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Abstract

We consider a series of problems from the field of biological fluid mechanics, in particular
the properties and optimisation of human sperm motility, and the fluid flow in the oviduct.

Recent experimental data shows a modulation in the beat pattern of human sperm
given a change in the viscosity of the medium. As an initial approach, we consider and
refine a sinusoidal planar model by introducing a new envelope function with parame-
ters to specify the distal component of the beat pattern and to account for non-constant
wavenumber; we investigate the properties of beat pattern configurations such as pre-
dicted cell velocity, power consumption and efficiency. The modelling of self-propelled
flagellated micro-organisms at low Reynolds number is achieved using the powerful sin-
gularity method and slender-body theory.

Results using the modified envelope parameter model agree qualitatively with exper-
imental data to show that a balance between velocity, drag and power consumption is a
factor in determining a beat pattern configuration. Limitations of the model are discussed
including the underlying assumption that the beat pattern is a modified sinusoidal wave
which limits the range of permissible patterns.

A new method for specifying beat pattern configurations is developed arising from
analysis of experimental data using the shear-angle. The resulting two parameter model
encompasses a wide range of beat pattern observed in human sperm in vitro. The two
parameter model is considered and various modes of efficient beating are illustrated. By
considering the bending moment density (which scales with viscosity) we offer an expla-
nation for the viscosity-dependent modulation of human sperm beat. Further extensions
and applications of the new model are proposed.

We also consider the flow in the oviduct as a result of peristaltic pumping and ciliary
activity. A general method for considering peristaltic flows is presented and a number
of novel features are observed through an asymptotic and dynamical systems analysis.
The approach adopted is to consider the underlying muscular peristalsis with the ciliary
activity as a small perturbation. Analysis includes the use of local Lyapunov exponents
to quantify the levels of mixing. Biological implications of the results are discussed.
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Chapter 1

Introduction

1.1 Motivation

The application of fluid dynamics’ theory to physiological and biological problems is an

interesting and broad area of research owing to the large diversity of possible systems.

Fluid dynamics, combined with kinematics and experimental work enables us to under-

stand and model biological and physiological systems across a broad range of scales –

from the movement of animals and the flight of birds to the motion of micro-organisms

(see Lighthill (1975))

The effective motility of human sperm is a key factor in human reproduction; the

largest causes of infertility in couples (24%) is attributed to deficiencies or abnormal

functionality of sperm (Hull et al., 1985). One in seven couples will have difficulty con-

ceiving naturally (Templeton et al., 1990). To understand sperm motility we can study

sperm experimentally in vitro – the resulting experimental data can then be studied in its

own right or, as in this thesis, be combined with kinematics and fluid dynamics enabling

further investigations to take place to gain an insight into the physics.

The applications of manipulating sperm motility in the laboratory are important in

assisted conception (such as in in vitro fertilisation), in ‘sperm sorting’ (distinguishing

those sperm carrying the male chromosome from those carrying the female one) and, if

sperm motility could be artificially stopped in a temporary and reversible manner, male

contraception.
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Katz et al. (1978) and Ho and Saurez (2001) found experimentally that for human

sperm swimming in cervical mucus the bending of the flagellum was confined to the distal

portion of the flagellum and had a lower amplitude and wavelength compared to those

swimming in a Newtonian medium. Moreover Ishijima et al. (1986) and Smith et al.

(2008b,c) illustrate that in different viscosities of Newtonian media, different beat pat-

terns can be observed in vitro – this is our key motivation. Figure 1.1 illustrates two

photographs taken from experimental data (Smith et al., 2008b): (a) taken at (approx-

imate) 10−3Pa · s viscosity in Earle’s balanced salt solution where the flagellum exhibits

high amplitude ‘whip-like’ beating with long wavelength, whilst (b) at higher viscosity,

(approximate) 1.3Pa · s, the wavelength is shorter, the amplitude is lower and the beat

pattern takes on a meandering form, with the majority of the beating in the distal portion

of the flagellum. The beat patterns observed by Smith et al. (2008c) for high viscosity

Newtonian media correspond to the finding of Katz et al. (1978), Ishijima et al. (1986)

and Ho and Saurez (2001) in cervical mucus. A number of different viscosities are encoun-

tered by human sperm during the natural conception process and in in vitro situations

and thus it is important to understand the variation in beat pattern observed (Suarez and

Pacey, 2006).

