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Abstract-This paper discusses the benchmarking of three 

parallelized implementations of the popular LS-Dyna® 
(Livermore Software Technology Corp.) finite element code on 
the 128-core x86-64 STePS2 high performance computing (HPC) 

server cluster. SMP, MPP and SMP-MPP hybrid 
implementations of LS-Dyna® are benchmarked over various 
numbers of nodes, CPUs and CPU cores. 

The SMP, MPP and MPP-SMP hybrid implementations of 
LS-Dyna were compiled for use with the HPMPI message passing 
interface. 

Index Terms—LS-Dyna benchmark; SMP; MPP; Hybrid; 
parallel computing benchmark 

I. INTRODUCTION 

STePS
2
 (Sustainable Technology for Polar Ships and 

Structures) is a collaborative multi-organization research 

project at Memorial University of Newfoundland (MUN) that 

will support development of a new generation of ships and 

structures for polar regions. Its goal is to develop sophisticated 

but practical tools for designers, builders and regulators of 

arctic ships and structures. 

The project is a partnership between MUN, Husky Energy, 

the American Bureau of Shipping, Samsung Heavy Industries, 

BMT Fleet Technology and Rolls Royce Marine. In addition 

to the private sector participation, the National Research 

Council Institute for Ocean Technology is a research partner, 

and public funding has been awarded by the Atlantic Canada 

Opportunities Agency and the Research and Development 

Corporation Newfoundland and Labrador. 

Project results will be primarily captured in new software. 

However the software will be backstopped by experimental 

and numerical research aimed at filling in gaps in 

understanding and methods that support the engineering 

software tools. 

To aid end, it was desired to implement a High Performance 

Computing (HPC) parallel computing environment with which 

to run Livermore Software Technology Corporation's (LSTC) 

LS-Dyna®; a popular finite element code. 

This paper outlines the hardware and software configuration; 

and subsequent benchmarking of three parallel 

implementations (SMP, MPP, and MPP-SMP Hybrid) of LS-

Dyna on the STePS
2
 HPC server cluster. 

 

 

 

II. THE STEPS
2
 HPC CLUSTER 

The STePS
2
 HPC cluster consists of a head node and 

sixteen compute nodes. The head node and compute nodes are 

interconnected via two networks: Ethernet and Fabric. All 

nodes operate using Intel_x86_64 Linux. Message passing for 

parallel computations is accomplished using HP-MPI v2.3.1. 

Jobs scheduling is by Torque (PBS). The cluster toolkit is 

provided by ROCKS 5.4. This configuration provides a multi-

tasking head node driving a parallel computing environment 

that supports up to 128 parallel processes. 

A. Hardware 

The STePS
2
 HPC cluster is manufactured by IBM. The head 

node is model x3650M2 and each of the compute nodes is 

model x3550M2. All nodes are rack mounted. All hardware 

components are "server" class. The 48-port Ethernet switch is 

model IBM BNT RackSwitch™ G8000R. The 36-port Fabric 

switch is model Voltaire® Grid Director™ 4036. 

Head Node 

The head node has dual quad-core CPUs; each with their 

own bank of 8 DIMM slots. The CPUs also support Intel® 

Turbo Boost Technology and hyperthreading capabilities; both 

of which are enabled. The DIMM slots in both memory banks 

are filled with 2GB EEC DDR3 chips operating at 800 MHz. 

Permanent storage is provided by two RAID arrays: a RAID 5 

array of five 15000 RPM SAS 146GB drives hosts the main 

cluster partitions, while a RAID 5 array of three 15000 RPM 

SAS 300 GB drives provides backup and auxiliary storage. 

One of the partitions on the main RAID array is a Network 

Attached Storage (NAS) partition. This allows all attached 

compute nodes to access a common file store. The operating 

system (OS) is Red Hat Enterprise Linux 5.4 (kernel 2.6.18-

164). The cluster toolkit is ROCKS 5.4. Table I outlines the 

key head node hardware. 

Compute Nodes 

Each of the compute nodes has the same CPU configuration 

as the head node, except that hyperthreading is not enabled. 

Previous experimentation has shown that enabling 

hyperthreading for fully subscribed CPUs running LS-Dyna 

has a negative effect on performance. The RAM configuration 

for each compute node is similar to that of the head node 

except that two of the DIMM slots are not filled in each of the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/19955824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


memory banks; and the RAM frequency is higher at 1067 

MHz. Permanent storage for each compute node is provided 

by a RAID 0 array of four 15000 RPM SAS 146GB drives. 

