
Benchmarking of three parallelized implementations

of LS-Dyna on a HPC server cluster

Bruce W.T. Quinton and Anthony Kearsey
Dept. of Engineering and Applied Science

Memorial University of Newfoundland

St. John's, NL A1B 3X5 Canada

Abstract-This paper discusses the benchmarking of three

parallelized implementations of the popular LS-Dyna®
(Livermore Software Technology Corp.) finite element code on
the 128-core x86-64 STePS2 high performance computing (HPC)

server cluster. SMP, MPP and SMP-MPP hybrid
implementations of LS-Dyna® are benchmarked over various
numbers of nodes, CPUs and CPU cores.

The SMP, MPP and MPP-SMP hybrid implementations of
LS-Dyna were compiled for use with the HPMPI message passing
interface.

Index Terms—LS-Dyna benchmark; SMP; MPP; Hybrid;
parallel computing benchmark

I. INTRODUCTION

STePS
2
 (Sustainable Technology for Polar Ships and

Structures) is a collaborative multi-organization research

project at Memorial University of Newfoundland (MUN) that

will support development of a new generation of ships and

structures for polar regions. Its goal is to develop sophisticated

but practical tools for designers, builders and regulators of

arctic ships and structures.

The project is a partnership between MUN, Husky Energy,

the American Bureau of Shipping, Samsung Heavy Industries,

BMT Fleet Technology and Rolls Royce Marine. In addition

to the private sector participation, the National Research

Council Institute for Ocean Technology is a research partner,

and public funding has been awarded by the Atlantic Canada

Opportunities Agency and the Research and Development

Corporation Newfoundland and Labrador.

Project results will be primarily captured in new software.

However the software will be backstopped by experimental

and numerical research aimed at filling in gaps in

understanding and methods that support the engineering

software tools.

To aid end, it was desired to implement a High Performance

Computing (HPC) parallel computing environment with which

to run Livermore Software Technology Corporation's (LSTC)

LS-Dyna®; a popular finite element code.

This paper outlines the hardware and software configuration;

and subsequent benchmarking of three parallel

implementations (SMP, MPP, and MPP-SMP Hybrid) of LS-

Dyna on the STePS
2
 HPC server cluster.

II. THE STEPS
2
 HPC CLUSTER

The STePS
2
 HPC cluster consists of a head node and

sixteen compute nodes. The head node and compute nodes are

interconnected via two networks: Ethernet and Fabric. All

nodes operate using Intel_x86_64 Linux. Message passing for

parallel computations is accomplished using HP-MPI v2.3.1.

Jobs scheduling is by Torque (PBS). The cluster toolkit is

provided by ROCKS 5.4. This configuration provides a multi-

tasking head node driving a parallel computing environment

that supports up to 128 parallel processes.

A. Hardware

The STePS
2
 HPC cluster is manufactured by IBM. The head

node is model x3650M2 and each of the compute nodes is

model x3550M2. All nodes are rack mounted. All hardware

components are "server" class. The 48-port Ethernet switch is

model IBM BNT RackSwitch™ G8000R. The 36-port Fabric

switch is model Voltaire® Grid Director™ 4036.

Head Node

The head node has dual quad-core CPUs; each with their

own bank of 8 DIMM slots. The CPUs also support Intel®

Turbo Boost Technology and hyperthreading capabilities; both

of which are enabled. The DIMM slots in both memory banks

are filled with 2GB EEC DDR3 chips operating at 800 MHz.

Permanent storage is provided by two RAID arrays: a RAID 5

array of five 15000 RPM SAS 146GB drives hosts the main

cluster partitions, while a RAID 5 array of three 15000 RPM

SAS 300 GB drives provides backup and auxiliary storage.

One of the partitions on the main RAID array is a Network

Attached Storage (NAS) partition. This allows all attached

compute nodes to access a common file store. The operating

system (OS) is Red Hat Enterprise Linux 5.4 (kernel 2.6.18-

164). The cluster toolkit is ROCKS 5.4. Table I outlines the

key head node hardware.