The motivation for the first part of this thesis is the modulation in beat pattern ob-

served by changing the viscosity of the fluid medium in which the sperm are swimming.

By combining experimental data with new mechanisms for specifying the beat pattern

and utilising the powerful technique of singularity modelling we shall discuss the differ-

ence between beat patterns observed in vitro and illustrate mechanisms that might cause

modulation between beat patterns.

Another area of interest is the flow in the female reproductive tract. Much work has

been carried out on physiological peristaltic flows (see literature review §1.4.2); however,

recent work relating to the non pregnant uterus and oviduct (such as Eytan and Elad
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(a) Watery Medium (b) More Viscous Medium
approximately 10−3Pa · s approximately 1.3Pa · s

Figure 1.1: Typical human sperm beat patterns observed at different viscosities: (a) ap-
proximate viscosity of 10−3Pa · s in Earle’s balanced salt solution (b) Earle’s medium with
methylcellulose (sigma MO512, nominal viscosity 4000cp at 20◦C) to give an approxi-
mate viscosity of 1.3Pa · s. Notice that at the lower viscosity (a) there is a high amplitude
whip-like beat with long wavelength, whilst (b) at the higher viscosity the beat pattern
is meandering, with lower amplitude and shorter wavelength.

(1999); Eytan et al. (1999)) has often neglected the role of the cilia despite the fact that

Blake et al. (1982) showed that they alone were sufficient to drive a fluid flow in an oviduct.

We shall therefore consider a model which accounts for both the underlying peristalsis

flow and a small perturbation designed to model the ciliary flow.

In the remainder of this chapter we outline the underlying physiology of sperm cells,

the ovum and cilia and then discuss experimental and data processing methods. We

complete the chapter with an overview of the fundamental fluid dynamics experienced at

low Reynolds numbers and conduct a literature review of previous studies in the areas of

interest.

1.2 Physiology and in vivo processes

Fauci and Dillon (2006) describe the human reproductive system as a ‘complex fluid-

structure interaction’ which relies on a intricate interplay of co-ordinated muscular con-

tractions, ciliary beating, chemical signalling and the motion of sperm. A failure of just
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one of these processes can result in the inability of a couple to conceive. Some of the

mechanisms that are involved in conception include the active swimming of motile sperm

and the passive motion of sperm cells and ova by the muscular contraction and ciliary

beating of the uterus and the oviduct. Each of the different mechanisms, through the

forces produced, causes a fluid flow. Many of the surfaces in question are elastic and so

will respond to the forces applied.

We shall now briefly outline some of the important physiology and in vivo processes

involved in human reproduction.

1.2.1 The sperm cell

Following copulation between 50 and 400 million mature sperm cells maybe found in

semen, in the female reproductive tract at the top of vagina near the cervix; the figure

varies significantly in an individual and between individuals and is dependent on a large

number of factors (de Jonge and Barratt, 2006; Chen et al., 2006). Compared to the

fact that only one cell is required for successful fertilisation, the number of cells in an

ejaculation might sound high, however, there is considerable debate in the biological

community about the normality of sperm cells: Chen et al. (2006) recorded (figures in

brackets are standard deviations) in a sample of 23 men, an average sperm concentration

of 125.5 (92.3) million cells per millilitre; 45.6% (22.2) of which were motile, 28.4% (15.2)

displayed progressive motility and only 8.0% (4.6) displayed normal morphology. Notice

that the standard deviations are large, highlighting the variation across the population.

