = InqL.

Proof. By Theorem 4.3.2 and Theorem 4.2.8. �

The proof of Theorem 4.3.2 shows that every n-formula φ(pi1 , . . . ,pin) of PD[∨] is
logically equivalent to a formula in the normal form∨

f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

), (4.8)

where F is a finite set of indices and eachXf is an n-team on {i1, . . . , in}. It is worthwhile
to point out that a similar normal form (of typically infinite size) for first-order dependence
logic extended with intuitionistic disjunction was suggested already in [1]. The formula
in the normal form (4.8) does not contain dependence atoms, this means that dependence
atoms are expressible in PD[∨]. We prove this in the following lemma.

Lemma 4.3.4. =(pj0 , . . . ,pjk) ≡
∨

f∈22k

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

)
, where 2k is

the maximal n-team on K = {j0, . . . , jk−1}.

Proof. It suffices to show that for any team X ,

X |= =(pj0 , . . . ,pjk) ⇐⇒ X |=
∨

f∈22k

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

)
.

Suppose X |= =(pj0 , . . . ,pjk). Define f : 2k→ 2 by taking

f(s) =

{
t(jk), if ∃t ∈X such that t �K = s,

1, otherwise.

The function f is well-defined, since for any t0, t1 ∈X such that

t0 �K = t1 �K, (4.9)

the assumption guarantees that t0(jk) = t1(jk).
For each s ∈ 2k, define

Xs = {t ∈X : t �K = s}.
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It is easy to see that X =
⋃
s∈2k Xs and

Xs |= p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

. (4.10)

Hence X |=
⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

)
.

Conversely, for “⇐=”, by assumption, there exists a function f : 2k→ 2 and for each
s ∈ 2k there exists a team Xs ⊆ X such that X =

⋃
s∈2k Xs and (4.10) holds. For any

t0, t1 ∈X such that (4.9) holds, there exists s ∈ 2k satisfying

s= t0 �K = t1 �K.

Clearly, t0, t1 ∈Xs. By (4.10), t0(jk) = f(s) = t1(jk), as required. �

We now present a natural deduction system for PD[∨] for which the normal form
(4.8) can be obtained proof-theoretically. The main goal of this section is to prove the
completeness theorem for this system.

Definition 4.3.5 (A natural deduction system for PD[∨]). The rules are given as follows:

1. Conjunction Introduction:
φ ψ

φ∧ψ
(∧I)

2. Conjunction Elimination:
φ∧ψ
φ

(∧E)
φ∧ψ
ψ

(∧E)

3. Intuitionistic Disjunction Introduction:
φ

φ∨ψ
(∨I)

ψ

φ∨ψ
(∨I)

4. Intuitionistic Disjunction Elimination:

φ∨ψ

[φ]

...
χ

[ψ]

...
χ

(∨E)χ

5. Tensor Disjunction Introduction:
φ

φ⊗ψ
(⊗I)

6. Weak Tensor Disjunction Elimination:

φ⊗ψ

[φ]

...
χ

[ψ]

...
χ

(⊗WE)χ

whenever χ is a classical formula.

7. Tensor Disjunction Substitution:



75

φ⊗ψ

[ψ]

...
χ

(⊗Sub)
φ⊗χ

8. Commutative and Associative Laws for Tensor Disjunction:

φ⊗ψ
ψ⊗φ

(Com⊗)
φ⊗ (ψ⊗χ)
(φ⊗ψ)⊗χ

(Ass⊗)

9. Contradiction Elimination:
φ⊗ (pi∧¬pi)

φ
(⊥E)

10. Atomic Excluded Middle: (EM0)
pi⊗¬pi

11. Dependence Atom Introduction:

∨
f∈22k

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ . . .ps(jk−1)

jk−1
∧pf(s)jk

)
(DepI)

=(pj0 , . . . ,pjk−1 ,pjk)

where 2k is the maximal k-team on the set {j0, . . . , jk−1}.

12. Dependence Atom Elimination:

=(pj0 , . . . ,pjk−1 ,pjk) (DepE)∨
f∈22k

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ . . .ps(jk−1)

jk−1
∧pf(s)jk

)

where 2k is the maximal k-team on the set {j0, . . . , jk−1}.

13. Distributive Laws:

φ⊗ (ψ∨χ)
(φ⊗ψ)∨ (φ⊗χ)

(Dstr⊗∨ )
φ∧ (ψ⊗χ)

(φ∧ψ)⊗ (φ∧χ)
(Dstr∧⊗)

(φ⊗ψ)∨ (φ⊗χ)
φ⊗ (ψ∨χ)

(Dstr⊗∨⊗ )

If a formula φ of PD[∨] is derivable in the system, then we write `PD[∨] φ or simply
` φ. If φ ` ψ and ψ ` φ, then we say that φ and ψ are provably equivalent, in symbols
φ a` ψ.

In the above system, all of the substitution, commutative, associative and distributive
rules involving tensor disjunction ⊗ are necessary, as we only have the weak elimination
rule for tensor disjunction (⊗WE), whereas the strong elimination rule:
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φ⊗ψ

[φ]

...
χ

[ψ]

...
χ

χ

is not valid (since e.g. |==(pi)⊗=(pi) but 6|= =(pi) ). Moreover, not all usual distributive
laws are valid in PD[∨], for example, the following distributive law:

(φ∨ψ)⊗ (φ∨χ)
φ∨ (ψ⊗χ)

is not valid even for classical formulas, since e.g.,

(p∨¬p)⊗ (p∨¬p) 6|= p∨ (¬p⊗¬p).

Interesting derivable rules are listed in the next lemma.

Corollary 4.3.6. The following are derivable rules:

1. ex falso:
pi∧¬pi

φ
(ex falso)

2. Distributive Laws:

φ⊗ (ψ∧χ)
(φ⊗ψ)∧ (φ⊗χ)

(Dstr⊗∧) φ∨ (ψ⊗χ)
(φ∨ψ)⊗ (φ∨χ)

(Dstr∨⊗)

(φ⊗ψ)∧ (φ⊗χ)
(∗)

φ⊗ (ψ∧χ)
(Dstr∗⊗∧⊗)

(φ∧ψ)⊗ (φ∧χ)
(∗)

φ∧ (ψ⊗χ)
(Dstr∗∧⊗∧)

(∗) whenever φ is a classical formula.

3. Commutative and Associative Rules for Conjunction and Intuitionistic Disjunction:

φ∧ψ
ψ∧φ

(Com∧) φ∨ψ
ψ∨φ

(Com∨)

(φ∧ψ)∧χ
φ∧ (ψ∧χ)

(Ass∧) (φ∨ψ)∨χ
φ∨ (ψ∨χ)

(Ass∨)

4. Substitution Rule for Intuitionistic Disjunction and Conjunction:

φ∨ψ

[ψ]

...
χ

(∨Sub)
φ∨χ

φ∧ψ

[ψ]

...
χ

(∧Sub)
φ∧χ
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5. Distributive Laws for Intuitionistic Disjunction and Conjunction:

φ∧ (ψ∨χ)
(φ∧ψ)∨ (φ∧χ)

(Dstr)
φ∨ (ψ∧χ)

(φ∨ψ)∧ (φ∨χ)
(Dstr)

(φ∨ψ)∧ (φ∨χ)
φ∨ (ψ∧χ)

(Dstr)
(φ∧ψ)∨ (φ∧χ)
φ∧ (ψ∨χ)

(Dstr)

Proof. The rules in Items 3-5 are derived as usual. It remains to derive all the other rules.
For (ex falso):

pi∧¬pi (⊗I)
φ⊗ (pi∧¬pi) (⊥E)

φ

For (Dstr⊗∧):

φ⊗ (ψ∧χ)
[ψ∧χ]

(∧E)
ψ

(⊗Sub)
φ⊗ψ

φ⊗ (ψ∧χ)
[ψ∧χ]

(∧E)χ
(⊗Sub)

φ⊗χ
(∧I)

(φ⊗ψ)∧ (φ⊗χ)

For (Dstr∨⊗):

φ∨ (ψ⊗χ)

[φ]
(⊗I)

φ⊗φ
(∨I, ⊗Sub)

(φ∨ψ)⊗ (φ∨χ)
[ψ⊗χ]

(∨I, ⊗Sub)
(φ∨ψ)⊗ (φ∨χ)

(∨E)
(φ∨ψ)⊗ (φ∨χ)

For (Dstr∗⊗∧⊗): If φ is a classical formula, then we have the following derivation:

(φ⊗ψ)∧ (φ⊗χ)
(Dstr∧⊗)(

(φ⊗ψ)∧φ
)
⊗
(
(φ⊗ψ)∧χ

)
(∧E, ⊗Sub)

φ⊗
(
(φ⊗ψ)∧χ

)
(Dstr∧⊗)

φ⊗ (φ∧χ)⊗ (ψ∧χ)
(∧E, ⊗Sub)

φ⊗φ⊗ (ψ∧χ)
(⊗WE, ⊗Sub)

φ⊗ (ψ∧χ)

For (Dstr∗∧⊗∧): If φ is a classical formula, then we have the following derivation:

(φ∧ψ)⊗ (φ∧χ)
(∧E, ⊗Sub)

φ⊗φ
(⊗WE)

φ

(φ∧ψ)⊗ (φ∧χ)
(∧E, ⊗Sub)

ψ⊗χ
(∧I)

φ∧ (ψ⊗χ)

�

Next, we prove the Soundness Theorem for the above deductive system.
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Theorem 4.3.7 (Soundness Theorem). For any formulas φ and ψ of PD[∨],

φ ` ψ =⇒ φ |= ψ.

Proof. It suffices to show that all of the deductive rules are valid. The rules 1-5, 7-10
are easy to verify. The validity of Dependence Atom Introduction and Elimination rules
follows from Lemma 4.3.4. It remains to verify the validity of the rules 4,5 and 13.

For (⊗WE), it suffices to show that

φ |= χ and ψ |= χ=⇒ φ⊗ψ |= χ,

whenever χ is a classical formula. By Lemma 4.1.9, the assumption implies that χ is flat.
For any team X such that X |= φ⊗ψ, there are teams Y,Z ⊆X such that X = Y ∪Z,
Y |= φ and Z |=ψ. Since φ |= χ and ψ |= χ, we have that Y |= χ and Z |= χ, which imply
that X |= χ, as χ is flat.

For (Dstr⊗∨), it suffices to show that φ⊗ (ψ∨χ) |= (φ⊗ψ)∨ (φ⊗χ). For any team
X such thatX |= φ⊗(ψ∨χ), there are teams Y,Z ⊆X such thatX = Y ∪Z, Y |= φ and
Z |=ψ∨χ. It follows that Y ∪Z |=φ⊗ψ or Y ∪Z |=φ⊗χ, henceX |=(φ⊗ψ)∨(φ⊗χ).

For (Dstr∧⊗), it suffices to show that φ∧ (ψ⊗χ) |= (φ∧ψ)⊗ (φ∧χ). For any team
X such thatX |= φ∧(ψ⊗χ), we have thatX |= φ andX |=ψ⊗χ. The latter implies that
there are teams Y,Z ⊆X such that X = Y ∪Z, Y |= ψ and Z |= χ. By the downwards
closure property, Y |= φ and Z |= χ. It follows that Y |= φ∧ψ and Z |= φ∧χ, thus
X |= (φ∧ψ)⊗ (φ∧χ).

For (Dstr⊗∨⊗), it suffices to show that (φ⊗ψ)∨ (φ⊗χ) |= φ⊗ (ψ∨χ). For any
team X such that X |= (φ⊗ψ)∨ (φ⊗χ), we have that X |= φ⊗ψ or X |= φ⊗χ. In the
former case, there are teams Y,Z ⊆X such that X = Y ∪Z, Y |= φ and Z |= ψ, which
implies that Z |= ψ∨χ, thereby X |= φ⊗ (ψ∨χ). By a similar argument, one derives
X |= φ⊗ (ψ∨χ) in the latter case as well. �

Next, we show that every PD[∨] formula is provably equivalent to a formula in the
intended normal form (4.8).

Theorem 4.3.8. Any n-formula φ(pi1 , . . . ,pin) of PD[∨] is provably equivalent to a for-
mula of the form ∨

f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

),

where F is a finite set of indices, and each Xf is an n-team on N = {i1, . . . , in}.

Proof. Let 2n be the maximal n-team on N . We prove the theorem by induction on
φ(pi1 , . . . ,pin).

Case φ(pi1 , . . . ,pin) = pik for 1≤ k≤ n. IfN = {ik}, then pik a`
⊗
s∈{1}

p
s(ik)
ik

, where

1 : {ik}→ {0,1} is defined as 1(ik) = 1.
Now, assume N ⊃ {ik}. We prove that pik a` θ, where

θ :=
⊗
s∈2n

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧ . . .ps(in)in
).
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For pik ` θ, we have the following derivation:

(1)pik
(2)(pi0 ⊗¬pi0)∧·· ·∧ (pik−1 ⊗¬pik−1)∧ (pik+1 ⊗¬pik+1)∧·· ·∧ (pin ⊗¬pin)

(EM0, ∧I)

(3)
⊗
s∈2n

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧ . . .ps(in)in

) (Dstr∧⊗, ⊗I, ⊗Sub)

(4)pik ∧
⊗
s∈2n

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧ . . .ps(in)in

) ( (1), (3), ∧I)

(5)
⊗
s∈2n

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧ . . .ps(in)in
)

(Dstr∧⊗,Com∧,⊗Sub)

For the other direction θ ` pik , we have the following derivation:

(1)θ

(2)
⊗
s∈2n

(
pik ∧ (p

s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧ . . .ps(in)in

)
)
(Com∧,⊗Sub)

(3)pik ∧
⊗
s∈2n

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧ . . .ps(in)in

) (Dstr∗∧⊗∧,⊗Sub)

(4)pik (∧E)

Case φ(pi1 , . . . ,pin) = ¬pik (1≤ k ≤ n) is proved similarly with the above case.

Case φ= =(pij0 , · · · ,pijk )(pi1 , . . . ,pin). Put K = {ij0 , . . . , ijk−1}. If N \{ijk}=K,
then by (DepE) and (DepI), we derive

=(pij0 , · · · ,pijk )(pij0 , · · · ,pijk ) a`
∨

f∈22k

⊗
s∈2k

(p
s(ij0 )

ij0
∧·· ·∧ . . .p

s(ijk−1 )

ijk−1
∧pf(s)ijk

).

Now, assume N \{ijk} ⊃K. We show that =(pij0 , · · · ,pijk ) a` θ, where

θ :=
∨

f∈22k

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

),

where 2k is the maximal k-team onK and 2n−1 is the maximal (n−1)-team onN \{ijk}4

. Let M = N \ (K ∪ {ijk}), |M | = m and 2m be the maximal m-team on M . For
=(pij0 , · · · ,pijk ) ` θ, we have the following derivation:

(1)=(pij0 , · · · ,pijk )

(2)
∨

f∈22k

⊗
s∈2k

(p
s(ij0 )

ij0
∧·· ·∧ . . .p

s(ijk−1 )

ijk−1
∧pf(s)ijk

) (DepE)

4Note that here 2n−1 can be viewed as the subset {s∪{(ijk ,1)} | s ∈ 2n−1} of the maximal n-team 2n on
{i1, . . . , in}.
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(3)
∨

f∈22k

⊗
s∈2k

(
p
s(ij0 )

ij0
∧·· ·∧ . . .p

s(ijk−1 )

ijk−1
∧pf(s)ijk

∧
(⊗
t∈2m

∧
a∈M

p
t(ia)
ia

))
(EM0, Dstr∧⊗)

(4)
∨

f∈22k

⊗
s∈2k

⊗
t∈2m

(
p
s(ij0 )

ij0
∧·· ·∧ . . .p

s(ijk−1 )

ijk−1
∧pf(s)ijk

∧
( ∧
a∈M

p
t(ia)
ia

))
(Dstr ∧⊗)

(5)
∨

f∈22k

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

)

For the other direction θ `=(pij0 , · · · ,pijk ), we have the following derivation:

(1)
∨

f∈22k

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

)

(2)
∨

f∈22k

⊗
s∈2n−1

(p
s(ij0 )

ij0
∧·· ·∧ . . .p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
) (∧E, ⊗Sub)

(3)
∨

f∈22k

⊗
s∈2k

(p
s(ij0 )

ij0
∧·· ·∧ . . .p

s(ijk−1 )

ijk−1
∧pf(s)ijk

) (⊗WE)

(4)=(pij0 , · · · ,pijk ) (DepI)

Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)∨χ(pi1 , . . . ,pin). By induction hypothesis, we
have that

ψ(pi1 , . . . ,pin) a`
∨
f∈F

⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

),

χ(pi1 , . . . ,pin) a`
∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

), (4.11)

where each Xf ,Xg ⊆ 2n. If F,G 6= /0, then it follows from (∨E) and (∨I) that

ψ∨χ a`
∨

h∈F∪G

⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

).

If F = /0 or G= /0, then ψ a` pi1 ∧¬pi1 or χ a` pi1 ∧¬pi1 . In the former case, we derive
by (ex falso), (∨E) and (∨I) that

ψ∨χ a` (pi1 ∧¬pi1)∨
( ∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

a`
∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

).

Similarly, in the latter case, we derive ψ∨χ a`
∨
f∈F

⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

).
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Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)⊗χ(pi1 , . . . ,pin). By induction hypothesis, we
have (4.11). If F = /0 or G = /0, then ψ a` pi1 ∧¬pi1 or χ a` pi1 ∧¬pi1 . In the former
case, we derive by (⊥E) and (⊗I) that

ψ⊗χ a` (pi1 ∧¬pi1)⊗
( ∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

a`
∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

).

Similarly, in the latter case, we derive ψ⊗χ a`
∨
f∈F

⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

).

Now, assume F,G 6= /0. We show that ψ⊗χ a` θ, where

θ :=
∨
f∈F

∨
g∈G

⊗
s∈Xf∪Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

).

For ψ⊗χ ` θ, we have the following derivation:

(1)ψ⊗χ

(2)
( ∨
f∈F

⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)
)
⊗
( ∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

(3)
∨
f∈F

(( ⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)
)
⊗
( ∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
))

(Dstr⊗∨)

(4)
∨
f∈F

∨
g∈G

(( ⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)
)
⊗
( ⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
))

(Dstr⊗∨)

(5)
∨
f∈F

∨
g∈G

⊗
(s,a)∈(Xf×{0})∪(Xg×{1})

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

(6)
∨
f∈F

∨
g∈G

⊗
s∈Xf∪Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

) (⊗WE)

The other direction θ ` ψ⊗χ is proved symmetrically using (⊗I) and (Dstr⊗∨⊗).

Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)∧χ(pi1 , . . . ,pin). By induction hypothesis, we
have (4.11). If F = /0 or G= /0, then ψ a` pi1 ∧¬pi1 or χ a` pi1 ∧¬pi1 . In this case, we
derive ψ∧χ a` pi1 ∧¬pi1 , i.e., ψ∧χ a`

∨
/0, by (∧E) and (ex falso).

Now, assume F,G 6= /0. We show that ψ∧χ a` θ, where

θ :=
∨
f∈F

∨
g∈G

⊗
s∈Xf∩Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

).

For ψ∧χ ` θ, we have the following derivation:

(1)ψ∧χ
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(2)
( ∨
f∈F

⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)
)
∧
( ∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

(3)
∨
f∈F

∨
g∈G

(( ⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)
)
∧
( ⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
))

(Dstr)

(4)
∨
f∈F

∨
g∈G

⊗
s0∈Xf

⊗
s1∈Xg

(
(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)∧ (ps1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

(Dstr∧⊗, ⊗Sub)

(5)
∨
f∈F

∨
g∈G

⊗
(s0,s1)∈Xf×Xg

(
(p
s0(i1)
i1

∧ps1(i1)
i1

)∧·· ·∧ (ps0(in)
in

∧ps1(in)
in

)
)

(Com ⊗, Ass ⊗)

(6)
∨
f∈F

∨
g∈G

(( ⊗
(s0,s1)∈Xf×Xg

s0=s1

(
(p
s0(i1)
i1

∧ps1(i1)
i1

)∧·· ·∧ (ps0(in)
in

∧ps1(in)
in

)
))

⊗
( ⊗
(s0,s1)∈Xf×Xg

s0 6=s1

(
(p
s0(i1)
i1

∧ps1(i1)
i1

)∧·· ·∧ (ps0(in)
in

∧ps1(in)
in

)
)))

(7)
∨
f∈F

∨
g∈G

⊗
(s0,s1)∈Xf×Xg

s0=s1

(
(p
s0(i1)
i1

∧ps1(i1)
i1

)∧·· ·∧ (ps0(in)
in

∧ps1(in)
in

)
)
(∧E,⊥E)

(8)
∨
f∈F

∨
g∈G

⊗
(s,s)∈Xf×Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

) (∧E)

(9)
∨
f∈F

∨
g∈G

⊗
s∈Xf∩Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

) (⊗WE)

For the other direction θ ` ψ∧χ, we have the following derivation:

(1)
∨
f∈F

∨
g∈G

⊗
s∈Xf∩Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

(2)
∨
f∈F

∨
g∈G

⊗
s0,s1∈Xf∩Xg

s0=s1

(
(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)∧ (ps1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

(∧I)

(3)
∨
f∈F

∨
g∈G

⊗
s0,s1∈Xf×Xg

(
(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)∧ (ps1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

(⊗I)

(4)
∨
f∈F

∨
g∈G

⊗
s0∈Xf

⊗
s1∈Xg

(
(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)∧ (ps1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

(5)
∨
f∈F

∨
g∈G

(( ⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)
)
∧
( ⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
))

(Dstr∗∧⊗∧, ⊗Sub)
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(6)
( ∨
f∈F

⊗
s0∈Xf

(p
s0(i1)
i1

∧·· ·∧ps0(in)
in

)
)
∧
( ∨
g∈G

⊗
s1∈Xg

(p
s1(i1)
i1

∧·· ·∧ps1(in)
in

)
)

(Dstr)

(7)ψ∧χ

�

The next lemma is crucial in proof of the completeness theorem.

Lemma 4.3.9. For any finite non-empty collections {Xf | f ∈ F}, {Yg | g ∈ G} of n-
teams on an n-element set N ⊆ N, the following are equivalent:

(a)
∨
f∈F

ΘXf |=
∨
g∈G

ΘYg ;

(b) for each f ∈ F , we have that Xf ⊆ Ygf for some g ∈G.

Proof. (a)⇒(b): For each f ∈ F , by Lemma 4.3.1,

Xf |= ΘXf , thus Xf |=
∨
f∈F

ΘXf ,

which by (a) implies that Xf |=
∨
g∈G

ΘYg . It follows that there exists gf ∈ G such that

Xf |= ΘYgf
. Hence by Lemma 4.3.1, Xf ⊆ Ygf .

(b)⇒(a): Suppose X is any n-team on N satisfying X |=
∨
f∈F

ΘXf . Then X |= ΘXf

for some f ∈ F , which by Lemma 4.3.1 and (b) means that X ⊆ Xf ⊆ Ygf for some
gf ∈ G. Since by Lemma 4.3.1, Ygf |= ΘYgf

, it follows from the downwards closure
property of ΘYgf

that

X |= ΘYgf
, thereby X |=

∨
g∈G

ΘYg ,

as required. �

Now, we are in a position to prove the completeness theorem for PD[∨].

Theorem 4.3.10 (Completeness Theorem). For any PD[∨] formulas φ and ψ,

φ |= ψ =⇒ φ ` ψ.

Proof. Suppose φ |= ψ, where φ= φ(pi1 , . . . ,pin) and ψ = ψ(pi1 , . . . ,pin). By Theorem
4.3.8, we have that

φ a`
∨
f∈F

ΘXf , ψ a`
∨
g∈G

ΘYg .

for some finite sets {Xf | f ∈ F} and {Yg | g ∈G} of n-teams on {i1, . . . , in}. Then, by
the Soundness Theorem, we have that∨

f∈F
ΘXf |=

∨
g∈G

ΘYg .
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If F = /0, then φ a` pi1 ∧¬pi1 , thus, by (ex falso), we obtain that φ ` ψ. If G = /0,
then ψ a` pi1 ∧¬pi1 , thus we must have that φ a` pi1 ∧¬pi1 , hence φ ` ψ.

If F,G 6= /0, then Lemma 4.3.9, for each f ∈ F , we have that Xf ⊆ Ygf for some
gf ∈G. Thus, we have the following derivation:

(1) ΘXf

(2)
⊗
s∈Xf (p

s(i1)
i1
∧·· ·∧ps(in)in

)

(3) (
⊗
s∈Xf (p

s(i1)
i1
∧·· ·∧ps(in)in

))⊗ (
⊗
s∈Ygf \Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

)) (⊗I)

(4)
⊗
s∈Ygf

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

(5) ΘYgf

(6)
∨
g∈GΘYg (∨I)

Thus, ΘXf `
∨
g∈G

ΘYg for each f ∈ F , which by (∨E) implies that

∨
f∈F

ΘXf `
∨
g∈G

ΘYg , namely φ ` ψ.

�

Corollary 4.3.11. For any PD[∨] formula φ(pi1 , . . . ,pin),

|= φ =⇒ ` φ.

Proof. Since |= pi1 ⊗¬pi1 , by Theorem 4.3.10 we have that

|= φ =⇒ pi1 ⊗¬pi1 |= φ =⇒ pi1 ⊗¬pi1 ` φ.

Thus, we obtain ` φ by (EM0). �

Theorem 4.3.12 (Strong Completeness Theorem). Let Γ be a set of formulas and φ a
formula of PD[∨]. Then

Γ ` φ ⇐⇒ Γ |= φ.

Proof. The direction “=⇒” follows from Soundness Theorem. For the other direction
“⇐=”: Since PD[∨] = PID (Corollary 4.3.3) and Compactness Theorem holds for PID
(Theorem 4.2.19), we know that PD[∨] is also compact. Thus, if Γ |= φ, then there exists
a finite set ∆⊆ Γ such that ∆ |= φ. Taking

θ =
∧
ψ∈∆

ψ,

we have θ |= φ. Hence by Theorem 4.3.10, we obtain θ ` φ, thereby Γ ` φ. �
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4.4 Axiomatizing propositional dependence logic
In this section, we study the expressive power of propositional dependence logic (PD),
and give a complete axiomatization of the logic based on the method used in Section 4.3
for PD[∨].

We proved in Theorem 4.3.2 that PD[∨] is a maximal downwards closed logic. It turns
out that PD is also a maximal downwards closed logic, although apparently it appears
to be less expressive than PD[∨] (as the latter has an extra connective, the intuitionistic
disjunction). This result is due to Taneli Huuskonen (2012, unpublished). Below we
present the proof with his permission.

Theorem 4.4.1 (T. Huuskonen). PD is a maximal downwards closed logic.

Proof. It suffices to show that for every set N = {i1, . . . , in} ⊆ N, every collection K ∈
∇N , there is an n-formula φ(pi1 , . . . ,pin) of PD such that K = JφK.

We define formulas αk for each k ∈ ω as follows:

• α0 := pi1 ∧¬pi1 ;

• α1 := =(pi1)∧·· ·∧=(pin);

• αk :=
k⊗
i=1

α1, for k > 1.

Claim 1. For any n-team X on N , X |= αk iff |X| ≤ k.

Proof of Claim 1. Clearly,

X |= α0 ⇐⇒ X = /0 ⇐⇒ |X| ≤ 0

and
X |= α1 ⇐⇒ |X| ≤ 1.

For k > 1, we have that

X |= αk ⇐⇒ X =
k⋃
i=1

Xi with Xi |= α1

⇐⇒ X =
k⋃
i=1

Xi with |Xi| ≤ 1

⇐⇒ |X| ≤ k

a

Let Y be a non-empty n-team with |Y | = k+ 1 and 2n the maximal n-team on N .
By Lemma 4.3.1,

X |= Θ2n\Y ⇐⇒ X ⊆ 2n \Y ⇐⇒ X ∩Y = /0. (4.12)

Define
Θ
?
Y := αk⊗Θ2n\Y .
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Claim 2. For any n-team X on N , we have that X |= Θ?
Y iff Y *X .

Proof of Claim 2. We have that

X |= Θ
?
Y ⇐⇒ X = U ∪V such that U |= αk and V |= Θ2n\Y

⇐⇒ X = U ∪V such that |U | ≤ k and V ∩Y = /0
(by Claim 1 and (4.12)). (∗)

If Y *X , then |Y \X| ≥ 1. We have that X = (Y ∩X)∪(X \Y ). Clearly (X \Y )∩
Y = /0. On the other hand,

|Y ∩X|= |Y \ (Y \X)|= |Y |− |Y \X| ≤ (k+1)−1 = k.

Thus, by (∗), we conclude that X |= Θ?
Y .

Conversely, suppose X |= Θ?
Y . By (∗), X = U ∪V such that |U | ≤ k < k+ 1 = |Y |

and V ∩Y = /0. It follows that there exists s ∈ Y such that s /∈ U ∪V =X , thus Y *X ,
as required. a

Now, let K ∈ ∇N . Consider the finite collection

22n \K = {Yj | j ∈ J}

of n-teams on N which are not in K.

Claim 3. For any n-team X on N ,

X ∈ K ⇐⇒ Yj *X for all j ∈ J.

Proof of Claim 3. If X /∈ K, then by definition, X = Yj0 for some j0 ∈ J , so Yj0 ⊆ X .
Conversely, if X ∈ K, then as K is downwards closed, for all Y ⊆X , Y ∈ K. Thus for
all Yj /∈ K, we must have that Yj *X . a

Finally, since /0 ∈K, we have that Yj 6= /0 for any j ∈ J . Hence by Claim 2 and Claim
3, we obtain that for any n-team X on N ,

X |=
∧
j∈J

Θ
?
Yj
⇐⇒ Yj *X for all j ∈ J ⇐⇒ X ∈ K,

i.e., K = J
∧
j∈J Θ?

Yj
K, as required. �

Corollary 4.4.2. PD = PD[∨] = PID = InqL.

Proof. By Theorem 4.4.1 and Corollary 4.3.3. �

Propositional logic can be viewed as first-order logic over a first-order model 2 with a
two-element domain {0,1}. An n-valuation on N = {i1, . . . , in} can be viewed as a first-
order assignment from an n-element set {xi1 , . . . ,xin} of first-order variables into the
first-order model 2. In this sense, Corollary 4.4.2 implies that for a fixed number n, PD
(viewed as a special kind of first-order dependence logic) can characterize all downwards
closed collections K of first-order teams of 2 with an n-element domain. These collections
K are called (2,n)-suits in [6], and the function value f(2,n) represents the number of
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distinct collections K for the fixed n. It then follows straightforwardly from the counting
result in [6] that there is no compositional semantics for PD in which the semantic truth
set of an n-formula φ is a subset of 2n. This justifies that the team semantics given in this
chapter is an appropriate compositional semantics for PD.

The proof of Theorem 4.4.1 shows that every n-formula φ(pi1 , . . . ,pin) of PD is log-
ically equivalent to a formula in the normal form∧

j∈J
Θ
?
Yj
,

where J is a finite set of indices and each Yj is an n-team on {i1, . . . , in}. Using this nor-
mal form, one can define a natural deduction system for PD and prove the completeness
theorem. However, as this normal form is complex, we will not take this approach to the
axiomatization of PD. Instead, we define a similar natural deduction system with that of
PD[∨] and prove the completeness theorem by a similar technique.

One of the crucial steps in the argument is that dependence atoms will be eliminated
in a certain way. In the case of PD[∨], we made use of the following equivalence (Lemma
4.3.4)

=(pj0 , . . . ,pjk)≡
∨

f∈22k

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

)
(4.13)

and added the corresponding rules (DepI) and (DepE) in the natural deduction system.
However, the intuitionistic disjunction, which plays a crucial role in the equivalence
(4.13), is not an eligible connective in the logic PD. To overcome this problem, we make
the following observations.

Consider a formula φ of PD, which contains an occurrence of the dependence atom
=(pj0 , . . . ,pjk). For any team X such that X |= φ, there exists a subteam Y ⊆ X such
that Y |= =(pj0 , . . . ,pjk)

5. By the team semantics, there exists a function f : 2k→ 2 such
that for all s ∈ Y ,

s(jk) = f(s � {j0, . . . , jk−1}),
where 2k is the maximal k-team on {j0, . . . , jk−1}. In φ, replace the occurrence of the
formula =(pj0 , . . . ,pjk) by

(=(pj0 , . . . ,pjk))
∗
f :=

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

)
,

and denote the resulting formula by φ∗f . The formula φ∗f can be viewed as an approxima-
tion of φ, and we will see in Lemma 4.4.3 that X |= φ∗f .

More generally, suppose the following are all the occurrences of all dependence atoms
in a formula φ of PD:

=(pj1
0
. . . ,pj1

k1
), . . . , =(pjc0 , . . . ,pj

c
kc
).

An approximation sequence Ω= 〈f1, . . . ,fc〉 of φ is a sequence such that for each 1≤ ξ≤
c, fξ : 2kξ → 2 is a function from the maximal kξ-team on {jξ0 , . . . , j

ξ
kξ−1} into 2 = {0,1}.

