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ABSTRACT 

Sludge contains valuable nutrient sources such as N (3.1%), P (2.6%) and micronutrients 

as well as organic matter. Nevertheless, depending on the feedstock materials, sludge 

contains heavy metals and metalloids that can be partly taken up by plants. The 

continuing need for disposal of sludge is a challenge due to the increasing world 

population. 

Experiments were conducted at glasshouse and field at Viikki Experimental Farm, 

University of Helsinki, Finland, during 2008-2012, in order to study the suitability of 

sewage sludge and digested sludge as nutrient sources for bioenergy crops. Leaf N 

content, leaf area index, leaf area formation, net photosynthesis, water relations and 

biomass accumulation were determined. In addition, the effects of sludge on feedstock 

quality in terms of macronutrient and trace element content in crop biomass, C:N mass 

ratio and ash content as well as higher heating value and gross energy yield were studied. 

Further attention was paid to the role of mycorrhizal colonization in the improvement of 

N and P availability to the host plants. 

In the first glasshouse experiment, sewage sludge was applied in a high dose (1 kg sludge 

per 5 kg soil), a low dose (50% of high), or a low dose premixed with an equal mass of 

peat. In the subsequent glasshouse and field experiments, treatments for each crop species 

were standardized on the basis of total N, where 100% represented 120 kg ha
-1

 of N for 

maize, 90 kg ha
-1

 for oilseed rape, and 60 kg ha
-1

 for fibre hemp and ryegrass. The second 

glasshouse experiment comprised five treatments (soil + synthetic fertilizer, soil + sewage 

sludge, soil + digested sludge, sand + synthetic fertilizer, sand + sewage sludge), while 

the field experiments comprised six treatments (100% synthetic fertilizer, 50% + 50% 

synthetic fertilizer in a split application, 50% synthetic fertilizer + 50% sewage sludge, 

100% sewage sludge, 150% sewage sludge and 100% digested sludge). Each experiment 

was arranged in a randomized complete block design with 3-6 replicates. 

Sewage sludge-peat mixtures significantly increased leaf area, and improved net 

photosynthesis of maize and hemp. Sewage sludge resulted in higher biomass 

accumulation in maize and hemp at 90 and 150 DAS than in the other treatments in the 

field study, while biomass accumulation of oilseed rape was equally high following 

applications of both sewage sludge and synthetic fertilizer throughout most of sampling 
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dates. Sewage sludge application resulted in more numerous fungal spores in soil and 

increased root colonization in comparison to synthetic fertilizer. The highest root 

colonization rate was in maize, followed by hemp. Sewage sludge and synthetic fertilizer 

applications resulted in higher N uptake in maize, hemp and oilseed rape than in the other 

treatments. However, sewage sludge resulted in the highest P uptake in maize and hemp, 

while high sewage sludge and digested sludge resulted in the highest P uptake in oilseed 

rape. Also, sewage sludge resulted in the highest accumulation of many heavy metals and 

metalloids in plant biomass. Sewage sludge application provided the optimum feedstock 

quality in maize, hemp and oilseed rape, in terms of reducing the content of alkali metals, 

Cl and ash, while sewage sludge and synthetic fertilizer applications gave the optimum 

C:N ratio for methane production in maize and hemp. 

Thus, recycling nutrients from sludge provides an opportunity to minimize the use of 

synthetic fertilizer with its high consumption of fossil fuel, and improves sustainability in 

agriculture. Sewage sludge improved plant growth, mycorrhizal colonization of roots and 

plant uptake of N and P, and feedstock quality. However, the potential losses of P can be 

a serious environmental issue in long-term sludge use, and the high content of Cu in 

sludge makes it the heavy metal of greatest concern. 
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1. INTRODUCTION 

1.1.  Bioenergy 

In the 21
st
 century, the world faces problems as a result of increasing energy usage and 

decreasing supplies of fossil fuels, which are non-renewable or finite sources (Hein 

2005). The consumption of global primary energy, including fossil fuel, nuclear and 

renewable energy, was 280 EJ in 2000, and it is expected to be 470 EJ in 2030 (Bakkes et 

al. 2008). Around 80% of global primary energy is from fossil fuels, namely petroleum, 

gas and coal (El Bassam 2010, REN21 2011, BP 2012). Petroleum contributes the largest 

part of fossil fuels, followed by coal and natural gas (BP 2012). Renewable energy, 

including biomass, hydropower, geothermal, wind and solar energy, contributes around 

18% of the worldwide primary energy consumption (El Bassam 2010), while nuclear 

energy provides around 2.8% (El Bassam 2010, REN21 2011). 

1.1.1 Biomass 

Biomass refers to any biological material of organisms living or recently alive, and 

includes plant materials (i.e. trees, grasses, and crops), animal manure, municipal 

biosolids (sludge) and microorganisms such as algae (Montross and Crofcheck 2010). 

Biomass contributes 13-15% of the global primary energy demand (AEBIOM 2010, El 

Bassam 2010, BP 2012, REN21 2012) and more than 60% of total renewable energy 

(AEBIOM 2010, REN21 2011). The contribution of biomass to the energy supply has 

increased from 53 Tg in 2000 to 105 Tg in 2008 (EUROSTAT 2010). This was due to the 

replacement of fossil fuel by biofuel. Biofuel is obtained by converting biomass into 

solid, gas or liquid fuel through thermal, chemical or biochemical means (Figure 1). The 

energy derived from biomass in the European Union in 2008 was 13% liquid biofuel, 

11% electricity and 76% heat (AEBIOM 2010). Biodiesel and bioethanol are usually used 

for transport, where the biofuel is either mixed with traditional transport fuels (e.g. 

biodiesel with petroleum diesel or bioethanol with gasoline) for standard engines or used 

on its own in vehicles with specialized engines (Demirbas 2009, AEBIOM 2010, El 

Bassam 2010). 
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Biofuel is classified as "first" or "second" generation based on production technology and 

feedstock. First-generation biofuels (i.e. bioethanol 85% and biodiesel 15% of current 

global production) are usually made from the edible parts of starch, sugar and oil crops by 

simple means such as fermentation of sugars and starch to ethanol and transesterification 

of vegetable oil to fatty acid methyl esters (Larson 2008, El Bassam 2010, Pedroli et al. 

2012). Second-generation biofuels are commonly made from non-edible biomass by more 

advanced technologies such as conversion of cellulose to ethanol (Larson 2008, El 

Bassam 2010), using crops that produce plentiful biomass with high land use efficiency 

and relatively little competition with food crops (Larson 2008). Worldwide, total biofuel 

production increased from 32 billion litres in 2004 (bioethanol 30 billion litres and 

biodiesel 2 billion litres) to 100 billion litres in 2010 (bioethanol 80 billion litres and 

biodiesel 20 billion litres) (REN21 2010). The European Union is third in biofuel 

production globally after Brazil and the United States. In 2012, the European Union 

consumed about 6 billion litres of bioethanol and about 14 billion litres of biodiesel, and 

16% of the bioethanol and 22% of the biodiesel were imported, mainly from Brazil and 

the United States (Flach et al. 2012). 

1.1.2 Biomass conversions into biofuels 

Thermo-chemical conversions use heat, often in combination with varied catalysts, to 

break biomass down into smaller basic units, which are further processed to produce fuel 

(El Bassam 2010, Pedroli et al. 2012). The combustion of biomass pellets or bales is a 

thermo-chemical process that produces hot gases which can be used directly to dry other 

products (Figure 1). These hot gases can also be converted in a heat exchanger to hot 

water, air or steam, which can be used for district heating or in steam turbines for power 

generation (El Bassam 2010). Gasification (Figure 1) is also a thermo-chemical process in 

which biomass is partially oxidized by heating at 1200°C to produce fuel gas (Dumbleton 

1997). The fuel gas, which can be used in electricity, is mostly methane, carbon 

monoxide and hydrogen, with low amounts of ethane and ethylene (El Bassam 2010). 

Pyrolysis is also a thermo-chemical degradation of biomass in the absence of oxygen at a 

wide range of temperatures (350-800°C), to produce gaseous (syngas), liquid (pyrolysis 

oils) and solid (biochar) fuels (Figure 1) (El Bassam 2010). Syngas (i.e. CO, CO2, H2 and 

H2O) can be converted into ethanol, methanol and butanol through the Fischer-Tropsch 

process (El Bassam 2010). 
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Fermentation is a biochemical process in which sugars are fermented in the presence of 

yeast and enzymes and converted directly to bioethanol (Figure 1). Starch has to be 

broken down by acids or hydrolytic enzymes into simple sugars before fermentation (El 

Bassam 2010). Even lignocellulosic biomass can be converted into bioethanol after 

thermo-chemical, chemical and biological pretreatments (Sun and Cheng 2002, Sipos et 

al. 2010) that facilitate the enzymatic accessibility of cellulose and remove hemicellulose 

and lignin (Sun and Cheng 2002). The cellulose is hydrolysed in the presence of enzymes, 

saccharified into simple sugars, and fermented to bioethanol (Olofsson et al. 2008). 

Residues from the fermentation process can be used as feedstock for anaerobic biogas 

production (Barta et al. 2010, Kreuger et al. 2011) or combusted for heat and power 

production (Sassner et al. 2008). 

 

Figure 1. Conversion of biomass into heat, electricity and liquid biofuels (Modified from 

Bassam 2010, Mäkelä and Santanen 2012). 

Transesterification (Figure 1) is a conversion process of triglyceride (i.e. vegetable oil or 

animal fat) with an alcohol in the presence of a catalyst such as NaOH or KOH into 

biodiesel and glycerol (Stephenson et al. 2008). Biogas consists of about 60% methane 

and 40% carbon dioxide, and is produced by biological conversion of biomass into 
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methane through anaerobic digestion (Chynoweth et al. 2001, El Bassam 2010). It can be 

used as a source of power and heat production, as well as can be purified to natural gas 

(El Bassam 2010). Most of the nitrogen and minerals, along with the lignin, remain in the 

digestate that can be used as a fertilizer. 

1.1.3 Bioenergy crops 

Bioenergy crops can be defined as those that are planted and harvested in order to 

produce biomass that can be converted into solid, liquid or gaseous fuels (Tuck et al. 

2006, Montross and Crofcheck 2010). Bioenergy crops are composed of protein, 

carbohydrates, oils, lipids, and fibres depending on the plant species and environmental 

conditions. Some 450 000 plant species have been identified globally as potential 

bioenergy crops, and 3000 of those are currently used as food, feed, fibre and fuel (El 

Bassam 2010). Most of the cultivated bioenergy crops are more suitable for utilization as 

solid fuel than those cultivated for bioethanol and biodiesel fuels (El Bassam 2010). 

Annual bioenergy crops can be fitted into a crop rotation with food and feed species, 

which is also an essential feature for sustainability in bioenergy production (El Bassam 

2010, Zegada-Lizarazu and Monti 2011). In this case, alternative genotypes that require 

lower energy inputs than food genotypes are highly recommended to get high gross 

energy yield at the end (Venturi and Venturi 2003, El Bassam 2010, Zegada-Lizarazu and 

Monti 2011). Perennial bioenergy crops are favored for biofuel production, since they 

require infrequent planting, less weed control, decrease soil erosion, and are more drought 

resistant than annual crops (Montross and Crofcheck 2010).  

Generally, bioenergy crops have numerous benefits in comparison to other renewable 

energy sources (i.e. wind and photovoltaic) and fossil fuel, since their cultivation can 

decrease the dependence on short-term weather variations, support the local economy and 

create new jobs in rural areas (European Commission 2005, Ruane et al. 2010). 

Bioenergy crops are considered CO2 neutral, since C released during the combustion 

process has been absorbed by the plants from the atmosphere during their growing period 

(El Bassam 2010). Bioenergy crops have some beneficial effects on the environment, 

such as reducing GHG emissions and air pollution, and improving land use efficiency and 

water use (Miguez et al 2006, Demirbas and Urkmez 2006, Balat 2008, Demirbas 2009, 

El Bassam 2010). The cultivated area of bioenergy crops has increased 10-fold over the 

last 10 years (Zegada-Lizarazu and Monti 2011), and was about 5.5 M ha in 2008 in the 
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European Union (EUROSTAT 2009). The area has been estimated to increase to 

approximately 17.5 M ha by 2020 in order to supply the energy sector with 10% of its 

needs as biofuel (European Commission 2007, AEBIOM 2010). Changing the use of 

agricultural lands from food cropping to dedicated bioenergy cropping is difficult, 

because of the increasing global population, demand for animal protein and economics. In 

contrast, converting forest and pastureland, or land otherwise unsuitable for food use to 

dedicated bioenergy crops is considered an important impact for the sustainability, 

heating energy value, and renewable energy sources (Montross and Crofcheck 2010). 

