

Cloud-Based Software Engineering

PROCEEDINGS OF THE SEMINAR NO. 58312107

DR. JÜRGEN MÜNCH 5.8.2013

Professor

Faculty of Science

Department of Computer Science

EDITORS

Prof. Dr. Jürgen Münch
Simo Mäkinen, Course Assistant

ABSTRACT

The seminar on cloud-based software engineering in 2013 covered many interesting topics related to cloud

computing and software engineering. These proceedings focus on decision support for moving to the cloud, on

opportunities that cloud computing provides to software engineering, and on security aspects that are associated

to cloud computing.

Moving to the Cloud – Options, Criteria, and Decision Making: Cloud computing can enable or facilitate

software engineering activities through the use of computational, storage and other resources over the network.

Organizations and individuals interested in cloud computing must balance the potential benefits and risks which

are associated with cloud computing. It might not always be worthwhile to transfer existing services and content to

external or internal, public or private clouds for a number of reasons. Standardized information and metrics from

the cloud service providers may help to make the decision which provider to choose. Care should be taken when

making the decision as switching from one service provider to another can be burdensome due to the

incompatibilities between the providers. Hardware in data centers is not infallible: the equipment that powers

cloud computing services is as prone to failure as any computing equipment put to high stress which can have an

effect on the availability of services.

Software Engineering – New Opportunities with the Cloud: Public and private clouds can be platforms for the

services produced by parties but the cloud computing resources and services can be helpful during software

development as well. Tasks like testing or compiling - which might take a long time to complete on a single, local,

workstation - can be shifted to run on network resources for improved efficiency. Collaborative tools that take

advantage of some of the features of cloud computing can also potentially boost communication in software

development projects spread across the globe.

Security in the Cloud – Overview and Recommendations: In an environment where the resources can be

shared with other parties and controlled by a third party, security is one matter that needs to be addressed.

Without encryption, the data stored in third-party-owned network storage is vulnerable and thus secure

mechanisms are needed to keep the data safe.

The student seminar was held during the 2013 spring semester, from January 16th to May 24th, at the

Department of Computer Science of the University of Helsinki. There were a total of 16 papers in the seminar of

which 11 were selected for the proceedings based on the suitability to the three themes. In some cases, papers

were excluded in order to be published elsewhere. A full list of all the seminar papers can be found from the

appendix. We wish you to have an interesting and enjoyable reading experience with the proceedings.

KEYWORDS

cloud computing, software engineering, cloud-based software engineering, software development

PAGES LANGUAGE

76 English

I

Table of Contents

Part I: Moving to the Cloud – Options, Criteria, and Decision Making

Comparing Preconditions for Cloud and On-Premises Development .. 1

By Teemu Mattila

Decision Making About Migrating To The Cloud Model .. 8

By Emad Nikkhouy

Cloud Provider Interoperability and Customer Lock-in ... 14

By Mirva Toivonen

Comparision of Different Approaches to Evaluate Cloud Computing Services .. 20

By Rakesh Pandit

Analysis of the Availability of Amazon Web Services’ Cloud Infrastructure Services .. 26

By Santeri Paavolainen

Part II: Software Engineering – New Opportunities with the Cloud

Impact of Cloud Computing on Global Software Development Challenges ... 34

By Inna Smirnova

Cloud-based Testing: Opportunities and Challenges.. 40

By Yanhe Liu

Continuous Deployment of Software ... 46

By Ville Pulkkinen

Open Source Cloud Platforms .. 53

By Jussi Hynninen

Part III: Security in the Cloud – Overview and Recommendations

Secure Data Management for Cloud-Based Storage Solutions .. 59

By Mikael Svenn

Secure Cloud Application ... 68

By Javad Sadeqzadeh Boroujeni

Appendix

Alphabetical List of All Seminar Papers ... 76

Comparing preconditions for cloud and on-premises development

Teemu Mattila (Author)
Department of Computer Science

University of Helsinki
Helsinki, Finland

Email: teemu.mattila@helsinki.fi

Abstract—Before companies and developers can utilize the
benefits of cloud computing there are some issues that need
to be considered. These early or preliminary stages of cloud
development deal for example with managerial, security-related
and cost-effectiveness questions.

The focus of this article is cloud economics and devel-
opment in the cloud. From the cloud economics point of
view, article compares the costs of cloud software development
with traditional, on-premises development. There are many
situations when using cloud can enable cost savings, but
this is not always the case. From a development point of
view article presents what needs to be considered, and what
changes, when using cloud development instead of on-premises
development. Though some things are common for both on-
premises and cloud development, there are some differences
and even limitations on when cloud cannot be used.

Keywords-cloud computing; cloud computing development;
cloud vs on-premise development; cloud economics

I. INTRODUCTION

There are many definitions for cloud computing, but in
general it refers to both software and hardware resources
that are delivered over the internet [1] [2]. These resources,
more commonly known as services, are scalable, config-
urable, measurable, and easily accessible on-demand self-
service resources [1] [3]. By using these services software
development in the cloud can be cheaper, more efficient and
more flexible way of producing new software than traditional
on-premises software development.

Although cloud computing has many promising qualities,
there are many important topics that need to be considered
when deciding whether to start using cloud development.
Cloud development is not always useful or automatically
cost-efficient approach for all development requirements [4].
Also, all cloud environments are not intended for wider
audiences [3] and all internet-based services cannot be con-
sidered automatically as complete cloud computing systems
[1].

The cloud development approach also changes some as-
pects of the software development process in general [5]. In
the extreme cloud development scenario, the only software
a developer needs is a web browser and the only required
hardware is a computer cabable of running the browser with
a decent internet connection for connecting to cloud services
[6]. However, this is not usually the case since the cloud

environments do not provide all the required features. There
are often specific requirements and in order to acquire them
there may be need to combine different cloud services, use
local development tools and communicate with cloud service
providers [6].

This article is constructed as follows. Chapter two defines
shortly the different cloud service and deployment models
and also explains further what are the most essential topics
that affect choosing cloud development approach over on-
premises development. The third chapter, cloud economics,
has the key focus of this article. It introduces different views
of if and how cloud software development is more cost-
effective than the on-premises development. Fourth chapter
describes cloud adoption from software developer’s point of
view: what are the cloud development’s strengths and weak-
nesses when compared to on-premises development. Also
some topics that restrict the cloud software development are
discussed. Finally, the last chapter summarizes the results
and concludes the article.

The research method for this article is a literature review.
The primary focus in this article are the cloud economics.
Many other topics pointed out in this article, such as security
and legal issues, are complex and could be analyzed at
length. Yet for the purposes of this article they are discussed
only in a cursory manner.

II. BACKGROUND

Before analyzing suitability of cloud computing for soft-
ware development it is useful to define the general service
types and deployment models for cloud.

A. Cloud service models

The following three service models are often used when
describing different kinds of cloud services: Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastruc-
ture as a Service (IaaS) [3].

Software as a Service, SaaS refers to all kinds of appli-
cations that are created by vendors into their cloud systems.
These applications run inside the cloud: the end users can
access them with various devices via different networks
without a need to install the applications to their devices
[3] [4].

1

Also, users are not owners of the services. The owner
is the vendor who hosts them. Users, who subscribe these
services, can then execute them as on-demand, scalable
services. Users are charged either how much they use
different resources (per-use basis) or by their subscription
fee [4] [7].

In some definitions SaaS also refers to software com-
ponents for application developers [8]. This is somewhat
confusing with another common term, service-oriented ar-
chitecture, or SOA. Indeed, Saas and SOA are not the same
thing and it is useful to differentiate them [7]. SaaS should be
described as a software delivery model: how complete soft-
ware can be delivered to an end user. In this article the term
SaaS is used in this manner. SOA should be considered as a
software construction model. SOA components are reusable
web-based services, building blocks for actual applications
[7].

Platform as a Service, PaaS is a development platform
hosted in the cloud and it is accessed via network [4]. The
main difference between SaaS and PaaS is that SaaS hosts
complete, unmodifiable services, whereas PaaS offers both
complete and in-progress cloud applications that can be used
to develop new software [3].

Infrastructure as a Service, IaaS is the third distinct cloud
service model. IaaS involves physical computing resources,
such as storage, networks and processing cababilities [3].
IaaS resources are often shared by many customers by
virtualization systems. They can be scaled automatically
based on resource demand of the customers.

For cloud users, IaaS is sometimes interrelated with PaaS
and SaaS. Whereas PaaS provides means to create software
than can be considered as SaaS, IaaS provides means to
allow end user access to these new SaaS services [4].

B. Cloud deployment models

Another concept that needs to be defined is how the
aforementioned services are deployed into cloud. There are
four major models for this: private, community, public and
hybrid clouds [9].

Private cloud is an entire cloud infrastructure that is
created solely for a single organization. The ownership, man-
agement and operation responsibility of the cloud belongs to
the organization, third party or some combination of them.
[9]. The primary goal in this situation is not to sell cloud
capacity through publicly accessible interfaces but to give
local users a flexible and private infrastructure to run service
workloads within their administrative domains. [10].

Community cloud is a deployment model where multi-
ple organizations construct a cloud infrastructure together.
They need to have similar usage, security and compliance
considerations [9].

Public cloud is intended for open use by the general
public. They are operated by commercial cloud providers,
vendors, and they offer a publicly accessible remote interface

for creating and managing cloud instances within their
proprietary infrastructure [10].

Hybrid cloud is a system that combines infrastructures
from two or more above-mentioned deployment models.
They are separate cloud systems but are connected by
interfaces that enable sharing or utilizing each others’ data,
application or computational resources [9] [10].

C. Reasoning for cloud development

The requirements for software development are extremely
various. Some software can be built easily by one person
with little resources. On the other hand there are software
that is built by thousands of people internationally with
various computational requirements. Still, there are some
main areas that can be inspected when deciding whether to
use cloud development or on-premises, local development.

The most important business question is if the cloud
enables cost savings. From a business point of view, cloud
computing can sometimes create overly optimistic expecta-
tions to business managers. Marston describes the expecta-
tions saying “the promise of cloud computing is to deliver
the functionality of existing information technology (IT)
and enable new features, yet at the same time it should
dramatically reduce the costs of IT” [11]. This can probably
be achieved only in rare cases. A more realistic question is
whether the usage costs of, or transition costs to, external
cloud will be low enough to benefit from any medium-term
savings [4]. These economic considerations are discussed
in-depth in chapter three.

Though cost efficiency is probably the most important
factor, there are other areas to be considered. Another man-
agerial question is that if and how the software development
changes when using cloud. Cloud option is attractive if the
quality delivered and the total cost is satisfying and the risks
are reasonable [4]. This can lead to a more technical analysis
about the cloud development’s feasibility in a given situation
and the possible problems when adopting cloud. These are
discussed in chapter four.

III. CLOUD ECONOMICS

A recent study published in February 2013 by KPMG
International shows that the cost reduction is clearly the
most important objective for organizations’ cloud adoption
[12]. Almost half of the respondents that contained business
and IT executives listed it as one key objective of their
cloud strategy. 70% of those organizations who are using
cloud answered that cloud is delivering efficiencies and cost
savings today [12]. Though this is a high number there
were some 20% who were not certain of any efficiencies
or cost savings, and the rest responded that the cloud is
actually hindering their efficiencies. This probably implies
that cloud adoption is not automatically the best way for
software development.

2

In order to compare cloud and on-premises development
economics there is a wide variety of elements to consider.
Costs for producing entire software include infrastructure
and software development. These are explained in the first
two sections of this chapter. For more detailed analysis, third
section compares costs of different cloud deployment models
and fourth section remarks about costs for migrating old
software to cloud.

A. Infrastructure costs

In some cases infrastructure costs can be up to 60% of the
total costs of the software development [4]. The costs can
be divided into operational attributes and business premises.
Operational attributes refer to three elements: hardware
costs, software costs and license fees. Business premises are
personnel expenses and costs of physical locations, such as
rental and electricity costs [4].

Table I lists some of the required operational attributes.
In the table the second column marks if given attribute is
relevant when using cloud services and the third column
marks if the attribute is relevant when using on-premises
development. Note that the last row in table, software
licenses for server, is dependant about selected software
choices. When only open-source software is used, there are
not necessarily any server side software license fees. Table
is based on the works of Bibi et al. [4].

Table I
INFRASTRUCTURE COSTS

Operational attribute Cloud On-premises

Development devices (computers) * *

Peripheral devices (accessories) * *

Device maintenance * *

Server infrastructure - *

Server maintenance - *

Subscription fees * -

Server software licenses * *

All basic infrastructure costs are not averted by simply
choosing the cloud approach. However, server infrastructure
contains not only the server computers themselves but also
the physical space, network connections, spare parts and
maintenance personnel. Thus there are many cases that favor
cloud IaaS model over conventional hosting. Five examples
are listed in this section.

A first case is when demand for a service varies with
time [1]. This can be e.g. if it is known that peak load
occures only a few days per month or few months per year. A
second case is when demand is unknown in advance [1]. For
example new product can suddenly need a lot of resources
if it becomes popular. These both cases benefit the easy
scalability of cloud. IaaS cloud users do not need to buy
enough server capacity for these peak load situations and
thus there is no costly capacity overprovisioning [11].

Third case is when the use of batch processing can be
divided to multiple instances [1]. The monetary cost is
the same but results can be achieved significantly faster.
For example, if one machine processes data for 1,000
hours, thousand cloud instances with similar computational
capacities could process the same data in one hour while
total cost remains the same.

Fourth case is that the cloud dramatically lowers the
entry costs for smaller organizations that still need a lot
of computational resources [11]. The purchase price for
conventional data center server can be very high. Even when
the need for high resources is regular, the monthly charges
from cloud vendors can be easier to maintain than the start-
up cost of dedicated server.

Last mentioned example is that by using IaaS cloud
the need for technology management is potentially much
simpler [11]. On the one hand, the physical server device
maintenance is left to cloud vendor. Furthermore, even
multiple server configurations and access controls can be
handled with cloud vendor’s management interfaces.

Table II lists some business premises than are a part of
infrastructure costs. As with table I, the second column
marks if given expense is relevant in cloud services and third
column marks if it is relevant in on-premises development.
Also this table is based on the works of Bibi et al. [4].

Table II
BUSINESS PREMISES EXPENSES

Business premises Cloud On-premises

Personnel expenses, salary * *

Personnel expenses, training * *

Electricity costs limited *

Physical locations, rental limited *

Network costs * limited

New personnel requirements are not directly affected by
selecting IaaS cloud. In any case, part of development
personnel needs to know about the underlying server-side
software. Note that if the development can be done by
using PaaS there could actually be less need for personnel
training, because there is no need or access to low-level
server-side software. By using IaaS cloud the electricity and
rental expenses are most likely smaller. But if the developed
system is very data intensive, the data transfer costs can be
an important issue [1]. Currently transferring one terabyte
of data from Amazon EC2 instance to internet costs from
50 to 120 dollars [13]. Cloud users need to optimize data
placement and traffic at every level of the system in order
to minimize costs [1].

B. Software development costs

Software development costs can be divided into four
groups: product, platform, process and personnel attributes
[4].

3

Product attributes include descriptive variables and size
indicators [4]. Descriptive variables provide information
about development type, application type and end-user type.
Size indicators are often created with the help of function
points (FP) or kilo-lines of code (KLOC) estimation. These
attributes can be used together to indicate the complexity of
given development task.

When estimating software’s total complexity and size
IaaS cloud approach does not seem to give any economical
benefits over on-premise development. PaaS services do not
automatically solve the complexity problems and even when
they can be used they are probably suitable only for the
simplest of applications [2]. For SaaS approach the situation
is different. New services can be created by combining data
or functionality from two or more existing services [11].
Because of the component reuse the size of the software
in terms of FP or KLOC will reduce, but at the same time
complexity of the project will multiply [6]. This is because
the implementation details and integration requirements are
often documented poorly or not at all.

Platform costs relate to technical, non-functional require-
ments for software [4]. Some examples include requirements
such as software reliability, security issues and usability
issues. Cloud can help small and medium sized organiza-
tions reach high infrastructural availability, such as service
availability (uptime) and performance cheaper than creating
their own infrastructure. For example, current Amazon Web
Services Service Level Agreement (SLA) commits to an
“annual uptime percentage” of 99.95% over the preceding
year. Still, these same service levels provided by cloud
vendors can be too low for mission critical applications and
large organizations [11]. Also, the different IaaS vendors
have different service level definitions and committed uptime
percentages, so for this development cost it is not easy to
call if the cloud approach is cheaper or not.

Process attributes refer to project supplements that enable
the development and delivery of quality software within
cost and time limitations [4]. Both cloud and on-premise
development need some form of project management and
management software. If cloud approach can change the
process to be more streamlined and faster than on-premise
development then it could be argued that also costs related
to management are reduced.

The fourth cost type is the personnel attributes. Typical
examples of this group are the experience of the team, the
analysts capabilities, the familiarity with the programming
language and the application [4]. These attributes apply to
both cloud and on-premise development. While required
expertise can be different, there are no real cost differences:
personnel familiar with cloud development can be as expen-
sive as personnel for on-premises development.

C. Costs for different cloud deployment models

The cloud deployment model can be a major factor when
estimating total costs of the cloud development. Cloud
development process can involve usage of distinct platforms
from multiple vendors that are geographically dispersed
around the world [6]. If for some reason an organization does
not want to deploy its data or business logic into a public
cloud, they may create their own cloud infrastructure for
some or all of their needs [14]. However, the interoperability
between cloud infrastructures is not easy to achieve [14].
And as a part of requirements gathering it may be needed
to communicate with cloud vendors for more exact technical
details and even some customizations [6].

Figure 1, improved from the works of Patidar et al.,
presents a relationship of software development complexity
and infrastructure costs for cloud deployment models. The
figure shows that using multiple (public) cloud vendors
makes software development more complex and thus more
expensive to develop. If again only private and hybrid clouds
are used, the interoperability is easier, but the price for
creating actual private cloud is high. Also it has been stated
that except for extremely large data centers, private clouds
provide only a subset of advantages of actual cloud infras-
tructure [1]. The hybrid model is the alternative that some
organizations use to avoid large upfront investments while
they still maintain some critical parts of their applications
under more rigid control [14].

Private
cloud

Hybrid
cloud

Public
clouds

Infrastructure
costs

Software
complexity

Figure 1. Comparing infrastructure costs to software complexity for
different cloud deployment models

D. Costs for migrating legacy software to cloud

There are many applications and systems that have be-
come outdated, either because they use unsupported technol-
ogy or that they have been built to spesific, now outdated,
platform or operating system. Some of these legacy systems
are still actively used because costs for their modernization
is high and the fact that they still provide essential services
[14]. Most legacy and even some more recent systems are
not easy to migrate into a cloud environment. There are two
common methods to enable the transition. First way is a
complete re-engineering where the system is reconstructed

4

to a new platform, but this approach is normally considered
too expensive [14]. Another way is partial migration. The
legacy system’s infrastructure is moved to a cloud and then
system is tested to ensure that it still functions normally
[14]. When this can be done a complete re-engineering can
be avoided making cost of the transition more tolerable.

IV. OTHER PRECONDITIONS FOR CLOUD DEVELOPMENT

Economics do not cover all questions about feasibility of
the cloud development. Other issues include the technical
suitability, security, performance and process management.
As is the case with cloud economics there are not always a
conclusive answer to which development method is better,
cloud-based or on-premises.

A. Cloud security

Security is one of the most often cited objection to cloud
computing [1]. There are many both specific and general
descriptions of cloud security questions. Here security issues
are listed in a cursory manner.

Cloud users face security threats both from outside and
inside the cloud [1]. The cloud users are responsible for
application level security, while cloud vendors need to take
care of the physical security [1]. Also, cloud users should be
certain that other users cannot access their services and that
the data is not accessed by unauthorized persons, including
vendors’ personnel [1].

All security problems that manifest in the cloud are not
related to cloud at all [15]. In all development scenario
the software developers are responsible from the application
level security. To the same degree the physical security of
the servers is the service providers responsibility, were it
cloud environment or general hosting provider.

However, there are three security issues that can be
described as both general issues in computer science as
well as vulnerabilities in cloud computing’s core technology.
The primary security mechanism in cloud systems is virtu-
alization. Virtualization is used to differentiate all running
cloud instances and it also protects against most attempts by
cloud users to attack eiter one another or underlying cloud
infrastructure [1]. Still, there is a possibility that an attacker
might successfully escape from a virtualized environment.
Hence this vulnerability can be considered as intrinsic to
virtualization and highly relevant to cloud computing [15].

Second problem relates to data privacy in public clouds.
Users can try to make the reading of their data more
difficult by encrypting the data before sending it to cloud.
The problem is that cryptoanalytic advances can render any
cryptographic mechanism or algorithm insecure as novel
methods of breaking them are discovered [15]. Third issue
relates to the fact that cloud applications are used mostly
with web browsers with HTTP protocol. The HTTP protocol
is a stateless protocol, whereas applications usually require
some kind of session handling. This makes session hijacking

and similar problems, whether caused by application or
browser, a relevant issue for cloud computing [15].

B. Cloud interoperability

Currently, most cloud systems have their own way to offer
their services to clients [3]. This can lead to vendor lock-
in, which makes changing current service provider difficult.
This also makes utilizing of multiple cloud systems difficult,
because the same operations must be developed separately
for each cloud. Also, integrating organization’s own exist-
ing systems to proprietary cloud via vendor’s application
programming interface (API) can be difficult [3].

There are a few solutions proposed. One is to to stan-
dardize the APIs in such a way that a developer could
deploy services and data across multiple cloud vendors
[1]. Another one is to create intermediary layer between
the cloud consumers and cloud spesific resources [3]. Sun
Microsystems tried to create open API for cloud platforms
[3] but the project was discontinued in 2010 soon after Sun
Microsystem was acquired by Oracle Corp.

So far, the standardization and middleware layer proposals
have not been widely adopted [16]. There are still many ac-
tive projects related to ease cloud interoperability [16], such
as European Commission supported mOSAIC Framework.
However, since they are more or less work-in-progress, there
is not yet one easy way to create cloud applications for
multiple vendors’ systems. It needs to be considered as
a development threat, since lock-in issue can be critical
if vendor decides to increase prices or encounters serious
financial or technical problems that can lead to service
interruptions.

C. Legal issues

Regulation issues that can happen in national or inter-
national level can make the cloud adoption problematic
[11]. For example, regulation can impose requirements to
data privacy, data access and data location requirements.
The data in the cloud system can be distributed and it can
be physically located to different country than its user. If
this data is for example copyrighted, it is not clear which
country’s privacy laws should be followed [11]. Also, if there
is a need for data auditing, such as some countries do for
financial markets, the audit can be difficult to execute if the
data is distributed to different countries [11].

D. Performance considerations

There are findings that sharing processing power and
memory works well in virtualized cloud instances but that
disk performance is more problematic [1]. As such the cloud
user cannot be completely certain if their instance works
always at the highest possible speed.

Transferring large amounts of data can be problematic,
though this is relevant to both cloud and self-owned servers.
If the data quantities needed to transfer are in terabyte

5

ranges, it can take many days to transfer the data via internet
[1]. As a solution some cloud service providers have started
to offer a service where the data is sent in physical storage
devices to or from cloud vendor’s data centers.

E. Applications unsuitable for cloud development

There seems to be very little research about the application
types that are not optimal when created in cloud environ-
ments. Still, it is reasonable to estimate that all systems
cannot be developed in cloud systems. The definition for
cloud computing implies that cloud services are “services
delivered over the network”. As such, the software for
devices without network connection cannot be completely
developed in cloud, without at least on-premises testing with
the physical devices.

Another obvious group is real-time systems. There are
some definitions for real-time cloud systems [17] but in
practice at least public clouds that are accessed via internet
cannot be trusted to be real-time systems.

There are also some existing application types that are
considered difficult to migrate to the cloud. Legacy systems,
internally developed applications, mission critical applica-
tions and third-party software are examples of this group
[11]. Also for some very large organizations that already
have considerable server resources it may not be necessary
nor economical to migrate their operations to public clouds
for many years to come [11].

V. CONCLUSION

Software development in the cloud environment can be
more efficient and more cost-effective than traditional, on-
premises development. However, the cloud approach is not
automatically suitable nor profitable for all kinds of soft-
ware. Business and IT managers need to take into consider-
ation many technical aspects before cloud development can
be justified.

In summary, it can be argued that cloud approach is
profitable to organizations who start to build new web-
based services and who do not own any or have redundant
server capacity. Also services that may encounter sudden
or occasional increases in demand can benefit from the
scalability of cloud systems.

On the other hand, public cloud systems do not necessarily
suit systems that require extreme availability, need real-time
computational capabilites or handle sensitive information
such as data that legislation dictates to be privacy protected.
Also if an organization already has large data centres with
ample processing power, the need for public cloud is limited.
But even within these situations cloud computing can some-
times be useful. Organizations can create their own private
clouds to create similar scalable systems as public clouds.
Also, they can utilize some services from the public clouds
to improve their own systems and create some form of a
hybrid cloud that best suits to their needs.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith et al., “A
view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, Apr. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721672

[2] H. Erdogmus, “Cloud Computing: Does nirvana hide behind
the nebula?” Software, IEEE, vol. 26, no. 2, pp. 4–6, 2009.

[3] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues
and challenges,” in Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International Confer-
ence on, 2010, pp. 27–33.

[4] S. Bibi, D. Katsaros, and P. Bozanis, “Application
Development: Fly to the clouds or stay in-house?” in
Proceedings of the 2010 19th IEEE International Workshops
on Enabling Technologies: Infrastructures for Collaborative
Enterprises, ser. WETICE ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 60–65. [Online]. Available:
http://dx.doi.org/10.1109/WETICE.2010.16

[5] L. Cocco, K. Mannaro, and G. Concas, “A Model for Global
Software Development with Cloud Platforms,” in Software
Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on, 2012, pp. 446–452.

[6] S. Patidar, D. Rane, and P. Jain, “Challenges of software
development on cloud platform,” in Information and Com-
munication Technologies (WICT), 2011 World Congress on,
2011, pp. 1009–1013.

[7] P. Laplante, J. Zhang, and J. Voas, “What’s in a name?
Distinguishing between SaaS and SOA,” IT Professional,
vol. 10, no. 3, pp. 46–50, 2008.

[8] S. Yau and H. An, “Software engineering meets services and
cloud computing,” Computer, vol. 44, no. 10, pp. 47–53,
2011.

[9] P. Mell and T. Grance, “The NIST definition of cloud
computing (draft),” U.S. National Institute of Standards and
Technology special publication, vol. 800, p. 145, 2011.

[10] B. Sotomayor, R. S. Montero, I. Llorente, and I. Foster,
“Virtual infrastructure management in private and hybrid
clouds,” Internet Computing, IEEE, vol. 13, no. 5, pp. 14–
22, 2009.

[11] S. Marston, Z. Li, S. Bandyopadhyay et al.,
“Cloud computing - The business perspective,” Decision
Support Systems, vol. 51, no. 1, pp. 176 – 189,
2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167923610002393

[12] K. International, “The cloud takes shape: Global cloud sur-
vey,” 2013. [Online]. Available: http://www.kpmg.com/cloud

[13] “Amazon EC2 pricing,” 2013. [Online]. Available:
http://aws.amazon.com/ec2/pricing

[14] E. da Silva and D. Lucredio, “Software engineering for the
cloud: a research roadmap,” in Software Engineering (SBES),
2012 26th Brazilian Symposium on, 2012, pp. 71–80.

6

[15] B. Grobauer, T. Walloschek, and E. Stocker, “Understanding
cloud computing vulnerabilities,” Security & privacy, IEEE,
vol. 9, no. 2, pp. 50–57, 2011.

[16] J. Miranda, J. Guillén, J. M. Murillo, and C. Canal, “Enough
about standardization, let’s build cloud applications,”
in Proceedings of the WICSA/ECSA 2012 Companion
Volume, ser. WICSA/ECSA ’12. New York, NY,
USA: ACM, 2012, pp. 74–77. [Online]. Available:
http://doi.acm.org/10.1145/2361999.2362011

[17] S. Liu, G. Quan, and S. Ren, “On-line scheduling of real-
time services for cloud computing,” in Services (SERVICES-
1), 2010 6th World Congress on. IEEE, 2010, pp. 459–464.

7

Decision Making About Migrating To The Cloud Model

Emad Nikkhouy

Abstract—Today cloud and cloud computing become one of the
hottest topics for research. There are different reasons for
cloud popularity such as excessive scalability, reduced IT cost
and accessibility. However, many companies still find it
difficult to migrate their contemporary application to the
cloud. The difficulty of migrating to cloud could be due to
different reasons such as not knowing which cloud service or
model to choose or being unaware of potential benefits and
risks. In this seminar paper we are going to discuss about
decision making in order to migrate to the cloud. First we are
going to have a brief introduction about the cloud, followed by
step by step decision making, then we will discuss potential
benefits and risks that cloud might have, and finally we will
discuss should the company migrate its legacy software to the
cloud or not.

Keywords: cloud, cloud computing, migration to cloud

I. INTRODUCTION
Migration of many IT companies to the cloud is

predicted to be decisive but slow. Decision Support Systems
(DSS) are playing an important role to simplify cloud
adoption and migration. Whether migrate to the cloud or
not, is one the most difficult decisions, which is made by
Chief Information Officer (CIO) or IT manager. According
to Saripalli and Pingali, researches show that there is a big
concern ‘why, where, when and what’ type of tasks should
be moved to the cloud [1].

Decisions concerning migration to the cloud are
complicated since they are affected by multiple, conflicting
principles such as quality of service (QoS) and service,
where each of them has a significant effect on the enterprise
bottom-line. Throughout this paper different aspects of
decision making for migrating to the cloud will be analyzed
[1].

II. STEP BY STEP DECISION MAKING
Cloud computing has many benefits, which interests

many companies and organizations to migrate their existing
software and solutions to the cloud. Nevertheless, most of
the companies find it problematic and challenging in order
to adapt cloud-based solutions, especially when it comes to
migrating legacy software to public cloud providers [2].
This section, discusses a step-by-step method, which makes

companies informed for choosing cloud selection and
migration.

In this method, the company’s key characteristics,
focused application, and few potential cloud providers make
a profile; then this profile is analyzed in order to discover
constraints that prevent the company to migrate to the cloud.
After analyzing the profile, discovered constraints can be
resolved if possible, and the company can adopt a cloud
solution, which suits the best company needs. According to
Beserra, et al., this process is divided into nine activities and
figure 1 shows the workflow [2].

Figure 1, Step-by-step workflow [2]

8

Each of these activities are explained briefly in the
upcoming subsections [2]:

1) Determine Organization Profile

The purpose of this section is to create a profile for the
company in order to analyze constraints that might influence
cloud migration and selection. For instance, these questions
can be used in order to define company profile [2]:
What is the reason of the company for deciding to migrate
to the cloud? Is it beneficial for the company to migrate to
cloud? Is the company has some legal restrictions for the
locations of its data? How experienced are IT personnel?
How the company obtains and assigns its computing
resources?

2) Evaluate organization Limitations

The aim of this process is to assess serious factors,
which may hinder the company from migration. Therefore,
an introductory evaluation is conducted in order to discover
potential limitations, which are based on company’s profile.
Below examples may be used in order to identify possible
constraints [2]:

• Insistence of employees for not migrating to the
cloud, because they have fear of being dismissed
after migration to the cloud.

• Lawful limitations for the physical location of data
(i.e. government confidential data, which must be
kept within national frontiers).

• Possibility of unauthorized access to important
business data by third parties such as cloud provider.

3) Determine Application Profile

In this activity, characteristics such as usage and
technical aspects of application are investigated, which can
have influence on migration to the cloud. Here are some of
the questions, which can be used in order to define these
characteristics [2]:
What are the key characters of the application? How many
users access the application? From which locations, users
access the application? What times in a day the demand of
usage is high and low? What is the required cost for running
and maintaining the application? What architecture is used
for building the application? What type of file system and
database are used in the application to handle data? What
operating system and environment is needed to run the
application? Does quality-of-service (QoS) need to be
precise? What is the least hardware configuration needed?
What is the traffic usage of the application (sending and
receiving)?

4) Determine Cloud Provider Profile

In this activity, a profile should be created for potential
cloud providers in order to check whether it can satisfy
constraints that company encountered. Below questions can
be used in order to create cloud provider’s profile [2]:

What kinds of services are offered by the cloud provider
(i.e. platform as a service (PaaS), infrastructure as a service
(IaaS) or software as a service (SaaS))? What type of
resources such as virtual machines, development
environment and storage space, is offered by the cloud
provider along its service models? Is there any Service
Level Agreement (SLA) offered from the cloud provider?
How the prices are calculated (i.e. per hour reserved, per
hour on demand or per bidding)? What security mechanisms
are provided by the cloud provider? What other services are
provided by the cloud provider (i.e. monitoring, auto-
scaling, backup)? Does the provider give permission for
accessing its operational logs for forensic or auditing
purposes? What kinds of support services are offered by the
cloud provider (i.e. phone call, email, online chat)?

5) Assess Financial and/or Technical constraints

 The aim of this activity is the obedience between
company profile, application profile and cloud provider
profile. In this process seven main limitations are evaluated,
which are including: organization limitations,
communication limitations, security limitations, financial
limitations, availability limitations, performance limitations
and suitability limitations. Each of the above-mentioned
limitations should be evaluated in the same context. As one
can see in figure 2, these limitations are not totally
independent from each other [2]. For instance, if company
has some financial constraints then the performance it
receives from cloud provider might be low, because if there
is low budget for migrating to the cloud then company
might not rent virtual servers as much as needed.

Figure 2, Limitation affect diagram [2]

6) Devise Application Constraints
In this section, any identified limitations from previous

activity are tried to be eliminated. This can be done by
increasing or reducing migration scope or by changing the
application itself. In migration scope, only a part of the
application component is moved to the cloud or additional
components are moved along with the application. In
changing the application, some codes can be modified if it is
possible. After these modifications, application profile
should be updated in order to restart the evaluation cycle of
constraints. This cycle continues until there are no more

9

constraints or the developer reaches to a point that decides
to abort migrating to the cloud due to some unresolvable
constraints [2].

7) Change Cloud Provider

 The aim of this activity is to change the cloud
provider to another provider in order to resolve constraints
that encountered in the previous activity evaluation. For
instance, constraints that are due to operational cost can be
resolved by finding a provider that has cheaper price.
Similarly, if the constraint is due to the physical location of
cloud provider regarding legal issues, a provider, which is
inside boundaries, can be selected [2].

After the selection of new cloud provider, in order to
restart the constraint evaluation cycle, a new cloud provider
should be created. Same as devise application constraints
stage, the evaluation cycle continues until the developer
finds no more constraints or aborts the migration [2].

8) Determine Migration Strategy

 If there are no more constraints that prevent application
migration to the cloud, then this activity should be executed.
Different guidelines such as SOA (Service Oriented
Architecture) migration can be used to plan migrating to the
cloud. Moreover, these questions can be used in order to
plan the migration [2]:
What kind of activities should be accomplished in order to
perform the migration? What strategies are most suitable for
the migration?

9) Perform Migration

At this stage, the company should accomplish the real
migration of application to the cloud based on strategy,
which was defined in the previous activity [2].

III. EVALUATION OF BENEFITS

A. Benefits of cloud models
There are three different models in cloud computing. In

this section these three models and their benefits are
discussed. In addition, some general benefits of cloud will
be discussed.

1) Infrastructure-as-a-Service & its Benefits

Infrastructure-as-a-Service (IaaS) is related to servers,
physical storage, networking components and processing
capability, which enables the use of Software-as-a-Service
and Platform-as-a-Service, or utility-like service for
customers [3]. Thus, cloud computing mostly is self-
managed by the customer itself on-premise private cloud.

Gibson, et al., described some of the highlights of IaaS
[4]. The study included a project to construct hybrid cloud
or community environment for the team of international
physicists. These physicists needed high computational

power for simulating and developing different models.
Using the existing processors and resources, made it
difficult for these physicists to operate. In order to conquer
these challenges the team developed a cloud infrastructure
project based on IaaS model. In order to reduce latency and
improve end-user experience for users that are in different
countries, nodes were located in different regions of the
world [4].

The IaaS had some benefits for this team of physicists,
which can demonstrate that how cloud computing can have
benefit for communities. Here are some of the advantages
and benefits that team of physicists gained from IaaS [4]:
The nodes that these physicists were working on, were
geographically scattered in order to reduce latency and
improve the end user experience that lived in different
regions and countries around the world. Moreover, due to
having cluster, necessity of purchasing individual
workstations every time was eliminated. For the
maintenance point of view these physicists no longer needed
to maintain the hardware, since the cloud provider handled
this job. Therefore, as a result this group of scientists had
access to enormous resources in order to run their
simulations instead of waiting for grid computing.

2) Platform-as-a-Service & its benefits

Platform-as-a-Service (PaaS) is a platform for
developing on a cloud through the network. PaaS provide
required tools for developers to build web applications
without any required tools installed on their own space.
Microsoft azure, SalesForce.com and Google app engine,
are some examples of PaaS providers [3].