The definition of what is a normal sperm is somewhat subjective. Kruger et al. (1988)

set strict guidelines (which were used by Chen et al. (2006)) defining an abnormal sperm

cell to be one which has a head, midpiece or tail defect. A sperm cell is considered normal

if the head has a smooth oval configuration with a well-defined acrosome over 40%-70% of

the sperm head and a midpiece and tail without abnormality. The length of the normal

head is 5 to 6µm, with a diameter of 2.5 to 3.5µm. Midpiece defects include debris in the
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Head 5 − 6µm

Neck

Midpiece 7µm Principal Piece 40 − 50µm

End Piece 5 − 10µm

Contains acro-
somal cap and
Genetic Material

Spiral Mitochondria Axoneme

Figure 1.2: Microstructure of a mature human sperm. Lengths are not shown to scale.
Based upon a diagram in Debuse (1998)

neck or a midpiece of more than 30% of the total length. Other abnormalities include

heads which are round, small, large, tapered or cells with two heads and/or tails. A

normal flagellum is around 50-60µm. The micro-structure of a normal human sperm cell

is illustrated in Figure 1.2.

The World Health Organisation (1999), state that greater than or equal to 30% of

sperm must display normal morphology for the sample to be considered fertile.

During spermatogenesis, the transport of the immature sperm has many distinct

phases in which different mechanisms are seen to play important roles (Kay and Robert-

ston, 1998). From the creation of a sperm cell, the still immotile cells are transported

through the efferent ductules by a combination of pressure gradient, ciliary activity and

peristalsis. The sperm reach the epididymis where after 12 days they achieve maturity

and then become motile.

1.2.2 The ovum

A human ovum is 200µm in diameter and is initially encapsulated in a cumulus consisting

of follicular fluid and granulosa cells. The size of the cumulus can be as much as 700µm

(Debuse, 1998), and this means that in some areas of the oviduct the ovum is close to,
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Figure 1.3: Anterior view of the uterus. The oviduct consists of three sections, from
nearest the uterus, the intramural, isthmic and ampullary regions. Taken from Eytan
and Elad (1999).

or in contact with, the ciliated surfaces of the oviduct. The inner layer around the egg is

known as the zona pellucida. The zona is a membrane which surrounds the ovum through

which the capacitated sperm must pass to reach the centre of the egg. It is thought that a

variety of chemical and mechanical mechanisms combine to breakdown the cumulus and

the zona pellucida to allow the sperm to penetrate the ovum (Baltz et al., 1988).

1.2.3 Anatomy of the oviduct

The oviducts, or fallopian tubes, are muscular tubes which extend from the cornua of the

uterus curving to the ovaries (Debuse, 1998). From the uterus, the oviduct consists of the

uterine-tubular junction (which may be closed, or occluded with mucus (Jansen, 1980)),

the isthmus, the ampulla, and the infundibulum. Figure 1.3 illustrates the oviducts in

relation to the uterus. The isthmus of the oviduct, in cross-section, is a highly convoluted

structure as illustrated in a cross section in Figure 1.4.

The mucosa of the oviduct is a ciliated surface which secretes mucus into the lumen of

the oviduct. This mucus serves to nourish the fertilised ovum as it is carried towards the
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Figure 1.4: Typical cross section of the human oviduct in the Isthmic region. The bar is
250µm in length. Taken from University of Kansas Medical Center (2006).

uterus by the action of the cilia and peristalsis (Eytan et al., 2001b). Unlike sperm cells,

the ovum has no self-propulsion mechanism and thus it is dependent on external factors

to move it through the female tract.

An interesting study by Sjösten et al. (2004) found that patients, after clinical exami-

nation with powdered gloves, were found to have accumulations of starch powder particles

at the ovarian end of the oviduct, following removal of the genital tract twenty-four hours

later as part of a hysterectomy. As we noted previously, ciliary and peristaltic effects

move the mucus towards the uterus; these findings suggest there is also a flow from the

cervix towards the ovaries.

