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Abstract 

Assembling aircraft stiffened panels using Friction Stir Welding offers potential to reduce 

fabrication time in comparison to current mechanical fastener assembly, making it 

economically feasible to select structurally desirable stiffener pitching and novel panel 

configurations. With such a departure from the traditional fabrication process much research 

has been conducted on producing strong reliable welds, with less examination of the impact 

of welding process residual effects on panel structural behaviour and the development of 

appropriate design methods. This article significantly expands the available panel level 

compressive strength knowledge, demonstrating the strength potential of a welded aircraft 

panel with multiple lateral and longitudinal stiffener bays. An accompanying computational 

study has determined the most significant process residual effects that influence panel 

strength and the potential extent of panel degradation. The experimental results have also 

been used to validate a previously published design method, suggesting accurate predictions 

can be made if the conventional aerospace design methods are modified to acknowledge the 

welding altered panel properties. 
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1.0 Introduction 

To reduce the manufacturing cost and mass of aircraft aluminium stiffened panels significant 

research has been conducted on welding fabrication [1-17]. The key manufacturing 

challenges include the development of processing methods which robustly produce high 

quality joints but which do not significantly degrade the local material properties. Typically 

the aluminium alloys used in aircraft applications are heat treated to maximise static strength 

and thus the introduction of an intense localised heat source can degrade local joint material 

properties. This has focused research on the use of welding processes which concentrate heat 

input (e.g. Laser Beam Welding), or processes which work at lower temperatures than 

traditional fusion processes (e.g. Friction Stir Welding, FSW), and new aerospace weldable 

alloys [18].  The introduction of localised heat, the thermal conductivity of aluminium alloy 

and the thin-walled nature of aerospace stiffened panels make the task of minimising or 

controlling welding process residual panel distortion another major manufacturing challenge. 

Panel distortion arises due to the development of high transient thermal strains in the joint 

region during welding. When heat is applied compressive stresses are induced in the 

surrounding material due to thermal expansion. When the joint is formed and the cooling 

begins, the contraction of the local joint is resisted by the surrounding material creating 

tensile residual stresses. Some of the developed stress state may be relieved by the structure 

distorting, with the remaining stress state typically complex in nature. The optimisation of 

welding process parameters and the introduction of pre- and post-weld heat or mechanical 

treatments to minimise the final component distortion and residual stress state is key to the 

use of welding within the manufacture of aircraft thin-walled stiffened panels.   

 

Major developments have been seen in all of the noted manufacturing challenges and the 

largest questions now occupy the themes of designing, analysing and verifying the generic 
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use of welded aircraft stiffened panels. The herein work focuses on the static strength 

requirements of stiffened panels with this article aiming to demonstrate the compressive 

strength potential of a large scale welded aircraft panel with multiple lateral and longitudinal 

stiffener bays, verifying that the behaviour demonstrated during collapse is dominated by 

typical panel behaviour, and not by weld joint strength limitations. Such behaviour is 

required to maximise the strength to weight ratio of the panel structure. Having proved the 

large scale welded aircraft panel performance, detailed Finite Element simulation is then 

undertaken to determine the sensitivity of panel strength performance to varying levels of 

welding process residual effects. Finally, with the developed experimental data it is possible 

to validate a previously published analysis procedure for compressive strength, which to date 

has only been validated against small scale coupon experimental results [12].  

 

 

2.0 Background 

2.1 Stiffened panels 

Stiffened panels dominate the wing, fuselage and empennage structure of aircraft. These are 

thin-walled structures, which exhibit structural instability when loaded in compression, 

potentially failing with stress levels lower than the material limits of their sub-components. 

The strength analysis of potentially unstable structures is dependent on component geometric 

dimensions, boundary conditions, load type, initial geometric and stress imperfections, as 

well as material properties. Thus stiffened panels are typically idealised as plate and column 

sub-components for compressive strength analysis [19]. For stiffened panels designed to 

operate in the post-buckled region, the panel skin may experience initial instability through 

localised skin segments buckling between lateral and longitudinal stiffeners. This initial 

buckling does not constitute panel failure as the panel can be designed to have the stiffeners 
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carry additional loading until they become unstable and collapse. Moreover the support of the 

stiffeners enables a portion of the skin to carry load beyond the point of initial skin buckling, 

increasing the efficiency of the panel design. The ability to accurately predict the initial 

buckling, post-buckling and failure collapse behaviour of aircraft stiffened panels is therefore 

essential to aircraft design [20]. 