PaaS is built on top of IaaS, thus it has many benefits,
which are same as IaaS, such as [4]:

� Dynamic resource allocation
� Hardware virtualization
� Utility computing
� Low investment cost
� Reduced setup, maintenance and administration time
� High availability
� Reduced processing time by running the application

through parallel processors

3) Software-as-a-Service & its benefits
Software-as-a-Service (SaaS) provides service or

software to users via network. Both vertical and horizontal
market software are provided to the users through Service
Level Agreement (SLA). Some examples of vertical SaaS
are specialized software such as management information
system, Accounting software and Customer relation
Management system. Moreover, some examples of
horizontal SaaS are search engine, subscription management
software, office suits and mail servers [3].

SaaS pricing model is based on pay per use, which
generally are calculated based on customization costs,
training costs, user’s license and user’s support. These costs
are described in SLA, which defines base on pay on demand

10

[2]. SaaS can have many advantages, as it can relate to cost
saving and budgeting for a company [4]. One of the major
benefits of SaaS in deploying applications is low initial
investment cost on hardware, software and staff [4].
According to Hurwitz and Associates, SaaS solutions
offered 64% of saving over 4 years compare to on premise
solution [6]

B. General Benefits of Cloud
Khaje Hosseini, et al., [5] assessed some benefits of

cloud. In this section we will discuss some of these benefits.
According to Khaje Hosseini, et al., there are three

different types of benefits: Technical, Financial and
Organizational benefits [5].

a) Technical
� Response time is reduced because of extensive

computational resources. For instance, when
execution of a series of programs takes 1000 hours
with one computer, the same job can be done in one
hour using 1000 computers with the same price [4].

� At anywhere, anytime with any device (i.e. laptop,
tablet, mobile) computational resources can be
accessed, which facilitates cooperation between
users and also facilitates maintenance and
application support.

b) Financial
� Costs are decreased because of more efficiency in

operations and less infrastructure maintenance.
Moreover, the economy of scale, which can be
attained by cloud providers, can reduce the costs.

c) Organizational
� With cloud, IT personnel do not need to care about

hardware maintenance anymore; therefore they can
focus more on value-added activities.

� Opportunity for the company to propose more
products or services to the users in order to increase
the level of their interest.

IV. EVALUATION OF RISKS

In the previous section three different cloud models, and
some general benefits of cloud have been discussed. In this
section risks of IaaS, PaaS, SaaS and some general cloud
risks will be studied.

A. Risks of cloud models

1) Infrastructure-as-a-Service Risks
Security is an issue in IaaS, especially because other

models are operating on top of IaaS. In a case when there is

a shared environment and one company is hosting many
other companies’ data, all the parties may be at risk of
privacy or security incidents. For instance, virtualization of
the hypervisor gives access to hardware’s physical
resources. If hypervisor gets compromised, it is feasible to
capture memory contents, virtual network traffic, and any
other types of communications, which are under its domain
[4].

In order to conquer above mentioned security issue,
assigning roles to employees, using detailed logging, and
also exerting security principle of minimum privilege is
good inception [4].

2) Platform-as-a-Service Risks
One of the challenges of PaaS customers is that

developers do not develop their applications on new
platforms due to the rapid growth of these platforms and
also uncertainty of developers about the future. However,
these anxieties should be reduced by the time providers get
popular [4]. According to Gibson, et al., currently, it is
feasible to use additional APIs and middleware in order to
develop the application on provider-independent platform,
which gives the user this option to select cloud provider that
their application can be deployed, such as Cloud Foundry
and OpenShift [4].

Compatibility is the second concern that may be
confronted when using PaaS. Different PaaS providers may
have different types of language, middleware, database or
APIs software, which make it difficult for users to choose
the right platform or to switch to another platform [4].

Like IaaS, security is a big issue in PaaS. Public cloud is
not like enterprise infrastructure, and it restricts customers
from securing their data. In order to operate effectively,
platforms must enhance privileges. Thus, the PaaS provider
must strictly limit these privileges so no consumer can get
access to another consumer’s platform, data, memory or
network traffic [4].

3) Software as a Service Risks

In SaaS while accessing data at anywhere and anytime is
convenient and decreases the need for carrying sensitive
data, however, a non-secure endpoint can be a high risk [4].

According to Gibson, et al., in order to reduce the risks
that consumer may encounter using SaaS solution, they
have to ask these questions when searching for a provider
[4]:

• Which SaaS personnel have full access to the
database?

• Is client data separated?
• What kinds of security controls does the provider

use?
• Is data encrypted?
• What are the SLAs (Service Level Agreements)?
• What kinds of data are saved in audit logs?

11

B. General cloud Risks

Khaje Hosseini, et al., assessed some potential risks of
cloud. They divided risks into five categories:
Organizational, Legal, Security, Technical and Financial. In
this section we will briefly discuss some of these risks and
an approach to alleviate the risk [5].

a) Organizational
• Staff productivity is decreased during the migration

because staff would have this anxiety that they might
be dismissed after the migration.
Alleviation approach: Company should make sure
that experts do not get dismissed.

� Difference between existing error handling methods
and cloud provider error handling methods. In case
of occurring error, there is a limited response from
the organization due to lack of information or no
access to the cloud’s error report data or
vulnerability information.
Alleviation approach: Should check the cloud
provider’s SLA and confirm that it has precise error
classification systems and reporting technique. For
instance, what is reported? To whom it is reported?
And how quick it is reported?

b) Legal
� No agreement on data confidentiality rules. For

instance, cloud provider can access data without
permission.
Alleviation approach: Should use encrypted data
storage and transfer.

� Unable to use traditional software licenses, because
the licensing agreement was based on per-seat or
per-CPU.
Alleviation approach: Check all the software license
agreements.

c) Security
� Vulnerability of browser can become more

important.
Alleviation approach: Make sure to update browsers
time to time.

� Denial of sevice attack can make the resources
unavailable.
Alleviation approach: Use tools, which monitor
network.

d) Technical

� Performance is not what was expected. For instance,
input/output and network data transfer latency or
CPU clock rate.
Alleviation approach: Should use benchmarking
tools to examine the performance of cloud before
making any decisions. In order to reduce network
latency or transfer rate, use physical disk shipping,
and to deal with CPU clock rate rent more Virtual
Machines or higher spec ones.

� Collaboration issues between clouds due to
incompatibility between cloud providers’ platform.
Alleviation approach: Use cloud middleware to
solve collaboration issues.

e) Financial
� Actual cost might be different from the expected cost

due to inaccurate resource estimates; providers
increase their price or inferior performance because
of over-utilized servers, consequential need more
resources than expected before.
Alleviation approach: In order to estimate the cost
accurately, monitor existing resource usage and use
estimation applications.

� Augmented cost because of complex integration.
Incapability to decrease costs because of the
unrealizable reduction in system support personnel.
Alleviation approach: Explore system integration
issues and prevent migration of extremely
interconnected system primarily.

V. MIGRATE TO THE CLOUD OR NOT
Migrating to the cloud or not is not a question, which

can be answered easily. Therefore, based on what discussed
and described earlier, companies have to analyze everything
from top to down and go through every details in order to
gather all the necessary information to decide whether it is
beneficial for them to migrate or not.

For some companies it might be very challenging and
costly to migrate their legacy software to the cloud, because
they might need to reengineer the whole application in order
to be able to migrate to the cloud. Therefore, with all of the
challenges, they should have long-term evaluation in order
to decide to migrate or not. On the other hand, for some
companies it might be easier to adapt cloud computing.

VI. GLOBAL CLOUD NETWORKING SURVEY

According to Cisco survey, which was held on 2012, if
the companies have only one choice for moving an
application to the cloud the first choice would be storage,
followed by Enterprise Resource Planning (ERP), Email and
collaboration. But in reality, when they are asked which
applications are already moved, or they have plan for
moving them to the cloud in the next year, most of IT

12

decision makers named Email and Web services, followed
by storage and collaboration solutions such as instant
messaging and web conferencing [7].

For those companies that are on process of migrating to
the cloud, availability/reliability of cloud application was
mentioned as one of the highest network challenges for
hindering a successful implementation of the cloud. Below
figure shows percentage of these challenges [7].

Figure 3, Network Challenges of Migrating applications to the
cloud (Percentage)

On 2012 only 5% of IT companies were able to migrate
at least half of their applications to the cloud, while by the
end of 2012 it was expected that this number increase to
20% [7].

VII. CONCLUSION

Cloud computing has become very popular due to all the
benefits that it has to offer. Many companies find it
interesting and beneficial for them to migrate their software
on the cloud, however, they find it challenging. Companies
that are interested to migrate to the cloud should perform
some researches to analyze what steps they need to take in
order to discover all of the constraints and resolve them.
They have to take all the benefits and risks into account
before making any critical decisions.

VIII. REFRENCES

[1] Saripalli, P.; Pingali, G., "MADMAC: Multiple Attribute
Decision Methodology for Adoption of Clouds," Cloud
Computing (CLOUD), 2011 IEEE International Conference
on, pp.316,323, 4-9 July 2011

[2] Beserra, P.V.; Camara, A.; Ximenes, R.; Albuquerque,
A.B.; Mendonca, N.C., "Cloudstep: A step-by-step decision
process to support legacy application migration to the
cloud," Maintenance and Evolution of Service-Oriented and
Cloud-Based Systems (MESOCA), 2012 IEEE 6th
International Workshop on, pp.7,16, 24-24 Sept. 2012

[3] Bibi, S.; Katsaros, D.; Bozanis, P., "Application
Development: Fly to the Clouds or Stay In-
house?," Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE), 2010 19th IEEE
International Workshop on, pp.60,65, 28-30 June 2010

[4] Gibson, J.; Rondeau, R.; Eveleigh, D.; Qing Tan,
"Benefits and challenges of three cloud computing service
models," Computational Aspects of Social Networks
(CASoN), 2012 Fourth International Conference on,
pp.198,205, 21-23 Nov. 2012

[5] Khajeh-Hosseini, A.; Sommerville, I.; Bogaerts, J.;
Teregowda, P., "Decision Support Tools for Cloud
Migration in the Enterprise," Cloud Computing (CLOUD),
2011 IEEE International Conference on, pp.541,548, 4-9
July 2011

[6] Amazon, “Advantages of SaaS Based Budgeting,
forecasting & Reporting”. Available at:
http://aws.amazon.com/

[7] Cisco Global Cloud Networking Survey. Summary
and analysis of results, 2012. Available at:
http://www.cisco.com/en/US/solutions/ns1015/2012_C
isco_Global_Cloud_Networking_Survey_Results.pdf

13

Cloud Provider Interoperability and Customer Lock-in

Mirva Toivonen
Department of Computer Science

University of Helsinki
Helsinki, Finland

mirva.raman@cs.helsinki.fi

Abstract—Cloud providers (IaaS, PaaS and SaaS) have their
own platform implementations and they use different
implementation languages and modeling for implementing the
same features. This incompatibility can lead to customer lock-
in where customers cannot switch cloud provider without
major extra re-adjusting like application rewrite. The
switching cost may lock cloud consumer in so that they have to
keep using cloud providers services if they want to avoid
paying substantial switching costs. Lock-in is a business
strategy that helps cloud providers to differentiate in
tightening competition in cloud market. However lock-in deter
organizations adopting cloud technology. Different
standardization and abstraction layer solutions have been
developed for increasing interoperability. Interoperability
solutions like abstraction layers change market demand
towards more open direction. Market demand and the ability
to attract more customers are creating more pressure on cloud
providers for supporting interoperability. In this paper I
describe interoperability issues that leads to vendor lock-in and
present brief overwiev on current standardization efforts and
conversion technology. Finally a meta cloud example is
presented.

Keywords-component; interoperability; data migration;
customer lock-in; cloud provider;

I. INTRODUCTION

Cost savings, power savings and increased agility in
software deployment are some reasons why enterprises
should go to the cloud. Using cloud infrastructures and
platforms is convenient because services on demand offers
high flexibility and pay as you go pricing offers low costs.

In this paper cloud consumers are users like developers
or organizations, anyone who use cloud computing services.
Cloud providers offers cloud computing services through
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service services (SaaS). IaaS is a
computational infrastructure as a service that is based on
virtual computers. PaaS is a software development platform
service and SaaS are applications that are delivered to
customers in the form of services over the internet [2].

 Providers have their own incompatible platform
implementations and they use different implementation
languages and modeling for implementing the same
features. Incompatibility can lead to a lock-in situation

where customers want to change cloud platform, but can not
do that because the lack of interoperability. This paper have
short overview on interoperability solutions and reasons
why providers promote their own formats.

The rest of the paper is structured as follows. In the
second section I will briefly explain the key concepts and
section three presents some thoughts of the lock-in as a
business strategy. Fourth section present an overview of
interoperability problems. Section five presents main
features of interoperability standards. Abstraction layer
solutions and an example of meta cloud is presented in
section six. Section seven concludes the paper.

II.MOTIVATION

Interoperability means the ability to exchange
information between two systems and the ability to operate
on it. In cloud context information can be changed between
two clouds or between organizations own private cloud and
public cloud or a mixture of these. G. Lewis [12] points out
that in cloud computing community the term
interoperability is often used as in the meaning of
portability, the ability to move system to another platform or
the ability to bring a system back in to organization. In this
paper interoperability refers to the ability to exchange
information, operate on it and move data from one cloud
platform to another.

Lock-in refers to a situation where customer is
dependent on vendors products or services. In a lock-in
situation switching vendor without paying substantial
switching costs is not possible. Xiaoguo et al. [11] stated
that substantial costs to switch between software systems
can force a customer to continue to use products and
services from a particular vendor. This means that customers
have to keep using cloud providers services if they want to
avoid re-design and adjusting to new cloud environment.
Switching cost is the significant effort in adjusting to new
cloud environment in the form of system re-design, re-
deployment and data migration. As Open Cloud Manifesto
[10] describes, bringing a system back in-house or porting
system to another cloud provider will be difficult and
expensive.

Lock-in and interoperability are related to each other
because the lack of interoperability leads to lock-in problem.
Lock-in by definition is caused by interoperability issues.
Lock -in can happen if organization’s system is designed to
use some particular cloud provider platform. Each platform

14

supports different languages and different libraries that may
not be incompatible. Vendor’s can also license their
software under exclusive conditions [11].Silva & Lucredio
[2] take Google App Engine as an example. Google App
Engine is a PaaS provider that have specific programming
style and it’s own way to manage data. This provides great
elasticity for applications inside the engine but porting
application into different cloud provider may not be easy.
Unfortunately they do not explain in greater detail what kind
of difficulties porting systems into different cloud brings.
Besides this low level API access Google App Engine
provides access to their data stores through standard APIs as
well.

It is desirable for customers point of view that the ability
to change provider is supported. Customers may in the
worst case scenario lose their data or the provider might go
out of business. Armsbrust et al. [1] took Linkup example
from the year 2008 where the online storage service lost
45% of it’s customer data. Linkup went out of the business
after that incident.

Article [1] lists some less dramatic but still harmful risks
that consumers may suffer from, which could be price
increases, reliability problems and the lack of service quality
like provider outages and failures. Substantial switching
costs force customer to use some particular cloud service.
Locked-in customers need to tolerate these risks. These risks
may prevent some organizations from adopting cloud
solutions and prevent wider industry adoption.

One interoperability benefit for customers - besides
avoiding the lock-in risks - is is that customers are able to
compare and choose between providers. Also the use of
multiple clouds or hybrid clouds becomes possible when
interoperability is supported.

III. LOCK-IN AS A COMPETITIVE ADVANTAGE

Vendors support incompatible cloud platforms because it
is a way to differentiate and it gives providers competitive
advantage.

J. Bitzer [14] studied the role of product heterogeneity in
software competition between commercial and open source
software (OSS) with a simple economic Launhardt-
Hotelling model. Their research question was why some
proprietary software support the development of open
source software while others refuse any support. The result
was that the long-run survival of the existent software
depends eventually on the heterogeneity between the
existent software and the new product. The heterogeneity
helps to cover application's fixed substantial development
costs. Refusing to support OSS is rational for proprietary
vendors, because it maintains the heterogeneity of their
products relative to OSS. This kind of thinking may be
behind cloud providers business logic. They do not want to
support open standards because they want to maintain their
differentiation benefits. Implementing own libraries,
application softwares and platforms cloud providers gain
more powerful features [12] and give differentiation
advantage. Harmer et al. [8] wrote: “It is in the interest of
providers to have their own APIs as this simplifies their

development task, fitting perfectly their business model and
their implementation”. Differentiation enables providers to
implement powerful features, innovate and enhance their
services. Providers want to implement as powerful platform
they can and give customers more value by doing so.

Yu [18] have different opinion on whether customer
value is added by not supporting inteoperability: cloud
converter technology adds more value- added services to
consumers because fully realized interoperability adds
pressure for cloud providers to offer more value- added
services to attract consumers. ”Each provider will continue
giving their strong points into play based on their technical
advantages, in order to stand out in competition”[18]. In
other words value added services help to capture market
share.

Interoperability solutions may lose some of theirs
optimality. For example Ranabahu et al. [13] proposed
semantic Domain Specific Language (DSL) development
approach in supporting higher levels of cloud
interoperability. The code generated via templates was
functional, but perhaps was not optimal for given platform.
G. Lewis [12] noted that the standard API makes
applications more portable, but offers less control and less
provider specific features than the low-level API.

Conversion technology is welcome because it attracts
more consumers and more profits for cloud providers [18].
Cloud providers are beginning to realize that customers
want more interoperable cloud services. By supporting
interoperability cloud providers can potentially attract more
customers, because customers want to move freely between
cloud providers [18].

Governments are increasingly supporting
interoperability and discouraging vendor lock-in strategies.
This is an outer force that changes market demand towards
more open and interoperable products. As an example of
this Zhu et al. [11] gives a law (passed in 2006) that French
Parliament passed that requires vendors of digital music
player and online music services to open their technical
standards and become completely interoperable. The aim for
that law was to protect artists copyrights. The law was
targeted towards Apple’s digital music market, where music
downloaded from iTunes was only playable on its iPod
music players. Also technological devices or applications
for increasing interoperability are changing the structure of
a market [18]. Different conversion models give consumers
tools for adjusting the tradeoff between overhead expense
and vendor mobility.

Lock-in is not always a bad thing as long as everything
goes well, platform works well and supports organization’s
long term business goals. The benefits of more powerful
implementation could be more attractive than being able to
switch provider. If the platform's implementation fits
perfectly to the organization's business requirements the
tradeoff between being locked-in and interoperability might
be bigger for lock-in.

Whether to support interoperability depends on the key
values of application or a system. For example if
applications key value is in the data they collect or expose,

15

lock-in situation is a high risk [3]. That is because if each
cloud platform supports different languages and different
libraries that may not be incompatible, the portability will
be limited.

IV.INTEROPERABILITY SOLUTIONS

Loutas et al. [6] did a systematic review of semantic
cloud computing interoperability papers. Interoperability
solutions were divided into three category: standards,
interoperability frameworks and abstraction layers.
Standards try to unify differences between providers. The
aim for standardization is common understanding in how
clouds basic entities like resources, services and APIs are
represented among cloud providers. Abstraction layers hide
cloud providers underlying technical details and differences.
Framework efforts emphasize different parts or directions of
interoperability which vary from unified management,
standardized APIs to layers of abstraction.

Interoperability problems can be divided into three
leves:

- technical interoperability like incompatible
virtualization implementation or programming code

- semantic interoperability where two systems
understand and express the same information differently.

- organizational interoperability, business needs for
cloud providers and customers are fullfilled.

Cloud community sets semantic interoperability between
clouds as a high priority for cloud computing. Semantic
models and techniques are utilized in solutions that try to
solve interoperability problems [6].

Interesting finding [6] was that standardization,
frameworks and semantic cloud solutions agree on using
standardized APIs, common management models, and
utilization of common marketplace, broker or abstraction
layer. That means that standardization efforts,
interoperability frameworks and cloud model solutions all
employ similar strategies for achieving interoperability.
Therefore two requirements for interoperable cloud should
be met:

- a set of standardized cloud models should be
developed. These models describe cloud elements like
SLAs, computing resources and APIs. They give an
abstracted view of these cloud entities and hides the
differences among cloud providers.

- a standardized cloud API should be created and
supported.

Standardized APIs and standardized cloud model
solutions can be seen as fundamental requirements for
achieving cloud interoperability because all three solutions
categories give them high importance in cloud
interoperability [6].

V. STANDARDIZATION

First standardization efforts have been made for solving
technical and service interoperability issues in the cloud.
Bozman and Chen wrote [19] in 2010 that “being able to
pick up a VM and move it is a primary first step to cloud
portability”. This first step was taken a year later when

Open Virtualization Standard (OVF) was approved in 2011.
OVF is a standard for system portability. Other efforts have
been made in data portability and in cloud data
management. Cloud Data Management Interface (CDMI)
standard has been approved for data portability and cloud
service standards like Open Cloud Computing Interface
(OCCI) and Cloud Data Management Interface (CDMI)
have been approved.

Standardization projects can be divided in two groups:
standardizing parts of cloud solution and standardizing how
parts work together [12]. This is consistent with Loutas et
al. [6] paper which divide semantic interoperability issues in
two categories:

- to compatibility conflicts, which can be solved with a
set of standardized cloud models and

- to co-operation with another cloud system, which
should be solved with standardized APIs.

Standards like IEEE P2301 and IEEE P2302 describe
fundamental cloud entities. IEEE P2301 enables portability
by grouping different options of the cloud elements into
logical profiles. IEEE P2302 define topology, protocols,
functionality and governance to support cloud to cloud
interoperability and federated operations.

Distributed Management Task Force (DMTF) develops
and maintains system management standards. DMTF and
Open Cloud Computing Interface (OCCI-WG) are standards
for interaction and management efforts.

- DMTF standardizes interactions between cloud
environments, specifications for delivering architectural
semantics and implementation details for interoperable
cloud management (between providers and consumers)

- OCCI-WG allow development for interoperable tools
for deployment autonomic scaling and monitoring. It have
protocol and API for management tasks and remote
management API for IaaS based services, suitable for also
PaaS and SaaS services.

Table I and Table II from NIST Cloud Computing
Roadmap [16] summarizes available standards and
Standards Developing Organizations for service
interoperability and data- and system portability. Tables
include approved standards which are approved by standard
development organizations and available for public use.
Market acceptance means widespread use by many groups
and de facto or de jure market acceptance of standards-
based products or services. De facto and de jure acceptance
means that the standard is in widespread use but not yet
officially established.

I INTEROPERABILITY STANDARDS MAPPING

Categorizat
ion

Available Standards and SDO Status

Service
Interopera
bility

Open Cloud Computing
Interface (OCCI); Open Grid
Forum

Approved
Standard

Cloud Data Management
Interface (CDMI); Storage
Networking Industry
Association, SNIA

Approved
Standard

16

IEEE P2301, Draft Guide for
Cloud Portability and
Interoperability Profiles
(CPIP), IEEE

Under
Developm
ent

IEEE P2302, Draft Standard
for Intercloud
Interoperability and
Federation (SIIF), IEEE

Under
Developm
ent

II PORTABILITY STANDARDS MAPPING

Catego
rization

Available Standards and SDO Status

Data
Portab
ility

Cloud Data Management
Interface (CDMI); SNIA

Approved
Standard

System
Portab
ility

Open Virtualization Format
(OVF); DMTF

Approved
Standard

Market
Acceptanc
e

IEEE P2301, Draft Guide for
Cloud Portability and
Interoperability Profiles (CPIP),
IEEE

Under
Developm
ent

VI. ABSTRACTION LAYERS

Standardization appears to be good solution to address
the interoperability issue [7], however several articles
[7,8,12,13] stated that standardization in PaaS and SaaS
services is not likely to happen in next few years. Instead of
standardizing all cloud providers, one solution is to allow
multiple cloud usage with abstraction layers between cloud
provider system and customer’s system. Abstraction layers
[3,4,5,8,9,15] hide differences between cloud providers.
Abstraction layers help to ignore the provider being used,
their utility model and their API which enable the use of
hybrid clouds. The advantage is that the abstraction layers
bring immediate results compared to the slow standard
development. Abstraction layers are user friendly and cloud
provider friendly because it allows providers to freely define
their own cloud policies and users are free to choose a cloud
provider [5].

Hybrid cloud means that customer deploy services from
multiple clouds. One hybrid cloud application is cloud
bursting where an application runs in a private cloud or data
center and uses public cloud when there is a high demand
spike for computing. Cloud captures the extra tasks that
cannot be easily run in the internal system. In cloud bursting
the customer pays only for the extra compute resources
when they are needed.

Some abstraction layer solutions are Meta Cloud[4],
abstraction layer [8], RACS proxy for cloud storages [9],
Mosaic of Clouds mOSAIC [15] and cloud broker for any
cloud client [3]. Cloud application solutions for
interoperability are Model Driven Engineering (MDE)
based application [5] and semantic solution based on DSL

application development [13].
Yu [18] represents a high level model for conversion

technology which consists of three components: interface,
abstraction layer and management tools. Interface migrates
applications and data from customer’s interface to a
converter that converts the standard to the target cloud’s
standard. Abstraction layer isolates virtualized services from
the infrastructure in abstraction layer, reducing dependence
on ecosystem in the cloud. Management tools operates on
application and data in different clouds through unified and
standardized management interface. Figure 1. from [18]
represents a high level model for conversion technology.

Figure 1.

Meta Cloud abstraction layer [4] is an example of
solving interoperability problems with conversion
technology. The aim for Meta Cloud is to find an optimal
combination of cloud services, to allow applications to run
anywhere and support runtime migration. Meta Cloud
utilize existing tools and concepts like libcloud, fog and
jclouds libraries, resource templates like Amazon Cloud
Formation and TOSCA and automated deployment tools
like Opscode Chef.

Developers create cloud applications using meta cloud
development components:

- meta cloud API, which consists of abstraction libraries
like libcloud, fog and jclouds. It incorporates design time
and runtime components.

- resource templates, which define concrete features that
the application requires. Developers use resource templates
for describing cloud services they need and constraints for
costs or geographical distribution. Cloud services could be
CPU, memory and dependencies and communication
relations between components. Resource templates are
created by developers by using DSL.

- migration and deployment recipes which describe
automation process. Migration handles migration of an
application at runtime and deployment recipe handles
package installation, starting required servies, managing
package and application parameters and establishing links
between related components.

Runtime migration and automated application life-cycle
management is supported with knowledge base, resource
monitoring, and provisioning strategy:

- Knowledge base stores information of resource
templates and migration or deployment recipes.

17

- Resource monitoring gets QoS statistics from the cloud
proxy and enables meta cloud to decide whether to
provision new instances of the application or migrate parts
of it.

- Provisioning strategy matches application’s cloud
service requirements to actual cloud service providers.
Provisioning strategy makes a list of possible cloud service
combinations that are ranked based on QoS information of
expected QoS and costs in knowledge base. Provisioning
strategy uses resource templates for determine the
applications optimal deployment configuration.

The mediator part is Meta Cloud proxy which is
deployed with the application and run on the provisioned
cloud resources. Proxies expose the meta cloud API to the
application, transform application requests into cloud-
provider-specific requests, and forward them to the
respective cloud services. Proxies also send QoS to resource
monitoring which send the information forward to
knowledge base.

Figure 2. from [4] demonstrate the conceptual meta
cloud overview.

Figure 2.

VII.CONCLUSION

Cloud providers use their own implementations and
notations for differentiation purposes. While new cloud
vendors come to cloud markets, differentiation help
providers to survive in the tightening competition between
cloud players. It seems that proprietary cloud providers had
little desire for opening their systems because differentiation
is considered as a competitive advantage. However different
interoperability solutions like abstraction layers and
standardization efforts are slowly changing the market
demand towards more open and interoperable direction.
This means that cloud providers have to respond to this
demand and support interoperability if they want to attract
customers.

There are theoretical standardization efforts and more
practical abstraction layer efforts for solving
interoperability. The difference between these two is that
standardization efforts try to change differences between
providers towards more unifying and homogenized way

while abstraction layers want to hide underlying technical
details and differences and allow the use of multiple cloud.
The aim for standardization is common understanding in
how clouds basic entities like resources, services and APIs
are represented among cloud providers. Both theoretical
works, like standardization efforts and practical works, like
abstraction layer solutions, agree on steps to be taken for
achieving semantic interoperability. For exchanging
information and being able to understand it semantic
interoperability solutions are common for describing cloud
artifacts.

For achieving interoperability a set of standardized cloud
models for describing cloud entities like SLAs or computing
resources should be developed. Standardized cloud API
should be created and supported for managing cloud
resources and usage. Standardization is in a good beginning
for standardizing technical incompatibility issues. This is a
good start for cloud services who are moving towards
dynamic systems where location, negotiation, provisioning
and instantiation of cloud resources occur at runtime.

REFERENCES

1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, ”A View of
Cloud Computing.“ Commun. ACM 53, 4 (April 2010), 50-58, 2010.

2] Da Silva, E.A.N., Lucredio, D., "Software Engineering for the Cloud:
A Research Roadmap" Software Engineering (SBES), 2012 26th
Brazilian Symposium on, pp.71-80, 23-28 Sept. 2012.

3] E. Maximilien, A. Ranabahu, R. Engehausen, L. Anderson, “Toward
cloud-agnostic middlewares.” Paper presented at the Proceedings of
the Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA, pages 619-625, 2009.

4] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, S. Dustdar, "Winds of
Change: From Vendor Lock-In to the Meta Cloud," IEEE Internet
Computing, vol. 17, no. 1, pp. 69-73, Jan.-Feb., 2013.

5] J. Miranda, J. Guillén, J. Murillo, and C. Canal, “Enough about
standardization, let's build cloud applications.” In Proceedings of the
WICSA/ECSA, Companion Volume (WICSA/ECSA '12). ACM, New
York, NY, USA, pp. 74-77, 2012.

6] Loutas, N.; Kamateri, E.; Bosi, F.; Tarabanis, K., "Cloud Computing
Interoperability: The State of Play," Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference
on , vol., no., pp.752,757, Nov. 29 2011-Dec. 1 2011.

7] T. Dillon, C. Wu, E. Chang, “Cloud Computing: Issues and
Challenges”, Advanced Information Networking and Application
(AINA), 2010, 24th IEEE International Conference, pp. 752-757,
Nov. 29 2011- Dec.1 2011.

8] T. Harmer, P. Wright, C. Cunningham, and R. Perrott, "Provider-
Independent Use of the Cloud," in The 15th International European
Conference on Parallel and Distributed Computing, 2009, p. 465.

9] H. Abu-Libdeh, L. Princehouse, H.Weatherspoon, “RACS: a case for
cloud storage diversity”. In Proceedings of the 1st ACM symposium
on Cloud computing (SoCC '10). ACM, New York, NY, USA, 229-
240, 2010.

10] The Open cloud manifesto: http://www.opencloudmanifesto.org/Open
%20Cloud%20Manifesto.pdf Spring 2009.

11] K. X. Zhu, Z. Z. Zhou, “Lock-In Strategy in Software Competition:
Open-Source Software vs. Proprietary Software”, Information
Systems Researchs, Volume 23, Issue 2, Pages 536-545, 2012.

12] Grace A. Lewis, “Role of Standards in Cloud-Computing
Interoperability” IEEE, 46th Hawaii International Conference on
System Scieneces, pp. 1652-1661, 2012.

18

13] Ajith Ranabahu, Amit Sheth, “Semantics Centric Solutions for
Application and Data Portability in Cloud Computing”, 2nd IEEE
International Conference on Cloud Computing Technology and
Science, pp. 234-241, 2010.

14] J. Bitzer, “Commercial versus open source software: The role of
product heterogeneity in competition”, Economic systems, Volume
28, Issue 4, pages 369-381, December 2004.

15] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Mahr, M.
Loichate. “Building a Mosaic of Clouds” In Euro-Par 2010 Parallel
Proces Workshops, volume 6586 of Lecture Notes in Computer
Science, pages 571–578. Springer Berlin /Heidelberg, 2011.

16] M. Hogan, F.Liu, A. Sokol, J. Tong, “NIST Cloud Computing
Standards Roadmap – Version 1.0”, (Special publication 500-291),

NIST: National Institute of Standards and Technology, Gaithersburg,
2011.

17] P. Harsh, F. Dudouet, R. G. Cascella, Y. Jégou, C. Morin,“Using Open
Standards for Interoperability: Issues, Solutiond and Challenges
facing Cloud Computing”, Proceedings of the 2012 8th International
Conference on Network and Service Management, p. 435 2012.

18] Z. Yu, “Cloud Computing – Conversion Technology for
Interoperability”, Fourth International Conference on Multimedia
Information Networking and Security, pp.179-182, 2012.

19] J. Bozman, G. Chen “Cloud Computing: The Need for Portability and
Interoperability”, IDC, sponsored by Re Hat. Inc. August 2010.

19

Comparision of different approaches to evaluate cloud computing services

Rakesh Pandit
Department of Computer Science

University of Helsinki
Helsinki, Finland

rakesh.pandit@cs.helsinki.fi

Abstract—There has been a large increase in the number of
enterprises offering various cloud services since last 5 years.
Good deal of research has been happening to evaluate these
services based on different criteria. Even though, the progress
in this area is substantial, the related research has been done
in bursts and there is still no consensus on a fixed set of metrics
or frameworks that represent various evaluation aspects. This
paper is a systematic review to compare three efforts by Li,
Brien et al., Li, Yang et al. and Garg et al. The approaches
taken by all three, to consolidate different matrics into a single
framework or catalogue, in order to help users and providers
to evaluate/rank services, is different and unique. This paper
will discuss these approaches and different goals these efforts
try to address. This discussion also includes the use of Goal
Question Matric paradigm to simplify the comparision.

Keywords-Cloud computing; Quality of Service; Measure-
ment;

I. INTRODUCTION

Cloud services, be it Infrasture as a Service (IaaS) or
Software as a Service (SaaS) or Platform as a Service (PaaS),
are on rise. Cloud service providors are attracting customers
to move computation and storage requirements to cloud. This
provides several advantages, including low initial cost of
infrastructure and maintainence, reliability and cost benefits
on computation as well as storage. As cloud services reach
more application and customers, it has become important to
evaluate them based on different attributes and requirements.
This is not only true (obvious reasons) for customers, but
also important for service providers to improve services.
For customer this evaluation is important, and allows them
to do a cost benefit analysis for initial migration and later
service utilization. It also allows customer to select between
range of service providers offering similar services, based
on customer requirements and future growth. Some service
providers may provide good services for I/O intensive ap-
plications and others for CPU intensive applications. So,
even for single customer it may make sense to use two
different services. Even if customer is locked up with a
service provider, there is a need to periodically verify and
compare whether the quality of service is same or not, or
whether it can get a better deal from other service providers.
There are two major sources of metrics available, which can
used to evaluate different cloud service offerings. One of the
source is Service Level Agreements (SLAs) signed between

service provider and customer, other source is academic
research publications.

There has been lot of research in cloud service metrics to
evaluate different aspects of these services. There have been
some efforts to create catalogues or frameworks to assemble
all of these matrics to create a single place of reference or
converge the effort. But all of these efforts are still happening
in bursts and they haven’t converged yet. This paper takes
up three recent research efforts towards creating frameworks
and catalogues to converge different metrics. These efforts
are useful for customers as well as service providers. It
helps customers to evaluate different services based on
their requirements, by referring to a single catalogue or
framework. In addition it also helps service providers to
evaluate their services by comparing them to similar services
offered by different providers. Moreover, it converges all the
efforts going into evaluating different metrics, for different
attributes, and for different requirements. Three efforts we
will be discussing in this paper have been done by Li,
Brien et al.[1], Li, Yang et al.[3] and Garg et al.[2]. Li,
Brien et al.[1] has targetted commercial service providers
directly and developed a catalogue to evaluate services based
on comparision to different services already available in
market. Garg et al.[2] on the other hand have developed
framework keeping user/customer presepective in mind. Li,
Yang et al.[3] have developed a framework which takes
into consideration both customer requirements as well as
provider’s service quality.

In this paper we will discuss different approaches taken by
all three researches to come at catalogues and frameworks,
goals they try to address, intersections between them, ex-
isting coverage i.e cloud service providers these catalogues
have been run against. There are number of challenges these
efforts need to overcome while doing research on framework
or catalogue. Metrics need to cover attributes which are not
only obvious and relevant to different customers, but also
simple to compute, so as to keep measurement cost low[10].
Second important challenge is to select set of attributes
which are common and most relevant to the goals framework
wants to address. There are number of attributes frameworks
may have to give up to save on development time and reduce
complexity of framework.

The remaining paper is divided into 4 sections. Section II

20

discusses different approaches taken by three efforts. Section
III discusses the metrics and frameworks in those efforts.
Section IV does a comparision using GQM paradigm. Sec-
tion V has conclusion.

