
Log gf values for astrophysically important transitions Fe II

Deb, N. C., & Hibbert, A. (2014). Log gf values for astrophysically important transitions Fe II. DOI: 10.1051/0004-
6361/201322751

Published in:
Astronomy and Astrophysics

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Reproduced with permission from Astronomy & Astrophysics, © ESO (2013)

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:09. Sep. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/19954856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/log-gf-values-for-astrophysically-important-transitions-fe-ii(61fdee5e-1762-4fa4-b89a-0db2683c6d31).html


A&A 561, A32 (2014)
DOI: 10.1051/0004-6361/201322751
c© ESO 2013

Astronomy
&

Astrophysics

log gf values for astrophysically important transitions Fe II

N. C. Deb1,2,� and A. Hibbert1

1 School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
e-mail: a.hibbert@qub.ac.uk

2 Indian Maritime University, Kolkata Campus, P-19, Taratala Road, 700088 Kolkata, INDIA

Received 25 September 2013 / Accepted 31 October 2013

ABSTRACT

Aims. In a recent measurement, Meléndez & Barbuy (2009, A&A, 497, 611) report accurate log g f values for 142 important astro-
physical lines with wavelengths in the range 4000 Å to 8000 Å. Their results include both solar and laboratory measurements. In this
paper, we describe a theoretical study of these lines.
Methods. The CIV3 structure codes, combined with our “fine-tuning” extrapolation process, are used to undertake a large-scale
CI calculation involving the lowest 262 fine-structure levels belonging to the 3d64s, 3d7, 3d54s2, 3d64p, and 3d54s4p configurations.
Results. We find that many of the 142 transitions are very weak intercombination lines. Other transitions are weak because the dom-
inant configurations in the two levels differ by two orbitals.
Conclusions. The comparison between our log g f values and the experimental values generally shows good agreement for most of
these transitions, with our theoretical values agreeing slightly more closely with the solar than with the laboratory measurements. A
detailed analysis of the small number of transitions for which the agreement between theory and experiment is not as good shows that
such disagreements largely arise from severe cancellation due to CI mixing.

Key words. atomic data – relativistic processes – methods: numerical

1. Introduction

The Goddard High Resolution Spectrograph (GHRC) and the
more recent Space Telescope Imaging Spectrograph (STIS) on-
board the Hubble Space Telescope (HST) have produced many
iron lines, particularly lines of Fe II, over a wide wavelength
range. With the ground-based high-resolution fibre-fed echelle
spectrograph mounted on the 3.6-m telescope at ESO-La Silla
Observatory under the HARPS GTO scheme, new spectroscopic
parameters for different ions, including Fe II, are emerging.
In one such measurement, Sousa et al. (2008) has reported
log g f values for 263 Fe I and 36 Fe II weak lines and were
subsequently used to determine iron abundances. Meléndez &
Barbuy (2009) have presented log g f values for weak 142
Fe II lines. These solar and laboratory measurements, claimed
to be accurate and precise, included the Fe II lines measured
by Sousa et al. (2008). For the transitions in common in these
two independent measurements, there is generally good agree-
ment. In the present investigation, we have undertaken a large-
scale calculation in which we represent the wave functions of
the levels involved in these (and other) transitions by means
of configuration interaction (CI) expansions. We are then able
to compare our calculated oscillator strengths with the experi-
mental results given by Sousa et al. (2008) and by Meléndez &
Barbuy (2009). A preliminary report was given in the proceed-
ings of the XXVIIth ICPEAC conference (Deb & Hibbert 2012).

2. Method of calculation

Our group has undertaken a number of recent CI calculations of
transitions in Fe II. There are many similarities in the approaches

� Visiting Faculty.

we have adopted in these calculations, but the method of optimi-
sation of some of the orbitals has varied from calculation to cal-
culation. Corrégé & Hibbert (2005, 2006) used orbitals up to 7s,
7p, 6d, and 4f to study a number of transitions involving 3d6nl
and 3d54s2 or 3d54s4p states. One of the difficulties that arise
is the significant variation in the form of the optimal 3d func-
tion between different states. For transitions between levels of
these configurations, the 3d orbital that appears in the dipole ma-
trix elements is represented best by the Hartree-Fock orbital of
the 3d64s 6D state. Subsequently, we (Deb & Hibbert 2010a,b,
2011) studied forbidden transitions, but since many of the tran-
sitions involve the 3d7 levels, we chose the 3d function to be the
HF function for the 3d7 4F state. However, in all our calculations,
the remaining d-functions were used to account for the variation
in the form of the optimal 3d function in different configura-
tions. In the present work we have reverted to the orbitals given
by Corrégé & Hibbert (2005), since the transitions reported by
Meléndez & Barbuy (2009) mostly have the form 3d64s–3d64p.