 

2.2 Friction stir welding 

The key advantage of welding is the potential speed of the joining process when compared to 

riveting [1, 4-7]. In addition the removal of the vast majority of mechanical fasteners and the 

potential to select more structurally efficient stiffener pitching may enable reduced final panel 

weight. Although welding has many potential advantages the heat necessary for joining 

typically results in residual welding effects. The performance of thin-walled structures is 

potentially sensitive to these residual welding effects and therefore to minimise any impact 

FSW is of particular interest given its low processing temperatures.  Lower welding 

temperatures can directly result in lower residual stress and distortion in fabricated panels, 

and reduced mechanical property degradation (in terms of ductility and strength [21]). 

 

 

The FSW process is a solid state joining technique which uses local frictional heating to 

produce continuous solid-state seams. The process joins material by plasticizing and then 

consolidating the material around the weld line. A cylindrical, shouldered tool with a 

protruding pin is rotated and plunged into the components to be joined at the start of the weld 

line. The tool continues rotating and traverses forward in the direction of welding. Frictional 

heat is generated between the wear resistant tool and the component material. As the tool 

proceeds, the friction heats the surrounding material and rapidly produces a plasticized zone 
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around the pin. This heat causes the local material to soften to a temperature below that of the 

material melting temperature and typically within the material's forging temperature range. 

As the tool moves forward metal flows to the back of the pin where it is extruded behind the 

tool. It then consolidates and cools to form the bond. To produce a lap joint, considered 

herein, the pin must extend a small amount through the bottom of the top component and into 

the bottom component. A schematic drawing of the lap joint welding process used herein is 

shown in Figure 1. 

 

2.3 Compressive strength of aerospace FSW panels 

FSW has been investigated as a rivet replacement technology for panel construction within 

spacecraft launch vehicles [3, 8]. Reduced length single-stiffener and full length multi-

stiffener specimens have been tested under compression loading. The reduced length 

specimens have enabled weld joints to be loaded to extremely high compression stress levels. 

The welded single-stiffener specimens exhibited a higher average initial buckling load and a 

marginally lower average failure load than equivalent riveted specimens. In the case of the 

multi-stiffener specimens the welded specimen exhibited a lower failure load than the 

equivalent riveted specimen. These results emphasise the potential impact of welding process 

effects and the sensitivity of panel test performance to specimen scale.  

 

FSW has also been investigated as a rivet replacement technology for fuselage manufacture 

[13, 14]. Both reduced length single-stiffener and reduced length multi-stiffener specimens 

where tested under compression loading. In this work no equivalent riveted specimens were 

tested but an attempt was made to quantify the impact of welding process effects by Finite 

Element modelling of the experimental tests. The single-stiffener computational results 

determined that the level of material property degradation within the Heat Affected Zone 
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(HAZ) and the welding induced residual stresses had the greatest influence on specimen 

collapse. The multi-stiffener computational results determined that the magnitude of welding 

induced residual stresses and associated geometric distortions had the greatest impact on 

initial skin buckling. Specimen collapse was determined to be most sensitive to the width of 

the weld joint, and the magnitude of the welding induced residual stresses. The reduced 

length multi-stiffener specimens allow a more realistic percentage volume of weld affected 

material compared to the single-stiffener specimens. However in both cases the specimen 

reduced length will have artificially modified the geometric imperfections and panel residual 

stresses. 

 

FSW has also been investigated as an assembly method for the integrally stiffened panels 

found on the upper wing cover structure of commercial aircraft [16]. No experimental test 

data is presented but detailed Finite Element simulations demonstrate the potential impact of 

weld altered material properties on the maximum buckling load of the assembled wing 

structure.  

 

Finally, modifications to conventional aircraft panel design methods have been proposed 

[12]. Single-stiffener specimen test results have established that standard panel buckling 

analysis procedures must be altered to account for the weld joint geometry and process 

altered material properties. However the proposed modifications have not been validated 

against full scale specimens with multiple lateral and longitudinal stiffener bays. 

 

2.4 Summary  

The FSW process induces complicated coupled thermal, mechanical and metallurgical 

behaviour resulting in residual effects within the fabricated panels. Results from both single 
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stiffener and multi-stiffener aerospace specimen tests and coupled simulation studies have 

demonstrated that panel strength performance is influenced by the residual welding effects. 

To date no studies on the impact of welding process effects on full scale aerospace panel 

structures with multiple lateral and longitudinal stiffener bays is available in the literature. 

Moreover, as such experimental work is not available the modified strength analysis methods 

[12] for welded aircraft structures are as yet unvalidated for panel structure with multiple 

lateral and longitudinal stiffener bays. 

 

 

3.0 Experimental programme 

3.1 Specimen design 

In order to fill the identified gap in experimental knowledge, a test programme was 

developed to demonstrate the strength potential of a sample welded aircraft fuselage panel 

with multiple lateral and longitudinal stiffener bays under uniform compression loading. To 

represent realistic aircraft structure a conventional panel design was created based on generic 

design requirements for a single aisle civil transport aircraft fuselage. An intermediate 

magnitude fuselage panel ultimate loading intensity was first specified (of the order of 450 

N/mm) along with typical fuselage design constraints on plastic material behaviour and initial 

skin buckling. A series of standard aerospace minimum manufacturing, fatigue and damage 

tolerance requirements were also specified to ensure a realistic design. A test specimen 

configuration of five lateral stringer bays and three longitudinal frame bays was then 

developed from the representative panel design, Figure 2. 