Compute Nodes

Each of the compute nodes has the same CPU configuration

as the head node, except that hyperthreading is not enabled.

Previous experimentation has shown that enabling

hyperthreading for fully subscribed CPUs running LS-Dyna

has a negative effect on performance. The RAM configuration

for each compute node is similar to that of the head node

except that two of the DIMM slots are not filled in each of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/19955824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

memory banks; and the RAM frequency is higher at 1067

MHz. Permanent storage for each compute node is provided

by a RAID 0 array of four 15000 RPM SAS 146GB drives.

Data redundancy is sacrificed in favour of performance as no

user data are stored on the compute nodes (i.e. only the OS

and configuration are stored). In the event that any storage

array is corrupted, the compute node will obtain and install a

fresh, pre-configured OS installation from the head node via

PXE upon its next first successful boot. The OS for the

compute nodes is also similar to the head node. Table II

outlines the main hardware features for the compute nodes.

TABLE I
HEAD NODE HARDWARE

Head Node

Processors

of CPUs 2

CPU type Intel(R) Xeon(R) E5520

Cores per CPU 4

CPU Frequency 2.27 GHz

CPU Max Turbo Frequency 2.53 GHz

CPU Cache 8 MB

CPU Address Sizes 40 bits physical, 48 bits virtual

QPI Speed 5.86 GT/s

Instruction Set 64-bit

Hyperthreading Yes and Enabled

Memory

Total Memory 32 GB

Memory per CPU 16 GB

Memory Slots 8 per CPU (all 8 filled)

DIMM Size 2 GB

Type DDR 3 ECC

Memory Frequency 800 MHz

Storage

Array 1

RAID RAID 5

Number of disks 5

Total Storage 584 GB

Storage per disk 146 GB

Disk Type SAS

Disk Speed 15000 RPM

RAID Controller Hardware

Array 2

RAID RAID 5

Number of disks 3

Total Storage 600 GB

Storage per disk 300 GB

Disk Type SAS

Disk Speed 15000 RPM

RAID Controller Hardware

Operating System

Operating System RHEL Server 5.4 (Tikanga)

Linux Kernel 2.6.18-164

Architecture Intel x86_64

TABLE II

COMPUTE NODE HARDWARE

Compute Nodes

Processors

Same as head node except Hyperthreading not Enabled

Memory

Total Memory 24 GB

Memory per CPU 12 GB

Memory Slots 8 per CPU (6 of 8 filled)

DIMM Size 2 GB

Type DDR 3 ECC

Memory Frequency 1067 MHz

Storage

RAID RAID 0

Number of disks 4

Total Storage 584 GB

Storage per disk 146 GB

Disk Type SAS

Disk Speed 15000 RPM

RAID Controller Hardware

Operating System

Operating System Same as head node

Cluster Interconnects

As mentioned above, the STePS
2
 cluster makes use of two

forms of nodal interconnects: Ethernet and Fabric. The Fabric

connection is a 40 GBit/s Infiniband® Fabric and the Ethernet

connection is 1 GBit/s (GigE).

The Infiniband connection is used only for message passing

via the MPI software (outlined below). Some of the notable

communication protocols available are IPoIB, IBV and PSM.

The IP over Infiniband protocol (IPoIB) has not been

implemented on the STePS
2
 cluster because it is intended that

normal IP communications take place on the GigE connection.

Both the IBV (Infiniband Verb by Openfabrics) and the PSM

(Performance Scaled Messaging by QLogic) communication

protocols have been used in conjunction with LS-Dyna

simulations in previous experiments, and it has been

determined that the PSM protocol provides the best

performance in this scenario. All tests outlined in this

document have been performed using the PSM protocol.

The GigE connection is used for all non-MPI internodal

communication; that is: file transfer, ssh, etc... It is possible to

use the GigE connection for message passing via the MPI

software, but there would be no practical benefit in this.