The CIV3 program of Hibbert (1975), Hibbert et al. (1991)
has been used to carry out the present structure calculation of
Fe II. The form of the CI wave functions is, in LSJ coupling,

Ψ(J) =
M∑

i= 1

aiΦi(αiLiS iJ). (1)

In (1), Φi represents a configuration state function (CSF) which
is constructed from a common set of one-electron orbitals of the
form

1
r

Pnl(r)Yml
l (θ, φ)χms (σ) (2)

where Y is a spherical harmonic, χ a spin function (often denoted
by α or β for ms =

1
2 or − 1

2 , respectively), and the radial functions
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in (2) are expressed in analytic form as linear combinations of
normalised Slater orbitals (STOs):

Pnl(r) =
k∑

j= 1

c jnlη jnl(r), (3)

and where the STOs take the form

η jnl(r) =

[
(2ξ jnl)2I jnl+ 1

(2I jnl)!

]1/2

rI jnl exp(−ξ jnlr). (4)

Also in (1), αi represents the angular momentum coupling
scheme and other necessary labelling, and ai is the correspond-
ing component of the eigenvector, associated with this wave
function, of the diagonalised Hamiltonian matrix whose typical
element is Hi j = 〈Φi|H|Φ j〉.

We have sought to represent the 262 fine-structure levels
belonging to the 3d64s, 3d7, 3d54s2, 3d64p, and 3d54s4p con-
figurations with energies up to 88 615 cm−1. We treat this set
of configurations as our reference set. Beyond this energy, lev-
els of the 3d65p configuration begin to appear in the spectrum,
and some of the wave functions require careful treatment of
CI mixing, particularly between 3d65p and 3d54s4p. The work of
Corrégé & Hibbert (2005) was specifically focussed on this type
of mixing, but the transitions reported by Meléndez & Barbuy
(2009) involve levels lying well below any of the 3d65p lev-
els. Below energies of 88 615 cm−1, there are a few levels that
belong to the 3d64d and 3d65s configurations, but they do not
show any significant coupling with the even levels considered
in the present calculations. Similarly, because we have not in-
cluded 3d65p in the reference set, the mixing between 3d65p
and 3d54s4p will not be correctly represented.

Corrégé & Hibbert (2005, 2006) were able to include only
a few sextet and quartet states, in order to keep the configu-
ration size manageable, and so no doublets were included in
their calculation. Nor did they include the 3d7 configuration. In
the present calculation, we include all doublets, quartets, sex-
tets, and one octet belonging to the above configurations and be-
low 88 615 cm−1. The configuration set in the present calculation
is therefore significantly larger that those in Corrégé & Hibbert
(2005, 2006).

The set of configurations was chosen in two steps: (a) keep-
ing subshells up to 3p filled, we included single and double re-
placements of orbitals from the outer shells by any of the avail-
able orbitals, for each configuration in the reference set; (b) then
we included configurations formed by replacing up to two or-
bitals (in total) from the 3s and 3p subshells by available orbitals
up to n = 6. This produced a large number of separate configu-
ration state functions (CSFs).

For each LSπ symmetry, we first undertook a calculation in
LS coupling. We found that a significant number of the CSFs
had very small eigenvector components, so we deleted those
whose |ai| had a value less than 0.001. In previous calculations,
we found that such a cut-off made very little difference to the
calculated energies or to the eigenvector components of the re-
maining CSFs.

Relativistic effects were introduced in the Breit-Pauli ap-
proximation, with the following operators: mass correction and
Darwin terms, and a modified spin-orbit term Hso that allows for
both the nuclear spin-orbit effect and the main part of the spin-
other-orbit effect:

Hso =
α2

2
Z

N∑
i= 1

ζ(l)

r3
i

(li · si), (5)

Table 1. Number of CSFs used.