For each such sequence Ω, define a dependence atom-free (classical) formula φ∗
Ω

, called
an approximation of φ, by induction as follows:

5C.f. Theorem 5.2.11.
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• (pi)
∗
〈〉 := pi and (¬pi)∗〈〉 := ¬pi;

• (=(p
j
ξ
0
, . . . ,p

j
ξ
kξ

))∗〈fξ〉 :=
⊗
s∈2kξ

(
p
s(j

ξ
0 )

j
ξ
0
∧·· ·∧p

s(j
ξ
kξ−1)

j
ξ
kξ−1

∧pfξ(s)
j
ξ
kξ

)
;

• (ψ ∧χ)∗
Ω

:= ψ∗
Ω0 ∧χ∗Ω1 , where Ω0 and Ω1 are subsequences of Ω consisting of

all the fξ’s such that the dependence atoms =(p
j
ξ
0
, . . . ,p

j
ξ
kξ

) occur in ψ and χ,

respectively;

• (ψ⊗χ)∗
Ω

:= ψ∗
Ω0 ⊗χ∗Ω1 , where Ω0 and Ω1 are as above.

Next, we show that every PD formula is logically equivalent to the intuitionistic dis-
junction of all its approximations.

Lemma 4.4.3. Let φ be a formula of PD and Λ the set of all its approximation sequences.
Then

φ≡
∨

Ω∈Λ

φ∗Ω.

Proof. We first show by induction on φ that for each Ω ∈ Λ, φ∗
Ω
|= φ. Suppose all the

occurrences of all dependence atoms in φ are as follows:

=(pj1
0
, . . . ,pj1

k1
), . . . ,=(pjc0 , . . . ,pj

c
kc
).

Case φ := pi or φ := ¬pi is trivial as in this case, Ω = 〈〉 and φ∗〈〉 = pi = φ.

Case φ := =(p
j
ξ
0
, . . . ,p

j
ξ
kξ

) for 1 ≤ ξ ≤ c. Then Ω = 〈fξ〉 for some fξ : 2kξ → 2.

Suppose for some team X ,

X |=
⊗
s∈2kξ

(
p
s(j

ξ
0 )

j
ξ
0
∧·· ·∧p

s(j
ξ
kξ−1)

j
ξ
kξ−1

∧pfξ(s)
j
ξ
kξ

)
.

Then for each s ∈ 2kξ , there exists Xs ⊆X such that X =
⋃
s∈2kξ

Xs and

Xs |= p
s(j

ξ
0 )

j
ξ
0
∧·· ·∧p

s(j
ξ
kξ−1)

j
ξ
kξ−1

∧pfξ(s)
j
ξ
kξ

.

For any t, t′ ∈X such that

t � {jξ0 , . . . , j
ξ
kξ−1}= t′ � {jξ0 , . . . , j

ξ
kξ−1}= s0 ∈ 2kξ ,

we must have that t, t′ ∈Xs0 . Thus

t(jξkξ) = fξ(s0) = t′(jξkξ).

Hence X |= =(p
j
ξ
0
, . . . ,p

j
ξ
kξ

).
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Case φ :=ψ⊗χ. By induction hypothesis, we have that ψ∗
Ω0 |=ψ and χ∗

Ω1 |=χ, where
Ω0 and Ω1 are subsequences of Ω consisting of all the fξ’s with the dependence atoms
=(p

j
ξ
0
, . . . ,p

j
ξ
kξ

) occurring in ψ and χ, respectively. It follows that ψ∗
Ω0 ⊗χ∗Ω1 |= ψ⊗χ,

namely (ψ⊗χ)∗
Ω
|= ψ⊗χ.

Case φ := ψ∧χ. Similar to the above case.

Next, we show that φ |=
∨

Ω∈Λφ
∗
Ω

by induction on φ.
Case φ := pi or¬pi is trivial, as

∨
Ω∈Λ(pi)

∗
Ω
≡ (pi)

∗
〈〉≡ pi and

∨
Ω∈Λ(¬pi)∗Ω≡ (¬pi)∗〈〉≡

¬pi.
Case φ := =(p

j
ξ
0
, . . . ,p

j
ξ
kξ

) for 1 ≤ ξ ≤ c. Suppose X |= =(p
j
ξ
0
, . . . ,p

j
ξ
kξ

) for some

team X . Define a function fξ : 2k→ 2 by taking

fξ(s) =

{
t(jξkξ) if ∃t ∈X(t � {j0, . . . , jk−1}= s);

1 otherwise.

By assumption, if for t, t′ ∈X ,

t � {j0, . . . , jk−1}= t′ � {j0, . . . , jk−1}= s,

then t(jξkξ) = t′(jξkξ), thus the function fξ is well-defined.

Clearly, for each s ∈ 2kξ ,

Xs |= p
s(j

ξ
0 )

j
ξ
0
∧·· ·∧p

s(j
ξ
kξ−1)

j
ξ
kξ−1

∧pfξ(s)
j
ξ
kξ

,

thus

X |=
⊗
s∈2kξ

(
p
s(j

ξ
0 )

j
ξ
0
∧·· ·∧p

s(j
ξ
kξ−1)

j
ξ
kξ−1

∧pfξ(s)
j
ξ
kξ

)
.

Case φ := ψ⊗χ. By induction hypothesis, we have that

ψ |=
∨

Ω0∈Λ0

ψ∗
Ω0 and χ |=

∨
Ω1∈Λ1

χ∗
Ω1 ,

where Λ0 is the set of all Ω0’s which are subsequences of some Ω ∈ Λ consisting of all
the fξ’s with the dependence atoms =(p

j
ξ
0
, . . . ,p

j
ξ
kξ

) occurring in ψ, and Ω1 is obtained

in the same way for χ.
Now, since A⊗ (B ∨C) |= (A⊗B)∨ (A⊗C) for all formulas A,B,C, we obtain

that

ψ⊗χ |=

( ∨
Ω0∈Λ0

ψ∗
Ω0

)
⊗

( ∨
Ω1∈Λ1

χ∗
Ω1

)
|=

∨
Ω0∈Λ0

∨
Ω1∈Λ1

(ψ∗
Ω0 ⊗χ∗Ω1),

where ∨
Ω0∈Λ0

∨
Ω1∈Λ1

(ψ∗
Ω0 ⊗χ∗Ω1)≡

∨
Ω∈Λ

(ψ∗
Ω0 ⊗χ∗Ω1) =

∨
Ω∈Λ

(ψ⊗χ)∗Ω,
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as required.
Case φ := ψ∧χ is proved similarly, using the fact that A∧ (B∨C) |= (A∧B)∨ (A∧

C) for all formulas A,B,C. �

In the formula
∨

Ω∈Λφ
∗
Ω

, each φ∗
Ω

is classical (does not contain any dependence atoms
and intuitionistic disjunctions), but the whole formula is not in the language of PD. We
shall view

∨
Ω∈Λφ

∗
Ω

or the sequence

〈φ∗Ω 〉Ω∈Λ

as a weak normal form for formulas of PD. We now define a natural deduction system
for PD which will enable us to derive in effect the weak normal form

∨
Ω∈Λφ

∗
Ω

for every
formula φ.

Definition 4.4.4 (A natural deduction system for PD). The rules are given as follows:

1. The rules (∧I), (∧E), (⊗I), (⊗WE), (⊗Sub), (Com⊗), (Ass⊗), (⊥E), (EM0), (Dstr
∧⊗) as in Definition 4.3.5 (see also Appendix).

2. Dependence Atom Strong Introduction: For any function f : 2k→ 2 of the maximal
k-team on {j0, . . . , jk−1} into 2 = {0,1},

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

)
(DepSI)

=(pj0 , . . . ,pjk)

3. Approximation Transition:

[φ∗
Ω0

]

...
θ

[φ∗
Ωm

]

.... . .
θ φ

(ApTr)
θ

where {Ω0, . . . ,Ωm} is the set of all approximation sequences of φ.

The Approximation Transition rule (ApTr) has the same effect as the combination of
Intuitionistic Disjunction Elimination rule (∨E) and following rule

φ
m∨
i=1

φ∗Ωi

.

However, in the above deductive system for PD, we avoid the use of intuitionistic dis-
junction by taking the rule (ApTr) instead.

Next, we prove the Soundness Theorem for the above deductive system.

Theorem 4.4.5 (Soundness Theorem). For any formulas φ and ψ of PD,

φ ` ψ =⇒ φ |= ψ.
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Proof. It suffices to show that all of the deductive rules are valid. The validity of (DepSI)
and (ApTr) follows from Lemma 4.4.3, and the validity of all the other rules follows from
the proof of Theorem 4.3.7. �

Corollary 4.4.6. The following are derivable rules:

1. Rules (ex falso), (Dstr⊗∧), (Dstr∗⊗∧⊗), (Dstr∗∧⊗∧), (Com ∧), (Ass ∧) and
(∧Sub) as in Corollary 4.3.6 (see also Appendix).

2. Dependence Atom Weak Elimination:

∀f
[(=(pj0 , . . . ,pjk))

∗
〈f〉]

...
θ =(pj0 , . . . ,pjk) (DepWE)

θ

where f : 2k→ 2 is any function from the maximal k-team 2k on {j0, . . . , jk−1} into
2.

3. Approximation Elimination:

φ∗
Ω (ApE)
φ

where Ω is any approximation sequence of φ.

Proof. The rules in Item 1 are derived in the same way as in Corollary 4.3.6. Rule
(DepWE) is a special case of the rule (ApTr).

We now proceed to derive the rule (ApE) by induction on φ. The case φ := pi or ¬pi is
trivial as in this case φ∗

Ω
= φ∗〈〉 = φ. The case φ= =(p

j
ξ
0
, . . . ,p

j
ξ
kξ

) follows from (DepSI).

Case φ := ψ⊗χ. By induction hypothesis, we have that ψ∗
Ω0 ` ψ and χ∗

Ω1 ` χ, where
Ω0 and Ω1 are as before. By (⊗Sub), we derive that ψ∗

Ω0 ⊗χ∗Ω1 ` ψ⊗χ, namely (ψ⊗
χ)∗

Ω
` ψ⊗χ.

Case θ := ψ∧χ is proved similarly using (∧Sub). �

It is not hard to see that the rules (ApTr) and (ApE) imply in effect that∨
Ω∈Λ

φ∗Ω a` φ,

for any PD formula φ, where Λ is the set of all approximation sequences of φ. We now
proceed to prove the completeness theorem for PD using the above weak normal form.

First, we show a completeness theorem for the dependence atom-free fragment of PD
(which consists of all classical formulas of PD).

Proposition 4.4.7. For any classical formulas φ, ψ of PD,

φ |= ψ =⇒ φ ` ψ.



92

Proof. For classical formulas (which can be identified with formulas of classical propo-
sitional logic CPL), PD has the same deductive rules as CPL. Thus, it suffices to show
that for classical formulas φ, ψ of PD,

φ |=PD ψ ⇐⇒ φ |=CPL ψ.

“=⇒”: Suppose φ |=PD ψ. For any valuation s, we have that

s |=CPL φ=⇒{s} |=PD φ (by Lemma 4.1.10)
=⇒{s} |=PD ψ (since φ |=PD ψ)

=⇒ s |=CPL ψ (by Lemma 4.1.10).

“⇐=”: Suppose φ |=CPL ψ. For any team X , we have that

X |=PD φ=⇒∀s ∈X, {s} |=PD φ (by downwards closure)
=⇒∀s ∈X, s |=CPL φ (by Lemma 4.1.10)
=⇒∀s ∈X, s |=CPL ψ (since φ |=CPL ψ)
=⇒∀s ∈X, {s} |=PD ψ (by Lemma 4.1.10)
=⇒X |=PD ψ (ψ is flat, by Lemma 4.1.9).

�

Theorem 4.4.8 (Completeness Theorem). For any formulas φ and ψ of PD,

φ |= ψ =⇒ φ ` ψ.

Proof. Suppose φ |= ψ. By Lemma 4.4.3, we have that

φ≡
∨

Ω∈Λ

φ∗Ω and ψ ≡
∨

∆∈Λ′
ψ∗∆,

where Λ and Λ′ are the sets of all approximation sequences of φ and for ψ, respectively.
For each Ω ∈ Λ, we have that

φ∗Ω |=
∨

∆∈Λ′
ψ∗∆.

By the Completeness Theorem of PD[∨], we have that

φ∗Ω `PD[∨]
∨

∆∈Λ′
ψ∗∆.

Thus, in PID = PD[∨], we have that

`PID φ
∗
Ω→

∨
∆∈Λ′

ψ∗∆.
6

By KP axiom of PID, we have that

`PID (¬¬φ∗Ω→
∨

∆∈Λ′
ψ∗∆)→

∨
∆∈Λ′

(¬¬φ∗Ω→ ψ∗∆).

6The formulas φ∗
Ω

and ψ∗
∆

may contain tensor disjunction ⊗, which is not in the language of PID, but as
PID = PD[∨], one can view them as shorthands for the equivalent formulas in PID.



93

Since the formula φ∗
Ω

is classical, ¬¬φ∗
Ω
a` φ∗

Ω
. Therefore

`PID (φ∗Ω→
∨

∆∈Λ′
ψ∗∆)→

∨
∆∈Λ′

(φ∗Ω→ ψ∗∆),

which implies
`PID

∨
∆∈Λ′

(φ∗Ω→ ψ∗∆).

Now, by the disjunction property of PID, we have that for some ∆Ω ∈ Λ′,

`PID φ
∗
Ω→ ψ∗∆Ω

,

thus φ∗
Ω
`PID ψ

∗
∆Ω

. By the Soundness Theorem of PID, we obtain that

φ∗Ω |= ψ∗∆Ω
.

Note that both φ∗
Ω

and ψ∗
∆Ω

are classical, then by Proposition 4.4.7, we obtain that

φ∗Ω `PD ψ
∗
∆Ω
.

Finally, by (ApE), we derive φ∗
Ω
`PD ψ for each Ω ∈ Λ, therefore by (ApTr), we conclude

that φ `PD ψ, as required. �

Remark 4.4.9. In the above proof, the use of KP axiom and disjunction property is not
essential. Because each φ∗

Ω
and ψ∗

∆
are classical, they can be turned into formulas in

disjunctive normal form in the deductive system of PD (or CPL). In this way, one obtains
in PD that

φ∗Ω a`ΘXΩ
`
∨

∆∈Λ′
ΘY∆
a`

∨
∆∈Λ′

ψ∗∆,

for some teams XΩ, Y∆. From this point on, one continues the proof with the same argu-
ment as in the proof of Theorem 4.3.10 for PD[∨].

Theorem 4.4.10 (Strong Completeness Theorem). Let Γ be a set of formulas and φ a
formula of PD. Then

Γ ` φ ⇐⇒ Γ |= φ.

Proof. Since PD = PID (Corollary 4.4.2) and PID is compact (Theorem 4.2.19), we
know that PD is also compact. Therefore the theorem follows. �

We end this section with an application of the above given natural deduction system
for PD. We will derive Armstrong axioms [2] mentioned in Section 1.1 in the system.

Example 4.4.11. The following Armstrong axioms are derivable in PD:

(i) =(pi,pi)

(ii) =(pi0 ,pi1 ,pi2) `=(pi1 ,pi0 ,pi2)

(iii) =(pi1 ,pi2) `=(pi0 ,pi1 ,pi2)

(iv) =(pi0 ,pi1),=(pi1 ,pi2) `=(pi0 ,pi2)
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Proof. The derivations are as follows:

(i) (EM0)
pi⊗¬pi (∧I, ⊗Sub)

(pi∧pi)⊗ (¬pi∧¬pi)⊗
s∈21

(p
s(i)
i ∧pf(s)i )

(DepSI)
=(pi,pi)

where 21 is the maximal 1-team on {i} and f : 21→ 2 is defined as

f(s) = s(i).

(ii) ∀f : 22→ 2
[(=(pi0 ,pi1 ,pi2))

∗
〈f〉]⊗

s∈22

(p
s(i0)
i0
∧ps(i1)i1

∧pf(s)i2
)

(Com ∧, ⊗Sub)⊗
s∈22

(p
s(i1)
i1
∧ps(i0)i0

∧pf(s)i2
)

(DepSI)
=(pi1 ,pi0 ,pi2) =(pi0 ,pi1 ,pi2) (DepWE)

=(pi1 ,pi0 ,pi2)

where 22 is the maximal 2-team on {i0, i1}.

(iii) ∀f : 21→ 2
[(=(pi1 ,pi2))

∗
〈f〉]⊗

s∈21

(p
s(i1)
i1
∧pf(s)i2

)
(EM0)

pi1 ⊗¬pi1
(∧I)(⊗

s∈21(p
s(i1)
i1
∧pf(s)i2

)
)
∧
(
pi0 ⊗¬pi0

)
(Dstr ∧⊗)⊗

s∈22

(p
s(i0)
i0
∧ps(i1)i1

∧pg(s)i2
)

(DepSI)
=(pi0 ,pi1 ,pi2) =(pi1 ,pi2) (DepWE)

=(pi0 ,pi1 ,pi2)

where 21, 22 are the maximal 1-team on {i1} and 2-team on {i0, i1}, respectively,
and g : 22→ 2 is defined as

g(s) = f(s � {i1}).

(iv) We first derive that for each f0 : 210 → 2 and f1 : 211 → 2,

(=(pi0 ,pi1)∧=(pi1 ,pi2))
∗
〈f0,f1〉 `=(pi0 ,pi2), (∗)

where 210 and 211 are maximal 1-teams on {i0} and on {i1}, respectively.
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(=(pi0 ,pi1)∧=(pi1 ,pi2))∗〈f0,f1〉 ⊗
s0∈210

(p
s0(i0)
i0

∧pf0(s0)
i1

)

∧
 ⊗
s1∈211

(p
s1(i1)
i1

∧pf1(s1)
i2

)


⊗
s0∈210

(p
s0(i0)
i0

∧pf0(s0)
i1

)∧

 ⊗
s1∈211

(p
s1(i1)
i1

∧pf1(s1)
i2

)


(Dstr∧⊗)⊗

s0∈210

⊗
s1∈211

(
(p
s0(i0)
i0

∧pf0(s0)
i1

)∧ (ps1(i1)
i1

∧pf1(s1)
i2

)
)

(⊥E)⊗
s0∈210

⊗
s1∈211

s1(i1)=f0(s0)

(p
s0(i0)
i0

∧pf0(s0)
i1

∧ps1(i1)
i1

∧pf1(s1)
i2

)

(∧E, ⊗Sub)⊗
s0∈210

⊗
s1∈211

s1(i1)=f0(s0)

(p
s0(i0)
i0

∧pf1(s1)
i2

)

(for each s0, such s1 is unqiue)⊗
s0∈210

(p
s0(i0)
i0

∧pf1(s1)
i2

)

(DepSI)
=(pi0 ,pi2)

Now, we derive =(pi0 ,pi1),=(pi1 ,pi2) `=(pi0 ,pi2) as follows:

∀f0 : 210 → 2, f1 : 211 → 2[
(=(pi0 ,pi1)∧=(pi1 ,pi2))∗〈f0,f1〉

]
(by (∗) )

=(pi0 ,pi2)

=(pi0 ,pi1) =(pi1 ,pi2)(∧I)
=(pi0 ,pi1)∧=(pi1 ,pi2)(ApTr)

=(pi0 ,pi2)

�

4.5 Axiomatizing propositional exclusion logic
It turns out that the method used in Section 4.4 can be generalized to obtain an axioma-
tization for the propositional variant of first-order exclusion logic, namely propositional
exclusion logic. In this section, we will give this proof.

Let us first define the logic.

Definition 4.5.1. We call formulas of the form pi1 · · ·pik | pj1 · · ·pjk exclusion atoms.
Well-formed formulas of propositional exclusion logic (PExc) are given by the following
grammar:

φ ::= pi

∣∣∣ ¬pi ∣∣∣ pi1 · · ·pik |pj1 · · ·pjk
∣∣∣ φ∧φ ∣∣∣ φ⊗φ,

where pi,pi1 , . . . ,pik ,pj1 , . . . ,pjk are propositional variables and k ≥ 1.
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Definition 4.5.2. We inductively define the notion of a formula φ of PExc being true on
a team X , denoted by X |= φ. All the cases are the same as those of PD as defined in
Definition 4.1.3 except the following:

• X |= pi1 · · ·pik | pj1 · · ·pjk iff for all s,s′ ∈X ,

〈s(i1), . . . ,s(ik)〉 6= 〈s′(j1), . . . ,s
′(jk)〉.

It is easy to check that PExc has the downwards closure property and the empty team
property, thus can be viewed as a sublogic of the maximal downwards closed logics.

Now, we proceed to axiomatize PExc using a similar method with that of PD. As in
the case of PD, we start with analyzing approximation sequences of formulas of PExc.

Suppose the following are all the occurrences of all exclusion atoms in a formula φ of
PExc:

pi11
· · ·pi1k1

| pj1
1
· · ·pj1

k1
, . . . . . . , pic1 · · ·pickc | pjc1 · · ·pjckc .

An approximation sequence Ω = 〈o1, . . . ,oc〉 of φ is a sequence such that for each 1 ≤
ξ ≤ c, oξ ⊆ 22kξ with

{〈s(iξ1), . . . ,s(i
ξ
kξ
)〉 | s ∈ oξ}∩{〈s′(jξ1 ), . . . ,s

′(jξkξ)〉 | s
′ ∈ oξ}= /0, (4.14)

where 22kξ is the maximal 2kξ-team on {iξ1, . . . , i
ξ
kξ
, jξ1 , . . . , j

ξ
kξ
}. For any such sequence

Ω, define an inclusion atom-free (classical) formula φ∗
Ω

, called an approximation of φ, by
induction the same way as in the case of PD, except the following case:

• (p
iξ1
. . .p

iξkξ
| p
jξ1
. . .p

jξkξ
)∗〈oξ〉 :=

⊗
s∈oξ

(
p
s(iξ1 )

iξ1
∧·· ·∧p

s(iξkξ
)

iξkξ

∧ps(j
ξ
1 )

jξ1
∧·· ·∧p

s(jξkξ
)

jξkξ

)
;

Next, we show that every PExc formula is logically equivalent to the intuitionistic
disjunction of all its approximations.

Lemma 4.5.3. Let φ be a formula of PExc and Λ the set of all its approximation se-
quences. Then

φ≡
∨

Ω∈Λ

φ∗Ω.

Proof. We prove the lemma by induction on φ. All the other cases are similar with those
in the proof of Lemma 4.4.3 except the case that φ= p

i
ξ
1
. . .p

i
ξ
kξ

| p
j
ξ
1
. . .p

j
ξ
kξ

.

In this case, we first show that for each 〈oξ〉 ∈ Λ, φ∗〈oξ〉 |= φ. Suppose

X |=
⊗
s∈oξ

(
p
s(i
ξ
1 )

i
ξ
1
∧·· ·∧p

s(i
ξ
kξ

)

i
ξ
kξ

∧ps(j
ξ
1 )

j
ξ
1
∧·· ·∧p

s(j
ξ
kξ

)

j
ξ
kξ

)
.

Then for each s ∈ oξ, there exists Xs ⊆X such that X =
⋃
s∈oξ

Xs and

Xs |= p
s(i
ξ
1 )

i
ξ
1
∧·· ·∧p

s(i
ξ
kξ

)

i
ξ
kξ

∧ps(j
ξ
1 )

j
ξ
1
∧·· ·∧p

s(j
ξ
kξ

)

j
ξ
kξ

.
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For any t, t′ ∈ X , there exists s,s′ ∈ oξ such that t ∈ Xs and t′ ∈ Xs′ . Since 〈oξ〉 is an
approximation sequence of p

i
ξ
1
. . .p

i
ξ
kξ

| p
j
ξ
1
. . .p

j
ξ
kξ

,

〈t(iξ1), . . . , t(i
ξ
kξ
)〉= 〈s(iξ1), . . . ,s(i

ξ
kξ
)〉 6= 〈s′(jξ1 ), . . . ,s

′(jξkξ)〉= 〈t
′(jξ1 ), . . . , t

′(jξkξ)〉.

Hence X |= p
i
ξ
1
. . .p

i
ξ
kξ

| p
j
ξ
1
. . .p

j
ξ
kξ

.

Conversely, we show that φ |=
∨

Ω∈Λφ
∗
Ω

. Suppose X |= p
i
ξ
1
. . .p

i
ξ
kξ

| p
j
ξ
1
. . .p

j
ξ
kξ

. De-

fine
oξ =X � {iξ1, . . . , i

ξ
kξ
, jξ1 , . . . , j

ξ
kξ
}.

Clearly, X |=
⊗
s∈oξ

(
p
s(i
ξ
1 )

i
ξ
1
∧·· ·∧p

s(i
ξ
kξ

)

i
ξ
kξ

∧ps(j
ξ
1 )

j
ξ
1
∧·· ·∧p

s(j
ξ
kξ

)

j
ξ
kξ

)
. It remains to show that

〈oξ〉 is an approximation sequence of pi1 . . .pik | pj1 . . .pjk , namely to check that (4.14)
is satisfied.

For any s,s′ ∈ oξ, by definition, there are t, t′ ∈X such that

t � {iξ1, . . . , i
ξ
kξ
, jξ1 , . . . , j

ξ
kξ
}= s � {iξ1, . . . , i

ξ
kξ
, jξ1 , . . . , j

ξ
kξ
}

and
t′ � {iξ1, . . . , i

ξ
kξ
, jξ1 , . . . , j

ξ
kξ
}= s′ � {iξ1, . . . , i

ξ
kξ
, jξ1 , . . . , j

ξ
kξ
}.

Since X |= p
i
ξ
1
. . .p

i
ξ
kξ

| p
j
ξ
1
. . .p

j
ξ
kξ

, we have that

〈s(iξ1), . . . ,s(i
ξ
kξ
)〉= 〈t(iξ1), . . . , t(i

ξ
kξ
)〉 6= 〈t′(jξ1 ), . . . , t

′(jξkξ)〉= 〈s
′(jξ1 ), . . . ,s

′(jξkξ)〉,

as required. �

Next, we give a natural deduction system for PExc in which one can in effect show
that ∨

Ω∈Λ

φ∗Ω a` φ

for any PExc formula φ, where Λ is the set of all approximation sequences of φ.

Definition 4.5.4 (A natural deduction system for PExc). The rules are given as follows:

1. The rules (∧I), (∧E), (⊗I), (⊗WE), (⊗Sub), (Com⊗), (Ass⊗), (⊥E), (EM0), (Dstr
∧⊗) as in Definition 4.3.5 (see also Appendix).

2. Exclusion Atom Introduction:

For any approximation sequence 〈o〉 of pi1 . . .pik | pj1 . . .pjk ,

⊗
s∈o

(
p
s(i1)
i1
∧·· ·∧ps(ik)ik

∧ps(j1)
j1
∧·· ·∧ps(jk)jk

)
(ExcI)

pi1 . . .pik | pj1 . . .pjk
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3. Approximation Transition:

[φ∗
Ω0

]

... . . .
θ

[φ∗
Ωm

]

.... . .
θ φ

(ApTr)
θ

where {Ω0, . . . ,Ωm} is the set of all approximation sequences of φ.

Next, we prove the Soundness Theorem for the above system.

Theorem 4.5.5 (Soundness Theorem). For any PExc formulas φ and ψ,

φ ` ψ =⇒ φ |= ψ.

Proof. It suffices to show that all of the deductive rules are valid. The validity of (ExcI)
and (ApTr) follows from Lemma 4.5.3, and the validity of all the other rules follows from
the proof of Theorem 4.3.7. �

Theorem 4.5.6 (Completeness Theorem). For any formulas φ and ψ of PExc,

φ |= ψ =⇒ φ ` ψ.

Proof. By a similar argument to that in the proof of Theorem 4.4.8. �

Theorem 4.5.7 (Strong Completeness Theorem). For any set Γ of formulas and any for-
mula φ of PExc,

Γ |= φ=⇒ Γ ` φ.

Proof. Follows from Theorem 4.5.6 and the Compactness Theorem of PID (as PExc
formulas are expressible in PID). �

4.6 Axiomatizing propositional dependence logic with in-
tuitionistic disjunction and non-empty atom

All of the logics we studied in sections 4.2-4.5, PID, PD[∨], PD and PExc, are downwards
closed. In this section, we study a naturally arisen non-downwards closed logic, namely
propositional dependence logic with intuitionistic disjunction and non-empty atom. We
show that this logic is maximal as it characterizes all n-teams, and we will generalize the
method used in Section 4.3 to axiomatize this logic.

In Lemma 4.3.1 of the downwards closed logic PD[∨], we were able to define an n-
team up to its subteams. Observe that in the formula ΘX in Lemma 4.3.1, if we could add
an atom to each disjunct which says that the team described by the conjunction (p

s(i1)
i1
∧

·· · ∧ps(in)in
) is non-empty, then we would be able to define the team X precisely. Let us

now introduce such an atom. We call this new atom non-empty atom and denote it by NE.
Its team semantics is defined as follows.
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Definition 4.6.1 (Non-empty Atom). For any team X , define

• X |= NE iff X 6= /0.

We stipulate that the non-empty atom NE is a 1-formula, written as NE(pi). Clearly,
the non-empty atom NE is not definable in any logic with the empty team property. For
the logics that lack of the empty team property, stipulate

•
⊗

/0 :=⊥

•
∨

/0 :=⊥∧NE

The formula ⊥ is satisfied only by the empty team, whereas the formula ⊥∧NE is sat-
isfied by no teams. We call the former the weak contradiction and the latter the strong
contradiction.

In a logic with the atom NE, a classical formula is a formula built from propositional
variables, negated propositional variables and NE by conjunction ∧ and tensor disjunction
⊗.

In this section, we consider the logic PD[∨] extended with NE, i.e., PD[∨,NE]. Now we
prove that n-teams are definable precisely in PD[∨,NE] (c.f. Lemma 4.3.1).

Lemma 4.6.2. LetX be an n-team onN = {i1, . . . , in}. Define a formula Θ∗X of PD[∨,NE]

as
Θ
∗
X :=

⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE).

Then for any n-team Y on N ,

Y |= ΘX ⇐⇒ Y =X.

Proof. The direction “⇐=” is obvious. For “=⇒”, suppose Y |= Θ∗X . If X = /0, then
Θ∗X =⊥, hence Y = /0 =X . Otherwise, for each s ∈X , there exists a non-empty set Ys
such that

Y =
⋃
s∈X

Ys and Ys |= p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE .

Clearly, Ys = {s} implying Y =X . �

Next, we show that PD[∨,NE] is a maximal logic in the sense that it characterizes all
n-teams for a fix n-element set of natural numbers (c.f. Definition 4.2.7 of maximal
downwards closed logic).

Definition 4.6.3. A logic L with team semantics is called a maximal logic if for every
n-element set N = {i1, . . . , in} ⊆ N,

℘(2n) = {JφK : φ(pi1 , . . . ,pin) is an n-formula of L}, (4.15)

where 2n is the maximal n-team on N .

Theorem 4.6.4. PD[∨,NE] is a maximal logic.
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Proof. It suffices to show the inclusion “⊆” of (4.15). For each K ∈ ℘(2n), by Lemma
4.6.2, for any n-team Y on N ,

Y |=
∨
X∈K

Θ
∗
X ⇐⇒ ∃X ∈ K(Y =X) ⇐⇒ Y ∈ K,

thus J
∨
X∈K Θ∗XK =K. Note that in particular, for the empty collection K= /0 of n-teams

on N , we have that J
∨
X∈ /0 Θ∗XK = J⊥∧NEK = /0. �

Similar to the first-order logic case, the semantics of the classical (contradictory)
negation ∼ φ of a formula φ is define as:

X |=∼ φ ⇐⇒ X 6|= φ

for all teams X . A consequence of the above theorem is, the classical negation ∼ φ of
every formula φ is definable in the logic PD[∨,NE]. Moreover, we have NE≡∼⊥. There-
fore in fact, PD[∨,NE] = PD[∨,∼], and PD[∨,∼] is also a naturally arisen maximal logic. But
in this chapter, we will restrict our attention to the logic PD[∨,NE] only, as the non-empty
atom is considerably simpler than classical negation. Note also that from the equivalence
of the two logics, we only derive that every instance of∼ φ is expressible in PD[∨,NE], but
the problem of whether classical negation is uniformly definable7 in PD[∨,NE] is open.

As in the case of PD[∨], the proof of Theorem 4.6.4 shows that every PD[∨,NE] formula
is logically equivalent to a formula of the normal form∨

f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE),

where F is a finite set of indices and each Xf is an n-team on {i1, . . . , in}. Next, we give
a natural deduction system for PD[∨,NE] for which the normal form will be syntactically
derivable.

Definition 4.6.5 (A Natural Deduction System for PD[∨,NE]). The rules are given as fol-
lows:

1. The rules (∧I), (∧E), (∨I), (∨E), (⊗WE), (⊗Sub), (Com ⊗), (Ass ⊗), (⊥E), (EM0),
(DepI), (DepE), (Dstr ⊗∨), (Dstr ⊗∨⊗), as in Definition 4.3.5 (see also Ap-
pendix).