B. Software

The software on the cluster consists of the operating system

(OS), the cluster environment, the job scheduler, the message

passing interface (MPI), and the LS-Dyna finite element code.

Operating System and Cluster Environment

The OS on all nodes is the intel_x86_64 implementation of

Redhat Enterprise Linux Server 5.4 with Linux kernel 2.6.18-

164.

The cluster environment is configured through the ROCKS

5.4 cluster toolkit. The ROCKS toolkit simplifies cluster setup

by installing a preconfigured parallel environment based on

options determined by the end user. The basic ROCKS

environment will provide a working parallel environment,

however many additional features are available through the

inclusion of ROLLs. ROLLs are special implementations of

various software packages that are configured to interface

directly with the ROCKS toolkit; either during initial cluster

installation or post install. Some of the ROCKS ROLLs that

were implemented on the STePS
2
 cluster are the QLogic

Infiniband Drivers and the Torque (PBS) job scheduler.

Job Scheduler

As mentioned above, the Torque (PBS) job scheduler was

implemented as a ROCKS ROLL. This installed a

preconfigured job scheduling environment that worked "out-

of-the-box". All benchmarking tests were submitted through

the job scheduler. Note: Normally a job scheduler makes as

efficient use of cluster resources as possible, but this is not

ideal for benchmarking tests. For example, because simulation

data (i.e. output files) for all benchmarking tests are being

written to the common NAS drive, running multiple

benchmarking tests simultaneously would necessarily require

multiple sets of output data being written concurrently. This

may negatively impact simulation times due to competition

over hard disk resources. In order to eliminate competition for

any cluster resources between benchmarking tests, all tests

were run sequentially. This was accomplished by having each

job (i.e. each benchmarking test) reserve the use of all 128

compute cores; whether that benchmarking tests actually made

use of all 128 or not. Once one job finished, another started.

Message Passing Interface

The STePS
2
 cluster uses the HP-MPI v2.3.1 message

passing interface (MPI) for interfacing parallel computations.

This is one of the MPI implementations recommended by

LSTC for use with LS-Dyna. HP-MPI v2.3.1 implements the

PSM communication protocol for Infiniband communication.

It also allows the user to bind processes to CPU cores

relatively easily.

LS-Dyna finite element code

The LS-Dyna finite element code is highly popular in the

automobile and aerospace industries, among others. It has

three major implementations: Symmetric Multiprocessing

(SMP), Massively Parallel Processing (MPP), and hybrid

MPP-SMP.

The SMP implementation makes use of multiple processors

operated by a single OS that have access to a single shared

memory. SMP processing for LS-Dyna has the problem that

multiple processors sharing the same memory bus, coupled

with too many synchronization checks results in a

computational bottleneck that practically limits its scalability

to 8 processors [1].

The MPP implementation makes use of multiple processors

that may or may not be operated by a single OS, do not have

access to shared memory (i.e. have distributed memory), and

are connected by some type of link. MPP processing for LS-

Dyna has the problem that results will not always be

consistent across various numbers of MPP processes. This is

due to the way the problem is decomposed into parallel

processes, and may be aggravated by large numbers of

processes (typically larger than 128) [2].

The hybrid MPP-SMP implementation addresses the

scalability issues of the MPP implementation by employing a

number of SMP processes for every MPP process [3]. For

example, 32 MPP processes running on 32 quad-core CPUs

where each MPP process has 4 SMP processes, actually

employs 128 cores. This keeps the number of MPP processes

down; and thereby alleviates the numerical noise associated

with large numbers of MPP processes.

III. BENCHMARKING

Each of the parallelized implementations of LS-Dyna was

benchmarked on the STePS
2
 HPC by having it solve a

"problem" utilizing various numbers of compute cores (from 4

to 128). The same problem was given in each case. For the

purpose of this paper, the only important result is the amount

of time the implementation took to solve the problem versus

the number of cores provided. This result will be called the

"run time" from this point on.

A. The "Problem"

LSTC has published four benchmarking problems that are

publically available for download from www.topcrunch.org.

