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Abstract. Many current neuroscientific experiments can be seen as data analysis problems
with two or more data sources: brain activity and stimulus features or, as in this paper,
activity of two brains. These setups have been analyzed with Canonical Correlation Analysis
or its multiple-source probabilistic extension Group Factor Analysis, which capture statistical
dependencies between the data sources in correlating components. We relax the assumption of
global correlations and search for correlating signals related to discrete events. The assumption
is that the sources correlate only during events with known timings, inferred from a stimulus
stream for instance, but the type or nature of each event is not known. The unsupervised
modelling of the events can then be viewed as a generalization of conditional averaging. We
apply the model on two-person MEG measurements, in a demonstration task of identifying
which of the two persons utters a word.
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1 Introduction

Recently, neuroscientific experiments have been performed with increasingly more complex, natural
stimuli ranging from speech and music to movies, which poses challenges for conventional data
analysis. A practical solution is to include more data, from multiple sources, into the modelling
phase. A case where we would naturally be interested in finding some dependencies between multiple
sources is that of studying common responses of multiple subjects, each interpreted as a separate
data source, exposed to the same stimuli (Kauppi et al., 2010). Another natural multi-source setup
treats the brain activity and a feature representation of the stimulus as two data sources, using
the dependencies between them to characterize responses to complex natural stimuli for which no
clearly defined trials, epochs or events can be specified (Ylipaavalniemi et al., 2009).

One of the most typical approaches to consolidate information from two data sources is canonical
correlation analysis (CCA; Hotelling, 1936; for more recent reviews see e.g. Hardoon et al., 2004
and Klami et al., 2013). CCA finds linear combinations of the features of each data set such that
the correlation between these combinations is maximized over the whole experiment. In recent years
CCA has gained popularity in neuroscience, for all brain imaging techniques. Koskinen et al. (2012)
used a Bayesian mixture of CCAs model to find dependencies between the brain activity measured
by magnetoencephalography (MEG) and continuous speech. Campi et al. (2013) used a non-linear
CCA variant for analyzing MEG data from an experiment in which subjects were given the same
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naturalistic stimulus consisting of tactile, auditory and visual blocks. Correa et al. (2010) applied
CCA to investigate how EEG relates to fMRI measurements. Deleus and Van Hulle (2011) studied
functional connectivity in fMRI using a variant of CCA, which generalized the method for more
than two data sources. Another multi-view generalization called group factor analysis (GFA) was
presented by Virtanen et al. (2012).

The CCA-based approaches assume that the correlations between the data sources last over
the whole experiment. Often however, the observed correlations might be weak and temporally
localized. For example, it is unreasonable to expect a strong correlation between the brain activity
and naturalistic auditory stimulation during periods of low stimulus activity, or when the subject
is not paying attention to the stimulation. Instead, we should expect that the degree of correlation
varies during the experiment and, in particular, the correlations are stronger during some temporally
localized periods of interest. In this work we propose a novel extension to the CCA-family that
purposefully seeks to find such temporally localized correlations.

The proposed solution is based on the GFA model (Virtanen et al., 2012), extending it to support
temporally localized correlations. We assume that the data sources are independent except during
short temporal windows associated with events in the experiment. We assume that the timing of
these events is known, at least approximately, but that there can be different types of events that
trigger different kinds of correlations during the events. From this perspective the proposed model
can be interpreted as a generalization of the classical MEG analysis, where the response to events
is found by averaging over repetitions of the same event (Luck, 2005). Even in a very complex
naturalistic stimulus some events can be extracted for example from the stimulus recordings, but it
is often not obvious how to group them together for averaging. Our model learns such a grouping
automatically by assigning with each event a specific type of correlation, and it is also robust for
imprecise timing of the events. In a sense, it allows estimating the average responses even when we
cannot say in advance to which phenomena the events correspond, while extending the definition
of an interesting event to one that elicits a specific type of correlation between the data sources.

Our main goal is in describing the computational model. Nevertheless, we still demonstrate it
on a recent naturalistic MEG recording. We apply the model on a two-person MEG setup where
the brain activity of two individuals interacting with each other are being recorded at the same
time, with the instrumentation setup of Baess et al. (2012). The experimental setup is that of a
word game; the two persons interact by alternatingly uttering isolated words that emerge to form a
story, and we treat the MEG recordings of the individual subjects as two data sources. We consider
the beginnings of the word utterances as events and obtain imprecise estimates of their timing by
monitoring the microphone signal. The model then assumes that the MEG signals correlate during
these events but not outside them, and we show that it automatically recognizes two different types
of correlations between the sources. These types correspond to the obvious dichotomy of which
subject utters the word, which provides us a ground truth for validating the model.