2. Weak Tensor Disjunction Introduction:

φ

φ⊗ψ
(∗) (⊗WI)

(∗) whenever ψ does not contain NE.

3. Tensor Disjunction Repetition:

φ
(⊗Rpt)

φ⊗φ
7See Definition 5.1.3 for the definition of uniform definability.
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4. NE Introduction: (NE I)
(pi∧¬pi)∨NE

5. Strong ex falso:
(pi∧¬pi)∧NE

φ
(ex falso+)

6. Strong Contradiction Introduction:(⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
(⊗
s′∈Y

(p
s′(i1)
i1
∧·· ·∧ps

′(in)
in

∧NE)
)

(0I)
(pi1 ∧¬pi1)∧NE

where X and Y are n-teams on {i1, . . . , in} with X 6= Y .

7. Strong Contradiction Contraction:

φ⊗ ((pi∧¬pi)∧NE)

(pi∧¬pi)∧NE
(0Ctr)

8. Distributive Laws:

φ∧ (ψ⊗χ)
(∗)

(φ∧ψ)⊗ (φ∧χ)
(Dstr∗∧⊗)

(∗) whenever φ does not contain NE.

NE∧
⊗
j∈J

φj

(Dstr NE∧⊗)∨
f∈2J

f 6=0

⊗
j∈J
f(j)=1

(NE∧φj)

where 0 : J → 2 is defined as 0(j) = 0.

Corollary 4.6.6. The following are derivable rules:

1. The usual commutative, associative, distributive and substitution laws for conjunc-
tion and intuitionistic disjunction.

2. Weak ex falso:

pi∧¬pi
φ

(ex falso−)

whenever φ does not contain NE.

3. Strong Contradiction Elimination:

φ∨ ((pi∧¬pi)∧NE)

φ
(0E)



102

4. Distributive Laws (Dstr⊗∧), (Dstr∨⊗) and (Dstr∗∧⊗∧) as in Corollary 4.3.6.

5. Tensor Disjunction Combination:(⊗
i∈I

φi

)
⊗
(⊗
j∈J

φj

)
(⊗Cmb)⊗

k∈I∪J
φk

whenever φi, φj are classical formulas.

6. Tensor Disjunction Decomposition:⊗
k∈K

φk

(⊗Dcp)(⊗
i∈I

φi

)
⊗
(⊗
j∈J

φj

)
where I,J,K are finite sets of indices with I ∪J =K.

Proof. The rules in Item 1 are derived by the standard argument, and the rules (Dstr ⊗∧)
and (Dstr∗ ∧⊗∧) are proved by the same arguments as those in the proof of Corollary
4.3.6. The rules (Dstr∨⊗) and (Weak ex falso) are derived by a similar argument to that
in the proof of Corollary 4.3.6, except that we use (⊗Rpt) and (⊗WI) instead of (⊗I). It
remains to derive other rules.

For (0E):

φ∨ ((pi∧¬pi)∧NE) [φ]
[(pi∧¬pi)∧NE]

(ex falso+)
φ

(∨E)
φ

For (⊗Cmb): Suppose φi and φj are classical formulas. If I,J 6= /0, then the rule is
derivable using (⊗WE). It remains to derive the rule when I = /0 or J = /0. We only show
the case that I = /0. Noting that

⊗
/0 =⊥, we have the following derivation:(⊗
i∈ /0

φi

)
⊗
(⊗
j∈J

φj

)
⊥⊗

(⊗
j∈J

φj

)
(⊥E)⊗

j∈J
φj

⊗
k∈ /0∪J

φk

For (⊗Dcp): If I,J 6= /0, then the rule is derivable using (⊗Rpt). It remains to derive
the rule when I = /0 or J = /0. We only show the case that I = /0. In this case J =K and
we have the following derivation:
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⊗
k∈K

φk

(⊗WI)
⊥⊗

(⊗
k∈K

φk

)
(⊗
i∈ /0

φi

)
⊗
(⊗
j∈J

φj

)
�

Next, we check the Soundness Theorem of the above deductive system.

Theorem 4.6.7 (Soundness Theorem). For any PD[∨,NE] formulas φ and ψ,

φ ` ψ =⇒ φ |= ψ.

Proof. It suffices to show that all of the deductive rules are valid. The validity of the rules
in Item 1 except for (⊗WE) follows from Theorem 4.3.7, and the rules (⊗Rpt), (NE I),
(ex falso+) and (0Ctr) are easy to verified. It remains to verify the validity of the other
rules.

The validity of the rule (⊗WE) is checked by a similar argument to that in the proof
of Theorem 4.3.7. Note that the crucial step can go through, since the classical formula χ
of PD[∨,NE] is clearly closed under unions.

For (⊗WI), assuming that ψ does not contain NE, it suffices to show that φ |= φ⊗ψ.
Since ψ does not contain NE (thus ψ has the empty team property), we have that /0 |= ψ.
Thus, for any team X such that X |= φ, we have that /0∪X |= φ⊗ψ.

For (0I), by the locality property, it suffices to show that for all n-teamsZ on {i1, . . . , in},

Z 6|=
(⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
(⊗
s′∈Y

(p
s′(i1)
i1
∧·· ·∧ps

′(in)
in

∧NE)
)
,

where X and Y are two distinct n-teams on {i1, . . . , in}. Note that the left and right
disjuncts of the above formula are the formulas Θ∗X and Θ∗Y . By Lemma 4.6.2, if Z |=
Θ∗X ∧Θ∗Y , then X = Z = Y , which is a contradiction.

For (Dstr∗ ∧⊗), it suffices to show that if X |= φ∧ (ψ⊗χ) for some team X , then
X |= (φ∧ψ)⊗(φ∧χ), whenever φ does not contain NE. SinceX |= φ∧(ψ⊗χ), we have
that X |= φ, Y |= ψ and Z |= χ for some teams Y,Z ⊆X with Y ∪Z =X . As φ does
not contain NE, φ is downwards closed, which means that Y |= φ and Z |= φ. It follows
that Y |= φ∧ψ and Z |= φ∧χ, thus X |= (φ∧ψ)⊗ (φ∧χ).

For (Dstr NE ∧⊗), it suffices to show that if X |= NE∧
⊗
j∈J

φj for some team X , then

X |=
∨
f∈2J

f 6=0

⊗
j∈J
f(j)=1

(NE∧φj). By assumption, X 6= /0 and there are teams Xj ⊆X for each

j ∈ J such that
⋃
j∈JXj =X and Xj |= φj . Define a function f : J → 2 by taking

f(j) =

{
1 if Xj 6= /0;
0 if Xj = /0.
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Since X 6= /0, there exists j ∈ J such that Xj 6= /0, thus f 6= 0. Clearly, for each j ∈ J with
f(j) = 1, we have that Xj |= NE∧φj . It follows that

X |=
⊗
j∈J
f(j)=1

(NE∧φj), thereby X |=
∨
f∈2J

f 6=0

⊗
j∈J
f(j)=1

(NE∧φj).

�

Next, we show that every PD[∨,NE] formula is provably equivalent to a formula in the
intended normal form.

Theorem 4.6.8. Any n-formula φ(pi1 , . . . ,pin) of PD[∨,NE] is provably equivalent to a
formula of the form ∨

f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE),

where F is a finite set of indices, and each Xf is an n-team on N = {i1, . . . , in}.

Proof. Let 2n be the maximal n-team on N . We prove the theorem by induction on
φ(pi1 , . . . ,pin).

Case φ(pi1 , . . . ,pin) = NE(pi1 , . . . ,pin). Noting that n ≥ 1 by stipulation, we prove
that NE a` θ, where

θ :=
∨

f∈22n

f 6=0

⊗
s∈2n

f(s)=1

(p
s(i1)
i1
∧·· ·∧ . . .ps(in)in

∧NE),

where 0 : 2n→ 2 is the function defined as 0(s) = 0 for all s ∈ 2n.
For NE ` θ, we have the following derivation:

(1)NE
(2)(pi1 ⊗¬pi1)∧·· ·∧ (pin ⊗¬pin) (EM0, ∧I)

(3)
⊗
s∈2n

(p
s(i1)
i1
∧·· ·∧ . . .ps(in)in

) (Dstr∗∧⊗)

(4)NE∧
⊗
s∈2n

(p
s(i1)
i1
∧·· ·∧ . . .ps(in)in

) ((1), (3), ∧I)

(5)
∨

f∈22n

f 6=0

⊗
s∈2n

f(s)=1

(p
s(i1)
i1
∧·· ·∧ . . .ps(in)in

∧NE) (Dstr NE∧⊗)

For the other direction θ ` NE, we have the following derivation:

(1)θ

(2)
∨

f∈22n

f 6=0

(
NE∧

⊗
s∈2n

f(s)=1

(p
s(i1)
i1
∧·· ·∧ . . .ps(in)in

)
)

(Dstr∗∧⊗∧)
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(3)NE∧
∨

f∈22n

f 6=0

⊗
s∈2n

f(s)=1

(p
s(i1)
i1
∧·· ·∧ . . .ps(in)in

) (Dstr)

(4)NE (∧E)

Case φ(pi1 , . . . ,pin) = pik for 1≤ k ≤ n. If N \{ik}= /0, we show that

pik(pik) a` (pik ∧¬pik)∨ (pik ∧NE).

We have the following derivations:

(1)pik
(2)(pik ∧¬pik)∨NE (NE I)

(3)pik ∧
(
(pik ∧¬pik)∨NE

)
( (1), (2), ∧I)

(4)
(
pik ∧ (pik ∧¬pik)

)
∨ (pik ∧NE) (Dstr)

(5)(pik ∧¬pik)∨ (pik ∧NE) (∧E)

and

(1)(pik ∧¬pik)∨ (pik ∧NE)

(2)pik ∧ (¬pik ∨NE) (Dstr)
(3)pik (∧E)

Now, assume N \{ik} 6= /0. We prove that pik a` θ, where

θ :=
(
pik ∧¬pik

)
∨∨

f∈22n−1

f 6=0

⊗
s∈2n−1

f(s)=1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧ . . .ps(in)in
∧NE), 8

where 2n−1 is the maximal (n− 1)-team on N \ {ik} and 0 : 2n−1 → 2 is defined as
0(s) = 0 for all s ∈ 2n−1. For pik ` θ, we have the following derivation:

(1)pik
(2)(pi1 ⊗¬pi1)∧·· ·∧ (pik−1 ⊗¬pik−1)∧ (pik+1 ⊗¬pik+1)∧·· ·∧ (pin ⊗¬pin)

(EM0, ∧I)

(3)
⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧·· ·∧ps(in)in

) (Dstr∗∧⊗, ⊗Sub)

(4)pik ∧
⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧·· ·∧ps(in)in

) ( (1), (3), ∧I)

(5)
⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧·· ·∧ps(in)in
) (Dstr∗∧⊗,Com∧)

8Note that pik ∧¬pik =
⊗

/0 =
⊗
s∈2n−1

0(s)=1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧ . . .ps(in)in
∧NE).



106

(6)(pik ∧¬pik)∨NE (NE I)

(7)
(
(pik ∧¬pik)∨NE

)
∧
⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧·· ·∧ps(in)in
)

( (5), (6), ∧I )

(8)
(
(pik ∧¬pik)∧

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧·· ·∧ps(in)in
)
)

∨
(
NE∧

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧·· ·∧ps(in)in
)
)

(Dstr)

(9)(pik ∧¬pik)∨(
NE∧

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧·· ·∧ps(in)in
)
)

(∧E)

(10)(pik ∧¬pik)∨∨
f∈22n−1

f 6=0

⊗
s∈2n−1

f(s)=1

(
p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧ . . .ps(in)in
∧NE

)

(Dstr NE∧⊗,Com)

For the other direction θ ` pik , we have the following derivation:

(1)θ

(2)
(
pik ∧¬pik

)
∨( ∨

f∈22n−1

f 6=0

⊗
s∈2n−1

f(s)=1

(
pik ∧ (p

s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧ . . .ps(in)in

∧NE)
))

(Com∧,⊗Sub)

(3)
(
pik ∧¬pik

)
∨∨

f∈22n−1

f 6=0

(
pik ∧

⊗
s∈2n−1

f(s)=1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧ . . .ps(in)in

∧NE)
)

(Dstr∗∧⊗∧)

(4)pik ∧
(
¬pik ∨

∨
f∈22n−1

f 6=0

⊗
s∈2n−1

f(s)=1

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧ps(ik+1)

ik+1
∧ . . .ps(in)in

∧NE)
)

(Dstr)
(5)pik (∧E)

Case φ(pi1 , . . . ,pin) = ¬pik for 1≤ k ≤ n. Similar to the above case.

Case φ= =(pij0 , · · · ,pijk )(pi1 , . . . ,pin). If N \{ijk}= /0, we show that

=(pijk
)(pijk

) a`
(
pijk
∧¬pijk

)
∨
(
pijk
∧NE

)
∨
(
¬pijk ∧NE

)
.9
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We have the following derivations:

(1)=(pijk )

(2)pijk ∨¬pijk (DepE)

(3)(pijk ∧¬pijk )∨NE (NE I)

(4)
(
pijk
∨¬pijk

)
∧
(
(pijk

∧¬pijk )∨NE
)
((2),(3),∧I)

(5)
(
(pijk

∨¬pijk )∧ (pijk ∧¬pijk )
)
∨ ((pijk ∨¬pijk )∧NE) (Dstr)

(6)(pijk ∧¬pijk )∨ ((pijk ∨¬pijk )∧NE) (∧E)

(7)(pijk ∧¬pijk )∨ (pijk ∧NE)∨ (¬pijk ∧NE) (Dstr)

and

(1)(pijk ∧¬pijk )∨ (pijk ∧NE)∨ (¬pijk ∧NE)

(2)pijk ∨pijk ∨¬pijk (∧E)

(3)pijk ∨¬pijk (∨E)

(4)=(pijk ) (DepI)

Now, assume N \{ijk} 6= /0. We show that =(pij0 , · · · ,pijk ) a` θ, where

θ :=(pijk
∧¬pijk )∨

∨
f∈22k

∨
u∈22n−1

u 6=0⊗
s∈2n−1

u(s)=1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

∧NE),

where 2k is the maximal k-team on K = {ij0 , . . . , ijk−1} and 2n−1 is the maximal
(n−1)-team on N \{ijk}.

For =(pij0 , · · · ,pijk ) ` θ, we have the following derivation:

(1)=(pij0 , · · · ,pijk )

(2)
∨

f∈22k

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

)

(derived using (DepE), (EM0), (Dstr∗∧⊗) by the same argument as that

in the proof of Theorem 4.3.8 [the PD[∨] case])
(3)(pijk ∧¬pijk )∨NE (NE I)

(4)(pijk ∧¬pijk )∨
(
NE ∧∨

f∈22k

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

)
)

9Note that
(
pijk

∧¬pijk
)
∨
(
pijk

∧NE
)
∨
(
¬pijk ∧NE

)
=
⊗

/0∨
(
pijk

∧NE
)
∨
(
¬pijk ∧NE

)
.
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((2), (3), ∧I, Dstr)

(5)(pijk ∧¬pijk )∨
∨

f∈22k

(
NE ∧

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

)
)

(Dstr)

(6)(pijk ∧¬pijk )∨
∨

f∈22k

∨
u∈22n−1

u6=0⊗
s∈2n−1

u(s)=1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

∧NE)

(Dstr NE∧⊗)

For the other direction θ `=(pij0 , · · · ,pijk ), we have the following derivation:

(1)θ

(2)(pijk ∧¬pijk )∨
∨

f∈22k

∨
u∈22n−1

u6=0⊗
s∈2n−1

u(s)=1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

) (∧E,⊗Sub)

(3)
( ∨
f∈22k

⊗
/0
)
∨
∨

f∈22k

∨
u∈22n−1

u6=0⊗
s∈2n−1

u(s)=1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

) (∨I)

(4)
∨

f∈22k

∨
u∈22n−1

⊗
s∈2n−1

u(s)=1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

)

(Com∨,Ass∨)

(5)
∨

f∈22k

∨
u∈22n−1

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

)

(⊗WI, since for each u ∈ 22n−1
, {s ∈ 2n−1 | u(s) = 1} ⊆ 2n−1)

(6)
∨

f∈22k

⊗
s∈2n−1

(p
s(i1)
i1
∧·· ·∧p

s(ijk−1 )

ijk−1
∧pf(s�K)

ijk
∧p

s(ijk+1 )

ijk+1
∧·· ·∧ps(in)in

) (∨E)

(7)=(pij0 , · · · ,pijk ) (derived using (⊗WE), (DepI) by the same argument as that

in the proof of Theorem 4.3.8 [the PD[∨] case])
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Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)∨χ(pi1 , . . . ,pin). By induction hypothesis, we
have that

ψ a`
∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE),

χ a`
∨
g∈G

⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE),
(4.16)

where each Xf ,Xg ⊆ 2n. If F,G 6= /0, then by (∨E) and (∨I), we derive that

ψ∨χ a`
∨

h∈F∪G

⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE).

If F = /0 or G= /0, then ψ a` (pi1 ∧¬pi1)∧NE or χ a` (pi1 ∧¬pi1)∧NE. In the former
case, by (0E) and (∨I), we derive that

ψ∨χ a` ((pi1 ∧¬pi1)∧NE)∨
( ∨
g∈G

⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

a`
∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)

Similarly, in the latter case, we derive ψ∨χ a`
∨
g∈G

⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE).

Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)⊗χ(pi1 , . . . ,pin). By induction hypothesis, we
have that (4.16) holds. If F = /0 or G = /0, then ψ a` (pi1 ∧¬pi1)∧NE or χ a` (pi1 ∧
¬pi1)∧NE. By (0Ctr) and (ex falso+), we deriveψ⊗χa` (pi1∧¬pi1)∧NE, i.e., ψ⊗χa`∨

/0.
Now, assume F,G 6= /0. We show that ψ⊗χ a` θ, where

θ :=
∨
f∈F

∨
g∈G

⊗
s∈Xf∪Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE).

For the direction ψ⊗χ ` θ, we have the following derivation:

(1)ψ⊗χ

(2)
( ∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
⊗
( ∨
g∈G

⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(3)
∨
f∈F

∨
g∈G

( ⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
⊗
( ⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(Dstr ⊗∨)

(4)
∨
f∈F

∨
g∈G

⊗
s∈Xf∪Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE) (⊗Cmb)

The other direction θ `ψ⊗χ is proved symmetrically using (⊗Dcp) and (Dstr⊗∨⊗).
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Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)∧χ(pi1 , . . . ,pin). By induction hypothesis, we
have that (4.16) holds. If F = /0 or G = /0, then ψ a` (pi1 ∧¬pi1)∧NE or χ a` (pi1 ∧
¬pi1)∧NE. In this case, we derive ψ∧χ a` (pi ∧¬pi)∧NE, i.e., ψ∧χ a`

∨
/0 by (∧E)

and (ex falso+).
Now, assume F,G 6= /0. We show that ψ∧χ a` θ, where

θ :=
∨
h∈H

⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE),

{Xf | f ∈ F}∩{Xg | g ∈G}= {Xh | h ∈H}.

For ψ∧χ ` θ, we have the following derivation:

(1)ψ∧χ

(2)
( ∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ∨
g∈G

⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(3)
∨
f∈F

∨
g∈G

( ⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(Dstr)

(4)
∨

(f,g)∈F×G
Xf=Xg

( ⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

∨
∨

(f,g)∈F×G
Xf 6=Xg

( ⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(5)
∨

(f,g)∈F×G
Xf=Xg

( ⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

∨
(
(pi∧¬pi)∧NE

)
(0I)

(6)
∨

(f,g)∈F×G
Xf=Xg

( ⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(0E)

(7)
∨
h∈H

(( ⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
))

(∨E)

(8)
∨
h∈H

⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE) (∧E)

For the other direction θ ` ψ∧χ, we have the following derivation:

(1)
∨
h∈H

⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
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(2)
( ∨
h∈H

⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ∨
h∈H

⊗
s∈Xh

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(∧I)

(3)
( ∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
( ∨
g∈G

⊗
s∈Xg

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(∨I, H ⊆ F,G)
(4)ψ∧χ

�

Similar with Lemma 4.3.9 in the case of PD[∨], the following lemma is crucial in the
proof of the completeness theorem.

Lemma 4.6.9. For any finite non-empty collections of n-teams {Xf | f ∈ F}, {Yg | g ∈
G} with the same domain, the following are equivalent:

(a)
∨
f∈F

Θ
∗
Xf
|=
∨
g∈G

Θ
∗
Yg

;

(b) for each f ∈ F , we have that Xf = Ygf for some g ∈G.

Proof. (a)⇒(b): For each f ∈ F , by Lemma 4.6.2, we have that

Xf |= Θ
∗
Xf
, thus Xf |=

∨
f∈F

Θ
∗
Xf
,

which by (a) implies that
Xf |=

∨
g∈G

Θ
∗
Yg
,

thus, there exists gf ∈ G such that Xf |= Θ∗Ygf
. Hence we obtain by Lemma 4.6.2 that

Xf = Ygf .
(b)⇒(a): Suppose X is any n-team satisfying

X |=
∨
f∈F

Θ
∗
Xf
.

Then X |= Θ∗Xf for some f ∈ F , which by Lemma 4.6.2 and (b) means that X =Xf =

Ygf for some gf ∈G. By Lemma 4.6.2, Ygf |= Θ∗Ygf
, thus

X |= Θ
∗
Ygf

, thereby X |=
∨
g∈G

Θ
∗
Yg
,

as required. �

Now, we prove the completeness theorem for PD[∨,NE].

Theorem 4.6.10 (Completeness Theorem). For any PD[∨,NE] formulas φ and ψ,

φ |= ψ =⇒ φ ` ψ.
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Proof. Suppose φ |= ψ, where φ= φ(pi1 , . . . ,pin) and ψ = ψ(pi1 , . . . ,pin). By Theorem
4.6.8, we have that

φ a`
∨
f∈F

Θ
∗
Xf
, ψ a`

∨
g∈G

Θ
∗
Yg

for some finite sets {Xf | f ∈ F} and {Yg | g ∈G} of n-teams on {i1, . . . , in}. Then, by
the Soundness theorem, we have that∨

f∈F
Θ
∗
Xf
|=
∨
g∈G

Θ
∗
Yg
.

If F = /0, then φ a` ⊥∧NE, thus, by (ex falso+), we obtain φ ` ψ. If G = /0, then
ψ a` ⊥∧NE, thus we must have that φ a` ⊥∧NE, hence φ ` ψ.

If F,G 6= /0, then by Lemma 4.6.9, for each f ∈ F , we have that Xf = Ygf for some
gf ∈G. Thus, we have the following derivation:

(1) Θ∗Xf
(2) Θ∗Ygf
(3)

∨
g∈GΘ∗Yg (∨I)

Thus,
Θ
∗
Xf
`
∨
g∈G

Θ
∗
Yg

for each f ∈ F , which by (∨E) implies that∨
f∈F

Θ
∗
Xf
`
∨
g∈G

Θ
∗
Yg
,

namely φ ` ψ. �

Theorem 4.6.11 (Strong Completeness Theorem). For any set Γ of formulas and any
formula φ of PD[∨,NE],

Γ |= φ=⇒ Γ ` φ.

Proof. By a similar argument with that in the proof of Theorem 3.1.10 in [11], we can
prove that PD[∨,NE] is compact. Then the theorem follows from Theorem 4.6.10. �

4.7 Axiomatizing propositional independence logic with
non-empty atom

The method used in the axiomatization of propositional dependence logic (Section 4.4)
combined with that of PD[∨,NE] (Section 4.6) can be generalized to axiomatize propo-
sitional independence logic extended with the non-empty atom, i.e. PInd[NE]. In this
section, we will give such an axiomatization.

An independence atom
pi1 . . .pik ⊥ pj1 . . .pjm
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is satisfied by a team X if and only if for any two valuations s,s′ ∈X , there must exists a
valuation s′′ ∈X which witnesses the independence of 〈pi1 , . . . ,pik〉 and 〈pj1 , . . . ,pjm〉.
Here, the set of witnesses for s and s′ must be non-empty, therefore, essentially, there is
a non-empty atom in the underlying team semantics of the independence atom. In view
of this, an axiomatization for the logic PInd[NE] gives some insight on the logic PInd.
However, the problem of how to axiomatize propositional independence logic alone is
still open.

We now proceed to axiomatize the logic PInd[NE]. The main argument is a general-
ization of those in Section 4.4 and Section 4.6. Essentially, we make use of the disjunctive
normal form of the maximal logic PD[∨,NE], but as intuitionistic disjunction is not an eli-
gible connective in PInd[NE], we will only use intuitionistic disjunction implicitly. This is
achieved by taking approximations of each formula, which allows us to essentially push
intuitionistic disjunction to the front of a formula in one step. Technically, the non-empty
atom NE does not abey the usual distributive law, so the definition of approximations of
formulas is more sophisticated in this case than in the case of PD.

Let φ(pi1 , . . . ,pin) be an n-formula of PInd[NE]. Suppose the following are all the
occurrences of all atomic or negated atomic formulas in φ:

α1, . . . , αc

where each αξ (1≤ ξ ≤ c) can be of the following forms:

piξ , ¬piξ , NE, p
j
ξ
1
. . .p

j
ξ
aξ

⊥ p
k
ξ
1
. . .p

k
ξ
bξ

,

where {iξ, jξ1 , . . . jξaξ ,k
ξ
1 , . . .k

ξ
bξ
} ⊆ {i1, . . . , in}. A strong approximation sequence ϒ =

〈u1, . . . ,uc〉 of φ(pi1 , . . . ,pin) is a sequence such that

• if αξ = piξ , then
uξ ⊆ {s ∈ 2n | s(iξ) = 1},

where 2n is the maximal n-team on {i1, . . . , in};

• if αξ = ¬piξ , then
uξ ⊆ {s ∈ 2n | s(iξ) = 0};

• if αξ = NE, then /0 6= uξ ⊆ 2n;

• if αξ = p
j
ξ
1
. . .p

j
ξ
aξ

⊥ p
k
ξ
1
. . .p

k
ξ
bξ

, then uξ ⊆ 2n such that for A = {jξ1 , . . . , jξaξ},

B = {kξ1 , . . . ,k
ξ
bξ
}, we have that

{(s �A,s′ �B) | s,s′ ∈ uξ}= {(s′′ �A,s′′ �B) | s′′ ∈ uξ}.

For each such sequence ϒ = 〈u1, . . . ,uc〉, define an independence atom-free (classical)
formula φ?

ϒ
of PInd[NE], called a strong approximation of φ, by induction as follows:

• for any atomic or negated atomic formula αξ (1≤ ξ ≤ c),

(αξ)
?
〈uξ〉 :=

⊗
s∈uξ

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE) = Θ
∗
uξ
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• (ψ⊗χ)?
ϒ

:= ψ?
ϒ0
⊗χ?

ϒ1
, where ϒ0 and ϒ1 are subsequences of ϒ consisting of all

the uξ’s such that the atoms αξ occur in ψ and χ, respectively;

• (ψ∧χ)?
ϒ

:= ψ?
ϒ0
∧χ?

ϒ1
, where ϒ0 and ϒ1 are as above.

Next, we show that the every formula of PInd[NE] is logically equivalent to the intu-
itionistic disjunction of all its strong approximations.

Lemma 4.7.1. Let φ(pi1 , . . . ,pin) be an n-formula of PInd[NE] and Γ the set of all its
approximation sequences. Then

φ≡
∨

ϒ∈Γ

φ?ϒ.

Proof. We first show that for each ϒ ∈ Γ with ϒ = 〈u1, . . . ,uc〉, φ∗ϒ |= φ. Put N =
{i1, . . . , in}. Assume X is an n-team on N such that X |= φ?

ϒ
. We show by induction

on φ that X |= φ.
The only interesting case is the case that φ = αξ (1 ≤ ξ ≤ c) an atomic or negated

atomic formula. In this case, ϒ = 〈uξ〉 and (αξ)
?
〈uξ〉

= Θ∗uξ . By Lemma 4.6.2, we know
that X |= Θ∗uξ implying X = uξ.

If αξ = piξ , then as
uξ ⊆ {s ∈ 2n | s(iξ) = 1},

where 2n is the maximal n-team on N , we obtain that uξ |= piξ , i.e., X |= piξ . By a
similar argument, we can prove that X |= ¬piξ in case αξ = ¬piξ .

If αξ = NE, then X = uξ 6= /0, thus X |= NE.
If φ := p

j
ξ
1
. . .p

j
ξ
aξ

⊥ p
k
ξ
1
. . .p

k
ξ
bξ

, then by definition,

{(s �A,s′ �B) | s,s′ ∈ uξ}= {(s′′ �A,s′′ �B) | s′′ ∈ uξ},

where A = {jξ1 , . . . , jξaξ}, B = {kξ1 , . . . ,k
ξ
bξ
}. Thus, for any s,s′ ∈ X = uξ, there exists

s′′ ∈ uξ =X such that

s′′ �A= s �A and s′′ �B = s′ �B.

This means that X |= p
j
ξ
1
. . .p

j
ξ
aξ

⊥ p
k
ξ
1
. . .p

k
ξ
bξ

, as required.

Next, we show that φ |=
∨

ϒ∈Γφ
∗
ϒ

. Assume X is an n-team on N such that X |= φ.
We show by induction on φ that X |=

∨
ϒ∈Γφ

∗
ϒ

.
If φ = αξ (1 ≤ ξ ≤ c) an atomic or negated atomic formula, then for each ϒ ∈ Γ,

ϒ = 〈uξ〉 and (αξ)
?
〈uξ〉

= Θ∗uξ . In view of Lemma 4.6.2, to show that X |=
∨
〈uξ〉∈Γ Θ∗uξ

it suffices to show that X = uξ for some 〈uξ〉 ∈ Γ, namely to show that 〈X〉 is a strong
approximation sequence of αξ.

If αξ = piξ , then X |= piξ implies that for any s ∈X ⊆ 2n, s(iξ) = 1, thus

X ⊆ {s ∈ 2n | s(iξ) = 1}.

This means by definition that 〈X〉 is a strong approximation sequence of piξ , as required.
The case αξ = ¬piξ is proved similarly.
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If αξ = NE, then X |= NE implies that /0 6=X ⊆ 2n. This means by definition that 〈X〉
is a strong approximation sequence of NE, as required.

If αξ = p
j
ξ
1
. . .p

j
ξ
aξ

⊥ p
k
ξ
1
. . .p

k
ξ
bξ

, by definition, it suffices to show that

{(s �A,s′ �B) | s,s′ ∈X}= {(s′′ �A,s′′ �B) | s′′ ∈X}.

The direction “⊇” is trivial, and the direction “⊆” follows easily from the fact that X |=
p
j
ξ
1
. . .p

j
ξ
aξ

⊥ p
k
ξ
1
. . .p

k
ξ
bξ

.

The induction cases are proved by a similar argument to that in the proof of Lemma
4.4.3. �

As in the case of PD, we can view
∨

ϒ∈Γφ
?
ϒ

or the sequence

〈φ?ϒ 〉ϒ∈Λ

as a weak normal form for formulas of PInd[NE]. We now define a natural deduction
system for PInd[NE] which will enable us to derive in effect the weak normal form

∨
ϒ∈Γφ

?
ϒ

for every formula φ.

Definition 4.7.2 (A natural deduction system for PInd[NE]). The rules are given as fol-
lows:

1. The rules (∧I), (∧E), (⊗WI), (⊗WE), (⊗Rpt), (⊗Sub), (Ass⊗), (Com⊗), (ex falso+),
(⊥E), (EM0), (0I), (0Ctr) as in Definition 4.3.5 and Definition 4.6.5.

2. Independence Atom Strong Introduction: For any strong approximation sequence
〈u〉 of pj1 . . .pja ⊥ pk1 . . .pkb(pi1 , . . . ,pin),⊗

s∈u
(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)

(IndSI)
pj1 . . .pja ⊥ pk1 . . .pkb

3. Strong Approximation Transition:

[φ?
ϒ0

]

... . . .
θ

[φ?
ϒm

]

.... . .
θ φ

(SApTr)
θ

where {ϒ0, . . . ,ϒm} is the set of all strong approximation sequences of φ.

Next, we prove the Soundness Theorem for the above system.

Theorem 4.7.3 (Soundness Theorem). For any PInd[NE] formulas φ and ψ,

φ ` ψ =⇒ φ |= ψ.
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Proof. It suffices to show that all of the deductive rules are valid. The validity of (IndSI)
and (SApTr) follows from Lemma 4.7.1, and the validity of all the other rules follows
from the proofs of Theorem 4.3.7 and Theorem 4.6.7. �

Interesting derivable rules of the system are listed as follows.

Corollary 4.7.4. The following are derivable rules:

1. Rules (Dstr⊗∧), (Dstr∗∧⊗∧), (⊗Cmb), (⊗Dcp), (Com ∧), (Ass ∧) and (∧Sub),
as in Corollary 4.3.6 and Corollary 4.6.6 (see also Appendix).

2. Independence Atom Weak Elimination:

∀〈u〉
[(pj1 . . .pja ⊥ pk1 . . .pkb)

?
〈u〉]

...
θ pj1 . . .pja ⊥ pk1 . . .pkb (IndWE)

θ

where 〈u〉 is a strong approximation sequences of pj1 . . .pja ⊥ pk1 . . .pkb .