The problem chosen for these benchmarking tests was the

"neon_refined_revised" problem [4] shown in Fig. 1. This

model simulates a head on collision of a Dodge Neon with a

rigid wall. The model is quite detailed and contains over

500,000 elements. This model is a "real world" problem, not a

synthetic benchmark.

B. Test Matrix

Four categories of benchmarking tests were executed: SMP,

MPP without CPU binding, MPP with CPU binding, and

hybrid MPP-SMP (with CPU binding).

Figure 1. “Neon_revised_refined” benchmarking simulation.

Each category was executed using both single and double

precision versions of their respective codes. All tests were

executed three times and the resulting run times were

averaged before being reported here. Table III outlines

benchmarking test matrix.

C. Results

Run time results for single and double precision benchmark

tests for each of the four categories of tests are given in Fig. 2.

The worst runtime for both precisions is posted by hybrid

SMP-MPP when using 4 cores. This run time (single: 3136 s,

double: 5028 s) represents 1 MPP process running 4 SMP

processes and should notionally be comparable to the SMP

implementation’s run time for 4 cores (i.e. single: 2334 s,

double: 4085 s). One factor that may have influenced this

difference is the trade-off between CPU binding and Intel

Turbo Boost Technology. The 4 SMP processes in the hybrid

case were bound to the 4 cores of a single quad-core CPU (i.e.

one CPU was fully subscribed); while the 4 processes of the

SMP implementation were split between 2 quad-core CPUs

(i.e. 2 processes on one of the node’s quad-core CPUs, and 2

processes on the other). Intel Turbo Boost technology allows

CPUs that are not fully subscribed to operate at a higher

frequency than their rated frequency (i.e. up to 2.57 GHz

versus 2.27 GHz for these CPUs). The under-subscribed SMP

case may have taken advantage of the turbo boost. The CPU

bound MPP implementation had the best time for the 4 core

case, followed by the non bound MPP case.

TABLE III
COMPUTE NODE HARDWARE

Cat

Single Precision Double Precision

Type
Total

cores

MPP

Proc
Type

Total

cores

MPP

Proc

I
smp 4 N/A smp 4 N/A

smp 8 N/A smp 8 N/A

II

mpp 4 4 mpp 4 4
mpp 8 8 mpp 8 8

mpp 16 16 mpp 16 16

mpp 32 32 mpp 32 32
mpp 64 64 mpp 64 64

mpp 128 128 mpp 128 128

III

mpp-
nobind

4 4
mpp-

nobind
4 4

mpp-

nobind
8 8

mpp-

nobind
8 8

mpp-

nobind
16 16

mpp-

nobind
16 16

mpp-
nobind

32 32
mpp-

nobind
32 32

mpp-

nobind
64 64

mpp-

nobind
64 64

mpp-

nobind
128 128

mpp-

nobind
128 128

IV

hybrid 4 1 hybrid 4 1
hybrid 8 2 hybrid 8 2

hybrid 16 4 hybrid 16 4

hybrid 32 8 hybrid 32 8
hybrid 64 16 hybrid 64 16

hybrid 128 32 hybrid 128 32

The results over 8 cores (i.e. 2 fully subscribed CPUs in a

single node) show that the hybrid implementation is now

better for both single and double precision than the SMP

implementation. There is almost no difference between the

CPU bound and unbound MPP implementation times; which

are again the fastest overall. This illustrates the speedup

attained by implementing MPP processes over just SMP

processes.

The run times progressively decrease as the LS-Dyna

implementations utilize more and more cores (each time

doubling from 4 to 128). The MPP implementation (with

either bound or unbound processes) gave the fastest

benchmark times up to and including 128 cores; with

negligible difference in performance between the bound and

unbound MPP processes from 8 cores on.

Fig. 3 shows the ratio of run times (i.e.) versus

number of cores. It is apparent from Fig. 3 that while the

hybrid implementation was slower than the MPP

implementations (i.e. the ratio is always greater than 1.0) the

gap narrows up to 64 cores, but then starts to widen again.