 

The resulting specimen design consisted of a constant thickness skin of typical fuselage skin 

material (AA2024), extruded Z-section longitudinal stringers, and press formed C-section 
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lateral frames, both in a typical fuselage stiffener material (AA7075). The central three 

stringers were designed with a continuous weld joint to the skin via the lower wider Z-section 

flange, hereafter referred to as the attached flange. The two edge stringers, which were 

marginally oversized to promote specimen failure within the specimen central zone away 

from the specimen boundaries, where attached to the skin via standard aerospace counter-

sunk fasteners, again with the aim of promoting specimen failure inside the specimen central 

zone. The specimen lateral frames were also attached to the skin via counter-sunk fasteners 

and at each stringer-frame intersection a stringer opening was designed to allow the 

uninterrupted passage of the stringers. Cleats (AA2024) where also attached at each stringer-

frame intersection, designed to offer the stringers additional support against instability [22]. 

 

Given the scale of the specimen design and the resulting cost of manufacture and test no 

repeat tests were possible. Previous dual specimen tests of large riveted panel specimens, 

with multiple lateral and longitudinal stiffener bays have produced collapse loads within 

2.75% under uniform compression loading [20]. The repeatability of assembled geometry is a 

key target of automated FSW panel assembly and a potential advantage over manual fastener 

assembly. 

 

3.2 Specimen manufacture 

The specimen skin was initially cut to size in the width but cut marginally over sized in the 

length (i.e. in the loading direction). The central stringers were also cut marginally over sized 

and welded to the skin with continuous flange lap welds. Once welded the skin-stringer 

structure was inspected before the lateral frames and edge stringers were attached. Once 

fabricated the specimen ends were cast in epoxy tooling resin and machined parallel, 

allowing simultaneously the uniform compression loading of the specimen and clamped 
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loading edge boundary conditions. Applying clamped boundary conditions at the specimen 

loading ends, stabilises the upper and lower specimen frame bays, thereby again promoting 

failure of the specimen within its central zone. 

 

3.3 Specimen test 

The specimen was tested in a 1,500 kN capacity hydraulic testing machine. Two edge guides, 

fixed to the lower loading platen were slotted onto the free flanges of the edge stringers. 

These support members were designed to stop out-of-plane deformation of the edge stringer 

free flanges during testing, stabilising the edge stringers and promoting failure to occur in the 

specimen central zone. An end-shortening gap was designed between the top of the edge 

guides and the upper loading platen. In order to support the specimen lateral frames from out-

of-plane deflection during test, a series of horizontal tie rods connected each frame to remote 

lateral anchor points. The specimen was strain gauged with gauge locations selected to enable 

the definition of initial specimen buckling and post-buckling collapse behaviour. Specimen 

end-shortening was measured during test using calibrated displacement transducers. The 

specimen was loaded monotonically, in displacement control, at a rate of 0.25 mm per minute 

until failure occurred. Load, deflection and strain data were recorded at set load intervals 

during test. 

 

3.4 Supplementary tests 

A series of supplementary measurements and tests were also undertaken to determine the 

impact of welding on the final fabricated test specimen. Micro hardness mapping was 

undertaken on a series of weld cross-section coupons, sectioned from equivalent specimen 

joints. Using the generated hardness data and semi-empirical models, similar to those 

developed by Myhr & Grong [23], the weld joint material properties were calculated. In order 
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to understand the residual stress magnitudes present within the specimen a series of 

measurements via the hole-drilling method [24] were performed on similar scale specimens 

which were fabricated from the same batch materials and using the same welding process 

parameters.  

 

In addition material tests were undertaken to determine the batch material properties for each 

of the specimen skin, stringer and frame sub-components. These material tests were 

preformed in accordance with the ASTM compressive material testing standards [25]. Post 

test the captured material property data was processed for use within Finite Element 

simulations, in addition the data was fitted with the Ramberg-Osgood parameters [26] thus 

enabling its use with standard aerospace strength analysis methods [19, 28-29]. 