3. Strong Approximation Elimination:

φ?
ϒ (SApE)
φ

where ϒ is any strong approximation sequence of φ(pi1 , . . . ,pin).

Proof. The rules in Item 1 are derived in the same way as in Corollary 4.6.6. Rule
(IndWE) is a special case of rule (ApWE).

We now proceed to derive the rule (SApE) by induction on φ. The case that φ is an
independence atom follows from (IndSI).

If φ= pij , then we have the following derivation:

(1)(pij )
?
〈u〉

(2)
⊗
s∈u

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)

(3)
⊗
s∈u

pij (∧E,⊗Sub)

(4)pij (⊗WE)

The case φ= ¬pij is proved similarly with the above case.
All the other cases are proved by a similar argument to that of the proof of Corollary

4.4.6. �
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As in the case of PD, rules (SApTr), (SApE) imply in effect that for any n-formula φ
of PInd[NE], ∨

ϒ∈Γ

φ?ϒ a` φ,

where Γ is the set of all strong approximation sequences of φ, although the formula∨
ϒ∈Γφ

?
ϒ

is not in the language of PInd[NE]. The complicated rule (Dstr NE∧⊗) (in Defini-
tion 4.6.5 or see Appendix) for the NE atom indicates that there is little hope to manipulate
the NE atom without having the intuitionistic disjunction in the logic. Therefore in prov-
ing the completeness theorem for PInd[NE], we will turn every φ?

ϒ
formula into a formula

Θ∗Xϒ
in a better form. Now, we derive this in the deductive system. To simplify notations,

we abbreviate Θ∗0 := (pi1 ∧¬pi1)∧NE.

Lemma 4.7.5. Let φ(pi1 , . . . ,pin) be an n-formula of PInd[NE]. For any strong approxi-
mation sequence ϒ = 〈u1, . . . ,uc〉 of φ, we have that

φ?ϒ a`Θ
∗
Xϒ
,

where Xϒ is an n-team on {i1, . . . , in} or Xϒ = 0.

Proof. We prove the lemma by induction on φ.
In case φ = αξ (1 ≤ ξ ≤ c) an atomic or negated atomic formula, ϒ = 〈uξ〉 and

(αξ)
?
〈uξ〉

= Θ∗uξ , thus (αξ)?ϒ a`Θ∗Xϒ
holds trivially.

Case φ := ψ⊗χ. By induction hypothesis, we have that

ψ?ϒ0
a`Θ

∗
Xϒ0

and χ?ϒ0
a`Θ

∗
Xϒ0

. (4.17)

Since by (⊗Sub),
φ?ϒ a` ψ?ϒ0

⊗χ?ϒ1
a`Θ

∗
Xϒ0
⊗Θ

∗
Xϒ1

,

it suffices to show that Θ∗Xϒ0
⊗Θ∗Xϒ1

a`Θ∗Xϒ
for some Xϒ.

If Xϒ0 = 0, then taking Xϒ = 0, we derive Θ∗0 ` Θ∗Xϒ0
⊗Θ∗Xϒ1

by (ex falso+) and
Θ∗Xϒ0

⊗Θ∗Xϒ1
` Θ∗0 by (0Ctr). The case Xϒ1 = 0 is proved similarly. If Xϒ0 ,Xϒ1 6= 0,

then by (⊗Cmb) and (⊗Dcp), we derive Θ∗Xϒ0
⊗Θ∗Xϒ1

a`Θ∗Xϒ0∪Xϒ1
.

Case φ :=ψ∧χ. By induction hypothesis, we have that (4.17) holds. Since by (∧Sub),

φ?ϒ a` ψ?ϒ0
∧χ?ϒ1

a`Θ
∗
Xϒ0
∧Θ

∗
Xϒ1

,

it suffices to show that Θ∗Xϒ0
∧Θ∗Xϒ1

a`Θ∗Xϒ
for some Xϒ.

If Xϒ0 = 0, then taking Xϒ = 0, we derive Θ∗0 ` Θ∗Xϒ0
∧Θ∗Xϒ1

by (ex falso+) and
Θ∗Xϒ0

∧Θ∗Xϒ1
`Θ∗0 by (∧E). The case thatXϒ1 = 0 is proved similarly. IfXϒ0 =Xϒ1 6= 0,

then by (∧E) and (∧I), we derive Θ∗Xϒ0
∧Θ∗Xϒ1

a`Θ∗Xϒ0
. IfXϒ0 ,Xϒ1 6= 0 andXϒ0 6=Xϒ1 ,

then we derive Θ∗0 `Θ∗Xϒ0
∧Θ∗Xϒ1

by (ex falso+) and Θ∗Xϒ0
∧Θ∗Xϒ1

`Θ∗0 by (0I). �

Corollary 4.7.6. Let Γ be the (non-empty) set of all strong approximation sequences of
an n-formula φ(pi1 , . . . ,pin) of PInd[NE]. Then

φ ≡
∨

ϒ∈Γ

Θ
∗
Xϒ
≡

∨
ϒ∈Γ0

Θ
∗
Xϒ
,
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where each Xϒ is an n-team on {i1, . . . , in} or Xϒ = 0, and

Γ0 = {ϒ ∈ Γ |Xϒ 6= 0}.

Proof. It follows from Lemma 4.7.1, Lemma 4.7.5 and Soundness Theorem that

φ ≡
∨

ϒ∈Γ

φ?ϒ ≡
∨

ϒ∈Γ

Θ
∗
Xϒ
,

for some Xϒ such that φ?
ϒ
a`Θ∗Xϒ

.
Moreover, for each ϒ ∈ Γ such that Xϒ = 0, by definition,

Θ
∗
Xϒ

= Θ
∗
0 = (pi1 ∧¬pi1)∧NE .

Since for any formula ψ,
(
(pi1 ∧ ¬pi1) ∧ NE

)
∨ ψ ≡ ψ, we obtain that

∨
ϒ∈Γ Θ∗Xϒ

≡∨
ϒ∈Γ0

Θ∗Xϒ
, as required. �

Now, we are in a position to prove the completeness theorem for PInd[NE]. The proof
is similar with that of Theorem 4.4.8.

Theorem 4.7.7 (Completeness Theorem). For any PInd[NE] formulas φ and ψ,

φ |= ψ =⇒ φ ` ψ.

Proof. Let φ(pi1 , . . . ,pin) and ψ(pi1 , . . . ,pin). Suppose φ |= ψ. By Corollary 4.7.6, we
have that

φ≡
∨

ϒ∈Γ

Θ
∗
Xϒ
≡
∨

ϒ∈Γ0

Θ
∗
Xϒ

and ψ ≡
∨

∆∈Γ′
Θ
∗
X∆
≡
∨

∆∈Γ′0

Θ
∗
X∆
.

where

(i) Γ, Γ′ are the (non-empty) sets of all strong approximation sequences of φ and ψ,
respectively;

(ii) φ?
ϒ
a`Θ∗Xϒ

and ψ?
∆
a`Θ∗X∆

for all ϒ ∈ Γ and ∆ ∈ Γ′;

(iii) Γ0 = {ϒ ∈ Γ |Xϒ 6= 0} and Γ′0 = {ϒ ∈ Γ′ |Xϒ 6= 0}.
To derive φ `ψ, by (SApTr) and (ii), it suffices to derive that for each ϒ∈ Γ, Θ∗Xϒ

`ψ.
If Xϒ = 0, then Θ∗Xϒ

= Θ∗0 = (pi1 ∧¬pi1)∧NE, thus we derive Θ∗0 ` ψ by (ex falso+).
IfXϒ 6= 0, then Γ0 6= /0 and

∨
ϒ∈Γ0

Θ∗Xϒ
6≡ (pi1∧¬pi1)∧NE. Noting that by assumption,∨

ϒ∈Γ0

Θ
∗
Xϒ
|=

∨
∆∈Γ′0

Θ
∗
X∆
,

we must have that
∨

∆∈Γ′0
Θ∗X∆

6≡ (pi1 ∧¬pi1)∧NE, thereby Γ′0 6= /0. Now, by Lemma 4.6.9,
there exists ∆ ∈ Γ′ such that Xϒ =X∆. Thus, we derive Θ∗Xϒ

` ψ as follows:

(1) Θ
∗
Xϒ

(2) Θ
∗
X∆

(since Xϒ =X∆)

(3) ψ∗∆ (by Lemma 4.7.5)
(4) ψ (SApE).

This completes the proof. �
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We did not use Atomic Excluded Middle Rule (EM0) in the proof of the above theo-
rem, but this rule is required in the proof of the (Weak) Completeness Theorem: for any
formula φ of PInd[NE],

|= φ =⇒ ` φ

(see Corollary 4.3.11).

Theorem 4.7.8 (Strong Completeness Theorem). For any set Γ of formulas and any for-
mula φ of PInd[NE],

Γ |= φ =⇒ Γ ` φ.

Proof. Follows from Theorem 4.7.7 and Compactness Theorem of PD[∨,NE] (as PInd[NE]

is clearly a sublogic of the maximal logic PD[∨,NE]). �

We end this section with an application of the natural deduction system of PInd[NE]. In
the following example, we derive the Geiger-Paz-Pearl’s axioms [37] which axiomatized
the implication problem for unconditional independence atoms (see Section 1.2).

Example 4.7.9. The following Geiger-Paz-Pearl’s axioms are derivable in PInd[NE]: Let
x̄= pj1 · · ·pja , ȳ = pk1 · · ·pkb and z̄ = pi1 · · ·pic .

(i) x̄⊥ ȳ ` ȳ ⊥ x̄

(ii) x̄⊥ ȳ ` z̄ ⊥ ȳ, where z̄ is a subsequence of x̄.

(iii) x̄⊥ ȳ ` ū⊥ v̄, where ū= pi1 · · ·pia is a permutation of x̄ and v̄ = pm1 · · ·pmb is
a permutation of ȳ.

(iv) {x̄⊥ ȳ, x̄ȳ ⊥ z̄} ` x̄⊥ ȳz̄.

Proof. Put A = {j1, . . . , ja}, B = {k1, . . . ,kb} and C = {i1, . . . , ic}. The derivations are
as follows:

(i)
∀ 〈u〉[⊗

s∈u
(p
s(j1)
j1
∧·· ·∧ps(ja)ja

∧ps(k1)
k1

∧·· ·∧ps(kb)kb
∧NE)

]
(IndSI)

pk1 . . .pkb ⊥ pj1 . . .pja pj1 . . .pja ⊥ pk1 . . .pkb(IndWE)
pk1 . . .pkb ⊥ pj1 . . .pja

where (IndSI) is applicable because the strong approximation sequence 〈u〉 of the
atom pj1 . . .pja ⊥ pk1 . . .pkb is clearly also a strong approximation sequence of the
atom pk1 . . .pkb ⊥ pj1 . . .pja .

(ii) ∀ 〈u〉[⊗
s∈u

(p
s(j1)
j1
∧·· ·∧ps(ja)ja

∧ps(k1)
k1

∧·· ·∧ps(kb)kb
∧NE)

]
(∧E, ⊗Sub)⊗

s∈u
(p
s(i1)
i1
∧·· ·∧ps(ic)ic

∧ps(k1)
k1

∧·· ·∧ps(kb)kb
∧NE)

(IndSI)
pi1 . . .pic ⊥ pk1 . . .pkb pj1 . . .pja ⊥ pk1 . . .pkb(IndWE)

pi1 . . .pic ⊥ pk1 . . .pkb
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where (IndSI) is applicable because 〈u〉 is a strong approximation sequence of
pi1 . . .pic ⊥ pk1 . . .pkb .

Indeed, since 〈u〉 is a strong approximation sequence of pj1 . . .pja ⊥ pk1 . . .pkb ,

{(s �A,s′ �B) | s,s′ ∈ u}= {(s′′ �A,s′′ �B) | s′′ ∈ u}. (4.18)

Since C ⊆A, it follows that

{(s � C,s′ �B) | s,s′ ∈ u}= {(s′′ � C,s′′ �B) | s′′ ∈ u},

as required.

(iii)
∀ 〈u〉[⊗

s∈u
(p
s(j1)
j1
∧·· ·∧ps(ja)ja

∧ps(k1)
k1

∧·· ·∧ps(kb)kb
∧NE)

]
(IndSI)

pi1 . . .pia ⊥ pm1 . . .pmb pj1 . . .pja ⊥ pk1 . . .pkb(IndWE)
pi1 . . .pia ⊥ pm1 . . .pmb

where (IndSI) is applicable because A = {i1, . . . , ia}, B = {m1, . . . ,mb} and the
strong approximation sequence 〈u〉 of pj1 . . .pja ⊥ pk1 . . .pkb is obviously also a
strong approximation sequence of pi1 . . .pia ⊥ pm1 . . .pmb .

(iv) For each approximation sequence 〈u1,u2〉 of

(α∧β)(pm1 , . . . ,pmd) =

(pj1 . . .pja ⊥ pk1 . . .pkb)∧ (pj1 . . .pjapk1 . . .pkb ⊥ pi1 . . .pic),

we derive
(α)∗〈u1〉∧ (β)

?
〈u2〉 ` pj1 . . .pja ⊥ pk1 . . .pkbpi1 . . .pic (4.19)

as follows. If u1 6= u2, then we have the following derivation:

(α)∗〈u1〉∧ (β)
?
〈u2〉( ⊗

s1∈u1

(p
s1(m1)
m1 ∧·· ·∧ps1(md)

md ∧NE)
)
∧
( ⊗
s2∈u2

(p
s2(m1)
m1 ∧·· ·∧ps2(md)

md ∧NE)
)

(0I)
(pm1 ∧¬pm1)∧NE (ex falso+)

pj1 . . .pja ⊥ pk1 . . .pkbpi1 . . .pic

If u1 = u2, then we have the following derivation:

(α)∗〈u1〉∧ (β)
?
〈u2〉( ⊗

s1∈u1

(p
s1(m1)
m1 ∧·· ·∧ps1(md)

md ∧NE)
)
∧
( ⊗
s2∈u2

(p
s2(m1)
m1 ∧·· ·∧ps2(md)

md ∧NE)
)

(∧E)⊗
s1∈u1

(p
s1(m1)
m1 ∧·· ·∧ps1(md)

md ∧NE)

(IndSI)
pj1 . . .pja ⊥ pk1 . . .pkbpi1 . . .pic
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where (IndSI) is applicable because 〈u1〉 is a strong approximation sequence of
pj1 . . .pja ⊥ pk1 . . .pkbpi1 . . .pic .

Indeed, since 〈u1,u2〉 is an approximation sequence for α∧β, we have (4.18) holds
for u1 and

{(s � (A∪B),s′ � C) | s,s′ ∈ u2}= {(s′′ � (A∪B),s′′ � C) | s′′ ∈ u2}.

Thus, for any s,s′ ∈ u1 = u2, there exists s′′ ∈ u1 = u2 such that

(s �A,s′ �B) = (s′′ �A,s′′ �B).

Moreover, for s′′,s′ ∈ u2 = u1, there exists s′′′ ∈ u2 = u1 such that

(s′′ � (A∪B),s′ � C) = (s′′′ � (A∪B),s′′′ � C).

It then follows that

(s �A,s′ � (B∪C)) =(s′′ �A,(s′′ �B)a(s′ � C ))

=(s′′′ �A,(s′′′ �B)a(s′′′ � C))

=(s′′′ �A,s′′′ � (B∪C)),

which implies that

{(s �A,s′ � (B∪C)) | s,s′ ∈ u1}= {(s′′′ �A,s′′′ � (B∪C)) | s′′′ ∈ u1},

as required.

Now, we derive the axiom of item (iv) as follows:

∀ 〈u1,u2〉
(α)∗〈u1〉∧ (β)

?
〈u2〉 (by (4.19) )

pj1 . . .pja ⊥ pk1 . . .pkbpi1 . . .pic

α β
(∧I)

α∧β
(SApTr)

pj1 . . .pja ⊥ pk1 . . .pkbpi1 . . .pic

�

4.8 Axiomatizing propositional inclusion logic with non-
empty atom

In this section, we generalize the method in Section 4.7 to axiomatize the propositional
variant of first-order inclusion logic extended with the non-empty atom.

First, we define propositional inclusion logic.

Definition 4.8.1. We call formulas of the form pi1 · · ·pik ⊆ pj1 · · ·pjk inclusion atoms.
Well-formed formulas of propositional inclusion logic (PInc) are given by the following
grammar:

φ ::= pi

∣∣∣ ¬pi ∣∣∣ pi1 · · ·pik ⊆ pj1 · · ·pjk
∣∣∣ φ∧φ ∣∣∣ φ⊗φ,

where pi,pi1 , . . . ,pik ,pj1 , . . . ,pjk are propositional variables.



122

Definition 4.8.2. We inductively define the notion of a PInc formula φ being true on a
team X , denoted by X |= φ. All the cases are the same as those of PD as defined in
Definition 4.1.3 except the following:

• X |= pi1 · · ·pik ⊆ pj1 · · ·pjk iff for all s ∈X , there exists s′ ∈X such that

〈s′(j1), . . . ,s
′(jk)〉= 〈s(i1), . . . ,s(ik)〉.

It is easy to verify that PInc inherits most of the properties of first-order inclusion
logic, in particular, PInc satisfies the locality property and the union closure property
(c.f. Theorem 1.2.5): for any formula φ of PInc, and collection of teams {Xi}i∈I ,

∀i ∈ I, Xi |= φ=⇒
⋃
i∈I
Xi |= φ.

In the rest of this section, we axiomatize PInc extended with the non-empty atom,
namely PInc[NE], using a similar method with that of PInd[NE]. Analogous to PInd, an
inclusion atom

pi1 · · ·pik ⊆ pj1 · · ·pjk
is satisfied by a teamX if and only if for any valuation s∈X , there must exists a valuation
s′ ∈X which witnesses the values of the sequence 〈pi1 , . . . ,pik〉 being included in that of
〈pj1 , . . . ,pjk〉. Here, the set of witnesses for s must be non-empty, therefore, essentially,
there is a non-empty atom in the underlying team semantics of the inclusion atom, too.
In view of this, we hope that an axiomatization for the logic PInc gives some insight on
the logic PInc. However, the problem of how to axiomatize propositional inclusion logic
alone is still open.

As in the case of PInd[NE], we start with analyzing strong approximation sequences
of PInc[NE] formulas. Let φ(pi1 , . . . ,pin) be an n-formula of PInc[NE]. Suppose the fol-
lowing are all the occurrences of all atomic or negated atomic formulas in φ:

α1, . . . , αc

where each αξ (1≤ ξ ≤ c) can be of the following forms:

piξ , ¬piξ , NE, p
j
ξ
1
. . .p

j
ξ
mξ

⊆ p
k
ξ
1
. . .p

k
ξ
mξ

,

where {iξ,kξ1 , . . .k
ξ
bξ
,kξ1 , . . .k

ξ
mξ
} ⊆ {i1, . . . , in}. A strong approximation sequence ϒ =

〈u1, . . . ,uc〉 of φ(pi1 , . . . ,pin) is a sequence such that for every αξ, the set uξ is defined
as in the case of PInd[NE], except

• if αξ = p
j
ξ
1
. . .p

j
ξ
mξ

⊆ p
k
ξ
1
. . .p

k
ξ
mξ

, then uξ ⊆ 2n such that

{(s(jξ1 ), . . . ,s(j
ξ
mξ

)) | s ∈ uξ} ⊆ {(s′(kξ1), . . . ,s
′(kξmξ)) | s

′ ∈ uξ}.

For any such sequence ϒ = 〈u1, . . . ,uc〉, define an inclusion atom-free formula φ?
ϒ

of
PInc[NE], called a strong approximation of φ, the same way as in the case of PInd[NE].

Next, we show that every PInc[NE] formula is logically equivalent to the intuitionistic
disjunction of all its strong approximations.
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Lemma 4.8.3. Let φ(pi1 , . . . ,pin) be an n-formula of PInc[NE] and Γ the set of all its
strong approximation sequences. Then

φ≡
∨

ϒ∈Γ

φ?ϒ.

Proof. We prove the lemma by induction on φ. All the other cases are similar with those
in the proof of Lemma 4.7.1 except the case φ= p

j
ξ
1
. . .p

j
ξ
mξ

⊆ p
k
ξ
1
. . .p

k
ξ
mξ

.

In this case, we first show that for each 〈uξ〉 ∈ Γ, φ?〈uξ〉 |= φ. Suppose for some n-team
X on N = {i1, . . . , in}, X |= Θ∗uξ . Then by Lemma 4.6.2, X = uξ. Since

{(s(jξ1 ), . . . ,s(j
ξ
mξ

)) | s ∈ uξ} ⊆ {(s′(kξ1), . . . ,s
′(kξmξ)) | s

′ ∈ uξ}, (4.20)

for any s ∈X = uξ, there exists s′ ∈ uξ =X such that

〈s′(kξ1), . . . ,s
′(kξmξ)〉= 〈s(j

ξ
1 ), . . . ,s(j

ξ
mξ

)〉,

thus X |= p
j
ξ
1
. . .p

j
ξ
mξ

⊆ p
k
ξ
1
. . .p

k
ξ
mξ

.

Conversely, we show that φ |=
∨
〈uξ〉∈Γφ

?
〈uξ〉

. Suppose for some n-team X on N ,
X |= p

j
ξ
1
. . .p

j
ξ
mξ

⊆ p
k
ξ
1
. . .p

k
ξ
mξ

. Taking uξ = X , clearly (4.20) holds, i.e. uξ ∈ Γ. By

Lemma 4.6.2, X |= Θ∗uξ , i.e., X |= φ?〈uξ〉
, hence X |=

∨
〈uξ〉∈Γφ

?
〈uξ〉

. �

Next, we define a natural deduction system for PInc[NE] which will enable us to derive
in effect the weak normal form

∨
ϒ∈Γφ

?
ϒ

or 〈φ?
ϒ
〉ϒ∈Γ for every formula φ of PInc[NE].

Definition 4.8.4 (A natural deduction system for PInc[NE]). The rules are given as fol-
lows:

1. The rules (∧I), (∧E), (⊗WI), (⊗WE), (⊗Rpt), (⊗Sub), (Ass⊗), (Com⊗), (ex falso+),
(⊥E), (EM0), (0I), (0Ctr) as in Definition 4.3.5 and Definition 4.6.5.

2. Inclusion Atom Strong Introduction: For any strong approximation sequence 〈u〉
of pj1 . . .pjm ⊆ pk1 . . .pkm(pi1 , . . . ,pin),⊗

s∈u
(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)

(IncSI)
pj1 . . .pjm ⊆ pk1 . . .pkm

3. Strong Approximation Transition:

[φ?
ϒ0

]

... . . .
θ

[φ?
ϒm

]

.... . .
θ φ

(SApTr)
θ

where {ϒ0, . . . ,ϒm} is the set of all strong approximation sequences of φ.
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Next, we prove the Soundness Theorem for the above system.

Theorem 4.8.5 (Soundness Theorem). For any formulas φ and ψ of PInc[NE],

φ ` ψ =⇒ φ |= ψ.

Proof. It suffices to show that all of the deductive rules are valid. The validity of (IncSI)
and (SApTr) follows from Lemma 4.8.3, and the validity of all the other rules follows
from the proofs of Theorem 4.3.7 and Theorem 4.6.7. �

Lemma 4.8.6. Let φ(pi1 , . . . ,pin) be an n-formula of PInc[NE]. For any strong approxi-
mation sequence ϒ of φ, we have that

φ?ϒ a`Θ
∗
Xϒ
,

where Xϒ is an n-team on {i1, . . . , in} or Xϒ = 0.

Proof. By a similar argument to that of the proof of Lemma 4.7.5. �

Theorem 4.8.7 (Completeness Theorem). For any formulas φ and ψ of PInc[NE],

φ |= ψ =⇒ φ ` ψ.

Proof. By a similar argument to that in the proof of Theorem 4.7.7. �

Note that as in the case of PInd[NE], Atomic Excluded Middle Rule (EM0) is not
needed in the proof of the above theorem, but this rule is required in the proof of the
(Weak) Completeness Theorem: for any formula φ of PInc[NE],

|= φ=⇒` φ.

Theorem 4.8.8 (Strong Completeness Theorem). For any set Γ of formulas and any for-
mula φ of PInc[NE],

Γ |= φ=⇒ Γ ` φ.

Proof. Follows from Theorem 4.8.7 and the Compactness Theorem of PD[∨,NE] (as PInc[NE]
is a sublogic of the maximal logic PD[∨,NE]). �

4.9 Open problems
In this chapter, we defined the propositional variants of the logics of dependence and in-
dependence, and gave complete axiomatizations of these logics and their variants. Below
we list the main open problems and future directions concerning the topics of this chapter
(some of which are already mentioned in the corresponding sections).

1. We have shown in this chapter that PID, PD[∨] and PD are maximal downwards
closed logics (Theorems 4.2.8, 4.3.2, 4.4.1), and PD[∨,NE] is a maximal logic (Theorem
4.6.4). The relationship of the main logics discussed in this chapter in terms of expressive
power is depicted in Figure 4.1 (c.f. Figure 3.2).

Classical propositional logic (CPL) is a proper sublogic of all the other logics, since
all classical formulas are flat and all of the other logics have non-flat formulas. PInc and
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⊂
⊂

⊂
⊂

⊂

⊂

?

PD,PD[∨],PID

PInd

PInc

PExc

CPL

PD[∨,NE]

Figure 4.1: Expressive power of propositional logics

PInd are proper sublogics of the maximal logic PD[∨,NE], since NE is not definable in nei-
ther of these logics. The downwards closed logic PD (or PID, PD[∨]) is a proper sublogic
of the non-downwards closed logic PInd, since dependence atoms are definable in PInd
(Expression (4.5)). The logic PExc is downwards closed, thus it is a sublogic of the maxi-
mal downwards closed logics PD, PD[∨] and PID. Recall that first-order dependence logic
is equivalent to first-order exclusion logic. However, propositional dependence logic is
different from propositional exclusion logic as, e.g., with only one propositional variable,
PD has in total 5 non-equivalent formulas:

p, ¬p, p∧¬p, p⊗¬p, =(p),

whereas PExc has only 4 non-equivalent formulas, in particular, p | p≡ p∧¬p.
The logic PInc is different from the downwards closed logics PD and PExc, as it

is not downwards closed. Recall that first-order inclusion logic is a proper sublogic of
first-order independence logic, but the connection between PInc and PInd is unknown.

2. As discussed in Section 4.2, propositional intuitionistic dependence logic and in-
quisitive logic turn out to be essentially equivalent. This surprising connection certainly
deserves to be further explored. In particular, the connection between first-order inquis-
itive logic ([11],[12]) and first-order (intuitionistic) dependence logic deserves investiga-
tion.

3. In Sections 4.7 and 4.8, we have axiomatized PInd extended with NE and PInc
extended with NE. The problem of how to axiomatize PInd and PInc alone is open.

4. The deductive rule Approximation Transition (ApTr) in Definition 4.4.4 (see also
Appendix) has a complex form. It is not known wether it is derivable by the simpler
rule Dependence Atom Weak Elimination (DepWE). Similarly for Strong Approximation
Transition (SApTr) rule and Independence Atom Weak Elimination (IndWE) rule.

5. It is proved in Corollary 4.4.2 that PD[∨] = PD. Given this fact, it is reasonable to
conjecture that PD[∨,NE] = PD[NE], or even PD[∨,NE] = PInd[NE]. This problem is open.



Chapter 5

Uniform definability in propositional
dependence logic

We have proved in Theorem 4.4.1 that propositional dependence logic (PD) is a maxi-
mal downwards closed logic, therefore adding intuitionistic disjunction or intuitionistic
implication into propositional dependence logic does not increase the expressive power
of the logic. In particular, every formula with intuitionistic disjunction and intuitionistic
implication can be translated equivalently into a formula of PD without these two con-
nectives. In this chapter, we show that although such a non-uniform translation exists,
neither of intuitionistic disjunction and intuitionistic implication is uniformly definable in
propositional dependence logic. The work is inspired by [32], in which the weak universal
quantifier ∀1 (see Definition 2.2.6) is proved to be non-uniformly definable in first-order
dependence logic. Also along this line, due to Ciardelli [11], in inquisitive logic or propo-
sitional intuitionistic dependence logic (PID), every instance of conjunction is expressible
in terms of other connectives of the logic, but a uniform definition for conjunction does
not exists. We adapt this result in this chapter in our framework.

In Section 5.1, we give formal definition of uniform definability of connectives, and
make some remarks concerning the issues of definability and uniform definability in clas-
sical and intuitionistic propositional logic. In Section 5.2, we study the properties of
contexts for PD, which is a crucial notion in the main proof of this chapter. Section 5.3
records the main results of this chapter. We prove that neither of intuitionistic implication
and intuitionistic disjunction is uniformly definable in PD. We also include the result due
to [11] that in the conjunction-free fragment of PID, every instance of ∧ is definable, but
∧ is not uniformly definable.

5.1 Contexts and Uniform Definability of Connectives
In this section, we define context and uniform definability of connectives for the follow-
ing logics: classical propositional logic (CPL), intuitionistic propositional logic (IPL),
propositional dependence logic (PD), and propositional intuitionistic dependence logic
(PID). We also make some remarks concerning the issues of definability and uniformly
definability of connectives in CPL and IPL.
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Throughout this section, we use L to stand for any of the four propositional logics:
CPL, IPL, PD and PID. For the purpose of this chapter, let us first recall basic definitions
of L. The language of L consists of a set A of atoms and a set Ω of operator symbols. A
(well-formed) formula in the language of L is any atom α ∈ A or >(α1, . . . ,αγ), where
> ∈ Ω is a γ-ary operator symbol, and α1, . . . ,αγ ∈ A. For the logics CPL and IPL,
the corresponding set A of atoms consists of all propositional variables, that is, atoms
are propositional variables. The set Ω of operator symbols for CPL contains classical
negation ¬ and other classical connectives, the set Ω for IPL contains the nullary operator
falsum ⊥ and other intuitionistic connectives1. In this chapter, special attention needs to
be paid to the syntax of PD, as well as that of PID. We stipulate (only in this chapter) that
the language of PD consists of the set

A = {pi,¬pi | i ∈ ω}∪{=(pi1 , . . . ,pik) | i1, . . . , ik ∈ ω}

of atoms and the set Ω = {∧,⊗} of operators. Both ¬pi and the dependence atom
=(pi1 , . . . ,pik) are considered as atoms that cannot be decomposed. Similarly, (only in
this chapter) the language of PID consists of the set

A = {pi,=(pi) | i ∈ ω}

and the set Ω = {⊥,∧,∨,→}.
For a formula φ of L, we call the class of all models of φ, denoted by JφK, the truth

class (or truth set) of φ. In particular:

• In CPL, the semantic truth set JφK of a formula φ is defined as

JφK := {s : ω→ 2 | s |= φ}.

• In IPL, the semantic truth class JφK of a formula φ is defined as the class

JφK := {(M,w) | M is an intuitionistic Kripke model with a node w
and M,w |= φ}.

• In PD or PID, the semantic truth set JφK of a formula φ is defined as

JφK := {X ⊆ 2ω :X |= φ}.

Let ∇L be the set of all semantic truth sets (or classes) of all formulas of L, that is

∇
L := {JφK | φ is a formula of L}.

In case the logic L is clear from the context, we simply write ∇ for ∇L. In this chapter, by
a γ-ary connective> of L we mean a γ-ary operator of L having a compositional meaning,
that is, there is a γ-ary function>>> : ∇γ → ∇ such that for any formulas θ1, . . . ,θγ of L,

J>(θ1, . . . ,θγ)K =>>>(Jθ1K, . . . ,JθγK). (5.1)

For the logic CPL, a γ-ary connective is usually understood as a γ-ary Boolean function.
We prove in the next lemma that our definition agrees with this usual understanding.

1Recall that intuitionistic negation is defined as: ¬φ := φ→⊥.
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Lemma 5.1.1. In CPL, every function>>> : ∇γ→∇ induces a Boolean function f>>> : 2γ→
2 such that for all formulas θ1, . . . ,θγ , all valuations s : ω→ 2,

s(>(θ1, . . . ,θγ)) = f>>>(s(θ1), . . . ,s(θγ)), (5.2)

and vice versa.

Proof. Let>>> : ∇γ → ∇ be a function. Define

0̃ :=⊥ and 1̃ :=>.

Pick a valuation s0 :ω→ 2. Define the function f>>> : 2γ→ 2 by taking for any x1, . . . ,xγ ∈
2,

f>>>(x1, . . . ,xγ) = s0(>(x̃1, . . . , x̃γ)). (5.3)

It remains to check that f>>> satisfies Equation (5.2).
For some arbitrary formulas θ1, . . . ,θγ , arbitrary valuations s : ω→ 2, put

x1 = s(θ1), . . . ,xγ = s(θγ).