2 Model

2.1 Group Factor Analysis

Group factor analysis (GFA) is an extension of Bayesian CCA (Klami et al., 2013) to multiple data
sources. Alternatively, it can be seen as an extension of factor analysis that treats the data sources
similarly to how factor analysis treats individual variables. The model was introduced by Virtanen
et al. (2012), and it is briefly summarized below.
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where N (µ,Σ) denotes the normal distribution with mean µ and covariance Σ. The data are mod-
eled with unknown latent variables zi ∈ RK corresponding to K factors, which are then mapped to
the observation space with the linear projections W(m) specific to each source. The latent variables
are shared between all sets and can hence model correlations between the sources.

Typically the data sources have also non-trivial variation independent of the other sources, which
cannot be modeled with the spherical noise model Σ = τ−1

m I. GFA models them with some of the K
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where each of the α-parameters has independently (an almost non-informative) gamma prior α
(m)
k ∼

G(10−14, 10−14). If for some m and k the parameter α
(m)
k becomes large, then the corresponding

column of W(m) is almost zero and thus the kth factor in the model is irrelevant in explaining the
variation in dataset m.

To provide an alternative viewpoint, we denote α(m) =
(
α
(m)
1 . . . α

(m)
K

)T
. Then the matrix

α =
(
α(1) . . . α(M)

)T
acts as a kind of a loading matrix indicating which factors load on which datasets. This shows how
GFA generalizes regular factor analysis to model relationships between the data sources instead of
individual variables.

To further clarify the model, we provide a mapping from the mathematical notation above to
the example application studied in this paper. We have M = 2 sources that correspond to MEG
recordings of two subjects. Each sample is a time instance and the features are the MEG gradiometer

sensors. The factors for which α
(m)
k is small for both m model correlations between the two brains,

whereas the remaining factors model correlations between the gradiometer sensors of each subject.
The model automatically learns, using the ARD prior, how many factors to use for both tasks.

2.2 Event-related Extension

As mentioned in Introduction, GFA and other CCA-based models assume that the correlations
persist over all of the samples, that is, over the whole experiment. Next we introduce an extension
of GFA that relaxes this assumption, and instead assumes that the data sources correlate only
during pre-specified events. We assume that the timing of these events is known, but that there
can be different types of events that induce different kinds of correlations between the sources. The
goal is to learn linear mappings describing the nature of these different types of correlations, while
simultaneously inferring for each event to which category it belongs.

We assume that outside the events the data sources are independent but that there can still be
correlations between the different features within each data source. We model these with K factors
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2Ŵ
(1)

1 Ŵ
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Fig. 1. Factorization of the data matrices in the proposed model, with gray color indicating non-zero
elements. For the samples that do not belong to any event the two data sources are independent and
modeled with the noise models. The samples within the events choose one of the event categories and use
the factors specific to that category for modeling correlation during the event.

that use source-speficic latent variables z
(m)
i . The correlations between the sources are modeled

with E event categories, each capturing the correlations with K̂ additional factors that use latent
variables ẑei shared between the sources but specific to the event category. The resulting model is
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where γei is a binary variable indicating whether event e is active in sample i. For every sample
that is outside the events we set γei = 0 for all event categories, whereas for the remaining samples
we require that the set of consecutive samples during a specific event belong to exactly one event
category. Finally, we set zei = 0 if γei = 0. Figure 1 illustrates the resulting factorization for a setup
where we have M = 2 data sources and E = 2 event categories.

For controlling the complexity of the model we again use an ARD prior for the source-specific
loading matrices W(m); the model hence learns how many factors it needs for modeling the variation
independent of other sources. The factors used for modeling the correlations during the events use
the same prior as regular GFA, which allows learning which specific sources reflect the correlation.

3 Inference

For inference we adopt variational Bayes (VB). We write the factorized approximate posterior as
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where D =
∑M

m=1Dm. With this factorization we will update the noise models (one for each data
source) and the E shared event components separately, which allows for simpler updates following
very closely those for Bayesian CCA by Klami et al. (2013).