II. DIFFERENT APPROACHES

In this section we discuss about the approaches these
three researches have taken, to come up with a catalogue or
framework. Research done by Li, Yang et al.[3] targets both
customers/users and cloud service providers. They target
at providing information related to how costly different
services will be to different customers. In addition their met-
rics targets to provide performance comparisions specifically
targetted at applications running on cloud. This includes
computation, networking (both intra and inter) and storage.
For service provider, their framework doesn’t not just aim
to provide performance results, but also reasons because
of which it performs bad. Their research focus is to keep
performance and cost mertrics uniform for different services
providers. This limits it to fixed set of services which are
common in industry i.e. they don’t aim at covering services
which specially target small set of applications. This has
couple of advantages. It keeps metrics fair and increases
coverage. In addition, it keeps the cost of research and
measurement low. The idea here is to measure different
service providers periodically, making sure that service
provider’s user policies are followed even while taking the
measurements. This makes it possible that measurements are
realistic, and metrics do not depend upon factors which vi-
olating usage policies, and thereby preventing it from being
widely usable. Covering every service provider would still
be costly and time consuming. Making a good judgement on
that is also important, but the research doesn’t include any
suggestions on that account. Despite that they have tried to
keep important aspects related to deployment (their solution
- ClouCmp[3]) in mind, while makes it a good candidate for
different customers and service providers.

Second effort by Li, Brien et al.[1] tries to come up with
a catalogue by targetting only commercially available cloud
services. Their research covers evaluation of existing metrics
for common commercially available services. This resulted
in dividing all metrics based on three aspects: performance,
security and economics. Based on this division, they have
planned their catalogue around these three aspects. Perfor-
mance involves communication between users and services
or between services internal to cloud provider for a specific
client. In addition performance also includes computation,
which is important for CPU intensive applications. Perfor-
mance metrics also covers mermory both non-persistant as
well as permanent storage. Certain application just need
temporary (cache) memory for fast access but others need
storage for permanent data. In addition to memory, computa-
tion and communication, they propose certain metrics to give
an overall picture of service performance. For economics,

two areas which are covered for metrics are: elasticity and
cost evaluation. Elasticity refers to extension or reduction
of resources allocated for a customer. Other factor related
to economics is cost, which doesn’t only play part in direct
expenses. Li, Brien et al.[1] have taken other aspects of cost
into account e.g. incremental cost effectiveness, time related
and performance related cost effectiveness, etc.

Effort by Garg et al.[2] has entirely based on user view
and user’s requirements. It takes into consideration different
attributes such as accountability, agility, cost, performance,
assurance, security, privacy and usability into account. Many
of these attributes are non-functional i.e it is difficult to
assign values to them e.g security. Garg et al. develops
a framework which takes user requirements into account
and based on those filters service providers. It then ranks
these service providers based on best fit, which is in turn
based on attribute based metric set. Ranking is based on
weights associated with different attributes depending upon
user requirements.

III. COMPARISON OF FRAMEWORKS AND CATALOGUES

In this section we discuss in details metrics taken up
in all three cases and compare them. We divide them into
four categories and look at coverage of all three studies in
discussion.

A. Performance

A service provider provides computation power to user
via virtual instances. These virtual instances are useful for
executing customer application or storing customer infor-
mation either for shorter or longer period. Most of cloud
service providers have more then one level of performance
based services available. Different levels have different re-
sources allocated i.e. some levels of service will have faster
CPUs, more cores, and good storage capacity. The transition
between these level can be manual or on demand. In later
case customers are moved automatically to higher levels
depending upon running application requirements.

Li, Yang et al.[3] in Cloudcmp use three metrics to
compare computation power of different service providers.
These are benchmark finishing time, cost and scaling latency.
Note that cost is an economic metric, but here it is referance
is to cost of running benchmarks. Benchmark finishing
time uses commonly used benchmarks for CPU usage and
other metrics. There are various challenges for running
these benchmarks e.g different services providers provide
a closed environment to run application code. These closed
environments have limitations to number of cores, memory
usage and time for completion. So, common benchmarks
used for desktop computors need to be updated to meet
these constraints. Because running a benchmark involves
paying cloud service provider, this makes it an interesting
parameter to do a quick comparision among different cloud
service provider using cost-performance ratio. Li, Yang et al.

21

made sure to keep these modified benchmarks simple and
these benchmarks, based on service provider, can also use
multicores if available. Similicity has an advantage that it
gives realistic comparision for cost-performance evalation
for small budget and within different levels of services
offered by same provider. Cloudcmp also has metrics for
scaling latency. This metric is useful to measure scaling of
resouces based on application usage. This is a good metrics
for users to figure out how different service providers behave
with different scaling strategies and whether it would be
better for application to use another strategy to minimize the
cost and not pay in terms of performance. Cloudcmp makes
it possible to differentiate between provisioning latency
and booting latency. Provisioning latency is the time delay
taken by service provider to allocate resources (e.g. virtual
machines) to users were as booting delay is the time it
takes for assigned resouce to be ready for usage. These are
important differences and can play vital role in decisions
taken by customers. These are also useful for cloud providers
to make sure customers know that allocation of a resouce
taking booting time. It also allows service providers to
compare resource allocation methodology with other service
providers.

Li, Brien et al.[1] have divided performance into four
categorises: communication, computation, memory (cache)
and storage (persistant). Every category is further divided on
the basis of capacity. These divisions for each of the category
are based on: speed, availability, latency, reliability and
throughput. This division is based on cloud services being
offered by some common service providers. In addition to
this division scalability and variability is also taken as part
of performance metrics. Communication involves transfer of
messages between intra cloud services or between exyernal
clients (from customer/user end) to exported services for
consumption. These messages can be network level i.e
TCP/UDP messages or application level MPI messages.
Both of them have been taken into consideration. These
metrics also allow customers to get a hint about how much
of total time has been spent in intra and external communi-
cation, and hence whether customers can adapt their appli-
cation for better gain and savings. Computation evaluation
is done to check whether CPU intensive applications can
perform better in cloud instances (virtual guest). Transaction
speed and latency are important capacity attributes taken into
picture here. For temporary memory (cache) performance
this catalogue involves certain metrics which can be useful
for customers to check response time with different hier-
archies of memory provided by different service providers.
Persistant storage is another performance category coverd by
this catalogue. Accessing persistant data on cloud services
takes longer time then temporary data. For accessing small
files or small data, the overhead for different services can
vary and thereby effect applications. Methods for accessing
data from cloud service providers can be divided into three

parts: downloading blobs i.e. big chunk or queries related
to tables e.g GET, PUT etc. or queuing operation e.g add,
remove or insert data. Storage evaluation metrics provides
metrics to differentiate these requests and provide relevant
readings for them. Interestingly this catalogue also includes
plotting of histogram for HTTP/GET requests which is
useful to check throughput during a particular time slot.
In addition to communication, computation, and memory
(both temporary and persistant) this catalogue also provides
certain performance metrics useful for providing overall
performance of cloud service provider. One of these matrics
provides aggregiate performance by running a fixed set of
applications with known functionality and resouce consump-
tion on different service providers. Another being perfor-
mance based on requests which consume different resources
and hence give a weighted indicator. Weight is derived
from resource consumed by request in question. This set of
overall performance indicators are useful for getting a big
picture on obvious attributes for common requirements and
expectations of a customer. Scalability and Variability are
useful indicators but rather then numbers tables and charts
give a quick indication of service performance for both of
these capacity attributes. This catalogue considers charts
and tables as metrics as well and for both of this capacity
attributes plots graphs and charts based on scaling and
variation in resources consumed by application or provided
by service provider.

Garg et al.[2] has created SMICloud a framework which
ranks different service provides based on different users and
customers but still gives a general view useful for service
providers as well. Performance includes service response
time, sustainability, data center performance per energy
units, suitability (which can be considered as performance
metric), accuracy, availablity, stability, adaptability, scala-
bility, throughput and efficiency. Some of these attributes
are non-fucntional, but Garg et al. has tried to find closed
possible quantifiable term. Service response time seems to
be an obvious choice. It includes time when client/customer
issued a request, time after which resouce is ready for
usage, including boot time and even IP allocation time
if applicable. It is measured till the time requestor can
start installing application. SMICloud includes sustainability
based on carbon footprint. It may not be a useful metric
from customer or service providers point of view, but is
an important metrics not covered by other efforts. SMI-
Cloud proposes to use different available calculators or
famous metrics for calculating the carbon footprint. Data
center performance per energy metrics takes into account
IT infrasture energy usage and equipment utilization. It also
includes calculation of renewable energy usage by service
provider. It will help service providers to look into energy
saving options and compare there consumption details with
other service providers if available. There are two types of
user requirements related to sustainibility: essential and non-

22

essential. Sustainability metrics takes into account both of
these while calculating metrics value. Garg et al. calculates
accuracy based on how much service provider’s services are
deviating from expected values as agreed in SLA’s signed
with user/customers. This is applicable for computation
resources because they are usually quantifiable and agreed
on in SLAs. SMICloud proposes to calculate transparency as
effect of service changes on applications running in service.
The effects can be replaced with frequecy of changes as well.
Availabilty is defined as time for which user/customer can
access a given service and reliability on the other hand is
defined as mean time between failures based on assurances
by service provider. Stability is deviation in resouce value
from normal and mean of rate of change over a fixed period
of time. Adaptability is the time service provider takes to
adjust its resouces or offerings based on client/customer
requests. It is calculated in terms of time taken to reach
at new state which meets new demands. Scalability is the
ability of a service provider to handle many requests at same
time as demand grows.

B. Meomory

Cloud services provide memory has part of their offerings.
It could be in the form of temporary memory e.g cache,
used by applications to do normal processing or it could
be persistant storage to store data for fixed time i.e longer
durations. There are three types of storage offerings offered
by service providers these days[3]: storage for blobs, table
storage for structured data and queues for messages. Blobs
store unstructured data e.g long files which are downloaded
and uploaded to service providers. Table storage involves
records in simple tables with support to simple queries and
not complex queries e.g join or group by queries. Third type
of storage is message queues which stores messages and
passes it to different instances[3]. Interfaces for these storage
services are stable mostly and these can be accessed over
HTTP tunnels. Storage services provide high availability and
reliability of data but the consistency levels are not strong
enough[3]. Consistency refers to the fact that a read followed
by a write will result in latest results.

Li, Yang et al.[3] uses three types of metrics for compar-
ing cost and performance related to memories. These are re-
sponse time, cost per operation and time to consistency. For
an operation, from the time it is issued and till the time re-
sponse is received back we compute the time interval and use
it as operation response time. The operations are common
operations for different types of storage solutions offered by
different service providers. For example, for table operations
are get, put and query, for queue operations are send and
receive and for blob operations are upload and download.
As mentioned earlier, usually service providers implement
HTTP tunnels to offer storage APIs. Li, Yang et al.[3] have
developed programs which use persistant HTTP connections
to these APIs and call these APIs. Persistant connections

help reduce latency by not establishing connection everytime
query has to be sent. There is more to it then seems at
first. Li, Yang et al. vary request size to measure latency
vs throughput. They are also run simultaneous benchmarks
at same time to check limitations of throughput. Cost per
operations is an important metric which allows customers to
compute cost-effectiveness for different services specifically
for storage and choose best amoing them. It uses billing
API to compute cost for services. Different services provides
charge based on different metrics e.g some charge on amount
of data passed in communication were as others charge
based on CPU cycles spent for query processing. Time to
consistency is another important metric which measures the
time between a data element is written to the time it is
available for consistant reads. Usually services don’t offer
consistency between different data centers, and this study
limits itself to single data provider. This metric is useful
for customers who want strong consistency for some data
critical for operation of application. The test run is simple,
first write something to storage via API and then repeatedly
read at regular intervals to come up time it takes for results
to match.

Garg et al.[2] has certain hybrid metrics which mea-
sure storage related metrics, but nothing dedicated to stor-
age/memory as such. As an example throughput and effi-
ciency metrics, accuracy, availability and data center per-
formance per energy are related to memory as well. Accu-
racy measures degree to which service provider obeys with
promises in SLA. These involve memory related promises
as well, including both temporary and persistant memory.
DPPE (Data Center Performance per Energy) includes stor-
age capacity in its energy computation. Cost metrics also
involves cost of storage in addition to computation and
network bandwidth.

Li, Brien et al.[1] divide memory evaluation into two
groups. First group evaluates temporary memory and second
evaluation metrics takes care of persistant storage. Tempo-
rary memory (e.g cache) can be used to access momory
for day to day operations of an applications. This memory
isn’t permanent but needs to be fast. Random Memory
Update rate, Mean Hit Time, Memcache Get/Put/Response
Time, Intra node scaling, Sharp performane drop are some
of the metrics used for temporary memory performance.
As an example Sharp performance drop is useful to find
cache boundries[1]. Intra node metrics on the other hand is
used to find cache contention by using scalability evaluation
metrics. It uses different load under different CPU cores to
check execution. Permanent storage performance evaluation
metrics are more common though. Li, Brien et al. use
one byte data access rate, benchmark I/O opertion speed,
Blob/Table/Queue IO (similar to Li, Yang et al. above)
operation speed, Blob/Table/Queue IO, Page Generation
Time(s), I/O Access Retried Rate, Benchmark I/O bit/Byte
Speed etc for storage evaluation[1]. One byte data access rate

23

is useful for calculating transaction speed. This is important
to know the overhead assosiated with transfer of files.

C. Network

Network performance measurement is important part of
cloud service validation. Our interest is specially intra-
network communication between different instances of cus-
tomer applications running in cloud or among applications to
other shared cloud services[3]. The communication between
intra datacenter instance of application is different then
between two separate data centers. Communication between
two separate data centers isn’t important, but communication
with data center and shared services is relevant because usual
rates/charges for outside communication are same[3]. Intra
datacenter infrastructure differs between different service
provider i.e. switches, router hardware, cables on intra
cloud network vary. Hence, evaluation of communication
is important. Communication also plays a key role in cloud
instances and clients/customer softwares. Li, Yang et al.[3]
path capacity and latency to compare intra cloud commu-
nication. Path capacity is measured by measuring through-
put for TCP traffic as TCP protocol is mostly used for
communication. It allows one to figure out data throughput
and congestion rate in the intra network. It also allows
customers to figure out the configuration of internal network.
For external communication to client/customer applications,
cloud services divert traffic to instances which are very near
to the point from which initial request was sent. Li, Yang
et al. use optimal wide area network latency to compare
this kind of communication[3]. This latency is useful to
calculate the actual transmission latency between customer
and cloud service provider when there is optimal mapping
i.e. the customer has been directed to nearest instance of
cloud provider. Li, Brien et al.[1] has metrics for both
IP level as well MPI messages for application level. Max
number of transfer sessions, packet loss frequency, correla-
tion between runtime and communication time, TCP/UDP/IP
transfer delay, MPI Transfer Delay, connection Error Rate,
Proble Loss Rate, TCP/UDP/IP transfer speed, MPI transfer
speed are metrics included into communication evaluation
metrics[1]. As with other metrics in catalogue composed by
Li, Brien et al. communication evaluation metrics is also
divided into five capacity attributes and they are: transaction
speed, availability, latency, reliability and data throughput.
Garg et al.[2] metrics are hybrids which include network
related parts in metrics such as data center performance per
energy, stability, cost, accuracy, availability etc.

D. Others

Garg et al.[2] defines certain metrics which don’t fall
under computation, network and memory. Usability, interop-
erability, adaptability are few of them. Usability is defined as
average time a user learns to use cloud services, install, re-
move and update application software on it. It includes oper-

Figure 1. Performance metric comparision based on GQM paradigm

Figure 2. Network metric comparision based on GQM paradigm. [OK]
marked * are special cases where metrics are more abstract and don’t have
a simple difinition.

ating on cloud service, installation of dependencies and soft-
ware, learning features and other related documentation[2]
etc. Interoperability is defined as possibility of commu-
nication between different instances hosted on different
cloud providers. It is useful for migration or communcation
between different applications. Adaptability is defined as
service providers ability to provide new resouces based on
request. Garg et al.[2] has used four assesment criteria to
come up with useful and practical metric measurements.
These are correlation, practical computability, consistent and
discriminative power.

Li, Brien et al.[1], also mentions security evaluation
metrics like communication latency over SSL, Discussion on
SHA-HMAC, Discussin using Rish List, General discussion
etc. There are no formulae for most of them but reseach
assumes discussion as metrics as well. It also discussion
elasticity and cost in economic evaluation metrics. Elasticity
includes boot time, total acquisition time, suspend time,
delete time, total release time etc.

IV. COMPARISION USING GQM PARADIGM

Goal Oriented Measurement (GQM) paradigm[10] is a
process improvement method in which measurements are
laid down to address completeness, consistency and suit-
ablitly of a process. Figure 1 compares three research
efforts based on goals related to performance of cloud
services. These goals are CPU, communication, memory

24

Figure 3. Memory metric comparision based on GQM paradigm

(for processing), scaling latency, benchmark cost etc. Based
on comparision it can be easily seen that catalogue by Li,
Brien et al. seems to meet most of these goals were as
SIMCloud a near second. This trend continues if we compare
three research efforts based on network metrics figure 2 e.g
reliability, latency, throughput and availability. Catalogue by
Li, Brien et al. outshines other two even in memory metrics
comparision figure 3. As stated in earlier section , all three
efforts have taken different directions and it can easily seen
if one compares them based on GQM paradigm. Definitions
of some of the available metrics is very abstract and this
comparision isn’t really perfect, but it gives a broad pictures.

V. CONCLUSION

The number of cloud service providers has increased and
the corresponding type of services offered have increased
manifold since last few years. It is important for customers to
use a good source of metrics but consistently same source of
metrics to evaluate these services. The paper tries to compare
three different approaches taken to assemble metrics and
hence aims to converge the research work. Future work
will involve evaluating further these metrics frameworks and
catalogues based on GQM paradigm[10] and come up with
a single unique metrics which uses a broad approach to
prevent research in bursts.

REFERENCES

[1] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a catalogue
of metrics for evaluating commercial cloud services,” in Grid
Computing (GRID), 2012 ACM/IEEE 13th International Con-
ference on, sept. 2012, pp. 164 –173.

[2] S. K. Garg, S. Versteeg, and R. Buyya, “A framework
for ranking of cloud computing services,” Future Generation
Computer Systems, vol. 29, no. 4, pp. 1012 – 1023, 2013. [On-
line]. Available: http://dx.doi.org/10.1016/j.future.2012.06.006

[3] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp:
Comparing public cloud providers,” Internet Computing, IEEE,
vol. 15, no. 2, pp. 50 –53, march-april 2011.

[4] R. Krebs, C. Momm, and S. Kounev, “Metrics and techniques
for quantifying performance isolation in cloud environments,”
in Proceedings of the 8th international ACM SIGSOFT
conference on Quality of Software Architectures, ser. QoSA
’12. New York, NY, USA: ACM, 2012, pp. 91–100. [Online].
Available: http://doi.acm.org/10.1145/2304696.2304713

[5] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing
services for many-tasks scientific computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 6, pp. 931–945, Jun. 2011.
[Online]. Available: http://dx.doi.org/10.1109/TPDS.2011.66

[6] L. C. Briand, C. M. Differding, and H. D. Rombach, “Practi-
cal guidelines for measurement-based process improvement,”
Software Process: Improvement and Practice, vol. 2, no. 4, pp.
253–280, 1996.

25

Analysis of the Availability of Amazon Web
Services’ Cloud Infrastructure Services

Santeri Paavolainen
Department of Computer Science

University of Helsinki,
Helsinki, Finland

Email: santtu@iki.fi

Abstract—With the rising importance of cloud infrastructure
services as basic building blocks used for creating large-scale
distributed software systems comes also the need to understand
why they fail, how they fail and how often do they fail. A lack
of accurate information on availability of cloud infrastructure
services means that any predictions on availability made during
system design are based either on ad hoc estimates or based on
service level guarantees provided by cloud vendors themselves.

This paper provides an analysis of known failures in one cloud
infrastructure provider, Amazon Web Services, and from this
availability estimates for overall availability, availability of EC2,
EBS, RDS and ELB and S3 services globally as well as the
availability of aggregate of all analyzed services by geographical
area.

The results are based on 12 months of publicly available failure
information for Amazon Web Services. The resulting availability
rate for the analyzed infrastructure service is between 99.947%
and 99.981% depending on the assumptions made with failures
with incomplete data. Also a wide variance in failures between
geographical regions was observed with the largest total duration
of failures in us-east-1 region and the lowest in us-west-2 region.

I. INTRODUCTION

In recent years the use of cloud computing has increased
dramatically [1]. Cloud computing offers many inviting fea-
tures such as service scalability and availability that were dif-
ficult to reach without substantial capital investments in hard-
ware. Now cloud-based virtualized computing, networking and
storage services are widely available to customers globally on
demand and paid on a pay-by-use payment model [2].

Cloud computing has also given rise to new concerns over
security, availability and data durability among others [3,
Table 2]. Not all concerns necessarily turn out to be real
problems – but even unfounded concerns affect expectations
of cloud services and can hinder their cost-effective and timely
adoption.

Concerns about cloud service availability have a good soil
to grow in. During the initial period of cloud computing
there were several highly publicized outages by different
vendors (for an early list see [4]). Although cloud service
outages are occurring more or less regularly, their relevancy to
customers need to be considered carefully. Early cloud service
failures predictably affected a large portion of customers as the
absolute number of cloud service users was small.

It is natural to expect that cloud services will keep failing
also in the future. Other systems such as electricity grids we

normally consider as highly reliable have outages. There is
no reason to assume that cloud services - both software and
hardware - would be any different. Thus the question is not
whether cloud services would fail – they will – but what is
the actual impact to customers that failures will have?

There has been a lot of research on cloud computing quality
metrics such as computing expected resource quality and sta-
bility of cloud computing systems [5]–[7] as well as applying
reliability engineering techniques and their effects when used
on real or simulated cloud computing environments. However
to the best knowledge of the author there is no research into
actual availability of cloud computing infrastructure services
based on historical outage events. The lack of fact-based
availability data noted also by Iosup et al. [8].

Reliability engineering and fault tolerant system architec-
tures [9], [10] are used to guard against localized infrastructure
failures. Fault-tolerant system design is considered a must
feature for any non-trivial service. In practice reliability en-
gineering techniques on systems built on cloud infrastructure
services does face a practical problem when trying to esti-
mate the amount of resources needed to attain some desired
availability goal (conversely the same problem applies when
trying to estimate availability of a system based on available
resources). Without accurate knowledge of availability of the
underlying cloud infrastructure one must either build an excess
of redundancy into the system (at a cost), or face a possibility
of over-estimating availability of the finished system (at a
potential increased cost).

The goal of this paper is to estimate availability of Amazon
Web Service’s core infrastructure services (EC2, EBS, RDS,
ELB and S3, for description of these services see [11]) based
on publicly available historical information. Amazon Web
Services was chosen as the evaluated cloud infrastructure
provider because its dominant market position which makes its
failures highly visible and publicized. In particular, this paper
focuses on estimating service availability on the granularity of
availability zones.

The rest of this paper is arranged so that Section II describes
sources of failures in cloud infrastructure and how these
manifest themselves visibly to customers. Section III describes
sources of data used in the study and how data is processed
and analyzed. Section IV discusses results of the analysis and
Section V describes potential sources of errors in the data and

26

its analysis. Finally related work is presented (Section VI)
before concluding (Section VII).

II. FAILURES IN THE CLOUD

A. Failure Sources

There has been a large amount of research into failures of
conventional computer systems and server virtualization [12]
[7]. There is no reason to assume these results would not
apply equally to the hardware used to build cloud computing
systems. A similar argument can be made when looking at
failures and availability of whole data centers [13].

Cloud infrastructure also creates new failure models that
were non-existent in earlier computing systems. Undheim et
al. [14] and Jhawar et al. [15] point out that the control plane
responsible for provisioning and management of cloud infras-
tructure resources becomes a new potential source of errors.
While cloud-based systems with slowly changing resource
needs may choose to ignore the possibility of control plane
problems this is not the case for all systems. For example
systems with a variable usage pattern can be severely degraded
or even completely disabled when not being able to scale up
when needed [16].

B. Scope of Outages

Highly available systems are based on redundancy. Fault
tolerant design distributes redundant components over different
failure domains which isolate collections of resources from
common failures. In earlier system design failure domains
were created by physical separation and use of multiple power
and network circuits. Cloud computing abstracts these physical
attributes away thus customers cannot know the physical
relation between any two computing resources. For example,
a custom cannot determine whether a power circuit failure
would affect multiple resources. Earlier designs could look at
multiple failure domains – failure of a single server, failure of
a rack, failure of a power domain and failure of a whole data
center. These physical aspects of a data center organization
are not visible when designing systems operating in cloud
infrastructure services.

Cloud infrastructure providers mitigate the loss of physical
visibility by introducing new abstractions that provide guar-
antees on isolation from common failure models. The new
failure domain abstraction provided by Amazon Web Services
is availability zone, where the guarantee is that resources
located in different availability zones will not have correlated
failures (power outages, network cabling problems etc.). This
is attained by ensuring that any data center includes resources
assigned only to a single availability zone1.

From a cloud customer’s point of view a cloud resource
failure can manifest as an inability to access and use the
resource or as inability to provision and manage the resource2.

1Failure of a single data center can affect less than 100% of resources in
the availability zone since a single availability zone may span multiple data
centers.

2The resource may also be corrupted or permanently lost, but durability of
the service is more difficult to assess, and is not included in the scope of this
paper. This paper focuses on transient failures.

These failures may be caused by many different root causes
acting on both individual server and availability zone levels:

1) Server hardware and virtualization software failures, af-
fecting only cloud servers located in the failed machine.

2) Network failures, which can affect anything down from
a single virtual server to a whole data center. These
may be caused by physical network component failures,
cascading network software failures, cabling losses, en-
vironmental effects etc.

3) Power failures, affecting anything from a single server
or a rack of servers up to whole data centers.

4) Control plane software failures, which by definition are
more likely to affect whole availability zones or whole
regions. Control plane problems have a possibility to
propagate through multiple availability zones either via
data cascades – or administrative decisions intended
to prevent spread of control plane data corruption as
in [17].

This paper focuses on availability zone failures. The
reason is that any fault tolerant computing system must be first
and foremost tolerant against single server failures. Barroso et
al. [13] observe that a single server will fail between 1.2–2
times a year, meaning that a cluster of 2000 servers will see an
average of 10 server failures daily. When a system is tolerant
of server failures it is worthwhile to look at the next failure
domain, e.g. availability zone failures.

III. METHODS AND DATA SOURCES

A. Failure Data Sources
Amazon Web Services provides a publicly accessible Ser-

vice Health Dashboard [18] showing both current and histor-
ical information of up to five weeks on health of its services
on a per-region granularity. Amazon Web Services does not
publicly provide a long-term archive of notices on the service
dashboard but it is possible to retrieve historical records via
RSS aggregation services such as Google Reader [19].

In addition to the historical service health dashboard data
that was retrieved from via Google Reader for this research,
web searches were made to collect publicized Amazon Web
Services failures. This information was later used to cross-
correlate and verify the accuracy of the dashboard information.

A single dashboard RSS message consists of RSS source
identifier (identifying service and region), publication time
and a textual summary of the event (plus some additional
information not relevant to this study). Below is a sample of
a message published on February 16th 2013 relating to ELB
service in the us-east-1 region:

3:27 PM PST
Between 11:55 AM and 14:50 PM PST ELB experi-
enced increased provisioning and back-end instance
registration times in the US-EAST-1 region. The
issue has been resolved and the service is operating
normally.

The summary text does not have a fixed format, and while
some common conventions are followed the messages are not
easily machine-parseable.

27

Data for the study was retrieved on February 22, 2013 and
contained 1149 RSS messages dated from March 4, 2011
to February 21, 2013. From this data only those that were
published between February 1, 2012 and January 31, 2013 (12
months) were chosen, and further narrowed down to contain
messages only for EC2, EBS, RDS, ELB and S3 services. This
subset contained 546 messages dated from February 13, 2012
to January 31, 2013.

B. Message Analysis

Selected messages were manually analyzed and broken
down into individual events containing fields as shown in Table
I. Amazon Web Services typically publishes multiple messages
relating to a single event. A single message or a chain of
messages may describe an event that affects one or more
services. The message data analysis resulted in 172 distinct
events affecting different regions and services. For some events
more detailed information provided by Amazon Web Services
was used in addition to information in the service health
dashboard messages.

Not all of the messages could be cleanly categorized. Most
common problems were:
• Unknown affected availability zones. Only 49 out of

the 172 events had explicit information of the number
of affected zones (if explicitly given, was always one3).
Events without explicit information on affected availa-
bility zones were categorized as “not specified” – a value
which is later handled specially (see below).

• Non-quantifiable event impact. Hard numbers on im-
pact of events are rare in messages. Qualitative descrip-
tions were common, such as “small number of instances”,
“small number of RDS instances”, “some customers” and
“some requests”. Although some events did quantify a
functional impact of the event (listing affected API end-
points), the amount of resources affected was quantified
only once (“7% of the EC2 instances” in [20]). Due to
lack of quantifiable event impact no attempt to was made
to estimate failure impacts on smaller granularity than a
single availability zone.

• Value judgments. For some events – for S3 in particular
– it is difficult to quantify whether an event is a failure
(customers incapable of using the service) or a degra-
dation. S3 has two forms of access, with programmatic
API access primarily used for resource management and
HTTP GET interface primarily used to serve static data
to end users. Software written using APIs must take
potential API errors into account, already turning elevated
error rates to a service degradation. Browsers do not retry
a failed GET, so elevated error rates would cause user-
visible errors for some end users.
In this analysis S3 such ambiguous events are primarily
categorized as degradations.

3The ELB event of December 24th, 2013 can be deducted reliably to have
affected all five availability zones in the us-east-1 region, but again, this isn’t
explicitly stated by Amazon Web Services in dashboard messages related to
the event.

Since the smallest failure domain considered in this analysis
is a single availability zone, all events that have smaller impact
(for example “some instances”) are classified as failure of an
availability zone. This leads to conservative estimates on the
cloud service availability. Without quantitative information on
the portion of resources affected by an event it is not possible
within the scope of this paper to estimate speculate on the
actual impact on all resources within the affected availability
zone.

Two significant changes in the Amazon Web Services infras-
tructure occurred during the time period chosen for analysis.
In September 2012 the number of availability zones increased
from two to three in ap-northeast-1 (Tokyo) region. This
change has been taken into account in service time calcu-
lation. In November 2013 the ap-southeast-2 region (Sydney)
became available for general use. The Sydney region has been
excluded from analysis on the basis that it was in customer
use only for the last quarter of the time analyzed.

IV. RESULTS

A. Overview of Events

In total, there was 546 messages published between Febru-
ary 13, 2012 and January 31, 2013. These messages corre-
sponded to 61 failures and 111 service degradations. Sum-
maries of failure event counts and durations by region and
service are shown in Tables II and III. Further failure clas-
sification based on affected functionality (core, control and
network) are shown in Figures 1 and 2.

From these graphs it is quite obvious that the us-east-1
region had more failures than all other regions combined. The
reason for this is not known. Without more information it
is possible to only speculate on the reason – it may be that
us-east-1 could be overrepresented because it simply has more
hardware than other regions.

As shown in Figure 2 EC2 failures are most common. EC2
failures are also dominated by network failures. This may be
contrasted to lack of network failures for ELB and S3. This
is probably due to physical constraints and implementation of
different services4.

From outage event durations (see Figure 2) we see that
failures are dominated by core service failures. Although
network failures dominate (34 network failures vs. 10 control
and 18 core events), their combined duration is smaller (1d
11h 43m for network, 3d 19h for core and 1d 16h 57m for
control). In practice this means that although network failures
are most common, they have the least total impact due to
shorter average failure duration (mean duration is 1h 03m for
network failures, 5h 03m for core failures and 4h 05m for
control failures).

B. Event Duration Distribution

Figure 3 shows cumulative probability density over event
duration. Half of the failures were shorter than 1h 06m

4ELB and S3 are inherently distributed services, whereas EC2 and RDS
instances themselves are not distributed and thus more prone to be affected
by network failures.

28

TABLE I
CATEGORIZED EVENT FIELDS

Field Contents Description
Event type degradation or failure Event typea

Region ap-northeast-1, ap-southeast-1, eu-west-1,
sa-east-1, us-east-1, us-west-1 or us-west-2

Affected regionb

Service EC2, EBS, RDS, ELB or S3 Service that was affectedc

Functionality control, core or network What was the affected area of the serviced

Affected zones Number or not specified Number of affected zones if given

Event start Date and time Either explicitly from message, or publica-
tion time of the first message for the event

Event end Date and time Either explicitly from message, or publica-
tion time of the resolution message

a Degradations are events which cause the service to be usable, albeit at either increased latency, smaller
performance, or with occasional retryable errors.

b These are correspondingly Tokyo, Singapore, Ireland, São Paulo, Northern Virginia, Northern California and
Oregon.

c If a message described an event that affected multiple services, each service was recorded separately.
d These correspond to different types of failures. All cloud services interact with customers via a network, which

is also clearly indicated as failed element in messages. Each service has a core which is what it actually does,
e.g. for EC2 it is computation capability (being able to run OS and applications), for EBS being able to read
and write data without corruption etc. Control means the mechanisms to provision, deprovision, monitor and
manage core resources.

N
um

be
r

of
 e

ve
nt

s

0

5

10

15

ap
−n

or
th

ea
st−

1

ap
−s

ou
th

ea
st−

1

eu
−w

es
t−

1

sa
−e

as
t−

1

us
−e

as
t−

1

us
−w

es
t−

1

us
−w

es
t−

2

2 2

4

1

7

10

16

13

1

4

2

control
core
network

(a) Number of events

Le
ng

th
 o

f e
ve

nt
s

0m

1d

2d

3d

ap
−n

or
th

ea
st−

1

ap
−s

ou
th

ea
st−

1

eu
−w

es
t−

1

sa
−e

as
t−

1

us
−e

as
t−

1

us
−w

es
t−

1

us
−w

es
t−

2

3h 40m 4h 56m
1h 58m 2h 07m

11h 09m

1d 16h 57m

3d 15h 58m

10h 38m

55m2h 33m 49m

control
core
network

(b) Duration of events

Fig. 1. Number of events and their total duration by region. For each region the failed functionality is shown as a separate bar.

and 95% were less than 10h 19m long. Failure duration
distribution exhibits a long tail, with the maximum event
duration of over 22 hours.

C. Prorated Downtime and Total Service Time

We’ll mark duration of an event e ∈ E as de, the event
time as te, the region affected as re, the number of services
affected se and the number of zones affected as ze. Each event
occurs in some region r ∈ R, each region has set a set of
services Sr(t) ∈ S′ (where S′ is the set of all services) and
zones Zr(t). Note that we consider the number of services in
a region and number of zones as a function of time. The time
under study is t ∈ [t0, t1] so that ∀e ∈ E : te ∈ [t0, t1]. Thus,
the prorated impact pe is:

pe = de · se · ze (1)

Conversely the service time Tr,s for region r and service s
is (where τr,s(t) is 1 if service exists in the region at time t
and 0 otherwise):

Tr,s =

∫ t1

t0

Zr(t) · τr,s(t) dt (2)

and similarly for a single service over all regions T∗,s and
for all services in a single region Tr,∗:

T∗,s =
∑
r∈R

∫ t1

t0

Zr(t) · τr,s(t) dt (3)

Tr,∗ =

∫ t1

t0

Zr(t)
∑

s∈Sr(t)

τr,s(t) dt (4)

These equations can be simplified as ∀s ∈ S′, r ∈ R, t ∈
[t0, t1] : τr,s(t) = 1 applies for the whole study period.

29

N
um

be
r

of
 e

ve
nt

s

0

5

10

15

ebs ec2 elb rds s3

2

5

2

 5
 6

18

3 3
 4

12

2

control
core
network

(a) Number of events

Le
ng

th
 o

f e
ve

nt
s

0m

1d

ebs ec2 elb rds s3

2h 49m

13h 47m

43m

8h 12m

18h 28m

15h 11m

1d 5h 56m

1d 12h 31m

22h 14m

18h 06m

1h 43m

control
core
network

(b) Duration of events

Fig. 2. Number of events and their total duration by service. For each service the failed functionality is shown as a separate bar.

Outage length

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

0m 1d

1h 06m 10h 19m 23h 41m

Fig. 3. Cumulative probability density for event duration. The three vertical
lines correspond to 50%, 95% and 100% probabilities.

Similarly from the problem statement the set of services
analyzed is closed: |S′| = 5 ⇒ ∀r ∈ R :

∑
s = |S′| = 5.

Using these shortcuts we can determine the total service time
for all regions and services:

T∗,∗ = |S′|
∑
r∈R

∫ t1

t0

Zr(t) dt (5)

The total prorated downtime Pr,s for region r and service
s is:

Pr,s =
∑
e∈E

p′r,s,e (6)

where p′r,s,e is defined as

p′r,s,e =

{
pe iff s = se ∧ r = re (7a)
0 otherwise (7b)

Finally prorated downtime for any single region Pr,∗ and
service P∗,s are defined:

Pr,∗ =
∑
s∈S′

∑
e∈E

p′r,s,e (8)

P∗,s =
∑
r∈R

∑
e∈E

p′r,s,e (9)

(10)

The total prorated downtime over all regions and services
degenerates to a sum of prorated downtime over all events:

P∗,∗ =
∑
e∈E

pe (11)

Prorated availability A is based comparing prorated down-
time against the total service time (from [10, p. 38], modified
to use terms defined above):

Ar,s =
Tr,s − Pr,s

Tr,s
(12)

For this analysis we are interested in availabilities of all
services in different regions (Ar,∗), availabilities of different
services over all regions (A∗,s) and the total availability (A∗,∗).