Noting that
s(>(θ1, . . . ,θγ)) = s0(>(x̃1, . . . , x̃γ)),

Equation (5.2) follows from Equation (5.3).
Conversely, suppose f : 2γ → 2 is a function. We find a function>f>f>f : ∇γ → ∇ satis-

fying Equation (5.2). For any formulas θ1, . . . ,θγ , define that

s ∈>f>f>f (Jθ1K, . . . ,JθγK) ⇐⇒ f(s(θ1), . . . ,s(θγ)) = 1,

for any valuation s :ω→ 2. It remains to find a formula δ such that JδK=>f>f>f (Jθ1K, . . . ,JθγK).
Let N = {i1, . . . , in} be the set of indices of all propositional variables occurring in

the formulas θ1, . . . ,θγ . Consider the set

S = {s �N | s ∈>f>f>f (Jθ1K, . . . ,JθγK)}.

Note that the set S is finite, since restricted to the n-element set N , there are in total 2n

possible distinct valuations. Now, consider the formula

ΘS =
∨
s∈S

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

(c.f. the formula ΘX of PD[∨] defined in Lemma 4.3.1). Since in CPL, the truth value of a
formula depends only on the variables occurring in the formula (namely CPL is local, c.f.
Lemma 4.1.6), it is not hard to see that JΘSK =>f>f>f (Jθ1K, . . . ,JθγK). So we are done. �

It is well-known that in IPL, the intuitionistic connectives ⊥, ∧, ∨ and → are inde-
pendent of each other, as none of them is definable in terms of the other connectives (see
e.g. [80]). On the other hand, in CPL, the set {¬,∨} of classical connectives is function-
ally complete, meaning that each Boolean function f : 2γ → 2 is uniformly definable by
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certain combination of the connectives in the set {¬,∨}. For example, for each formulas
θ1 and θ2, their conjunction is uniformly defined as

(θ1∧θ2)≡ ¬(¬θ1∨¬θ2).

Other known functionally complete sets of connectives of CPL are

{¬,∧}, {¬,→}, {| 2}, etc.

In this chapter, we study the uniform definability issue of PD and PID. To this end,
we first define the notion of uniform definability formally for the logics L mentioned in
this section. Basically, a connective is uniformly definable in L if and only if there is a
context for L which defines the connective. A context for a logic L is a formula of L with
distinguished atoms ri (i ∈ ω). Intuitively, these atoms ri are understood as “holes” that
are to be substituted uniformly by concrete instances of formulas.

Definition 5.1.2 (context). A context for L is a formula of L with distinguished atoms ri
(j ∈ ω). For the logic CPL, IPL, PD or PID, ri can be understood as a distinguished
propositional variable, and a context for these logics is a formula built from propositional
variables ri (j ∈ ω) and other atoms using the connectives in L. We write φ[r1, . . . , rγ ] to
mean that the distinguished atoms (distinguished propositional variables) occurring in the
context φ are among r1, . . . , rγ .

For example, the formula

φ0[r1, r2] := ¬(¬r1∨¬r2) (5.4)

is a context for CPL, and the formula

φ1[r1, r2] := ((¬p1⊗ r1)∧ (=(p2,p3)⊗ (r1∧ r2))) (5.5)

is a context for PD.
As mentioned already, in a context φ[r1, . . . , rγ ], each distinguished atom ri marks

the places that are to be substituted uniformly by a formula of L. For any formulas
θ1, . . . ,θγ of L, we write φ[θ1, . . . ,θγ ] for the formula φ(θ1/r1, . . . ,θγ/rγ). Two contexts
φ[r1, . . . , rγ ] and ψ[r′1, . . . , r

′
γ ] for L are said to be equivalent, in symbols φ[r1, . . . , rγ ] ≈

ψ[r′1, . . . , r
′
γ ], if and only if for any formulas θ1, . . . ,θγ of L,

Jφ[θ1, . . . ,θγ ]K = Jψ[θ1, . . . ,θγ ]K.

Definition 5.1.3 (Uniform definability). We say that a context φ[r1, . . . , rγ ] for L uni-
formly defines a γ-ary connective > if for all formulas θ1, . . . ,θγ of L,

Jφ[θ1, . . . ,θγ ]K = J>(θ1, . . . ,θγ)K.

We say that a γ-ary connective > is uniformly definable in a propositional logic L, if
there exists a context φ[r1, . . . , rγ ] for L which uniformly defines >.

2“|” is called the Sheffer stroke, which is the binary connective defined by the following truth table:

A B A |B
0 0 1
0 1 1
1 0 1
1 1 0
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For example, in CPL, the context φ0[r1, r2] from (5.4) uniformly defines classical
conjunction ∧, since for any two formulas θ1,θ2 of CPL,

Jφ0[θ1,θ2]K = J¬(¬θ1∨¬θ2)K = Jθ1∧θ2K.

With our new terminology, a set C of connectives of a logic L is said to be functionally
complete if and only if every γ-ary function >>> : ∇γ → ∇ is uniformly definable by a
context φ[r1, . . . , rγ ] for L with connectives only from the set C. In particular, as already
noted, the set {¬,∨} is functionally complete for CPL, since every γ-ary function >>> :
∇γ → ∇ (which corresponds to a Boolean function f>>> : 2γ → 2, by Theorem 5.1.1) is
uniformly definable by a context φ[r1, . . . , rγ ] with only ¬ and ∨ as connectives. On the
other hand, none of the intuitionistic connectives> is uniformly definable in the fragment
of IPL without the presence of >. The notion of uniform definability is also related to
algebraic (or compositional) translation (see e.g. [56]).

Most commonly used contexts do not contain extra atoms than the distinguished ones,
for example classical conjunction ∧ of CPL is defined by the context φ0[r1, r2] from (5.4)
of this kind. Contexts with extra atoms, e.g. φ1[r1, r2] from (5.5) or

φ2[r1] := r1∨Rainy,

may intuitively make only little sense, but they are technically eligible,
Let > be a γ-ary connective of L. We say that every instance of > is definable in L if

for every formulas θ1, . . . ,θγ of L, there exists a formula φ of L such that

J>(θ1, . . . ,θγ)K = JφK,

In CPL, every instance of classical conjunction ∧ is definable, as ∧ is in fact uniformly
definable. As mentioned, intuitionistic disjunction ∨ is not uniformly definable in the
∨-free fragment of IPL (i.e. IPL[⊥,∧,→]); moreover, not every instance of ∨ is de-
finable in IPL[⊥,∧,→], since given finitely many propositional variables, the full logic
IPL has infinitely many non-equivalent formulas, whereas by Diego’s Theorem, there are
only finitely many non-equivalent ∨-free formulas (see e.g. Section 5.4 of [9]). For the
logic PD, by Theorem 4.4.1, every instance of intuitionistic disjunction ∨ or intuitionistic
implication → is definable in PD, however, we will show in this chapter that neither of
∨ and → is uniformly definable in PD. Moreover, we adapt the result due to [11] with
our terminology that in the fragment of PID without conjunction ∧, every instance of ∧
is definable, but ∧ is not uniformly definable.

5.2 Contexts for PD
In this section, we investigate the properties of contexts for propositional dependence
logic.

In Definition 5.1.2, we defined contexts for the mentioned propositional logics L in
general. In the case of PD, a context for PD is a formula φ with distinguished proposi-
tional variables ri (j ∈ ω) built from the following grammar:

φ ::= ri | pi | ¬pi |=(pj1 , . . . ,pjk) | (φ∧φ) | (φ⊗φ),



131

where pi,pj1 , . . . ,pjk are (non-distinguished) propositional variables. Note that for tech-
nical reasons that will become clear in Definition 5.2.7, we do not omit parentheses in
a context. As emphasized in the previous section, we do not view negation as a con-
nective, and dependence atoms cannot be decomposed, therefore by Definition 5.1.2, a
context cannot have a subformula of the form ¬ri or =(pj1 , . . . ,pjm−1 , ri,pjm+1 . . . ,pjk).
To make this idea clear, below we present the formal definition of subformulas of contexts
for PD.

Definition 5.2.1 (Subformula). Let φ be a context for PD. We define the set Sub(φ) of
subformulas of φ inductively as follows:

• Sub(ri) = {ri};

• Sub(pi) = {pi};

• Sub(¬pi) = {¬pi};

• Sub(=(pj1 , . . . ,pjk)) = {=(pj1 , . . . ,pjk)};

• Sub((ψ∧χ)) = Sub(ψ)∪Sub(χ)∪{(ψ∧χ)};

• Sub((ψ⊗χ)) = Sub(ψ)∪Sub(χ)∪{(ψ⊗χ)}.

A context φ[r1, . . . , rγ ] is said to be contradictory if φ[r1, . . . , rγ ]≈⊥; it is said to be
tautological if φ[r1, . . . , rγ ]≈>. A contradictory context φ[r1, . . . , rγ ] defines uniformly
a γ-ary connective that we call the contradictory connective. The following lemma shows
that we may assume that a context is either contradictory or it does not contain a single
contradictory subformula.

Lemma 5.2.2. Let φ[r1, . . . , rγ ] be a context for PD. If φ[r1, . . . , rγ ] is not contradictory,
then there exists a context φ′[r1, . . . , rγ ] with no single contradictory subfromula such that
φ′[r1, . . . , rγ ]≈ φ[r1, . . . , rγ ].

Proof. Assuming that φ[r1, . . . , rγ ] is not contradictory, we find the required formula φ′

by induction on φ.
If φ[r1, . . . , rγ ] is an atom, then it clearly does not contain a single contradictory sub-

formula.
If φ[r1, . . . , rγ ] = (ψ∧χ)[r1, . . . , rγ ], which is not contradictory, then it is easy to see

that none of ψ[r1, . . . , rγ ] and χ[r1, . . . , rγ ] is contradictory. By induction hypothesis,
there are ψ′[r1, . . . , rγ ] and χ′[r1, . . . , rγ ] such that

ψ′[r1, . . . , rγ ]≈ ψ[r1, . . . , rγ ], χ
′[r1, . . . , rγ ]≈ χ[r1, . . . , rγ ]

and none of ψ′ and χ′ contains a single contradictory formula. Let φ′[r1, . . . , rγ ] := (ψ′∧
χ′)[r1, . . . , rγ ]. Clearly,

(ψ∧χ)[r1, . . . , rγ ]≈ (ψ′∧χ′)[r1, . . . , rγ ].

As we have assumed that (ψ′∧χ′) 6≈ ⊥, by induction hypothesis, the set

Sub((ψ′∧χ′)) = Sub(ψ′)∪Sub(χ′)∪{(ψ′∧χ′)},



132

does not contain a single contradictory element.
If φ[r1, . . . , rγ ] = (ψ⊗χ)[r1, . . . , rγ ], which is not contradictory, then ψ and χ cannot

be both contradictory. There are the following two cases:

Case 1: Only one of ψ and χ is contradictory. Without loss of generality, we may assume
that ψ[r1, . . . , rγ ] ≈ ⊥ and χ[r1, . . . , rγ ] ≈ χ′[r1, . . . , rγ ], where χ′[r1, . . . , rγ ] is a
context for PD which does not contain a single contradictory subformula. Clearly,
for any formulas θ1, . . . ,θγ , any team X ,

X |= (ψ⊗χ)[θ1, . . . ,θγ ] ⇐⇒X |= (⊥⊗χ′)[θ1, . . . ,θγ ]

⇐⇒X |= χ′[θ1, . . . ,θγ ],

thus (ψ⊗χ)[r1, . . . , rγ ]≈χ′[r1, . . . , rγ ]. So we can take φ′[r1, . . . , rγ ] :=χ′[r1, . . . , rγ ].

Case 2: ψ[r1, . . . , rγ ]≈ ψ′[r1, . . . , rγ ] and χ[r1, . . . , rγ ]≈ χ′[r1, . . . , rγ ], where neither of
ψ′[r1, . . . , rγ ] and χ′[r1, . . . , rγ ] contains a single contradictory subformula. Let
φ′[r1, . . . , rγ ] := (ψ′⊗χ′)[r1, . . . , rγ ]. Clearly,

(ψ⊗χ)[r1, . . . , rγ ]≈ (ψ′⊗χ′)[r1, . . . , rγ ].

As we have assumed that (ψ′⊗χ′) 6≈ ⊥, by induction hypothesis, the set

Sub((ψ′⊗χ′)) = Sub(ψ′)∪Sub(χ′)∪{(ψ′⊗χ′)},

does not contain a single contradictory element.

�

Contexts for PD are monotone in the sense of the following lemma.

Lemma 5.2.3. Let φ[r1, . . . , rγ ] be a context for PD and θ1, . . . ,θγ ,θ
′
1, . . . ,θ

′
γ formulas of

PD. If θ1 |= θ′1, . . . , θγ |= θ′γ , then φ[θ1, . . . ,θγ ] |= φ[θ′1, . . . ,θ
′
γ ].

Proof. Suppose θ1 |= θ′1, . . . , θγ |= θ′γ and X |= φ[θ1, . . . ,θγ ] for some suitable team X .
We prove by induction on φ[r1, . . . , rγ ] that X |= φ[θ′1, . . . ,θ

′
γ ].

The only interesting case is the case φ[r1, . . . , rγ ] = ri (1 ≤ i ≤ γ). In this case, if
X |= ri[θ1, . . . ,θγ ], then X |= θi |= θ′i, thus X |= ri[θ

′
1, . . . ,θ

′
γ ]. �

Corollary 5.2.4. Let φ[r1, . . . , rγ ] be a context for PD. If φ[r1, . . . , rγ ] 6≈ ⊥, then there
exists a non-empty team X such that X |= φ[>, . . . ,>].

Proof. Since φ[r1, . . . , rγ ] 6≈ ⊥, there exist formulas θ1, . . . ,θγ and a non-empty team X
such that X |= φ[θ1, . . . ,θγ ]. As θi |=> for all 1≤ i≤ γ, by Lemma 5.2.3, we obtain that
X |= φ[>, . . . ,>]. �

In the main proofs of this chapter, we will make use of syntax trees of contexts for
PD. Now, we recall the notion of labeled full binary tree.

Definition 5.2.5 (Full Binary Tree). A full binary tree is a triple (T,≺, r) which satisfies
the following conditions:
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(i) T is a non-empty set with r ∈ T . Elements of T are called nodes or points. The node
r is called the root of T.

(ii) ≺ is a binary relation on T which satisfies the following conditions:

(a) ≺ is transitive, that is, for all t1, t2, t3 ∈ T ,

[ t1 ≺ t2 and t2 ≺ t3 ] =⇒ t1 ≺ t3.

(b) ≺ is irreflexive, that is, for all t ∈ T , t⊀ t.

(c) For all t ∈ T \{r}, r ≺ t.
(d) Each node t ∈ T \{r} has a unique immediate predecessor t0 ∈ T . A node t0

is called an immediate predecessor of a node t if t0 ≺ t and there is no node
t′ with t0 ≺ t′ ≺ t. In this case, the node t0 is called the parent of t, and t is
called a child of t0.

(e) Each parent has exactly two children. The nodes of T which have no children
are called leaves.

A node t0 ∈ T is said to be an ancestor of a node t1 ∈ T if t0 ≺ t1.The depth d(t) of
a node t in a full binary tree (T,≺, r) is defined inductively as follows:

• d(r) = 0;

• if t1 is a child of t0, then d(t1) = d(t0)+1.

The depth d(T ) of a tree (T,≺, r) is defined as d(T ) = sup{d(t) | t ∈ T}.

Definition 5.2.6 (Labeled Full Binary Tree). A labeled full binary tree with root r is a
quadruple T = (T,≺, r, f) such that (T,≺, r) is a full binary tree with root r and f is a
labeling function from T into a non-empty set F .

In order to give a technical definition of syntax trees of contexts for PD, we will fix
a specific occurrence of a subformula in a context. To this end, we count the number of
parentheses in a context. For example, the context

1 2 3 4 5 6 7 8

(
( ¬p1⊗ r1 ) ∧

(
=(p2,p3)⊗ ( r1∧ r2 )

) )
(5.6)

has 8 parentheses (excluding the parentheses of the dependence atom). In the formula
depicted above, we labeled each parenthesis by a natural number positioned right below
the parenthesis. The parenthesis labeled with the natural number k is the k-th parenthesis
of the formula (counting from the left). Let

k m

(
φ>ψ

)
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be a subformula of a context θ, where> ∈ {∧,⊗} and the above two outermost parenthe-
ses are the k-th and the m-th parentheses in θ, respectively. The formula φ is said to be
bounded by the k-th parenthesis, and every parenthesis in φ is said to be inside the scope
of the k-th parenthesis. Similarly, the formula ψ is said to be bounded by the m-th paren-
thesis, and every parenthesis in ψ is said to be inside the scope of the m-th parenthesis.
Our treatment of specific occurrences of subformulas is analogous to that in Section 5.2
of [78], one may compare (5.6) with Table 5.1 in [78].(

(¬p1⊗ r1)∧
(
=(p2,p3)⊗ (r1∧ r2)

))

(¬p1⊗r1)

¬p1 r1 =(p2,p3)

(
=(p2,p3)⊗ (r1 ∧r2)

)

(r1 ∧r2)

r1 r2

0

1 8

2 3 4 7

5 6

Figure 5.1: The syntax tree of ((¬p1⊗ r1)∧ (=(p2,p3)⊗ (r1∧ r2)))

Below we present the definition of syntax trees of contexts for PD. An example of a
syntax tree is depicted in Figure 5.1.

Definition 5.2.7 (syntax tree). The syntax tree of a context φ for PD is a labeled full
binary tree Tφ = (T,≺, r, f) satisfying

• T :=m+1, where m is the number of all parentheses in φ;

• r := 0;

• ≺:= {(0,k) | 0< k ≤m}∪{(k1,k2) |
the k2-th parenthesis is inside the scope of the k1-th parenthesis};

• f is a function f : T → Sub(φ) satisfying

– f(0) = φ;

– f(k) := ψ, where ψ is the subformula of φ bounded by the k-th parenthesis.

If f(k) = ψ, we sometimes say that the node k is labeled with ψ or the formula ψ
is attached to the node k.

Fact 5.2.8. The leaf nodes of a syntax tree are always labeled with atoms.
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For a context φ[r1, . . . , rγ ] for PD, if X |= φ[θ1, . . . ,θγ ], then each occurrence of a
subformula of φ[θ1, . . . ,θγ ] is satisfied by a subteam ofX . This can be described explicitly
by a function σ which maps each node in the syntax tree Tφ of φ[θ1, . . . ,θγ ] to a subteam
of X satisfying the formula attached to the node. We now give the definition of such
functions.

Definition 5.2.9 (Truth Function). Let φ[r1, . . . , rγ ] be a context for PD and θ1, . . . ,θγ
formulas of PD. Let N (with |N | = n) be the set of all indices of all propositional
variables occurring in the formula φ[θ1, . . . ,θγ ], and 2n the maximal n-team on N . Let
Tφ = (T,≺, r, f) be the syntax tree of φ. A function σ : Tφ → ℘(2n) is called a truth
function for φ[θ1, . . . ,θγ ] iff

(i) for all k ∈ Tφ, σ(k) |= f(k)[θ1, . . . ,θγ ];

(ii) if f(k) = (ψ∧χ) and k0,k1 are the two children of k, then

σ(k) = σ(k0) = σ(k1);

(iii) if f(k) = (ψ⊗χ) and k0,k1 are the two children of k, then

σ(k) = σ(k0)∪σ(k1).

A truth function σ is called a truth function for φ[θ1, . . . ,θγ ] over an n-team X iff σ(0) =
X .

Fact 5.2.10. Let σ be a truth function for φ[θ1, . . . ,θγ ]. If k,k′ are two nodes with k ≺ k′,
then σ(k′)⊆ σ(k). In particular, if σ is a truth function for φ[θ1, . . . ,θγ ] over an n-team
X , then for all k ∈ Tφ, σ(k)⊆X .

Proof. Easy, by induction on d(k′)−d(k). �

First-order dependence logic has a game-theoretic semantics with perfect information
games played with respect to teams (see Section 5.2 in [78]). With obvious adaptions,
one can define a game-theoretic semantics for propositional dependence logic.3 In fact,
a truth function defined in Definition 5.2.9 corresponds to a winning strategy for Verifier
in the game. An appropriate semantic game for PD has the property that X |= φ if and
only if Verifier has a winning strategy in the corresponding game. In the next theorem,
we show essentially the same property for truth functions. C.f. Lemma 5.12, Proposition
5.11 and Theorem 5.8 in [78].

Theorem 5.2.11. Let φ[r1, . . . , rγ ] be a context for PD and θ1, . . . ,θγ formulas. Let N
(with |N | = n) be the set of all indices of all propositional variables occurring in the
formula φ[θ1, . . . ,θγ ], and X an n-team on N . Then X |= φ[θ1, . . . ,θγ ] iff there exists a
truth function σ for φ[θ1, . . . ,θγ ] over X .

3In Definition 5.10 in [78], leave out game rules for quantifiers and make obvious modifications to game
rules for atoms. We leave the details to the reader, as we will not go into this direction in this thesis.
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Proof. The direction “⇐=” follows easily from the definition. For the other direction
“=⇒”, suppose X |= φ[θ1, . . . ,θγ ]. Let Tφ = (T,≺, r, f) be the syntax tree of φ. We
define the value of σ on each node k of Tφ and check conditions (i)-(iii) of Definition
5.2.9 by induction on the depth of the nodes.

If k = 0 the root, then define σ(0) = X . Since X |= φ[θ1, . . . ,θγ ], condition (i) is
satisfied for the node 0.

Suppose k is not a leaf node, σ(k) has been defined already and conditions (i)-(iii) are
satisfied for k. Let k0,k1 be the two children of k with f(k0) = ψ and f(k1) = χ for some
subformulas ψ,χ of φ. We distinguish two cases.

Case 1 f(k) = (ψ∧χ). Define

σ(k0) = σ(k1) = σ(k).

Then condition (ii) for k0,k1 is satisfied. By induction hypothesis,

σ(k) |= (ψ∧χ)[θ1, . . . ,θγ ],

thus
σ(k0) |= ψ[θ1, . . . ,θγ ] and σ(k1) |= χ[θ1, . . . ,θγ ],

namely condition (i) is satisfied for k0,k1.

Case 2 f(k) = (ψ⊗χ). By induction hypothesis,

σ(k) |= (ψ⊗χ)[θ1, . . . ,θγ ],

thus there exist n-teams Y,Z ⊆ σ(k) such that σ(k) = Y ∪Z,

Y |= ψ[θ1, . . . ,θγ ] and Z |= χ[θ1, . . . ,θγ ].

Define σ(k0) = Y and σ(k1) = Z. Then, conditions (i) and (ii) for k0,k1 are satis-
fied.

Hence σ is a truth function for φ[θ1, . . . ,θγ ] over X . �

The next lemma shows that a truth function is determined by its values on the leaves
of the corresponding syntax tree.

Lemma 5.2.12. Let φ[r1, . . . , rγ ] be a context for PD and θ1, . . . ,θγ formulas of PD. Let
N (with |N | = n) be the set of all indices of all propositional variables occurring in the
formula φ[θ1, . . . ,θγ ]. Let Tφ = (T,≺, r, f) be the syntax tree of φ. If σ : Tφ→ ℘(2n) is a
function satisfying conditions (ii),(iii) in Definition 5.2.9 and condition (i) with respect to
θ1, . . . ,θγ for all leaf nodes, then σ is a truth function for φ[θ1, . . . ,θγ ].

Proof. It suffices to prove that σ satisfies condition (i) with respect to θ1, . . . ,θγ for all
nodes of Tφ. We show this by induction on the depth of k.

Leaf nodes satisfy condition (i) by the assumption. Now, assume k is not a leaf. Then
k has two children k0,k1 with f(k0) = ψ and f(k1) = χ for some subformulas ψ,χ of φ.
Since d(k0),d(k1)> d(k), by induction hypothesis, we have that

σ(k0) |= ψ[θ1, . . . ,θγ ] and σ(k1) |= χ[θ1, . . . ,θγ ]. (5.7)

Now, we distinguish two cases.
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Case 1: f(k) = (ψ∧χ). Then, by condition (ii), σ(k) = σ(k0) = σ(k1). It follows from
(5.7) that σ(k) |= (ψ∧χ)[θ1, . . . ,θγ ].

Case 2: f(k) = (ψ⊗χ). Then, by condition (iii), σ(k) = σ(k0)∪σ(k1). It follows from
(5.7) that σ(k) |= (ψ⊗χ)[θ1, . . . ,θγ ].

�

5.3 Non-uniformly definable connectives in PD and PID
In this section, we prove that neither intuitionistic implication nor intuitionistic disjunc-
tion is uniformly definable in PD. At the end of the session, we include the result due to
[11] that in the conjunction-free fragment of PID, every instance of ∧ is definable, but ∧
is not uniformly definable.

By Lemma 5.2.3, contexts for PD are monotone, thus PD cannot define uniformly
non-monotone connectives. Below we show that intuitionistic implication is not mono-
tone in the sense of Lemma 5.2.3, therefore not uniformly definable in PD.4

Theorem 5.3.1. Intuitionistic implication is not uniformly definable in PD.

Proof. Suppose there was a context φ[r1, r2] for PD which defines intuitionistic implica-
tion. Then for any formulas ψ,χ,

Jφ[ψ,χ]K = Jψ→ χK. (5.8)

For any non-empty team X , we have that

X |=⊥→⊥ and X 6|=>→⊥.

Thus by (5.8),
X |= φ[⊥,⊥] and X 6|= φ[>,⊥].

But this contradicts Lemma 5.2.3 as ⊥ |=>. �

We now proceed to give another sufficient condition for connectives being not uni-
formly definable in PD. It will follow from this that intuitionistic disjunction is not uni-
formly definable in PD. To this end, we first make the following observations.

Fact 5.3.2. Let φ[r1, . . . , rγ ] be a context for PD and θ1, . . . ,θγ formulas. Let σ be a truth
function for φ[θ1, . . . ,θγ ] over a team X . In the syntax tree Tφ of φ, if a node k has no
ancestor node with a label of the form ψ⊗χ, then σ(k) =X .

Proof. Easy, by induction on the depth of k. �

Lemma 5.3.3. Let > be a γ-ary connective such that for every 1≤ i≤ γ, there are some
formulas θ1, . . . ,θγ satisfying

J>(θ1, . . . ,θγ)K* JθiK. (5.9)

If φ[r1, . . . , rγ ] is a context for PD which uniformly defines >, then in the syntax tree
Tφ = (T,≺, r, f), every leaf node labeled with ri (1≤ i≤ γ) has an ancestor node with a
label of the form ψ⊗χ.

4The author would like to thank Samson Abramsky for pointing out this fact.
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Proof. Suppose there exists a leaf node k labeled with ri which has no ancestor node with
a label of the form ψ⊗χ. By assumption, for i, there exist formulas θ1, . . . ,θγ satisfying
(5.9). LetN (with |N |=n) be the set of all indices of all propositional variables occurring
in the formula φ[θ1, . . . ,θγ ]. Take an n-team X such that

X ∈ J>(θ1, . . . ,θγ)K and X /∈ JθiK.

Since φ[r1, . . . , rγ ] uniformly defines >,

X ∈ J>(θ1, . . . ,θγ)K = Jφ[θ1, . . . ,θγ ]K,

thus X |= φ[θ1, . . . ,θγ ]. By Theorem 5.2.11, there is a truth function σ for φ[θ1, . . . ,θγ ]
over X . By the property of k and Fact 5.3.2, σ(k) =X . Thus

X |= ri[θ1, . . . ,θγ ], i.e., X ∈ JθiK,

which is a contradiction. �

The following elementary set theoretical lemma will be used in the proof of Lemma
5.3.5.

Lemma 5.3.4. Let X,Y,Z be sets such that |X| > 1, Y,Z 6= /0 and X = Y ∪Z. Then
there exist Y ′,Z ′ (X such that Y ′ ⊆ Y , Z ′ ⊆ Z and X = Y ′∪Z ′.

Proof. If Y,Z (X , then taking Y ′ = Y and Z ′ = Z, the lemma holds. Now, assume one
of Y,Z equals X .

Case 1: Y = Z = X . Pick an arbitrary a ∈ X . Let Y ′ = X \ {a} ( X and Z ′ = {a}.
Since |X|> 1, we have that Z ′ (X . Clearly, X = (X \{a})∪{a}.

Case 2: Only one of Y and Z equals X . Without loss of generality, we assume that
Y =X and Z (X . Let Y ′ =X \Z and Z ′ = Z. Clearly, X = (X \Z)∪Z and
Y ′,Z ′ (X , as /0 6= Z (X .

�

The next lemma is crucial to the proof of Theorem 5.3.6.

Lemma 5.3.5. Let φ[r1, . . . , rγ ] be a non-contradictory context for PD such that in the
syntax tree Tφ = (T,≺, r, f) of φ, every leaf node labeled with ri (1 ≤ i ≤ γ) has an
ancestor node labeled with a formula of the form ψ⊗χ. Let N (with |N |= n) be the set
of all indices of all propositional variables occurring in the formula φ[>, . . . ,>], and 2n

the maximal n-team on N . If 2n |= φ[>, . . . ,>], then there exists a truth function σ for
φ[>, . . . ,>] over 2n such that σ(x)( 2n for all leaf nodes x labeled with ri (1≤ i≤ γ).

Proof. By Lemma 5.2.2, we may assume that φ[r1, . . . , rγ ] does not contain a single con-
tradictory subformula. Suppose 2n |= φ[>, . . . ,>]. The required truth function σ over 2n

is defined inductively on the depth of the nodes in the syntax tree Tφ in the same way as
that in the proof of Theorem 5.2.11, except for the following case.

For each leaf node labeled with ri, consider its ancestor node k with f(k) = (ψ⊗
χ) of minimal depth, where ψ,χ ∈ Sub(φ) (the existence of such k is guaranteed by
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assumption). Let k0,k1 be the two children of k. Assuming that σ(k) has been defined
already, we now define σ(k0) and σ(k1).

By induction hypothesis,

σ(k) |= (ψ⊗χ)[>, . . . ,>].

The minimality of k implies that k has no ancestor node labeled with θ0⊗θ1, thus σ(k) =
2n by Fact 5.3.2. Then there exist teams Y0,Z0 ⊆ σ(k) = 2n such that 2n = Y0∪Z0,

Y0 |= ψ[>, . . . ,>] and Z0 |= χ[>, . . . ,>].

Claim: There are non-empty teams Y,Z such that 2n = Y ∪Z and

Y |= ψ[>, . . . ,>] and Z |= χ[>, . . . ,>]. (5.10)

Proof of Claim: If Y0,Z0 6= /0, then taking Y = Y0 and Z = Z0, the claim holds. Now,
suppose one of Y0,Z0 is empty. Without loss of generality, we may assume that Y0 = /0.
Then let Z := Z0 = 2n. Since ψ[r1, . . . , rγ ] 6≈ ⊥, by Corollary 5.2.4 and locality of PD,
there exists a non-empty n-team Y ⊆ 2n such that Y |= ψ[>, . . . ,>]. Thus Y and Z are
as required. a

Now, since |2n|> 1, by Lemma 5.3.4, there are teams Y0,Z0 ( 2n such that Y0 ⊆ Y ,
Z0 ⊆ Z and Y0 ∪Z0 = 2n. Define σ(k0) = Y0 and σ(k1) = Z0. Clearly, condition (iii)
of Definition 5.2.9 for k0,k1 is satisfied. Moreover, by downwards closure, it follows
from (5.10) that condition (i) for k0,k1 is also satisfied. Hence, such defined σ is a truth
function for φ[>, . . . ,>] over 2n.

It remains to check that σ(x)( 2n for all leaf nodes x labeled with ri (1≤ i≤ γ). By
assumption, there exists an ancestor k of x labeled with (ψ⊗χ) of minimal depth. One
of k’s two children, say kj , must be an ancestor of x or kj = x. Thus, by Fact 5.2.10 and
the construction of σ, we obtain that σ(x)⊆ σ(kj)( 2n. �

Recall that in the proof of Theorem 4.4.1, for each n-element set N ⊆ N, for each
non-empty n-team X on N , we have constructed an n-formula Θ?

X of PD such that

Y |= Θ
?
X ⇐⇒ X * Y

for any n-team Y on N .
Now, we give the intended sufficient condition for a non-contradictory connective

being not uniformly definable in PD. In the proof, we will make use of the formula Θ?
X .

Theorem 5.3.6. Every non-contradictory γ-ary connective > satisfying the following
conditions is not uniformly definable in PD:

(i) For every 1≤ i≤ γ, there exist some formulas θ1, . . . ,θγ of PD satisfying

J>(θ1, . . . ,θγ)K* JθiK. (5.11)

(ii) There are formulas δ1, . . . , δγ of PD such that |=>(δ1, . . . , δγ).
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(iii) For any n-element set N ⊆ N, there exist 1≤ j1 < · · ·< jm ≤ γ such that

2n 6|=>(α1, . . . ,αγ), (5.12)

where 2n is the maximal n-team on N , and for each 1≤ i≤ γ,

αi =

{
Θ?

2n if i= ja ,1≤ a≤m
> otherwise.