Data redundancy is sacrificed in favour of performance as no 

user data are stored on the compute nodes (i.e. only the OS 

and configuration are stored). In the event that any storage 

array is corrupted, the compute node will obtain and install a 

fresh, pre-configured OS installation from the head node via 

PXE upon its next first successful boot.  The OS for the 

compute nodes is also similar to the head node. Table II 

outlines the main hardware features for the compute nodes. 

TABLE I 
HEAD NODE HARDWARE 

Head Node 

Processors 

# of CPUs 2 
 

CPU type Intel(R) Xeon(R) E5520 
 

Cores per CPU 4 
 

CPU Frequency 2.27 GHz 

CPU Max Turbo Frequency 2.53 GHz 

CPU Cache 8 MB 

CPU Address Sizes 40 bits physical, 48 bits virtual 
 

QPI Speed 5.86 GT/s 

Instruction Set 64-bit 
 

Hyperthreading Yes and Enabled 
 

Memory 

Total Memory 32 GB 

Memory per CPU 16 GB 

Memory Slots 8 per CPU (all 8 filled) 
 

DIMM Size 2 GB 

Type DDR 3 ECC 
 

Memory Frequency 800 MHz 

Storage 

Array 1 

RAID RAID 5 
 

Number of disks 5 
 

Total Storage 584 GB 

Storage per disk 146 GB 

Disk Type SAS 
 

Disk Speed 15000 RPM 

RAID Controller Hardware 
 

Array 2 

RAID RAID 5 
 

Number of disks 3 
 

Total Storage 600 GB 

Storage per disk 300 GB 

Disk Type SAS 
 

Disk Speed 15000 RPM 

RAID Controller Hardware 
 

Operating System 

Operating System RHEL Server 5.4 (Tikanga) 
 

Linux Kernel 2.6.18-164 
 

Architecture Intel x86_64 
 

TABLE II 

COMPUTE NODE HARDWARE 

Compute Nodes 

Processors 

Same as head node except Hyperthreading not Enabled 
 

Memory 

Total Memory 24 GB 

Memory per CPU 12 GB 

Memory Slots 8 per CPU (6 of 8 filled) 
 

DIMM Size 2 GB 

Type DDR 3 ECC 
 

Memory Frequency 1067 MHz 

Storage 

RAID RAID 0 
 

Number of disks 4 
 

Total Storage 584 GB 

Storage per disk 146 GB 

Disk Type SAS 
 

Disk Speed 15000 RPM 

RAID Controller Hardware 
 

Operating System 

Operating System Same as head node 
 

Cluster Interconnects 

As mentioned above, the STePS
2
 cluster makes use of two 

forms of nodal interconnects: Ethernet and Fabric. The Fabric 

connection is a 40 GBit/s Infiniband® Fabric and the Ethernet 

connection is 1 GBit/s (GigE). 

The Infiniband connection is used only for message passing 

via the MPI software (outlined below). Some of the notable 

communication protocols available are IPoIB, IBV and PSM.  

The IP over Infiniband protocol (IPoIB) has not been 

implemented on the STePS
2
 cluster because it is intended that 

normal IP communications take place on the GigE connection. 

Both the IBV (Infiniband Verb by Openfabrics) and the PSM 

(Performance Scaled Messaging by QLogic) communication 

protocols have been used in conjunction with LS-Dyna 

simulations in previous experiments, and it has been 

determined that the PSM protocol provides the best 

performance in this scenario. All tests outlined in this 

document have been performed using the PSM protocol. 

The GigE connection is used for all non-MPI internodal 

communication; that is: file transfer, ssh, etc... It is possible to 

use the GigE connection for message passing via the MPI 

software, but there would be no practical benefit in this. 

B. Software 

The software on the cluster consists of the operating system 

(OS), the cluster environment, the job scheduler, the message 

passing interface (MPI), and the LS-Dyna finite element code. 

Operating System and Cluster Environment 

The OS on all nodes is the intel_x86_64 implementation of 

Redhat Enterprise Linux Server 5.4 with Linux kernel 2.6.18-

164. 

The cluster environment is configured through the ROCKS 

5.4 cluster toolkit. The ROCKS toolkit simplifies cluster setup 



by installing a preconfigured parallel environment based on 

options determined by the end user. The basic ROCKS 

environment will provide a working parallel environment, 

however many additional features are available through the 

inclusion of ROLLs. ROLLs are special implementations of 

various software packages that are configured to interface 

directly with the ROCKS toolkit; either during initial cluster 

installation or post install. Some of the ROCKS ROLLs that 

were implemented on the STePS
2
 cluster are the QLogic 

Infiniband Drivers and the Torque (PBS) job scheduler.  