D. Region, Service and Total Availability

As noted earlier, a lot of the events do not explicitly
specify the number of affected zones. Two sets of availability
estimates are made with two different assumptions that events
not specifying the number of affected zones either:

Case 1) affected all zones in the region, or
Case 2) affected one zone.
The first case is over-cautious and thus gives a lower bound

availability estimate. The second case is likely to be more
realistic based on the assumption that any large-scale (affecting
multiple availability zones) outage would have gained a lot of
media attention. No such news, ergo such outages are very
unlikely to have happened. This may be an over-optimistic
position, but it gives a higher bound for the availability
estimates.

30

The zone availability estimates are shown in Tables V
and IV (for services and regions, respectively). Availability
of the EC2 service is 99.949–99.977% (low–high). ELB’s
widely different availability values (99.843–99.963%) between
models is based on a single which began on December 24th,
2012 and lasted for over 22 hours and which didn’t specify
the number of affected zones for all affected functional areas.

Regional availability estimates show that the availability
of us-east-1 region is lowest of all regions: 99.803–99.936%
versus 99.998–99.999% for us-west-2 region. Availabilities of
other regions were between.

The total availability T∗,∗ is 99.947–99.981%.
Deriving service availability statistics for individual regions

is not meaningful due to the small amount of events in
some regions. Tokyo, Singapore and Oregon all had only
two failures. Without long-term statistics it is not possible to
determine whether these were caused by excellent data center
management, or by combination of fewer customers and sheer
luck.

V. ERROR SOURCES

Since this work relies on public, not easily quantifiable
data produced according to Amazon Web Services’ internal
operating procedures, which are executed by people working
in (presumably) busy situation, there are a lot of identified
potential sources errors. Those sources of errors are listed
below:
• Missing messages. It is possible that Google Reader does

not have a complete archive of Amazon Web Service
Dashboard messages.

• Underreporting of incidents. Amazon Web Services
might not be reporting all problems, for example if the
number of affected instances or customers is below some
threshold.

• Overestimating the impact of incidents. In this analysis
even the smallest failure or degradation is considered to
impact at least one zone. On one incident in us-east-1
region the amount of affected instances was 7% of the
region capacity and not 20% as could naively be assumed
(us-east-1 has 5 zones).

• Inaccurate event duration. Amazon Web Services does
provide explicit event start and stop dates for some
events, whereas for some events these are determined
from message timestamps. Biases in these timestamps
would cause event duration to be incorrectly estimated.

• Message categorization errors. Should elevated S3 API
error rates be a failure or degradation?

VI. RELATED WORK

There has been little scientific publications related to cloud
service availability from the viewpoint of customers. On the
other hand there are lots of papers about some empirical aspect
of cloud computing and some of these papers do actually
report aspects of cloud service availability and reliability.
Some of these are summarized below:

• Palankar et al. ran 215112 API operations on S3 and
reported a total of 35 errors (timeouts or error codes)
implying a 99.984% success rate for S3 API calls [21].

• Tung and Kang analyse availability between hot-hot and
detect-restart systems [22]. They additionally include in-
formation about the mean time to provision a replacement
server which is quite close to mean time to repair (MTTR)
that can be used for estimating system availability.

• Ostermann et al. have benchmarked EC2 instances for
performance, providing also time to provision new sys-
tems [23]. They also note being incapable of provisioning
new EC2 instances for a whole day.

Cloud vendors themselves naturally have detailed knowl-
edge of their service history. Similar records may exist with
cloud service aggregators and heavy cloud infrastructure ser-
vice users such as Rightscale, Netflix and Zynga. Also some
public services reporting public cloud availability information
exist such as CloudSleuth. With publicly available informa-
tion it seems that these services monitor aggregate network
reachability of different servers. This provides more accurate
information on server level availability, but does not directly
translate relate to estimating availability zone failure rates.

VII. CONCLUSIONS AND FUTURE WORK

In this paper I have analyzed 12 months of Amazon
Web Service’s service health dashboard data. The result of
availability for a single availability zone of 99.947–99.981%
is categorized as between “well managed” and “fault tolerant”
according to [10] and is equivalent to either availability of
Tier 2 or Tier 3 data centers according to [24]. There is large
variability between regions and services with some regions
meeting 99.99% availability or better.

These values can be used in estimating availability of a
service deployed in a single or multiple availability zones but
the limitations of this study and the presented values must
be also understood. In particular this paper does not consider
server-level failures which occur due inherent unreliability of
the computing hardware in use. The values presented in this
paper are meaningful only in context where the service is
already fault tolerant against single server failures.

The original service dashboard data contains messages
for several other services (CloudFront, Auto Scaling, Cloud-
Watch) that were excluded from this analysis. Service degra-
dation probabilities were calculated from the analyzed data,
but omitted from this paper for brevity.

It would be interesting to combine the estimates presented
in this paper to observed cloud server failure rates in a large-
scale cloud system availability simulation. This kind of model
could be used to evaluate the effect of different availability
estimates on operational costs and service availability.

REFERENCES

[1] L. Columbus, “Cloud computing and enterprise software forecast update,
2012,” http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-
computing-and-enterprise-software-forecast-update-2012/, Nov. 2012.
[Online]. Available: http://www.forbes.com/sites/louiscolumbus/2012/
11/08/cloud-computing-and-enterprise-software-forecast-update-2012/

31

http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-enterprise-software-forecast-update-2012/
http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-enterprise-software-forecast-update-2012/

TABLE II
NUMBER OF FAILURE EVENTS BY REGION AND SERVICE

Type Service
Region

Total
ap-northeast-1 ap-southeast-1 eu-west-1 sa-east-1 us-east-1 us-west-1 us-west-2

Failure

ebs 0 0 1 1 7 0 0 9
ec2 1 0 1 5 17 4 1 29
elb 0 0 0 0 6 0 0 6
rds 1 2 2 2 8 0 1 16
s3 0 0 0 0 1 1 0 2

Total counts 4 39 2 2 5 8 2 62

TABLE III
DURATION OF FAILURE EVENTS BY REGION AND SERVICE IN MINUTES

Type Service
Region

Total
ap-northeast-1 ap-southeast-1 eu-west-1 sa-east-1 us-east-1 us-west-1 us-west-2

Failure

ebs 0 0 30 127 882 0 0 1039
ec2 110 0 29 289 1901 162 20 2511
elb 0 0 0 0 3987 0 0 3987
rds 110 296 59 380 1546 0 29 2420
s3 0 0 0 0 57 46 0 103

Total lengths 118 8373 220 49 208 796 296 10060

TABLE IV
PRORATED DURATION OF FAILURES BY REGION

Region Service time
Unknown number of zones is all
zonesa

Unknown number of zones is one
zoneb

Down time Availability Down time Availability
(days) (minutes) (percent) (minutes) (percent)

r Tr,∗ Pr,∗ Ar,∗ Pr,∗ Ar,∗

ap-northeast-1 4275 220 99.996 220 99.996
ap-southeast-1 3660 357 99.993 296 99.994
eu-west-1 5490 234 99.997 118 99.999
sa-east-1 3660 1053 99.980 796 99.985
us-east-1 9150 25941 99.803 8373 99.936
us-west-1 5490 514 99.993 208 99.997
us-west-2 5490 147 99.998 49 99.999

Total 37215 28466 99.947 10060 99.981
b In this model, events without number of affected zones are assumed to affect all zones in the region.
c In this model, events without number of affected zones are assumed to affect one zone.

TABLE V
PRORATED DURATION OF FAILURES BY SERVICE

Service Service time
Unknown number of zones is all
zonesa

Unknown number of zones is one
zoneb

Down time Availability Down time Availability
(days) (minutes) (percent) (minutes) (percent)

s T∗,s P∗,s A∗,s P∗,s A∗,s

ebs 7443 1715 99.984 1039 99.990
ec2 7443 5456 99.949 2511 99.977
elb 7443 16855 99.843 3987 99.963
rds 7443 4017 99.963 2420 99.977
s3 7443 423 99.996 103 99.999

Total 37215 28466 99.947 10060 99.981
a In this model, events without number of affected zones are assumed to affect all zones in the region.
b In this model, events without number of affected zones are assumed to affect one zone.

32

[2] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology (NIST), 2009, mel09.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Commun. ACM, vol. 53, p. 50–58, Apr. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1721654.1721672

[4] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Fifth International Joint Conference on INC,
IMS and IDC, 2009. NCM ’09, Aug. 2009, pp. 44 –51.

[5] B. Wei, C. Lin, and X. Kong, “Dependability modeling and analysis
for the virtual data center of cloud computing,” in 2011 IEEE 13th
International Conference on High Performance Computing and Com-
munications (HPCC), Sep. 2011, pp. 784 –789.

[6] Q. Guan, C.-C. Chiu, and S. Fu, “CDA: a cloud dependability analysis
framework for characterizing system dependability in cloud computing
infrastructures,” in 2012 IEEE 18th Pacific Rim International Symposium
on Dependable Computing (PRDC), Nov. 2012, pp. 11 –20.

[7] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability,” in Proceedings of the 1st ACM symposium on
Cloud computing, ser. SoCC ’10. New York, NY, USA: ACM, 2010,
p. 193–204. [Online]. Available: http://doi.acm.org/10.1145/1807128.
1807161

[8] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability
of production cloud services,” in 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), May
2011, pp. 104 –113.

[9] P. O’Connor, Practical Reliability Engineering. John Wiley & Sons,
Jul. 2002.

[10] E. Bauer and R. Adams, Reliability and Availability of Cloud Computing.
Wiley-Blackwell, Sep. 2012.

[11] Amazon Web Services, “Products & solutions,”
http://aws.amazon.com/products-solutions/, 2013. [Online]. Available:
http://aws.amazon.com/products-solutions/

[12] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret,
“Availability analysis of blade server systems,” IBM Syst. J.,
vol. 47, no. 4, p. 621–640, Oct. 2008. [Online]. Available:
http://dx.doi.org/10.1147/SJ.2008.5386524

[13] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis
Lectures on Computer Architecture, vol. 4, no. 1, pp. 1–108, Jan.
2009. [Online]. Available: http://www.morganclaypool.com/doi/abs/10.
2200/S00193ED1V01Y200905CAC006

[14] A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated availability
in cloud computing SLAs,” in 2011 12th IEEE/ACM International
Conference on Grid Computing (GRID), Sep. 2011, pp. 129 –136.

[15] R. Jhawar and V. Piuri, “Fault tolerance management in IaaS clouds,”
in 2012 IEEE First AESS European Conference on Satellite Telecom-
munications (ESTEL), Oct. 2012, pp. 1 –6.

[16] A. Cockcroft, “A closer look at the christmas eve outage,”
Dec. 2013. [Online]. Available: http://techblog.netflix.com/2012/12/
a-closer-look-at-christmas-eve-outage.html

[17] Amazon Web Services, “Summary of the december 24,
2012 amazon ELB service event in the US-East region,”
http://aws.amazon.com/message/680587/, Dec. 2012. [Online]. Avail-
able: http://aws.amazon.com/message/680587/

[18] ——, “AWS service health dashboard,” http://status.aws.amazon.com/,
2013, ama11c. [Online]. Available: http://status.aws.amazon.com/

[19] Google, “Google reader,” http://www.google.com/reader/, 2013.
[Online]. Available: http://www.google.com/reader/

[20] Amazon Web Services, “Summary of the AWS service event in the
US east region,” http://aws.amazon.com/message/67457/, Jul. 2012.
[Online]. Available: http://aws.amazon.com/message/67457/

[21] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
s3 for science grids: a viable solution?” in Proceedings of the 2008 in-
ternational workshop on Data-aware distributed computing, ser. DADC
’08. New York, NY, USA: ACM, 2008, p. 55–64, ACM ID: 1383526.

[22] T. Tung and J. Kang, “Characterizing service assurance for cloud-based
implementations: Augmenting assurance via operations,” in SRII Global
Conference (SRII), 2012 Annual, Jul. 2012, pp. 21 –28.

[23] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “A performance analysis of EC2 cloud computing
services for scientific computing,” in Cloud Computing, ser. Lecture
Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, D. R. Avresky, M. Diaz, A. Bode,
B. Ciciani, and E. Dekel, Eds. Springer Berlin Heidelberg, Jan.
2010, no. 34, pp. 115–131. [Online]. Available: http://link.springer.
com/chapter/10.1007/978-3-642-12636-9 9

[24] W. P. Turner IV, J. H. Seader, and V. E. Renaud, “Data center site
infrastructure tier standard: Topology,” Uptime Institute, 2010.

33

http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1807128.1807161
http://doi.acm.org/10.1145/1807128.1807161
http://aws.amazon.com/products-solutions/
http://dx.doi.org/10.1147/SJ.2008.5386524
http://www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006
http://www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006
http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html
http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html
http://aws.amazon.com/message/680587/
http://status.aws.amazon.com/
http://www.google.com/reader/
http://aws.amazon.com/message/67457/
http://link.springer.com/chapter/10.1007/978-3-642-12636-9_9
http://link.springer.com/chapter/10.1007/978-3-642-12636-9_9

Impact of Cloud Computing on Global Software Development challenges

Inna Smirnova

Department of Computer Science

University of Helsinki

Helsinki, Finland

inna.smirnova@helsinki.fi

Abstract - The paper introduces challenges in Global Software

Development and application of Cloud computing platforms as

a solution to some problems. Global software development
(GSD) means geographical distribution of development teams

across the globe that might lead to economical benefits and

opportunity of 24-hours development process. However, GSD

has to deal with many challenges such as coordination,

communicational barriers, geographical distances and time
differences. Based on existing literature the paper gives an

overview on Cloud computing as a form of IT-outsourcing that

is believed to help to overcome some GSD problems. Cloud’s

components Infrastructure-as-a-service, Software-as-a-service,

Platform-as-a-service and Tools-as-a-service along with their
benefits for global software development will be presented as

main resolves. Additionally, the paper will present some real

examples of GSD prototypes for the cloud.

Cloud computing; global software development; GSD

challenges (key words)

I. INTRODUCTION

Nowadays software development is carried out globally. New
development teams consist of developers who are distributed
across the globe with location even at different continents.
Boundaries between countries in modern software development are
disappearing, and software development process is becoming
globally oriented, multidiscipline and cross-cultural. This new
approach is called Global Software Development (GSD). GSD’s

popularity among IT businesses is growing rapidly because of
potential economical benefits as development outsourcing to China
or India might make software development process much cheaper
and faster [8, 5].

Although costs’ benefits seem to be so attractive, GSD brings
some serious challenges for development teams. Challenges
referred to geographical distances, different time zones, unified
coordination problems, cultural misunderstanding and
communicational barriers will be overviewed in the paper. There

are few recommendations which could eliminate negative effects
of these problems such as overlapping working hours, video
conferences with support of asynchronous communication, some
face-to-face visits. But none of the suggestions solves challenges
fully and in an effective way.

This paper will present Cloud Computing paradigm and its
components as a solution to defined GSD problems. Cloud can
provide to development teams the whole set of computing
resources and tools (Infrastructure-as-a-Service, Tools-as-a-

Service), fully equipped platform for applications’ development
(Platform-as-a-Service), some existing apps and software
components (Software-as-a-Service), huge storage capacities with
effective data management services on a pay on demand basis [5,

7, 10]. Cloud facilities are believed to overcome some GSD
challenges such as lack of powerful resources, geographical
distances and data exchange delays between different development
sites [5]. Using of cloud components might eventually reduce
software development costs and consuming time that could lead to

resources’ saving for the company and improvement of software
quality for the end customers. However, using of Cloud
Computing brings some risks and difficulties including some
political law restrictions [2]. Cloud advantages and risks for GSD
will be described in this paper.

Currently there are some research and development of
prototypes in the area of application of cloud entities in software
development process. Last chapter of the paper will give some real
examples of GSD prototypes for the cloud which have already

found successful application in software development [9].

II. GLOBAL SOFTWARE DEVELOPMENT AND ITS MAIN

CHALLENGES

In today’s world economy and cooperation national boundaries
are getting lost and trade market is becoming global. It refers to

almost all industrial areas including software products market. In
order to answer to this tendency, software development process is
changing and becoming worldwide oriented and multicultural. This
modern stage in software development is called Global Software
Development or GSD in short. GSD means the development
process where developers are geographically distributed across the
world and working together at one project. GSD format now is
considered as the most popular model for software development
that suits very well to medium or large size organizations [4].

The reasons for GSD universal popularity include potential

significant economic benefits for businesses and fulfilling current
global trade needs [4]. GSD can allow to companies to decrease
software development costs that leads to reduction of software
prices for end customers. Also it provides the opportunity for 24/7
sun-followed development that might save development resources
and allow to get faster product releases in some projects. At the
same time, there may be some obligations for companies for using
GSD model. Lack of trained, experienced, highly qualified
developers enforces IT companies to use outsourcing as a way to

hire best developers. Customization needs also may require
locating development offices close to end customers in order to
fulfill their requirements in a better way and discover market
better. Moreover, country level law regulations might be a reason
for GSD. For instance, some specific governments do not allow
selling product locally unless the development process is held in
that country [8, 5].

As a result, GSD is believed to facilitate business growth and
make product to appear faster at the market place. Furthermore,

GSD for company is an opportunity to use resources in other
geographical regions. That’s why it is dramatically popular
nowadays to outsource development to India or China – countries
with quite low economy and low costs in general [5]. Even so, with

34

all the potential benefits global development raises some serious
challenges [6].

Mockus et al. [8] present these major GSD problems:

 Differences in provided infrastructure at different

development sites including lack of computing resources
or network connection capabilities.

 Coordination and management problems. Development
teams are quite independent at different sites; they have

their own development process strategy that generates
some project goals’ misunderstanding. Because of time
zones and lack of project related discussions (especially
face-to-face meetings) work can be overlapped partly, and
cost of software will be increased as a consequence. Large
geographical distribution of developers’ teams results in
absence of formal unified development process and hard
process monitoring.

 Communicational problems are considered as principal

and most difficult to solve challenges of GSD. Cross-

cultural communicational barriers appear because
development teams consist of developers of different
nationalities, cultures, background, mother tongues.
Developers at different continents have different work
experience, they participated in distinct IT projects, had
other training, style of software implementation, business
and software development culture [5]. Furthermore, lack
of face-to-face synchronous communicational contacts
with remote colleagues makes this barrier even stronger.

 Finding a right remote person who is responsible for
needed particular expertise results in delays in software

product development.
 Working hours of distributed development teams are often

not overlapped, so developers have to use only
asynchronous communicational tools such as emails,
chats, forums, etc. However, it is hard to be absolutely
sure if email will reach recipient in time and will be
answered soon, so additional time for waiting for the
reply is wasted. Moreover, in urgent situations only using
asynchronous communication is impossible and can fail
the whole project [8].

 Information and knowledge should be distributed in an

effective way between development sites without any
delays or losses. Large amounts of data should be
exchanged, then processed and stored properly [6].

Altogether, according to Hashmi et al. [5] GSD challenges
refer to global distance that can be divided into four main
dimensions:

1) Geographical distance as a result of development
countries distribution.

2) Cultural distance and misunderstanding.

3) Linguistic distance. Mother tongues of developers are
different, speech speed and manner can vary a lot, so even
talking in common for IT industry English language can
be problematic.

4) Time distance.

The next chapter of the paper will present Cloud Computing
paradigm and its components as possible main resolves for
described earlier Global Software Development challenges.

III. APPLICATION OF CLOUD COMPUTING IN GSD

Cloud computing paradigm recently became quite common
useful tool in software development. Cloud is presented as an
abstract infrastructure run by many servers that can store apps of
cloud users, resources, services and be always accessible by end

users on demand. Cloud computing is described as a model of
delivery of all cloud facilities to end users via internet on a “pay -
as-you-go” base [9, 5]. Cloud computing can provide to developers
services, platform for software development, computing
infrastructure. Cloud providers own virtual machines which can be

located anywhere in the world, and facilities are always available
for consumers via internet. Developers can use the cloud services
and pay only for the time they actually used resources. Another
advantage is that developers can access the cloud from any
location in the world. So cloud computing can assist GSD and
make some challenges less noticeable [3].

Depending on type of provided resources the cloud can include
different components such as Platform-as-a-Service, Infrastructure-
as-a-Service, Software-as-a-Service or Tools-as-a-Service which

can give potential benefits to GSD. The next section of the chapter
will present the overview of above mentioned cloud computing
components with their advantages for Global Software
Development.

A. Components of cloud computing and their benefits

Hashmi et al. [5] describe Infrastructure-as-a-Service (IaaS)
cloud computing component as a cloud facility that gives to end
users access to the set of hardware resources, including their
administration and maintaining. So IaaS offers a whole
infrastructural platform with hardware resources in outsourcing.
With IaaS benefits all the development work might be done on
virtual machines which are run by servers at cloud provider’s site.
Machines collect all the computing facilities needed for

development team [2]. In the issue, company can save money on
computing resources, their administration and maintaining.
Moreover, all the teams included in GSD project will have a scope
of powerful resources of the same kind, so the challenge of
infrastructure differences between teams might be overcome.

Platform-as-a-Service (PaaS) gives to the user an access to
full platform with development environment where user can build
his own application [3, 10]. With using PaaS: resources and
infrastructure are available; maintaining and system updating are
carried out by cloud computing providers; testing environment

with real life industrial simulation is available anytime and can be
easily accessible by any team member. So everything for software
design and implementation, including programming capacities, is
offered by the cloud. Consequently, development process speed is
getting higher. Moreover, delivery to end customers is easily done
from the cloud via World Wide Web. As a result, development
costs and time might be reduced sharply [3, 5].

Actual software development ordinarily consists of following
steps: design, developing and implementation, testing, deployment

and monitoring. In GSD some of the actions are offshored and
distributed randomly across the globe, so it might be hard to
interpret and integrate all the software components when they are
collected finally at onsite development team. Especially it is
problematic when infrastructure and resources are distinct within
involved teams. With PaaS we can achieve standardization of the
development tools, services and processes. PaaS allows getting
portability that leads to no need for special effort in integration and
synchronization of software parts [10].

Also PaaS provides an online always available storage in the
cloud that can be used for communication between offshoring
teams. PaaS allows shared source code development, information
about whole project history (with all the changes), discussion
forums. Additionally, developers get common programming tools
for development, automatic system updating, and administration of
work environment [10].

Based on Stankov and Datsenka [10] all major PaaS benefits
for GSD can be presented in following Table 1.

35

TABLE 1. GSD COMPONENTS AND PAAS CHARACTERISTICS [10]

GSD element PaaS characteristics
Development Common programming languages, shared source

code, project history, automatic system updates

Delivery
Capacity
management

Cloud’s scalability, powerful resources,
opportunity for many development teams to be
involved simultaneously

Availability Always accessible on demand, 24/7 product
delivery to end customers

Financial
management

Pay-as-you-use base

Collaborative
environment

Discussion forums and social networking inside
the cloud, safe cloud’s storage for data and
knowledges

Today cloud component PaaS is getting more and more
popularity among software developers. There are some currently
existing commonly used industrial platforms such as Google
AppEngine, Microsoft Azure Platform, Force.com, Heroku,
Bungee Connect. All the platforms have similar characteristic, but
use slightly different approaches to software development, e.g.
different programming languages offered – some use Java and

Python, some use Ruby [10].

Software-as-a-Service (SaaS) component means that fully
working ready applications are stored on web servers and can be
accessible by developers and end users through WWW online [3,
5]. Thus development teams can use some already existing
software components for their own product development. It may
conduct to software development costs’ elimination, avoiding
duplication work. With SaaS reuse of software as a main goal of
lean development is achieved [5].

SaaS is aimed to reach centralized, unified, coordinated
development platform for development teams with all the services
available at delivery time. So with SaaS there are no delays
because of local synchronization, there is no need for special onsite
coordination. Also, local customization at developer’s site is
provided by the cloud service. Altogether, SaaS can be a good
optimization of technical tools for distributed developers. SaaS
concept is a fine-drawn solution for availability, accessibility, data
synchronization GSD challenges. It helps to achieve one
standardized app environment for immediate software

development without need for initial set up of new software and
administration at GSD multi sites [7].

Chou et al. [1] make an economical analysis of using SaaS for
software development process in IT companies. Chou et al.
describe SaaS as a new model for software delivery that is based
on service oriented approach. The research describes next benefits
of outsourcing with SaaS:

 Costs reduction. Costs of needed resources are minimized

because of usage of already existing apps and tools rather
than developing everything from the initial step.

 Project budget optimization. Firm can invest money saved

on resources and network administration into realization
of other business strategy goals.

 Scalability. Cloud SaaS providers allow immediate,

almost unlimited scaling up the number of users at
customer’s site. It leads to the fact that more customers
could get a desired developed application, and IT
company could get more profit as a result.

 SaaS services can be physically located anywhere and still

will be accessible easily virtually over the network. So it
is a nice potential tool for overcoming geographical
distances of global outsourcing.

One of GSD challenges is lack of development tools and
strong variation in tools at different development sites. Moreover,
different development stages need different tools which are not
needed at other steps, such as requirements management tools,
testing tools, design tools, or data transferring tools. If cloud could

provide Tools-as-a-Service (TaaS), this challenge might
disappear. So TaaS cloud component can provide appropriate tools
for effective development, collaboration and easier process
coordination [4].

Chauhan and Babar [4] emphasize following TaaS advantages
for Global Software Development. Some software development
stages need specific tools and some tools are used just once for a
short period of time. However, unfortunately organization still has
to keep all the tools’ set during whole project development period.

Also organization might have projects in completely opposite areas
with wide variety of distinct tools needed. With TaaS company
could pay only for exact usage of specific tools, and if more new
tools are needed they are easily offered by TaaS providers. So
development process might become more convenient and time for
finding particular resources could be saved. TaaS can be especially
beneficial for small organizations with small sized occasional
software development projects [4].

TaaS can provide a data storage with huge capacity and

effective data transfer management. There are some countries’ law
regulations saying that some data is prohibited to be moved outside
country territory. Using TaaS, data can still be located inside the
country physically, but at the same time it can be accessible from
outside locations. So data law problems for GSD are believed to be
minimized, and there are less product development delays possible.

TaaS could be used as a collaboration tool within GSD teams.
Usually asynchronous communication, e.g. emails, chats, forums,
does not work well enough. There is no visualization, it is
impossible to trace the whole work chain of another developer.

Moreover, it is very difficult to find a right person to contact for
asking a question about specific detail. So consequently it is hard
to observe a stage of the whole project. TaaS services can provide
visualized tools with big interactive map and all data flow within
project [4]. One of the approaches could be drawing a FLOW map
that was proposed by Stapel et al. [11]. FLOW map (Fig. 1)
presents an interactive map with all the GSD participants,
information about each developer including his contacts and area
of expertise – yellow pages, data flow exchanged between parties.

As a result of using TaaS as a method for effective collaboration
and communication, developers get more awareness, knowledge
about project and more trust between development sites. That
might lead eventually to optimization of software development
process and product quality [4].

Even so, in order to be a beneficial for GSD teams TaaS
should satisfy to some requirements. Chauhan and Babar [4] define
the following set of essential requirements. First of all, multi-
tenancy refers to the fact that many organizations and even many

people in one organization might be using the same tool. So
services and tools should be isolated from each other. Safety for
using and storing private data is essentially important for
developers.

TaaS should be able to support different versions of the tool.
Some development teams might require different versions of one
particular software tool than others, so TaaS providers need to
maintain all the history of software releases. Moreover, TaaS
should be able to combine and integrate tools used at different

development steps, so end users will be able to get full complex
equipment.

36

Developers might need an access to tools by devices of
different type such as laptops, mobile phones with different
operating systems like Android or iOS. So the cloud should be able

to provide synchronization services. Furthermore, requirements of
different organizations for the same tool can vary dramatically.
Quality expectations for different projects might be different. So
TaaS services should support flexibility.

Next section will sum up all the beneficial outcomes of using
cloud computing outsourcing model for Global Software
Development projects.

B. Outcomes with global development with outsourcing in

the cloud

The past section has already introduced principal benefits of
cloud components for software developers and GSD teams
particularly. In total, the biggest potential impact of cloud
computing in GSD could be the elimination of development costs
and resources’ savings. Additionally, the cloud may reduce
problems with providing full infrastructure for each GSD site. It

also provides scalability as it can serve in an isolatable base large
amount of users simultaneously with guarantee of data security and
privacy that is essential for big GSD teams [3].

Table 2 gives a clear summary of Cloud Computing
characteristics and their advantages for developers.

Cloud Computing paradigm can offer the architectural solution
for organizing operative work for many separate GSD teams
together at once. Whole cloud space could be virtually divided, and
different GSD teams might be connected to one private cloud

through which all the information is exchanged, stored, and even
locally translated with multilingual services. This architectural
cloud model helps to reduce main geographical and temporal GSD
problems. Moreover, project data safety and reliability occur in
addition [5].

Hashmi et al. [5] point out a nicely summarized GSD
challenges and requirements for related cloud computing
components in order to overcome some GSD difficulties:

1) Coordination and management in GSD format are quite

challenging because of negative issues of geographical and time
distances. It could also affect on product delivery to end customers.
However, with cloud usage product delivery is independent from
development process, and developed software product can be
accessible all the time without special coordination actions from
development teams.

TABLE 2. CLOUD COMPUTING CHARACTERISTICS [5]

Virtualization,
scalability and
performance

Cloud providers run services for users on virtual
machines. So they can effectively accommodate
more users on their infrastructure if there is high
services’ demand.

Reduced costs Pay-as-you-go model might significantly reduce
investments, especially on computing facilit ies and
their administration.

Infrastructure Cloud provides fully equipped infrastructure to
developers that is always accessible. At the same
time cloud provides an infrastructure for easy
delivery of new implemented apps to end
consumers.

Multi-tenancy
support

Cloud users’ threads are isolated from each other
and privacy is guaranteed.

Furthermore, with using IaaS GSD teams can get unified
functional resource capabilities between all included development
teams, so the administration efforts will be minimized. Safe data
storage provided by the cloud is also aimed to help overcoming of
data and knowledge management problems [5, 6].

2) Geographical distance - principal GSD challenge - can be
supported by using PaaS cloud services. PaaS grants to developers
a platform for apps development and shared resources. That
hopefully might lead to speeding up product development cycle

without any delays for software installation at every distributed
GSD site.

3) Data and knowledge exchange within GSD teams. Cloud
storage and project memory can assist GSD in maintaining all the
project activities, changes, tasks completing. With cloud it is
becoming pretty transparent to see on what particular stage the
whole project is currently. Furthermore, project monitoring may
become simplified. Altogether, it results in creating more trust
between GSD members.

4) Main technical advantage for GSD from the cloud could be

an easy testing procedure. Usually in software development this is
a quite costly and important phase. Cloud can provide large
scalability and possibility of testing on real industrial systems. That
advanced cloud based testing might lead to better software product
quality, less future bugs’ appearance and increasing of company’s
profit [5].

However, together with cloud computing favors for Global
Software Development, some cloud outsourcing risks show up.
The next section of this chapter is devoted to the discussion of

those risks.

FIG. 1 FLOW MAP EXAMPLE [11]

37

C. Risks and challenges of cloud computing for GSD

Based on Clemons et al. [2] cloud computing risks for software
development can be viewed in three main dimensions:

1) Opportunism risks

Shirking risk means that user’s payment and cloud provider’s
efforts are not equal, e.g. provider might blame slow network
capacity, but it is actually the own fault cloud provider.

Poaching and intellectual property’s stealing refers to the fact
that user is not sure if cloud provider uses his data in a secure and
fair way. Cloud end user cannot be completely sure about privacy
while using cloud services.

Vendor’s renegotiation of contract - sudden provider’s lock-in

and saying new prices for the continuation of services’ usage. As
app was created at one specific vendor’s platform, user cannot
easily move his app to another platform in order to overcome
paying new high prices. [2]

2) Technological development risks

Functionality risk. There is no advance knowledge if
applications created with using PaaS services and in traditional
onsite way will integrate with each other. Also, there is no
guarantee that apps implemented at different cloud platforms can

be synchronized. It at the same time refers to data transfer across
the national borders. Some laws and special countries’ regulations
might not allow outside data moving. So full functionality of the
cloud in the future is absolutely unknown for now.

Political risk includes an employment situation in whole IT
industry after using cloud facilities. Cloud’s popularity may lead to
future no need for system administrators, network maintainers, or
low level software development personnel in general. In all, the
situation of unemployment crisis in the industry might occur.

Project risk. Development team cannot be sure how the fully

integrated combined software product will work after development
process finishes. The main question is if it is going to be
synchronized properly at customer’s site or not?

Financial risk. The principal point with using cloud computing
facilities for GSD purposes is if the cloud is beneficial and
profitable for the company and development project at the end or
not. For small, new firms cloud benefits are pretty obvious because
they will eliminate costs on resources, personnel, and allow
releasing software product faster. But for large already established

businesses no one can predict the economical advantages of the
cloud for organization’s profit. [2]

3) Special risk of cloud paradigm for GSD refers to cross
border litigation. If something goes wrong with cloud services, in
what country the court should be happening – provider’s, actual
cloud service’s location or end user’s? This risk leads to need for
standard cross-national law about cloud services, including data
storing and transferring regulations [2].

IV. EXPERIMENTS OF GSD PROTOTYPES FOR THE CLOUD

At the present time combination of areas of Global Software
Development and cloud computing in real software development
are in a focus of many researches.

Pavan [9] and his research group present some very interesting
and useful examples of commercial prototypes of GSD format with
cloud platforms. The first prototype they developed is called
Compile Server Farm. For large software projects with parts at

different world sites compilation process might take a lot of time
while team just has to wait. After compilation there are may be
some bugs, and since fixing them, long compilation cycle can
repeat again. Besides, compilation of large projects requires
development team to have powerful server machines or even
clusters which are quite expensive to have and maintain. So Pavan

et al. propose to use cloud services for compilation of the software
projects. Their presented experimental prototype helps to speed up
Compile-Test cycle using Hadoop and Condor methodology.
Testing prototype showed that compilation time for the project in
average reduced quite dramatically from 150 minutes to 80

minutes [9]. So cloud computing paradigm for compilation might
be very beneficial for large GSD projects.

Another example of the prototype created by Pavan’s group is
Online Storage Cloud. Online storage with big capacity is an
essential entity for GSD as the process usually contains huge
amount of data to store and exchange between parties. All the data
present themselves unified, correct, and shared global knowledge
within whole organization. Knowledge is a fundament of
organization. So project knowledge needs a good infrastructural

storage that should be scalable, reliable and effective for data flow
coordination [6, 9]. Cloud based storage is provided online, so
there are no problems for GSD in access it from different remote
locations. Data transfer via cloud is easier and much faster than
usual emails, for example. Cloud storage capacity is huge and can
be aimed for terabytes of information with guarantee of high
reliability level. Pavan group’s prototype presents to developers a
secure private storage service with good performance
characteristics that is delivered via Internet. In addition, cloud

based storage can allow streaming media data, so prototype could
be used for stimulating face-to-face video calls or conferences [9].

Furthermore, Pavan’s group designed a Lab Any Where (LAW)
prototype for Online Virtual Lab services. For big sized companies
with many employees job training is very important, especially for
new coming workers or completely new projects. Traditional way
of training delivery via physical classes with lectures does not
work with GSD model where teams and lecturer can be located too
far from each other. Moreover, it is pretty expensive to organize
those training sessions, especially on regular basis. Online e-

learning solution might be quite convenient, but the experience of
developers with real software systems is always missing. For
effective training results employees should have a real interaction
with software systems which they are going to work with later on.
LAW prototype is cloud based online training platform that
provides comprehensive technical training and testing scenarios
via internet. As a result, training might become rapid and based on
actual interaction with the software system. It could make the
educational process for developers more efficient generally [9].

Presented examples show the variety of areas of application of
cloud computing in software development. It leads to the
conclusion that research field of Global Software Development
based on cloud advantages in the nearest future might be in a
process of progress evolution.

V. CONCLUSION

In this paper, the outcomes of using Cloud Computing

paradigm in Global Software Development (GSD) were
considered. GSD concerns the model of software development
with developers physically distributed around the globe. GSD
format is believed to bring many benefits to software development
process such as resources’ saving, reduction of software costs,
speeding up the release of end product. However, together with
advantages GSD has to deal with some negative parts of
geographical development distribution. According to Hashmi et al.
[5] GSD global challenges can be divided into four principal

dimensions: geographical distance, cultural misunderstanding,
linguistic distance (because of differences in mother tongues of
developers) and time distance (different time zones at multi sites).