 

 

4.0 Sensitivity study 

Based on the experimental test programme outlined in Section 3 an accompanying Finite 

Element (FE) simulation programme was undertaken. First, a FE simulation was created to 

model the behaviour of the experimental specimen, modelling the measured welding process 

residual effects. The ability of this simulation to predict the specimen’s initial buckling and 

collapse behaviour was then assessed against the measured test results. Having validated the 

prediction capability of the simulation the modelled welding process residual effects were 

then systematically varied with a Design Of Experiment (DOE) simulation series to identify 

the key process effects which impact strength. Having identified the key process effects a 

series of parametric simulation studies were then completed to understand the detailed nature 

of the relationship between the magnitude of the key welding effects and specimen initial 

buckling and collapse performance. 
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4.1 Simulation procedure 

Using the FE method and employing non-linear material and geometric analysis procedures 

previous research has shown that the compressive strength performance of stiffened panels 

with welding process residual effects can be simulated [12, 14]. Previous work has concluded 

that to represent the typical buckling failure modes of a stiffened panel the structure must be 

idealised as an assemblage of inter-connected shells, with the stiffener web and flanges, along 

with the panel skin components represented with shell elements. In addition, the stiffener-

skin joints must be accurately represented with the weld connection along with any contact 

conditions between the stiffener and skin modelled [9]. Based on this preceding knowledge 

Figure 3 outlines the mid-plane shell element representation of the experimental compression 

test specimen. Figure 3 also outlines the local stiffener-skin joint idealisation, where the skin 

and stiffener attached flange nodes in the weld joint zone are connected via rigid link 

elements, and the skin and stiffener attached flange nodes outside the weld joint zone are 

connected via uni-axial contact elements. 

 

Applying the element selection and mesh convergence procedures outlined in Murphy et al. 

[30] a 4-node shell element with 6 degrees of freedom at each node (ANSYS element 

SHELL181) was selected to represent all panel skin and stiffener components. With the 

selected element, the convergence study defined a minimum mesh density of twelve nodes 

per buckle half wave for the panel skin segments. The final mesh for each analysis was 

defined considering the minimum mesh density and the desire to have a consistent mesh 

pattern across the complete simulation programme, Figure 3. 
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The loading and boundary conditions applied to the model were designed to represent the 

experimental test setup outlined in Section 3.3. To model the test specimen ends, the out-of-

plane displacements of the nodes within the panel zones that were cast in epoxy resin in the 

experimental tests were restrained. To represent specimen loading, a uniform axial 

displacement was applied to the lower end of the model, while the axial displacement at the 

opposite end was restrained, again in the axial direction. The edge stringer free flanges 

constrained within the edge guides where constrained from out-of-plane displacements, again 

corresponding with the experimental setup. Finally, to represent the combined effect of the 

lateral specimen frames along with their tie rod connection to remote anchor points, simple-

support conditions where applied to the model skin nodes across the specimen width at the 

frame fastener centre line planes. 

 

Stress-strain curves obtained from the material tests outlined in Section 3.4 were incorporated 

into a multi-linear isotropic strain hardening material model available within the FE 

simulation software. For the computational analysis a displacement controlled incremental-

iterative Newton-Raphson solution procedure was used [27]. To determine initial skin 

buckling the average strain method was used [31], both in the experimental and 

computational analysis, therefore allowing direct comparison of the results. The method plots 

the load against the mid-plane strain at the centre of the skin bay, with buckling defined to 

have occurred when a sharp break is seen in the data. The strain data used for each 

experimental and computational calculation was taken from the same central specimen skin 

bay. For ultimate collapse load definition, the maximum experimental or computational load 

carried by the specimen was used. 
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4.2 Welding process residual effects 

Based on the previous research on friction stir lap welding [12, 14, 32-36] a total of five 

welding process residual effects were identified for inclusion within the FE simulation 

programme: 

a) The width of the effective weld joint (wweld), Figure 3. 

b) The location of the effective weld joint centre (wcl), Figure 3. 

c) The effective strength of the HAZ material (kz) – this factor relates the degraded strength 

of the HAZ material to the original parent material strength, kz being equal to the ratio of 

HAZ material proof stress to parent material proof stress. 

d) The width of the HAZ (z), Figure 3. 

e) The tensile magnitude of welding induced residual stress (Frs). Herein the welding 

induced residual stress state is simply idealised as a uniform tensile stress region at each 

weld joint with equalising compression stress within the extended panel structure. The 

magnitude of residual stress is defined using the tensile stress, expressed as a percentage 

of the original parent material proof stress. 

 

Table 1 summarises the range of welding process effect magnitudes under consideration. The 

selected magnitudes represent generic bounding values based on typical fuselage materials 

and joint geometries, with minimum degrading magnitudes intended to represent optimised 

welding parameters and pre- or post-weld heat or mechanical treatments, with maximum 

degrading magnitudes designed to represent non-optimised welding parameters with no pre- 

or post-weld heat or mechanical treatments. 