It is also worth noting that the ‘text-book’ image of the female reproductive system

suggests open spaces which are filled with fluid. This image is a result of the need for

clarity in the representation, however, in reality most surfaces are close to one another;

Eytan et al. (2001b) gives the passive width of the uterus from anterior to posterior

as 0.488 ± 0.187mm. An analogy of the fluid forming the filling of a sandwich is more

appropriate.
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Figure 1.5: Sperm motility patterns. (a) Forward progressive; (b) hyperactivated; (c)
transitional. From Kay and Robertston (1998).

1.2.4 Beat patterns and internal structure

Three general types of sperm motility have been observed in vitro (Kay and Robertston,

1998). Figure 1.5(a) demonstrates the so-called normal forward progressive motility as-

sociated with uniform, symmetric, low-amplitude flagellar beating. Figure 1.5(b) shows

a star shaped trajectory displayed by non-progressive hyperactivated sperm with a larger

amplitude, asymmetric beat pattern. The third type (Figure 1.5(c)) can be thought of as

being in between the normal pattern and the hyperactivated pattern and is characterised

by high frequency, high amplitude flagellar beating that does result in forward motion.

Suarez et al. (1991) suggest that hyperactivation can confer a mechanical advantage upon

sperm in the oviduct, where they encounter viscous oviductal fluid or viscoelastic cumulus.

However, Kay and Robertston (1998) observed hyperactivation as being a non progressive

motility pattern; thus the true mechanism and function of hyperactivation is not known.

We have already observed that modulation of beat pattern based on viscosity (Smith

et al., 2008c) and have noted a similar result in non-Newtonian cervical mucus (Ho and

Saurez, 2001; Katz et al., 1978).

One early model for sperm motion was proposed by Machin (1958), who considered

the propulsion of sperm by a mechanism of waves being propagated along a (passive)

elastic flagellum. This elastic beam model was shown to be insufficient for the description
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Figure 1.6: The internal structure of the axoneme - part of the flagellum. Illustrating the
‘9 + 2’ structure of microtubules. Taken from Dillion et al. (2006).

of the beat patterns which were observed in vitro, and thus it was postulated that an

internal mechanisms was required to propel the sperm’s flagellum. It is now understood

that the flagellum of sperm has an internal mechanical structure that drives the motion:

the mechanism consists of nine outer dense fibres which lie between the 9 + 2 axoneme

and the mitochondrial sheath. This arrangement is illustrated in Figure 1.6.

1.2.5 Sperm travelling through the female tract

The sperm traverse the female reproductive tract to reach the ovum in the oviduct. The

first obstacle encountered by the sperm is cervical mucus, which forms a plug between

the vagina and the uterus, partly to protect the uterus from bacterial infection. Cervical

mucus is composed of fibrillar sub-units which normally arrange so that the fibrils are

aligned parallel to the direction of travel from the vagina to the uterus (Ceric et al., 2005).

However, cervical mucus is a non-Newtonian fluid (Wolf et al., 1977a) which, dependent on

the stage of the female menstrual cycle, varies in viscosity and fibril alignment; oestrogen

promotes watery mucus which facilitates sperm transport, whereas progesterone results

in a mucus which is hostile to sperm motility (Wolf et al., 1977b). Oestrogen levels peak

at the time of ovulation making sperm penetration easier at this time. Around 10% of

sperm deposited in the vagina pass into the uterus through the cervical mucus (Eisenbach,
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2004; Scott, 2000). The cervix is typically 3cm in length (Sherwood, 2003).

After penetrating the cervical mucus, the sperm travel through the uterus toward one

of the two oviducts - a distance of approximately 6cm (Sherwood, 2003); the oviducts are

lined with mucus producing cells, called mucosa and are ciliated; mucus flows towards

the uterus through a combination of ciliary and peristaltic actions (Eytan et al., 2001b).

Therefore the sperm may need to ‘swim’ against this fluid flow in order to reach the ovum.

Katz et al. (1989) highlight the different mechanisms that a sperm has to use to traverse

the female tract, and suggest that sperm move along the oviduct walls to reach the ovum.