(5.13)

Proof. Suppose > was uniformly definable in PD. Then there would exist a context
φ[r1, . . . , rγ ] for PD such that for all PD formulas θ1, . . . ,θγ ,

Jφ[θ1, . . . ,θγ ]K = J>(θ1, . . . ,θγ)K. (5.14)

Since > satisfies condition (i), by Lemma 5.3.3, in the syntax tree Tφ = (T,<,r, f) of
φ[r1, . . . , rγ ], each node labeled with ri (1 ≤ i ≤ γ) has an ancestor node labeled with a
formula of the form ψ⊗χ.

By condition (ii), |=>(δ1, . . . , δγ) for some formulas δ1, . . . , δγ , thus by (5.14),

|= φ[δ1, . . . , δγ ].

As δi |=> for all 1≤ i≤ γ, by Lemma 5.2.3 we have that

|= φ[>, . . . ,>].

Let N (with |N | = n) be the set of all indices of all propositional variables occurring in
φ[>, . . . ,>]. Let 2n be the maximal n-team on N . We have that

2n |= φ[>, . . . ,>].

Since φ[r1, . . . , rγ ] 6≈ ⊥, by Lemma 5.3.5 there exists a truth function σ for φ[>, . . . ,>]
over 2n such that σ(x)( 2n for all leaf nodes x labeled with ri (1≤ i≤ γ) in Tφ.

By condition (iii), for the set N , there exist 1 ≤ j1 ≤ ·· · ≤ jm ≤ γ such that (5.12)
holds. On the other hand, for each ja (1≤ a≤m), as 2n * σ(x) holds for every leaf node
x labeled with rja , we have that σ(x) |= Θ?

2n , i.e.,

σ(x) |= f(x)[α1, . . . ,αγ ],

where for each 1≤ i≤ γ, Equation (5.13) is the case.
Thus, by Lemma 5.2.12, σ is also a truth function for φ[α1, . . . ,αγ ] over 2n, where for

each 1≤ i≤ γ, Equation (5.13) is the case, thereby

2n |= φ[α1, . . . ,αγ ].

Thus by (5.14), we obtain 2n |=>(α1, . . . ,αγ). But this contradicts (5.12). �

Theorem 5.3.7. Intuitionistic disjunction is not uniformly definable in PD.
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Proof. It suffices to check that intuitionistic disjunction satisfies conditions (i)-(iii) in
Theorem 5.3.6. Condition (i) is satisfied, since, e.g., J⊥∨>K* J⊥K and J>∨⊥K* J⊥K.
Condition (ii) is satisfied since, e.g., |= >∨>. Lastly, for any n-element set N ⊆ N,
clearly 2n 6|= Θ?

2n ∨Θ?
2n , thus condition (iii) is satisfied. �

We have already proved that intuitionistic implication is not uniformly definable in PD
in Theorem 5.3.1 by observing that intuitionistic implication is not monotone. In fact, the
non-uniform definability of intuitionistic implication in PD also follows from Theorem
5.3.6, as intuitionistic implication also satisfies conditions (i)-(iii). Indeed, we have that
(i) J⊥→⊥K* J⊥K, (ii) |=>→> and (iii) 2n 6|=>→Θ?

2n , for any n-element set N ⊆N.
We end this section by including a result on the issue of definability and uniform

definability of connectives in the logic PID. The proof of the next theorem is due to [11].

Theorem 5.3.8 ([11]). In the fragment of PID without conjunction ∧ (i..e. the logic
PID[=(·),⊥,∨,→]), every instance of ∧ is definable but ∧ is not uniformly definable.

Proof. Proposition 3.5.5 in [11] shows that ∧ is not uniformly definable in the fragment
of inquisitive logic InqL without ∧ (i.e. InqL[⊥,∨,→]). By Lemma 4.2.5, dependence
atoms are finable in terms of ∨, thus PID[=(·),⊥,∨,→] = PID[⊥,∨,→] = InqL[⊥,∨,→
].

Moreover, Proposition 2.5.2 in [11] shows that every non-empty downwards closed
class K of n-teams is characterizable by a formula of InqL[⊥,∨,→]. This implies that
PID[=(·),⊥,∨,→] is also a maximal downwards closed logic, therefore every instance of
∧ is definable in the logic PID[=(·),⊥,∨,→]. The basic idea of this proof is the follow-
ing. By Theorem 4.2.8, K = J

∨
X∈K ΨXK. Each ΨX is a (double) negated formula, thus

flat (c.f. Corollary 2.1.2). Then, to evaluate the formula ΨX , it suffices to consider its
satisfiability on singleton teams only. But on singleton teams, the formula ΨX behaves
like a formula in CPL (c.f. Lemma 2.1.4 and Lemma 4.1.10). In CPL, the set {¬,∨} of
connectives is functionally complete, therefore ΨX viewed as a CPL formula is equiv-
alent to a formula Ψ′X of CPL with only ¬ and ∨ as connectives. Putting the argument
together, we obtain that K = J

∨
X∈K Ψ′XK. �

5.4 Concluding remarks
Team semantics was originally designed by Hodges ([50],[52]) for independence friendly
logic in order to meet one of the fundamental needs of logic and language, namely “com-
positionality” (see e.g. [55],[53] for an overview). The idea of team semantics is a natural
and powerful generalization of the usual semantics of classical logic. This new method-
ology provides a wide and solid framework for logics of dependence and independence.

On the other hand, the results of this chapter, as well as those in [11], [32] show that
for logics L based on team semantics, even if every instance of a compositional connective
> (i.e. Equation (5.1 holds for >) is definable in L, a uniform (or compositional) defini-
tion for > does not necessarily exist in L. This phenomenon seems to indicate that the
compositionality or uniformity in another level is lost in team semantics. In the author’s
opinion, this problem reflects some deep content of team semantics that surely deserves
further investigation.



Chapter 6

Modal Intuitionistic Dependence Logic

In the preceding chapters, we studied first-order and propositional intuitionistic depen-
dence logic. We devote the following two chapters to modal intuitionistic dependence
logic.

Väänänen introduced in [79] modal dependence logic (MD), which incorporates the
notion of “dependence” into modal logic. Loosely speaking, modal dependence logic can
be understood as propositional dependence logic with modalities. A typical formula of
MD can be of the following form:

23=(p,q).

A corresponding practical statement can be as follows:

However the environment will be degraded in the next 100 years, it is
possible that in 200 years from now, whether the earth will be destroyed
depends only on whether there is another planet that crashes into the earth.

The meaning of this formula is given on the usual Kripke models (of modal logic). As
in the case of propositional logic, the dependence atom =(p,q) only makes sense when it
is evaluated on a set of possible worlds instead of a single world. These sets are called
teams and the corresponding semantics is referred to as team semantics. Known results
of model-theoretic properties of MD can be found in [76], and its computational issues
are investigated in [76], [67], [17], [66], etc.

As discussed in Section 4.2, propositional dependence logic does not have a satisfac-
tory treatment for conditional statements (especially conditionals of dependence facts).
For the same reason, conditional modal statements such as the following one cannot have
a reasonable interpretation in modal dependence logic:

However the environment will be degraded in the next 100 years, it is
possible that in 200 years from now, if whether the earth will be destroyed
depends only on whether there is another planet that crashes into the earth,
then whether the human being will migrate to other planets depends only on
whether the crash will occur.
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We propose to interpret the above conditional statement as

23
(
=(p,q)→=(p,r)

)
,

where→ is the intuitionistic implication studied in the preceding chapters.
In view of this, in this chapter, we introduce modal intuitionistic dependence logic

(MID), which is the modal variant of propositional intuitionistic dependence logic studied
in Section 4.2. We include in this chapter preliminary results on modal intuitionistic
dependence logic. We give basic definitions in Section 6.1. In Section 6.2, we show that
MID is a weak intermediate modal logic K with an axiom characterizing determinacy.
We also give a translation from MD into MID. In Section 6.3, we reveal a connection
between modal intuitionistic dependence logic and intuitionistic modal logic IK, defined
independently in by Edwald [22], Fischer Servi [26] and Plotkin and Stirling [73], and
show that model intuitionistic dependence logic is complete with respect to a certain set
of finite bi-relation Kripke models. In Section 6.4, we give concluding remarks and open
problems.

We, by no means, claim that the work in this chapter is complete in any sense for the
investigation of modal intuitionistic dependence logic, however we present this chapter
with the hope that these results will throw some light on the future research in this area.

6.1 Modal dependence logic and modal intuitionistic de-
pendence logic

In this section, we give formal definition of modal dependence logic and modal intuition-
istic dependence logic, and list their basic properties.

Definition 6.1.1. Let p,p1, . . . ,pk be propositional variables.

• Well-formed formulas of modal dependence logic (MD) are given by the following
grammar:

φ ::= p | ¬p |=(p1, . . . ,pk) | φ∧φ | φ⊗φ |2φ |3φ.

• Well-formed formulas of modal intuitionistic dependence logic (MID) are given by
the following grammar:

φ ::= p | ⊥ |=(p1, . . . ,pk) | φ∧φ | φ∨φ | φ→ φ |2φ |3φ.

In this chapter, we will mainly focus on MID. As before, to simplify notations, we
apply Convention 1.1.2 to MID, in particular, φ→⊥ is abbreviated as ¬φ for any formula
φ. In the usual modal logic, the modalities 2 and 3 are dual to each other, namely, e.g.,
2φ is equivalent to ¬3¬φ. However, as we will see from the semantics given below, this
is not true for MID.

As for the usual modal logic, the semantics of MD and MID is defined with respect
to the usual Kripke models of modal logic (not Kripke models of intuitionistic logic!).

Definition 6.1.2. A (modal) Kripke frame is an ordered pair F = (W,R) consisting of
a nonempty set W , a binary relation R on W . The set W is called the domain of F.
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Elements of W are called states, possible worlds, nodes or points, while subsets of of W
are called teams of F, i.e. a team is a set of possible worlds.

A (modal) Kripke model is a triple M= (W,R,V ), where (W,R) is a (modal) Kripke
frame and V : Prop→ ℘(W ) is a valuation function from the set Prop of all propositional
variables into the powerset of W .

If wRv, then v is called a successor of w, and w is called a predecessor of v. For any
team X of a Kripke frame F, we define

R(X) = {w ∈W | ∃v ∈X, s.t. vRw}.

Clearly, R( /0) = /0. In case X = {w}, we write R(w) instead of R({w}). If Y is a team
such that

Y ⊆R(X) and ∀w ∈X, R(w)∩Y 6= /0, (6.1)

then Y is called a successor team of X , and we write XRY . Clearly, /0R /0 and the empty
team is the unique successor team of the empty team itself.

A valuation V : Prop → ℘(W ) of a Kripke model induces a function πV : W →
℘(Prop) defined by

πV (w) = {p ∈ Prop | w ∈ V (p)}.

Conversely, a function πV : W → ℘(Prop) determines a valuation Vπ : Prop→ ℘(W )
defined as

Vπ(p) = {w ∈W | p ∈ π(w)}.

In this thesis, we will use the terminologies V and π simultaneously.
The satisfaction relations of MD and MID are defined with respect to teams. A game

theoretic semantics of MD based on set game is given in [79], such semantics can be
generalized to MID, but in this thesis, we consider team semantics only. Below, we
present the formal definition of team semantics of these logics.

Definition 6.1.3 (Team Semantics). We inductively define the notion of a formula φ of
MD or MID being satisfied in a Kripke model M= (W,R,V ) on a teamX ⊆W , denoted
by M,X |= φ, as follows:

• M,X |= p iff X ⊆ V (p);

• M,X |= ¬p iff X ∩V (p) = /0;

• M,X |=⊥ iff X = /0;

• M,X |= =(p1, · · · ,pk) iff for any w,v ∈X , if

πV (w)∩{p1, . . . ,pk−1}= πV (v)∩{p1, . . . ,pk−1},

then πV (w)∩{p}= πV (v)∩{p};

• M,X |= φ∧ψ iff M,X |= φ and M,X |= ψ;

• M,X |= φ⊗ψ iff there exist teams Y,Z ⊆X such that X = Y ∪Z,

M,Y |= φ and M,Z |= ψ;
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• M,X |= φ∨ψ iff M,X |= φ or M,X |= ψ;

• M,X |= φ→ ψ iff for any team Y ⊆X ,

M,Y |= φ=⇒M,Y |= ψ;

• M,X |=2φ iff M,R(X) |= φ;

• M,X |=3φ iff there exists a team Y such that XRY and M,Y |= φ.1

Let L be any of the logics MD and MID. For any formula φ of L, if M,X |= φ holds
for all teams X of M, then we say that φ is true in the Kripke model M, denoted by
M |= φ. If M |= φ holds for all Kripke models M, then we say that φ is valid in the
logic L, denoted by |=L φ or simply |= φ. The notions of logical consequence and logical
equivalence are defined analogously to the first-order or propositional case. The logic
MID is the set of all valid formulas of MID, namely

MID = {φ : |=MID φ};

similarly for the logic MD.
Analogous to the first-order or propositional case, both of the logics MD and MID

have the downwards closure property, the empty team property and the locality property.
Moreover, Deduction Theorem holds in MID.

Theorem 6.1.4 (Downwards Closure). For any formula φ of MD or MID, any Kripke
model M, any teams X,Y of M,

[M,X |= φ and Y ⊆X ] =⇒M,Y |= φ.

Proof. Easy. �

Lemma 6.1.5 (Empty Team Property). MD and MID have the empty team property, that
is, every formula φ of any of the logics is satisfied on the empty team of any Kripke model
M, i.e. M, /0 |= φ.

Proof. Easy. �

Lemma 6.1.6 (Locality). Let φ(pi1 , . . . ,pin) be a formula of MD or MID. For any
Kripke model M = (W,R,V ), any team X of M, let Mn = (W,R,V n), where V n =
V � {pi1 , . . . ,pin}. We have that

M,X |= φ ⇐⇒ Mn,X |= φ.

Proof. Easy. �

1By the downwards closure property (see Theorem 6.1.4), it is equivalent to define this case as

“M,X |=3φ iff M,Y |= φ for some teams Y,Z such that XRZ and Z ⊆ Y .

However, we choose to use the strong version of the definition for reasons that will become clear in Definition
6.3.5 of powerset Kripke models in Section 6.3.
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Lemma 6.1.7 (Deduction Theorem). For any formulas φ and ψ of MID,

φ |= ψ ⇐⇒ |= φ→ ψ.

Proof. By the downwards closure property. �

As in the first-order or propositional case, formulas φ satisfying

M,X |= φ ⇐⇒ ∀s ∈X, M,{s} |= φ

for all Kripke models M, all teams X of M are called flat formulas. A formula built
from propositional variables and negated propositional variables by conjunction ∧, tensor
disjunction⊗ and the two modalities 2, 3 is called a classical formula. It is easy to show
that formulas of MID or MD which do not contain dependence atoms or intuitionistic
disjunction are flat. In particular, classical formulas are flat. Moreover, Sevenster showed
[76] that on singleton teams, MD is equivalent to the usual modal logic.

The underlying propositional logics of MD and MID are PD and PID, therefore many
of the relevant properties in Chapter 4 are true also for MD and MID. In particular, in
MID, dependence atoms are eliminatable as

=(p1, . . . ,pk) ≡
(
(p1∨¬p1)∧·· ·∧ (pk−1∨¬pk−1)

)
→ (pk ∨¬pk),

negated formulas are flat, all axiom schemas of the intermediate logic ND or KP, as
well as the atomic double negation law ¬¬p→ p are valid, and MID is not closed under
uniform substitution. Moreover, Lemma 2.1.3 holds for MID: a formula φ of MID is flat
if and only if |=MID ¬¬φ↔ φ.

In MD and MID, we adopt the usual notions of disjoint unions of models, generated
submodels, p-morphisms for the usual modal logic (see e.g. [4], [9]).

Definition 6.1.8. Let M= (W,R,V ) and M′ = (W ′,R′,V ′) be Kripke models.

• The disjoint union M]M′ = (W0,R0,V0) of M and M′ is defined as

W0 =W ]W ′, R0 =R]R′ and V0(p) = V (p)]V ′(p)

for all p ∈ Prop, where ] takes the disjoint union of two sets.

• M′ is called a submodel of M if

W ′ ⊆W, R′ =R∩ (W ′×W ′) and πV ′ = πV �W
′.

A submodel M′ of M is called a generated submodel of M if R(W ′) =W ′.

• A function f from W to W ′ is called a p-morphism or bounded-morphism of M
into M’ if it satisfies the following conditions:

(i) πV (w) = πV ′(f(w)) for all w ∈W ;

(ii) for any w,v ∈W , wRv implies f(w)R′f(v);

(iii) f(w)R′v′ implies ∃v ∈W (wRv∧f(v) = v′).
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We leave it to the reader to check that truth of formulas of MD and MID are preserved
under taking disjoint unions, generated submodels and p-morphic images.

Theorem 6.1.9. Let M = (W,R,V ), M′ = (W ′,R′,V ′) and Mi = (Wi,Ri,Vi) (i ∈ I)
be Kripke models.

(i) For every i ∈ I and every X ⊆Wi,

Mi,X |= φ ⇐⇒
⊎
i∈I

Mi,X |= φ.

(ii) If M is a generated submodel of M′, then for all X ⊆W ,

M,X |= φ ⇐⇒ M′,X |= φ.

(iii) If f : M→M′ is a p-morphism, then for all X ⊆W ,

M,X |= φ ⇐⇒ M′,f(X) |= φ.

We end this section by verifying the disjunction property of MID.

Theorem 6.1.10 (Disjunction Property). MID has the disjunction property, that is, for
any formulas φ and ψ of MID, if |= φ∨ψ, then |= φ or |= ψ.

Proof. Suppose M0,X0 6|= φ and M1,X1 6|= ψ. Let M=M0]M1, X =X0∪X1. Then
we have that

M,X0 6|= φ and M,X1 6|= ψ,

thus as X0,X1 ⊆X , by the downwards closure property,

M,X 6|= φ and M,X 6|= ψ.

Hence M,X 6|= φ∨ψ. �

6.2 Modal intuitionistic dependence logic and weak in-
termediate modal logic

In this chapter, we investigate the connection between modal intuitionistic dependence
logic and intuitionistic modal logic.

Intuitionistic modal logic has been studied extensively by philosophers, mathemati-
cians and computer scientists since around 1950’s. The basic idea is to combine intuition-
istic logic and (classical) modal logic in order to obtain a logic which has both construc-
tive and intensional content. As it turned out, this theoretically natural extension finds
increasingly wide applications in the field of practical computer science. For a survey on
intuitionistic modal logic, see e.g. [77], [86].

Modal intuitionistic dependence logic has a close connection with the intuitionistic
modal logic IK defined independently by Edwald [22], Fischer Servi [26] and Plotkin
and Stirling [73]. We prove in this section that MID is between IK with d(eterministic)
axiom 2(φ∨ψ)→ (2φ∨2ψ) and the classical modal logic K with d axiom. We also
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prove that MD is a sublogic of MID in the sense that all formulas of MD are expressible
in MID.

We first recall relevant definitions concerning intuitionistic modal logic IK. The (clas-
sical) modal logic K is defined as follows.

Definition 6.2.1. The modal logic K is the smallest set of formulas that contains the
following axioms and is closed under the following rules:

1. All axioms of CPL 4. (3φ→2ψ)→2(φ→ ψ)
2. 2(φ→ ψ)→ (2φ→2ψ) 5. Modus Ponens (MP)
3. 3φ↔¬2¬ψ 6. Uniform Substituion (Sub)

All connectives and modalities in the above axioms have classical interpretations,
whereas in intuitionistic modal logic, these logical constants have constructive meanings.
In other words, the underlying propositional logic of classical modal logic is classical
propositional logic, whereas intuitionistic modal logic is based on intuitionistic proposi-
tional logic. Among the independent intuitionistic modal logics considered in the litera-
ture, the most relevant one to our purpose is the following logic IK (also known as FS),
introduced independently by Edwald [22], Fischer Servi [26][27] and Plotkin and Stirling
in [73]. The axioms we listed below are given by Plotkin and Stirling in [73]. IK is a
proper sublogic of K, i.e., IK⊂K.

Definition 6.2.2 ([73]). The intuitionistic modal logic IK is the smallest set of formulas
that contains the following axioms and is closed under the following rules:

1. All axiom schemas of IPL 6. (3φ→2ψ)→2(φ→ ψ)
2. 2(φ→ ψ)→ (2φ→2ψ) 7. Modus Ponens (MP)
3. 2(φ→ ψ)→ (3φ→3ψ) 8. Uniform Substituion (Sub)
4. ¬3⊥ 9. Generalization (Gen): φ/2φ
5. 3(φ∨ψ)→ (3φ∨3ψ)

In the next lemma we check that IK ⊆MID. However, IK 6= MID as MID is not
closed under Sub.

Lemma 6.2.3. Let φ and ψ be formulas of MID. We have the following:

1. All axiom schemas of IPL are valid in MID
2. All axiom schemas of IK are valid in MID
3. MID is closed under MP and Gen

Proof. Clearly, all axioms of IPL are valid in MID, and MID is closed under MP and
Gen. It remains to check that all the other axiom schemas of IK are valid in MID. Axiom
schemas 2-5 are verified straightforwardly. We will only check the validity of the axiom
schema 6. By Deduction Theorem, it suffices to show that

3φ→2ψ |=2(φ→ ψ).

Let M= (W,R,V ) be a Kripke model and X ⊆W . Assume M,X |=3φ→ 2ψ. It
suffices to show that M,R(X) |= φ→ ψ. For any team Y ⊆R(X) such that M,Y |= φ,
consider the team

Z = {w ∈X | wRv for some v ∈ Y }.
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Clearly ZRY , thus M,Z |= 3φ. Since M,X |= 3φ→ 2ψ and Z ⊆X , we obtain that
M,Z |= 2ψ, thereby M,R(Z) |= ψ. As Y ⊆R(Z), by the downwards closure property,
M,Y |= ψ. Hence M,R(X) |= φ→ ψ, as required. �

In IK, the two modalities 2 and 3 are independent of each other, in particular, ¬2φ→
3¬φ is not derivable and not a valid formula of IK. We invite the reader to check that
this is also the case for MID.

In the next lemma we list without a proof the derivable formulas of IK that are most
relevant for the rest of this chapter.

Lemma 6.2.4. The following formulas are valid in MID as they are derivable in IK:

(i) `IK ¬3φ↔2¬φ;

(ii) `IK 3(φ∨ψ)↔ (3φ∨3ψ).
(iii) `IK (2φ∨2ψ)→2(φ∨ψ);
(iv) `IK 3¬φ→¬2φ.

In addition to all derivable formulas of IK, the formulas listed in the next lemma are
also valid in MID. It will turn out later in this and the next sections that these formulas
are of particular interests.

Lemma 6.2.5.

(i) |=MID ¬¬p→ p;

(ii) |=MID 2(φ∨ψ)→ (2φ∨2ψ);
(iii) |=MID ¬2φ→3¬φ, whenever φ is flat; in particular |=MID ¬2¬φ→3¬¬φ.

Proof. Item (i) follows from the fact that |=PID ¬¬p→ p (c.f. Lemma 2.1.3) and item (ii)
is straightforward to verify. We only show (iii).

Let M= (W,R,V ) andX ⊆W . We show ¬2φ |=3¬φ, whenever φ is flat. Suppose
M,X |= ¬2φ. Then for any w ∈ X , we have that M,{w} 6|= 2φ, i.e. M,R(w) 6|= φ.
Since φ is flat, there exists vw ∈R(w) such that M,{vw} 6|= φ. Define

Y = {vw ∈R(X) | w ∈X}.

For any vw ∈ Y , we have that M,{vw} |= ¬φ, thus M,Y |= ¬φ as ¬φ is flat. Clearly,
XRY , thus M,X |=3¬φ, as required. �

Let us call the formula
2(φ∨ψ)→2φ∨2ψ

the d axiom. The d axiom is very strong, as it is known that the modal logic

Kd := K⊕d2

is complete with respect to the class of deterministic frames (see [15]). A Kripke frame
F = 〈W,R〉 is called deterministic if every node has at most one successor, i.e., for all
w,u,v ∈W ,

wRu, wRv =⇒ u= v.
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We now show that over deterministic models (i.e. models whose underlying frames are
deterministic), on singleton teams, MID is equivalent to Kd.

Lemma 6.2.6. Let M = 〈W,R,V 〉 be a deterministic model and w ∈W . Then for any
modal formula φ,

M,w |=Kd φ ⇐⇒ M,{w} |=MID φ.

Proof. By induction on φ. The only interesting cases are the following ones.
If φ= ¬ψ, then we have that

M,w |=Kd ¬ψ ⇐⇒ M,w 6|=Kd ψ

⇐⇒ M,{w} 6|=MID ψ (by induction hypothesis)
⇐⇒ M,{w} |=MID ψ→⊥.

If φ=2ψ, then we have that

M,w |=Kd 2ψ ⇐⇒ M,v |=Kd ψ for the unique v s.t. wRv (if such exists)
⇐⇒ M,{v} |=MID ψ for the unique v s.t. wRv (if such exists)

(by induction hypothesis)
⇐⇒ M,R(w) |=MID ψ

⇐⇒ M,{w} |=MID 2ψ.

�

Next, we define intuitionistic Kd, which is a proper sublogic of Kd and will play an
important role in this chapter.

Definition 6.2.7. The intuitionistic modal logic of Kd, denoted by IKd, is the smallest
set of formulas containing the following axioms and is closed under the following rules:

1. All IK axiom schemas

2. 2(φ∨ψ)→2φ∨2ψ
3. ¬2¬φ→3¬¬φ
4. All IK rules

Immediately from Lemma 6.2.5, we know that all axiom schemas of IKd are valid
in MID, and MID is closed under all rules of IKd except for Sub. This means that
IKd(MID. Next, we show that MID is a proper sublogic of Kd, implying that MID is
between IKd and Kd.

Lemma 6.2.8. IKd⊂MID⊂Kd.

Proof. We only check that MID ⊂ Kd. As law of excluded middle p∨¬p fails in MID,
we have that MID 6= Kd. Now, suppose φ /∈ Kd. Since Kd is complete with respect
to the class of deterministic frames, there exists a deterministic model M and a point w
in M such that M,w 6|=Kd φ. By Lemma 6.2.6, we have that M,{w} 6|=MID φ, thereby
φ /∈MID, as required. �

2Denote by L1⊕L2 the smallest set of formulas containing all axioms of the two modal logics L1 and L2 and
is closed under MP, Gen and Sub.
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Modal logics with superintuitionistic logics as their underlying propositional logic
are studied in the literature, especially the logics between intuitionistic K4 and classical
K4 (see e.g. [85], [84], etc). In this chapter, for our purpose, we consider what we call
intermediate Kd modal logic.

Definition 6.2.9. An intermediate Kd modal logic is a set L of formulas closed under
MP, Sub, Gen such that IKd⊆ L⊂Kd.

Recall from Theorem 4.2.10 that PID = KP¬, where PID is the underlying proposi-
tional logic of MID. Now, the logic

KP Kd := IKd⊕KP

is clearly an intermediate Kd modal logic. In view of Lemma 6.2.8 and that PID = KP¬,
we know that KP Kd⊆MID. However, MID is not an intermediate Kd modal logic, as
it is not closed under Sub. Instead, MID is a weak intermediate Kd modal logic defined
as follows (the definition is inspired by [13] and [11]).

Definition 6.2.10. A weak intermediate Kd modal logic is a set L of formulas closed
under MP and Gen such that IKd⊆ L⊂Kd.

Analogous to Proposition 3.31 in [13], we can prove the following lemma (recalling
Definition 4.2.9 of the negative variant of a logic).

Lemma 6.2.11. For any intermediate Kd modal logic L, its negative variant L¬ is the
smallest weak intermediate Kd modal logic including L and the atomic double negation
axiom ¬¬p→ p for each propositional variable p. Moreover, if L has the disjunction
property, then so does L¬.

Proof. By a similar proof with that of Proposition 3.31 in [13]. �

Corollary 6.2.12. KP Kd⊂ KP Kd¬ ⊆MID.

Proof. By Lemma 6.2.11, and |=MID ¬¬p→ p. �

In summary, we have obtained so far the following inclusions:

IKd⊆ KP Kd⊂ KP Kd¬ ⊆MID⊂Kd. (6.2)

However, we do not know whether

KP Kd¬ = MID or `KP Kd¬ φ ⇐⇒ |=MID φ,

i.e., whether MID is complete with respect to the deductive system of KP Kd¬.
In the remaining part of this section, we show that all formulas of MD are express-

ible in MID. This goal is achieved through a so-called disjunctive-negative translation,
generalized from [13].

Definition 6.2.13 (Disjunctive-negative translation (c.f. [13]) ). For any dependence
atom-free formula φ of MD or MID, we define its disjunctive-negative translation DN(φ)
inductively as follows:
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• DN(p) := ¬¬p

• DN(⊥) := ¬¬⊥

Assume that DN(ψ) = ¬ψ1∨·· ·∨¬ψn and DN(χ) = ¬χ1∨·· ·∨¬χm. Define

• DN(ψ∨χ) := DN(ψ)∨DN(χ)

• DN(ψ∧χ) :=
∨
{¬(ψi∨χj) | 1≤ i≤ n, 1≤ j ≤m}

• DN(ψ⊗χ) :=
∨
{¬¬(ψj →¬χi) | 1≤ i≤ n,1≤ j ≤m}

• DN(ψ→ χ) :=
∨
{¬¬

∧
1≤i≤m(χji → ψi) | 1≤ j1, . . . , jn ≤m}

• DN(3ψ) :=
∨
{¬2¬¬ψi | 1≤ i≤ n}

• DN(2ψ) :=
∨
{¬3ψi | 1≤ i≤ n}

Next, we show that the disjunctive-negative translation is truth-preserving.

Lemma 6.2.14 (c.f. [13]). For every dependence atom-free formula φ of MD or MID,
φ≡ DN(φ).

Proof. By induction on φ. The modality-free cases except for the case φ = ψ⊗χ of the
inductive proof follow from Proposition 3.14 in [13], which makes essential use of the
following clauses:

|=MID ¬¬p→ p and |=MID NDk for all k ∈ N3.

If φ= ψ⊗χ, then by induction hypothesis,

ψ ≡ DN(ψ) = ¬ψ1∨·· ·∨¬ψn and χ≡ DN(χ) = ¬χ1∨·· ·∨¬χm.

Thus

ψ⊗χ≡ (¬ψ1∨·· ·∨¬ψn)⊗ (¬χ1∨·· ·∨¬χm)

≡
∨

1≤i≤n

∨
1≤j≤m

(¬ψi⊗¬χj)

(c.f. the distributive laws Dstr⊗∨, Dstr⊗∨⊗ of PD[∨])

≡
∨

1≤i≤n

∨
1≤j≤m

(¬¬ψi→¬χj) (¬ψi is flat, Lemma 2.1.5)

≡
∨

1≤i≤n

∨
1≤j≤m

¬¬(ψj →¬χi)

≡ DN(ψ⊗χ)

If φ=3ψ, then by induction hypothesis,

3ψ ≡3(¬ψ1∨·· ·∨¬ψn)
3Note that NDk is a special case of KP.
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≡3¬ψ1∨·· ·∨3¬ψn (by Lemma 6.2.4 (ii))
≡3¬¬¬ψ1∨·· ·∨3¬¬¬ψn
≡ ¬2¬¬ψ1∨·· ·∨¬2¬¬ψn (by Lemma 6.2.4 (iv) and Lemma 6.2.5 (iii))
≡ DN(2ψ).

If φ=2ψ, then by induction hypothesis,

2ψ ≡2(¬ψ1∨·· ·∨¬ψn)
≡2¬ψ1∨·· ·∨2¬ψn (by Lemma 6.2.4 (iii) and Lemma 6.2.5 (ii))
≡ ¬3ψ1∨·· ·∨¬3ψn (by Lemma 6.2.4 (i))
≡ DN(2ψ).

�

Corollary 6.2.15.

• Formulas of MD are expressible in MID;

• MID[⊗] = MID.

Proof. Since

=(pi1 , . . . ,pik) ≡
(
(pi1 ∨¬pi1)∧·· ·∧ (pik−1 ∨¬pik−1)

)
→ (pik ∨¬pik), (6.3)

and each formula DN(φ) is a formula of MID. �

The following corollary shows that in MID, although the two modalities 2 and 3 are
not dual to each other (since ¬2φ 6|= 3¬φ), the two modalities are definable from each
other via the disjunctive-negative translation.

Corollary 6.2.16. Every formula of MID is logically equivalent to a 2-free or 3-free
formula.

Proof. By Lemma 6.2.4 (i), for any formula ψ of MID, we have that

¬2¬¬ψ ≡ ¬¬3¬ψ and ¬3ψ ≡ ¬¬¬3ψ ≡ ¬¬2¬ψ.

Thus, in Definition 6.2.13 of the disjunctive-negative translation, we can take equivalently

DN(3ψ) :=
∨
{¬¬3¬ψi | 1≤ i≤ n}

or
DN(2ψ) :=

∨
{¬¬2¬ψi | 1≤ i≤ n}.

This way, the resulting equivalent formula DN(φ) will be 2-free or 3-free. �
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Figure 6.1

6.3 Model-theoretic properties of MID

Based on the results in the previous section, especially (6.2), in this section, we further
reveal the relationship between MID and intuitionistic modal logic.