J Even Odd
0.5 7862 27 070
1.5 14 180 45 494
2.5 17 132 52 187
3.5 14 514 50 820
4.5 11 141 43 433
5.5 5620 31 340
6.5 1913 17 909
7.5 6569

where ζ(l) is a parameter that only depends on the l-value of
the interacting electrons in the Breit-Pauli Hamiltonian matrix
element. The values of the parameters ζ(l) were chosen so that,
for certain key CSFs, the matrix element of Hso reproduces the
sum of the matrix elements of the full spin-orbit and spin-other-
orbit operators. This process is then independent of the numbers
or types of the CSFs included in the CI expansions. The most
suitable parameters were found to be ζ(s) = 0.0, ζ(p) = 0.88,
ζ(d) = 0.59242, and ζ( f ) = 0.52908. The number of CSFs in-
cluded in our calculation, for each J-value, is given in Table 1.

Finally, we adopted our customary practice of “fine-tuning”,
whereby we make small adjustments to the Hamiltonian matrix
elements so as to bring the calculated energy differences (i.e.,
above the ground state) as closely as possible into line with ex-
perimental values.

3. Results and discussions

The oscillator strengths determined by Meléndez & Barbuy
(2009) are all weak. Most correspond either to intercombination
lines (E1 transitions that in LS coupling would be zero but be-
come non-zero when spin-orbit mixing is introduced, resulting
in the upper and lower levels of the transitions being described
by wave functions containing CSFs with the same J but differ-
ent L or S) or to transitions in which the dominant CSFs of the
two levels differ by more than one orbital. In the latter case, a
single configuration approximation would again result in a zero
oscillator strength, assuming orthogonal orbitals, but configura-
tion mixing makes a non-zero result possible. Moreover, in the
calculation of many of these transitions, configuration mixing
results in cancellation of contributions from different CSFs, and
in some cases this cancellation is substantial, lowering the oscil-
lator strength by one or occasionally more orders of magnitude.

An interesting and important example is provided by the
three transitions of multiplet 42. These are usually described
as 3d54s2 6S5/2–3d64p 6Po

J , with J = 3/2, 5/2, 7/2: a notionally
two-electron change between upper and lower levels. The non-
zero nature of the calculated oscillator strength arises because
of mixing of the dominant CSF of the lower level with 3d54p2

and the dominant CSF of the upper level with 3d54s4p CSFs,
primarily the latter. These additional CSFs have direct dipole in-
teractions with the dominant CSF of the opposite parity and are
the main contributors to the oscillator strengths. The calculated
oscillator strengths are therefore very sensitive to the degree of
this mixing.

Some comparative results for the three transitions are dis-
played in Table 2. Our work is in very close agreement with the
experimental determinations of Meléndez & Barbuy (2009). The
earlier calculations of Raassen & Uylings (1998, 1999) give g f
values that are almost a factor of two lower than ours, and
are somewhat similar to the values given previously by Kurucz
(1988) and in later revisions of his database, though these are
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Table 2. log g f values for the multiplet 42 transitions.

Upper state
Source 6Po

3/2
6Po

5/2
6Po

7/2

This work –1.29 –1.12 –1.03
Meléndez & Barbuy (2009) –1.26 –1.10 –1.00
Kroll & Kock (1987) –1.24 –0.87
Schnabel et al. (2004) –1.21 –0.87
Raassen & Uylings (1999) –1.50 –1.35 –1.25
Kurucz (1988) –1.56 –1.40 –1.30
Kurucz & Bell (1995) –1.32 –1.22 –0.87

even lower. On the other hand, the current (2013) tabulation
on the CD of Kurucz & Bell (1995) shows values that have
been substantially revised; although these are closer to ours, the
ratios of the three oscillator strengths (or differences between
log g f values) do not match either those of other authors or of
the present calculation. Our work therefore shows a clear pref-
erence for the results of Meléndez & Barbuy (2009), and the
closeness of the agreement is encouraging, given the sensitivity
to CI mixing in our work.

The full comparison between our results and the experimen-
tal results of Meléndez & Barbuy (2009) is shown in Table 3.
The close agreement between theory and experiment seen for the
multiplet 42 continues for many of the 142 transitions displayed
in Table 3, even though the calculated values involve substan-
tial CI mixing and often CI cancellation. For some transitions,
the agreement between calculated and experimental oscillator
strengths is within 10%, though for many transitions the results
differ by around 25%, which is still good for such weak tran-
sitions. In any case for some transitions, this size of difference
occurs between the results of Meléndez & Barbuy (2009) and of
Sousa et al. (2008). For some, though, there is a difference of
about a factor of two, while in two cases, there are greater dis-
crepancies: at λ6433, the difference is two orders of magnitude;
at λ6508, the difference is more than four orders of magnitude.