As a way to support GSD model and overcome its main
difficulties, Cloud Computing paradigm was outlined in current
paper. Cloud provides scalable storage facilities, software

38

development platform and tools, existing apps and other services
that can be accessible by end users over the internet any time at
pay-as-you-use basis. IaaS, PaaS, SaaS and TaaS components of
cloud computing were described in a paper as possible effective
solutions for main GSD barriers. Table 3 sums up potential

advantages of the cloud for GSD major challenges.
Summing up in all, cloud computing paradigm seems to be

quite a nice resolve for developers involved in GSD projects.
Principal outcomes of using cloud based software development
include: almost no investment into infrastructure and minimum
investments into office hardware/software working tools; saving of
costs because of “pay-as-you-go” cloud principle; no need for
maintaining IT resources in the office; cloud services are easy to
use because they are highly locally customized; management

system is unified; safe online knowledge storage is provided; cloud
facilities are easily accessible for every developer [3]. Moreover,
software product delivery to end customers might be effectively
done via internet from the cloud. So benefits of cloud computing
can lead to improvement of the whole organizational development
process and product quality. Though there are certain difficulties
and requirements for the cloud usage in GSD, the advantages seem
to be still bigger.

As a result of quite intensively growing interest in the area of

GSD and cloud based development, many research groups are
trying to develop real life working GSD format prototypes for the
cloud. Last section of the paper gave an explanation of interesting
examples of successfully implemented GSD cloud based
prototypes, particularly Compile Server Farm, Online Storage
Cloud and Lab Any Where [9]. It leads to the withdrawal that
Cloud Computing approach has its wide potential application in
Global Software Development. And nowadays it is on the
continuous focus of the research in Software Engineering field.

REFERENCES

[1] Chou, D. C. and Chou, A. Y., Software as a Service (SaaS) as an
outsourcing model: an economic analysis. Proc. SWDSI’08, 2007,
pages 386-391.

[2] Clemons, E. and Chen, Y., Making the Decision to Contract for
Cloud Services: Managing the Risk of an Extreme Form of IT
Outsourcing. Proceedings of the 44th Hawaii International
Conference on System Sciences (HICSS), 2011, pages 1-10.

[3] Cocco, L., Mannaro, K. and Concas, G., A Model for Global
Software Development with Cloud Platforms. Proceedings of 38th
EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), 2012, pages 446-452.

[4] Chauhan, M. A. and Babar, M. A., Cloud infrastructure for providing
tools as a service: quality attributes and potential solutions.
Proceedings of the WICSA/ECSA 2012 Companion Volume, 2012,
pages 5-13.

[5] Hashmi, S. I., Clerc, V., Razavian, M., Manteli, C., Tamburri, D. A.,
and Lago, P., Nitto, E. D. and Richardson, I., Using the Cloud to
Facilitate Global Software Development Challenges. Proceedings of
Sixth IEEE International Conference on Global Software Engineering
Workshop (ICGSEW), 2011, pages 70-77.

[6] Huzita, E. H. M., Leal, G. C. L., Balancieri, R., Tait, T., Cardoza, E.,
Penteado, R. and Vivian, R. L., Knowledge and Contextual
Information Management in Global Software Development:
Challenges and Perspectives. Proceedings of IEEE Seventh
International Conference on Global Software Engineering Workshops
(ICGSEW), 2012, pages 43-48.

[7] Martignoni, R., Global sourcing of software development-a review of
tools and services. Proceedings of Fourth IEEE International
Conference on Global Software Engineering (ICGSE), 2009, pages
303-308.

[8] Mockus, A. and Herbsleb, J., Challenges of global software
development. Proceedings of Seventh International Software Metrics
Symposium, 2001, pages 182-184.

[9] Pavan, Y., Ramaseshan, R., Gayathri, B., Karthik, M., Divya, C.,
Global software development with cloud platforms. Software
Engineering Approaches for Offshore and Outsourced Development,
2009, pages 81-95.

[10] Stankov, I. and Datsenka, R., Platform-as-a-Service as an Enabler for
Global Software Development and Delivery. Multikonferenz
Wirtschaftsinformatik, 2010, pages 555-566.

[11] Stapel, K., Knauss, E. and Schneider, K., Using FLOW to Improve
Communication of Requirements in Globally Distributed Software
Projects. Proceedings of Collaboration and Intercultural Issues on
Requirements: Communication, Understanding and Softskills
(CIRCUS), 2009, pages 5-14.

TABLE 3. GSD CHALLENGES POTENTIALLY SUPPORTED BY CLOUD services [5]

GSD challenges and issues Negative impact on software
development

Facilitating GSD using Cloud’s components

Geographic: distance, t ime,
data transfer, infrastructure

Communication delays
Project development delays
Costs increases

Dynamic data exchange, always accessible project
related knowledges, PaaS common shared
development environment with all infrastructure,
SaaS provided working software components

Cultural: lack of trust, face-
to-face communication,
unequal distribution of work

Poor management
Work duplication
Project delays
Costs increases

TaaS and SaaS provide coordination tools,
discussion tools, fair distribution of tasks, work
monitoring tools, localized and translated services

Linguistic: knowledge
transfer, frequency of
synchronous communication

Ineffective project management
Misunderstanding of tasks and
problems’ solution
Release delays
Loss in project quality

SaaS provides multilingual support, tasks’ threads
isolation, advanced communication stream
possibility, project data history

Time zones differences at
multi sites: less project
visibility, duplication work
risk

Project delays
Loss in software quality
Loss of some project knowledge

Cloud storage provides a guarantee of not losing
data, information is always accessible

39

Cloud-based Testing: Opportunities and Challenges

Yanhe Liu
Department of Computer Science

University of Helsinki
Helsinki, Finland

yanhe.liu@cs.helsinki.fi

Abstract—Recent years, we are experiencing an explosion of
cloud computing as a new generation of Internet service. More
and more computing resources, software services and platforms
are migrating to cloud, which also leads a great opportunity in
providing more effective and scalable testing methods and tools
as well as testing services (TaaS). However, testing has its own
characteristics differing from other parts of software engineering,
which requires new schema and techniques for offloading. This
paper offers a clear overview of concepts, features, and challenges
in cloud testing. Furthermore, this paper summarizes and reviews
different products and solutions of cloud testing and testing
environment as a service (TEaaS), and provides some possible
research directions of cloud-based testing.

Keywords—cloud computing, software testing, cloud tesing, test
as a service

I. INTRODUCTION

Recently, cloud computing has been one of the hottest
topics in IT industry since it is changing the way of offering
Internet service and computation resources. Today, we are
experiencing an explosion of cloud computing as a new genera-
tion of Internet service. More and more companies, including
some leading ones such as Google, IBM and Amazon, are
offering service or infrastructure based on cloud techniques.

Software testing, as one of the most important but labor-
intensive parts of software development, can also benefit from
cloud computing. Since cloud computing provides on-demand
resources and services with high elasticity and compatibility,
research focusing on cloud testing, or sometimes called as
Testing as a Service (TaaS), receives more and more attention
recently. Cloud testing system is a new generation of software
testing system. The software tests in this system are executed
and analysed in the cloud-based environment.

One of the primary advantages of cloud testing is its cost-
efficiency in managing and maintaining testing environment.
Users can expand their testing resources on demand. For
example, users do not need to buy multiple devices for large-
scale reliability tests. They can run their tests in the cloud with
devices provided by vendors. In addition, it is easier to simulate
different hardware failures in a cloud environment. However,
testing in the cloud is not free. For service vendors, testing in
the cloud is executed in an online way where virtualization and
dynamical configuration of testing resources are crucial, but
difficult to implement. For the customers, safely and effectively
migrating test cases or scripts to the cloud also requires special
skills. Cloud testing brings challenges with opportunities and
benefits together.

Although some organizations and companies have already
provided cloud-based testing services such as cloud load

testing and web application testing, cloud testing or TaaS is
still a new topic for software engineering. When people talk
about cloud testing, many points are still not very clear:

• What is cloud testing? What are the most important
and distinct features of it?

• What are the major differences between software
testing based on cloud and the conventional one not
based on cloud?

• When should we use cloud testing? What are the major
benefits of cloud testing? Is there any disadvantage of
using it?

• What are the special issues and challenges of cloud
testing?

• What are the typical structures of cloud testing sys-
tem? What are the current practices?

In this paper, we present some basic concepts and features
as well as distinct requirements of cloud testing and aim
to answer these questions we list. To have more profound
understanding of cloud testing, this paper introduces some
practical cloud testing systems and compares them with legacy
automated software testing systems. The rest part is organized
as follows. Section II reviews some related research work.
Section III discusses the concepts of cloud testing, including
definition, distinct features and benefits. Section IV describes
some typical testing systems based on cloud computing, and
analyses the main differences between them and conventional
software testing systems. Primary issues and challenges of
cloud testing are discussed in Section V. Finally, we conclude
in Section VI.

II. EXISTING RESEARCH WORK

With the development of cloud computing, there are more
and more published papers focusing on cloud-based software
testing. Most of the literatures can be divided into two different
groups: The first group mainly discusses basic concepts and
standards of cloud testing and TaaS systems, and the second
group concentrates on practical system design and implemen-
tation.

The papers [1], [2], [3], [4] propose some cloud testing
systems. Hanawa et al. [3] develop a cloud-based testing
system with fault injection. Lian Yu et al. [2], [4] try to
optimize TaaS systems by clustering similar test tasks and
reuse the testing environment. Jerry Gao et al. [5] discuss
major benefits and requirements of cloud testing. Parveen et
al. [6] focus on the cost of migrating software testing to the
cloud.

40

III. UNDERSTANDING CLOUD TESTING

A. What is Cloud Testing?

Cloud testing refers to the techniques of executing and
managing software testing on a cloud-based environment [5].
There are two basic forms of cloud-based software testing:
testing in a cloud, and testing toward a cloud [1]. The main
difference between them is whether the testing focuses on
validation of the quality of a SaaS application in the cloud.
Testing in a cloud highlights getting test resources from cloud
to test different software application no matter whether it is
a service based on the cloud, while testing toward a cloud
mainly runs software testing to assure the quality of a SaaS
application in the cloud.

Unlike conventional software testing, cloud testing has
some unique testing features and requirements:

1) On-demand Service: This is one of the most important
features and requirements for most of the cloud computing
techniques. Cloud testing provides consumers with more flex-
ibility of using computing resource. Users can choose exactly
what and how much they need [1], and they only need to pay
for what they use every time.

2) Cloud-based Testing Environment: All the computing
resources and test beds as well as testing platforms are
provided and allocated automatically based on cloud infras-
tructure. The test cases are executed in the cloud-based en-
vironment. The vendors of cloud testing need to manage the
testing resource by virtualization.

3) Service Level Agreements (SLAs): The cloud testing
services are provided to different users with diverse but well-
defined service-level agreements [5]. These agreements are
always designed by different vendors and considered as an
aspect of the testing service, such as data confidentiality,
system reliability and user privacy.

4) Multi-tenant: The cloud testing service is always pro-
vided to multiple consumers [7]. Different from conventional
internal test systems, the cloud service is designed for sharing
by many different users.

B. Benefits

There are some distinct advantages when cloud-based
testing is used. First of all, the cloud-based testing can reduce
costs. Customers of cloud testing use virtualized computing
resources in the cloud and share testing infrastructure on
demand without buying required hardware and software. In
addition, vendors of cloud testing offer testing platforms
(networks, operating systems and hardware) for different test
tasks. Users can easily execute tests without paying much
attention on configuration and installation of test beds. The
test environment can be set up quickly.

In addition to the cost efficiency, cloud testing can provide
better load scalability and testing performance. It is easy for
cloud testing system to generate and produce scalable test load
utilizing parallel and concurrent computing as required to test
and evaluate the performance of large systems. Improving per-
formance by using concurrent computing is also an important
characteristic of cloud-based techniques.

Furthermore, it can be easier to set up the cloud testing
platforms for very large distributed systems. The cloud test-
ing systems provide interfaces for automatically environment
construction, which helps users to set up and rebuild large-
scale test platforms conveniently. By using techniques of
virtualization, the configuration time for setting test beds for
large systems could also be shorten.

IBM illustrated some major advantages when using their
cloud computing system in small business division [5]:

• capital and licensing cost can be reduced more than
50% by using virtualized technique.

• Testing setup time is shorten.

C. When to Migrate Test to Cloud?

Before starting to use cloud testing, we first need to
consider when it is more appropriate to use, or whether cloud
testing is suitable for the task. Though the advantages of cloud
testing are considerable, it is not suitable for all the conditions.
Users need to compare the benefits and trade-offs between a
local test environment with cloud system before testing.

The first thing users need to consider is the testing ef-
ficiency. Generally speaking, an internal test environment is
smaller and easy to build up, and there is no extra cost for
test uploading and management. This testing environment is
very suitable for testing some small applications. In contrast,
a cloud-based testing system may have better performance for
testing large distributed system. It is also more suitable to
simulate complex user load of the real world.

The test case independence is also an important aspect
for choosing test environment. Cloud testing may shorten the
executing time of a large number of test cases by concurrent
testing. However, this is possible only if the test cases or test
tasks uploaded to the cloud are independent from each other. It
is more appropriate to use cloud testing for highly independent
test cases [6].

In addition to the independence of test cases, the environ-
ment requirement affects the testing execution. Typically the
cloud environment is hardware-standardized. The cloud testing
vendors always only provide the most common hardware
resources and software environment to the users. Applications
requiring special devices or particular hardware architectures
may be not appropriate for cloud testing. Complex test cases
which depend on some specific tools and libraries are also
not good candidates for TaaS. However, some Web application
tests are easy and appropriate to migrate to the cloud nowadays
because of their low environmental dependency on specific
hardware or software.

Moreover, users need pay attention to privacy and safety.
By now, privacy and safety are still open questions for cloud-
based techniques, and customers have to consider these ques-
tions and their risks before testing.

Tauhida Parveen et al. [6] suggest some features to consider
when migrating software test to the cloud. They also show
that some applications such as the GNU Compiler Collection
(GCC) with complex environmental dependencies are not very
appropriate to test in the cloud.

41

IV. PRACTICAL SOLUTIONS OF CLOUD TESTING SYSTEM

In this section, we introduce some typical structures and
schemes for implementing cloud testing. First, we demonstrate
the basic workflow of cloud testing. Then we introduce a cloud
testing system with fault injection. Finally we explain the cloud
testing system developted by Lian Yu et al. [2] which focuses
on task clustering.

A. Workflow

Sometimes cloud testing is also called as testing as a
service (TaaS), which receives much attention recently because
of its cost-efficiency and load scalability. The concept of TaaS
was introduced by Tieto in Denmark in 2009 [5]. A typical
workflow of TaaS is displayed in Figure 1.

Fig. 1: General Workflow of TaaS [5]

The typical workflow of TaaS consists of the following
steps and service modules:

1) TaaS Process Management: This is the main logical
controller of TaaS systems. It provides process control and
the management of test tasks.

2) QoS Requirement Management: This component man-
ages the predefinition of software testing QoS requirements.
There are modules which are used to assure test quality in this
component.

3) Test Environment Service: This module is used for creat-
ing virtual testing environment by dynamically allocating cloud
computing resources on demand. This part is very important
for cloud-based techniques, which affects the efficiency of the
whole testing system.

4) Test Solution Service: TaaS system can generate test
cases and test suites automatically by using this module. In
addition, it is responsible for scheduling the test tasks for the
system.

5) Test Simulation Service: The module simulates testing
inputs in the virtual system and use these simulations to reflect
varieties of real conditions. For example, specific faults can
be generated in the cloud testing system to simulate real
fault scenarios. This component can not only simulate specific
conditions, but also establish necessary environment with user
data.

6) On-demand Test Service: By using this module, the
system executes test cases for the customers on demand as
the requirements and schedules.

7) Other Components: There can be some assistant mod-
ules in a TaaS system. For example, tracking and monitor
module allows system to record the behaviors and results of
the executed tests, and the pricing and billing module enables
the customers to pay based on their testing workload.

B. D-Cloud

D-Cloud is developed by Toshihiro Hanawa et al. [3]
mainly for testing parallel and distributed systems at first. It
can be considered as a typical cloud testing system which
accelerates software testing by executing test cases simulta-
neously using virtual computing system. D-Cloud consists of
three different parts: virtual machine nodes providing comput-
ing resource, resource controller which manages and allocates
testing resource for different tasks, and testing configuration
controller, which interprets test scenarios to detailed hardware
and software requirements. The test configuration of D-Cloud
is written in a specific format of XML file to describe the test
scenario and resource requirement, and the test cases can be
provided in separated files written in scripting language. The
structure of D-Cloud is shown in Figure 2.

Fig. 2: Structure of D-Cloud [3]

D-Cloud constructs its virtual computing system by using
QEMU (short for Quick EMUlator), which is an open-source
software providing hardware virtualization. The on-demand
software testing is executed in the QEMU virtual machines
with specific emulated hardware and different operating sys-
tems. In addition, D-Cloud can emulate hardware fault by
using QEMU.

In order to allocate testing resources dynamically and
efficiently for performing a number of test cases simultane-
ously, D-Cloud uses Eucalyptus [8] to manage virtual machine
resources flexibly. The system can transfer and allocate vari-
ous operating system images to different virtual machine on
demand as well as initial and close these virtual machines. The
resource allocation is transparent for the test customers.

42

Before allocating testing resources dynamically, D-Cloud
system first interprets user-defined testing configuration file to
specified hardware and software requirements, and then uses
these requirements for resource management. The configura-
tion is written in XML and can be used to generate various
resource descriptions. Table I lists some machine definition
which can be considered as some basic hardware configuration
of the testing platform. Table II is the descriptions of software
environment in D-Cloud system.

TABLE I: Machine Definition Used in D-Cloud [3]

Element name Meaning

machine Delimiter for definition of the hardware environment
name Name definition of the hardware environment
cpu Number of CPUs
mem Size of memory
nic Number of NICs
id ID of the used OS image

TABLE II: System Definition Used in D-Cloud [3]

Element name Meaning

system Delimiter for definition of the software environment
name Name of the software environment
host Delimiter of the testing host
hostname Name of the host
machinename Name of the used machine element
config Designation of the configuration file

The basic workflow of D-Cloud is similar to what we
describe in part A of section IV. The system first receives the
test configuration and test scripts from the users, and parses the
configuration file to allocate testing resources and set up testing
environments. Then the test cases are executed concurrently.
In addition, D-Cloud can simulate some kinds of system faults
by using virtual machines.

C. Cloud Testing System with Task Clustering

As mentioned before, cloud testing system is cost-efficient
for the customers because the customers can use virtual
resources and testing environment as requested without really
buying them. However, preparing separated but similar testing
resources for several different users in a short time is still
expensive for the system vendors. If the testing environment
can be reused by several customers who have similar testing
requests, the system can be more cost-efficient. Lian Yu et
al. [2] develop an optimized cloud TaaS system with task
clustering. The architecture of this system is shown in Figure 3.
It contains five layers: test service frontend, test task manager,
testing resource manager, testing layer and testing database.

1) Test Service Frontend: This is the interactive layer
between users and the TaaS system where users can use
different tools and methods to interact with the remote cloud
testing system, give commands on what to test and transfer
test cases as well as collect testing results.

2) Test Task Manager: In order to optimize the cloud
testing system, Lian Yu et al. [2] develop a test task manager.
This layer checks whether different test tasks can be clustered
and executed together in one testing environment, and how
these tasks can be scheduled in an appropriate order if they are

clustered. This manager consists of several major components
such as the module of checking test task capability and the
module of clustering test tasks.

3) Testing Resource Manager: This layer is responsible for
allocating test resources and creating test environment accord-
ing to the requests processed by test task manager. It monitors
hardware resources and manages all the virtual machines used
for testing. This layer also contains some different modules,
such as virtual machine controller and resource monitor.

4) Testing Layer: This layer is responsible for executing
test cases on virtual machines.

5) Testing Database: This is the layer where test tasks, test
cases, and testing result are stored.

Fig. 3: Structure of Cloud Testing System with Task Clustering
[2]

The test task manager is the unique component in this cloud
testing system, which performs test task aggregation. Every test
task defined by users has its test requirements on the executing
environment and platform. The Table III is an example of the
test requirements on software.

TABLE III: Software Requirements Used in Test Task Manager
[2]

Element Requirement

Operating System Unix
Web Server Tomcat
Database MySQL
Compiling Tool jdk

The test task manager first matches these tasks with specific
environment which can fulfill the requirements by using the

43

definition given by the users, and then maps different tasks
with similar requirements to one clustering platform. After
clustering, the task manager make decisions on which sequence
should be used for executing these different tasks. For handling
this, the user should also give description on the priority of the
tasks.

D. Main Features of Cloud Testing Systems

Though the two cloud testing systems we illustrated in our
paper use different structures and have different characteristics,
they have one basic feature in common which can also be
considered as the distinct characteristic of TaaS systems: Both
of them have a resource manager for dynamically allocating
testing resources for multiple users simultaneously as re-
quested. Different from conventional automated testing system,
TaaS or cloud testing system should offer testing environment
and platforms on demand. A cloud testing system can be
considered as the combination of PaaS and SaaS: it provides
not only the testing resources and environment as the platform,
but the automated testing as a service. Some research only
focus on the platform part, and they call this kind of service
as test environment as a service (TEaaS).

In the Table IV, we list some famous cloud-based testing
providers.

TABLE IV: Examples of Cloud-based Testing Providers

Cloud
Provider Testing Services Features Service

Costs

Soasta
Performance testing of
web and mobile applica-
tion

1. Open for some cloud
platforms and infrastruc-
tures like Amazon EC2
2. Support Mobile Touch
test

Pay as
you test

BlazeMeter Performance testing of
web applicaiton Quick start Pay as

you test

Zephyr Scalable platform for
manageing testing cycle

Integrated with the JIRA
platform

Buy the
software
licence

V. CHALLENGES AND NEEDS

With the development of cloud computing and network
techniques, more and more companies start to offer their
testing systems based on the cloud. However, there are still
some challenges which hinder the utilization of cloud testing.
In this section we first discuss these challenges, and then
propose some needs and requirements for the cloud testing.

A. Challenges in Cloud Testing

1) Tesing Security: Security is one major concern in all
kinds of cloud systems, including current SaaS, PaaS and cloud
testing system. How to upload data to the cloud and use the
remote computing resources safely and privately has already
become a hot topic in the field of software engineering. For
cloud testing system, designers need to pay more attention
to the test data management, which is one of the biggest
and critical open questions in TaaS [9]. Some issues which
engineers have to handle are listed here:

• Is it safe for the users to test applications in a third-
party cloud system? How can we assure that the
testing and migrating processes are safe to use?

• What should the vendors of cloud testing do to protect
and assure users’ privacy in the cloud? What kind of
mechanism are needed?

• What should the vendor do after the testing is finished?
Do they need to delete all the test data and the software
applications?

• What are the security standards for cloud testing?

The source code of test cases and applications can be
confidential by either executing the test in some private clusters
or providing specific and strong protections for the customers.

2) Environment Construction: One of the biggest differ-
ences between conventional testing systems and cloud testing
systems is on-demand environment construction. The cloud
testing system should allocate testing resources and build up
the testbed automatically as required. Though current TaaS
systems we mentioned in Section IV have the ability to
construct the testing environment on demand, they can not
guarantee high cost-efficiency for the system. To implement
setting up test environment on demand in a cost-effective way,
the cloud testing system needs to understand more about test
tasks with specific techniques. Some PaaS techniques can be
used here for enhancing the efficiency of construction.

3) Integration and Interoperability: Nowadays, many com-
panies provide their own cloud testing systems. However, there
is no standard on interaction interfaces or system structures.
Different companies use different user interfaces and tech-
niques to initialize the cloud testing, and engineers and cus-
toms must deal with the interoperation of different applications
in the cloud based on different APIs. Extra costs are needed
if users want to migrate their tests to other different cloud
testing systems. There is a lack of well-defined interfaces
and standards for interactive protocols between different cloud
systems or vendors.

4) Scalability: The cloud testing system could be more
cost-effective when concurrent and parallel computing tech-
niques are applied. However, the first thing to use concurrent
computing for cloud testing is to find appropriate ways to
scale automated test systems [10]. When the system is very
large, new challenges arise. The TaaS systems we introduce in
Section IV can execute automated tests on demand, but if there
are thousands of computers to manage and a large number of
users together, the resource allocation and test monitor will
become difficult. New techniques are needed for management
the testing resources dynamically in a large scale.

B. Needs in Cloud Testing

To use cloud testing effectively, some requirements of
optimization are needed in current TaaS systems.

First of all, the cloud testing systems should have some
standard service level agreements. Recently, the cloud testing
and SaaS systems still use different standards and provide
diverse types of service level agreements (SLAs), which is
inconvenient for customers and bad for interoperation over
different clouds. Defining some standards for all the cloud
testing vendors is beneficial not only for the customers, but also
for the vendors themselves. The customers can design their
test cases based on more detailed standards, and the vendors

44

can pay more attention on performance and reliability of their
system. The specific standards could include the following
aspects:

• What kind of security and privacy should a commer-
cial TaaS product offer?

• How should the cloud testing systems deal with the
uploaded applications and test cases?

• What is the minimal security requirement for trans-
mitting test cases from users to the cloud systems?
What kind of security protocols are needed?

For enhancing software testing integration in TaaS sys-
tems, innovative cloud testing models are also needed to
provide more inter-operational APIs. For example, there is
no uniformed protocol or API for communication crossing
clouds. What we need right now are some integration models
supporting crossing operations.

In addition, new large scale test platforms will be more
important in the near future. With the development of mobile
applications and high speed networks, the scale of Internet
services is expanding. For testing this kind of services, a
test system supporting large scale test loads and dynamical
resource allocation becomes very necessary.

Moreover, we need more diverse testing environments. For
minimizing the cost and simplifying the resource management,
vendors of cloud testing always provide standardized hardware
and software resources. However, sometimes uses need some
special devices or particular hardware architectures. For ex-
ample, the developers of applications of mobile phones may
wish to test their applications on several different devices to
guarantee compatibility, and the testing cost can be reduced if
many different developers share to use the same remote devices
together. This can be a new opportunity for cloud testing or
other cloud platform companies.

VI. CONCLUSION

Cloud computing is a popular research field which not
only brings opportunities to software testing, but also raises
challenges. With the development of networks and software
engineering, more researchers and companies start to test
software in the cloud. However, cloud testing has no clear
meaning or definition although it has been proposed for several
years. In this paper, we presents some major features and
benefits as well as the trade-offs and challenges of cloud
software testing aiming to obtain better understanding about it.
In addition, we study two types of practical schemes for cloud
testing and analyse their major characteristics and structures.
Moreover, this paper also discuss some basic requirements of
effective cloud testing systems.

We hope that this paper can answer some basic questions
about the nature of cloud testing systems, and provide some
hints for efficient cloud testing and TaaS system design.

REFERENCES

[1] J. Wu, C. Wang, Y. Liu, and L. Zhang, “Agaric – a hybrid cloud based
testing platform,” in Proceedings of the 2011 International Conference
on Cloud and Service Computing, ser. CSC ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 87–94.

[2] L. Yu, W.-T. Tsai, X. Chen, L. Liu, Y. Zhao, L. Tang, and W. Zhao,
“Testing as a service over cloud,” in Proceedings of the 2010 Fifth IEEE
International Symposium on Service Oriented System Engineering, ser.
SOSE ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
181–188.

[3] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, and
M. Sato, “Large-scale software testing environment using cloud com-
puting technology for dependable parallel and distributed systems,” in
Proceedings of the 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops, ser. ICSTW ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 428–433.

[4] L. Yu, X. Li, and Z. Li, “Testing tasks management in testing cloud
environment,” in Proceedings of the 2011 IEEE 35th Annual Computer
Software and Applications Conference, ser. COMPSAC ’11. Washing-
ton, DC, USA: IEEE Computer Society, 2011, pp. 76–85.

[5] X. B. Jerry Gao and W.-T. Tsai, “Cloud testing - issues, challenges,
needs and practice,” Software engineering: an international Journal
(SeiJ), vol. 1, no. 1, p. 923, 2011.

[6] T. Parveen and S. Tilley, “When to migrate software testing to the
cloud?” in Proceedings of the 2010 Third International Conference on
Software Testing, Verification, and Validation Workshops, ser. ICSTW
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 424–
427.

[7] K. Incki, I. Ari, and H. Sozer, “A survey of software testing in the
cloud,” in Proceedings of the 2012 IEEE Sixth International Conference
on Software Security and Reliability Companion, ser. SERE-C ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 18–23.

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, ser. CCGRID ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 124–131.

[9] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander, “Testing in the
cloud: Exploring the practice,” IEEE Softw., vol. 29, no. 2, pp. 46–51,
Mar. 2012.

[10] G. Candea, S. Bucur, and C. Zamfir, “Automated software testing
as a service,” in Proceedings of the 1st ACM symposium on Cloud
computing, ser. SoCC ’10. New York, NY, USA: ACM, 2010, pp.
155–160.

45

Continuous Deployment of Software

Ville Pulkkinen
Department of Computer Science, University of Helsinki

Helsinki, Finland
ville.p.pulkkinen@helsinki.fi

Abstract—Continuous integration practice has gained popu-
larity in the industry in the last decade. In the continuous
integration practice all changes the developer commits to
VCS are automatically and continuously tested for integration
problems. Some have taken this practice even further to include
also automated acceptance testing. The most extreme practice
is to automate the whole process so that the deployment to
the production environment is done automatically if tests pass.
This is called the continuous deployment.

Goal of this article is to i) describe the current state-
of-practice and to ii) find out what is the current status
of the continuous deployment in the software engineering
research. I also will iii) point out issues that continuous
deployment introduces to the software development. Lastly I
briefly iiii) present how do the current cloud-providers support
the continuous deployment strategy.

The concept of the continuous deployment as well as differ-
ence to the contionuous delivery and the continuous integration
strategy is provided. Some views of the continuous deployment
strategy from the industry will be presented. Lastly we will have
short review of how current cloud-providers are supporting the
continuous deployment strategy.

Keywords-D.2 Software Engineering, D.2.0.c Software en-
gineering for Internet projects, D.2.6. Programming Envi-
ronments/Construction Tools D.2.6.e Programmer workbench,
D.2.16 Configuration Management D.2.16.f Software release
management and delivery

I. INTRODUCTION

The Internet, network infrastructure and cabable browsers
have enabled cloud software to be a very popular approach
to provide different kinds of services to users. At the same
time the popularity of Lean software development approach
and similar Agile methods put great emphasis for customer
collaboration and faster feedback [1].

A Software that is provided via web browser, such as
the Facebook or the Google Docs, allows deployment of a
new software build to users without requiring any significant
effort from the user. Page refresh might be enough to get
the latest version available to use and the user doesn’t
probably even notice of the upgrade made between the
normal interaction. Also these web-based solutions enables
the collection of usage data continuously and in real-time.
This data could be used to observe and to analyze the
performance of the system or as an input for product
development to support decision making for next steps in
development project. This way developers can concentrate
to the implementation of features that are important for

users and hence reduce waste by not further implementing
the features that are not used. Reducing waste is one of
the principles of Lean software development. Also other
principles of Lean put great emphasis on the fast customer
feedback. Hence there is a vision of developing a software
by a help of fast customer feedback loops by experimenting.
With this approach it could be faster to find out what are
the real needs that customers have for the software. The
Continuous deployment is suggested to be the enabling
technique towards this approach [2].

Behind all of these thoughts is one goal: to do more
successful software development. To do successful software
development, you must provide valuable software to the
customer and getting the value to the customer as fast as
possible without compromising the quality.

II. BACKGROUND

The idea behind the continuous deployment has evolved
from the continuous integration which was first presented
by Martin Fowler in the year 2000 [3]. The concept of
the continuous delivery and the continuous deployment
is described by Humble et al [4] and the distinction is
explained in more detail in blog post made by Humble [5].
Also one example of the continuous delivery in the cloud is
provided by Birkner [6].

A. Terminology

Continuous integration is one of the practices in the agile
software development where every team member check in to
a centralized repository their work every time a new change
or a task is completed [7]. After the developer has checked
in the latest changes, a continuous integration system tries
to compile the source code artifacts. If the build process
is successful and a new build is available, the continuous
integration system runs unit and integration tests. By a build
as an object we mean an executable artifact compiled from
a source code. If some tests fail the continuous integration
system will inform, for example via email, the developer
immediately which tests have failed. The idea behind con-
tinuous integration is to detect the problems that occur at
integration test phase as soon as possible and to deliver the
feedback as fast as possible to the developer.

Continuous delivery is about making sure that the software
that is under development is always production ready -

46

Figure 1. Continuous Integration, Delivery and Deployment

hence it is always ready to be deployed to the production
environment [5]. The Continuous delivery consists of the
continuous integration phase including also automated de-
ployment to testing environments for automated acceptance
and performance testing [4]. Releasing a new software build
is in hand of a business personnel, not solely a developer.
With continuous delivery there is possibility to do for
example some manual exploratory testing or user assurance
testing before the application is deployed to the production
environment. Also some other inspections can be done. For
example related to some software quality testing standards.

In continuous deployment every change that passes your
automated tests will be deployed automatically to the pro-
duction [4] environment. In this kind of practice all test
phases should be fully automated including acceptance tests
that cover functional and non-functional requirements. It
is clear that successful continuous deployment depends on
automated tests that are very good quality. It is more radical
approach than continuous delivery.

In Figure 1 there is presented the differences of these three
techniques. A Box is describing the process to take place and
the line between the boxes is describing if the step between
the processes is automated or not. The Author got inspiration
for the figure from a visualization from Sundman [8].

If you have constraints on compliance, then approvals
are required for deploying a new build to the production

environment [4]. In that case you could not deploy contin-
uously to the production environment with the help of an
automated build pipeline. The same goes with everything
around the code that is required to be done manually before
the deployment is made to the production environment and
thus cannot be automated. For example the creation of
product support documentation.

Release vs. deployment. In continuous deployment one
could also see a distinction with a release of a software
product and deploying some build of the software to the
production environment [9]. Deploying a build in contin-
uous deployment might occur multiple times a day, but a
release might be more business oriented event. For example
announcement of some set of new features when they are
already deployed to the production environment, hence are
already available.

In this paper the Author cites many references that are
related to the continuous delivery because there are also
discussion about the continuous deployment. The continuous
deployment is seen in those contexts as the most extreme
and advanced technique [10].

B. Tools

There are several tools that are quite essential to achieve
the continuous delivery and deployment. Heart of all is
the continuous integration server which orchestrates the

47

whole process of building code into executable software
artifacts, testing those artifacts and deploying a new working
build to different environments. The Continuous integration
server communicates with the revision and source control
management systems also known as version control system
(VCS) to checkout the source code and to trigger a new build
process. New build process is triggered when some commit
is made to VCS. The Continuous integration server notices
changes from the VCS usually by polling it frequently.

Testing is done with the help of automated test suites
which are covering all phases from the unit testing to
the quality assurance phase including functional and non-
functional tests. Also the database changes should be man-
aged and applied automatically with the help of database
change management tools. Environments and infrastructures
for the testing and also for the production environment could
be configured and setted up automatically with configuration
management systems, altough not always required. Last but
not least the build activity is usually automated with build
tools and dependecies to external libraries are managed with
dependency management systems.

All these tools are involved in an automated build pipe-
line process. Examples of these kind of tools are in Table
I.

III. RELATED WORK

The concept of continuous integration is greatly explained
by Abdul et al [11]. Main points of continuous integration
practice is to reduce the manual effort in the software build
process and to reduce integration problems that usually
occurs when different parts of software from different de-
velopers are integrated rarely. Referenced article [3] in the
paper by Abdul et al [11] originates to the year 2000 and
was rewritten in the year 2006 [3].

Canizzo et al [12] reports of an experience of extending
the continuous building of software with the help of a con-
tinuous integration server to include also performance and
robustness testing. Although the automated build system and
the automated robustness and performance test framework
took some time at the beginning to setup, benefits on later
resulted in better maintainability. It was also easier to con-
vince the customer by showcasing these test results for non-
functional requirements on demand. The main challenges
with automation of robustness and performance testing were
the set up of a reasonable testing environment and coping
with the concurrency of the actual system within tests. As
the Authors of the paper noted it is crucial that the actual
success criteria are defined for automated testing to take
place. Other benefits are also mentioned in the paper such
as writing of more robust code.

As noted by Jiang et al [13] the regression testing phase
might be a bottleneck towards the continuous integration
and hence also to the continuous deployment. The Authors
also mention that test prioritization is used to overcome

this. On the other hand this could reduce the overall code
coverage and hence might lower the quality of delivery. As
a result from the conducted experiment, the paper suggests
that randomized prioritization outperforms all of the other
examined approaches.

Continuous SCRUM presented by Agarwal [14] is de-
scribed by the Author to enable continuously deploying
software to production. The model he presented describes
a weekly scheduling for releasing of a software with a three
parallel scrum teams, thus not continuously. Also where
the continuous deployment is described by Humble [4] as
a practice where developer is done with a task when the
feature is deployed to the production environment, Agarwal
described that ”as and when each developer completes an
individual work-item they mark its status as completed (in
the Tracker application) after performing their round of UT
(unit-testing).”.