 

4.3 Modelling welding residual effects 
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The inclusion of the degraded material properties in the HAZ was achieved by modelling the 

shell element properties within the specimen zones within the HAZ width with HAZ material 

properties obtained from the supplementary experimental tests outlined in Section 3.4. The 

remaining specimen zones where modelled with the parent material properties obtained from 

the coupon tests, again outlined in Section 3.4. Representing the location of the effective 

weld joint centre and joint width was achieved by modelling the correct combination of rigid 

link and uni-axial contact elements between the relevant skin and stiffener attached flange 

nodes along each welded skin-stringer joint line, Figure 3. 

 

The inclusion of the welding induced residual stress within the computational simulations 

required a three-step analysis: 

• 1st analysis step – The post weld residual stress state is initially idealised as a uniform 

tensile zone centred on each of the specimen’s skin-stringer weld lines and an initially 

uniform equalising compression zone elsewhere within the model. The perfect mesh of 

the test specimen, without edge stringers or frames, is modelled with the idealised post 

weld residual stress state and with minimum boundary conditions to prevent rigid body 

translations or rotations. This step represents the unclamping of the welded skin and 

stringers from their fixturing required for the welding process [37-38].  When the residual 

stresses are introduced to the model, the structure is no longer in equilibrium, and a non-

linear geometric analysis is carried out to establish static equilibrium. The equilibrium 

calculation generates a distorted structure, and a slightly modified stress state. 

• 2nd analysis step –  Having created an imperfect initial geometry and stress model for the 

skin and three central welded stringers a second simulation stage is completed to 

represent the mechanical fastener attachment of the specimen frames and edge stringers. 

The stressed and deformed mesh of the 1st analysis step has the skin nodes along the edge 
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stringer and frame fastener centre lines displaced to a zero out-of-plane location and the 

absent stiffeners then added to the model, and a non-linear geometric analysis carried out 

to establish static equilibrium. Note the absent stiffener geometry is modelled through-out 

the analysis but in the preceding step their material stiffness is modelled at a fraction of 

the true value, and in the 2nd and 3rd analysis step the true material stiffness is 

represented. 

• 3rd analysis step – Having created an imperfect specimen geometry and stress state which 

represents the specimen manufacturing process the third analysis describes the specimen 

compression testing. The analysis starts with the stressed and deformed mesh produced 

by the 2nd analysis step and the test loads and boundary conditions described previously, 

Section 4.1, are applied to the imperfect specimen model to predict the specimen 

behaviour under test. 

 

Figure 4 presents the stress imperfection and Figure 5 the geometric imperfection generated 

by each step undertaken to create an imperfect specimen model. 

 

4.4 Identification of key welding process residual effects 

Examining the five identified residual effects potentially requires significant computational 

effort. Considering a full factorial simulation series examining each effect at three 

independent levels would require a total of 5
3
 or 125 simulations. Given this potential 

computational expense a fractional factorial approach, the Taguchi method [39], is used 

herein to govern the simulations. In this method a special orthogonal array is used to define a 

simulation series such that the understanding of the individual and combined influence of 

input factors (in this case the welding process residual effects) on the output results (the 

specimen strength performance) is achieved from a minimum number of simulations. In order 
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to determine the most appropriate combination of interactions to be studied an initial lower 

fidelity simulation series was first formulated with interactions selected based on heuristic 

FSW process knowledge. The results were then processed and the residual effects ranked. A 

modified simulation series was then formed which amended the studied interactions such that 

all combinations of interactions between dominant residual effects were calculable. Table 2 

presents the final two-level orthogonal array used to study the five selected welding process 

residual effects and the dominant residual effect interactions. 

 

Based on the simulation series an ANalysis Of VAriance (ANOVA) was preformed on the 

predicted initial skin buckling and ultimate collapse loads allowing the influence of each 

residual effect to be numerically characterised. Table 5 presents both the initial unpooled and 

pooled ANOVA results. The pooling strategy entailed F-testing between effects with the 

most insignificant effects pooled into the unidentified contribution. In addition student’s t 

tests (alpha = 0.05, t = 2.17881) where used to confirm for each significant effect that the 

output means (either initial skin buckling or collapse load) are significantly different at the 

two effect levels. 

 

4.5 Parametric study of key welding process residual effects 

As the results from a fractional factorial simulation series are influenced by the range of 

effect magnitudes analysed, a series of additional simulations were performed to confirm and 

define the form of the key relationships. The studied effect magnitude ranges were based on 

the identified boundaries outlined in Table 1. During the parametric studies the non-varying 

process effects were set to represent the experimental specimen measured effect magnitudes, 

also outlined in Table 1. 
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5.0 Results 

This section presents the results of the experimental and computational work detailed in 

Section 3 and 4. 