Job Scheduler 

As mentioned above, the Torque (PBS) job scheduler was 

implemented as a ROCKS ROLL. This installed a 

preconfigured job scheduling environment that worked "out-

of-the-box". All benchmarking tests were submitted through 

the job scheduler. Note: Normally a job scheduler makes as 

efficient use of cluster resources as possible, but this is not 

ideal for benchmarking tests. For example, because simulation 

data (i.e. output files) for all benchmarking tests are being 

written to the common NAS drive, running multiple 

benchmarking tests simultaneously would necessarily require 

multiple sets of output data being written concurrently. This 

may negatively impact simulation times due to competition 

over hard disk resources. In order to eliminate competition for 

any cluster resources between benchmarking tests, all tests 

were run sequentially. This was accomplished by having each 

job (i.e. each benchmarking test) reserve the use of all 128 

compute cores; whether that benchmarking tests actually made 

use of all 128 or not.  Once one job finished, another started. 

Message Passing Interface 

The STePS
2
 cluster uses the HP-MPI v2.3.1 message 

passing interface (MPI) for interfacing parallel computations. 

This is one of the MPI implementations recommended by 

LSTC for use with LS-Dyna. HP-MPI v2.3.1 implements the 

PSM communication protocol for Infiniband communication. 

It also allows the user to bind processes to CPU cores 

relatively easily.  

LS-Dyna finite element code 

The LS-Dyna finite element code is highly popular in the 

automobile and aerospace industries, among others. It has 

three major implementations: Symmetric Multiprocessing 

(SMP), Massively Parallel Processing (MPP), and hybrid 

MPP-SMP. 

The SMP implementation makes use of multiple processors 

operated by a single OS that have access to a single shared 

memory. SMP processing for LS-Dyna has the problem that 

multiple processors sharing the same memory bus, coupled 

with too many synchronization checks results in a 

computational bottleneck that practically limits its scalability 

to 8 processors [1]. 

The MPP implementation makes use of multiple processors 

that may or may not be operated by a single OS, do not have 

access to shared memory (i.e. have distributed memory), and 

are connected by some type of link. MPP processing for LS-

Dyna has the problem that results will not always be 

consistent across various numbers of MPP processes. This is 

due to the way the problem is decomposed into parallel 

processes, and may be aggravated by large numbers of 

processes (typically larger than 128) [2]. 

The hybrid MPP-SMP implementation addresses the 

scalability issues of the MPP implementation by employing a 

number of SMP processes for every MPP process [3]. For 

example, 32 MPP processes running on 32 quad-core CPUs 

where each MPP process has 4 SMP processes, actually 

employs 128 cores. This keeps the number of MPP processes 

down; and thereby alleviates the numerical noise associated 

with large numbers of MPP processes. 

III. BENCHMARKING 

Each of the parallelized implementations of LS-Dyna was 

benchmarked on the STePS
2
 HPC by having it solve a 

"problem" utilizing various numbers of compute cores (from 4 

to 128). The same problem was given in each case. For the 

purpose of this paper, the only important result is the amount 

of time the implementation took to solve the problem versus 

the number of cores provided. This result will be called the 

"run time" from this point on. 

A. The "Problem" 

LSTC has published four benchmarking problems that are 

publically available for download from www.topcrunch.org. 

The problem chosen for these benchmarking tests was the 

"neon_refined_revised" problem [4] shown in Fig. 1. This 

model simulates a head on collision of a Dodge Neon with a 

rigid wall. The model is quite detailed and contains over 

500,000 elements. This model is a "real world" problem, not a 

synthetic benchmark. 

B. Test Matrix 

Four categories of benchmarking tests were executed: SMP, 

MPP without CPU binding, MPP with CPU binding, and 

hybrid MPP-SMP (with CPU binding).  

Figure 1. “Neon_revised_refined” benchmarking simulation. 



Each category was executed using both single and double 

precision versions of their respective codes. All tests were 

executed three times and the resulting run times were 

averaged before being reported here. Table III outlines 

benchmarking test matrix. 

C. Results 

Run time results for single and double precision benchmark 

tests for each of the four categories of tests are given in Fig. 2. 

The worst runtime for both precisions is posted by hybrid 

SMP-MPP when using 4 cores. This run time (single: 3136 s, 

double: 5028 s) represents 1 MPP process running 4 SMP 

processes and should notionally be comparable to the SMP 

implementation’s run time for 4 cores (i.e. single: 2334 s, 

double: 4085 s). One factor that may have influenced this 

difference is the trade-off between CPU binding and Intel 

Turbo Boost Technology. The 4 SMP processes in the hybrid 

case were bound to the 4 cores of a single quad-core CPU (i.e. 

one CPU was fully subscribed); while the 4 processes of the 

SMP implementation were split between 2 quad-core CPUs 

(i.e. 2 processes on one of the node’s quad-core CPUs, and 2 

processes on the other). Intel Turbo Boost technology allows 

CPUs that are not fully subscribed to operate at a higher 

frequency than their rated frequency (i.e. up to 2.57 GHz 

versus 2.27 GHz for these CPUs). The under-subscribed SMP 

case may have taken advantage of the turbo boost. The CPU 

bound MPP implementation had the best time for the 4 core 

case, followed by the non bound MPP case. 