Mucus in the oviduct and the uterus both carries and nourishes the fertilised ovum,

and may play a role in the capacitation of sperm before fertilisation (Zaneveld et al.,

1991). (Capacitation is a process sperm undergo to enable them to penetrate the zona

pellucida and thus fertilise the ovum (Cohen-Dayag et al., 1995)). Uterine fluid is less

viscous than cervical mucus (Eytan and Elad, 1999; Karni et al., 1971), however there is

evidence that the isthmuses are occluded with mucus plugs during certain stages of the

reproductive cycle (Jansen, 1980). It is clear therefore that a successful sperm will need

to be motile in fluids of differing viscosities. Figure 1.7 demonstrates the different stages

of sperm motility through the female reproductive tract.

The precise mechanism by which sperm reach the ovum is an open question – although

Fauci and Dillon (2006) attribute it mainly to fluid dynamics as opposed to chemotaxis or

chemokinesis (discussed in Ralt et al. (1994); Eisenbach (1999, 2004); Spehr et al. (2003)).

The concept of a number of genetically best sperm was devised by Cohen and Werrett

(1975). In their experiments it was demonstrated, through the breeding of rabbits, that

sperm which naturally reached the oviduct in a first animal would disproportionately reach

the ovum in a second animal when they were mixed back with a normal ejaculate. The

reason Cohen and Werrett (1975) suggest for such a mechanism in which certain sperm are

favoured, is that in the total sperm population the majority will have a genetic error which

10



Figure 1.7: Diagram showing the different stages of sperm transport through the female
reproductive system: (A) Sperm are deposited in the vagina and some (∼ 10%) travel
through the cervical mucus. (B) Sperm move along the ciliated surfaces of the oviduct.
(C) Only a few sperm will reach the upper range of the tract where fertilisation occurs.
(D) The geometry of the oviduct is convoluted and ciliated. From Suarez and Pacey
(2006).

has occurred during meiosis and only those genetically competent sperm should fertilise

the ova (and these are the ones with the swimming advantage). There is no data for

such behaviour in human sperm; on the contrary the success of ICSI (Intro-Cytoplasmic

Sperm Injection) suggests that the majority of sperm are genetically viable. In ICSI a

sperm is selected in vitro from the ejaculate without knowledge of its genetic makeup and

the sperm’s head is injected directly in to the ova; the sperm need not be motile (HFEA,

2007).

Clinical data suggests that there are about a dozen sperm in the vicinity of the ovum at
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Figure 1.8: A pseudo-coloured electron microscope picture of a sperm cell penetrating the
zona pellucida of an ovum, taken from Nilsson (1990)

the time of fertilisation (de Jonge and Barratt, 2006; Suarez and Pacey, 2006). Figure 1.8

shows an electron microscope picture of a sperm cell penetrating the zona pellucida.

1.2.6 Physiology of cilia

An individual cilium can be thought of as a hair-like projection from the surface of a

cell, which performs whiplash like movements by which fluid is propelled (Blake, 1971;

Blake and Sleigh, 1974). If a surface is covered in many cilia, their collective action can

be used to maintain a flow past the surface or to propel a micro-organism through a fluid

medium. The movement of cilia can be thought of as having two distinct parts. There is

the effective stroke, where the cilium moves in the direction of the flow of the fluid, and

the recovery stroke where it returns to its original state. Existing models of the effective

stroke have the cilia in a rigid state, fully extended in a near vertical orientation to the

surface, a flexure at the base causes the cilia to swing away from the cell’s surface (Blake
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Figure 1.9: The effective stroke 0-125, and recovery stroke 125-250, of a cilium on the
surface of the protozoon Opalina. Taken From Blake and Sleigh (1974).

and Sleigh, 1974). This is followed by a sharp movement back to the other side of the

base, while the upper portion of the cilium continues to move in the effective direction.

The bend in the cilium caused by these two swings is propagated toward the tip of the

cilium during the recovery stroke so that cilium moves back close to the cell surface in

preparation for the beginning of the next effective stroke. See Figure 1.9 for an example of

the effective and recovery stroke in the cilia of the protozoon Opalina. The effective stroke

occurs in a much shorter time than the recovery stroke. Such a mechanism is required

due to the reversibility of Stokes flow.