Using underutilized agricultural lands (385 to 472 M ha worldwide) is an important 

option to increase biomass production that could be 4.3 t ha
-1

 per year and could account 

for 10% of the primary energy supply in regions such as North America, Europe and Asia 

(Campbell et al. 2008). 

Maize (Zea mays L.) is one of the most important and widely cultivated bioenergy crops 

for grain bioethanol, cellulosic bioethanol, and whole-crop biomethane (Ericsson and 

Nilsson 2006). It has been used as source for food, feed and bioenergy through the last 

decade (Yuan et al. 2008). New varieties of maize can produce over 30 t ha
-1

 biomass for 

biogas production (Kreps 2008). Hemp (Cannabis sativa L.) is an annual plant, grown 

mainly for fibre production (Pahkala et al. 2008). Seeds of hemp are considered an 

important food oil source due to their composition of unsaturated fatty acids (Patel et al. 

1994). Fibre hemp has high land-use efficiency because of its high biomass production, 

and it requires relatively little input of agrochemicals (Montford and Small 1999). Hemp 

can be grown for bioenergy purposes (i.e. solid biofuel, biogas and bioethanol), although 

knowledge of its potential biomass and energy productivity is still limited (Castleman 

2006, Prade et al. 2011). The stem of fibre hemp contains approximately 44% cellulose, 

making it an appreciated crop for bioethanol production (Sipos et al. 2010). Rapeseed 

produces the highest yield among different oil crops in European Union, since it can grow 

better in cool and temperate conditions than other oil crops (Stephenson et al. 2008). The 

bioethanol yield obtained from straw of oilseed rape [Brassica napus L. ssp. oleifera 

(Moench.) Metzg.] was higher than obtained from straw of winter rye (Secale cereale L) 

or faba bean (Vicia faba L.), while biogas yield was almost equivalent (Petersson et al. 

2007). 
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1.1.4 Biomass quality 

The heating value of biomass is an important factor, when plant species are selected for 

bioenergy purposes. The heating value is the amount of heat released from biomass 

during combustion (Montross and Crofcheck 2010), and it is associated with the presence 

of cellulose, hemicellulose and lignin. Hemicellulose has the lowest heating value, while 

lignin provides the highest heating value due to its high degree of oxidation (Jenkins et al. 

2011). The heating value is associated negatively with ash content, and positively with C 

content in biomass. Each 1% increase in ash content leads to a decrease of 0.2 MJ kg
-1

 in 

heating values of biomass (Jenkins 1989), since the ash does not provide substantially to 

the total heat released during combustion process. Each 1% increase in C content leads to 

an increase of 0.4 MJ kg
-1

 in heating values of biomass (Jenkins 1989) due to the 

association between the heating value and the amount of O2 needed to complete 

combustion (Shafizadeh 1981). The quality of biomass ash (i.e. Si and alkali metals 

including Na, Ca, and K) is also more important than its quantity (Grammelis et al. 2011), 

and lower content of ash means high quality of biomass. Cl is vaporized during biomass 

combustion, forming alkali chlorides, HCl and Cl2, that cause corrosion in combustion 

tubes and facilitate the transport of volatile heavy metals from the fuel ash to aerosol 

particles (Grammelis et al. 2011). During combustion, Cl increases the vaporization of the 

alkali metals more than the alkali metal itself. The rest of alkali metals in fuel ash act with 

Si and S to form silicates and sulphates (Grammelis et al. 2011). 

1.1.5 Recycling biomass ashes 

After thermal combustion has converted plant biomass into heat or electricity, the ash 

contains most of macronutrients (i.e. Ca, K, Mg, P, S) and trace elements (i.e. Cu, Cr, Ni, 

Mo, Zn), with the composition depending on plant species, plant part used for 

combustion, and growing environment (Demeyer et al. 2001, Knapp and Insam 2011, 

Pels and Sarabèr 2011). These nutrients can be recycled either alone or in combination 

with synthetic fertilizers, but this depends on the composition of the ash (Pels and Sarabèr 

2011). Using the ash in forestry is considered the most suitable route, because the P is in 

weakly soluble form and needs a long time to become available to plants, particularly in 

acidic soil (Knapp and Insam 2011, Pels and Sarabèr 2011). Biomass ashes generally 

contain little or no N or C, because their oxides are gaseous (Steenari et al. 1999). 

Biomass ash should not be applied to crop or forest land if its content of plant nutrients is 
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outside established limits (Table 1). Low content of macronutrients generally indicates 

incomplete combustion, so the ash can be used again for fuel production using 

gasification (Pels and Sarabèr 2011). Other uses for ash include as a raw material for 

synthetic fertilizer production, or as filler in cement and concrete for building (Pels and 

Sarabèr 2011). 

Table 1. Recommended maximum contents of trace elements and minimum contents of 

macronutrients when ash is to be used as a forest fertilizer (data from Samuelsson 2002) 

Trace elements  Macronutrients 

Element Maximum content 

(mg kg
-1

 ash) 

 Element Minimum content 

(g kg
-1

 ash) 

As 30  Ca 125 

Cd 30  K 30 

Ni 70  Mg 20 

Cr 100  P 10 

Pb 300    

Cu 400    

B 500    

Zn 7000    

1.2.  Plant nutrition 

1.2.1 Macronutrients and micronutrients 

There are 17 essential elements for plant growth and reproduction, which are divided into 

macro- and micro-nutrients based on the quantity needed by the plant. Macronutrients are 

required in the range of 1000 mg kg
-1

 DM or more, while micronutrients are required in 

the range of 100 mg kg
-1

 DM or less (Oertli 1979; Table 2). Carbon (C), hydrogen (H), 

oxygen (O), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) 

and sulfur (S) are the macronutrients, while boron (B), chlorine (Cl), copper (Cu), iron 

(Fe), manganese (Mn), molybdenum (Mo), nickel (Ni) and zinc (Zn) are the 

micronutrients (Fageria et al. 2011). Roughly 95% of the plant biomass is C, H, and O, 

with the remaining 5% being the other elements (Fageria and Moreira 2011). Plants 

obtain C, H and O from atmospheric CO2 and from soil water, while the other elements 

are absorbed from the soil solution (Fageria and Moreira 2011). Nutrients are needed for 

metabolism and structure of plants, and their deficiency or excess decreases and 

sometimes inhibits plant growth (Fageria 2009, Fageria et al. 2011, DalCorso 2012), so 

when the supply of essential plant nutrients is inadequate, it should be supplemented. 

Sometimes, the differences between the content of macronutrients (i.e. S or Mg) and 
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micronutrients (i.e. Fe or Mn) are smaller than those shown in Table 2 (Mengel and 

Kirkby 2001). 

Table 2. The adequate tissue content of macro- and micronutrients required by higher 

plants (Source: Epstein 1972, 1999) 

Macronutrients (g kg
-1

 DM)  Micronutrients (mg kg
-1

 DM) 

H 60  Cl 100 

C 450  Fe 100 

O 450  B 20 

N 15  Mn 50 

P 2  Na 10 

K 10  Zn 20 

Ca 5  Cu 6 

Mg 2  Ni 0.1 

S 1  Mo 0.1 

Si 1    

N is considered the most important plant nutrient (Havlin et al. 2005, Fageria 2009, 

Fageria and Moreira 2011). It is an important component of proteins, nucleic acids, 

secondary compounds, chlorophyll and cell walls (Mengel and Kirkby 2001, Fageria 

2009). Usually, proteins contain about 85% of the total N in plants, with most of the 

remaining 15% being in nucleic acids (Li et al. 2013). Roots absorb most of a plant's N 

from the soil, and leaves and stems can take up small quantities of reactive N from the 

atmosphere (Fageria and Moreira 2011, Li et al. 2013). N content in plants varies from 1 

to 6%. Generally, roots absorb more NO3
-
 than NH4

+
, due to its high availability in soil 

solution and low cellular toxicity (Mengel and Kirkby 2001, Havlin et al. 2005). The 

plant metabolizes NO3
-
 to NH4

+
 and then to amino acids, and finally into proteins and 

nucleic acids (Mengel and Kirkby 2001, Havlin et al. 2005). The reduction of nitrate 

requires reducing power from NADPH (in leaves containing chloroplasts) or NADH (in 

roots), so it represents an energy cost to the plant (Mengel and Kirkby 2001). The 

absorption of NH4
+
 increases the absorption of anions (i.e. H2PO4

-
, SO4

-2
 and Cl

-
) and 

decreases the absorption of cations (i.e. Mg
+2

, Ca
+2

, and K
+
) from the soil solution, while 

absorption of NO3
-
 has the opposite effect and increases rhizosphere pH (Havlin et al. 

2005). Plants can take up very small quantities of organic N in the form of amino acids 

that pass through the cell wall to the plasma membrane via the apoplast and cytoplast 

systems (Li et al. 2013). Also, organic N can be absorbed through the plasma membrane 

in an active (sugar/proton cotransport) or even passive process (Li et al. 2013). Within the 

plant, amino acids can be quickly assimilated and transformed into other amino acids by 
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transamination (Li et al. 2013). Usually, the period of vegetative growth is reduced and 

plants mature earlier when suffering from N deficiency (Mengel and Kirkby 2001). 

P is an essential macronutrient present in molecules such as phospholipids, sugar 

phosphates and nucleic acids (Starnes et al. 2008). The P content in plants varies from 0.1 

to 0.5%. P plays an important role in the activity of enzymes involved in plant growth, 

reduces respiration, preventing energy losses, increases translocation of sugars and starch 

to storage organs, increases protein content in plants, maintains turgor and reduces water 

loss (Fageria and Gheyi 1999, Havlin et al. 2005). Plants absorb inorganic P from soil 

mainly in the forms of dihydrogen phosphate (H2PO4
-
) or monohydrogen phosphate 

(HPO4
-2

) (Marschner 1995, Havlin et al. 2005), taking up more H2PO4
-
 than HPO4

-2
 in 

acidic soil and vice versa in alkaline soil (Marschner 1995, Havlin et al. 2005, Smith and 

Read 2008). Plants can also absorb some organic P compounds such as small nucleic acid 

fragments and phytin that are produced during decomposition of organic matter (Havlin et 

al. 2005). Around 50-80% of the total P in soil is in organic forms (Turner et al. 2002) 

that are usually unavailable to plants until mineralized. Therefore, P deficiency often 

limits plant growth in natural ecosystems (Starnes et al. 2008). This could be attributed to 

the rapid immobilization of P in organic or insoluble forms, even when it has been added 

to the soil in an inorganic form (Wetterauer and Killon 1996). Soil pH is the primary 

factor affecting the availability of P, and high concentrations of soluble Fe, Al and Ca in 

the soil solution cause the precipitation of P, making it unavailable to plants. In soil with 

pH lower than 5, inorganic P precipitates as Fe/Al-P that can be adsorbed onto clay 

minerals and Fe/Al oxide (Havlin et al. 2005). However, inorganic P precipitates as Ca-P 

and Mg-P or can be adsorbed to surfaces of clay minerals and CaCO3 when soil pH is 

greater than or equal to 7.8 (Havlin et al. 2005). 

K is, after N, the second largest absorbed nutrient by plants. The total content of K in 

soils ranges from 5 to 25 g kg
-1

 DM, and mineral K accounts for 90 to 98% of total K 

(Havlin et al. 2005). However, the readily available part (i.e. exchangeable and solution) 

of K in soil ranges from 0.1 to 2% of the total K due to the adsorption of K
+
 by 2:1 layer 

silicate minerals (Mengel and Kirkby 2001, Havlin et al. 2005, Fageria 2008). K is 

absorbed by plant roots in the form of K
+
, and its content in plant biomass ranges from 5 

to 60 g kg
-1

 DM (Havlin et al. 2005). K is involved in water relations and osmotic 

pressure of plant cells due to its high mobility in the plant. Furthermore, it is important to 
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photosynthesis because it is involved in the production and activity of RuBP carboxylase 

enzyme, ATP synthesis and CO2 absorption via leaf stomata (Havlin et al. 2005). CO2 is 

assimilated within leaves into sugars during photosynthesis, then sugars are transported to 

seeds, roots or tubers using ATP energy which requires K in its synthesis (Havlin et al. 