TABLE III 
COMPUTE NODE HARDWARE 

Cat 

Single Precision Double Precision 

Type 
Total 

cores 

MPP 

Proc 
Type 

Total 

cores 

MPP 

Proc 

I 
smp 4 N/A smp 4 N/A 

smp 8 N/A smp 8 N/A 

II 

mpp 4 4 mpp 4 4 
mpp 8 8 mpp 8 8 

mpp 16 16 mpp 16 16 

mpp 32 32 mpp 32 32 
mpp 64 64 mpp 64 64 

mpp 128 128 mpp 128 128 

III 

mpp-
nobind 

4 4 
mpp-

nobind 
4 4 

mpp-

nobind 
8 8 

mpp-

nobind 
8 8 

mpp-

nobind 
16 16 

mpp-

nobind 
16 16 

mpp-
nobind 

32 32 
mpp-

nobind 
32 32 

mpp-

nobind 
64 64 

mpp-

nobind 
64 64 

mpp-

nobind 
128 128 

mpp-

nobind 
128 128 

IV 

hybrid 4 1 hybrid 4 1 
hybrid 8 2 hybrid 8 2 

hybrid 16 4 hybrid 16 4 

hybrid 32 8 hybrid 32 8 
hybrid 64 16 hybrid 64 16 

hybrid 128 32 hybrid 128 32 

 

 

The results over 8 cores (i.e. 2 fully subscribed CPUs in a 

single node) show that the hybrid implementation is now 

better for both single and double precision than the SMP 

implementation. There is almost no difference between the 

CPU bound and unbound MPP implementation times; which 

are again the fastest overall. This illustrates the speedup 

attained by implementing MPP processes over just SMP 

processes. 

The run times progressively decrease as the LS-Dyna 

implementations utilize more and more cores (each time 

doubling from 4 to 128). The MPP implementation (with 

either bound or unbound processes) gave the fastest 

benchmark times up to and including 128 cores; with 

negligible difference in performance between the bound and 

unbound MPP processes from 8 cores on. 

Fig. 3 shows the ratio of run times (i.e.              ) versus 

number of cores. It is apparent from Fig. 3 that while the 

hybrid implementation was slower than the MPP 

implementations (i.e. the ratio is always greater than 1.0) the 

gap narrows up to 64 cores, but then starts to widen again. 

Further investigation is required to determine the cause of this 

widening at 128 cores. 

Fig. 4 shows the "speedup" and "relative speedup" 

associated with utilizing increasing numbers of cores for all 

four categories of the single precision case. The "speedup" is 

the ratio of run time for n cores over the run time for 4 cores 

(for each implementation). The "relative speedup" is the ratio 

of runtime for n cores versus the run time for n/2 cores.  
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Figure 2. Run time results for single (black with hollow data points) and 
double (red with solid data points) precision benchmark tests. 
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Figure 3. Ratio of runtimes versus number of cores for hybrid and MPP LS-
Dyna implementations. 



We can see that the hybrid implementation has the best 

"speedup", followed closely by the unbound MPP 

implementation. Note that the "relative speedup" is not 

significantly different for any of the implementations, and it is 

decreasing; thus demonstrating diminishing returns with 

increased resources. The SMP implementation results have not 

been included in this graph. The "speedup" and "relative 

speedup" for the SMP implementation are both 1.4. The 

results for double precision are similar and are omitted for 

brevity. 

Fig. 5 shows the ratio of run times for double over single 

precision versions of all LS-Dyna implementations. This 

illustrates the relative cost of running double precision versus 

single precision for the same "problem". The graph generally 

shows that as the number of parallel processes increases (past 

8), the relative cost of running double precision versus single 

precision decreases; especially for the MPP implementation, 

which shows a decrease approximately 20% over the range 

from 8 to 128 cores. 

IV. SUMMARY 

Three parallelized implementations of LS-Dyna were 

benchmarked on the STePS
2
 HPC cluster using a real-world 

test “problem”. The results show that the MPP implementation 

of LS-Dyna offers the best performance as a function of run 

time only. It outperforms both the SMP and hybrid MPP-SMP  

implementations across the range of cores tested. One notable 

point regarding the hybrid MPP-SMP implementation is that 

the relative cost of its use to perform double precision versus 

single precision calculations is much better than the other 

parallelized implementations. 
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