While there should also be a process model that sup-
ports the continuous deployment, the Continuous SCRUM
Agarwal presented could be only adopted to the continuous
delivery strategy where the automated deployment to the
production environment is ommited. That is because of the
nature of SCRUM development process model which relies
on scheduled releases.

IV. RESEARCH METHOD AND APPROACH

The Author studied practices from the industry by reading
the book Continuous Delivery by Jez Humble and Dave
Farley and reading multiple articles, blog posts and other
web articles from the Internet related to the continuous
delivery and deployment. Also to study the current state-
of-art of the continuous deployment, articles related to
the continuous deployment, delivery and integration were
searched from the IEEEXplore digital library and via the
Google search.

Approach of this paper is a development of a software
which is provided to users via browser and is deployed to
a cloud environment such as PaaS. Issues related to the
continuous deployment of software that is supposed to be
installed to a users local machine is ommitted completely.

V. CONTINUOUS DEPLOYMENT FROM PRACTICIONERS

A. Why continuous deployment?

Assumed benefits of continuous deployment are widely
presented in the blog posts and articles on the Internet
and literature from practicioners. Advocates are motivated
mainly by the idea of fast feedback from system and from
users. The Author noticed that there is some differences
of how the terms continuous deployment and continuous
delivery were understood. It seems like the terms got mixed
up at times and there were no clear understanding of the
terms.

Automated build pipeline was one of the main benefits
of the continuous deployment. To achieve the continuous

48

Type of tool or software Explanation Examples
Version Control System (VCS) To manage and revision source code

changes. Essential to establish an automated
build pipeline.

Git, Mercurial, SVN, CVS

Continuous Integration Server To automatically run integration tests when
code changes are introduced via VCS. Or-
chestrate automated testing and deployment.

Jenkins, Hudson, Atlassian Bamboo,
CruiseControl, Teamcity

Software Configuration Management To automatically setup and configure envi-
ronment and infrastructure for example test-
ing and production purposes. Also provides
support for scalability.

Puppet, Chef, Salt

Automated Test Suites To run automated tests for unit, integration,
acceptance testing phases

Junit, JMeter, Cucumber, Selenium, Fit-
Nesse

Database Change Management To automatically apply database changes
related to current build of software. Also for
tracking changes and to apply rollbacks.

DbDeploy, Liquibase, FlyWay, ActiveRe-
cord

Build Tool and Dependency Management
System

To automatically build the software and
manage dependencies to other libraries

Apache Ant+Ivy, Rake, Apache Maven,
Gradle

Table I
ESSENTIAL TOOLS FOR CONTINUOUS DELIVERY AND DEPLOYMENT

deployment, a fully automated deployment process from a
commit to a production environment, must be implemented.
Automated process is repeatable and trackable. Repeatability
and trackability will help to track the defects in the process
and by that reducing the errors made by human [4].

Continuous deployment is said to shift more responsi-
bility to developer. You as a developer know that if tests
pass, the code will be at the production environment possibly
in few minutes [15]. Also the same author states that the
continuous deployment including the continuous integration
will force developers to deploy features in small pieces.
That will ensure the iterative development and getting the
feedback for deployed features fast [15].

The Author of the book Continuous Delivery states that
”Intuitive objection to continuous deployment is that it is
too risky” [4]. Also he continues that it is also known fact
that more releases lead to lower risk in any release. So the
continuous deployment might reduce the risks involved in
one particular release.

There is mention also about a dilemma in quality assur-
ance. Quality assurance (QA) is usually quite heavy process
in mission critical software (army, spaceflight etc.) [9]. QA
is not suitable or scalable for example start-ups because of
the beforehand costs. The Continuous deployment reduces
the overhead in QA with automation and shifting the testing
also to users, hence reducing the costs. [9]

Timothy Fitz states that usual misconception with con-
tinuous deployment is that ”Continuous deployment is for
small startups who dont care about quality.” [16]. In the
same blog post the Author tries to convince that continuous
deployment strategy will scale up from small startups to
bigger organizations, you’ll just have to create multiple
build-pipelines and make the software more modular for
example with SOA-patterns.

Some counter arguments were also presented [9]: cus-
tomers of mission critical software won’t accept new releases
on a continuous basis and continuous deployment leads to

lower quality software than software built in large batches. In
the same article there were some hints of how to overcome
these kind of assumptions by implementing the continuous
deployment strategy gradually. For example at first release
immediately only the changes that are assumably side effect
free. Secondly try to separate the concept of marketing
release from concept of engineering release.

B. Deployment strategies

There is always a risk involved when deploying changes
to a production environment. A Production environment is
always unique with its unique state. Even though the system
is thoroughly tested by quality assurance team it will be
highly likely that defects are found when the application is
in the production environment. You can never say that tests
have catch all defects. Next is presented few deployment
strategies that are assumed to reduce the risk involved in
deploying a software to a production environment.

1) Feature Flags: The idea behind Feature Flags is that
you have toggles to turn some feature on or off. If some
new feature is causing issues, you can just disable it with
configuration file, from the back-end or through some API
call [17]. This is relatively quite straight forward and can be
implemented in the code level. It does not need any special
tools or processes to be achieved.

2) Dark Launches: With Dark Launches [17] you deploy
new features to the production environment, but they are not
visible to anyone else than testers. Testers could be bunch
of automated test processes or humans interacting with the
system. After the testers have approved the performance of
the new features, you could make the features visible to
everyone. The reason why you would like to do this is,
because in this way you could really test the performance
in the real production environment. This strategy should
only be considered for performance testing and all the other
tests should have been already run in the automated build-
pipeline.

49

There is also different kind of description for Dark
Launches from the Author of the book Continuous Inte-
gration: Improving Software Quality and Reducing Risk
[18]. Duvall describes Dark Launces as launching a new
application or feature when it affects the least amount of
users.

3) Canary releasing (or gradual roll-outs[9]): Canary
releasing as presented in the book Continuous Delivery [4]
is a deployment strategy where the release of a software
is released first only to a small group of users. This could
be done automatically by the help of release management
system. After it has been determined that there are no
problems with the new version, the release management
system will automatically (or via manual step) release the
latest build to all of the users.

4) Beta users: Beta users as a deployment strategy is
similar to canary releasing, but with the except that with beta
users you deploy new features only to the willing subset of
users: the beta users [17]. If there is no defects, you may
release the new features to other users as in canary releasing
approach.

5) A/B test approach: Vincent also suggests that you
could utilize A/B testing approach in your deploying strategy
that could help you to decide which feature would perform
better [17]. A/B testing is quite simple form of controlled
testing where the selected user base is split into the two
groups and for both of these groups you expose different
variation of a feature [19].

6) Blue-green deployments: Blue-green deployments give
you the ability to rollback quickly if something goes wrong
with the latest production build [4]. With Blue-green deploy-
ments you have two different environments: one for the new
production build and one with the current production build.
At first you deploy the new build to the other environment
and when everything is loaded up as it should be you switch
all traffic to the environment with the new production build.
Fast switching could be achieved with the help of a router. If
something goes wrong you can just switch the traffic back
to the latest working production build. This strategy also
reduces the downtime of deployment. Notice that changes in
database must be managed somehow at the event of rollback.

C. Other useful practices

Other practices that are useful and important with con-
tinuous deployment are collecting statistics and monitoring
metrics [20]. With monitoring it is possible also to alert
automatically of unusual behavior of the system performance
or users. For example if there is no users at the system or
some typical usage pattern is not successfully accomplished
after the last deployment. Monitoring could span for ex-
ample from various business metrics to performance of the
running server.

D. Issues

In case if anything goes wrong, which should be assumed,
there should be a plan to rollback the changes made with
the last deployment. If we assume that the state of the
production environment is s1 before the deployment to the
production environment and the state after the deployment
is s2, then by rollback we mean the plan or process (that
could and should be automated) how to get from state s2
back to the state s1.

Rollback is quite simple to implement with a software
where there is no data stored between the sessions. You just
redeploy the last known working build. Things will be lot
harder when there is some database migrations involved or
some interactions to some other external systems [4]. For
example if the defect that will cause the rollback to be
made is detected after some new data from users is already
stored to the database you will either lose that data when
rollbacking or you could get the database in corrupted state.
This is more general problem in software releasing and not
exclusively for the continuous deployment.

When continuously deploying a new build to the pro-
duction environment it is extremely important that deploys
do not cause any reduction to the availability. One way
to achieve this is always deploy to a new environment
and switch all traffic to this new environment when the
deployment process is finished. This is also a problem
related to software releasing.

Time of building and testing might grow when the
software builds up. The building and testing phases might
become a bottleneck to achieve the continuous deployment.
To overcome this the build and testing processes should
leverage concurrency and parallelization.

VI. CONTINUOUS DEPLOYEMENT IN CLOUD

The continuous deployment might need quite amount of
computing resources to run all automated tests. Usually
when the software is getting new features the amount of
tests will grow. To run tests as fast as possible to reduce
the feedback loop to the developer, the tests could be run
in parallel with multiple processors [5]. Also this is crucial
for Lean principles point of view to reducing waste [21]. It
would be good that the developer would get the feedback
from automated tests as fast as possible and without the need
to switch tasks between the commit and the possible feed-
back of some failed tests. This could happen if the developer
moves to the next task because running the tests takes too
long and if the tests fails, the developer needs to switch
back to the previous task. Cloud services could provide this
kind of scalable build, test and deploy infrastructure. These
kind of platforms are usually called as PaaS (Platform-as-
a-Service) solutions.

50

A. Heroku

Heroku is a PaaS-solution that supports applications writ-
ten in Ruby, Node.js. Clojure, Java, Python and Scala-
languages [22]. Heroku provides also database, caching and
other supporting software via add-ons.

As the code is commited to the Heroku-platform via
Git, the Heroku automatically builds and deploys the new
code to the production environment. One could easily create
an continuous integration environment outside the Heroku-
platform that commit changes to Heroku git-repository when
the test-suite in continuous integration server has passed
successfully.

Heroku itself provides the Tddium-addon [23] which is a
Cloud-based continuous integration and deployment service.
Tddium also states that it will automatically split up the test
suite so to run the tests in parallel. This would provide great
benefit for continuous integration, delivery and deployment
because of the speed improvement in testing. It currently
supports only Ruby, Jruby and Python languages.

B. CloudBees

CloudBees is also a PaaS-solution but it states that it
provides a middleware services on top of IaaS [24]. They
divide their offering in three different category: build, run
and manage. The core of the CloudBees is Jenkins which is
a popular Continuous Integration server [25]. The platform
mainly supports JVM-based frameworks and languages. It
is also possible to build and deploy JavaScript-based apps.
Interesting aspect of CloudBees is that via its AnyCloud-
solution it promises to support multiple choices as under-
lying deployment infrastructure. Currently the CloudBees
website states that via AnyCloud it is possible use AWS
(Amazon Web Service) or HP Cloud Services as underlying
infrastructure. It is also possible to use own private cloud as
an underlying infrastructure but it will need to support the
CloudBees AnyCloud solution.

With Jenkins and CloudBees it is possible to run multiple
builds and tests concurrently. There is no mention about
automation related to running tests in parallel. CloudBees
is promoting Continuous Cloud Delivery and Deployment
a lot and there is a white paper about Continuous Cloud
Delivery on their website available to download.

C. Red Hat OpenShift

OpenShift is the Red Hat’s Cloud Computing Platform
as a Service [26]. It provides built-in support for Java,
PHP, Perl, Ruby, Node.js and Python. Also with OpenShifts
customizable cartridge functionality it is possible to add the
platform to support any language. Multiple popular frame-
works for the languages mentioned above is also provided.

OpenShift also provides Jenkins as a build server. There
is no mention about concurrency or parallel tests. Jenkins
build is triggered after a git push and it deploys the build to
production automatically if the build is successful. Running

the build does not make the application unavailable. There
is no support for rollback after the deployment phase takes
place. Problems in the deployment process might cause
failures as stated in the OpenShift website.

VII. FUTURE WORKS

This article is about the continuous deployment and it
is based mainly on the articles and blog posts written by
practicioners from the software engineering industry. Some
of the writers are advocating continuous deployment and at
the same time are providing services to build this kind of
continuous deployment systems. The concept needs some
more research and experimental studies to understand the
benefits more clear and more objectively.

It should be explored more that what are the real benefits
of continuous deployment. Will it improve the quality of a
software with learn fast, fail fast approach versus for exam-
ple weekly releases? What are the benefits of continuous and
automated deployment versus releasing the build manually?
Will it make the development process faster as Continuous
Integration in [27] versus doing it all manually? How much
are the defect rates for a team that follows the continuous
deployment strategy? How do the software development pro-
cesses, for example Scrum, fit to the continuous deployment
strategy? Is there some suitable existing process models or
do the continuous deployment strategy need a process model
of its own to structure the software development process?

Platforms like the CloudBees, that provides infrastructure
of cloud platforms on top of IaaS and extends that with
a tools and services which support continuous deployment,
could be integrated to the IDE that works via browser as
is proposed in [28]. With a system like that, enhanced with
social and collaborative features, it might enable even faster
development process in distributed environment and provide
a whole new way to develop a software.

VIII. CONCLUSION

Continuos Deployment is quite unknown term in the
scientific publications of Software Engineering field. There
are some articles that defines continuous integration and
some experiences that shows the advantages of continuous
integration which is the base for continuous delivery and
continuous deployment.

As the Author in the book Continuous Delivery[5] states
even if it is not possible to apply the continuous deployment
as your software development strategy, you should build
your build-pipeline as such as you could switch to contin-
uously deploying every commit to production at any time.
That, as the Author states, is because continuous deployment
strategy forces your team to good software development
practices and build automation where any process is clearly
defined because of the automation.

The cloud-based continuous integration, delivery and de-
ployment solutions provides good alternatives to a traditional

51

local continuous integration server option with the ability
to scale up when the builds and tests are being processed.
Without the ability to scale up the continuous deployment
would be impossible when the amount of running tasks are
increasing.

REFERENCES

[1] M. Poppendieck and M. Cusumano, “Lean software develop-
ment: A tutorial,” Software, IEEE, vol. 29, no. 5, pp. 26–32,
2012.

[2] H. Olsson, H. Alahyari, and J. Bosch, “Climbing the stairway
to heaven – a mulitiple-case study exploring barriers in the
transition from agile development towards continuous deploy-
ment of software,” in Software Engineering and Advanced
Applications (SEAA), 2012 38th EUROMICRO Conference
on, 2012, pp. 392–399.

[3] M. Fowler. Continuous integration. [Online]. Available:
http://martinfowler.com/articles/continuousIntegration.html

[4] J. Humble and D. Farley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Au-
tomation, 1st ed. Addison-Wesley Professional, 2010.

[5] J. Humble. Continuous delivery vs.
continuous deployment. [Online]. Available:
http://continuousdelivery.com/2010/08/continuous-delivery-
vs-continuous-deployment/

[6] M. Birkner. Continuous delivery in the
cloud - part 1: Overview. [Online].
Available: http://blog.codecentric.de/en/2012/04/continuous-
delivery-in-the-cloud-part1-overview/

[7] J. Abrantes and G. Travassos, “Common agile practices in
software processes,” in Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on,
Sept., pp. 355–358.

[8] Y. Sundman. Continuous delivery vs.
continuous deployment. [Online]. Available:
http://blog.crisp.se/2013/02/05/yassalsundman/continuous-
delivery-vs-continuous-deployment

[9] E. Ries. Continuous deployment for mission-
critical applications. [Online]. Available:
http://www.startuplessonslearned.com/2009/12/continuous-
deployment-for-mission.html

[10] P. B. Andreas Rehn, Tobias Palmborg. The
continuous delivery maturity motel. [Online]. Avail-
able: http://www.infoq.com/articles/Continuous-Delivery-
Maturity-Model/

[11] F. Abdul and M. Fhang, “Implementing continuous integra-
tion towards rapid application development,” in Innovation
Management and Technology Research (ICIMTR), 2012 In-
ternational Conference on, 2012, pp. 118–123.

[12] F. Cannizzo, R. Clutton, and R. Ramesh, “Pushing the bound-
aries of testing and continuous integration,” in Agile, 2008.
AGILE ’08. Conference, 2008, pp. 501–505.

[13] B. Jiang, Z. Zhang, T. H. Tse, and T. Chen, “How well
do test case prioritization techniques support statistical fault
localization,” in Computer Software and Applications Confer-
ence, 2009. COMPSAC ’09. 33rd Annual IEEE International,
vol. 1, 2009, pp. 99–106.

[14] P. Agarwal, “Continuous scrum: agile management of
saas products,” in Proceedings of the 4th India Software
Engineering Conference, ser. ISEC ’11. New York,
NY, USA: ACM, 2011, pp. 51–60. [Online]. Available:
http://doi.acm.org/10.1145/1953355.1953362

[15] N. Middleton. Continuous deployment with heroku. [Online].
Available: http://neilmiddleton.com/continuous-deployment-
with-heroku/

[16] T. Fitz. Scaling up continuous deployment. [On-
line]. Available: http://timothyfitz.com/2012/12/03/scaling-
up-continuous-deployment/

[17] J. E. Vincent. Deploy all the things. [Online]. Available:
http://blog.lusis.org/blog/2011/10/18/deploy-all-the-things/

[18] P. M. Duvall. Continuous delivery patterns. [Online]. Avail-
able: http://refcardz.dzone.com/refcardz/continuous-delivery-
patterns

[19] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M.
Henne, “Controlled experiments on the web: survey and
practical guide,” Data Min. Knowl. Discov., vol. 18,
no. 1, pp. 140–181, Feb. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10618-008-0114-1

[20] E. Ries. Case study: Continuous deploy-
ment makes releases non-events. [Online]. Avail-
able: http://www.startuplessonslearned.com/2010/01/case-
study-continuous-deployment-makes.html

[21] M. Ikonen, P. Kettunen, N. Oza, and P. Abrahamsson, “Ex-
ploring the sources of waste in kanban software development
projects,” in Software Engineering and Advanced Applica-
tions (SEAA), 2010 36th EUROMICRO Conference on, 2010,
pp. 376–381.

[22] Heroku Inc. Heroku - cloud application platform. [Online].
Available: https://www.heroku.com

[23] ——. Tddium - continuous integration and deployment in the
cloud. [Online]. Available: https://addons.heroku.com/tddium

[24] CloudBees Inc. Cloudbees.com. [Online]. Available:
http://www.cloudbees.com/

[25] Wikipedia the free encyclopedia. Cloudbees. [Online].
Available: http://en.wikipedia.org/wiki/CloudBees

[26] Red Hat Inc. Build with jenkins. [Online]. Available:
https://www.openshift.com/jenkins

[27] A. Miller, “A hundred days of continuous integration,” in
Agile, 2008. AGILE ’08. Conference, 2008, pp. 289–293.

[28] T. Mikkonen and A. Nieminen, “Elements for a cloud-based
development environment: online collaboration, revision
control, and continuous integration,” in Proceedings of the
WICSA/ECSA 2012 Companion Volume, ser. WICSA/ECSA
’12. New York, NY, USA: ACM, 2012, pp. 14–20. [Online].
Available: http://doi.acm.org/10.1145/2361999.2362003

52

Open source cloud platforms

Jussi Hynninen (Author)
Department of Computer Science

University of Helsinki
Helsinki, Finland

Email: jussi.hynninen@helsinki.fi

Abstract—During the last few years, the cloud computing
paradigm has increasingly gained popularity as a means of
providing scalable, on-demand computational resources. The
basis for a cloud service is a software stack that provides
consumers with an interface to the service while hiding the
underlying complexity of the system.

While many commercial cloud services rely on proprietary
software stacks, a number of open source software solutions
have emerged and gained popularity among service providers.
Although the end-user may not always care how the service
is composed, a service provider offering a cloud service may
benefit from building on open source.

In this paper, motivators and benefits for using open source
cloud software stacks are analysed. Prominent software stacks
are presented and compared. The purpose of this paper is to
give the reader a good glance on the current proceedings on
open source cloud software and to give insight into how it can
benefit the service provider.

Keywords- open source; cloud computing; software; infras-
tucture as a service;

I. INTRODUCTION

A. A definition of cloud computing

Cloud computing is a computing paradigm that can be
described with the following characteristics [1]:

• On-demand self-service - Computing resources can be
acquired from a service provider by consumers without
human interaction

• Broad network access - Computing resources are
accessed using a network and potentially using a wide
variety of end-user devices

• Resource pooling - The service provider’s computing
resources are pooled to serve multiple consumers. The
physical location of the resources need not be known
by consumers.

• Rapid elasticity - The capabilities of the computing
resources used by a consumer can be rapidly scaled up
or down according to demand.

• Measured service - A cloud system automatically opti-
mizes and controls resource use according to collected
metrics. Generally, this means the consumer only pays
for the resources used.

In a nutshell, a cloud service allows consumers to access
scalable computing resources over a network in a pay-as-
you-go manner, using a self-service interface.

Cloud service models can be divided in three basic
categories [1]:

• Software as a service (SaaS)
• Platform as a service (PaaS)
• Infrastructure as a service (IaaS)

In the SaaS model, the end product offered for the consumer
is an application running on a cloud infrastucture. The
service can be accessed using e.g. a web browser or via an
application programming interface (API). In the PaaS model,
the consumer is provided with a development platform
that can be utilized for creating and deploying users’ own
applications. In the IaaS model, the consumer is provided
with server infrastructure the consumer can use as she would
use any physical hardware. Very commonly these resources
are provided by means of hardware virtualization [2].

This paper concentrates on software platforms intended
for realizing IaaS services.

Furthermore, cloud deployment models can be divided in
four categories [1]

• Private clouds - Cloud services intended solely for the
use of a single organization

• Community clouds - Cloud services intended for the
use of a community consisting of consumers from
different organizations with shared intentions

• Public clouds - Cloud services that can be acquired by
the general public

• Hybrid clouds - Clouds that make use of two or more
of the aforementioned deployment models

B. A general architecture for IaaS services
Generally, a single IaaS platform consists of at least the

following or similar functions provided by a cloud software
stack or, in other words, a cloud operating system (OS) [3]:

• Virtual machine manager - Manages the life cycle
of virtual machines (VM’s) deployed on the hardware
infrastructure, on top of the virtualization hypervisor
[2]

• Network manager - Manages the deployment of pri-
vate networks in the cloud infrastructure, provides
connectivity to the Internet and provides isolation for
private networks

• Storage manager - Provides storage services and vir-
tual storage to the infrastructure in an elastic manner

53

• Image manager - Manages users’ VM images and
provides a way to create, delete and copy images

• Information manager - Monitors and collects mea-
surement data from the cloud infrastructure that is
essential for optimizing the usage of hardware resources

• Authentication and authorization - Provides users
with a way to authenticate with the cloud infrastructure
and assigns them appropriate user privileges

• Accounting and auditing - Monitors the users’ usage
of resources for billing purposes and keeps an activity
log of the users’ activities in the cloud

• Scheduler - Responsible for the optimal placement of
VM’s on the hardware resources and interacts with the
VM manager to launch new VM’s

• Administrative tools - Tools for cloud users and
administrators to perform administrative tasks within
the limits of their user privileges

• Service manager - A component for managing mul-
titier services running on the infrastructure, potentially
involving virtual networks and/or storage

• Cloud interfaces - Expose cloud OS functionalities to
the consumer using an API

Some of these functions may be combined under a single
software component as will be seen later. The software stack
composed of these functions is illustrated in figure 1.

Figure 1. A generic IaaS architecture (Adapted from [3])

II. OPEN SOURCE SOFTWARE STACKS IN CLOUD
COMPUTING - MOTIVATION

In this section, some key motivators for choosing to use
open source software for building cloud infrastructures are
discussed. This is done from the perspective of a service
provider since the service provider gains most from open
source [4]. There are consumer aspects as well, but those
are out of the scope of this paper.

A. Economic benefits

When using open source software in building a service,
the service provider does not need to pay for software
licenses. In a potentially very large-scale installation like a

cloud infrastructure, this is especially emphasized as cloud
hardware may consist of thousands of hardware nodes each
containing multiple processors.

An essential aspect of cloud computing are economies
of scale [5] that allow a service provider to take the most
out of its hardware. This requires large installations and -
depending on licensing model - potentially increases costs
very quickly as the number of licenses needed when using
proprietary software can be very large. For instance, pricing
for the proprietary VMware vCloud Suite [6] is tied to the
number of processors which means that the price for a large-
scale installation may be unbearable for the service provider.

It is obvious that software costs do not only include soft-
ware licenses but also manpower and possibly installation
and/or maintenance support are needed to realize a ready
product. Without commercial support, more working hours
are likely to be spent on installing and maintaining open
source software. This, however, does not typically exceed
the savings made from software licenses. Also, it is good
to notice that commercial support may not be included in
software license fees (as in [6]) - and on the other hand,
commercial support for open source software is a growing
business area as well.

Being able to cut down on software expenditure allows
for lower customer prices and thus makes it possible reach
a larger number of customers [4]. This results to more sales
and - potentially - more profits.

B. Other benefits

By nature, open source software can be modified. This
makes it possibly for a service provider to customize the
software and provide bug fixes. Although this requires
manpower, the costs can be offset if the result benefits the
service provider [7]. Quite a few open source cloud OS’s do
have an active community built around them. This results to
a few other things:

• It is likely that many organizations need a same new
key feature or customization - thus feature requests are
likely to be realized as well in an active community

• An active community is able to provide comprehensive
support and answer questions quickly

Using a cloud OS to manage IT infrastructure is apt to
protect the service provider from vendor lock-in on hardware
level [3] and further, using an open source cloud OS helps
both the consumer and the service provider to avoid it on
software level.

III. AN OVERVIEW OF PROMINENT SOFTWARE STACKS

In this section, four cloud software stacks are presented.
A quick comparison of their features is given and a glance
is taken on the current state of the community built around
the software.

54

A. Eucalyptus

Eucalyptus is a cloud software platform allowing for
building private or hybrid clouds. It has been developed by
Eucalyptus Systems, Inc. [8] and available under the GPLv3
license.

Architecture: The architecture of Eucalyptus [9] is mod-
ular and consists of the following core components:

• Cloud Controller (CLC) - Entry point for the users
and administrators and a high level scheduler. Collects
information about resource usage from node controllers
and implements high level scheduling decisions via
cluster controllers. Provides an Amazon EC2 compati-
ble REST/SOAP API as well as a web interface.

• Walrus - Implements an Amazon S3 compatible stor-
age service via a REST/SOAP API that can be used
to stage data in and out of the cloud. Also acts as a
storage service for VM images.

• Cluster Controller - Schedules instance run requests
from CLC to node controllers, controls virtual networks
and gathers data from node controllers in the same
cluster.

• Storage Controller - Provides block level storage to
virtual machines

• Node Controller - Manages VM instances on a single
cluster node

The Eucalyptus architecture is illustrated in Figure 2.

Figure 2. The Eucalyptus architecture

As can be seen, the basic idea of Eucalyptus is to combine
multiple clusters to a hierarchical cloud infrastructure, hav-
ing CLC as the central component and CC as the connection
point for cluster nodes. On cluster level, Eucalyptus routes
all network traffic through the CC, resulting to a limit of 750-
800 running virtual machines per cluster. As many control
operations are iterative, having over 200 node controllers
in a cluster starts to deteriorate the performance on of

Eucalyptus [10]. This makes Eucalyptus unsuitable for large
scale installations.

Community: The Eucalyptus software stack is backed by
a commercial vendor whose business model is based on
consulting, support and training. Eucalyptus Systems also
provide a hosted public cloud based on Eucalyptus. This
is likely the reason for the role of the user community not
being very actively emphasized on the Eucalyptus WWW
site [8].

However, a user community exist and provides support for
the product via a knowledge database, mailing lists and IRC.
Meet-ups and events are organized and local user groups
exist at least in the US.

The source code of Eucalyptus is available on GitHub [12]
and there seems to be a steady flow of commits. However,
the author was unable to find out the number of active
contributors to the source code.

B. OpenNebula

OpenNebula is a open source cloud OS with wide adop-
tion and support from both public and private sector [11].

Architecture: On a high level, OpenNebula consists of the
following components [11] [15]:

• The OpenNebula core
• A scheduler
• Infrastructure drivers
• Cloud interfaces for consumers, administrators and

services
Figure 3 provides a simplified view of the OpenNebula

architecture. Cloud interfaces include EC2 [13] and OCCI
[14] interfaces and OpenNebula’s own command line inter-
face (CLI). They communicate with the core software using
OCA, a Java and Ruby abstraction layer for the XML-RPC
[16] API.

Figure 3. OpenNebula architecture simplified [11] [15]

55

The driver layer contains drivers for virtualization, stor-
age, monitoring and authorization and connects to the un-
derlying physical infrastructure.

Community: OpenNebula is a fully community-backed
product. Support is available via mailing lists and IRC and
events are regularly organized. In order to catalyze develop-
ment and usage of the software stack, an ecosystem of tools,
extensions, plugins and documents has been created. Via the
ecosystem, users and developers can easily distribute their
add-ons to OpenNebula. A marketplace for VM appliances
exists as well.

The OpenNebula developer site [17] lists around 450
members. Source code of OpenNebula and project activity
listings are available on the site as well.

C. CloudStack

CloudStack [18] is a cloud OS originally developed by
Cloud.com and Citrix. It was made fully available under the
Apache license in 2011 [19] and accepted as an Apache
Incubator project in 2012. It provides Amazon EC2 and
S3 APIs for compatibility. At least Datapipe [20] offers
commercial cloud services based on CloudStack.

Architecture: Essential concepts in the CloudStack archi-
tecture are [21]:

• Computer Node (CN)
• Cluster
• Pod
• Availability zone

A CN is a single computer node running the CloudStack
agent, along with a VMM, allowing scheduling of VM’s. A
Cluster consists of CN’s sharing the same primary storage
and having the same VMM installed. A pod is a collection
of clusters and an avaliability zone consists of a collection
of pods. In CloudStack terminology, an availability zone is
the basic unit for an IaaS offering or, put in a simpler way,
a single cloud. Figure 4 illustrates the CloudStack service
layout.

A CloudStack management server can manage multiple
zones and is the component that offers interfaces to con-
sumers and administrators. It exposes its services through a
web interface along with a REST API.

Community: CloudStack is backed by the Apache Foun-
dation and anyone can participate to the project. Product
support is available via mailing lists and IRC. Events and
meet-ups are organized as well.

D. OpenStack

OpenStack [22] is a cloud software stack written in Python
and intended for building IaaS services. It has recently
gained a lot of momentum [23] and has support from ca.
150 organizations.

Figure 4. CloudStack architecture

Architecture: The OpenStack architecture consists of the
following components:

• Keystone (Identity service)
• Glance (Image service)
• Nova (Compute)
• Cinder (Block storage)
• Swift (Object storage)
• Quantum (Networking services)
• Horizon (Dashboard)
Each component is written as a web service and offers

a REST API through which the service can be accessed by
clients. Figure 5 illustrates the OpenStack architecture in the
Folsom release (27 September 2012).

Figure 5. OpenStack architecture (Folsom release) [24]

56

Community: The development of OpenStack is steered
by the OpenStack Foundation that has backing from 150
organizations. The community is active and there were over
500 contributors for latest release (4th April 2013).

Support is available via mailing lists, IRC and an online
Q/A database. Events, such as meet-ups and conferences
are frequently organized. Local user groups exist all over
the globe.

Commercial offerings: A few commercial offerings based
on OpenStack are available for consumers. For instance,
RackSpace has commercial service offerings based on Open-
Stack [25]. IBM [26] currently has an OpenStack-based
PaaS service in beta use and will be opening the service
to a wider audience during the year 2013. In March 2013,
the company Nebula introduced Nebula One [27], a com-
plete IaaS solution that incorporates dedicated OpenStack
controller nodes with racked worker nodes.

E. Comparison of features

Table I gives a quick glance on the essential features of
the cloud OS’s discussed. The set of features is very limited,
but a reader should know the necessary sources to get more
information having read this paper.

Table I
COMPARISON OF FEATURES

Eucalyptus OpenNebula

API compatibility AWS (EC2, S3) AWS

Community support X X

Commercial
support

X X

Scalability Up to 800 VMs /
200 nodes per clus-
ter

Tens of thousands
of nodes

Hypervisor support Xen, KVM,
Vmware, (Bare
metal)

QEMU/KVM, Xen,
VMware

CloudStack OpenStack

API compatibility AWS AWS, OCCI

Community support X X

Commercial
support

X X

Scalability Tens of thousands
of nodes

Tens of thousands
of nodes

Hypervisor support QEMU/KVM, Xen,
Vmware, Bare
metal

Xen, KVM,
QEMU, LXC,
VMware, Hyper-V,
Bare metal

API compatibility: Each of the given cloud OS’s imple-
ment at least some API through which the cloud imple-
mented by the software is accessible. Most popular are the
Amazon Web Services (AWS) [13] compatible interfaces.
Amazon Elastic Compute Cloud (EC2) is the computing
service by Amazon Web Services, Inc. and Amazon Simple
Storage Service (S3) an object storage service.

Open Cloud Computing Interface (OCCI) is an open set
of specification of standards aimed to provide inter-cloud
operability.

Available software support: Each of the presented soft-
ware stacks have some kind of community support available.
The business model for the company behind Eucalyptus
is to offer commercial, high priority support for paying
customers. Commercial support is also available for the other
presented products.

Scalability: Aforementioned products (except for Euca-
lyptus) scale up to tens of thousands of nodes, enabling very
large scale cloud installations. The issues of Eucalyptus have
already been discussed above.

Hypervisor support: Xen, KVM, QEMU and LXC are
open source virtualization products. Bare metal refers to
running OS images on a computing node without utilizing
virtualization at all - in this case a cloud OS is used to
provision full hardware nodes. Rest of the products are
proprietary, although ESXi (a stripped version of VMware’s
ESX hypervisor) is available free of charge.

A bare metal driver allows provisioning of bare compute
nodes without utilizing virtualization at all. The approach
has the advantage of having no computational overhead but
also disadvantages, e.g. the lack of security due to direct
customer access to hardware. An interesting feature of bare
metal provisioning is that it allows system administrators to
use a cloud software to manage non-customer hardware.

IV. CONCLUSION AND FUTURE WORK

In this paper, motivators for using open source cloud
software stacks for IaaS cloud installations were presented.
An overview of four cloud software stacks was given.

It can be concluded that open source is a compelling
alternative even for commercial public clouds. Using an
open source cloud OS, a commercial service provider may
be able to lower infrastructure costs and to draw more paying
customers due to the ability to do more compelling pricing.

The author was unable to find any real data that could have
been used to calculate how much it is possible to save in
software costs when building a cloud based on open source
software. A case study on the issue would be of interest.

For research purposes and academia open source is an
essential choice due to the fact that for proprietary software,
source code typically is not available for modification or
even for inspection.

For the presented cloud OS’s, there are not many dif-
ferences in the core features. Bigger differences can be
found in the architectures and from this follow differences in
scalability. Both commercial and community-based support
is available for each of the given products so lack of support
would be an invalid reason not to prefer open source cloud
OS’s.