We briefly examine three specific transitions, to see why
such a variation in difference occurs.

3.1. λ6416.91 Å

For this transition, our result is almost identical to that of
Meléndez & Barbuy (2009). It corresponds to the transi-
tion 3d6(3D)4s 4D5/2–3d6(5D)4p 4Po

5/2, with the levels labelled
by the dominant CSF in each case. With the assumption of or-
thogonal orbitals, the oscillator strength would be zero, because
of the different resultant angular momenta of the two 3d6 cores.
The actual non-zero result of our calculations arises through the
mixing of 3d6(5D)4p 4Po

5/2 with 3d6(3D)4p 4Po
5/2, even though

the a2
i for the second CSF is only 0.02. This second CSF in the

odd parity state has a direct dipole interaction with the dominant
even parity CSF. All other such interactions are minor in compar-
ison. The agreement with the experimental result suggests that
our fine-tuning process is successful in obtaining mixing coeffi-
cients that are reasonably accurate.

3.2. λ4515.33 Å

This transition corresponds to 3d6(3F2)4s 4F5/2–3d6(5D)4p
4F◦5/2. Our oscillator strength is more than double the value of
Meléndez & Barbuy (2009). The lower level exhibits strong

mixing with 3d6(3F1)4s 4F5/2 (the 3d cores can also be written
in terms of seniority as 3

4F and 3
2F). This mixing gives contribu-

tions to the dipole matrix element that are additive, and if the
strength of the mixing were in error, there would be little effect
on the total. However, these contributions arise from the mix-
ing of both 3d6(3F2)4p 4F◦5/2 and 3d6(3F1)4p 4F◦5/2 in the wave
function for 3d6(5D)4p 4F◦5/2. Again, this mixing has an additive
effect on the oscillator strength, which makes it less sensitive to
errors in the CI mixing coefficients. Other mixing in the lower
level with 3d6(5D)4s 4D and 3d7 4F has a smaller but again non-
cancelling effect on the oscillator strength. It would seem that
the calculated oscillator strength could only be reduced through
the CI mixings being too strong, though changes by a factor of
two would be surprising.

3.3. λ6508.12 Å

This is the transition for which our oscillator strength is four
orders of magnitude below the experimental value determined
by Meléndez & Barbuy (2009). It corresponds to the transi-
tion 3d6(5D)4p 4Fo

5/2–3d54s2 4D3/2. There are two orbitals that
are different in the dominant CSFs of the two levels so that again
the single configuration result for the oscillator strength would
be zero: the non-zero result is obtained through CI mixing.

To compare the effects of mixing arising from different
CSFs, it is convenient to define

Fi j =

(
2ΔE
3gl

)1/2

al
ia

u
j

〈
Φl

i|Op|Φu
j

〉

where l and u denote the lower and upper levels of the transition,
ΔE is the transition energy, and Op is the appropriate dipole op-
erator. Then the oscillator strength is given simply by

f =

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i

∑
j

Fi j

⎞⎟⎟⎟⎟⎟⎟⎠
2

.

For this particular transition, the main contributions to the dipole
integral are displayed in Table 4.

There is severe cancellation within the final four inter-
actions owing to the interaction between 3d6(5D)4p 4F with
3d6(5D)4p 4D, resulting in a net contribution of 0.009 to the to-
tal of 100Fi j. A similar degree of cancellation occurs amongst
the first three interactions listed, with a combined contribution
of −0.049, resulting in a total of −0.040 for these seven interac-
tions, which is a factor of more than 20 smaller than the largest of
the individual contributions. At this point, other contributions of
a similar magnitude to the total of these seven make a significant
contribution: with the seven alone, the oscillator strength would
be 1.6 × 10−7, whereas when all contributions are included, the
oscillator strength reduces still further to 2.1 × 10−9.

One possible source of error in the calculation is therefore
the loss of significant figures arising from these cancellations.
Moreover, the relevant mixing coefficients are themselves small.
Their values are shown in Table 5.

The magnitude of at least one of the ai in each of the key
interactions is itself very small, and is perhaps open to change if
more CSFs were to be added to the wave function expansions. In
view of the extent of the cancellation effects, the calculated os-
cillator strength for this particular transition is much less reliable
than those of other transitions in Table 3.
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Table 3. Comparison of our log g f values with solar (S) and laboratory (L) measurements of Meléndez & Barbuy (2009).