Intuitionistic modal logic IK is strongly complete with respect to bi-relation Kripke
models [26],[27],[73]. Every modal Kripke model can be associated with a powerset
Kripke model, which is a bi-relation Kripke model. For formulas of MID, the point-
based satisfaction relation over these powerset Kripke models coincides with the set-based
satisfaction relation given by team semantics. In the main part of this section, we will
prove that MID is complete with respect to a class K of finite bi-relation Kripke models.

Let us start with recalling the Kripke semantics of IK ([26],[27],[73], see also [77]).

Definition 6.3.1 ([26],[73]). A bi-relation Kripke frame is a triple F= (W,≥,R), where

• W is a non-empty set;

• ≥ is a partial ordering and R is a binary relation on W ;

• R and ≥ satisfy the following two conditions (F1) and (F2) (see Figure 6.1):

(F1) If w ≥ w′ and wRv, then there exists v′ ∈W such that v ≥ v′ and w′Rv′.

(F2) If wRv and v ≥ v′, then there exists w′ ∈W such that w ≥ w′ and w′Rv′.

A bi-relation Kripke model is a quadruple M= (W,≥,R,V ) such that (W,≥,R) is a bi-
relation Kripke frame and V : Prop→ ℘(W) is a function (a valuation) satisfying mono-
tonicity with respect to ≥, that is,

[w ∈ V (p) and w ≥ v ] =⇒ v ∈ V (p).

Definition 6.3.2 (satisfaction relation). Let M = (W,≥,R,V ) be a bi-relation Kripke
model. We inductively define a satisfaction relation M,w 
 φ as follows:

• M,w 
 p iff w ∈ V (p);

• M,w 1⊥;

• M,w 
 ψ∧χ iff M,w 
 ψ and M,w 
 χ;

• M,w 
 ψ∨χ iff M,w 
 ψ or M,w 
 χ;
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• M,w 
 ψ→ χ iff for all v such that w ≥ v,

M,v 
 ψ =⇒ M,v 
 χ;

• M,w 
3ψ iff there exists v such that wRv and M,v 
 ψ.

• M,w 
2ψ iff for all u,v such that w ≥ u and uRv, it holds that M,v 
 ψ.

If M,w 
 φ for all nodes w in a model M, then we say that φ is true on the model M
and write M |= φ. If (F,V ) |= φ for any model (F,V ) on a frame F, then we say that φ is
valid on the frame F and write F |= φ.

Lemma 6.3.3 (Monotonicity). For any formula φ of IK, any bi-relation Kripke model
M= (W,≥,R,V ), any w,v ∈W ,

M,w 
 φ and w ≥ v =⇒ M,v 
 φ.

Proof. Easy. �

Theorem 6.3.4 ([27], [73]). The intuitionistic modal logic IK is strongly complete with
respect to bi-relation Kripke frames.

Proof. See [27], [73], and also [77]. �

For propositional intuitionistic dependence logic, fixing a set of propositional vari-
ables {pi1 , . . . ,pin}, it is proved essentially in [11] that there is a powerset intuitionistic
Kripke model consisting of all non-empty teams on {i1, . . . , in}, over which the usual
Kripke semantics is equivalent to the team semantics (see [11] for details). Analogously,
in the setting of MID, each modal Kripke model induces a so-called powerset Kripke
model, which is a bi-relation Kripke mode.

Definition 6.3.5 (Powerset Kripke Models). Let M = (W,R,V ) be a modal Kripke
model. The powerset Kripke model M◦ induced by M is a quadruple M◦ = (W ◦,⊇
,R◦,V ◦), where

• W ◦ = ℘(W )\{ /0}, i.e. W ◦ consists of all nonempty teams on W ;

• ⊇ is the usual superset relation on W ◦;

• XR◦Y iff XRY , for any X,Y ∈W ◦;

• X ∈ V ◦(p) iff M,X |= p, for any X ∈W ◦.

All powerset Kripke models are defined in the above way, in other words, each powerset
Kripke models M◦ is induced by a unique modal Kripke model M.

As the reader may observe from Definition 6.3.5, in a powerset Kripke model M◦,
elements of W ◦ correspond to all non-empty teams of its associated modal Kripke model
M. In an obvious way, the powerset Kripke model M◦ carries the information of teams of
its associated modal Kripke model M. Note that the relation R◦ resembles the successor
team relation R on W , but R◦ 6=R as R is viewed here as a relation between teams (sets
of nodes), whereas R◦ is a relation between single nodes of W ◦!
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(F1) (F2)

Figure 6.2

Fact 6.3.6. Powerset Kripke models are bi-relation Kripke models.

Proof. Clearly, the superset relation ⊇ is a partial ordering, and the monotonicity of V ◦

follows from the downwards closure property of the team semantics of propositional vari-
ables. It remains to check that any powerset Kripke model M◦=(W ◦,⊇,R◦,V ◦) satisfies
(F1) and (F2) (see also Figure 6.2).

For (F1), let X,X ′,Y ∈W ◦ be such that X ⊇X ′ and XR◦Y . Let

Y ′ =R(X ′)∩Y.

Clearly, Y ⊇ Y ′. We show that X ′R◦Y ′, i.e. (6.1) is satisfied for X ′,Y ′. Clearly, Y ′ =
R(X ′)∩Y ⊆ R(X ′). On the other hand, for any w ∈ X ′ ⊆ XR◦Y , there exists v ∈ Y
such that wRv, thus v ∈ Y ∩R(X ′) = Y ′.

For (F2), let X,Y,Y ′ ∈W ◦ be such that XR◦Y and Y ⊇ Y ′. Let

X ′ =R−1(Y ′)∩X.

Clearly, X ⊇X ′. We show that X ′R◦Y ′, i.e. (6.1) is satisfied for X ′,Y ′.
For any v ∈ Y ′ ⊆ Y , since XR◦Y , there exists w ∈ X such that wRv, thus w ∈

R−1(Y ′)∩X =X ′. It follows that Y ′ ⊆R(X ′).
On the other hand, for anyw ∈X ′ =R−1(Y ′)∩X , there exists v ∈ Y ′ such thatwRv.

It follows that v ∈R(w)∩Y ′. �

We show in the next lemma that for formulas of MID, the team-based satisfaction
relation with respect to the usual modal Kripke models is equivalent to the single-node-
based satisfaction relation with respect to powerset Kripke models.

Lemma 6.3.7. For any formula φ of MID, any Kripke model M = (W,R,V ) and any
non-empty team X ⊆W , it holds that

M,X |= φ ⇐⇒ M◦,X 
 φ.4

Proof. By induction on φ. The only interesting case is the case φ= 2ψ. In this case, we
have that

M◦,X 
2ψ =⇒M◦,R(X) 
 ψ (since X ⊆X and XR◦R(X))

4Note that the symbol “X” on the left-hand side stands for a team (a set of nodes), while the “X” on the
right-hand side stands for a single node.
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=⇒M,R(X) |= ψ (by induction hypothesis)
=⇒M,X |=2ψ.

and that
M,X |=2ψ =⇒M,R(X) |= ψ

=⇒for all non-empty Y,Z ⊆W s.t. X ⊇ Y and Y RZ, M,Z |= ψ

(since Z ⊆R(X) and |= is downwards closed)
=⇒for all Y,Z ∈W ◦ s.t. X ⊇ Y and Y R◦Z, M◦,Z 
 ψ

(by induction hypthesis)
=⇒M◦,X 
2ψ.

�

By a natural argument whose details will not be included in this thesis5, one can show
that MID has the finite model property, that is,

if 6|=MID φ, then there exists a finite Kripke model M such that M 6|= φ.

Therefore, together with Lemma 6.3.7, we know that MID is complete with respect to
finite powerset Kripke models.

In the rest of this section, we show that MID is complete with respect to a class K
of certain finite bi-relation Kripke models. Recall that propositional intuitionistic de-
pendence logic PID is complete with respect to negative saturated intuitionistic Kripke
models (Theorem 4.2.17). These models are generalizations of the associated powerset
intuitionistic Kripke models of PID. Here, for the logic MID, we will follow the same
idea and define K as the class of finite bi-relation Kripke models having the properties
abstracted from powerset Kripke models.

To give a definition of such class K, we study the KP axioms and the valid formulas
of MID listed in Lemma 6.2.5, namely

¬¬p→ p, 2(φ∨ψ)→ (2φ∨2ψ) and ¬2¬φ→3¬¬φ. (6.4)

As pointed out already, these formulas are not valid in IK (we invite the reader to check
it using Theorem 6.3.4, the completeness theorem of IK). We conjecture that MID is
complete with respect to these axioms together with the axioms of IK, as well as the rules
MP and Gen. Although this problem is open, and to axiomatize MID more axioms than
these ones may be needed, it turns out that for the goal of this section, it is enough to
consider these mentioned axioms only.

First of all, PID satisfies the KP axioms and atomic double negation law¬¬p→ p, and
it is complete with respect to negative saturated intuitionistic Kripke models (Theorem
4.2.17). In view of this, we give the following definition.

5For each formula φ(p1, . . . ,pn) of modal depth k, and a (possibly infinite) team X of a Kripke model M,
select a finite submodel M′ and a finite subteam X ′ as follows: 1. Unravel the submodels of M generated by
each node w ∈X , and take the disjoint union of all these unravelled tree-like models Tw . 2. Cut the forest⊎
w∈X Tw up to depth k to form a new forest Fst. 3. Restrict attention to valuations on {p1, . . . ,pn} only. For

each tree T of Fst, starting from the deepest layer, layer by layer, identify isomorphic subtrees on each layer.
For fixed k and n, the resulting new tree T0 must be finite. 4. For the same reason, the resulting new forest Fst0
contains at most finitely many non-isomorphic trees. Delete the isomorphic copies. The remaining forest is the
required finite model M′, and the roots of the trees in the new forest M′ form the required team X ′.
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Definition 6.3.8. A bi-relation Kripke modal M = (W,≥,R,V ) is said to be negative
and saturated if V is negative and (W,≥) is saturated in the sense of Definition 4.2.16.

As in [11], and as we shall see in the sequel, in a saturated bi-relation Kripke model,
≥-endpoints (i.e. endpoints in the sense of Definition 4.2.15 with respect to ≥) behave as
singleton teams of a usual modal Kripke model.

Secondly, in the following two lemmas we prove that each of the other two formulas
of (6.4) characterizes a frame property under certain conditions.

We writeR1 ◦R2 for the composition of the two relationsR1 andR2, which is defined
as

(x,y) ∈R1 ◦R2 iff ∃z(xR1z∧zR2y).

Lemma 6.3.9. Let F= (W,≥,R) be a bi-relation Kripke frame. Then

F |=2(p∨ q)→ (2p∨2q) ⇐⇒ F satisfies (G1’),

where (G1’) is defined as follows:

(G1’) For all w,u,v ∈W , if u,v ∈ (≥ ◦R)(w), then there exists t ∈W such that w ≥
◦Rt, t≥ u and t≥ v.

Before we prove the lemma, we depict condition (G1’) by the left figure as follows.
This condition is abstracted from the corresponding property of powerset Kripke models
(depicted by the right self-explanatory figure below).

w

t′

t

u′

u

v′

v

Also, we point out that in case F is finite, condition (G1’) is equivalent to condition
(G1) defined as follows:

(G1) For any w ∈W and any nonempty X ⊆ (≥ ◦R)(w), there exists a node u ∈ (≥
◦R)(w) such that u≥ v for all v ∈X .

Proof of Lemma 6.3.9. Suppose F satisfies (G1’) and (F,V ),w 1 2p∨2q for some val-
uation V and some w ∈W . Then there exists u,v ∈W such that w ≥ ◦Ru, w ≥ ◦Rv,

(F,V ),u 1 p and (F,V ),v 1 q.

Let t ∈W be the point given by (G1’). Then by monotonicity, we have that (F,V ), t 1
p∨ q, which implies that (F,V ),w 12(p∨ q).

Conversely, suppose F does not satisfy (G1’). Then there exists w,u,v ∈W such that
w ≥ ◦Ru, w ≥ ◦Rv and for all t ∈W such that w ≥ ◦Rt, either t� u or t� v. Clearly,
we can find a monotone valuation V such that

V (p) =W\ ≥−1 (v) and V (q) =W\ ≥−1 (u).
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For each t ∈W such that w ≥ ◦Rt, by assumption, either t /∈≥−1 (v) or t /∈≥−1 (u),
thus (F,V ), t 
 p∨ q, thereby (F,V ),w 
 2(p∨ q). On the other hand, we have that
(F,V ),u 1 q and (F,V ),v 1 p, thus (F,V ),w 12p∨2q. �

Lemma 6.3.10. Let F= (W,≥,R) be a saturated bi-relation Kripke frame Then

F |= ¬2¬p→3¬¬p ⇐⇒ F satisfies (G2),

where (G2) is defined as follows:

(G2) Let w ∈W be an arbitrary point and E a set of ≥-endpoints such that E ⊆R(Ew)
and for each v ∈Ew, there exists uv ∈E with vRuv . Then there exists t ∈W such
that

wRt and Et ⊆E.

Condition (G2) is abstracted from the corresponding property of powerset Kripke
models (depicted by the self-explanatory figure below).

Proof of Lemma 6.3.9. Suppose F satisfies (G2) and (F,V ),w 
 ¬2¬p for some valua-
tion V and somew∈W . Then, for each v ∈Ew, (F,V ),v12¬p. Since v is a≥-endpoint
and F is saturated, there exists an endpoint uv such that vR◦ ≥ uv and (F,V ),uv 
 p. By
(F2), there exists v′ ∈W such that v ≥ v′ and v′Ruv . But as v is a ≥-endpoint, we must
have that v = v′ and vRuv , thus the set

E = {uv | v ∈ Ew}

satisfies the condition in (G2). By (G2), there exists a point t ∈W such that

wRt and Et ⊆E.

Hence (F,V ),w 
3¬¬p.
Conversely, suppose F does not satisfy (G2). Then there exists w ∈W and a set E of

≥-endpoints satisfying E ⊆R(Ew) and for each v ∈Ew, there exists uv ∈E with vRuv ,
and for all t ∈W ,

wRt=⇒ Et * E.

Clearly, we can find a monotone valuation V such that V (p) = E.
For each v ∈Ew, since vRuv , we have that (F,V ),v 12¬p, thus (F,V ),w 
 ¬2¬p.

On the other hand, for each t ∈R(w), by assumption, there exists s ∈Et such that s /∈E,
thus (F,V ),s 1 p. Hence (F,V ),w 13¬¬p. �
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Now, we are ready to define the class K of generalizations of all powerset Kripke
models.

Definition 6.3.11. Let K be the class of all finite negative ≥-saturated bi-relation Kripke
models M= (W,≥,R,V ) satisfying (G1) and (G2).

In the remaining part of this section, we show that MID is complete with respect to
K, that is, we will prove the following theorem. The idea of the proof is inspired by that
of Theorem 3.2.18 in [11].

Theorem 6.3.12. For any formula φ of MID, we have that

|=MID φ ⇐⇒ K |= φ.

Proof of “⇐=”. We leave it for the reader to check that each finite powerset Kripke
model is indeed in K. Then, we have that

K |= φ=⇒ M◦ |= φ for all finite powerset Kripke models M◦

=⇒ M |= φ for all finite modal Kripke models M (by Lemma 6.3.7)
=⇒ |=MID φ (by the finite model property of MID).

�

To prove the other direction “=⇒” of Theorem 6.3.12, we first show that each model
in K can be mapped p-morphically into a finite powerset Kripke model. As p-morphisms
are truth-preserving, the required result will then follow. Now, we recall the definition of
p-morphisms of bi-relation Kripke models given by Wolter and Zakharyaschev in [86].

Definition 6.3.13 ([86]). Let M1 = (W1,≥1,R1,V1) and M2 = (W2,≥2,R2,V2) be bi-
relation Kripke models. A function f :W1→W2 is called a p-morphism iff

(P1) w ∈ V1(p)⇐⇒ f(w) ∈ V2(p) for all propositional variables p

(P2) w ≥1 v =⇒ f(w)≥2 f(v)

(P3) wR1v =⇒ f(w)R2f(v)

(P4) f(w)≥2 v
′ =⇒ ∃v ∈W1 s.t. f(v) = v′ and w ≥1 v

(P5) f(w)R2v
′ =⇒ ∃v ∈W1 s.t. v′ ≥2 f(v) and wR1v

(P6) f(w)(≥2 ◦R2)v
′ =⇒ ∃v ∈W1 s.t. w ≥1 ◦R1v and f(v)≥2 v

′

Next, we prove the crucial lemma for the proof of the direction “=⇒” of Theorem
6.3.12.

Lemma 6.3.14. For each finite bi-relation model M = (W,≥,R,V ) in K, there exists
a finite Kripke model N such that there exists a p-morphism f of M into the powerset
Kripke model N◦ of N.

Proof. Define a Kripke model N= (W0,R0,V0) as follows:
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• W0 is the set of all ≥-endpoints of W ,

• R0 =R �W0 and V0 = V �W0.

Now, consider the powerset Kripke model N◦ = (W ◦0 ,⊇,R◦0,V ◦0 ) of N. Define a function
f :W →W ◦0 by taking

f(w) = Ew for all w ∈W.

Since M is saturated, Ew 6= /0 for all w ∈W , thus Ew ∈W ◦0 and f is well-defined.
Before we continue the proof, let us ponder over the above construction. As defined,

a ≥-endpoint e of M is mapped through f into the singleton {e}=Ee. Intuitively, in the
main argument of the proof,≥-endpoints of M are simulated by singletons of N◦. On the
other hand, other points w of W are mapped into the sets Ew. Basically, during the proof,
it is helpful for the reader to think of a node w of M as a team formed by all ≥-endpoints
seen from w, namely the set Ew.

Now, we proceed to show that f is a p-morphism, i.e., f satisfies (P1)-(P6).
(P1). It suffices to show that M,w 
 p ⇐⇒ N◦,Ew 
 p. The direction “=⇒”

follows from the monotonicity of V . For the direction “⇐=”, if M,w 1 p, then since V
is negative, M,w 1 ¬¬p. Thus, there exists v ∈ Ew such that M,v 1 p, which implies
that N,v 1 p, thereby N◦,Ew 1 p.

(P2). Clearly, if w ≥ v, then Ew ⊇Ev , i.e. f(w)⊇ f(v).
(P3). Assume wRv, we show that EwR◦0Ev , namely EwR0Ev . For any s ∈ Ew, by

(F1) of M, there exists t ∈W such that

v ≥ t and sRt.

For each t′ ∈ Ev such that t≥ t′, by (F2), there exists s′ ∈W such that

s≥ s′ and s′Rt′.

As s is a ≥-endpoint, we must have that s= s′ and sRt′.
On the other hand, for any t ∈ Ev , consecutively applying (F2) and (F1) of M, by a

similar argument to the above, we can find an s′ ∈Ew such that s′Rt. Hence we conclude
that EwR0Ev .

(P4). If Ew ⊇ v′, then as M is ≥-saturated, there exists v ∈W such that w ≥ v and
Ev = v′, as required.

(P5). If EwR◦0v
′, then EwR0v

′. Clearly, v′ is a set of ≥-endpoints such that v′ ⊆
R(Ew) and for each s ∈ Ew, there exists ts ∈ v′ such that sRts. Thus, by (G2) of M,
there exists v ∈W such that

wRv and Ev ⊆ v′,
as required.

(P6) Suppose Ew ⊇ ◦R◦0v′. Then v′ 6= /0 and

v′ ⊆ (≥ ◦R)(w).

By (G1) of the finite model M, there exists v ∈W such that

w ≥ ◦Rv and v ≥ s for all s ∈ v′.

Since v′ is a set of ≥-endpoints, the latter of the above implies that Ev ⊇ v′. �
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Finally, we complete the proof of Theorem 6.3.12 as follows.

Proof of Theorem 6.3.12, the direction “=⇒”. Suppose |=MID φ. For each M ∈ K, by
Lemma 6.3.14, there is a Kripke model N and a p-morphism f : M→N◦. By assumption
and Lemma 6.3.7, we know that N◦ |= φ. Since p-morphisms preserve truth, we conclude
that M |= φ, as required. �

6.4 Concluding remarks and open problems

In this chapter, we defined syntactically a logic KP Kd¬ as the smallest set of formulas
containing the following axioms and is closed under the following rules:

1. All IPL axiom schemas;

2. Axiom scheme of

(KP) (¬φ→ (ψ∨χ))→ ((¬φ→ ψ)∨ (¬φ→ χ));

3. ¬¬p→ p for all propositional variables p;

4. All IK axiom schemas;

5. 2(φ∨ψ)→2φ∨2ψ;

6. ¬2¬φ→3¬¬φ;

7. Modus Ponens (MP);

8. Generalization (Gen): φ/2φ.

MID is sound with respect to the above system, as we showed in (6.2) in Section 6.2.
Dependence atoms are eliminable in MID (see (6.3)), so for simplicity, we may identify
MID with MID without dependence atoms. In this setting, the main open problem of
this chapter is: is MID complete with respect to the deductive system of KP Kd¬, or
equivalently does the following hold:

`KP Kd¬ φ ⇐⇒ |=MID φ (6.5)

for all formulas φ of MID?
We proved in Theorem 6.3.12 that MID is complete with respect to the set K of finite

bi-relation Kripke models, or

|=MID φ ⇐⇒ K |= φ. (6.6)

Therefore, (6.5) reduces to whether the following is the case:

`KP Kd¬ φ ⇐⇒ K |= φ. (6.7)

In this direction, we know already the following:
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• By Theorem 4.2.12, the underlying propositional logic of MID, i.e. PID, is com-
plete with respect to the deductive system of KP¬, namely axioms 1-3 and rules
7-8 of the above. Furthermore, by Theorem 4.2.17, PID (or KP¬) is complete with
respect to negative saturated intuitionistic Kripke models.

• By Theorem 6.3.4, IK (whose deductive system consists of axiom 4, rules 7-8 of
the above and Sub) is complete with respect to bi-relation Kripke frames.

• By Lemma 6.3.9 and Lemma 6.3.10, over finite (saturated) bi-relation Kripke frames,
axiom 5 and axiom 6 characterize (G1) and (G2), respectively.

The class K was defined as Kripke models having all of the properties mentioned
above, and observe that in the proof of Theorem 6.3.12 or (6.6), we made essential use of
all of the axioms of KP Kd¬. These seem to indicate that (6.7) should hold.

One related open problem (or, further and deeper problem) is: the logic

KP K := IK⊕KP

is an intermediate K modal logics, as clearly IK ⊆ KP K ⊆ K. Is KP K complete with
respect to bi-relation Kripke frames F = (W,≥,R) such that (W,≥) is a KP-frame (see
e.g. [9] for the definition of KP-frames)?



Chapter 7

Model Checking for Modal
Intuitionistic Dependence Logic

In this chapter, we study the computational complexity of model checking problem for
modal intuitionistic dependence logic. The model checking problem (MC) for a modal
logic L of dependence and independence asks whether a given formula of L is satisfied by
a given team of a given (modal) Kripke model.

The computational aspect of modal logics of dependence and independence deserves
investigation for two reasons. A priori, the nature of team semantics gives such logics
more complexity, as the successor search for formula evaluation has to be done for sets
of states. On the other hand, in practice, particularly interesting properties involving
dependence and independence are often supposed to be identified from a large amount of
data (an example of such properties is given in Example 7.1.2).

For modal dependence logic (MD), the satisfiability problem (SAT) is showed by
Sevenster [76] to be NEXPTIME-complete, and a complete classification of the compu-
tational complexity of SAT for all operator fragments of MD is given in [67]. In [17],
the computational complexity of MC for MD and some of its fragments (e.g. proposi-
tional dependence logic) are shown to be NP-complete. In this chapter, we investigate the
computational complexity of MC for modal intuitionistic dependence logic.

By Corollary 6.2.15, we know that MID has the same expressive power as MID ex-
tended with tensor disjunction ⊗. In this chapter, we choose to identify these two logics,
namely, formulas of MID in this chapter are built from the following grammar:

φ ::= p | ¬p | ⊥ |=(p1, . . . ,pk) | φ∧φ | φ⊗φ | φ∨φ | φ→ φ |2φ |3φ,

where p,p1, . . . ,pk are propositional variables.
Following [67] and [17], we will systematically analyze the complexity of MC for

fragments of MID defined by restricting the set of modal operators (3, 2), propositional
operators (¬/⊥, ∧, ⊗, ∨,→), as well as dependence operator (=(· · ·)) allowed in the log-
ics (recall Definition 1.1.3). By the choice of the syntax of MID, modal dependence logic
(MD), propositional dependence logic (PD) and propositional intuitionistic dependence
logic (PID) are all viewed as operator fragments (sublogics) of MID. The method of sys-
tematically classifying the complexity of logic related problems by restricting the set of

164
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operators allowed in formulas was used by Lewis [65] for SAT for propositional logic, by
Hemaspaandra et al. [44] [45] for SAT for modal logic, and by others. The motivation for
this approach is twofold: theoretically, this systematic approach may lead to insights into
the sources of hardness, i.e., the exact components of the logic that make SAT, MC and
other problems hard; practically, by systematically examining all fragments of a logic,
one might find useful fragments of the logic in practice with both efficient algorithms and
high expressivity.

In Section 7.1, we give formal definition of the model checking problem for operator
fragments of MID. Section 7.2 contains the main result of this chapter. We show that MC
for MID in general is PSPACE-complete and that for PID is coNP-complete. In Section
7.3, we point out open problems.

The content of this chapter is based on the joint paper [18].

7.1 Model checking problem
Given a Kripke model M, a team X of M, and a formula φ of MID, the model checking
problem for MID is the problem of deciding whether M,X |= φ holds.

Definition 7.1.1. Let L be a sublogic of MID. The model checking problem for L (denoted
by L-MC) is defined as the decision problem of the set

L-MC :=
{
〈M,X,φ〉

∣∣∣∣M is a Kripke model,X is a team of M, φ is a formula
of L and M,X |= φ

}
.

Note that in this chapter, we only consider the combined complexity of model check-
ing problem for MID, i.e. the input consists of both a model and a formula. One can also
consider the data complexity of model checking problem for MID, where the formula is
fixed and the input consists of a model only. Usually, the data complexity of a model
checking problem is lower than the combined complexity. In our case, for a given MID
formula with finitely many propositional variables, there are even only finitely many ir-
reducible models (with respect to p-morphisms, c.f. Footnote 5 on the proof of the finite
model property of MID in Section 6.3), therefore the data complexity for MID model
checking is not very interesting and is not the topic of this chapter.

A typical formula of MID expresses a modal property involving implications of de-
pendence statements. Such properties are commonly found in many fields. Knowing
whether these properties hold in certain sets of some system can be important in many
cases. Below we present an example illustrating the applications of MID-MC in practice.

Example 7.1.2. Suppose the United Nations wants to build a model (represented as a
Kripke model) of the imitation of the future of the earth and human race. Among all the
candidate models, the United Nations wants to know which ones are optimistic models
from the point of view of environmental degradation. One important criterion of being
such an optimistic model is that in the model, the present world has to satisfy the following
property (∗):

However the environment will be degraded in the next 100 years, it is
possible that in 200 years from now, if whether the earth will be destroyed
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depends only on whether there is another planet that crashes into the earth,
then whether the human being will migrate to other planets depends only on
whether the crash will occur. (∗)

In the language of MID, the above criterion is interpreted by the formula

23
(
=(crash,earth destroyed)→=(crash,human migration)

)
.

Selecting optimistic models with respect to this criterion is done by implementing an
MID-MC on the candidate models.

For example, given the below depicted Kripke model M, where every symbol is self-
explanatory, we achieve the above goal by checking whether

Now

100 years later2100 years later1 100 years later3

200 years later3

200 years later1 200 years later2 200 years later4 200 years later5

human migration

earth destroyed

crash

human migration

¬earth destroyed

¬crash
¬human migration

¬earth destroyed

¬crash

¬human migration

¬earth destroyed

¬crash

human migration

¬earth destroyed

¬crash

sea level rises≥ 50cm

forest coverage≤ 20%

≥ 50% species become extinct

M,{now} |=23
(
=(crash,earth destroyed)→=(crash,human migration)

)
holds. In this case, the above expression holds, as for the team

X = {200 years later1,200 years later3,200 years later4},

it holds that

M,X |==(crash,earth destroyed)→=(crash,human migration),

therefore M is an optimistic model with respect to criterion (∗). a

In the next section, we will sometimes reduce one model checking problem to another
in a complexity preserving way. Such reductions are defined as follows.

Definition 7.1.3. Let C be a countable set and A,B ⊆ C. Then A is polynomial-time
many-one reducible to B, in symbols A≤P

mB, iff there is a reduction function f :C→C
such that f is computable in polynomial time and for all x ∈ C,

x ∈A ⇐⇒ f(x) ∈B.

If both A≤P
mB and B≤P

mA, then we write A≡P
mB.

Most complexity classes C with P ⊆ C (e.g. PSPACE, coNP, etc.) are closed under
the relation ≤P

m, that is, if A≤P
mB and B ∈ C, then also A ∈ C.

We end this section by pointing out that for any set Ω of MID operators, the com-
plexity of MID[Ω]-MC is independent of the presence of ⊥ and atomic negation ¬ in
MID[Ω], that is, the following fact is ture.
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Fact 7.1.4. MID[Ω]-MC ≡P
m MID[Ω\{⊥,¬}]-MC.

This is basically because, given an MID[Ω]-MC instance 〈M,X,φ〉, in the formula
φ, if one replaces all occurrences of ⊥ by a fixed fresh propositional variable r, and all
occurrences of every negated propositional variable ¬p by a fresh propositional variable
p′, and modifies the valuation of M in such a way that r is made to be true nowhere and
p′ is made to be true only on the states where p is false, then the resulting formula φ′ and
Kripke model M′ would satisfy

M,X |= φ ⇐⇒ M′,X |= φ′.

7.2 Complexity of model checking for fragments of MID

In this section we study the complexity of model checking problem for fragments of
MID and obtain the results listed in Table 7.1. The results for the fragments where the
intuitionistic implication→ is not present have been obtained already in [17], so we will
only consider the cases where→ is involved. We start with giving a PSPACE algorithm
for MID-MC.

Theorem 7.2.1. MID-MC is in PSPACE.

Proof. To prove the theorem, it suffices to give an algorithm for the problem that can be
implemented on an alternating Turing machine running in polynomial time (AP Turing
machines) [10]. An AP Turing machine uses an extension of ordinary non-deterministic
guessing. Here the algorithm can switch between two guessing modes, namely universal
and existential guessing. The existential guessing mode makes non-deterministic guess-
ing in NP, whereas the universal guessing mode makes non-deterministic guessing in
coNP. When the number of alternations is unbounded, AP Turing machines decide the
PSPACE problems.

To prove the theorem, we consider an algorithm which has as input a Kripke model
M, a formula φ of MID, and a team X of M. The output of the algorithm is “true” if and
only if M,X |= φ. By Fact 7.1.4, we may assume that φ does not contain ⊥ or ¬p. In the
cases

φ ∈ {p,=(p1, . . . ,pn),ψ∧χ,ψ∨χ},

the algorithm checks whether M,X |= φ according to the team semantics in an obvious
way. These cases are deterministic and can be done in PSPACE.

If φ= ψ⊗χ or φ=3ψ the algorithm guesses existentially the right fragmentation of
the team and the right succeeding team, respectively. In case φ = ψ→ χ, the algorithm
checks universally if for every team Y ⊆X (i.e. every computation path) with M,Y |=ψ,
it also holds that M,Y |= χ. Altogether the algorithm can be implemented on an alter-
nating Turing machine running in polynomial time or – equivalently – on a deterministic
machine using polynomial space.

Below we give the full algorithm Algorithm 7.1:

Algorithm 7.1: check(M= (W,R,π),φ,X)
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case φ
when φ= p

foreach s ∈X
i f not p ∈ π(s) then

return false

re turn true

when φ= =(p1, . . . ,pn)
foreach (s,s′) ∈X×X

i f π(s)∩{p1, . . . ,pn−1} = π(s′)∩{p1, . . . ,pn−1} then
i f (q ∈ π(s) and not q ∈ π(s′) ) or ( not q ∈ π(s) and q ∈ π(s′) ) then

return false

re turn true

when φ= ψ∧χ
re turn ( check (M,X,ψ ) and check (M,X,χ ) )

when φ= ψ⊗χ
e x i s t e n t i a l l y guess two s e t s o f s t a t e s Y, Z ⊆W
i f not Y ∪Z =X then

return false

re turn ( check (M,Y,ψ ) and check (M,Z,χ ) )

when φ= ψ∨χ
re turn ( check (M,X,ψ ) or check (M,X,ψ ) )

when φ= ψ→χ
u n i v e r s a l l y guess a s e t o f s t a t e s Y ⊆X
i f not check (M,ψ,Y ) or check (M,χ,Y )

re turn true

re turn false

when φ=2ψ
Y := /0
foreach s′ ∈W

foreach s ∈X
i f (s,s′) ∈R then
Y := Y ∪{s′}

/ / Y is the set of all successors of all states inX , i.e. Y =R(X)

re turn check (M,Y,ψ )

when φ=3ψ
e x i s t e n t i a l l y guess a s e t o f s t a t e s Y ⊆W

foreach s ∈X
i f t h e r e i s no s′ ∈ Y wi th (s,s′) ∈R then

return false

/ / Y contains at least one successor for every state inX , i.e. XRZ for some Z ⊆ Y
re turn check (M,Y,ψ )

�

If we forbid tensor disjunction ⊗ and diamond 3 in the sublogic of MID in question,
the complexity of the above algorithm drops to coNP.