2005). Excess supply of K can affect the crop yield and its quality by reducing the uptake 

of other nutrients such as Mg
2+

, Ca
2+

 and Na
+
, which is known as ion antagonism (Barker 

and Pilbeam 2006). 

The term "heavy metal" refers to metallic elements with an atomic number of 24 or 

higher. Metalloids are elements with transitional properties between metals and non-

metals on the diagonal of the periodic table. The essential heavy metals and metalloids 

are the micronutrients Ni, Cu, Mn, Zn and Se that participate in redox reactions, electron 

transfer and play an integral part of several enzymes (Gerendas et al. 1999, Taiz and 

Zeiger 2006, Nagajyoti et al. 2010). The non-essential or toxic heavy metals and 

metalloids are arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg) and 

silver (Ag) (DalCorso 2012). The plant has no specific transporters for these elements 

(Manara 2012), but they may be co-transported across the plasma membrane in the roots. 

The accumulation of heavy metals depends not only on their availability in the soil 

solution, but also on the absorption efficiency of the root system (Liu et al. 2000), which 

is affected by the presence of mycorrhizal fungi that can affect the availability of 

sparingly soluble ions with narrow diffusion zones (Lambert et al. 1979, Liu et al. 2000). 

Mycorrhizal fungi can solubilize different minerals, including heavy metal-containing 

rock phosphates, by producing organic acids and releasing protons (Leyval et al. 1997). 

This leads to a potential increase in the availability of heavy metals and metalloids in the 

rhizosphere. Once these ions have entered the hyphae, they can be sequestered there or 

transferred to the crop roots and then transported to the shoots (Leyval et al. 1997). All 

micronutrient heavy metals can be toxic to the plant when present at too high a 

concentration. 

1.2.2 Plant nutrient sources 

1.2.2.1  Synthetic fertilizers and fossil energy 

Synthetic fertilizers contain the most important nutrients, particularly N, P, and K that are 

needed in high amounts and rapidly absorbed by plants (Mengel and Kirkby 2001). The 
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global production of synthetic fertilizers has steadily increased from 33 Tg in 1961 to 180 

Tg in 2007 (IFA 2010, FAOSTAT 2012). Between 2002 and 2009, N accounted for 58%, 

P 24% and K 18% of the total production of fertilizers (Figure 2) (FAOSTAT 2012). 

China is the largest producer of synthetic fertilizers with 33% of the global production, 

followed by USA (10%), India (9%) and Russia (9%) (FAOSTAT 2012). About 30 Tg of 

fertilizers are transported yearly across the globe (IFA 2010). Fertilization of bioenergy 

crops will account for 1 to 8% of global synthetic fertilizer use in 2015, and this 

consumption is expected to double by 2030 (Smeets and Faaji 2005). 

Higher plants cannot directly uptake and metabolize atmospheric N2, and it has to be 

converted into available forms through symbiotic or nonsymbiotic soil microorganisms or 

manufacture of synthetic N fertilizers (Havlin et al. 2005). N fertilizers are mostly 

manufactured in three forms, namely nitrate, urea and ammonium, with some other 

sources such as isobutylidene urea and urea formaldehyde which are slow-release N 

sources (Mengel and Kirkby 2001). World production of synthetic N fertilizers increased 

from 11.6 Tg in 1961 to 106 Tg N in 2009 (IFA 2010, FAOSTAT 2012), mostly due to 

the need to increase crop yields (Smil 2011). The amount of synthetic N fertilizers 

applied to agricultural crops has increased over 7 fold, while the crop yield generally has 

increased only by 2.4 times (Tilman et al. 2002). 

P fertilizers are mainly made in the form of orthophosphate, but there are some products 

in which P is present as polyphosphates (Mengel and Kirkby 2001). The total production 

of P fertilizer increased from 10 Tg in 1961 to 38 Tg in 2009 (Figure 2) (IFA 2010). Asia 

was the largest producer of P fertilizer (21 Tg) during 2009, followed by Northern 

America (9 Tg) and Europe (5 Tg) (FAOSTAT 2012). Around 82% of total P2O5 

produced is used as fertilizer and 18% for industrial purposes (Heffer and Prud’homme 

2010). The production of K fertilizers has been relatively stable since 1977 (Figure 2). K 

fertilizers are mainly presented in the form of chloride, sulphate or magnesium sulphate 

(Mengel and Kirkby 2001, Havlin et al. 2005). 

About 5% of the total commercial energy in the world is used in agriculture, and about 

40% of that is used to produce nitrogen fertilizers (Isherwood 2000). Production of 

synthetic N fertilizer consumes higher energy than synthetic P and K fertilizers (Table 3) 

due to the large input required to reduce N2 to ammonia in the Haber-Bosch process 

(Mudahar and Hignett 1985, Helsel 1992). Natural gas accounts for 80% of the fuel used 
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in the ammonia production (Mudahar and Hignett 1985), and 1.6 kg of CO2 are released 

during the production of each kg of synthetic N fertilizer (Nemecek and Kägi 2007). 

Therefore, energy input is a main indicator of the environmental impact, not only for the 

production of conventional crops but also for bioenergy crops (Lewandowski and 

Schmidt 2006). The energy needed for single superphosphate production is 16 MJ kg
-1

 

P2O5 and triple superphosphate 14 MJ kg
-1

 P2O5, with CO2 being released at 1 kg kg
-1

 of 

P2O5 (Elsayed and Mortimer 2001). Producing K fertilizer requires the lowest energy 

input of the three main fertilizer components (Table 3). 

 

Figure 2. World production of N, P and K fertilizers during 1961-2009 (IFA 2010, 

FAOSTAT 2012). 

Table 3. Energy inputs (MJ kg
-1

) in producing synthetic fertilizers: N, P2O5 and K2O 

(Source: Helsel 1992
a
, Mikkola and Ahokas 2009

b
) 

Nutrient Production Packaging Transportation Application Total 

N 49.2
b
 2.6

a
 4.5

a
 1.6

a
 78.2

a
 

P2O5 7.7
a
 2.6

a
 5.7

a
 1.5

a
 17.5

a
 

K2O 6.4
a
 1.8

a
 4.6

a
 1.0

a
 13.8

a
 

1.2.2.2 Organic fertilizers 

There are many other sources for plant nutrients besides synthetic fertilizers, including 

sludge (Epstein 2003, Bozkurt et al. 2006, Boeira and Maximiliano 2009), manure 



21 
 

(Hooda et al. 2000, Epstein 2003) and meat and bone meal (Jeng et al. 2006). Animal 

manure, as used in fertilization, includes decomposed straw as well as faeces and urine 

(Mengel and Kirkby 2001). It contains 1-6% N, 0.2-2.9% P and 0.3-2.0% K, along with 

other nutrients. About 25 to 50% of the total N in manure is NH4
+
, and the remainder is in 

organic forms (Havlin et al. 2005). Meat and bone meal contain also valuable nutrients 

such as N (~8%), P (~5%), Ca (~10%) and K (~0.4%) (Jeng et al. 2006). 

Sewage sludge is a solid or semi-solid product that originates from domestic or industrial 

wastewater treatment plants through aerobic or anaerobic digestion process (Gardiner et 

al. 1995, Epstein 2003). The disposal of sewage sludge in a safe way is considered a 

major environmental concern all over the world. The alternatives for the disposal of 

sludge are land application, incineration and landfill (Epstein 2003). Land application is 

usually considered as the most economical and sustainable option to cope with sewage 

sludge, as it recycles the nutrients (Shammas and Wang 2007). Anaerobic digestion of 

wastewater sludge results in the production of methane, a valuable biofuel (Berktay and 

Nas 2008). Digested sludge can be used as nutrient source on cropland if its composition 

is appropriate. Thus, the utilization of sewage sludge recycles not only nutrients but also 

provides some energy (Gilbert et al. 2011). About 12 Tg (DM) of sludge is produced in 

the European Union annually, of which about 45% is applied to cropland (EUROSTAT 

2010). Half or more of the sludge produced in Cyprus, the Czech Republic, Denmark, 

France, Germany, Ireland, Luxembourg, Spain and the UK is applied to cropland, while 

less than 5% of the sludge produced in Finland and Romania is used in this way, and none 

at all in Greece and Malta (Table 4). The remaining part of sewage sludge is used in 

landfill (18%), combustion (23%), composting (7%) and other uses (7%) (Alabaster and 

LeBlanc 2008). 

Sludge contains macronutrients such as N, P, K, Ca and Mg, and micronutrients such as 

B, Cu, Fe, Ni and Zn (Epstein 2003, Bozkurt et al. 2006, Kidd et al. 2007, Yan et al. 

2009, Du et al. 2012, Gu et al. 2013). Sewage sludge contains up to 40 g kg
-1

 DM of 

inorganic and organic N, and up to 28 g kg
-1

 DM of inorganic and organic P depending on 

the product quality (U.S. EPA 1994, Yan et al. 2009). The content of K in sewage sludge 

is much lower (less than 5 g kg
-1

 DM) than N and P due to the solubility of K compounds 

in the wastewater that does not settle in sludge (Epstein 2003, Yan et al. 2009). 
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Table 4. Annual sewage sludge production in European Union (EUROSTAT 2010) 

Member state Total amount 

(t DM per year) 

Agriculture and compost use 

(%) 

Austria 255 000 44.3 

Belgium 112 000 18.7 

Bulgaria 40 000 15.0 

Cyprus 9 000 55.5 

Czech Republic 172 000 78.5 

Denmark 200 000 50.0 

Estonia 31 000 16.1 

Finland 160 000 2.5 

France 1060 000 59.6 

Germany 2049 000 52.6 

Greece 126 000 0.0 

Hungary 286 000 45.8 

Ireland 88 000 71.6 

Italy 1056 000 44.1 

Latvia 23 000 43.5 

Lithuania 76 000 42.1 

Luxembourg 12 000 66.6 

Malta 400 000 0.0 

Netherlands 541 000 15.3 

Poland 1088 000 15.0 

Portugal 237 000 50.0 

Romania 758 000 2.6 

Slovakia 332 000 11.7 

Slovenia 21 000 19.0 

Spain 1065 000 64.5 

Sweden 210 000 49.5 

UK 1771 000 69.7 

Supplemental synthetic fertilizer can be added with sewage sludge on cropland to balance 

the nutrition, or more sewage sludge can be added for further nutrients as long as the 

heavy metal content does not exceeded the limit values (Yan et al. 2009). It is generally 

recommended that sewage sludge should be applied based on crop N requirements in 

order to avoid ammonia volatilization and denitrification, excessive soil acidification 

resulting from nitrification of ammonia, inhibition of microbial activity, and increased 

nitrate leaching from soils (U.S. EPA 1995, Smith and Doran 1996, Wong et al. 1998, 

Henry et al. 1999, Yan et al. 2009). Sewage sludge has a high organic matter content 

which serves as a soil conditioner, improves soil physical conditions by increasing water-
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holding capacity and water infiltration, and stimulates soil microbial activity (Jarausch-

Wehrheim et al. 1999, Epstein 2003, Samaras et al. 2008, Yan et al. 2009). 

Mineralization of organic N sources is considered the most important process that can 

influence the supply of mineral-N for plant uptake and leaching (Havlin et al. 2005, Tian 

et al. 2008, Boeira and Maximiliano 2009). It is the combination of ammonification and 

nitrification processes, whereby the organic-N is converted to NH4
+
 and then to NO3

-
. 

Mineralization is the process by which soil organic N is converted to inorganic N (i.e. 