λ (Å) MB Present

4648.94 –4.58S –4.45
4670.18 –4.09S –4.08
4720.15 –4.48S –3.92
4825.74 –4.87S –4.83
4831.13 –4.89S –4.79
4833.19 –4.64S –4.55
4833.86 –5.11S –5.02
4839.99 –4.75S –4.66
4855.55 –4.46S –4.27
4871.27 –4.25S –3.93
4893.82 –4.21S –4.11
4924.92 –4.90S –4.80
4991.12 –4.55S –4.05
4993.35 –3.62S –3.50
5000.74 –4.61S –4.00
5036.92 –4.67S –4.53
5100.66 –4.17S –4.07
5120.35 –4.24S –4.12
5132.66 –4.08S –3.87
5136.80 –4.43S –4.25
5146.12 –3.91S –3.87
5150.94 –4.48S –4.38
5154.40 –4.13S –4.08
5161.18 –4.47S –4.42
5171.64 –4.54S –4.70
5238.62 –5.11S –5.12
5256.93 –4.06S –4.07
5284.10 –3.11S –3.07
5432.96 –3.38S –3.34
5534.84 –2.75S –2.56
5591.36 –4.44S –4.36
5991.37 –3.54S –3.52
6084.11 –3.79S –3.72
6113.32 –4.14S –4.08
6116.05 –4.67S –4.63
6129.70 –4.64S –4.55
6147.74 –2.69S –2.59
6149.25 –2.69S –2.62
6150.09 –4.73S –4.69
6179.38 –2.62S –2.57
6184.92 –3.72S –3.45
6233.53 –2.51S –2.85
6239.95 –3.41S –3.34
6247.35 –1.98S –2.15
6247.55 –2.30S –2.19
6248.90 –2.67S –2.63
6317.98 –1.96S –2.08
6331.95 –1.88S –1.97

λ (Å) MB Present

6371.12 –3.13S –4.19
6383.72 –2.24S –2.39
6385.45 –2.59S –2.58
6416.91 –2.64S –2.63
6433.81 –2.37S –4.41
6442.95 –2.44S –2.45
6446.41 –1.97S –1.84
6455.83 –2.92S –3.06
6456.38 –2.05S –1.94
6482.20 –1.78S –1.71
6491.24 –2.76S –2.84
6493.03 –2.55S –2.61
6506.33 –2.68S –2.66
6508.12 –3.45S –7.90
6517.01 –2.73S –2.74
6562.20 –2.83S –2.84
6586.69 –2.74S –2.73
6598.30 –3.05S –3.09
7301.56 –3.63S –3.41
7479.69 –3.61S –3.34

4087.28 –4.57L –4.23
4122.66 –3.26L –2.94
4128.74 –3.63L –3.54
4173.46 –2.65L –2.59
4178.86 –2.51L –2.30
4233.17 –1.97L –1.94
4258.15 –3.33L –3.26
4273.32 –3.38L –3.18
4278.76 –3.73L –3.60
4296.57 –2.92L –2.61
4303.17 –2.56L –2.45
4351.76 –2.25L –2.15
4369.41 –3.65L –3.09
4384.31 –3.44L –3.39
4385.38 –2.66L –2.59
4413.60 –3.79L –3.74
4416.83 –2.65L –2.52
4472.92 –3.36L –3.19
4489.18 –2.96L –2.55
4491.40 –2.71L –2.47
4508.28 –2.44L –2.22
4515.33 –2.60L –2.24
4520.22 –2.65L –2.31
4522.63 –2.25L –2.06
4534.16 –3.28L –3.08
4541.52 –2.98L –2.96
4549.19 –1.62L –1.86