Our extended model introduces a new variable γ, and next we provide the necessary derivations
for updating that parameter within the overall VB algorithm updating the whole model. For inter-
pretability we do not provide a full posterior approximation for γei but instead use type-II maximum
likelihood to provide binary decisions for each sample. To derive the objective function, we need to
write the variational lower bound

L(γ) ∝ 〈log p(Y|Θ,γ)〉 −

〈
log q(Ẑ|γ)

log p(Ẑ|γ)

〉
(5)



as a function of γ, omitting the constant terms. The relevant terms of the first part are
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where the expectation depends on the corresponding γei ; z is Gaussian when γ = 1, and a delta spike
at zero when γ = 0. Since we assume that each event should be allocated to exactly one category,
we couple all the samples within one event to have identical γei . The optimization problem is easy to
solve due to linearity of (5) as a function of γ. In the experimental section we demonstrate a scenario
where we further assume that the event categories are equally common. This can be expressed as a
linear constraint, which allows using generic integer linear programming solvers, such as lp solve

(Berkelaar et al., 2004) for finding the optimal values.

4 Experiments and results

We use data from an experiment where pairs of participants were simultaneously recorded at sepa-
rate MEG devices and an audio-visual link was provided for communication between them (Baess
et al., 2012). The pairs were instructed to play a word game where they took turns in saying one
word at a time and the words were supposed to make up a sensible story. The length of the games
ranged from 88 to 172 words between the different pairs, or approximately 5 minutes. The MEG
data were preprocessed using the signal space separation method (Taulu et al., 2004), and the data
were downsampled to 67 Hz from 1 000 Hz and high-pass filtered at 3 Hz.

We define an event here as a word spoken by either participant. Outside these events we assume
no correlation between the brain activities. In total the events correspond to about 15% of the
duration of the experiments, which implies that traditional methods seeking for global correlations
should have difficult time capturing these temporally localized effects.

We run the model with K = 25, and two event categories with 4 components each. Thus most
of the variation in the data will be captured by the subject-specific noise models and additional
activity during the events then by one of the shared models. The amount of components was chosen
based on a heuristic given by classical PCA: roughly 25 principal components account for about 90
percent of the variance. For each pair, we chose the best model by comparing the variational lower
bounds of 50 random initializations.

We expect that the two event categories should correspond to the speaker identities for each
individual word; these should obviously elicit different kind of correlations between the subjects.
For validating whether the model learns these categories more accurately than simpler alternatives,
we compare it with linear dimensionality reduction followed by k-means clustering of the samples
within the events. We cluster the individual samples within the events into two clusters and then
do majority voting for each event window. For the dimensionality reduction step we tried two
alternatives, PCA that assumes the sources to be independent and GFA that attempts to model



Table 1. Clustering accuracy of words with respect to the speaker. For each pair the best method is written
in boldface; see text for more details.

Pair Number of events Proposed model GFA + k-means PCA + k-means

A 102 0.90 0.55 0.57
B 104 0.92 0.51 0.51
C 172 0.62 0.55 0.59
D 116 0.76 0.61 0.59
E 88 0.96 0.50 0.60
F 170 0.75 0.57 0.51
G 160 0.81 0.58 0.52

global correlations between them. In effect, these comparison methods can be thought of as attempts
to de-couple the elements of the proposed model into separate elements, and hence the comparison
reveals the advantage of learning the joint model at once.

The order of clusters being unidentifiable, we label the clusters solely for the purpose of measur-
ing the accuracy by the label with most matches within a cluster. For the proposed model the mean
accuracy over 7 pairs of participants is 0.82 (Table 1); three pairs get over 0.9 accuracy but for
all pairs it is significantly better than chance (p < 0.005, all pairs, random permutation test). The
comparison methods solve the task considerably worse, irrespective of the dimensionality reduction
technique. The improvements are due to our method learning the background noise simultaneously
with the events and allowing the temporal profile to vary between each individual event.

5 Conclusions

CCA-based methods have been used to study problems in neuroscience where data is collected
from multiple sources. In this work, we presented a new CCA model that looks for temporally
local correlations during pre-defined events, and thus in a way generalizes the usual event-based
analysis prevalent in the MEG community. We used variational Bayesian methods for computing
approximate posterior distribution of the model, and demonstrated the model on a two-person MEG
data set. Our results show that the proposed model is able to separate the two event types in an
unsupervised manner, and greatly outperformed straight-forward application of k-means clustering.
Neuroscientific interpretation of our results is on-going.
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Nicolle M Correa, Tom Eichele, Tülay Adalı, Yi-Ou Li, and Vince D Calhoun. Multi-set canonical
correlation analysis for the fusion of concurrent single trial ERP and functional MRI. Neuroimage,
50(4):1438–1445, 2010.

Filip Deleus and Marc M Van Hulle. Functional connectivity analysis of fMRI data based on
regularized multiset canonical correlation analysis. Journal of Neuroscience methods, 197(1):
143–157, 2011.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural Computation, 16(12):2639–2664, 2004.

Harold Hotelling. Relations between two sets of variates. Biometrika, 28:321–377, 1936.
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