NH4
+
) through aminization and ammonification (Figure 3) with the help of heterotrophic 

bacteria (Havlin et al. 2005, Fageria 2009). The NH4
+
 form is available to plants, and is 

generally not leachable, since the positively charged NH4
+ 

cation is held on the surface of 

negatively charged soil particles (Epstein 2003, Havlin et al. 2005). Nevertheless, NH4
+
 

can be leached in sandy soil where the cation exchange capacity is low, so it can cause 

contamination of surface water by runoff (Epstein 2003). NH4
+ 

can be converted into 

NO3
- 
through nitrification, in two steps (Figure 3). It is oxidized to NO2 in the presence of 

Nitrosomonas spp. bacteria, and then NO2 is oxidized in presence of Nitrobacter spp. 

bacteria to NO3 (Epstein 2003, Havlin et al. 2005). NO3
-
 is easily taken up by plants, but 

it can be converted by denitrifying bacteria into N2, N2O or NO that escape to the 

atmosphere, particularly in anaerobic conditions (Fageria 2009). These processes recycle 

substantial quantities of organic-N back to the soil and thus are considered as important in 

the N cycle (Figure 3). Worldwide, almost 40% of N2O emissions result from agriculture, 

transportation and industry activities (USEPA 2010). Usually, N2O is emitted when N 

fertilizers are applied into soil (USEPA 2010, Linquist et al. 2012), and it can also be 

emitted through the breakdown of nitrogenous compounds in livestock manure and other 

organic materials (USEPA 2010). NO3
-
 can leach and percolate into groundwater, and 

hence can act as a pollutant, because it is negatively charged and not adsorbed onto soil 

particles (Mengel and Kirkby 2001, Epstein 2003). Organic N and NO3
-
 can be 

immobilized and used by soil organisms that decompose the organic matter when 

biosolids are incorporated into the soil (Figure 3) (Fageria 2009, Yan et al. 2009). This 

can decrease leaching of NO3
-
 during those times in the growing season when plant 

uptake of N is low (Epstein 2003, Fageria 2009). Volatilization of NH3 can occur during 

the first few days after sludge is applied to the surface of cropland (Epstein 2003, Yan et 

al. 2009). Thus, sludge should be incorporated into soil promptly after it is applied (Yan 

et al. 2009). 
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Figure 3. A simplified version of direct and indirect pathways of N uptake by plants and 

the nitrogen cycle in soil – plant system. Modified from Fageria (2009). Plants can 

directly uptake organic N in the form of NO3
-
 and NH4

+
, or indirectly via extraradical 

hyphae of AMF which take up and assimilate NH4
+
, NO3

-
 and amino acids. The amino 

acids are converted into NH4
+
which is then translocated to the host plants. The third 

pathway is organic N which is converted into NH4
+
-N via ammonification and then NH4

+
-

N is converted into NO3
-
 via nitrification. 

A = Nitrification; B = Denitrification 

Sludge generally contains heavy metals and metalloids (Pepper et al. 2006, Singh and 

Agrawal 2008, Yan et al. 2009), some of which, such as Cu, Mo, Ni and Zn, are 

micronutrients, but others, such as As, Cd, Cr and Pb, are toxic (Epstein 2003). The 

potential risk of those elements for plants, animals and human is low due to their low 

content and bioavailability in sewage sludge (Epstein 2003). The limit values of heavy 

metals and metalloids in soil to which sludge is applied and limit values for heavy metals 

in sludge are presented in Table 5. Heavy metals are considered non-biodegradable, but 

can be taken up by plants and stored in their different tissues, which can then contaminate 

the food chain (Wagner 1993, McLaughlin et al. 1999). Soil factors that affect the uptake 
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of trace element include pH, organic matter content, cation exchange capacity, elemental 

interactions, water content, temperature and aeration (Epstein 2003). Firstly, soil pH is 

considered the most important factor affecting the solubility of trace elements, as the 

solubility of all essential trace elements except Mo and Se increases at low pH (Epstein 

2003), so their potential uptake by plants increases. Secondly, organic matter can control 

the availability of some trace elements, such as Cd, Cu, Ni and Zn, because it has higher 

cation exchange capacity than the mineral fraction of soils. Furthermore, organic 

compounds in soil can chelate trace elements, reducing their availability (Epstein 2003). 

Thirdly, soil cation exchange capacity can bind all the trace elements except those that 

occur as anions in the soil solution. The binding of trace elements in clay soil is higher 

than that in sandy soils due to the high cation exchange capacity of clay soil (Epstein 

2003). Fourthly, the interactions between certain elements and trace elements can reduce 

their availability in soil. For instance, phosphate interacts with trace elements to form 

soluble or insoluble compounds depending on soil pH (Epstein and Chaney 1978). 

Finally, soil water can affect the availability of trace elements in soil solution, as in dry 

soil they precipitate or adsorb onto soil colloids (Epstein 2003). 

 

Table 5. The European limits for heavy metals in sludge and in soil to which sludge is 

applied (European Commission 2001, 2002, Alabaster and LeBlanc 2008) 

Source material Cd Ni Cu Cr Pb Zn 

Soil treated with sludge (mg kg
-1

 DM) 3 75 140 150 300 300 

Current rules       

Heavy metals in sludge (mg kg
-1

 DM) 40 400 1750 1000 1200 4000 

Maximum load of heavy metals to 

agricultural soil (g ha
-1

 year
-1

) 

150 3000 12000 3000 1500 30000 

Proposed 2015       

Heavy metals in sludge (mg kg
-1

 DM) 5 200 800 800 1500 2000 

Maximum load of heavy metals to 

agricultural soil (g ha
-1

 year
-1

) 

15 600 2400 2400 1500 6000 

Proposed 2025       

Heavy metals in sludge (mg kg
-1

 DM) 2 100 600 600 200 1500 

Maximum load of heavy metals to 

agricultural soil (g ha
-1

 year
-1

) 

6 300 1800 1800 600 4500 

Sewage sludge often also contains pathogens (i.e. bacteria, viruses, protozoa, and eggs of 

parasitic worms) (Epstein 2003, Yan et al. 2009) that pose a risk for human health if they 

are transferred to food crops grown on soil treated with sewage sludge (Yan et al. 2009). 
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The typical values of different pathogens in sewage sludge are shown in Table 6. 

Furthermore, sludge can contain a range of toxic organic compounds, including 

chlorinated compounds, alkylphenol ethoxylates, volatile compounds, dioxins, phthalates, 

and polycyclic aromatic hydrocarbons (Epstein 2003, Yan et al. 2009). The potential 

effect of toxic organic compounds on the environment, humans and animals occurs 

through the food chain when sewage sludge is applied on cropland (Epstein 2003). 

Soluble organic chemicals can be taken up from soil through roots and translocated to 

leaves via xylem, and other organic compounds can be taken up by leaves from the 

atmosphere and be translocated via the phloem to the other plant parts. Both of these 

pathways depend on factors such as lipophilicity and water solubility, ambient 

temperature, content of the organic compound in the soil, and plant species (Simonich 

and Hites 1995). 

Most products of sewage sludge contain low levels of organic compounds which do not 

cause a significant risk for humans or the environment, depending on the efficiency of the 

treatment used in the wastewater plant (Yan et al. 2009). Further treatments of the sewage 

sludge can significantly decrease the content of undesirable organic compounds. For 

example, chlorinated compounds can be biodegraded in anaerobic digestion 

(Ballapragada et al. 1998). Other organic compounds can be biodegraded during 

composting, and can be volatilized during heating and drying (Epstein 2003, Yan et al. 

2009). Nevertheless, these additional processes and treatments reduce the availability of 

macronutrients, in particular N, by NH3 volatilization (Cogger et al. 1999, Richards et al. 

2000, Yan et al. 2009). Specific requirements for organic compounds in sewage sludge 

are not included in Directive 86/278/EEC, because their concentration in the sludge is 

very low, but several national regulations include limitations concerning organic 

compounds for sludge applied on cropland in order to reduce potential health risks (Table 

7). 
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Table 6. Maximum values of different pathogens in sewage sludge (European 

Commission 2001, 2002, Alabaster and LeBlanc 2008) 

 Salmonella Other pathogens  

Finland Was not detected in 25 g Escherichia coli: <1000 cfu  

Poland Sludge cannot be applied on 

cropland if it contains salmonella 

- 

Italy 1000 MPN per g DM - 

France 8 MPN per 10 g DM Enterovirus: 3 MPCN per 10 g DM 

Helminths eggs: 3 per 10 g DM 

Luxembourg - Enterobacteria: 100 per g, and no 

eggs of worm expected to be 

contagious  

Denmark - Faecal streptococci:< 100 per g 

MPN = most probable number 

MPCN = most probable cytophatic number 

Table 7. Maximum values of different organic compounds in sewage sludge (European 

Commission 2002, Langenkamp et al. 2001, Alabaster and LeBlanc 2008) 

 LAS AOX DEHP NP/NPE PAH PCB PCDD/F 

mg kg
-1

 DM ng Teq kg
-1

 DM 

EC 2000 2600 500 100 50 6
a
 0.8

b
 100 

Finland - - 23-270 - 0.01-13 ˂0.2 ˂0.02 

Sweden - - - 50 3
a
 0.4

b
 - 

Denmark 1300 - 50 10 - 3
b
 - 

France - - - - - 0.8
b
 - 

LAS = linear alkylbenzene sulphonates 

AOX = adsorbable organohalogen compounds 

DEHP = di(2-ethylhexyl)phthalate 

NP/NPE = nonylphenole and nonylphenole ethoxylates with 1 or 2 ethoxy groups 

PAH = polynuclear aromatic hydrocarbons 

PCB = polychlorinated biphenyls 

PCDD/F = polychlorinated dibenzo-p-dioxins and -furans 

a = sum of 9 congeners: acenapthene, fluorene, phenanthrene, fluoranthene, pyrene, 

benzo(b+j+k)fluoranthene, benzo(a)pyrene, benzo(ghi)perylene, indeno(1,2,3-c,d)pyrene  

b = sum of 7 congeners: PCB 28, 52, 101, 118, 138, 153, 180  

EC = European Commission 

Ng = nanogram 

Teq = toxicity equivalent 
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1.3. Mycorrhizal fungi and their role in plant nutrition 

There are six types of mycorrhiza, namely arbuscular, arbutoid, ecto-, orchid, ericoid and 

monoptropoid, which are classified by their morphological properties (Garg et al. 2006, 

Wang and Qiu 2006). Worldwide, the majority of terrestrial plant species (250 000) have 

symbiosis with mycorrhizal fungi (Harley and Harley 1987, Peterson et al. 2004, Wang 

and Qiu 2006, Smith and Read 2008, Helgason and Fitter 2009). Normally, species in the 

Brassicaceae and Chenopodiaceae families do not have a symbiotic relationship with 

mycorrhizal fungi (Newman and Reddell 1987, Peterson et al. 2004). The arbuscular 

mycorrhizal fungus (AMF) is considered the most important type among the microbial 

populations that can influence plant growth and soil fertility (Johansson et al. 2004, 

Gosling et al. 2006, Smith et al. 2011). Furthermore, AMF can increase the host plant 

resistance to drought or to pathogens (Smith and Read 2008). 

Root mycorrhizal colonization has several advantages, including plant uptake of the most 

important macronutrients such as N, P, K and Mg (Hodge et al. 2001, Leake et al. 2004, 

Smith and Read 2008, Smith et al. 2011), and of some micronutrients such as Cu and Zn 

(Gildon and Tinker 1983, Faber et al. 1990, Kothari et al. 1991, Li et al. 1991, Azaizeh et 

al. 1995, Taiz and Zeiger 2006). In return, the plant provides the required organic carbon 

(from 4 to 20%) for the formation, maintenance and function of the AMF (Graham 2000, 

Smith and Read 2008, Smith and Smith 2011). The symbiosis process between the AMF 

and its host starts with the colonization of roots by the hyphae and asexual spores 

(Requena et al. 1996, Smith et al. 2011). The hyphae start to penetrate the root cortical 

cell walls and form morphologically different structures, for instance branched structures 

called arbuscules and oval structures called vesicles that interface with their host 

cytoplasm (Figure 4) (Lambert et al. 1979, Smith and Read 2008 Smith et al. 2010, Smith 

and Smith 2011). Spores of AMF grow in the soil and germinate spontaneously and freely 

of plant-derived signals. Following root colonization, the mycelium grows out of the root 

exploring the soil, accumulating nutrients and water, and translocating them to the roots, 

and it can colonize other susceptible roots (Peterson et al. 2004, Smith and Read 2008, 

Smith et al. 2010, Smith and Smith 2011). The arbuscules are considered the site of 

nutrient transfer between the mycorrhizal fungus and its host plant (Taiz and Zeiger 

2006). Vesicles work as storage organs for lipids, which indicates that they can act as 

propagules for AMF (Peterson et al. 2004, Smith and Read 2008). 
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Organic sources of nutrients and slow-release mineral fertilizers can stimulate AMF 

(Harinikumar and Bagyaraj 1989, Baby and Manibhushanrao 1996, Dann et al. 1996, 

Kabir et al. 1998, Joner 2000, Alloush and Clark, 2001, Smith et al. 2011), whereas most 

synthetic fertilizers are known to suppress mycorrhizal colonization (Kothari et al. 1991, 

Liu et al. 2000). AMF are particularly important in plant P nutrition, increasing total plant 

uptake of this element, and sometimes also affect P use efficiency (Koide et al. 2000), 

often resulting in increased growth and crop yield (Osonubi et al. 1991, Vosatka 1995, 

Ibibijen et al. 1996, Koide et al. 2000, Smith et al. 2011). AMF grows extensive below-

ground extraradical hyphae fundamental for the uptake of inorganic phosphate, and other 

immobile nutrients from the soil and transporting them to the host plant (Giovannetti et 

al. 2006, Smith and Read 2008). Thus, the main function of AMF is to supply colonized 

plant roots with P (Bucher 2007). The P depletion zone is closely linked to root hair 

length in non-mycorrhizal plant (Marschner and Dell 1994), but it exceeds the root hair 

zone in mycorrhizal plants, which shows that unavailable P to the plant is associated with 

the fungal hyphae (Garg and Chandel 2010). The metabolic routes of symbiotic P 

acquisition begin with the absorption of inorganic P via fungal high-affinity transporters 

(Harrison and van Buuren 1995, Maldonado-Mendoza et al. 2001). Inside the AMF, 

inorganic phosphate is condensed in polyphosphate (Solaiman et al. 1999, Ohtomo and 

Saito 2005). The polyphosphate
 
becomes depolymerized into inorganic P before it is 

released into the periarbuscular interface (Solaiman et al. 1999, Ohtomo and Saito 2005). 