λ (Å) MB Present

4549.47 –2.09L –1.95
4555.89 –2.40L –2.14
4576.34 –2.95L –3.19
4582.83 –3.18L –2.95
4583.83 –1.93L –1.78
4601.37 –4.48L –4.34
4620.52 –3.21L –3.67
4625.89 –2.35L –2.41
4629.33 –2.34L –2.19
4635.31 –1.42L –1.75
4656.98 –3.60L –3.51
4666.75 –3.28L –3.03
4731.45 –3.10L –2.98
4923.92 –1.26L –1.29
5018.44 –1.10L –1.12
5169.03 –1.00L –1.03
5197.57 –2.22L –2.17
5234.62 –2.18L –2.16
5264.81 –3.13L –2.79
5276.00 –2.01L –2.08
5316.61 –1.87L –1.85
5316.78 –2.74L –2.38
5325.55 –3.16L –3.28
5337.73 –3.72L –3.42
5362.86 –2.57L –2.28
5414.07 –3.58L –3.35
5425.25 –3.22L –3.30
5525.12 –3.97L –3.72
5627.49 –4.10L –3.95
5657.93 –4.03L –3.76
5725.96 –4.76L –4.56
5732.72 –4.60L –4.38
5813.67 –2.51L –2.46
6238.39 –2.60L –2.51
6369.46 –4.11L –4.06
6432.68 –3.57L –3.51
6516.08 –3.31L –3.25
7222.39 –3.26L –3.16
7224.48 –3.20L –3.06
7308.07 –3.03L –2.92
7310.21 –3.37L –3.31
7320.65 –3.23L –3.13
7449.33 –3.27L –3.33
7462.40 –2.74L –2.68
7515.83 –3.39L –3.39
7655.48 –3.56L –3.55
7711.72 –2.50L –2.49

4. Conclusions

In the previous section we discussed three exemplars of tran-
sitions, all of which (as E1 transitions) might normally be ex-
pected to be strong but which in fact are weak, sometimes very
weak. The type of accuracy that can be expected of theoreti-
cal results depends, not on the wavelength of the transition, but
on the make-up of the wave functions of the levels involved in

each transition and, in particular, on the angular momenta of
the 3dn cores.

The characteristic feature of transitions such as the
6416.91 Å line (Sect. 3.1) is that the 3d6 cores, while having dif-
ferent LS symmetries in the 4s and 4p states, are mixed mainly
with CSFs containing the other symmetry. That is, the main
mixing in the 3d6(L1S1)4s level is with 3d6(L2S2)4s, while the
one for 3d6(L2S2)4p is with 3d6(L1S1)4p. The close agreement
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Table 4. Main contributions Fi j to the dipole integral in line
λ6508.12 Å.

Lower level CSF Upper level CSF 100Fi j

3d6(5D)4p 4F 3d6(5D)4s 4D 0.232
3d5(4D) 4s4p(1P) 4F 3d54s2 4D –0.863
3d5(4D) 4s4p(1P) 4D 3d54s2 4D 0.582

3d6(5D)4p 4F 3d6(5D)4s 4D –0.115
3d6(5D)4p 4F 3d5(4D)4p2 4D –0.163
3d6(5D)4p 4D 3d6(5D)4s 4D 0.119
3d6(5D)4p 4D 3d5(4D)4p2 4D 0.168

Table 5. Significant CI mixing coefficients relevant to the line
λ6508.12 Å.

CSF ai

3d6(5D)4p 4D –0.43918
3d5(4D) 4s4p(1P) 4D 0.02559
3d6(5D)4p 4F 0.83224
3d5(4D) 4s4p(1P) 4F 0.02124

3d6(5D)4s 4D 0.00894
3d6(5D)4d 4D 0.00110
3d5(4D)4s2 4D –0.92205
3d5(4D)4p2 4D 0.16055

between our oscillator strengths and those of Meléndez &
Barbuy (2009) encourages us to believe that, for such lines, we
have obtained this mixing accurately and therefore also the os-
cillator strengths.

The characteristic feature of transitions such as 4515.33 Å
(Sect. 3.2) is that, in addition, the core angular momenta L1S1
and/or L2S2 can occur with more than one seniority, and this
introduces a further CI mixing that is usually very strong (in
that case 3F2 and 3F1). Our experience is that such mixing is

difficult to achieve accurately. When this occurs, we would be
more hesitant about the accuracy of the oscillator strengths.

Lines such as 6508.12 Å (Sect. 3.3) are characterised by a
two-electron change between the main CSFs of the two levels
(3d4p→ 4s2). Frequently for such lines there is severe cancella-
tion in the dipole matrix elements due to strong CI mixing, giv-
ing rise to calculated oscillator strengths that can be abnormally
low (by several orders of magnitude). Then, different calcula-
tions may give very different results, pointing to a need to un-
dertake more extensive and perhaps more focussed calculations
for such lines.

In Table 3 we have not given the usual labels for the levels in-
volved in the transitions. In the near future, we plan to submit for
publication our full set of results, comprising oscillator strengths
of all transitions between levels of the configurations 3d64s, 3d7,
3d54s2, 3d64p, 3d54s4p, and also 3d65p. The labels of the lower
and upper levels of each transition will then be specified.
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