 

5.1 Experimental results 

Table 3 presents the measured specimen initial buckling and collapse performance. The test 

specimen performed as designed, with initial buckling and ultimate failure occurring within 

the central zone of the specimen. The specimen failed at 336.8 kN by combined stiffener 

global flexure and local free flange instability, Figure 6. Prior to ultimate failure initial skin 

bay buckling occurred at 27 per cent of the ultimate test load. Weld joint integrity was 

maintained throughout initial skin buckling, post-buckling and overall specimen collapse, 

demonstrating the strength potential of welded aircraft panels with multiple lateral and 

longitudinal stiffener bays. The demonstrated behaviour during test was dominated by typical 

panel stability with the strength of the local weld joints not limiting performance. 

 

5.2 Baseline simulation results 

Table 3 presents the predicted specimen initial buckling and collapse performance when the 

test specimen residual effect magnitudes are represented within the model, Table 2. Specimen 

failure is predicted to occur at 342.2 kN by combined stiffener global flexure and local free 

flange instability, and initial skin buckling is predicted to occur at 91.0 kN. The simulation 

thus marginally over-predicts the load to cause initial skin buckling by 1.4 per cent and the 

collapse load by 1.6 per cent, correctly predicting the mode of collapse. Clearly the accuracy 

of the simulation prediction is very high and thus appropriate for further analysis on the 

influence of the welding residual process effects. 
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For completeness a ‘perfect’ baseline simulation was also analysed, representing the test 

specimen weld joint width and location but with zero material property degradation and 

welding induced residual stress (wweld=taf, wcl=-taf, kz=1.0, z=0, Frs=0%). This enables an 

estimation of the total impact of the specimen material property degradation and welding 

induced residual stress on specimen strength. Specimen initial skin buckling was predicted to 

occur at 96.5 kN (6.0 per cent higher than the test specimen simulation). The ‘perfect’ 

baseline simulation predicted specimen collapse to occur at 352.7 kN by combined stiffener 

global flexure and local free flange instability, the same failure mode as the test specimen 

simulation, but at a 3.1 per cent higher load. 

 

5.3 Fractional factorial simulation series 

5.3.1 Initial skin buckling 

The results of the fractional factorial simulation series defined in Table 2 are presented in 

Table 4. Examining the results from the sixteen simulations the maximum variation in 

predicted initial skin buckling load is 19.0 per cent (17.1 kN). The outcome of the ANOVA 

analysis, Table 5, establishes that the dominant factor influencing initial skin buckling is the 

location of the effective weld joint centre with an individual contribution of 54.9 per cent. 

The width of the effective weld joint is determined to have the second greatest influence on 

initial skin buckling, with an individual contribution of 21.5 per cent. Thus the weld joint 

characteristics have a significant impact on skin buckling. This is potentially not surprising as 

the weld joints define the lateral width of the central specimen skin bays and significantly 

influence the skin bay boundary conditions, effectively defining the rotational constraint 

provided by the stringers. 
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The ANOVA analysis also identifies the tensile magnitude of welding induced residual stress 

as the third most significant effect on initial buckling (16.6 per cent). Understandably the 

tensile residual stress will impact on the magnitude of the initial specimen geometric 

imperfection and this along with the compressive residual stresses in the skin will impact on 

stability behaviour. The ANOVA analysis identifies that the strength of the HAZ material and 

the width of the HAZ have no significant influence on initial skin buckling. This is confirmed 

by examining the specimen stress levels at initial buckling, which are all within the elastic 

material range. 

 

5.3.2 Collapse 

Considering the results of the sixteen simulations, Table 4, the maximum variation in 

simulated specimen collapse load is 8 per cent (26.7 kN). This prediction range suggests that 

the collapse performance of the specimen is less sensitive to the weld effects and the range of 

magnitudes examined than initial skin buckling. All sixteen simulations experience specimen 

failure within the central zone, with a combined stiffener global flexure and local free flange 

instability mode. Figure 7 depicts the load versus end-shortening curves for the maximum 

(simulation number 1, Table 4) and minimum (simulation number 10) collapse load 

predictions. 

 

The bounding simulations (number 1 and 10) predicted collapse loads both compare well 

with the test results. Both simulations predict the same axial stiffness up to initial skin 

buckling. Beyond this region the curves diverge and the higher post-buckling axial stiffness 

of simulation 10 leads ultimately to a higher collapse load. The collapse modes of the two 

bounding simulations are also presented in Figure 7, where marginal differences in mode 

peak location and form can be observed.  
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The collapse ANOVA analysis reveals that the two dominant effects on specimen 

performance are the tensile magnitude of welding induced residual stress and the location of 

the effective weld joint centre, with individual contributions of 31.0 per cent and 11.9 per 

cent respectively, Table 5. The ANOVA analysis also identifies a significant level of 

interaction between the location of the effective weld joint centre and the width of the 

effective weld joint (25.3 per cent). 

 

The ANOVA analysis again identifies that the strength of the HAZ material and the width of 

the HAZ have no significant influence on specimen collapse. This is confirmed by examining 

the specimen local stress levels at collapse, which are within the initial plastic material range. 