Then, P is transferred from the interface by phosphate
 
transporters to the cells of plant 

roots (Solaiman et al. 1999). 

As shown in Figure 3, AMF can take up the N from organic sources, convert it into 

inorganic N, and transfer it to the host plant (Hodge et al. 2001). The hyphae of AMF are 

also able to take up NH4
+
 and NO3

-
 (Johansen et al. 1996, Smith and Read 2008) and 

amino acids (Hawkins et al. 2000, Hodge et al. 2001) from their surroundings and 

translocate N in inorganic form to their host plants (Hawkins et al. 2000, Azcón et al. 

2001, Vazquez et al. 2001). Assimilation of NH4
+
 is a key aspect of N absorption in AMF 

(Hawkins et al. 2000, Toussaint et al. 2004). NH4
+
 is taken up by the extraradical 

mycelium, assimilated into amino acids, translocated from extra- to intraradical fungal 

structures as arginine and then transported as NH4
+
 to the host plant (Figure 3) 

(Govindarajulu et al. 2005, Jin et al. 2005, Chalot et al. 2006). 
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Figure 4. Direct and mycorrhizal pathways of plant P uptake (Modified from Smith et al. 

2011). In the direct pathway, P is taken up from the rhizosphere by plant P transporters in 

the epidermis and root hairs (green circles) from the root zone. In the mycorrhizal 

pathway, P is taken up by fungal P transporters (blue circles, behind the root apex) into 

hyphae and translocated to arbuscules and hyphal coils in root cortical cells. Plant P 

transporters (black circle) translocate P from the interfacial apoplast to plant cortical cells. 
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1.4.Objectives of this study 

The purpose of this study was to investigate the suitability of sewage sludge and digested 

sludge in comparison to synthetic fertilizer on growth and feedstock quality of maize, 

hemp, oilseed rape and Italian ryegrass. Further attention was paid to the role of 

mycorrhizae in the improvement of N and P uptake, and to the potential for uptake of 

heavy metals and metalloids in the feedstock as either undesirable contaminants or as 

evidence of phytoremediation of the soil. 

The research questions were: 

1.  Can sewage sludge or digested sludge be used as a compatible fertilizer for 

bioenergy crops without synthetic fertilization? 

2. Would the bioenergy crops contain heavy metals and metalloids resulting from 

sewage sludge or digested sludge application? Do these elements impede the 

growth, and which of them are translocated to the above-ground parts of plants? 

3. Does the use of sewage sludge and digested sludge have significant effects on 

feedstock quality? 

The main working hypotheses tested were: 

1. Sludge application does not have adverse effect on physiological and growth 

parameters, and increases accumulation of biomass, heavy metals and metalloids 

in plant biomass. 

2. Sludge improves growth and increases N and P plant uptake through N-

mineralization over time and with mycorrhizal colonization. Also, it increases the 

density of fungal spores in sand and soil. 

3. Sludge increases leaf N content, biomass accumulation and gross energy yield as 

well as improves feedstock quality. In addition, it saves energy used in synthetic 

fertilizer manufacturing. 
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2. MATERIALS AND METHODS 

The experimental part of the work is described here as a general outline. It is presented in 

more details in the original publications (I-III). 

2.1  Plant material and experimental design (I-III) 

Experiments were conducted at glasshouse (I-II) and field (III) at Viikki Experimental 

Farm (60° 13' 38'' N, 25° 10' 00'' E, 3 m amsl), University of Helsinki, Finland, during 

2008-2012. Three plant species were used in all experiments (I-III): maize (cv. 

Ronaldino), fibre hemp (cv. Uso 31) and oilseed rape (cv. Wildcat). In addition, Italian 

ryegrass (Lolium multiflorum L. ssp. italicum, cv. Barmultra) was used in publication II. 

All treatments for each crop species were standardized on the basis of total N as follows: 

maize was fertilized with 120 kg ha
-1

 of N, oilseed rape with 90 kg ha
-1

 of N, and fibre 

hemp and ryegrass with 60 kg ha
-1

 of N (II - III). The experiments were arranged in 

randomized complete block designs with three to six replicates (I-III). 

Table 8. Amounts of N, P and K (kg ha
-1

) added to soil by application of synthetic 

fertilizer, sewage sludge or digested sludge, on the basis of total N for each species 

 Synthetic 

fertilizer 

Sewage 

sludge 

Digested 

sludge 

Maize    

N 120 120 120 

P 13 100 162 

K 21 8 18 

Hemp    

N 60 60 60 

P 6 50 81 

K 11 4 9 

Oilseed rape    

N 90 90 90 

P 10 75 121 

K 16 6 12 

Sewage sludge was pretreated with FeSO4, while the digested sewage sludge received 

biological pretreatment alone. 
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Table 9. Plant species, treatments, analyses and measurements presented in the original 

publications I-III. 

Paper 

no. 

Exp 

no. 

Treatments Species Measurements 

I 1 Sewage sludge 

Sewage sludge mixed with peat 

Maize 

Oilseed 

rape 

Water relations 

Photosynthesis 

Whole plant leaf area 

Plant dry weight 

Ash content 

 2 High sewage sludge 

Low sewage sludge (50% of high SS) 

Sewage sludge mixed with peat 

 

Maize 

Hemp 

Oilseed 

rape 

Water relations 

Photosynthesis 

Whole plant leaf area 

Whole plant biomass 

Elemental analysis 

Ash content 

II 1, 2 Synthetic fertilizer, single application 

Synthetic fertilizer, multiple application
a
 

Sewage sludge 

Digested sludge 

Ryegrass Biomass 

Relative growth rate 

 3, 4 Soil + synthetic fertilizer 

Soil + sewage sludge 

Soil + digested sludge 

Sand + synthetic fertilizer 

Sand + sewage sludge 

Maize 

Hemp 

Oilseed 

rape 

Germination % 

Shoot dry weight 

Root dry weight 

Shoot height 

Root length 

Elemental analysis 

N uptake 

P uptake 

Mycorrhizal analysis 

III 1-3 100% synthetic fertilizer 

Split synthetic fertilizer (50 + 50%) 
b
 

Split nutrient sources (50% N+ 50% SS) 

100% sewage sludge 

High sewage sludge (150% SS) 

100% digested sludge  

Maize 

Hemp 

Oilseed 

rape 

Leaf N content 

Leaf area index 

Biomass 

Elemental analysis 

N uptake 

P uptake 

Ash content 

C:N ratio 

Energy analysis 

a = after each harvest, a further 60 kg N ha
-1

 was applied  

b = all treatments in III were applied prior to sowing except 50% + 50% synthetic 

fertilizer which was applied 50% prior to sowing and 50%.at mid-season 
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2.2  Methodology 

2.2.1 Soil analysis (I-III) 

Soil samples were taken before the establishment of experiments and stored in a freezer at 

-20°C until chemical analysis. Samples were analysed at Viljavuuspalvelu Oy, Mikkeli (I-

III) and Suomen Ympäristöpalvelu Oy, Oulu (III) (Table 10). Except for N, elements in 

soil in experiments during 2009 and 2010 (I, II and III) were extracted for the analysis 

using the ISO/IEC 17025 method, while those elements in soil in experiments during 

2011 (III) were extracted for analysis using the US EPA 3051a method. The 

measurements were done using ICP-OES. N was analyzed by the Kjeldahl method 

(Bremner 1960). 

Table 10. Chemical properties of soil, and sewage and digested sludge used in 

experiments during 2009-2011 

 Soil properties Sludge properties 

(I, II, III)  I & II III 

2009 2010 2011 Sewage Digested 

DM % 86.0 90.0 93.0 94.0 30.0 30.5 

pH (1:5) 6.4 6.4 6.3 6.2 7.2 6.9 

N <10.0
 b
 20.4

b
 14.1

b
 14.6

b
 31.0

c
 7.4

c
 

P 20.0
b
 17.0

b
 19.0

b
 1650.0

a
 26.0

c
 9.9

c
 

K 100.0
b
 300.0

b
 300.0

b
 8050.0

a
 2.1

c
 1.1

c
 

Ca 1100.0
b
 2000.0

b
 2400.0

b
 7430.0

a
 38.0

c
 ND 

Mg 110.0
b
 230.0

b
 230.0

b
 7540.0

a
 3.3

c
 ND 

Na <20.0
b
 20.0

b
 ND 550.0

a
 ND ND 

S 7.7
b
 9.0

b
 13.6

b
 1220.0

a
 ND ND 

Mn 7.1
b
 9.3

b
 4.0

b
 270.0

a
 220.0

a
 56.9

a
 

Cd 0.1
a
 0.3

a
 0.6

a
 0.5

a
 0.4

a
 <0.5

a
 

Cr 7.5
a
 35.0

a
 48.0

a
 72.0

a
 30.0

a
 11.0

a
 

Cu 7.9
a
 53.0

a
 77.0

a
 91.0

a
 270.0

a 
88.0

a
 

Pb 7.9
a
 30.0

a
 74.0

a
 97.0

a
 20.0

a
 4.9

a
 

Ni 3.2
a
 14.0

a
 16.0

a
 30.0

a
  20.0

a
 5.5

a
 

Zn 32.0
a
 96.0

a
 180.0

a
 90.0

a
 470.0

a
 130.0

a
 

As <5.0
a
 7.1

a
 7.8

a
 9.6

a
 5.0

a
 1.3

a
 

a = mg kg
-1

 DM 

b = mg L
-1

 DM  

c = g kg
-1

 DM 

ND = Not Detected 

One L DM soil = 1.29 Kg DM soil 

N was expressed as  a mineral form in soil, but it was expressed as a total in sludges 

Data show concentrations of soluble form of elements from N to Mn in soil 2009 and 

2010 and soil used in I and II. Otherwise, the data show the total concentrations. 
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2.2.2  Growth and physiological measurements 

2.2.2.1  Germination (II) 

Germination of maize, hemp and oilseed rape was recorded at 7 and 14 d after sowing 

(DAS). 

2.2.2.2 Water relations (I) 

Leaf water potential (Ψw) was measured at 29, 44 and 59 DAS from the uppermost fully 

expanded leaf as described by Mäkelä et al. (1998) using a pressure chamber 

(Soilmoisture Equipment Crop., Santa Barbara, CA, USA). Osmotic potential (Ψs) was 

analysed with a freezing point depression osmometer (Micro-Osmometer 3300 M, 

Advanced Instruments, Norwood, MA, USA). Turgor (Ψp) was calculated as follows: 

                                                                                              

2.2.2.3 Photosynthesis (I) 

Photosynthesis was measured at 30, 45, 60 and 75 DAS with a portable photosynthesis 

meter (LI-6400, LI-COR, Lincoln, NE, USA). A 2 3 cm leaf chamber with a LED light 

source (6400-02B, 90% red and 10% blue) was attached with the photosynthesis meter. 

Photosynthesis photon flux density was 1000 µmol m
-2

 s
-1

. A CO2-injecting cartridge was 

attached to the system to control reference CO2 concentration at 400 µmol mol
-1

. The 

flow rate was 400 µmol s
-1

. The measurement was conducted between 9 and 11 am using 

the youngest fully expanded leaf. 