Further investigation is required to determine the cause of this

widening at 128 cores.

Fig. 4 shows the "speedup" and "relative speedup"

associated with utilizing increasing numbers of cores for all

four categories of the single precision case. The "speedup" is

the ratio of run time for n cores over the run time for 4 cores

(for each implementation). The "relative speedup" is the ratio

of runtime for n cores versus the run time for n/2 cores.

0

1000

2000

3000

4000

5000

6000

4 40

R
u

n
 T

im
e

[s
e

co
n

d
s]

Cores

Single and Double Precision Hybrid

MPP

MPP_nobind

SMP

Hybrid

MPP

MPP_nobind

SMP

Figure 2. Run time results for single (black with hollow data points) and
double (red with solid data points) precision benchmark tests.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 20 40 60 80 100 120 140

R
u

n
 T

im
eR

at
io

Cores

Hybrid to MPP Run Time Ratio
Hybrid/MPP Ratio
(Single)

Hybrid/MPP Ratio
(Double)

Figure 3. Ratio of runtimes versus number of cores for hybrid and MPP LS-
Dyna implementations.

We can see that the hybrid implementation has the best

"speedup", followed closely by the unbound MPP

implementation. Note that the "relative speedup" is not

significantly different for any of the implementations, and it is

decreasing; thus demonstrating diminishing returns with

increased resources. The SMP implementation results have not

been included in this graph. The "speedup" and "relative

speedup" for the SMP implementation are both 1.4. The

results for double precision are similar and are omitted for

brevity.

Fig. 5 shows the ratio of run times for double over single

precision versions of all LS-Dyna implementations. This

illustrates the relative cost of running double precision versus

single precision for the same "problem". The graph generally

shows that as the number of parallel processes increases (past

8), the relative cost of running double precision versus single

precision decreases; especially for the MPP implementation,

which shows a decrease approximately 20% over the range

from 8 to 128 cores.

IV. SUMMARY

Three parallelized implementations of LS-Dyna were

benchmarked on the STePS
2
 HPC cluster using a real-world

test “problem”. The results show that the MPP implementation

of LS-Dyna offers the best performance as a function of run

time only. It outperforms both the SMP and hybrid MPP-SMP

implementations across the range of cores tested. One notable

point regarding the hybrid MPP-SMP implementation is that

the relative cost of its use to perform double precision versus

single precision calculations is much better than the other

parallelized implementations.

ACKNOWLEDGMENT

The first author would like to thank the following for their

financial support:

The Sustainable Technology for Polar Ships & Structures

(STePS
2
) project at Memorial University of Newfoundland.

MITACS Accelerate Internship Program.

BMT Fleet Technolgoy Ltd.

REFERENCES

[1] B. Wainscott and J. Wang, “Message Passing and Advanced Computer
Architectures,” 6th International LS-DYNA Users Conference, Detroit,
2000.

[2] J. Wang, Livermore Software Technology Corp. Private Communication,
October, 2011.

[3] N. Meng, J. Wang, and S. Pathy, “New Features in LS-DYNA®
HYBRID Version,” 11th International LS-DYNA Users Conference,
Detroit, 2010.

[4] J. Hallquist, “neon_refined_revised,” http://www.topcrunch.org,
Accessed: October 3, 2011

0.0

2.0

4.0

6.0

8.0

10.0

12.0

4 40

R
u

n
 T

im
e

R
at

io

Cores

Relative Speed-up: Single Precision

Hybrid

MPP

MPP_nobind

Hybrid (relative)

MPP (relative)

MPP_nobind
(relative)

Figure 4. "Speedup" and "Relative Speedup" versus number of cores for
single precision LS-Dyna parallelized implementations.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

4 40

R
u

n
 T

im
e

R
at

io

Cores

Double to Single Precision Run Time Ratio

Hybrid

MPP

MPP_nobind

SMP

Figure 5. Ratio of run times for double over single precision for the
parallelized implantations of LS-Dyna.