57

REFERENCES

[1] P. Mell & T. Grance, The NIST Definition of Cloud Computing,
September 2011
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf (Accessed on 15th April 2013)

[2] M.F. Mergen, et al, Virtualization for high-performance com-
puting, SIGOPS Oper. Syst. Rev., Volume 40 Number 2,
April 2006, Pages 8-11, ACM New York, NY, USA

[3] R. Moreno-Vozmediano, R.S. Montero & I.M. Llorente, IaaS
Cloud Architecture: From Virtualized Datacenters to Federated
Cloud Infrastructures, Computer, Volume 45 Number 12,
2012, Pages 65-72, IEEE

[4] D. Riehle, The economic motivation of open source software:
Stakeholder perspectives, Computer, Volume 40 Number 4,
2007, Pages 25-32, IEEE

[5] M. Armbrust et al, A view of cloud computing, Communi-
cations of the ACM, Volume 53 Issue 4, April 2010 , Pages
50-58, ACM New York, NY, USA

[6] VMware vCloud Suite Pricing,
http://www.vmware.com/products/datacenter-
virtualization/vcloud-suite/pricing.html (Accessed on 16th
April 2013)

[7] J. Lerner & J. Tirole, Some simple economics of open source,
The journal of industrial economics, Volume 50 Number 2,
2002, Pages 197-234, Wiley Online Library

[8] Eucalyptus, http://www.eucalyptus.com/ (Accessed on 15th
April 2013)

[9] D. Nurmi et al, The eucalyptus open-source cloud-computing
system, Cluster Computing and the Grid, 2009. CCGRID’09.
9th IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid, 2009, Pages 124-131, IEEE

[10] R. Bradshaw & P.T. Zbiegiel,Experiences with eucalyptus:
deploying an open source cloud, Proceedings of the 24th
international conference on Large installation system adminis-
tration, 2010, Pages 1-16, USENIX Association

[11] OpenNebula, http://www.opennebula.org/ (Accessed on 17th
April 2013)

[12] GitHub, https://github.com/ (Accessed on 21st May 2013

[13] Amazon Web Services, https://aws.amazon.com/ (Accessed on
21st May 2013

[14] Open Cloud Computing Interface, http://occi-wg.org/ (Ac-
cessed on 21st May 2013

[15] B. Sotomayor et al, Virtual infrastructure management in
private and hybrid clouds, Internet Computing, IEEE,
Volume 13 Number 5, 2009, Pages 14-22, IEEE

[16] XML-RPC Specification, http://xmlrpc.scripting.com/spec.html
(Accessed on 22th May 2013

[17] OpenNebula Development website, http://dev.opennebula.org/
(Accessed on 21st May 2013

[18] CloudStack, http://cloudstack.apache.org/ (Accessed on 21st
May 2013

[19] CloudStack Process Changes: Working the Apache Way,
http://buildacloud.org/blog/125-cloudstack-process-changes-
working-the-apache-way.html (Accessed on 15th April 2013)

[20] Datapipe, Inc., http://www.datapipe.com/ (Accessed on 17th
April 2013)

[21] V.M. Muñoz et al, The Integration of CloudStack and
OCCI/OpenNebula with DIRAC, Journal of Physics: Con-
ference Series, Volume 396 Number 3, 2012, IOP Publishing

[22] OpenStack, http://www.openstack.org/ (Accessed on 15th
April 2013)

[23] O. Sefraoui et al, OpenStack: Toward an Open-source Solu-
tion for Cloud Computing International Journal of Computer
Applications, Volume 55 - No. 03, October 2012, Foundation
of Computer Science, 244 5th Avenue, 1526, New York, NY
10001, USA India

[24] K. Pepple, OpenStack Folsom Architecture,
http://ken.pepple.info/openstack/2012/09/25/openstack-
folsom-architecture/ (Accessed on 23th April 2013, licensed
under a Creative Commons Attribution-ShareAlike 3.0
Unported License.)

[25] Rackspace open cloud, http://www.rackspace.co.uk/open (Ac-
cessed on 15th April 2013)

[26] IBM To Make Its Cloud Services and Software Open
Sourced-based,
http://www-03.ibm.com/press/us/en/pressrelease/40519.wss
(Accessed on 15th April 2013)

[27] Introducing Nebula One, https://www.nebula.com/nebula-one
(Accessed on 15th April 2013)

58

Secure data management for cloud-based storage solutions

Mikael Svenn
Department of Computer Science

University of Helsinki
Helsinki, Finland

mikael.svenn@cs.helsinki.fi

Abstract— Organizations and individuals worldwide are
evaluating and experimenting the possibilities of cloud-based
computing. Organizations examine cloud computing as a
simple and flexible model for outsourcing the management and
maintenance of IT-infrastructure, whereas individuals
experience cloud as a realm of services. As the cloud-based
data storage services have evolved to meet the requirements of
modern data management, they have gained wide interest
from both organizations and individuals. However, the interest
is restrained, because the basic concept of cloud-based storage
services has not gained complete trust from either side. Several
concerns have risen about storing data into a completely
unknown grid. Organizations are impeding on migrating their
data to storage services due to data security and availability
related issues. According to studies, individual users similarly
consider storage services to be suspicious when it comes to the
privacy of their sensitive data. This paper addresses the
common benefits and concerns related to cloud-based storage
solutions and presents major enhancements to privacy,
security, availability and trust of storage services.

Keywords: cloud; secure storage; storage as a service; data
security; encryption

I. INTRODUCTION

The development of computing resources resembles a
wave-motion in many ways. It was found revolutionary
when the first Personal Computers were introduced,
triggering a transition from the era of large centralized
mainframes to a realm of personally managed devices. The
development of various mobile technologies has further
blurred the limits of personal computation, introducing
modern laptops, smart phones, tablets and embedded
devices. As a result an end-user is often in possession of
several different devices instead of a single personal
computer. Simultaneously the connectivity of different
devices has evolved in both bandwidth and connection
mediums. Generally the model of connecting devices has
moved from wired low-bandwidth peripheral- and network
connections to wireless networks and high-speed Internet
connections.

Due to the development of high-speed broadband and
cellular data connections the modern service infrastructures
are capable of integrating various devices over the Internet
thus providing any kind of services or content to any kind of
device base [3]. As a result the services are moving from
individual and locally managed environments back to

centralized service models, where both the service and the
content is hosted by a dedicated service provider and often
accessed over the Internet [11].

The development of virtualization technologies has
allowed more efficient use of hardware resources,
introducing concepts such as dynamic resource allocation,
allowing the service infrastructure to scale on demand. Such
new centralized service models have introduced a concept of
disposable IT-resources, where any technical aspects may be
provided as a service, whenever needed and regardless of
whether the aspect is an entire IT-infrastructure, a platform
or even a software performing a dedicated task [16]. The
service model is generally considered an umbrella term
known as cloud computing.

All cloud services share the idea of outsourcing a
technical asset to a service provider, relieving the user from
any concerns of maintaining the provided asset. The
technical details such as implementation of the provided
service are often not visible to the end-user and therefore
usually masked behind a service client or interface through
which the service is used. Cloud services are often not
limited to any specific use-cases or clientele, being suitable
for both individual consumers and organizations. However,
the need for outsourced resources and therefore requirements
and concerns related to the service may vary between
organizations and individual consumers. Since the end-user
has virtually no control over the technical details of the
provided asset, several security related questions and issues
have risen regarding the provided cloud services [1,16]. As a
result, users often hesitate to utilize cloud computing for any
sensitive operations such as storing or processing any
sensitive data. Moreover several organizations are impeding
the adoption of cloud services until the security and privacy
related questions of the data processed in the cloud have
been resolved [1].

This paper focuses on cloud-based storage solutions from
the perspective of both individuals and organizations. The
concept of cloud storage is introduced, accompanied with the
most common the security and trust-related issues causing
potential customers to avoid storing any sensitive data to the
service, or to even impede the adoption of cloud-based
storage services. The rest of the paper focuses on presenting
requirements and some of the most promising alternatives
for providing the required security and trust to cloud-based
storage solutions. The end of the paper addresses difficulties
and questions related to the suggested solutions.

59

II. CLOUD STORAGE

The requirements of data management have significantly
changed during the past decades due to evolution of mobile
devices, various different platforms and networked services
[1]. Data management has become a complex task as the data
is assumed to be accessible from multiple different services
and devices, regardless of the physical location of the data or
the services producing and consuming it [5]. Especially
social networking and increasing interoperability of services
have further highlighted the demand for sharing the data
between various applications and services. High speed
network connections enable services to produce and
consume vast amounts of data, regardless of any physical
aspects of the data storage, such as location or the device
hosting the data. As a result, requirements such as high
availability, accessibility and easy maintenance have grown
to be the key factors of modern data management schemes.

One of the most common forms of cloud computing is
storage as a service, providing a scalable and flexible storage
resource for any kind of use [3]. Cloud storage services aim
to meet the challenges of data management by centralizing
the entire storage solution to the service provider, relieving
the customer from any storage-related concerns such as data
synchronization or backups. As the storage is provided as a
service, cloud storage solutions are often considered to be
highly available, reliable and scalable despite of the use-case
of the service [3]. Individual users may use cloud storage for
backing up or synchronizing the local content of any end-
user devices, sharing data to other users or even for replacing
solutions such as personal media servers requiring large
storage capacity. Organizations may similarly utilize cloud
storage for backup, distribution and even data versioning
purposes [17,20].

The entire storage solution is managed by the service
provider from physical level to application interfaces [3,16].
Access to the storage is often provided to the end-user either
by a specific storage client, an Application Programming
Interface (API) or both [22]. The storage clients usually
integrate to the Operating System (OS), utilizing the built-in
sharing and storing functionalities in mobile OSs or the shell
functionalities in desktop operating systems. Many desktop
clients mask all of the client functionalities to shell
extensions or user-space File System (FS) drivers, providing
a convenient access to the cloud storage [17]. The storage
services usually provide both platform specific Software
Development Kits (SDK) and Representational State
Transfer (REST) based APIs [18,21,23].

The most common cloud storage services apply a pay-by-
use payment model in which the customers subscribe for a
certain features or certain amount of storage on a solid and
recurring fee. The storage capacity and features can often be
upgraded by simply subscribing for a larger storage or for
more features. Cloud storage services are offered by several
large providers such as Microsoft, Amazon, Google, Apple,
IBM, Oracle and HP [3] as well as plethora of smaller
providers such as Dropbox [17] and Just Cloud [19].

A. General Implementation

Even though the cloud storage services are generally
proprietary solutions, each being a unique service with
unique implementation details and API, some general design
aspects are often shared by the actual storage service
implementations. The physical storage implementation is
highly distributed and often divided to multiple layers
abstracting the low-level implementation. As large scale data
storage is highly demanding for both storage devices and
network resources, the storage services usually form an
interconnected storage grid of vast amount of geographically
distributed servers [3,15]. The individual servers are often
referred to as nodes, located in clusters which are hosted in a
datacenter. Storage services usually consist of several
geographically distributed datacenters and thousands of
individual storage nodes [23], as illustrated in figure 1.

Figure 1. High-level overview of cloud storage structure
[23]

The abstraction levels of a storage service can generally
be divided to five categories, as shown in figure 2, each
implementing a specific functionality of a large scale data
management scheme. The highest level of abstraction is the
service interface, providing an access gateway to the service.
The service interface is primarily used for access control and
interpreting client calls, thus utilized either by a client
application or direct API calls unique to the service. All
authorized calls are relayed to the storage overlay
responsible of managing the underlying physical resources
and abstracting the implementation for the service interface
[3]. Storage resources are often virtualized and accessed
through a distributed FS combining the geographically
distributed nodes under one logical file system. For efficient
storage management, each file stored in the service might be
distributed to multiple different storage nodes and physical
hard drives around different datacenters, depending on the
utilization level of the data centers [22].

The low-level implementation is abstracted by a separate
metadata-layer combining the service-wide information
required for efficient storage management, such as locations
of logical entities or current load and utilization of resources.
The information is used to assist in service optimization such

60

as resource allocation, data dispersion and load balancing
[3]. The logical entities are mapped to physical resources in
the storage management layer, organizing the geographically
distributed physical clusters to logical storage domains.
Each cluster of physical storage nodes is managed in the
network and storage infrastructure layer, exposing the
physical storage resources to the storage management [3].

Figure 2. Abstraction levels of cloud storage service [3]

B. Resource Optimization

The overall storage management in the scale of cloud
storage is a highly demanding task, requiring continuous
optimization of the resources. Even though the details of
storage allocation and load balancing implementations
depend on the Storage Service Provider (SSP), some
properties are common to most of the storage services.
Generally the data can be considered to be in constant
change as the storage optimization mechanisms re-allocate
stored data between different nodes, clusters and even
datacenters. Data reallocation might occur, depending on the
load of the nodes, even in extremely dense cycles of only
minutes. The data reallocation is masked so that it is not
visible to the higher layers of abstraction and it should not
cause any visible latencies to the end-user [22].

In order to provide redundancy and to increase the
efficiency of networking and storage resources, Information
Dispersal Algorithms (IDA), based on erasure coding
algorithms such as Cauchy Reed-Solomon or RAID-6
Liberation Codes, are applied to the stored data [24]. IDAs
shred the stored files to small chunks of data, and an erasure
code is calculated and added to each of the shredded data
chunks [24,25]. The small pieces of data are then stored to
selected nodes in the service, specified by the utilized storage
optimization and load balancing algorithms [24]. When the
stored data is retrieved, only a subset of the stored data
chunks needs to be read in order to reconstruct the original
data, based on the previously calculated erasure codes
[22,25]. In addition to providing efficiency in data
operations, the IDAs also provide data redundancy in case of
failing nodes [22]. The size of the data chunks is often
determined so that only minimal amount of overhead would
be caused by the information dispersal [25].

As users are expected to store sequences of data that
might already be stored in the service, data deduplication,
also known as single-instance storage, is applied to avoid
duplicating any previously stored sequences of data [3].

Deduplication algorithms are very similar to compression
algorithms, identifying any repeating occurrences of data
sequences that might have already been stored to the service.
Each repeating occurrence of already existing sequence of
data is replaced with a reference to the existing data [3, 25].
In order to maximize the efficiency of the deduplication
scheme, the operations do not consider any ownership of the
referenced data, thus practically sharing sequences or even
complete chunks of data between different users [25].

III. SECURITY AND PRIVACY CONCERNS

Regardless of the various benefits provided by cloud
storage services, several privacy and security related
questions have reduced and even impeded the adoptability of
cloud storage. Generally both individual users and
organizations are concerned about the safety of cloud
storage, even though the service contracts and details might
differ between the services offered for organizations and
private consumers [1]. Consumer services and especially free
storage service accounts often lack any promises regarding
privacy, availability or quality of service, whereas corporate
solutions may be negotiated with specific Service Level
Agreements (SLA) aiming to improve the availability of the
storage service [3]. Despite of any negotiated SLAs,
reliability factors such as data integrity or privacy cannot be
completely guaranteed. In order to share liability with the
service provider, organizations and corporate customers
often make special legal agreements against any security
breaches or loss or corruption of data, whereas no promises
or guarantees are made for private consumers [1].

Despite of having SLAs and legal agreements with the
service providers, corporate security guidelines often advise
against storing any sensitive data to cloud, as the integrity or
safety of stored data cannot be completely guaranteed against
security breaches or data corruption [1,2,4]. Standard privacy
policies and Terms of Service (TOS) for consumer cloud
storage services often take no liability of any corruption or
loss of data and claim all rights to read, delete, modify and
sell any stored data [1,9]. Consumer cloud storage providers
might also claim rights to disable user accounts without a
reason and to modify or even stop offering the service
without any prior notice [1].

According to a study conducted by Ion et. al. attitudes
and beliefs towards cloud storage services vary based on the
background and country of the user [1]. The study reveals
that private consumers consider Internet as a whole, as well
as cloud storage to be less safe than local storage. Even
though the assumptions and beliefs related to privacy of the
stored data varies between private users, sensitive documents
are most often preferred to be stored offline, as shown in
figure 3. It also appears to be common that private
consumers might not read the TOS, thus being unaware of
the statements they have agreed to, believing to have more
rights over the stored data than they actually do [1]. Private
consumers also show willingness to invest in privacy similar
to corporate agreements, should such options exist. In
addition to of willing to buy security insurances for the
stored data, the private users also show great interest in
paying for the SSP not to sell the stored data [1].

61

Figure 3. Private users' assumptions about the safety of
the stored data [1]

A. Storage Security

In addition to concerns regarding agreements and legal
aspects, several detailed issues and limitations have been
identified in storage service implementations, reducing the
adoptability of cloud storage for any sensitive or high-value
data. The issues can be roughly categorized to four key
topics addressing availability, integrity, privacy and
portability of the stored data [4]. All of the identified issues
and limitations concern both the private users and the
organizations, regardless of any agreements made between
the customer and the service provider.

The major concern is related to the privacy of the stored
data [5]. In order to optimize the use of resources, the service
providers often store the data unencrypted, rendering the data
vulnerable to any attacks targeted at the service provider. As
the stored data is constantly moved between different nodes,
clusters and even geographically distributed datacenters, the
risk of eavesdropping is further increased. Any weaknesses
discovered in the access control implementation of the
storage service would expose all of the stored data to any
potential attackers.

To address the risks of eavesdropping or being hacked,
some SSPs offer enhanced security by encrypting the content
in prior to storing or moving it between different nodes. In
order to avoid altering the service interfaces and to provide
convenient user experience, the encryption in such solutions
is completely managed by the SSP [22]. As the
implementations of storage services are not transparent to the
end-user, the implementation of the encryption cannot be
verified or audited by the customer [2]. Since the end-user
has no control over the encryption keys, the data is not
protected against the SSP itself for any malicious insiders or
situations where the SSP would arbitrarily access the stored
data for example in selling purposes [1,2,4]. If the applied
encryption would be implemented on low-level layers, such
as storage management layer, the encryption would only
protect the data against any attacks targeted to the physical
nodes. If a weakness would be found from the access control

mechanisms, an attacker utilizing the entire service layer
stack could still access the data with the key management
built in to the service layers.

Similar privacy-related issues have been identified
regarding the deletion [1,14] and the locality of the stored
data [1,22]. As the data is often stored in several chunks,
deduplicated and constantly moved around the world, it is
not clear where, how and in which form the data is being
stored by the moment. The question might become extremely
relevant when corporate confidential or especially
government related data is moved to a datacenter belonging
to the legislation of some other country or region [1]. As the
SSPs might be obligated to allow a local governments to
access any of the data stored within the boundaries of the
specific datacenter, any classified data could be at the risk of
exposure. Since the data cannot be guaranteed to reside
within the borders of the country of origin, the stored data
may be subject to varying privacy and data protection laws,
depending on the location of the datacenter [22]. Similarly
due to the common implementation of storage services, the
deletion of data can neither be guaranteed. The actual data
might still physically exist in the service for undefined
amount of time after deletion [14]. Even if the data could
technically be deleted instantly, some SSPs might be
reluctant to enforce any deletion policies, preserving copies
of the deleted data for mining purposes [14].

B. Storage Availability and Integrity

As the cloud storage represents a highly distributed
storage system consisting of multiple layers of data
management and mapping, the reliability of the service
especially in maintaining data integrity has grown to be one
of the concerns reducing the adoption of storage services [2].
Several occasions are known where the stored data has been
outdated, corrupted or completely lost after being stored to
the cloud [2,4,7]. The SSP might even employ storage
optimization algorithms deleting files that are rarely accessed
[9]. Similarly the data might be corrupt due to unauthorized
modifications to the stored data [1,9,12]. Even though the
storage systems are designed to be fault tolerant, the data
might still become corrupt in the processes of dispersing,
reallocating, reassembling or transferring the data [2,12].
Despite of the erasure coding, crucial amount of data might
be stored to nodes failing simultaneously thus corrupting the
entire data entity [2]. Similarly the data might be lost due to
bad system configuration or an operator error [2].

Another open question is related to the availability of the
stored data. As described earlier, failures in the storage
system are likely and might occur on any level. In addition of
being completely lost or corrupt, the stored data might also
become outdated or temporarily unavailable as a result of
data reallocation, failing nodes or even failures in general
infrastructure, such as network and power distribution [7].
The data might be mostly stored within a cluster or a
datacenter suffering from a temporary power outage.
Similarly parts of the service or even the entire storage
service provider might be subject to a Denial of Service
(DOS) attack, either impairing parts of the service or
completely disabling the service [4].

62

IV. INTEGRATED SOLUTIONS

Large organizations and corporate customers usually rely
on legal agreements in order to enforce the security of cloud
storage. Such legal agreements may be tailor made with the
service provider, being highly expensive to the customer [1].
Depending on the internal security policies the organization
may also choose to enforce the security by outsourcing the
data storage only to certified service providers complying
with industry security standards such as US Health Insurance
Portability and Accountability Act (HIPAA) or Payment
Card Industry Data Security Standard (PCI-DSS) [26,27,28].
However, complying with the pre-defined industry standards
does not automatically address all of the previously stated
security and availability issues, being inadequate for
customers requiring zero-tolerance for information
disclosure or data corruption. As being designed for specific
clientele, the certified storage services might lack features
desired by private consumers or they might be too expensive
or too complex for the required use. Thus a general-purpose
solution applicable for both private users and organizations,
addressing the various security and availability issues is
desired.

A. Third Party Auditors

One recognized approach is to introduce a trusted Third
Party Auditor (TPA) to verify the correctness of the stored
data [7,9,11]. Since the storage services are not transparent
to the end-users, enforcing security policies in cloud storage
is often impossible. For the same reason, verifying
correctness of the stored data is traditionally considered to
require downloading and verifying all of the data, repelling
the overall benefits of the cloud storage [9]. Data auditing
can be divided to private and public auditing schemes. In
private auditing schemes the TPA is a trusted organization
considered to have the required expertise and means to verify
the correctness of the stored data. The private audit may be
conducted upon a request, reporting directly to the end-user
and possibly to the service provider of any inconsistencies or
threats detected regarding the storage [9]. Private TPAs are
given access to the stored data, thus requiring active
cooperation and legal agreements with the end-user. If any
security policies are enforced during the audit, the SSP is
similarly required to allow the TPA to verify the
implementation and details of the storage service. Private
auditing could be very expensive, and in most cases
extremely inefficient as the stored data needs to be
downloaded in prior to verification. As the SSPs are not
expected to allow any third parties to examine the
implementation of the storage service, the audit may be
expected to cover only the integrity of the stored data.

In order to address the ineffectiveness and shortcomings
of private audits, an alternate role has been suggested for the
TPAs, often referred to as public auditability. The basic
concept in public auditability schemes is to enable
verification of the data integrity without exposing the actual
data to the TPA, allowing any third party to act as an auditor
[9], as illustrated in figure 4. The main benefit in public
auditability schemes is the ability to create automated and
lightweight audits to the stored data, without revealing any

details of the end-user or the stored data to any third parties
[9]. Common aspect to all public auditing schemes is the
requirement for the end-user to pre-calculate a metadata
value, also referred to as challenge token, unique to the data
before storing the data to cloud. The challenge token is in its
simplest and most inefficient form a hash value of the data,
but it may also be for example be a digital signature or a
Message Authentication Code (MAC) [9,11]. The pre-
calculated metadata is then published to the TPA for
performing the audit either automatically or by following a
chosen audit plan. In the auditing process the TPA issues an
audit request, also known as challenge, to the SSP. Once
receiving an audit challenge the SSP is required to calculate
a response value to the requested token and respond to the
challenge issuer with the calculated value [9]. If the
calculated value matches with the original token provided by
the end-user, the data has remained intact [9,11].

Homomorphic authenticators have been identified as an
efficient and forge-resistant technique of calculating
metadata to individual data blocks, allowing a TPA to
securely verify the storage integrity without having access to
the actual data [9]. However, it has also been identified that a
malicious TPA could derive content of the stored data by
using the given authenticators derived from the actual data
and the challenge responses sent by the SSP [9]. To address
such issue, Wang et. al. have proposed integrating a pseudo
random function to the SSP in order to include random
masking data in the challenge response thus making it
impossible to derive the content of the data blocks, while still
preserving the validity of the response and the overall audit
scheme [9].

 Even though public auditability schemes may be able to
identify unauthorized changes or corruption in the data, they
cannot be used for identifying and preventing unauthorized
reads, data deletion and corruption or service outages.
Furthermore not only do public auditability schemes require
pre-calculation from the end-user, but they also integrate to
the storage service, requiring SSPs to modify their service
platforms to be compatible with the solution. In addition the
solution poses significant amount of overhead to the storage
management of the cloud storage services, thus significantly
reducing its adoptability from the service providers'
perspective.

Figure 4. Third Party Auditor in public auditability
scheme [9]

63

V. OVERLAY SOLUTIONS

In order to retain the benefits of cloud storage, a
satisfying solution addressing the identified issues in storage
security and availability should not introduce any changes to
the existing storage services nor assume trust to any third
parties. Furthermore a satisfying solution should not
introduce any major cost to the end-user, should be adoptable
by both the individual users and organizations and finally
should support multiple simultaneous users accessing the
same resource. One common concern with any cloud
services is related to the cost of changing the service
provider. As the end-user interfaces provided to access the
cloud services are not standardized, each service provider
have employed proprietary means to interact with the
service. If an end-user solution is designed to interact only
with a specific service interface, changing the service
provider could require major changes to the overall solution,
introducing an issue known as vendor lock-in [4]. Even
though the issue might not be very relevant to private
consumers, organizations and corporate customers could find
vendor lock-in as an obstacle for adopting cloud services.

An efficient way to avoid requiring any changes to the
service provider's infrastructure, and to remove any
application-level dependencies to the varying service
interfaces, is to introduce a solution that forms a completely
new layer on top of the provided service. Such services could
be considered as overlay solutions, operating on a level that
is abstracted from the underlying service [2,4,22]. By relying
on an overlay solution, no cooperation to address the
specified issues is required from the SSP, and therefore the
described issues with privacy, availability and integrity can
be solved with solutions controlled completely by the end-
user. As the service-related dependencies can be abstracted
by the overlay, the solutions are often capable of combining
storage resources from several SSPs to a single logical
storage resource, addressing any issues regarding the data
availability and integrity [2,4,22]. The overlay solutions may
also choose to apply encryption to the stored data in order to
enhance the privacy against unauthorized reads [4,22].

A. Cross-SSP Information Dispersion

The availability and integrity of the stored data can be
significantly improved by combining the resources of several
SSPs to a single overlay solution [4,22]. In such scenario
multiple cloud storages are accessed by the overlay client,
replicating the stored data over several cloud providers.
However, simply increasing the amount of SSPs to provide
redundancy would significantly increase the overall cost of
the solution. To avoid purely replicating the entire data, the
overlay may utilize an IDA to provide more efficient use of
storage resources [4]. Despite or erasure coding, the
implementation should place minimum trust to the
underlying SSPs, assuming that any cloud provider could fail
in a Byzantine way [2,4]. To provide maximal tolerance
against simultaneous data corruption and failures in the
underlying SSPs, some of the dispersed data could be
replicated across varying service providers, introducing a
trade-off between integrity and expenses. One promising
example of an overlay solution dispersing data across

multiple SSPs is DepSky-CA, introduced by Bessani et. al
[4], illustrated in figure 5. DepSky-CA provides privacy and
integrity by utilizing optimal erasure coding and symmetric
encryption with a secret-sharing scheme, dispersing the
shared secret between several SSPs in a similar way to
erasure coding [4]. DepSky is generally based on quorum
protocol design, capable of tolerating Byzantine failures
from N = 3F + 1 clouds, where N is the total number of
applied SSPs and F is the amount of simultaneously failing
storages [4]. To satisfy the properties desired from an
overlay implementation, DepSky operates completely on
client-side, being capable of serving multiple simultaneous
readers and a single simultaneous writer thus being adoptable
by either a private user or an organization [4].

Every overlay solution needs to implement the means for
metadata management in order to utilize the underlying
storage services [2,4,22]. One convenient approach for any
type of overlay is to persist the metadata within the storage
services in order to provide convenient access to the index of
content [4]. Similarly the metadata could be distributed
between the end-users through some alternative channel such
as a separate metadata server, peer-to-peer network or such
[2,22]. However, storing the metadata solely on the client
would be disputable even in single-user overlays as the
storage would be tied to a single client only, and loss of the
client would disable the entire storage.

Figure 5. High-level overview of DepSky [4]

B. Storage Encryption

Dispersing the data to several SSPs cannot be considered
sufficient for protecting the privacy, as all of the data chunks
would presumably be stored in plain-text and would thus be
accessible by the corresponding SSPs or any potential
attackers. If the data would be dispersed to only a small
amount of storage providers in an uncontrolled manner, it
could be likely that a even a single SSP would contain
enough data to be able to reconstruct the original data object.
Similar threat rises if SSPs operating in the same region
would sell, or be obligated to hand out any stored data to a
common third party, such as a local government.

64

The common third party could combine data from several
SSPs, eventually possessing enough data chunks to derive a
full plain-text copy of the stored data object.

An intuitive way of increasing privacy is to apply
encryption for all of the data stored to the cloud storage.
However, a traditional symmetric encryption, such as AES,
might not be adequate if a versatile access control scheme is
required and the overlay is designed to solely operate on the
client-side. For example private users may decide to share
some of the selected data objects with a specified group of
people or to some specific services. Similarly corporate users
often employ different access groups and access levels for
specified data objects [4].

Seiger et. al. have suggested a solution for organizations
called SecCSIE, introducing a proxy server deployed to a
corporate network, shown in figure 6 [22]. The proxy server
forms a storage overlay by dispersing data to the connected
SSPs similar to the DepSky, but instead of relying on a direct
client-side access to SSPs, the storage resources are exposed
to the end-users in a centralized manner. In order to provide
the required level of privacy, the stored data is encrypted
using AES [22]. As the proxy server is considered a
restricted-access central hub to the cloud storage services,
the same encryption keys are shared by all of the corporate
users and managed by the proxy [22]. Even though the
solution does not propose any public access interfaces to the
encrypted overlay storage, nor any advanced access control
mechanisms for managing access groups and levels, such
features could simply be added to the internal storage
management implementation of the proxy server.

Even though encryption may be considered mandatory in
order to provide privacy, applying an encryption may
become disputed by some SSPs for a couple of reasons.
Since encryption is expected to increase the overall entropy
of the data [29], the efficiency of data deduplication
algorithms employed by the SSP could significantly
decrease, thus increasing the amount of required storage and
thereby increasing the expenses caused to the SSP. Also as
some of the SSPs targeted to private consumers might gain
part of their revenue from mining the stored data, applying a
client-side encryption could have an impact to the revenue
gained by the SSP, thus possibly even leading to service
agreements forbidding the use of any kind encryption
algorithms.

Figure 6. Design of SecCSIE Proxy server [22]

C. Key Management

One essential issue in encrypting the storage is related to
key management. If the storage content is protected using
symmetric encryption, sharing the data would generally
require sharing the encryption key with the targeted group of
people. If all of the stored data is encrypted with the same
key, revealing the key would be impossible. Even if all of the
files would be encrypted with different keys, a compromised
key would compromise the specific data object. Sharing the
encryption keys with dedicated group of people could
similarly be subject to leakage of the shared key. Such leak
would be crucial for the privacy of the stored data object, as
detecting leaked keys is such scenarios could be considered
impossible. Even though DepSky doesn't directly address the
question of sharing the encrypted data, the secret sharing
scheme applied in the solution maximizes the privacy against
unauthorized reads causing very minimal key management
overhead to the user [4]. Solutions such as SecCSIE may
easily abstract the key management as part of the internal
implementation of the solution to reduce the overhead
caused by key management, but any solution intended to
operate mainly on the client-side would have to employ more
complex key-sharing and revocation mechanisms [14].

In order to make the key management more feasible,
either asymmetric encryption, such as RSA, or hybrid
solutions combining both symmetric and asymmetric
encryption are suggested [14]. Relying solely on techniques
such as Public Key Infrastructure (PKI) to encrypt and share
the data might not always be sufficient either, as the assumed
file-keys would need to be encrypted with a public key
specific to the targeted user [30]. As the same public key
could be used for several other occasions, possibly being
distributed to other users and services as well, the privacy of
the data would be compromised to any other parties in
possession of the same public key. Also, sharing the data
with a group of people would require encrypting the file-key
with the corresponding group-key and a separate key-
management scheme to control the group key [30]. To create
an effective key management scheme, Tang et. al. have
introduced an overlay solution called FADE, relying on
separate key managers deployed and maintained by the end-
user [14]. The access management of FADE employs three
types of encryption keys, named data, control and access
keys, consisting of both symmetric and asymmetric keys.
The three layers of keys are utilized in combination to
encrypt the actual data and to enforce any deployed access
policies related to the stored data objects [14]. However, as
FADE requires separate key managers to provide the basis
for access control, the solution may not be adoptable by
individual users, unless the key managers could be publicly
accessed.

VI. CONCLUSIONS AND FUTURE WORK

This paper described the common architecture of cloud
storage services accompanied with the identified issues
reducing the trust and possibly even impeding the adoption
of cloud services. The described shortcomings and issues of
cloud storage services were described from the perspective

65

of individual users and organizations. Third party auditors
were introduced as an option to verify the correctness of the
stored data, and the public auditability scheme was
described, providing feasible auditing through automated and
lightweight verification of audit metadata. As auditing may
only verify the correctness of the stored data, the concept of
overlay solutions was introduced to address the described
security and availability issues related to cloud storage. In
order to satisfy the desired properties of a storage overlay,
several solutions utilize cross-SSP data dispersion, relying on
several cloud providers to provide enhanced availability.
Similar to the storage providers, overlay solutions often not
only disperse the data, but also employ erasure coding to
further enhance the integrity of the stored data.

As dispersing the data to several SSPs is not adequate to
provide the required privacy, encryption needs to be applied
to the stored data. However, applying encrypting introduces
new difficulties in sharing the data. As the stored data needs
to be accessible from several different locations, and often by
more than one user, symmetric encryption may not be
applicable without a central actor enforcing any access
policies and managing the encryption keys. Additional key
management schemes are also required even if asymmetric
encryption is used. To fully meet the desired aspects, the
overlay solution should be capable of providing the required
security while maintaining the data availability to any
selected group of users. Further studies are required on
specifying an implementation that would meet such
requirements without introducing any additional
components, such as key management servers. PKI could
prove out to be a promising alternative if the end-user
certificates could be effectively and securely utilized.

REFERENCES
[1] I. Ion, N. Sachdeva, P. Kumaraguru and S. Capkun, “Home is safer

than the cloud! Privacy concerns for consumer cloud storage”,
Symposium on Usable Privacy and Security (SOUPS), 2011, pages
14-16.

[2] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin and M.
Walfish, "Depot: cloud storage with minimal trust", ACM
Transactions on Computer Systems volume 29, issue 4, Article 12,
2011.

[3] W. Zeng, Y. Zhao, K. Ou and W. Song, “Research on cloud storage
architecture and key technologies” ICIS 2009 Proceedings of the 2nd
international conference on interaction sciences: Information
Technology, culture and human, 2009, pages 1044-1048.

[4] A. Bessani, M. Correia, B. Quaresma, F. André and P. Sousa,
“DepSky: dependable and secure storage in a cloud-of-clouds”,
EuroSys'11, 2011, pages 31-46.

[5] M. Munier, V. Lalanne and M. Ricarde, “Self-Protecting documents
for cloud storage security”, IEEE 11th International Conference on
Trust, Security and Privacy in Computing and Communications,
2012, pages 1231-1238, DOI 10.1109/TrustCom.2012.261.

[6] J. Feng, Y. Chen, D. Summerville, W. Ku and Z. Su, “Enhancing
cloud storage security against roll-back attacks with a new fair multi-
party non-repudiation protocol", Consumer Communications and
Networking Conference (CCNC), 2011, pages 521-522, DOI
10.1109/CCNC.2011.5766528.

[7] S. Han and J. Xing, "Ensuring data storage security through a novel
third party auditor scheme in cloud computing", Cloud Computing
and intelligence Systems (CCIS), 2011, pages 264-268. DOI
10.1109/CCIS.2011.6045072.

[8] X. Zhang, H. Du, J. Chen, Y. Lin and L- Zeng, “Ensure data security
in cloud storage”, Network Computing and Information Security
(NCIS), 2011, pages 284-287, DOI 10.1109/NCIS.2011.64.

[9] C. Wang, Q. Wang, K. Ren and W. Lou, “Privacy-preserving public
auditing for data storage security in cloud computing”, IEEE
INFOCOM, 2010, pages 1-9, DOI 10.1109/INFCOM.2010.5462173.

[10] M. Tribhuwan, V. Bhuyar and S. Pirzade, “Ensuring data storage
security in cloud computing through two-way handshake based on
token management”, International Conference on Advances in Recent
Technologies in Communication and Computing, 2010, pages 386-
389, DOI 10.1109/ARTCom.2010.23.

[11] M. Venkatesh, M.R. Sumalatha and C. SelvaKumar “Improving
public auditability, data possession in data storage security for cloud
computing”, Recent Trends In Information Technology (ICRTIT),
2012, pages 463-467, DOI 10.1109/ICRTIT.2012.6206835.

[12] Y. Wei, Z. Jianpeng, Z. Junmao, Z. Wei and Y. Xinlei, “Design and
implementation of security cloud storage framework”, Second
International Conference on Instrumentation & Measurement,
Computer, Communication and Control (IMCCC), 2012, pages 323-
326, DOI 10.1109/IMCCC.2012.79.

[13] R. Roman, M. Felipe, P. Gene and Jianying Zhou, "Analysis of
security components in cloud storage systems", APMRC, 2012, pages
1-4.

[14] Y. Tang, P. Lee, J. Lui and R. Perlman, "Secure overlay cloud storage
with access control and assured deletion", IEEE Transactions on
dependable and secure computing, volume 9, issue 6, 2012, pages
903-916, DOI 10.1109/TDSC.2012.49.

[15] A. Kumar, B. Lee, H. Lee and A. Kumari, “Secure storage and access
of data in cloud computing”, International Conference on ICT
Convergence (ICTC), 2012, pages 336-339, DOI
10.1109/ICTC.2012.6386854.