2.2.2.4 Whole plant leaf area (I) 

Whole plant leaf area excluding dead leaves was determined at 30, 45, 60 and 80 DAS 

with a portable leaf area meter (LI-3000, LI-COR, Lincoln, NE, USA). 

2.2.2.5 Leaf area index (III) 

Leaf area index (LAI) was measured with a SunScan portable canopy analysis system 

equipped with a BF3 sunshine sensor (SS1-UM-2.0, Delta-T Devices Ltd., Cambridge, 

UK) at 29, 44, 59, and 74 DAS. 
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2.2.2.6 Biomass (I- III) 

Biomass samples were collected at 30, 45, 60, 80 DAS and at maturity (BBCH stage 97; 

Meier, 2001), 100 DAS (I). Shoots and roots of randomly selected plants (maize, hemp, 

and oilseed rape) were separated to measure root and shoot length, and for determination 

of biomass accumulation (II). Biomass accumulation of ryegrass was analysed every 20 

days from sowing until senescence (at 20, 40, 60, 80, 100, 120, 140 DAS) (II). In field 

experiments, plants were collected from 1.0 m
2
 of the plot for biomass analysis at 30, 60, 

90, 120, and 150 DAS during growing seasons 2009 - 2011 (III). Samples were dried at 

65 – 70°C for 2  3 days and weighed (I-III). Dried samples were ground (Retsch ZM 200, 

Retsch GmbH, Haan, Germany) into fine powder (0.5 mm mesh size) and stored at room 

temperature for elemental and energy analyses. 

2.2.2.7 Relative growth rate (II) 

Relative growth rate was calculated from ryegrass as follows: 

      
           

 t  t  
                                                  

Where W1 is dry weight at time t1, and W2 is dry weight at time t2. 

2.3  Feedstock quality (I- III) 

2.3.1  Elemental analyses 

Concentrations of macro- and micro-elements (P, Ca, K, S, Si, Mg, Na, As, Cd, Cr, Cu, 

Mn, Ni, Pb and Zn) were determined in ground plant samples of maize, hemp and oilseed 

rape. Elements were analyzed at 60 DAS and maturity (I), at 14 DAS (II), and at maturity 

(III). Ground plant samples (300 mg) were weighed into PTFE Teflon tubes (CEM, 

Matthews, North Carolina, USA). On each sample, 6 mL of nitric acid (67-69%, VWR 

International BVBA, Geldenaaksebaan, Leuven, Belgium) and 1 mL of hydrogen 

peroxide (30%, Merck KGaA, Darmstadt, Germany) were added for microwave digestion 

(MARSXpress, MARS 240/50, CEM, Matthews, NC, USA). After digestion, samples 

were filtered through  hatman paper ( rade No. 4 , pore size  .5 μm, GE Healthcare 

Companies, UK) and diluted in distilled water up to 50 mL, and then stored at -20°C 

overnight. Elemental analysis was run with Inductively Coupled Plasma-Optical Emission 

Spectrometry (iCAP 6200, Thermo Fisher Scientific, Cambridge, UK). Cl (I and III) was 
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analysed from ground plant samples (0.5 g) according to Mäkelä et al. (2003) using a 

Corning M926 chloride analyser (Corning Ltd., Halstead, Essex, UK). The total N and C 

contents (I-III) were analysed from ground plant samples (200 mg) by the Dumas 

combustion method using a Vario MAX CN (Elementar Analysensysteme GmbH, Hanau, 

Germany). 

2.3.2 N and P uptake 

N and P uptake (II-III) by maize, hemp and oilseed rape was calculated as follows: 

N or P upta e (
 g

ha
)   

 iomass  ield (
 g
ha

)  N or P  ontent in plant  iomass (
g
 g

)

    
          

2.3.3 Ash content  

Ash content (I and III) was determined from the ground plant samples. Samples (1.0 g) 

were dried in an oven at 105 °C overnight. The dry weight was determined (W1). Samples 

were placed in a muffle furnace (LV 15/11/P320, Nabertherm GmbH, Bremen, Germany) 

for 18 h at 600 °C, cooled in a desiccator, and weighed again (W2). The ash content was 

calculated as follows: 

 sh      
  

  

                                                              

2.3.4 Energy analysis (III) 

The higher heating value of crop biomass was analysed from 0.5 g subsamples of the 

ground biomass using an adiabatic bomb calorimeter (Parr 1241EA, Parr Instrument Co., 

Moline, IL, USA). Benzoic acid pellets (1.0 g, Parr Instrument Co., Moline, IL, USA) 

were used as standards. Samples were compressed into pellets using a Pellet Press (Parr 

Instrument Co., Moline, IL, USA) prior to weighing and analysis. The higher heating 

value (MJ kg
-1

) was determined by complete combustion with excess O2 at 3.04 MPa in a 

sealed steel bomb. 

Gross energy yield was calculated as follows: 

 ross energ   ield (
  

ha
)  

 nerg   ontent (
M 
 g

)   iomass  ield (
 g
ha

)
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2.3.5 Calculations of the limiting elements for long-term sludge application 

Since sludge contains non-nutrient minerals, it was necessary to estimate how long it 

could be used on cropland before the heavy metal accumulation would reach the limits of 

European regulations (Table 5;  European Commission 2001, 2002). The annual load of 

the heavy metal to agricultural land through sludge application was calculated from the 

content of each element in the sludge (mg kg
-1

, see Table 10) multiplied by the annual 

sludge application for each plant species (kg ha
-1

 of DM, III). The heavy metal 

accumulation in the whole biomass above ground at maturity was obtained from the 

content of each element in plant biomass (mg kg
-1

) multiplied by the biomass production 

(kg ha
-1

) (III). The soil weight (kg ha
-1

), which depends on the bulk density and the depth 

of harrowing, was used in the calculation to get the remaining annual content of each 

element in the soil (mg kg
-1

) after sludge application. From these details, we calculated 

the number of years in which sludge can be applied for the long term, as follows: 

                                                               

      
              

     
                                  

   
 

    
                                                              

Where: X = limiting concentration of any given element; Maxv = European limits for that 

element in soil (mg kg
-1

 DM); ESoil = concentration of the element in the soil at sowing 

(mg kg
-1

 DM);  NetE = the different between input and output of the element (mg kg
-1

 

DM); Einput = amount of element added to the soil through sludge application (mg ha
-1

); 

Eoutput = element content in above-ground biomass at maturity (mg ha
-1

); WSoil = soil 

weight (kg ha
-1

 DM); Y = number of years. 

2.4 Mycorrhiza analyses (II) 

2.4.1  Number of fungal spores 

Number of fungal spores was counted according to the modified method of Allen et al. 

(1979). Soil samples were taken at 15 DAS from pots using a cork borer ( 5 cm). 

Samples were mixed and sieved (1 and 63 µm). A subsample of 10 g was placed in a 

centrifuge tube containing 15 mL of distilled water. Soil samples were hydrated for 15 
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min, and centrifuged for 10 min at 2000 rpm at 10°C to remove organic matter. Samples 

were resuspended in 20 mL of 2 M sucrose solution and centrifuged. The liquid, 

containing the spores, was slowly dripped into a separatory funnel for 10 min, after which 

the liquid was then slowly drained (10 mL min
-1

). Spores were carefully washed from the 

funnel walls with 2 mL of purified water into a Petri dish (Tissue Culture Plate 6-Well 

Flat Bottom, Sarstedt, USA). The number of spores was determined immediately with a 

stereo microscope (Leica MZ FL III, Fluorescent Stereo Microscope, Heerbrugg, 

Germany). 

2.4.2 Mycorrhizal root colonization 

Lateral and small roots were randomly sampled at 15 DAS and washed under tap water. 

A 1-g sample of fresh root was cut into 2 cm pieces, placed in a bottle containing 40 mL 

of 10% KOH (Merck KGaA, Darmstadt, Germany), and placed in a water bath at 60–90 

ºC for 2–4 h (Phillips and Hayman, 1970). The samples were rinsed with 10 mL of 10% 

HCl (ACS reagent, Sigma-Aldrich, Germany), followed by distilled water, and stained 

with cotton blue (Riedel-de Haën AG, Seelze, Germany) according to Grace and Stribley 

(1991). Roots were viewed with light microscope (Leitz, Wild Leitz GmbH, Wetzlar, 

Germany) with an attached CCD camera for AM mycelium and vesicles. 

2.5  Statistical analyses 

Data of different traits measured were subjected to ANOVA using R program (version 

2.11.1) in I, and using PASW statistics 20.0 (IBM, Chicago, IL, USA) in II-III to compare 

the effects of sludge and synthetic fertilizer treatments on growth and feedstock quality 

parameters of crops as well as mycorrhizal analysis. Significant differences between 

means of treatments were  ompared    Tu e ’s test (I-III). Simple correlation coefficient 

was calculated in order to study the relationship between the number of fungal spores in 

soil and the content of P or N in the plant biomass (II). Growth of the ryegrass fertilized 

with sewage and digested sludge and synthetic fertilizer (II) was fitted to Gompertz 

curves using PASW. 

 iomass         p    p (    (         M ))  where A = the lower 

asymptote; C = the upper asymptote; B = the rate of increase; DAS = the days after 

sowing; M = the point of inflection. 
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3. RESULTS AND DISCUSSION 

3.1. Growth of bioenergy crops fertilized with sludge (I-III) 

In the current study, the germination percent at 7 DAS, and root and shoot dry mass at 14 

DAS of maize, oilseed rape and hemp were a little higher in the sludge treatments than in 

those given synthetic fertilizer (II). This shows that there were no adverse effects due to 

the heavy metals when sludge was applied. Similarly, Qasim et al. (2001) reported that 

there was no significant difference between the effects of sewage sludge and inorganic 

fertilizers on seed germination of maize. On the other hand, seed germination percent of 

faba bean (Vicia faba L.) fertilized with untreated sludge was lower than in those 

fertilized with treated sludge, due to the excesses of various cations and anions (Singh et 

al. 2002). Also, lower seed germination of wheat (Triticum aestivum L.) and maize was 

obtained when sewage sludge was applied than in lime-stabilized and composted sludge 

and control treatments (Du et al. 2012). However, increasing the application of sewage, 

lime-stabilized and composted sludge from 3 to 6 g kg
-1

 soil, increased the germination 

rate of wheat and maize (Du et al. 2012). This suggests that the adverse effect of heavy 

metals or organic compounds on seed germination is reduced when sludge is applied 

according to land use standards. 

Root and shoot masses of hemp and oilseed rape were improved when sewage sludge was 

mixed with sand in comparison to results from synthetic fertilizer (II). The increase in 

shoot mass may be mainly attributable to improved root growth and consequent greater 

nutrient transport to the above-ground parts of the plant (Zhang and Barber 1993, Durieux 

et al. 1994). The results of root and shoot growth (II) agree with the conclusion of Qasim 

et al. (2001) who reported that sludge application resulted in an increase in root and shoot 

growth of maize in comparison to those fertilized with synthetic fertilizer. On the other 

hand, root growth of plants grown with sludge extracts in another experiment was 

retarded, not due to the heavy metals but due to the effects of other substances, since 

electrical conductivity in heavy metal mixtures was lower than sludge extracts (Wong et 

al. 1981). Shoot mass of all plant species fertilized with either sewage sludge or synthetic 

fertilizer and grown in sand was lower than those grown in soil, although the N content of 

those species was higher when grown in sand than in those grown in soil (II). In very 

early stages of vegetative growth for plants such as maize, the relationship between 



41 
 

biomass production and N concentration is different (Herrmann and Taube 2004). The 

higher N content could be a consequence of lower yield. 

The sewage sludge-peat mixture improved maize and hemp growth in terms of net 

photosynthesis at 60 DAS, and in leaf area formation and biomass accumulation at most 

sampling dates, in comparison to plain sludge applications (I). This could be attributed to 

the uptake of easily absorbed plant nutrients, N and P, from soil by roots and 

translocation to shoots and leaves, since the increase of nutrient in leaves can increase 

photosynthesis (Fageria and Moreira 2011). It could also be attributed to lower heavy 

metal accumulation in plants fertilized with the sludge-peat mixture (I), since the peat in 

(I) was an adjuvant to reduce the stickiness, density and nutrient richness of the sludge. 