Finally it is worth noting the significant magnitude of unidentified percentage contributions 

within the ANOVA collapse analysis (31.8 per cent in total). This reflects the complication of 

the post-buckling collapse analysis and confirms the need for a second phase parametric 

examination of the key effects, which is presented next.  

 

5.4 Parametric study 

The ANOVA analysis identifies three significant effects, namely the width of the effective 

weld joint, the location of the effective weld joint centre, and the tensile residual stress, which 

impact specimen initial buckling and collapse performance, Table 5. Of these identified 

effects the tensile residual stress is potentially the most difficult to control, whereas the 

location of the effective weld joint centre may be manipulated through the selection of 

welding process parameters [32-33] and welding direction (as a single pass FSW joint is not 

symmetric with respect to the seam line due to the rotation of the tool). The width of the 

effective weld joint can also be effectively manipulated via the design of the welding tool and 
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process parameters [32-33, 40]. Therefore in the parameter study a single discrete weld joint 

configuration has been studied, representing the mean of the physical joint characteristics 

under consideration (wweld=2taf and wcl=0). However, given the challenge of controlling 

residual stress the magnitude of the welding induced residual stress has been examined in 

detail at seven individual magnitudes (5%, 10%, 20%, 30%, 40%, 50% and 60% of the 

original parent material proof stress).  

 

5.4.1 Initial skin buckling 

The specimen initial skin buckling modes and loads for the parametric results are presented in 

Figure 8. Examining the results it can be seen that the buckling load decreases continuously 

with higher magnitudes of initial residual stress. There is an approximately linear relationship 

between the magnitude of welding induced residual stress and the buckling performance (a 

reduction of 89 N for each per cent increase in stress magnitude). Across the simulation series 

there is only small deviations in the predicted skin buckling wave forms, however as the 

residual stress is increased specimen lateral edge bay buckles become more visible, Figure 8. 

 

5.4.2 Collapse 

Figure 9 presents the collapse results of the parametric study. Examining the results it can be 

seen that there is only a very slight variation in the specimen collapse load with varying 

magnitudes of initial residual stress. No simple relationship is visible between the magnitude 

of initial residual stress and the collapse performance. Across the simulation series the 

maximum variation in simulated specimen collapse load is 3.3 per cent (10.9 kN). The 

variation present is visible in the predicted collapse modes, Figure 9, with small deviations in 

the ultimate buckling wave modes (with all simulations predicting central specimen failure, 

occurring by combined stiffener global flexure and local free flange instability).  



 

Page 22 of 40 

 

5.5 Summary 

The experimental work has demonstrated the potential strength of panel stiffener to skin 

joints under large panel buckling collapse behaviour, with weld joint integrity maintained 

through initial skin buckling, post-buckling, and ultimate panel collapse. The numerical 

simulations achieved excellent agreement with the specimen test behaviour and the results of 

the fractional factorial simulation series and ANOVA analysis determined the dominant 

effects influencing specimen strength as the width of the effective weld joint, the location of 

the effective weld joint centre, and the tensile residual stress. Overall the ANOVA 

computational analysis determined a relatively modest impact on strength for the full scale 

panel specimen examined and the effect magnitude ranges analysed (19 per cent for initial 

skin buckling and 8 per cent for collapse load). The parametric computational analysis 

confirmed the initial ANOVA findings and defined an approximately linear relationship 

between the magnitude of welding induced residual stress and the initial skin buckling 

performance. 

 

 

6.0 Modified strength design method 

As noted in the background section previous work [12] has proposed modifications to 

conventional aircraft panel analysis methods [19, 28-29] to acknowledge welding altered 

panel properties. To examine the accuracy of the previously published method on larger 

welded panel structures the ‘fully factored’ analysis method outlined in reference 12 was 

performed on the current specimen. Table 3 presents the analysis results. 
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The predicted specimen performance was reasonably close to the experimental results, with 

the initial buckling behaviour marginally under predicted (–3.8 per cent). In the case of 

collapse performance the under prediction was larger, –12.8 per cent, with the correct 

specimen failure mode predicted. The accuracy of these predictions is considered good given 

that the basic conventional analysis methods, into which the modifications are incorporated, 

contain empirical data and conservative simplifying assumptions which generally weaken 

accuracy [20]. In addition, the modified methods do not account for welding induced residual 

stresses or welding specific distortions. 