[16] M. Hamdi, "Security of cloud computing, storage, and networking",
Collaboration Technologies and Systems (CTS), International
Conference, 2012, pages 1-5, DOI 10.1109/CTS.2012.6261019

[17] Dropbox, 2013, https://www.dropbox.com/

[18] Dropbox API, 2013, https://www.dropbox.com/developers/core

[19] Just Cloud, 2013, http://www.justcloud.com/

[20] Cubby, 2013, https://www.cubby.com/

[21] Microsoft SkyDrive API, 2013, http://msdn.microsoft.com/en-
us/library/live/hh826521.aspx

[22] R. Seiger, S. Groß and A. Schill, "SecCSIE: a secure cloud storage
integrator for enterprises", 13th Conference on Commerce and
Enterprise Computing (CEC), 2011, pages 252-255, DOI
10.1109/CEC.2011.45

[23] S.V. Gogouvitis, G. Kousiouris, G. Vafiadis, E.K. Kolodner and D.
Kyriazis, "OPTIMIS and VISION cloud: how to manage data in
clouds", Proceedings of the international conference on Parallel
Processing (Euro-Par'11), 2011, pages 35-44, DOI 10.1007/978-3-
642-29737-3_5

[24] G. Bombach, S. Matthischke, J. Muller and R. Tzschichholz,
"Information dispersion over redundant arrays of optimal cloud
storage for desktop users", Fourth IEEE International Conference on
Utility and Cloud Computing (UCC), 2011, pages 1-8, DOI
10.1109/UCC.2011.11

[25] J.S. Plank and L. Xu, "Optimizing Cauchy Reed-Solomon codes for
fault-tolerant network storage applications", Fifth IEEE International
Symposium on Network Computing and Applications (NCA), 2006,
pages 173-180, DOI 10.1109/NCA.2006.43

[26] Payment Card Industry Security Standards Council, "Requirements
and Security Assessment Procedures, Version 2.0", 2010,
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf

[27] CloudDIP, 2013, http://www.clouddip.com/healthcare/

[28] US Department of Health & Human Services, Federal Register Vol.
62, No. 34, February 2003 "45 CFR Parts 160, 162 and 164 Health
Insurance Reform: Security Standards; Final Rule", February 2003,
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/

66

[29] M.W. Storer, K. Greenan, D.D.E. Long and E.L. Miller, "Secure data
deduplication", Proceedings of the 4th ACM international workshop
on storage security and survivability (StorageSS '08), 2008, pages 1-
10, DOI 10.1145/1456469.1456471

[30] V. Kher and Y. Kim, "Securing distributed storage: challenges,
techniques and systems", Proceedings of the 2005 ACM workshop
on storage security and survivability (StorageSS '05), pages 9-25,
DOI 10.1145/1103780.1103783

67

Secure Cloud Application
Javad Sadeqzadeh Boroujeni

Department of Computer Science
University of Helsinki

Email: sadeqzad@cs.helsinki.fi

Abstract—Cloud computing as a big step toward grid com-
puting provides computing as a utility. However, security (if
not addressed correctly) is one of the serious obstacles in the
spread of cloud computing. In this article, we review some
aspects of cloud computing security. In section I, we discuss
the importance of security challenge in cloud computing, and
the differences in various cloud service models from security
perspective. In section II, we overview general security concerns
which are the issues related to the nature of cloud model and
the considerations that an entity should take into account if
it intends to migrate to cloud. These concerns include data
privacy and trust, data integrity, virtualization vulnerabilities,
web application firewall, data availability, interoperability, and
authentication and authorization. In section III, we overview
application security concerns. In this section, first, we take a
look at software assurance and seven principles that support it
in a cloud environment. These principles include confidentiality,
integrity, availability, authentication, authorization, auditing, and
accountability. Then, we give some insights about secure devel-
opment practices. These include some practices and guidelines
about handling data, code practices, language options, and
input validation and content injection. In addition, we describe
the characteristics of security requirement engineering process
for cloud application development. Furthermore, we provide
a security checklist to enable the entity which is considering
migrating to cloud to assess different cloud service providers.
Eventually, we conclude with emphasizing the importance of
balance between the three important elements which are security,
functionality, and ease of use.

I. INTRODUCTION

Regarding the recent increasing use of multi-tenant cloud
computing and services, the security has become one the areas
of cloud computing which has attracted much attention. Multi-
tenancy essentially refers to the fact that the users of many
customers of a single cloud service provider are served on
single physical server (regardless of cloud service delivery
model). This make the misuse of security vulnerabilities
effective on a larger scale. The interference of a potentially
malicious cloud customer on other customers on the same
physical machine is one the challenges in this regard.

As Fujitsu Journal customer questionnaire depicted, security
is the most important concern of cloud computing customers
[2]. In order to achieve widespread use of cloud computing
and services, there are several areas in which security issues
should be addressed. Different cloud service models (i.e.
Infrastructure as a Service, Platform as a Service, and Software
as a Service) establish different trust boundaries and therefore,
there are some differences in security concerns of each model
(and the severity of the issues), though many of the concerns

are common among all. For example, PaaS and SaaS environ-
ments introduce additional threats that come from software
and platform administrators that work for an external entity
(cloud service provider) [15]. The level of isolation is a major
difference between the three cloud service models. At IaaS
level, isolation is done at virtual machine image level, while
at Paas and SaaS, isolation is done at process level, which
is more difficult to achieve and maintain in a multi-tenant
environment. Since using IaaS level brings the lowest level
isolation, and moreover, the enterprise does not need to trust
to third parties’ (e.g. cloud service providers) APIs (which
might have security ambiguities), we believe that this model
should be preferred over PaaS and SaaS by large enterprises.
However, as we will see in the next section, using this level
has its own risk, which should be analyzed carefully. In this
article, we give an overview of general concerns and some
guidelines in order to incorporate security into the software
development life cycle.

We can categories security concerns and issues into two
categories: general security concerns, and application security
concerns.

II. GENERAL SECURITY CONCERNS

General security concerns can be further divided into uni-
versal cloud model vulnerabilities, and cloud-specific vulnera-
bilities. As GroBauer et al. pointed out, the prevalent mistake
is that we usually do not distinguish between universal cloud
model vulnerabilities and cloud-specific vulnerabilities [7]. We
review both of them briefly under this section.

A. Data Privacy and Trust (aka Data Confidentiality)

As the name suggests this category of issues is associated
with the privacy or confidentiality of customer’s data on
cloud service provider’s (CSP) infrastructure. Since the storage
of files on the cloud is location transparent (and relocation
transparent), and moreover, data replication for availability
and disaster recovery is a core operation at cloud, this lack
of awareness of data location leads to increased customers’
concerns about their data privacy. There are some arguments
that most of the issues in this category come back to the
storage transparency nature of cloud model and the ”lack of
control over infrastructure” [1].
Customers (especially enterprises with sensitive data) are
concerned about the individuals and organizations that can
see and access their data, including cloud service provider’s
personnel, governments, etc. Encryption is a solution to data

68

privacy concerns; before storing any data item into the cloud,
cloud consumers should encrypt it using cryptographic key
files, and after restoring (downloading) they should decrypt it.
However, this method is not appropriate for many enterprises,
since they need quick and in-place processing of data on the
cloud. Of course, some novel methods have been proposed
by researchers to process encrypted data, but they are not
very practical and thus are not likely to be usable in near
future. Nevertheless, some approaches have been suggested to
search encrypted data on the cloud without decryption. These
methods are more likely to be utilized in near future. Anyway,
for some of enterprises, nobody except the data owner must
be able to access their data, not even the CSP’s (cloud service
provider) technical administration personnel. In this case, data
confidentiality comes to the top of the preferences list when
deciding on the migration to the cloud, and in cloud service
provider selection phase.

B. Data Integrity

This category of issues concerns to the malicious modifi-
cation of customer’s data. The altered data may be used by
the data owner to make critical decisions [3]. There is a need
for a mechanism that can check whether the consumer’s data
is intact while at rest or in transit [4]. According to Rong et.
al, at the moment, there is no common standard to guarantee
data integrity.

C. Virtualization Vulnerabilities

Although virtual machines in Infrastructure as a Service
model are supposed to be isolated at a lower level in contrast
to Platform as a Service and Software as a Service, there
are some known vulnerabilities with virtualization software.
Virtualization risk is not a exclusive risk of cloud computing
environment; it exists also in the traditional web hosting
environments. However, the multi-tenancy nature of the cloud
makes the adverse effects of this risk more severe. An attack
to a virtual machine can influence other virtual machines on
the same physical server [3] or can even lead to destruction
or loss of control of cloud service provider’s infrastructure.
Virtualization security strength depends on the used hypervisor
in the CSP’s infrastructure. Hypervisor or virtual machine
monitor (abbreviated as VMM) is a system software similar
to an operating system, but theoretically more lightweight
and less complex than an operating system. However, in
practice, hyporvisors become as complex as operating systems.
This complexity leads to vulnerabilities in their architecture.
The main responsibility of a hyporvisor is to manage virtual
machines, to distribute resource among them, and to isolate
them. Oracle VM Server for SPARC, Oracle VM Server for
x86, the Citrix XenServer, VMware ESX/ESXi, KVM, and
Microsoft Hyper-V are the common hypervisors. However,
some hypervisors fail to isolate virtual machines properly and
as a result, malicious virtual machine owners can interfere
in other virtual machines. When choosing a cloud service
provider, an enterprise should try to figure out the hypervi-
sor used by various cloud service providers and investigate

their vulnerabilities. A good approach for both virtualization
security and operating system security (which leads to general
cloud security) is to install the latest patches periodically and
automatically. This is called patch management.

D. Web Application Firewall

Web application firewalls (WAFs) are common means of
security for traditional web applications used in traditional
data centers or web hosting facilities. These firewall should
be modified in order to be usable in a cloud environment.
The main goal here is to make WAFs scalable, flexible, and
easy to manage [15]. They should not be limited by hardware,
they should ”scale across CPU, computer, server rack and
datacenter”; their resource consumption should be minimal
and they should not add ”undue” complexity for CSPs; they
should be scalable enough to manage ”highly-loaded web
applications”; and because of various shapes and sizes of
clouds, web application firewalls should be highly configurable
to different scenarios [15]. This new type of WAFs are called
distributed WAF or dWAF [15].

E. Data Availability (aka Business Continuity)

Can a particular cloud service provider safely and securely
recover the sensitive data and applications of customer in case
of confronting a disaster? Can an enterprise rely on a cloud
service provider and outsource its critical-mission applications
to it? Data availability or business continuity is one of the
factors which an enterprise should use to build its external ”due
diligence” which refers to the examination of a cloud service
provider’s capabilities to meet the enterprise’s requirements
[5].

F. Interoperability (aka vendor lock-in)

Can an enterprise easily and smoothly migrate from the
current cloud service provider (CSP) to another CSP in case
of dissatisfaction with the current CSP? How much difficulty
(in terms of data and application transformation, service
interruption, etc) the enterprise will encounter in case of
such shift? The lack of a widely accepted cloud standard has
led to a poor interoperability situation among various CSPs.
With the current situation, it is most probable that migration
of a cloud customer to another CSP imposes a load of
difficulties. This situation is called vendor lock-in. Although
interoperability does not seem to have a direct impact on
security since it is related to data availability, in most of the
literature it has appeared together with other security concerns.

G. Authentication and Authorization (Access Control)

Authentication refers to ”the mechanism whereby systems
may securely identify their users” [6]. In contrast, authoriza-
tion specifies ”what level of access a particular authenticated
user should have” [6]. In multi-tenant cloud environments,
the traditional authentication mechanisms of data owners and
users may not be as effective as they are in the traditional
web hosting environments. How to keep and manage account

69

tokens (keys) securely? How to restrict unauthorized access?
These questions are related to authentication and authorization.

III. APPLICATION SECURITY CONCERNS

If a enterprise or developer uses Infrastructure as a Service
(IaaS), as we suggested, there is not much difference in
application-level security concerns comparing traditional web
applications. Arnold et. al also mentioned this fact: ”The archi-
tecture for IaaS-hosted applications resembles that of normal
web applications, with a web-server based, n-Tier distributed
architecture” [15]. Anyway, creating and using your own
securely configured virtual machine image is usually preferred
over using pre-ready virtual machine images provided by cloud
service providers. However, even in this case, you should
secure your inter-host communications since the infrastructure
is shared with other entities [15].

However, if an entity intends to develop software for
Platform as a Service (PaaS), it should manage application
keys securely properly. When you use this service model,
you need to include those keys in API calls. An application
key should not be stored in clear text; it should be secured
with other credentials the application utilizes [15]. Another
important issue you should take into account when designing
and implementing applications for PaaS is that PaaS platform’s
service bus is equivalent to an ESB [15], however, you should
remember that because of multi-tenancy nature of cloud, you
should not assume that this ESB is secure. PaaS platform?s
ESB provides both asynchronous messaging and message rout-
ing, but before using them, you should secure your message
communication [15].

Another key point about the security of PaaS is that ”each
PaaS platform has its own unique security challenges” [15],
therefore, before using a PaaS, you should make yourself
familiar with its security challenges. However, as Arnold et.
al mentioned, ”knowledge bases for PaaS environments are
scarce” yet [15].

If you develop software for SaaS service model, you need
to take care of your API calls carefully, although there are
some existing security policies and standards defined by each
SaaS provider [15]. Data communication should be secured
in this service model as well. The source or the destination
of data can be applications within the same cloud, within the
enterprise, or within other clouds [15]. Since ”secure software
development life cycle is shared between the SaaS vendor and
the enterprise” (or the developer) in this service model [15] ,
the enterprise or the developer should mind about how their
secure SDLC integrates with SaaS vendor’s secure SDLC.

When developing software for the cloud, security should
be treated as an integral element of software development life
cycle, not just an add-on. In order to produce secure cloud
software, we first need to answer the question: ”what makes
software vulnerable?”. Goertzel et al. enumerated three major
factors [10]: lack of developer motivation, lack of developer
knowledge, lack of technology. lack of developer motivation
refers to the fact that because consumers evaluate the software
vendors by being first in the market, and having more features,

not by producing higher quality and more secure, software
vendors have no financial motivation to produce better and
more secure software [10]. Lack of adequate and appropriate
tools to assist software developers in the software development
life cycle is called ”lack of technology”. And the factor that we
target in this article (lack of developer knowledge) is because
software and generally information systems are very complex;
”it exceeds the human ability to fully comprehend it” [10].

At the other hand, software security has a high degree
of importance. As the US President’s Information Technol-
ogy Advisory Board (PITAC) emphasized in their report (on
cyber security) to the US president in 2005 [11], software
is an major component in cyber security; it worsen the
security problem. In the aforementioned report, they signified:
”Network connectivity provides ”door-to-door” transportation
for attackers, but vulnerabilities in the software residing in
computers substantially compound the cyber security problem”
[11]. They artistically depict how an insecure software can
be used to damage the information systems: ”Today, as with
cancer, vulnerable software can be invaded and modified to
cause damage to previously healthy software, and infected
software can replicate itself and be carried across networks
to cause damage in other systems” [11]. They continue with
a preventive suggestion: ”And as in cancer, both preventive
actions and research are critical, the former to minimize
damage today and the latter to establish a foundation of
knowledge and capabilities that will assist the cyber security
professionals of tomorrow reduce risk and minimize damage
for the long term” [11]. In order to undertake such preventive
actions, we need to know how we can systematically reduce
the vulnerabilities in our software systems during the software
development life cycle (SDLC). Software assurance provides
some sound knowledge for such systematic prevention.

A. Software Assurance (aka Software Security Assurance, and
Information Assurance)

As Goertzel et al. pointed out in a report called Software
Security Assurance - the State-of-the-Art Report [10], until
10 years ago, the term software assurance was used to refer
to two software properties: quality, and reliability; since ever,
the term has been ”adopted to express the idea of the assured
security of software”. The aforementioned report defines soft-
ware assurance precisely: ”to provide a reasonable level of
justifiable confidence that the software will function correctly
and predictably in a manner consistent with its documented
requirements. Additionally, the function of software cannot be
compromised either through direct attack or through sabotage
by maliciously implanted code to be considered assured.”
The objectives of software assurance are [9]:
Dependability: The software shows a ”justifiable confidence”
that it works predictably or ”only as intended”.
Trustworthiness: The software has no ”exploitable” vulnera-
bilities or ”malicious logic”.
Resilience: The damage to the software resulting from a
compromise is minimized. In such situation, the software
recovers quickly and to an ”acceptable level of operating

70

Fig. 1. The CIA Triad

capacity”.
Conformance: The software conforms to the (security) require-
ments and the relevant standards and procedures. In order to
ensure conformance, a ”planned and systematic set of multi-
disciplinary activities” should be performed.

When developing software for cloud, the importance of
considering software assurance and its principles becomes
more crucial since because of the multitenancy nature of cloud
and the scale, security, as a matter of quality, is more vital
and harder to achieve in cloud environment comparing to tra-
ditional desktop environment or even traditional web hosting
environment where establishing trust is not such challenging
as it is in cloud computing environment.

Krutz and Dean Vines aggregated 7 security principles that
support information assurance [8] . As figure 1 depicts, the first
three principles are known as the CIA triad of information
system security [16] [8]. These three principles are also
mentioned in other literature (though in a slightly broader
view) [12] [16] and are as follows:

Confidentiality: Confidentiality is associated with the pre-
vention of unauthorized information revealing, either inten-
tional or unintentional [8]. It covers the following areas:
Intellectual property rights: Rights to intellectual properties
should be protected by the national and international copyright
laws, which covers patents, artistic works, designs, literary
works, and musical works. [8]
Covert channels (aka subliminal channels): This terms refers
to ”unauthorized and unintended communication paths” that
can be utilized for secret transfer of information [8]. There
are two types of covert channels: storage covert channels and
timing covert channels. Storage covert channels (that can be
the result of inappropriate usage of storage mechanisms [8])
can be utilized for writing (or overwriting) of object values,
or reading object values [13]. Zander et al. have reviewed
common methods for detecting, removing and preventing
covert channels in network protocols [13]. The de-facto model
of covert channels is shown in figure 2.

Traffic analysis: This is a security breach that can be
done through message traffic analysis, even if the traffic
is encrypted. By analysis of the volume, rate, source, and
destination of the traffic, attackers can obtain information to
undertake malicious actions [8]. An approach to address this

Fig. 2. The de-facto model of covert channel communication [13]

breach is to preserve a near-constant rate of traffic [8]. Fu et al.
applied a statistical pattern recognition solution to evaluate the
effectiveness and to counteract active traffic analysis attacks
[14].
Encryption: Encryption refers to the encoding of messages’
contents using cryptographic keys so that unauthorized entities
could not be aware of the contents of messages. The strength of
the encryption key, together with the quality of the encryption
algorithm specify the robustness of the encryption [8].
Inference: Inference refers to the ”use and correlation of the
information protected at one level of security to disclose
information protected at a higher level of security” [8]. The
lower level here usually refers to database level.

Integrity: Integrity is e general term that is being used for
different levels, including data, software, and hardware [12].
In order to guarantee data integrity, three requirements should
be met [8]
- No modification or alteration to data is done by unauthorized
people or processes.
- No unauthorized modification or alteration to data is done
by the authorized people or processes.
- Data is internally and externally consistent.
Authentication, authorization, and auditing (that will come in
the rest of the article) are three means that should be used for
guaranteeing data integrity.

Software integrity refers to prevention of unauthorized fab-
rication, removal, alteration, and theft [12]. Since the cloud
software which are designed to be deployed to PaaS or SaaS
environments utilize and rely on the programming interfaces
from the cloud service provider, for those software, it is vital to
ensure about the security of those interfaces, since the security
and integrity of the software heavily depends on the security
of the interfaces and components used [12].

Availability: Availability refers to the accessibility and us-
ability of a system when it is needed [12]. A denial of service
(DoS) attack is an example of threats against availability [8].
The system must be able to continue to function even in the
possibility of a security breach [12].

The remaining four principles directly affect cloud software
assurance [8].

Authentication: As in general security concerns section
mentioned, authentication refers to ”the mechanism whereby
systems may securely identify their users” [6]. Winkler defines
authentication as the establishment of a user’s identity [16].

71

Traditionally a system authenticate a user if the credentials
provided by the user correspond to those in the database.

However, this conventional method called single-factor au-
thentication is not appropriate and secure for sensitive systems
since the user’s credentials may be easily leaked due to user’s
mistakes or lack of care, or social engineering methods, or
even physical attacks. Therefore, we need stronger authenti-
cation methods for the multi-tenant environment of the cloud.
Some novel approaches have been introduced during recent
years. Multi-factor authentication is a method of authentication
in which in order to establish their identities, users should
perform several actions rather than simply providing their
credentials. Using STP generator devices in combination with
the traditional credential-based authentication is a multi-factor
authentication method which has been used by many financial
institutions and banks around the world to authenticate their
users when committing financial transactions or initiating ma-
jor modifications to the user’s account. Using communication
channels secured with digital certificates is another alternative
that can substitute the traditional insecure credential-based
authentication.

Some modern multi-factor scheme are introduced in very
recent years. One of them, for example, suggested to use a
combination of digital signatures and third level features of
fingerprints (a bio-metric factor) as a 2-factor (2FA) anony-
mous password authentication scheme [17]. There are three
levels of details (features) in human fingerprint. The first level
called pattern level usually represents the pattern type of the
fingerprint. The second level called points level represents
”minutiae points such as spur, bifurcation, and terminations”
[17]. And finally the third level called shape level contains all
”dimensional characteristics of a ridge”. According to Yassin
et al., the first level features are not unique and should not
be used for identification purposes, but the second and third
levels provide individuality and each one of them can be used
for identification purposes. This scheme looks very strong
since it utilize mutual authentication and it can be used to
bypass some threats like DNS cache poisoning (aka DNS
spoofing). Figure 3 depicts the details of this scheme. As the
name suggests, mutual authentication refers to the two-way
authentication in which in addition to the authentication of user
by the system, the user also authenticates the system in order
to avoid providing credentials to a fake system (for example
by malicious modification of DNS entries to forward traffic
towards a malicious server).

In addition to the aforementioned authentication methods,
three are some other methods of authentication, which can be
utilized to provide stronger authentication. Some examples of
other authentication methods are graphical and 3D passwords.
Recently, in some efforts to apply the SSO (single sign-on)
theory, there has been a trend in use of third party authenti-
cation programming interfaces, like Facebook authentication
API. External APIs are means for delegation of authentication
or authentication outsourcing. OAuth (Open Authentication)
protocol, which was the result of efforts for standardizing
external authentication, was invented in 2007. However, ex-

Fig. 3. Mutual Two-Factor (2FA) Authentication Using Anonymous Password
Authentication Scheme [17]

ternal (third party) authentication APIs might not be secure
for sensitive systems, like enterprises’ mission-critical cloud
software, since the system security will depend on security of
the used third party API. And for designing a secure system,
external security dependencies should be limited.

However, the strength of an authentication method should
not be the mere measure. When thinking about security,
we should have ease-of-use in mind as well. There is a
trade-off triad between security, ease-of-use, and functionality.
Sometimes complexity of security mechanisms and procedures
makes it difficult for user to use the system and as a side-effect,
might finally lead to adverse impacts on users decision.

Authorization: Authorization refers to the process of spec-
ifying user’s access rights and privilege extent. There are
several means of authorization. ACLs (Access Control Lists)
as a mean for authorization are simple lists of users and
their access rights against either specific resources or classes
of resources [16]. After users get authenticated, they should
be appropriately authorized to be able to access to only
those sections of system and those date that is absolutely
necessary for them. There is a security principle called least
privilege principle which states that users should be limited
to a ”minimal set of privileges”. This principle is directly
associated to authorization. Within a multi-tenant environment
such as the cloud, especially in SaaS and PaaS models, in
addition to software developer, the cloud provider should also
undertake a strict authorization to cloud consumers.

72

Auditing: System audits and monitoring are two mecha-
nisms that enterprises can use to achieve and maintain opera-
tional assurance [8]:
System Audit: A system audit is an event, either one-time
or periodic for the purpose of security evaluation [8]. There
are two types of IT auditors: internal and external. External
auditors are ”certified public accountants (CPAs) or other audit
professionals which are hired to perform an independent audit”
[8]. Internal auditors work for a certain enterprise, and usually
have a much broader mandate [8].
Some techniques for system auditing are source code review,
binary code review, threat modeling, penetration test, etc.
Monitoring: This term refers to an continuous activity that
evaluate either the system or the users. Intrusion detection
systems are examples of monitoring tools.

Accountability: This term refers to the ability of tracing
behaviors of users and accurately identifying the misbehaving
users. Audit trails and logs are means of accountability [8].

B. Secure Development Practices

Handling Data: Sensitive and private data need special
care. Krutz et al. provided some important guidelines for
handling sensitive data [8]. These guidelines are as follows:
- Passwords must not be saved or transmitted in clear text.
- The passwords must not be viewable on the screen, when
users are entering their passwords.
- Passwords must be encrypted with one-way hashes.
- Credit card information must not be transmitted in clear text.
- Cloud servers must minimize the transmission and printing of
credit card information. Since this information might be logged
and printed in internal reports that are used for troubleshooting
for example.
- Sensitive data (such as credit card numbers) should not be
transmitted to server as part of the query string.

Code Practices: The information included in the source
code of a cloud application must be minimized [8]. Account
tokens and/or keys must not be included in the source code.
Names and other personal information must not be included
in source code comments. HTML and client-side scripts
comment fields are very sensitive since they are viewable
by clients; only non-sensitive information should be in that
comments. There should not be any clue about the architecture
or structure of the cloud application in HTML or client-side
script comments. This comments should not disclose any ex-
ploitable information about the organization or the developers
[8]. Extra care should be applied when working with the extra
software packages such as web servers, since they usually
display the version of the software. The attackers may use
this version information to concentrate their attacks toward
the vulnerabilities of this version [8]. As mentioned earlier,
some programming languages require more care, because of
their security mechanisms limitations; if there is a obligation
regarding the use of those languages, the developers should
train themselves and practice to improve their skills to manage
security manually and carefully.

Language Options: Each programming language has its
own strength and weakness points. Some languages are more
appropriate or have rigorous security management for cloud
software development. As Krutz et al. pointed out, one of
the most frequent vulnerabilities in cloud applications is the
result of using C and C++ [8]. Since C cannot manage buffer
overflow, use of it for developing cloud application is risky and
requires high level of developer’s skill in managing memory
and safe programming techniques. The developer should check
for the boundary limits and make sure that all functions are
correctly called [8]. A reason of popularity of Java is JVM’s
capabilities for security and memory management.

Input Validation and Content Injection: User input must
be immediately verified and validated before passing it around
for any further action. Content injection attack which is a result
of lack of sufficient user input validation refers to those kind
of attacks that the attacker inserts malicious contents (such
as SQL commands) into the system through user input. SQL
injection refers to the attacks that the attacker tries to alter the
database using injecting SQL commands through parameters
or text boxes. A SQL injection can be used to drop all tables
or a specific table in the database. Cross-site scripting (XSS)
is another type of content inject attacks which abuse the lack
of (or weak) user input validation to inject client-side script to
bypass access controls. These kind of attacked are happened
when the user input is used (without validation) to display a
page of results.

C. Security Requirement Engineering

As we mentioned earlier, security mechanisms should not
be treated as some add-ons, but rather they should be in very
heart of the system. Therefore, as Goertzel et al. [9] pointed
out, we need to enhance software development life cycle to
produce secure software. Cloud software security requirement
specification is an integral part of cloud software engineering.
Security requirements should be defined as early as possible
in the software development life cycle. Like with legacy
software, the process of cloud software requirement engi-
neering produces both functional and non-functional software
characteristics. Figure 4 depicts the traditional requirements
engineering process for survivable systems. Figure 5 illustrates
secure software additions to the requirements engineering
process.

Software Security Requirements Properties (SMART+):
In 1995, in their paper, Mike Mannion and Barry Keepence
(from Edinburgh Napier University) proposed five basic
properties of software requirements which is abbreviated
as SMART. These properties are: Specific, Measurable,
Attainable, Realizable, and Traceable. The Open Web
Application Security Project (OWASP) has modied the
acronym to SMART+ [18], which stands for the terms that
follows:
Specific: The requirements should be detailed, so that there
are ”no ambiguities” in any single requirement.
Measurable: ”It should be possible to determine whether the
requirement has been met, through analysis, testing, or both.”

73

Fig. 4. Requirements Engineering for Survivable Systems [9]

Fig. 5. Secure Software Additions to Requirements Engineering Process [9]

Appropriate: ”Requirements should be validated, thereby
ensuring that they not only derive from a real need or demand
but also that different requirements would not be more
appropriate.”
Reasonable: validations should be done to to specify the
physical feasibility or feasibility with regard to other project
constraints.
Traceable: ”Requirements should be ”isolated” to make them
easy to track/validate throughout the development life cycle.”

As Goertzel et al. stated, security requirement engineering is
hard to do: ”The number of requirements needed to adequately
define even a small software project can be very large. That
number grows exponentially with the effects of large size,
complexity, and integration into evolving operational environ-
ments” [10].

Like other requirements, there are two types of security
requirements: Internal, and external [8]. In security context,
internal requirements refer to non-functional and functional
security requirements which correspond to the enterprise’s
security policy. External security requirements refer to com-
pliance of software details to national regulations and legal
obligations. For example, in most countries sensitive and
categorized governmental information cannot reside on abroad
locations, or even cannot be placed on networks belonging to
third parties. Regulatory compliance is a determining security
policy factor in cloud service provider selection phase.

D. Cloud Service Provider Assessment Checklist

Choosing an appropriate cloud service provider that can
meet the security requirements (and other requirements) is one
of the critical decisions that an enterprise (or even a SMB
(small or medium size business)) make. This decision should
be based on the enterprise’s security policy. As Karadsheh
pointed out, due diligence serves as an input to security
policy formulation [5]. In their Guidance for Application
Security V2.1, the Cloud Security Alliance (CSA) listed a set
of concerns to be incorporated into due diligence [15]. The
following questions which should be asked from the candidate
CSPs (cloud service providers) cover the ”application-layer-
specific” concerns [15].

The security checklist for all service delivery models:
- What ”Secure Development Life Cycle” activities does
the cloud service provider use in developing the service’s
software?
At design level: threat modeling, and secure design reviews
At implementation level: manual secure code reviews, static
code analysis, manual security testing, and tool-based security
testing
- Which software development standards or procedures does
the CSP use for design and coding during Secure Development
Life Cycle?
And an important question associated to isolation (both pro-
cess isolation and virtual machine isolation):
- How an application (and its components) belonging to a
tenant is protected from an attack from other tenants?

The security checklist for Infrastructure as a Service:
- How does the platform resist against Denial of Service
(DoS) and Distributed Denial of Service (DDoS) attacks ”at
the infrastructure and network layers”? What mechanisms are
used for this purpose?
- What threat models are addressed ”at the infrastructure and
network layers”?
- How does the infrastructure validates the integrity of a virtual
machine image?
- How does the infrastructure resist against root kit and BIOS
types of attacks (which are among the toughest attacks to
conquer)? Does any mechanism exist to detect and remove
such kind of attacks?

The security checklist for Platform as a Service:
- ”Where is the ”line of responsibility” drawn between the
security of platform and application components?”
- Does any real-time IDS (Intrusion Detection System) exist
on the platform for detecting application level intrusions?
- What tools does the platform provide for logging at appli-
cation level?
- How does the platform secure communication channels
between application components? How does it protect (isolate)
data while at rest and in use?
- How does the platform protect message data on the client’s
service bus?

The security checklist for Software as a Service:
- Which security standards for web application are used by

74

Fig. 6. Balance Triad

the CSP (Coud Service Provider) during the development of
the software?
- Which ”application and infrastructure controls” exist to
protect one tenant’s data from other tenant’s data, while the
data is in transit, in use, or at rest?

E. Balance Triad

As figure 6 illustrates and we mentioned earlier, there is a
balance triad between security, ease-of-use, and functionality.
When we are dealing with security in any stage, from security
requirements specification to security assessment, we should
have this balance in mind, especially if there is a competition
in the market. The excessive complexity of system should not
make the user to leave the service/product.

IV. CONCLUSION

Cloud security is neither a minor nor a simple matter. It
is important and difficult to achieve. The security of a cloud
application depends on two major category of factors: general
cloud security factors and cloud application security factors.
In order to develop and deploy a secure cloud application,
we should incorporate security into the software development
life cycle in early stages. In software requirement engineer-
ing phase, we should carefully define and establish cloud
application security requirements. The requirements should
have certain properties. Establishing a due diligence is an
step toward the definition of the security policy which is a
mean for defining security requirements and a measure for
selecting the appropriate cloud service provider. We should
follow secure design and coding principles (and tools) dur-
ing the development process. The selection of cloud service
provider is also important. With regard to the organization’s
security policy and requirements, we should assess different
cloud service providers on the market against an evaluation
checklist to see which one is more appropriate and more
secure. In order to achieve general cloud security which is a
prerequisite or complement to cloud application security, we
should have general cloud security risks in mind and perform
countermeasure. Patch management is a sample of general
countermeasures both in cloud and non-cloud environments.

REFERENCES

[1] Lin A. and Chen N., ”Cloud computing as an innovation: Perception,
attitude, and adoption,” International Journal of Information Management,
no.32, pp. 533-540, 2012

[2] M. Okuhara et al., ”Security Architectures for Cloud Computing,” FU-
JITSU Sci. Tech. J., vol.46, no.4, pp. 397-402, Oct. 2010

[3] C. Rong et al., ”Beyond lightning: A survey on security challenges in
cloud computing,” Computers and Electrical Engineering, no.39, pp. 47-
54, 2013

[4] Handbook on Securing Cyber-Physical Critical Infrastructure, Morgan
Kaufmann, Waltham, MA, Feb. 2012, pp. 389-410

[5] L. Karadsheh, ”Applying security policies and service level agreement
to IaaS service model to enhance security and transition,” Computers &
Security, no.31, pp. 315-326, 2012

[6] Robert G. Carter. (Revisited: 1 April 2013), Authentication vs. Authoriza-
tion [Online], Available: http://people.duke.edu/∼rob/kerberos/authvauth.
html (URL)

[7] B. Grobauer et al., ”Understanding Cloud Computing Vulnerabilities,”
IEEE Security & Privacy, pp. 50-57, Mar./Apr. 2011

[8] R. L. Krutz and R. Dean Vines, ”Cloud Security: A Comprehensive Guide
to Secure Cloud Computing,” Wiley Publishing, Inc., pp. 61-121, 2010

[9] K. M. Goertzel and T. Winograd, ”Enhancing the Development Life Cycle
to Produce Secure Software,” US. Department of Defense, pp. i-iv, Oct.
2008

[10] K. M. Goertzel et al., ”Software Security Assurance: A State-of-the-Art
Report (SOAR),” US. Department of Defense, pp. 19-29, Jul. 2007

[11] Presidents Information Technology Advisory Committee, ”Cyber Se-
curity: A Crisis of Prioritization,” US National Coordination Office for
Information Technology Research and Development, pp. 5-18, Feb. 2005

[12] D. Zissis and D. Lekkas, ”Addressing cloud computing security issues,”
Future Generation Computer Systems, No. 28, pp. 583-592, 2012

[13] S. Zander et al., ”a Survey of Covert Channels and Countermeasures
in Computer Network Protocols,” IEEE Communications Surveys &
Tutorials, Vol. 9, No. 3, pp. 44-57, 2007

[14] X. Fu et al., ”Active Traffic Analysis Attacks and Countermeasures,” in
Proc. Int. Conf. on Computer Networks and Mobile Computing, pp. 1-9,
2003

[15] J. Arnold et al., ”Guidance for Application Security
V2.1,” Cloud Security Alliance, pp. 5-29, 2010, Available:
http://www.cloudsecurityalliance.org/guidance/csaguide-dom10-
v2.10.pdf [URL]

[16] V. Winkler, ”Introduction to Cloud Computing and Security,” in Securing
the Cloud, Syngress, 2011

[17] A. A. Yassin et al., ”Anonymous Password Authentication Scheme by
Using Digital Signature and Fingerprint in Cloud Computing,” in 2nd Int.
Conf. on Cloud and Green Computing, 2012, pp. 282-289

[18] The Open Web Application Security Project.(Revisited: 8 April 2013),
Document security-relevant requirements [Online], Available: //www.
owasp.org/index.php/Document security-relevant requirements (URL)

75

76

Appendix – Alphabetical List of All Seminar Papers

Paper Author

Analysis of the Availability of Amazon Web Services’
Cloud Infrastructure Services

Santeri Paavolainen

Cloud Computing and Social Networking Services
Engineering Challenges and Solutions

Mohsen Koolaji

Cloud Provider Interoperability and Customer Lock-in Mirva Toivonen

Cloud Security - Challenges and Requirements Michael Przybilski

Cloud-based Testing: Opportunities and Challenges Yanhe Liu

Comparing Preconditions for Cloud and On-Premises
Development

Teemu Mattila

Comparision of Different Approaches to Evaluate Cloud
Computing Services

Rakesh Pandit

Continuous Deployment of Software Ville Pulkkinen

Decision Making About Migrating To The Cloud Model Emad Nikkhouy

Feedback-Driven Development: A Mobile Case Study Alexander-Derek Rein

Impact of Cloud Computing on Global Software
Development Challenges

Inna Smirnova

Open Source Cloud Platforms Jussi Hynninen

Quality of Service: Metrics and Evaluation in Cloud-
based Services

Zinat Rasooli Mavini

Secure Cloud Application Javad Sadeqzadeh Boroujeni

Secure Data Management for Cloud-Based Storage
Solutions

Mikael Svenn

Success with a Cloud Software Ecosystem Aikeremu Tiemuer