Usually, photosynthetic capacity of leaves is associated with the leaf N content, since 

proteins of the Calvin cycle and thylakoids represent the majority of leaf N in the plant 

(Evans 1989). Thus, improved photosynthesis and more efficient development of LAI for 

increased light interception will cause an increase in biomass accumulation in terms of 

converting solar radiation into stored chemical energy, i.e., biomass (Beadle and Long 

1985). 

The sludge added in the high sewage sludge treatment in the first glasshouse experiment 

was equivalent to 1200 kg ha
-1

 N, meaning 10 times normal the fertilization rate for 

maize, 15 times that for oilseed rape and 20 times that for hemp. The amounts of all 

macronutrients and trace elements were increased correspondingly. In maize and hemp, 

plain sludge applications resulted in a reduction in net photosynthesis at 60 DAS, and in 

leaf area formation and biomass accumulation at most sampling dates (I). This might be 

attributed to the increased Cr and Ni content in those crops over those fertilized with the 

sewage sludge-peat mixture (I). The disorganization of the chloroplast ultrastructure and 

inhibition of electron transport processes are linked to Cr uptake, and a change of 

electrons from the electron-donating side of photosystem-I can reduce the photosynthetic 

rate (Shanker et al. 2005). 

Sewage sludge and synthetic fertilizer applications resulted in significant increases in leaf 

N content of maize and hemp, particularly at 60 DAS, in comparison to other treatments 

(III). Biomass accumulation of maize and hemp fertilized with sewage sludge was 

significantly increased at 90 and 150 DAS (III). At 120 DAS, there was no significant 

difference between biomass accumulation in maize whether it was fertilized with sewage 
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sludge or synthetic fertilizer, whereas sewage sludge significantly increased biomass 

accumulation of hemp in comparison to all other treatments except split synthetic 

fertilizer (III). However, leaf N content, LAI and biomass accumulation of oilseed rape 

were equally high following applications of both sewage sludge and synthetic fertilizer 

throughout most of sampling dates (III). This could be due to the increase in 

mineralization of organic N during growing season into NH4
+
 which is absorbed by roots 

or converted into NO3
-
 which is rapidly taken up by roots (Wong et al. 1998, Hernández 

et al. 2002, Epstein 2003, Sing and Agrawal 2008, Mbakwe et al. 2013). Leaf N content 

started to decline after 60 DAS in maize and hemp, and after 45 DAS in oilseed rape (III). 

This may have been due to the translocation of N and amino acids to the storage parts, 

since photosynthetic proteins and chlorophylls are degraded (Novoa and Loomis 1981, 

Fageria et al. 2011, Yang et al. 2012). In addition, it can partly be due to the reduction in 

the N-mineralization rate as the organic N content in the soil decreased over time (Wong 

et al. 1998). Sewage sludge improved growth of ryegrass in terms of increasing biomass 

accumulation and consequently increasing relative growth rate (II). Relative growth rate 

was highest (0.0025 g g
-1

 d
-1

) at 100 DAS following sewage sludge application in 

comparison to singly applied synthetic fertilizer (0.0016 g g
-1

 d
-1

) or digested sludge 

(0.0014 g g
-1

 d
-1

) (II). It remained the highest in ryegrass fertilized with sewage sludge 

until the last harvest. This implies that N was mineralized from the sludge at a 

comparable rate to the available N from other nutrient sources. 

Table 11. Biomass (Mg ha
-1

 DM) of maize, hemp and oilseed rape at maturity following 

different fertilizer treatments. Data show means over three years (2009-2011). S.E.M.
a
 = 

Standard error of means for 100% SF and 100% SS (n = 12); S.E.M.
b
 = Standard error of 

means for all treatments except 100% SF and 100% SS (n = 8). 

Treatment 
Biomass production at maturity (Mg ha

-1
 DM) 

Maize Hemp Oilseed rape 

100% SF
a
 27.4 12.6 10.2 

50% SF+50% SF
b
 24.5 14.0 8.2 

50% SF+50% SS
b
 28.9 13.2 8.4 

100% SS
a
 29.6 15.0 9.9 

150% SS
b
 28.1 13.5 8.5 

100% DS
b
 27.7 12.4 7.7 

S.E.M.
a
 0.9 0.42 0.14 

S.E.M.
b
 1.1 0.52 0.18 

100% SF = synthetic fertilizer; 50% SF + 50% SF = split synthetic fertilizer; 50% SF + 

50% SS = split nutrient sources; 100% SS = sewage sludge; 150% SS = high sewage 

sludge; 100% DS = digested sludge. 
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Bleken et al. (2009) reported that N influences the plant growth and biomass 

accumulation through LAI by increasing radiation interception. On the other hand, N 

deficiency is known to decrease LAI, radiation use efficiency and photosynthesis activity 

in plants (Muchow 1988, Sinclair and Horie 1989, Fageria and Baligar 2005). Sludge 

application resulted in an increase in the biomass yield of different crops including maize 

and barley (Hernández et al. 1991), sunflower (Helianthus annuus L.) (Morera et al. 

2002), rice (Oryza sativa L.) (Singh and Agrawal 2010), lettuce (Lactuca sativa L.) (Zhao 

et al. 2012), and ryegrass (Gu et al. 2013). Increases in biomass in the sludge treatment 

were usually attributed to the improvement in the soil conditions, in addition to the supply 

of mineralized N and other nutrients from the sludge (Christie et al. 2001, Tanu et al. 

2004, Bozkurt et al. 2006). Furthermore, the increased crop biomass may have been 

partly as a result of increased mycorrhizal root colonization (II), which could have 

contributed to improved biomass through the increased N and P uptake (III). 

3.2. Root mycorrhizal colonization of bioenergy crops fertilized with sludge (II). 

The roots of maize and hemp fertilized with sewage and digested sludge were colonized 

with arbuscular mycorrhiza (II), more so in maize than in hemp. This interspecific 

difference may have been attributable to the morphological differences in root systems, 

along with qualitative and quantitative differences in root rhizodeposition attracting and 

promoting the growth of beneficial soil microorganisms. Hyphae and arbuscules were 

detectable in maize roots, and vesicles and hyphae were detectable in hemp roots when 

sewage sludge was applied (II). In oilseed rape roots, only vesicles were observed 

following sewage sludge application (II). The inhibition of root mycorrhizal colonization 

and the reduction of spore numbers in soil have been associated with N and P fertilizer 

application (Johnson 1993, Miller and Jackson 1998, Liu et al. 2000, Treseder and Allen 

2002, Lin et al. 2012, Ortas 2012). The number of fungal spores in soil and sand treated 

with sewage sludge was 30-40% higher than in those treated with synthetic fertilizer (II). 

Application of P fertilizer (45 kg P ha
-1

 per year) reduced spore density in the soil by 50% 

over five years (Martensson and Carlgren 1994). Sewage sludge used in the current study 

did not contain spores. Thus, it enhanced fungal spore counts in both soil and sand due to 

the low amounts of inorganic N and P in sludge. Colonization was not detectable in the 

roots of any crop fertilized with synthetic fertilizer in sand or soil (II). 
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3.3. Sludge application increased gross energy yield (III) 

Low biomass quality can drastically decrease the net energy output by limiting the 

effectiveness of conversion plants (Jenkins et al. 1998). In addition, it reduces the heating 

value by 0.2 MJ kg
-1 

for each 1 % increase in the ash content (Cassida et al. 2005). In the 

current study, feedstock of hemp fertilized with sewage sludge or synthetic fertilizer 

contained the highest heating value (18.1 and 17.2 MJ kg
-1

 DM, respectively) and lowest 

ash mass fraction (59.3 and 60.1 g kg
-1

 DM, respectively) in comparison to split synthetic 

fertilizer, split nutrient sources or digested sludge treatments (III). Nevertheless, the 

higher heating values and ash content varied little between different fertilizer treatments 

in maize (higher heating values 3%, ash 8%) and oilseed rape (higher heating values 10%, 

ash 14%) without significant differences (III). Biomass yield is considered the major 

factor that determines the gross energy yield (McKendry 2002). In the current study, the 

highest gross energy yield was obtained in maize (438 GJ ha
-1

) and hemp (274 GJ ha
-1

), 

when sewage sludge was applied. However, oilseed rape fertilized with sewage sludge 

and synthetic fertilizer produced equivalent highest gross energy yield (172 GJ ha
-1

). The 

order of gross energy yield followed the biomass yields, maize > hemp > oilseed rape, 

because the feedstock of those crops had comparable higher heating value. This was due 

to the variation among biomass accumulation of different plant species (III), which 

indicates the importance of plant species biomass when it is selected for energy purposes. 

3.4. Biomass quality of bioenergy crops fertilized with sludge 

Bioenergy crops seem to be a good choice to be grown with sewage sludge, as the 

contamination of the food chain with heavy metals is avoided. Also, all mineral nutrients 

except N in crop feedstock can be recovered in the form of ash after thermo-chemical 

conversion (El Bassam 2010). This form of ash may be recyclable as fertilizers to 

cropland (Pels and Sarabèr 2011) if its composition is appropriate. 

Sewage sludge application resulted in higher N content in biomass of maize and hemp 

grown in soil than synthetic fertilizer, while synthetic fertilizer resulted in higher N 

content in all plant species grown in sand than in those fertilized with sewage sludge (II). 

Generally, the N content of all plant species fertilized with sewage sludge or synthetic 

fertilizer and grown in sand was higher than that in those grown in soil (II). This might be 

due to the increase of nitrification level through oxidation of NH4
+
 to NO3

-
 in well aerated 
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soils (Chesworth 2008). NO3
-
 is not adsorbed on soil particles, which means that NO3

-
 in 

rooting zone is available for plant uptake (Chesworth 2008). Furthermore, N in sandy 

soils is more rapidly mineralized than in loamy and clay soils (Mengel 1996), because 

proteins and enzymes that are involved in the mineralization process can be adsorbed to 

clay minerals (Loll and Bollag 1983). The highest sewage sludge application (150%) did 

not result in a further an increase in N content or yield of plant biomass over that 

achieved at the normal application rate (III). This may be attributed to an adverse effect 

on nitrification accompanied by the decrease of N mineralization following the high dose 

(Wong et al. 1998). Sewage sludge and synthetic fertilizer applications resulted in the 

highest N uptake in maize (320 kg ha
-1

), hemp (175 kg ha
-1

) and oilseed rape (135 kg ha
-

1
) compared to other treatments (III). This implies that N was exhausted from synthetic 

fertilizer and sewage sludge at similar times. The highest crop N uptake with sewage 

sludge or synthetic fertilizer treatments was accompanied by an increase in both biomass 

yield and its N content. The N uptake by different crops was higher than the total N 

introduced with different treatments (III), showing that additional synthetic fertilizer can 

be added on the long-term of sludge application. The high N uptake in different plant 

species might was attributed to the uptake of inorganic N from the soil, mineralized N 

from sludge, inorganic N introduced with different treatments and N released from the 

microbial biomass. Also, it can partly be due to the acquisition of N by external hyphae of 

AMF (Figure 3). Thus, depletion of soil N by hyphae can prevent or reduce the leaching 

of NO3
-
 and denitrification (Frey and Schuepp 1993, Smith and Read 2008). 

P is an important nutrient for plant growth and metabolism and accounts 0.2% of DM in 

plants. However, it is one of the most difficult nutrients for plants to acquire, since it is 

poorly available in soil due to its low solubility (Schachtman et al. 1998). Sewage sludge 

resulted in the highest content of P in maize, hemp and oilseed rape at 14 DAS and at 

maturity (II, III). The correlation of the abundance of fungal spores in the rhizosphere 

with the P content of the studied plant species may show that sewage sludge addition 

influences soil microorganisms and their contribution to P availability by plants (II). 

AMF increases the plant uptake of P from soil (Figure 4). Nevertheless, the differences in 

P content among plant species could not be attributed to the root colonization with 

mycorrhizal fungi, but mainly were due to the plant species-specific demand for P. 

Sewage sludge application resulted in the highest P uptake in maize (57.5 kg ha
-1

) and 

hemp (34.5 kg ha
-1

), while high sewage sludge and digested sludge applications resulted 
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in the equal highest P uptake (about 25 kg ha
-1

) in oilseed rape (III). The high amount of 

P that was added through sludge application could be a primary reason, besides AMF, for 

the high P content and uptake in the present study. The total P applied through 100% 

sewage sludge application was 100 kg ha
-1

 for maize, 50 kg ha
-1

 for hemp and 75 kg ha
-1

 

for oilseed rape, while the total P applied into soil through digested sludge was 162 kg ha
-

1
 for maize, 81 kg ha

-1
 for hemp, and 121 kg ha

-1
 for oilseed rape. This implies that an 

excess of P was introduced with sewage and, especially, digested sludge (Table 8), which 

can increase the potential risk of P losses in runoff and leaching (Penn and Sims 2002, 

Kidd et al. 2007).  