Corollary 7.2.2. MID[¬,=(· · ·),∧,∨,→,2]-MC is in coNP. In particular, PID-MC is
in coNP.
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Proof. In Algorithm 7.1, existential guessing only applies to the cases φ = ψ⊗χ and
φ=3ψ. �

If neither dependence atoms nor intuitionistic disjunction ∨ is allowed in the logic,
the model checking problem can even be decided in deterministic polynomial time.

Theorem 7.2.3. MID[¬,∧,⊗,→,2,3]-MC is in P.

Proof. Formulas of the logic MID[¬,∧,⊗,2,3] (classical formulas) are flat, and can be
identified with formulas of the usual modal logic (M) in negation normal form (identify
⊗ with the classical disjunction). It is not hard to show that

MID[¬,∧,⊗,2,3]-MC≡P
m M-MC.

We know by [14] that M-MC is in P, so it suffices to show that

MID[¬,∧,⊗,→,2,3]-MC≡P
m MID[¬,∧,⊗,2,3]-MC. (7.1)

The direction “≥P
m” holds trivially. We show the other direction “≤P

m”.
For each formula φ of L1 =MID[¬,∧,⊗,→,2,3], it suffices to find a logically equiv-

alent formula φ∗ in the language of L2 = MID[¬,∧,⊗,2,3] that can be obtained in poly-
nomial time.

Consider two formulas ψ and χ of L2. View ψ as a formula of the usual modal logic,
the formula ¬ψ has an equivalent formula ψ− in negation normal form in the usual modal
logic. The resulting formula ψ− is in the language of L2, as well as L1. In L1, it is not
hard to prove by induction that

ψ→ χ ≡ ψ−⊗χ. (7.2)

Now, for each formula φ of L1, starting from the innermost intuitionistic implication
→, apply Equation (7.2) to eliminate all occurrences of the connective→ in φ and obtain
an equivalent formula φ∗ in the language of L2. Such a translation can clearly be done in
polynomial time. So we are done. �

In the remaining part of this section we provide hardness proofs for the model check-
ing problems for various sublogics of MID. We first consider the sublogics without dia-
mond 3 and tensor disjunction ⊗.

Theorem 7.2.4. PID[∧,∨,→]-MC is coNP-hard.

Proof. By Lemma 2.2.3, Lemma 4.2.5 and Fact 7.1.4,

PID[∧,∨,→]-MC ≡P
m PID[¬,=(· · ·),∧,∨,→]-MC
≡P

m PID-MC.

Thus it suffices to give a polynomial-time reduction from a known coNP-complete prob-
lem to PID-MC.

Consider the well-known coNP-complete problem

TAUT = {φ is a tautology | φ is a formula of classical propositional logic}.
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Figure 7.1: Kripke model M in the proof of Theorem 7.2.4

Let φ(p1, . . . ,pn) be an arbitrary formula of classical propositional logic in negation nor-
mal form. Let r1, . . . , rn be new propositional variables. Let M= (W,R,π) be a Kripke
model defined as (see Figure 7.1)

W := {s1, . . . ,sn,s1, . . . ,sn},
R := /0,

π(si) := {ri,pi},
π(si) := {ri}.

Define a formula φ→ of PID inductively as follows:

p→i := ri→pi,

(¬pi)→ := ri→¬pi,
(θ0∧θ1)

→ := θ→0 ∧θ→1 ,
(θ0∨θ1)

→ := θ→0 ∨θ→1 .

Let

αn :=
n∧
i=1

(
ri→=(pi)

)
,

and
ψ := αn→φ→.

It suffices to show that φ ∈ TAUT iff M,W |= ψ.
The general idea of the proof is as follows. By the construction, each team X of M

satisfying the formula αn contains at most one of the states si and si, for each i. In the
Kripke model M, the state si simulates positive truth assignments for pi (i.e. assign-
ments σ such that σ(pi) = >), while si simulates negative truth assignments for pi (i.e.
assignments σ such that σ(pi) = ⊥). Thus, any maximal such team X simulates a truth
assignment σX for p1, . . . ,pn. Moreover, under the assignment σX , the formula φ of clas-
sical propositional logic will behave exactly as the formula φ→ of PID under the team X ,
that is, σX(φ) => iff M,X |= φ→. The required equivalence will then follow.

Formally, first suppose φ ∈ TAUT. By the downwards closure property, It suffices to
show that for any maximal teamX ⊆W such that M,X |= αn, it holds that M,X |= φ→.
Now, if Y is a maximal subteam ofX such that M,Y |= ri, then by the construction of M,
we must have that Y ⊆ {si,si}. Since M,X |= ri→=(pi), we have that M,Y |==(pi),
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so pi has a constant value in Y , which means that Y contains at most one state of si and
si. Therefore, the maximal team X contains exactly one of the states si and si for each
1≤ i≤ n.

Clearly, X induces a truth assignment σX for p1, . . . ,pn defined as follows:

σX(pi) :=
{
> if si ∈X,
⊥ if si ∈X.

Such team X and its induced truth assignment σX are in one-one correspondence; more-
over, the assignment σX makes the classical formula φ true if and only if the team X
satisfies the PID formula φ→. We show this by showing a more general claim as follows:

Claim: For all subformulas χ of φ, it holds that σX(χ) => iff M,X |= χ→.

Proof of Claim. An easy inductive proof. We only show the case that χ = ¬pi. First
suppose σX(¬pi) = >. Then si ∈ X and si /∈ X , thus, for all non-empty team Y ⊆ X
such that M,Y |= ri, we must have that Y = {si}, hence M,Y |= ¬p, which implies that
M,X |= ri→¬pi.

Conversely, suppose M,X |= ri→¬pi. Then we must have that si /∈X , thus by the
maximality of X , si ∈X and σX(pi) =⊥, i.e. σX(¬pi) =>. a

Now, as φ∈ TAUT, we have that σX(φ) =>. Hence we obtain by Claim that M,X |=
φ→, as required.

Conversely suppose that M,W |=ψ and σ is an arbitrary truth assignment for p1, . . . ,pn.
The truth assignment σ induces a team Xσ defined by

Xσ := {si | σ(pi) =>}∪{si | σ(pi) =⊥}.

Clearly, M,Xσ |= αn, thus by assumption, M,Xσ |= φ→. Hence by Claim we obtain that
σ(φ) =>, thereby φ ∈ TAUT. �

Theorem 7.2.5. For all {∧,∨,→}⊆Ω⊆ {¬,=(· · ·),∧,∨,→,2}, MID[Ω]-MC is coNP-
complete. In particular, PID-MC is coNP-complete.

Proof. Follows from Theorem 7.2.2 and Theorem 7.2.4. �

Next, we analyze the complexity of the model checking problem for fragments of
MID containing tensor disjunction ⊗ and intuitionistic implication→.

Theorem 7.2.6. Let Ω⊇ {=(· · ·),∧,⊗,→}. Then MID[Ω]-MC is PSPACE-complete.

Proof. The upper bound follows from Theorem 7.2.1. For the lower bound we give a
reduction to the problem from the well-known PSPACE-complete problem

QBF = {ψ is a quantified Boolean formula | ψ is true}.

Letψ=∀x1∃x2 . . .∀xn−1∃xnφ be a quantified Boolean formula, where φ is quantifier-
free. Assume without loss of generality that n is even and that φ = C1 ∧ ·· · ∧Cm is in
3CNF with

Cj = αj0∨αj1∨αj2 (1≤ j ≤m)
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for distinct propositional literals αj0,αj1,αj2. Let

r1, . . . , rn,p1, . . . ,pn, c1, . . . , cm, c10, . . . , cm0, c11, . . . , cm1, c12, . . . , cm2

be distinct propositional variables. Define an instance (M= (W,R,π),W,θ) of MID[Ω]-
MC as follows

• W := {s1, . . . ,sn,s1, . . . ,sn},

• R := /0,

• π(si) = {ri,pi} ∪ {cj , cj0 | αj0 = xi, 1≤ j ≤m}
∪ {cj , cj1 | αj1 = xi, 1≤ j ≤m}
∪ {cj , cj2 | αj2 = xi, 1≤ j ≤m},

• π(si) = {ri} ∪ {cj , cj0 | αj0 = ¬xi, 1≤ j ≤m}
∪ {cj , cj1 | αj1 = ¬xi, 1≤ j ≤m}
∪ {cj , cj2 | αj2 = ¬xi, 1≤ j ≤m}

(see Figure 7.2 for an example of the construction of M),

• θ := δ1, where

δ2k−1 := (r2k−1→=(p2k−1))→ δ2k (1≤ k ≤ n/2),
δ2k := (r2k ∧=(p2k))⊗ δ2k+1 (1≤ k < n/2),
δn := (rn∧=(pn))⊗φ′,

and

φ′ :=
m∧
j=1

(
cj→

( (
=(cj0)∧=(cj1)∧=(cj2)

)
⊗
(
=(cj0]∧=(cj1)∧=(cj2)

) ))
,

i. e. θ =
(
r1→=(p1)

)
→
((
r2∧=(p2)

)
⊗ ·· · · · ·

· · · · · · ⊗
((
rn−1→=(pn−1)

)
→
((
rn∧=(pn)

)
⊗φ′

))
· · ·
)
.

s1
r1,p1

s1
r1

c1, c10

s2
r2,p2
c1, c11
c2, c20

s2
r2

c2, c21

s3
r3,p3
c1, c12

s3
r3

s4
r4,p4
c2, c22

s4
r4

The model M for φ= (¬x1∨x2∨x3)∧ (x2∨¬x2∨x4)

Figure 7.2: An example the construction of M in the proof of Theorem 7.2.6
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It suffices to show that ψ ∈ QBF iff M,W |= θ.
The general idea of the proof is that the alternating operators→ and ⊗ in the formula

θ of MID simulate the alternating quantifiers ∀ and ∃ in the quantified Boolean formula
ψ, respectively. In the formula ψ, for each 1 ≤ k ≤ n/2, the universal quantifier ∀x2k−1
corresponds to the formula δ2k−1 in θ , and we have that δ2k−1 is satisfied in a team
X iff δ2k is satisfied in all subteams X2k−1 ⊆X which satisfy r2k−1→=(p2k−1), i. e. all
subteams containing at most one of the states s2k−1 and s2k−1. Every existential quantifier
∃x2k in ψ corresponds to the subformula δ2k of θ, and δ2k is satisfied in a team X iff X
can be split into X2k and Y2k such that M,X2k |= δ2k+1 and M,Y2k |= r2k ∧=(p2k),
i. e. δ2k+1 has to be satisfied in a team with exactly one of the states s2k and s2k.

In the Kripke model M, starting from the teamW of all states, for every nested level i
of→ or⊗ drop exactly one of the states si and si according to the truth assignment of the
Boolean variable xi quantified by ∀ or ∃. Iterate this procedure until we arrive at a team
Xn that contains exactly one of the states si and si for each i ∈ {1, . . . ,n}. This team Xn

is in fact the team induced by the complement of a truth assignment σ for x1, . . . ,xn (in a
similar sense to that in the proof of Theorem 7.2.4) and M,Xn |= φ′ iff σ(φ) =>. Then
the required equivalence will follow.

Formally, first suppose that ψ ∈ QBF. During the proof, we will construct a truth
assignment σ for x1, . . . ,xn such that σ(φ) => by choosing values for

σ(x1),σ(x3), . . . ,σ(xn−1).

The assumption guarantees that an appropriate value for each σ(x2k) that will satisfy the
formula φ exists and they are determined by the values of σ(x1),σ(x3), . . . ,σ(x2k−1).

We have to show that

M,W |= (r1→=(p1))→ δ2.

By the downward closure property , it suffices to show that for the maximal teams X1 ⊆
W such that M,X1 |= r1→=(p1), namely the teamsW \{s1} andW \{s1}, it holds that

M,X1 |= δ2, i. e. M,X1 |= (r2∧=(p2))⊗ δ3.

Choose the value of σ(x1) according to X1 by letting

σ(x1) :=
{
> if X1 =W \{s1},
⊥ if X1 =W \{s1}.

Note that σ � {x1} is defined as the complement of the truth assignment induced by X1
– which was used in the proof of Theorem 7.2.4. We will continue to define the truth
assignment as the complement of the induced one. The reason for this will become clear
when we show the connection between φ and φ′ in the end.

Since ψ ∈ QBF, by our discussion above, an appropriate value of σ(x2) that will
satisfy the formula φ exists and is determined by σ(x1). Now we split the team X1 into
X2 and Y2 according to the value of σ(x2) by letting

Y2 :=
{
{s2} if σ(x2) =>,
{s2} if σ(x2) =⊥,
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and X2 =X1 \Y2. Clearly, M,Y2 |= r2∧=(p2) and it suffices to check that M,X2 |= δ3.
As shown so far, to prove M,W |= δ1, it is enough to show that for every X1 chosen

as above, the above constructed X2 satisfies M,X2 |= δ3. Repeating the same arguments
and constructions n/2 times, it remains to show that M,Xn |= φ′.

Note that Xn and σ satisfy

si ∈Xn ⇐⇒ σ(xi) =⊥,
si ∈Xn ⇐⇒ σ(¬xi) =⊥. (7.3)

Moreover, since σ(φ) =>, for all j ∈ {1, . . . ,m}, it holds that σ(αj0) => or σ(αj1) =>
or σ(αj2) =>.

Consider an arbitrary j ∈ {1, . . . ,m}. We illustrate the idea of the proof by an exam-
ple. Let us suppose αj0 = ¬xi0 , αj1 = ¬xi1 , αj2 = xi2 for some i0, i1, i2 ∈ {1, . . . ,n},
and σ(¬xi1) = >. For any X ⊆ Xn such that M,X |= cj , by the construction of M,
X ⊆ {si0 ,si1 ,si2}. But in view of (7.3), we know that si1 /∈ X . Thus, X ⊆ {si0 ,si2},
which implies that

M,X |=
(
=(cj0)∧=(cj1)∧=(cj2)

)
⊗
(
=(cj0)∧=(cj1)∧=(cj2)

)
,

as dependence atoms are always satisfied on singleton teams. This shows that M,Xn |=
φ′.

Conversely, suppose M,W |= θ. Choose arbitrarily some values for

σ(x1),σ(x3), . . . ,σ(x2n−1)

and define the values for
σ(x2),σ(x4), . . . ,σ(x2n)

by reversing the above arguments and constructions, and repeat them n/2 times, we
then arrive at (7.3) and M,Xn |= φ′. The crucial observation is that when evaluat-
ing (r2k−1→=(p2k−1))→ δ2k we only need to consider the maximal teams satisfying
r2k−1→=(p2k−1) and there are exactly two of those, one without s2k−1 and the other one
without s2k−1. And when evaluating (r2k∧=(p2k))⊗δ2k+1 we have to consider only the
complements of the maximal teams satisfying r2k ∧=(p2k) and again there are exactly
two, one without s2k and the other one without s2k.

It remains to show that σ(φ) = >. That is to show that σ(αj0 ∨αj1 ∨αj2) = > for
an arbitrarily chosen j ∈ {1, . . . ,m}. Again, we illustrate the idea of the proof by an
example. Let us suppose

αj0 = xi0 , αj1 = xi1 and αj2 = ¬xi2 .

Now let X ⊆Xn be the maximal team such that M,X |= cj . Then, by the construction
of M, we know that X ⊆ {si0 ,si1 ,si2}. Since M,Xn |= φ′,

M,X |=
(
=(cj0)∧=(cj1)∧=(cj2)

)
⊗
(
=(cj0)∧=(cj1)∧=(cj2)

)
.

Thus, by construction of M, we must have that|X| ≤ 2. Say si1 /∈X , then, by maximality
ofX , we obtain that si1 /∈Xn which means that σ(xi1) => by (7.3), thereby σ(αj1) =>.
This way we obtain that σ(φ) =>. �
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Finally, we study the model checking problem for the sublogics of MID containing
diamond 3, intuitionistic disjunction ∨ and intuitionistic implication→.

Theorem 7.2.7. Let Ω⊇ {∧,∨,→,3}. Then MID[Ω]-MC is PSPACE-complete.

Proof. The upper bound again follows from Theorem 7.2.1. For the lower bound, noting
that

MID[¬,=(· · ·),∧,∨,→,3]-MC≡P
m MID[∧,∨,→,3]-MC,

it suffices to give a reduction from QBF to MID[¬,=(· · ·),∧,∨,→,3]-MC in polynomial-
time.

Let ψ = ∀x1∃x2 . . .∀xn−1∃xnφ be a quantified Boolean formula, where φ quantifier-
free and without loss of generality we assume that n is even. Define an instance (M =
(W,R,π),X,θ) of MID[¬,=(· · ·),∧,∨,→,3]-MC as follows:

• W :=
⋃

1≤i≤n
Wi, R :=

⋃
1≤i≤n

Ri and for 1≤ i≤ n/2

W2i−1 := {s2i−1,s2i−1}
W2i := {s2i,s2i}∪{ti}∪{ti1, · · · , ti(i−1)}

R2i−1 := {(s2i−1,s2i−1),(s2i−1,s2i−1)}
R2i := {(ti, ti1),(ti1, ti2), · · · ,(ti(i−2), ti(i−1))}

∪{(ti(i−1),s2i),(ti(i−1),s2i)}
∪{(s2i,s2i),(s2i,s2i)}

• π(sj) := {rj ,pj},

• π(sj) := {rj},

• π(t) := /0, for t /∈ {sj ,sj | 1≤ j ≤ n}

(see Figure 7.3 for the construction of M),

• X := {si,si | 1≤ i≤ n, i odd}∪{ti | 1≤ i≤ n/2};

• θ = δ1, where

δ2k−1 :=(r2k−1→=(p2k−1))→ δ2k (1≤ k ≤ n/2),
δ2k :=3δ2k+1 (1≤ k < n/2),
δn :=3φ→,

and φ→ is generated from φ by the same inductive translation as in the proof of
Theorem 7.2.4,

i. e. θ =
(
r1→=(p1)

)
→3

((
r2→=(p2)

)
→ ··· · · ·

· · · · · · →3

((
rn−1→=(pn−1)

)
→3φ→

)
. . .
)
.
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Figure 7.3: Kripke model M in the proof of Theorem 7.2.7

We will show that ψ ∈ QBF iff M,X |= θ. The idea, analogous to the proof of Theo-
rem 7.2.6, is that the alternating operators→ and 3 in the formula θ of MID simulate the
quantifiers ∀ and ∃ in the quantified Boolean formula ψ, respectively. Note that the model
M can be viewed as the disjoint union of n submodels Mi (as depicted in Figure 7.3),
where each Mi contains for pi a positive state si with a loop and a negative state si with
a loop, and for even 1 ≤ i ≤ n, Mi also contains a chain of length (i/2−1) with a split
leading to si and si at the end. The states in every Mi with no proper predecessors (all
s2k−1, s2k−1, tk’s for 1 ≤ k ≤ n/2, these form the team X) can be viewed as starting
states and those with no proper successors (all si, si’s for 1 ≤ i ≤ n) can be viewed as
final states. In the proof, we start with the team X of all starting states, and then for every
nested level i of→ we drop one of the states s2i+1 and s2i+1, while for every nested level
i of 3 we simultaneously move forward on the chains and thereby choose one of the states
s2i and s2i. Iterate this procedure until we arrive at a teamXn that contains exactly one of
the final states si and si for each i ∈ {1, . . . ,n}. This team Xn induces a truth assignment
σ for x1, . . . ,xn as in the proof of Theorem 7.2.4, and M,Xn |= φ→ iff σ(φ) =>.

Now, formally, suppose ψ ∈ QBF. We have to show that

M,X |= (r1→=(p1))→ δ2.

By the downwards closure property, it suffices to show that for the maximal teamsX1⊆X
such that M,X1 |= r1→=(p1), it holds that

M,X1 |= δ2, i. e. M,X1 |=3δ3.

Analogous to the proof of Theorem 7.2.6, choose the value of σ(x1) according to X1 by
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letting

σ(x1) :=
{
⊥ if X1 =X \{s1},
> if X1 =X \{s1}

(but here σ � {x1} is defined as the truth assignment induced byX1 instead of the comple-
mentary one, as in the proof of Theorem 7.2.6). By a similar argument to that in the proof
of Theorem 7.2.6, an appropriate value of σ(x2) that satisfies φ exists and is determined
by σ(x1). We now choose X2 such that X1RX2 as follows:

X2 :=
{
R(X1)\{s2} if σ(x2) =>,
R(X1)\{s2} if σ(x2) =⊥,

It suffices to check that M,X2 |= δ3. Again, analogous to the proof of Theorem 7.2.6,
repeating the universal and the existential arguments n/2 times, it remains to show that
M,Xn |= φ→. And, analogous to (7.3), Xn and σ satisfy

si ∈Xn ⇐⇒ σ(xi) =>,
si ∈Xn ⇐⇒ σ(¬xi) =>, (7.4)

and moreover σ(φ) =>.
Noting that σ is the truth assignment induced by Xn, by the Claim in the proof of

Theorem 7.2.4, we obtain that M′,Xn |= φ→, where M′ = (W ′,R′,π′) with

• W ′ = {si,si | 1≤ i≤ n},

• R′ = /0,

• π′ = π �W ′

(i.e., M′ is the model constructed in the proof of Theorem 7.2.4, which can also be viewed
as a submodel of M consisting of all final states). Next, since φ→ is modality-free, it
follows that M′′,Xn |= φ→, where M′′ is the submodel of M generated by W ′ (namely
M′ with all the loops). Finally, since the truth of MID formulas with respect to teams is
invariant under taking generated submodels (Theorem 6.1.9), we conclude that M,Xn |=
φ→.

Conversely, suppose that M,X |= θ. As in the proof of Theorem 7.2.6 we can reverse
the above constructions and arrive at (7.4). The crucial point is that when evaluating
3δ2k+1 we only need to consider minimal successor teams.

Now, by the construction of Xn, we have that M,Xn |= φ→. Reversing the above
argument, by the Claim in the proof of Theorem 7.2.4, we obtain that σ(φ) =>. �

7.3 Concluding remarks and open problems

Table 7.1 contains all results we have obtained in this chapter. We have shown that model
checking for MID in general is PSPACE-complete, and this still holds if we forbid 2,
=(· · ·) and either 3 or ⊗. If we forbid 3 and ⊗, on the other hand, the complexity drops
to coNP. In particular, PID-MC is coNP-complete.
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Operators Complexity Reference
23 ∧⊗∨¬/⊥→ =(· · ·)
∗ ∗ ++ ∗ ∗ + + PSPACE Theorem 7.2.6
∗ ∗ +++ ∗ + ∗ PSPACE Theorem 7.2.6, Lemma 4.2.5
∗ + + ∗ + ∗ + ∗ PSPACE Theorem 7.2.7
∗ − +−+ ∗ + ∗ coNP Theorem 7.2.5
∗ ∗ ∗ ∗ − ∗ ∗ − P Theorem 7.2.3
∗ ∗ ∗ ∗ ∗ ∗ − ∗ P / NP [17]

+ : operator present − : operator absent ∗ : complexity independent of operator

Table 7.1: Classification of complexity for fragments of MID-MC
All results are completeness results except for the P cases which are upper bounds.

In Table 7.1, some of the cases are missing, e.g., the one where only conjunction is
forbidden, the one where only both disjunctions are forbidden and the one from Theo-
rem 7.2.7 but with dependence atoms allowed instead of intuitionistic disjunction.

One other main open problem is: the computational complexity of the satisfiability
problem for MID is unknown.
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Appendix: Rules of natural deduction systems for propo-
sitional logics of dependence and independence
Below we list all of the rules of natural deduction systems for the propositional logics
considered in Chapter 4, and the main derivable rules used in the chapter.

The following table tabulates (in an obvious way) all of the natural deduction systems
defined in Chapter 4. The listed logics are complete with respect to the corresponding
deductive systems.

rules PD[∨] PD PExc PD[∨,NE] PInd[NE] PInc[NE]

1-2 + + + + + +
3-4 + +
5 + + +

6-7 + + +
8-12 + + + + + +

13-14 + +
(Dstr ⊗∨) + +

(Dstr ⊗∨⊗) + +
(Dstr ∧⊗) + + +
(Dstr∗∧⊗) +

(Dstr NE∧⊗) +
16 +
17 +
18 +
19 +
20 + +
21 + +
22 +

23-25 + + +

Rules:

1. Conjunction Introduction:

φ ψ

φ∧ψ
(∧I)

2. Conjunction Elimination:

φ∧ψ
φ

(∧E)
φ∧ψ
ψ

(∧E)

3. Intuitionistic Disjunction Introduction:

φ

φ∨ψ
(∨I) ψ

φ∨ψ
(∨I)

4. Intuitionistic Disjunction Elimination:

φ∨ψ

[φ]

...
χ

[ψ]

...
χ

(∨E)χ
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5. Tensor Disjunction Introduction:

φ

φ⊗ψ
(⊗I)

6. Weak Tensor Disjunction Introduction:
φ

φ⊗ψ
(∗) (⊗WI)

(∗) whenever ψ does not contain NE.

7. Tensor Disjunction Repetition:

φ
(⊗Rpt)

φ⊗φ
8. Weak Tensor Disjunction Elimination:

φ⊗ψ

[φ]

...
χ

[ψ]

...
χ

(⊗WE)χ

whenever χ is a classical formula.

9. Tensor Disjunction Substitution:

φ⊗ψ

[ψ]

...
χ

(⊗Sub)
φ⊗χ

10. Commutative and Associative Laws for Tensor Disjunction:

φ⊗ψ
ψ⊗φ

(Com⊗)
φ⊗ (ψ⊗χ)
(φ⊗ψ)⊗χ

(Ass⊗)

11. Contradiction Elimination:

φ⊗ (pi∧¬pi)
φ

(⊥E)

12. Atomic Excluded Middle:
(EM0)

pi⊗¬pi
13. Dependence Atom Introduction:∨

f∈22k

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ . . .ps(jk−1)

jk−1
∧pf(s)jk

)
(DepI)

=(pj0 , . . . ,pjk−1 ,pjk )

where 2k is the maximal k-team on the set {j0, . . . , jk−1}.
14. Dependence Atom Elimination:

=(pj0 , . . . ,pjk−1 ,pjk ) (DepE)∨
f∈22k

⊗
s∈2k

(
p
s(j0)
j0
∧·· ·∧ . . .ps(jk−1)

jk−1
∧pf(s)jk

)
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where 2k is the maximal k-team on the set {j0, . . . , jk−1}.
15. Distributive Laws:

φ⊗ (ψ∨χ)
(φ⊗ψ)∨ (φ⊗χ)

(Dstr⊗∨)
(φ⊗ψ)∨ (φ⊗χ)
φ⊗ (ψ∨χ)

(Dstr⊗∨⊗)

φ∧ (ψ⊗χ)
(φ∧ψ)⊗ (φ∧χ)

(Dstr∧⊗)

φ∧ (ψ⊗χ)
(∗)

(φ∧ψ)⊗ (φ∧χ)
(Dstr∗∧⊗)

(∗) whenever φ does not contain NE.

NE∧
⊗
j∈J

φj

(Dstr NE∧⊗)∨
f∈2J

f 6=0

⊗
j∈J
f(j)=1

(NE∧φj)

where 0 : J → 2 is defined as 0(j) = 0.

16. Dependence Atom Strong Introduction: For any function f : 2k→ 2 of the maximal k-team
on {j0, . . . , jk−1} into 2 = {0,1},⊗

s∈2k

(
p
s(j0)
j0
∧·· ·∧ps(jk−1)

jk−1
∧pf(s)jk

)
(DepSI)

=(pj0 , . . . ,pjk )

17. Independence Atom Strong Introduction: For any strong approximation sequence 〈u〉 of
pi1 . . .pik ⊥ pj1 . . .pjm(pi1 , . . . ,pin),⊗

s∈u
(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
(IndSI)

pi1 . . .pik ⊥ pj1 . . .pjm

18. Exclusion Atom Introduction: For any approximation sequence 〈o〉 of pi1 . . .pik | pj1 . . .pjk ,⊗
s∈o

(
p
s(i1)
i1
∧·· ·∧ps(ik)ik

∧ps(j1)
j1
∧·· ·∧ps(jk)jk

)
(ExcI)

pi1 . . .pik | pj1 . . .pjk

19. Inclusion Atom Strong Introduction: For any strong approximation sequence 〈u〉 of the atom
pj1 . . .pjm ⊆ pk1 . . .pkm(pi1 , . . . ,pin),⊗

s∈u
(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
(IncSI)

pj1 . . .pjm ⊆ pk1 . . .pkm

20. Approximation Transition:

[φ∗
Ω0

]

...
θ

[φ∗
Ωm

]

.... . .
θ φ

(ApTr)
θ
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where {Ω0, . . . ,Ωm} is the set of all approximation sequences of φ.

21. Strong Approximation Transition:

[φ?
ϒ0

]

... . . .
θ

[φ?
ϒm

]

.... . .
θ φ

(SApTr)
θ

where {ϒ0, . . . ,ϒm} is the set of all strong approximation sequences of φ.

22. NE Introduction:
(NE I)

(pi∧¬pi)∨NE
23. Strong ex falso:

(pi∧¬pi)∧NE

φ
(ex falso+)

24. Strong Contradiction Introduction:(⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
(⊗
s′∈Y

(p
s′(i1)
i1

∧·· ·∧ps
′(in)
in

∧NE)
)

(0I)
(pi∧¬pi)∧NE

where X and Y are n-teams on {i1, . . . , in} with X 6= Y .

25. Strong Contradiction Contraction:

φ⊗ ((pi∧¬pi)∧NE)
(pi∧¬pi)∧NE

(0Ctr)

Main Derivable Rules:

1. Distributive Laws:

φ⊗ (ψ∧χ)
(φ⊗ψ)∧ (φ⊗χ)

(Dstr⊗∧)
φ∨ (ψ⊗χ)

(φ∨ψ)⊗ (φ∨χ)
(Dstr∨⊗)

(φ⊗ψ)∧ (φ⊗χ)
(∗)

φ⊗ (ψ∧χ)
(Dstr∗⊗∧⊗)

(φ∧ψ)⊗ (φ∧χ)
(∗)

φ∧ (ψ⊗χ)
(Dstr∗∧⊗∧)

(∗) whenever φ is a classical formula.

2. ex falso:

pi∧¬pi
φ

(ex falso)

3. Tensor Disjunction Combination:(⊗
i∈I

φi

)
⊗
(⊗
j∈J

φj

)
(⊗Cmb)⊗

k∈I∪J
φk

whenever φi, φj are classical formulas.

4. Tensor Disjunction Decomposition:
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⊗
k∈K

φk

(⊗Dcp)(⊗
i∈I

φi

)
⊗
(⊗
j∈J

φj

)
where I,J,K are finite sets of indices with I ∪J =K.

5. Approximation Elimination:

φ∗
Ω (ApE)
φ

where Ω is any approximation sequence of φ.

6. Strong Approximation Elimination:

φ?
ϒ (SApE)
φ

where ϒ is any strong approximation sequence of φ.
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conti del Seminario Matematico Università e Politecnico di Torino 42 (1984), 179–
194.



186

[28] GALLIANI, P. Game values and equilibria for undetermined sentences of depen-
dence logic. Master’s thesis, University of Amsterdam, 2008.

[29] GALLIANI, P. Dynamic logics of imperfect information: from teams and games to
transitions. ArXiv e-prints, abs/1111.5143 (2011).

[30] GALLIANI, P. The Dynamics of Imperfect Information. PhD thesis, University of
Amsterdam, 2012.

[31] GALLIANI, P. Inclusion and exclusion in team semantics: On some logics of imper-
fect information. Annals of Pure and Applied Logic 163, 1 (January 2012), 68–84.

[32] GALLIANI, P. Epistemic operators in dependence logic. Studia Logica 101, 2
(2013), 367–397.

[33] GALLIANI, P. General models and entailment semantics for independence logic.
Notre Dame Journal of Formal Logic 54, 2 (2013).

[34] GALLIANI, P., HANNULA, M., AND KONTINEN, J. Hierarchies in independence
logic. In http://arxiv.org/abs/1304.4391v1 (2013).

[35] GALLIANI, P., AND HELLA, L. Inclusion logic and fixed point logic. In CSL
(2013), LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 281–295.

[36] GALLIANI, P., AND MANN, A. L. Lottery semantics: A compositional semantics
for probabilistic first-order logic with imperfect information. Studia Logica 101, 2
(2013), 293–322.

[37] GEIGER, D., PAZ, A., AND PEARL, J. Axioms and algorithms for inferences
involving probabilistic independence. Information and Computation 91, 1 (March
1991), 128–141.
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