 

 

7.0 Conclusions 

Despite considerable developments on the manufacturing challenges associated with aircraft 

stiffened panel FSW assembly; significant questions remain with respect to compressive 

strength performance and design and analysis methods. To date studies have focused at 

smaller scale test specimens but herein a large scale welded aircraft panel with multiple 

lateral and longitudinal stiffener bays has been tested, verifying that the panel behaviour is 

not limited by weld joint failure. Moreover detailed FE simulations have determined the 

dominant effects influencing large scale panel strength as the width and location of the 

effective weld joint, and the tensile residual stress. However in general the computational 

analysis demonstrates the relatively modest impact that welding effects have on the strength 

of full scale panel structure, significantly lower than that demonstrated in preceding work on 

smaller panel specimens. Critically reviewing the herein work it is important to note that the 

residual stress distribution modelled within the FE simulations is a highly idealised 

representation of the initial stress state due to welding. The seeded stress state does not 

consider other prior part production stresses, such as skin rolling or stiffener extrusion. Given 
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the determined importance of the initial stress state a potential theme for future investigation 

is the sensitivity of residual stress idealisation on predicted panel buckling and collapse 

behaviour. 

 

In addition, a previously published strength analysis method has been validated on the large 

scale test specimen results, indicating accurate predictions are possible with simple hand 

calculations if the analysis methods acknowledge the altered panel properties. Such simple 

design methods are appropriate to initially size panel structure in which compression is the 

dominant load, however further investigation is required to expand the approach to the sizing 

of panels dominated by multi-axial loading. 

 

The experimental demonstration of normal buckling and collapse behaviour in a large panel 

structure, and the new understanding of panel strength sensitivity to welding process effects, 

combines to represent a significant step towards FSW assembled aircraft fuselages. 
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Table 1 – Test specimen welding process residual effect magnitudes plus fractional factorial 

analysis lower and upper boundary values. 

 

Welding process effect 
Test 

specimen 

Lower 

boundary 

Upper 

boundary 

Width of the effective weld joint (wweld) taf taf 3taf 

Location of the effective weld joint centre (wcl) -taf -taf +taf 

Effective strength of the HAZ material (kz)
 
 0.8 0.7 0.9 

Width of the HAZ (z) 6taf 4taf 8taf 

Tensile magnitude of welding induced residual 

stress (Frs)
 
 

60% 20% 60% 

 

 

Table 2 – Fractional factorial simulation series. 

 

FE 

simulation 

number 

wweld wcl 
Interaction 

(wweld)×(wcl) 
kz z Frs 

Interaction 

(wweld)×( Frs) 
Interaction 

(wcl)×( Frs) 

1 taf -taf 1 0.7 4taf 20% 1 1 

2 taf -taf 1 0.7 8taf 60% 2 2 

3 3taf +taf 1 0.9 4taf 20% 2 2 

4 3taf +taf 1 0.9 8taf 60% 1 1 

5 taf -taf 1 0.9 4taf 20% 1 1 

6 taf -taf 1 0.9 8taf 60% 2 2 

7 3taf +taf 1 0.7 4taf 20% 2 2 

8 3taf +taf 1 0.7 8taf 60% 1 1 

9 taf +taf 2 0.9 4taf 60% 2 1 

10 taf +taf 2 0.9 8taf 20% 1 2 

11 3taf -taf 2 0.7 4taf 60% 1 2 

12 3taf -taf 2 0.7 8taf 20% 2 1 

13 taf +taf 2 0.7 4taf 60% 2 1 

14 taf +taf 2 0.7 8taf 20% 1 2 

15 3taf -taf 2 0.9 4taf 60% 1 2 

16 3taf -taf 2 0.9 8taf 20% 2 1 
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Table 3 – Experimental and predicted specimen initial skin buckling and collapse loads. 

 

Specimen 
Experimental 

results 

Simulation 

prediction 

Modified static 

strength design 

method prediction 

Initial skin 

buckling (kN) 
89.7 91.0 86.3 

Specimen 

collapse (kN) 
336.8 342.2 293.8 

Initial buckling 

to collapse 

ratio (%) 

27 27 29 

Collapse mode 

Combined stiffener 

global flexure and 

local free flange 

instability 

Combined stiffener 

global flexure and 

local free flange 

instability 

Combined stiffener 

global flexure and 

local free flange 

instability 

 



 

Page 32 of 40 

 

Figure 1 – A Schematic of the lap joint welding process. 
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Figure 2 –Specimen design. 
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Figure 3 –Specimen mesh and skin-stringer joint idealisation. 
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Figure 4 –Specimen initial stress imperfection. 
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Figure 5 –Specimen initial geometric imperfection. 
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Figure 6 –Specimen ultimate collapse mode. 
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Figure 7 – Load versus end shortening curves and collapse modes for simulations 1 and 10 

(collapse mode deformation magnified by a factor of five to improve 

visualisation). 



 

Page 39 of 40 

 

Figure 8 – Specimen initial skin buckling parametric analysis results (mode plots depict only 

the specimen middle skin bays). 
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Figure 9 – Specimen collapse parametric analysis results (mode plots depict only the 

specimen middle skin bays, deformation magnified by a factor of five to improve 

visualisation). 

 