N and P are considered the main causes of concern regarding sludge application on 

cropland, due to their potential for leaching and pollution for groundwater (Chaney 1990, 

Korboulewsky et al. 2002). Some studies have emphasized the potential risk of excess P 

and consequently the leaching or runoff of P after sewage sludge application 

(Korboulewsky et al. 2002, Kidd et al. 2007). Usually, the amount of sewage sludge 

applied is based either on the required N for the plant species, as in the current study, or 

on total heavy metal content. The P content (26 g kg
-1

 DM) in the sewage sludge was 

close to the N content (31 g kg
-1

 DM), so the N:P ratio was low, and application based on 

the N requirements could provide excessive P (Korboulewsky et al. 2002). Adequate 

tissue content of N and P in higher plants is about 15 and 2 g kg
-1

 DM, respectively 

(Epstein 1972 and 1999). In the current study, it seems that either there was no potential 

risk of N leaching or N leaching was very low, since the N accumulated in biomass of 

maize and hemp (III) was three times more than that applied through sewage sludge or 

synthetic fertilizer applications (Table 8). On the other hand, based on P applied through 

sewage and digested sludge applications (Table 8) and on the results of P uptake (III), it is 

clear that more P was added than was absorbed by the crops (III). Consequently, P can 

accumulate in agricultural soils up to a level that can pose a potential risk to surface and 

ground water during long-term sludge application. 

K is the second highest element absorbed by plant roots after N (Havlin et al. 2005). In 

the current study, split application of nutrient sources (50% N + 50% sewage sludge) 

resulted in the highest K uptake in maize (430 kg ha
-1

) and hemp (171 kg ha
-1

), while high 

sewage sludge application resulted in the highest K uptake in oilseed rape (141 kg ha
-1

). 

These results indicate that the plants will take up more K than their needs when the K is 



47 
 

available. This phenomenon is known as luxury uptake, and in forage grasses, high 

content of K in herbage might contribute to metabolic disorders in animals (Kayser and 

Isselstein, 2005). The phenomenon of luxury K uptake has been demonstrated in maize 

(Setiyono et al. 2010) and in hemp (Finnan and Burke 2013). The variation of K uptake 

among the different plant species could be attributed to the differences in their root 

structure (i.e., root density and its depth, and root hair length) (Zörb et al. 2013). The 

correlations between K uptake and root characteristics (i.e. hair length and density) in K-

depleted soils were found to be positive in maize and oilseed rape (Jungk 2001). In the 

present study, the results of K uptake show that additional synthetic K fertilizer should be 

added to avoid the effect of K deficiency on plant growth in long-term sludge application. 

Alternatively, additional sewage sludge can be added to supply further nutrients, as long 

as the heavy metal content does not exceed the European limits (See Table 5). 

Sewage sludge application improved feedstock quality in terms of relatively low contents 

of Cl in all plant species and alkali metals such as K and Ca in maize and hemp in 

comparison to synthetic fertilizer application (III). In the current study, feedstock of 

different crops had higher K content than other alkali metals. This was consistent with the 

conclusion of Baxter et al. (1998) who reported that K is considered the major alkali 

metal in most feedstocks. Sewage sludge resulted in lower content of Cl in feedstock of 

maize (58%), hemp (25%) and oilseed rape (40%) fertilized with sewage sludge than in 

those fertilized with synthetic fertilizer (III). Cl can act as a catalyst in association with K 

and Na to facilitate the transport of alkali metals from the fuel to combustor surface, 

where the alkali metals can react with Si and S to form sulfates or silicates, and cause 

corrosion and slagging of the combustor (Baxter et al. 1998, Jenkins et al. 1998, 

McKendry 2002). Slagging is linked to the low melting point of deposits, which results in 

the formation of a glassy layer on the heat transfer surfaces that has to be removed, 

causing extra expenses in maintenance (Reumerman and van den Berg 2002). The 

optimum mass ratio of C:N for anaerobic digestion in terms of methane production ranges 

from 10 to 30 (Schattauer and Weiland 2004). Synthetic fertilizer and sewage sludge 

applications resulted in the lowest and most related C:N mass ratio of maize and hemp for 

methane production (III). This could be explained by higher N content in maize and hemp 

fertilized with synthetic fertilizer than those fertilized with other treatments. 
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In this study, S content was 4 times higher in oilseed rape than in maize and hemp (III). 

This may have been due to the high demand of S by oilseed rape (3.5 g kg
-1

 in 

comparison with 1.2 in maize), which is demonstrated by its sensitivity to S deficiency at 

relatively high tissue S content (Barker and Pilbeam 2006), probably because of cysteine-

rich antifungal and anti-microbial proteins and glucosinolates, synthesised in oilseed rape 

(Dubuis et al 2005). Na content was also higher in oilseed rape than in maize and hemp 

(II-III). This could be linked to mycorrhizal colonization of maize and hemp roots in the 

current study, since AMF can provide a protection against excessive uptake of this highly 

soluble cation (Muhsin and Zwiazek 2002). 

Sewage sludge application increased content of heavy metals and metalloids in all three 

species (I-III). At 14 DAS, maize fertilized with sewage sludge had the highest Cr (4.3 

mg kg
-1

), Cu (4.6 mg kg
-1

), Ni (2.1 mg kg
-1

) and Pb (0.9 mg kg
-1

) (II). Also, oilseed rape 

fertilized with sewage sludge had the highest Cr (3.3 mg kg
-1

), Cu (2.9 mg kg
-1

), Ni (2.3 

mg kg
-1

). This was similar to earlier observations, in which the contents of particularly 

Zn, Cu, Cr and Cd increased in plant biomass with increasing sludge application 

(Hernández et al. 1991, Bozkurt et al. 2006, Singh and Agrawal 2007). This might be due 

to the interactions of N with micronutrients. The uptake of NH4
+
 by plants decreases soil 

pH, which increases the uptake of most micronutrients (Fageria 2009). In the current 

study, crops grown on sand and fertilized with either sewage sludge or synthetic fertilizer 

had the highest Mn content in comparison to those grown on soil and fertilized with the 

same treatments. This could be attributed to increased nitrification in sand-peat mixtures, 

which decreased the soil pH, which in turn would have enhanced the availability of Mn to 

be taken up by the roots (Mukhopadhyay and Sharma 1991). 

The concentration of all heavy metals in maize and hemp were higher at maturity than at 

60 DAS, while heavy metal content in oilseed rape was higher at 60 DAS than at maturity 

(I). This could be associated partly with the shedding of leaves by oilseed rape toward 

maturity, and partly to the longer growing season of maize and hemp, which allowed 

them to accumulate more heavy metals. In the field experiments, all crops accumulated 

the most Cr and As when sewage sludge was applied, while maize and hemp accumulated 

the highest Mn when synthetic fertilizer was applied (III). Increased Mn in plants 

fertilized with synthetic fertilizer could partly be attributed to antagonism between Mn 

and Cd (Singh and Agrawal 2007), since crops fertilized with sludge in the current study 
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contained higher Cd than those fertilized with synthetic fertilizer (III). It can also be due 

to the high P content in the soil treated with sludge, because plant nutrient sources that 

contain high P are known to aggravate the reduction of Mn content in plants such as 

cereal species (Kabata-Pendias 2011). 

Zinc was the most heavily accumulated trace element, followed by Mn, Cu, Ni or Cr, As, 

Pb and finally Cd (I-III). This was attributed to their relative contents in sewage sludge, 

digested sludge and soil, in particular Zn and Cd, which were present in the highest and 

lowest concentrations, respectively in the sludge and soil. Furthermore, Zn mobility and 

bioavailability increased as a result of soil pH reduction, such as happens when sludge is 

applied into soil (Korboulewsky et al. 2002, Bozkurt et al. 2006). Moreover, Zn has lower 

affinity for organic matter, which makes it more available than other trace elements 

(Planquart et al. 1999). The content of Zn has been shown to increase in line with the 

amount of sludge applied to soil (Reed et al. 1991, Bozkurt et al. 2006, Bose and 

Bhattacharyya 2008), which indicates a reduction of the potential risk of Zn losses in 

runoff and leaching, when sludge is applied on cropland. 

Table 12. Number of years for which sludge can be applied into soil as fertilizer for 

bioenergy crops without exceeding the limit values of heavy metals and metalloids in soil 

according to European Union regulations. 

Treatment 50% N+ 50% SS 100% SS 150% SS 100% DS 

Maize  650 350 150 160 

Hemp  1700 680 360 400 

Oilseed rape  700 360 220 240 

N = synthetic fertilizer 

SS = sewage sludge 

DS = digested sludge 

Heavy metal accumulation differed among the plant species (III). Hemp accumulated 

more Pb, Ni, Mn and Cu than maize and oilseed rape, whereas maize accumulated higher 

Cr than hemp and oilseed rape (III). This indicates that hemp can be fertilized with 

sewage sludge for a longer period than maize and oilseed rape without exceeding the limit 

values of heavy metal and metalloids in the soil set by the European Commission (2001, 

2002). Given the inputs from sludge and the uptake by crops, sewage sludge can be used 

as fertilizer on the same soil for many centuries (Table 12), particularly for hemp. Copper 

was the first limiting element in these calculations, owing to its high content in sewage 

sludge (270 mg kg
-1

) in comparison to the content of Cr (30 mg kg
-1

) or Ni (20 mg kg
-1

). 
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This shows that there is a risk of Cu leaching and losses into ground water from the soil 

treated with sludge. However, P accumulation in soil can limit sludge application sooner 

than heavy metal accumulation in soil. 
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4. CONCLUDING REMARKS 

The growth of maize and hemp was improved when sludge was applied, possibly due to 

mycorrhizal colonization of crop roots linked to sludge application and partially to the 

slow release of the different nutrients, in particular N and P, from their organically bound 

forms over time. The occurrence of fungal spores in soil across the different treatments 

correlated well with plant P content, which indicates a beneficial effect on P plant uptake. 

The results demonstrated that there was no difference of N availability in soil treated with 

sludge or synthetic fertilizer, so mineralization of organic N originating from sludge was 

sufficient for growth. This was indicated by the high leaf N content of maize and hemp 

fertilized with sewage sludge or synthetic fertilizer in comparison to other treatments 

particularly at 60 DAS. Sewage sludge improved crop growth in terms of increased 

biomass accumulation in maize and hemp. Sewage sludge significantly increased gross 

energy yield of hemp in comparison to other treatments, while sewage sludge and 

synthetic fertilizer resulted in nearly equivalent gross energy yield in maize and oilseed 

rape whereas other treatments yielded less. 

Sewage sludge application improved biomass quality in terms of reducing the content of 

alkali metals, Cl, Si, S and ash. In addition, sewage sludge and synthetic fertilizer 

applications resulted in the optimal C:N ratio of plant biomass for methane production in 

comparison to other treatments. Crops fertilized with sewage sludge accumulated higher 

contents of heavy metals and metalloids in their biomass than those fertilized with other 

treatments. According to the current study, Cu is the first heavy metal that can limit 

sludge application on the long-term due to its high content in sludge and soil. 

Using sludge as fertilizer for bioenergy crops (Figure 5) could be a more suitable option 

than using it for food crops, since heavy metals can be transferred to the food chain, 

which would pose a serious risk to human health. Using sludge as fertilizer for bioenergy 

crops would provide an opportunity to reduce the use of industrially synthetic fertilizer, 

which consumes large amounts of fossil fuel, and improve the sustainability in 

agriculture. However, sludge application to cropland can be associated with some 

potential problems such as ground and surface water contamination, and introduction of 

pathogens, antibiotics and organic chemicals which are difficult to remove. According to 

the current study, the most limiting heavy metal that in the long-term use of sludge was 
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Cu, due to its high content in sludge and soil. There was a potential risk for P loss that 

could be a serious environmental problem in long-term sludge applications. However, 

there was no indication for a potential risk of N leaching, since sludge was added on the 

basis of required N for each species.  

 

Figure 5. The beneficial effect of using sludge as fertilizer for bioenergy crops 
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