Within the human body, the mechanisms for the motion of cilia in the lungs has been

studied, where the cilia propel a thin mucus layer which lines the surfaces of the airways

(Smith et al., 2007a,b). Less study, however, has been made of cilia in the reproductive

system. Uterine and oviductal cilia are similar in dimension to those in the respiratory

system, being typically 0.25µm in diameter and 6µm in length. It is also worth noting

that the covering of cilia in the reproductive system is not as uniform as that observed in

the respiratory system, however, a suitable analogy is a forest with clearing, rather than

isolated clumps of cilia (see Figure 1.7(B) (Suarez and Pacey, 2006)).
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1.3 Experimental methods and in vitro processes

An interest in human sperm motility in the modern sense started in the 1950s. A partic-

ularly interesting early work is that of Rothschild (1963) who observed that bull semen

were not uniformly distributed throughout a droplet of semen but tended to accumulate

near surfaces. Winet et al. (1984) observed a similar result for human sperm, and also

concluded that gravity has no significant effect on human sperm. As an aside, Smith et al.

(2008a) have since implemented a hybrid boundary integral/slender-body theory method

which predicts that human sperm cells are attracted towards boundaries under certain

initial conditions.

The two main experimental techniques we shall consider are Computer-assisted se-

men analysis (CASA) and the acquisition of photographic data using high speed micro-

photography. These are discussed in more detail in Appendix A.

1.4 Literature review

We consider the existing literature relating to the two problems which we shall study; the

mathematical models of flagellar propulsion and the modelling of peristaltic flows.

1.4.1 Development of mathematical models of flagellar propul-
sion

The mechanism that drives eukaryotic cilia and flagella, such as those found on sperm,

is different from that used to drive bacterial flagella. Sperm flagella and cilia are driven

by a complex underlying structure internal to the flagella, whereas bacterial flagella are

rotated by a single ‘motor’ in the cell wall (DiLuzio et al., 2005). Eukaryotic flagella do

not rotate relative to the cell body (Debuse, 1998).

The study of the theoretic motion of sperm has been considered over many years.

The low Reynolds numbers encountered in these situations, leads to the assumption of

reversible Stokes flow. Taylor (1951) first considered the motion of an infinite sheet un-
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dergoing small amplitude oscillation in a very viscous fluid. He demonstrated that a

travelling wave can cause the kind of non-reversible motion which is required to drive

propulsion at low Reynolds numbers. Taylor also presented one of the principles underly-

ing self-propulsion in a viscous regime, being that the total resultant force which the fluid

exerts on to the body must be zero. Chwang and Wu (1971) provide the other defining

principle, that of zero resultant torque: these two assumptions underlie all theoretical

studies of flagellar motion including computational-fluid-dynamics simulations. Taylor

(1952) extended the analysis to three-dimensional flow around a cylindrical body under-

going planar small amplitude beating and produced a model sperm, which swam by using

a propagating spiral wave.

Hancock (1953) introduced the term Stokeslet for the singularity solution due to a

point-force in Stokes flow. He used a distribution of Stokeslets and potential-dipoles with

varying strength to model the flow due to finite amplitude beats of a flagellum – this

method later is refined to become slender-body theory. Slender-body theory provides a

more efficient method for modelling cell movement and fluid flow in a 3D domain than by

solving the Stokes equations directly.

A slender-body falling in viscous flow has twice as much resistance to motion perpen-

dicular to the long-axis to the slender-body, as to that parallel to it (Hancock, 1953).

Thus a slender-body falling longitudinally will fall twice as quickly as the same body

falling transversely (the force applied in this case is assumed constant and equal to the

body’s weight). In this context it means that for a certain force, it may be advantageous

for the flagellum to be moved perpendicular to the direction of flow. This highlights a

hydrodynamic advantage to certain types of flagellar beating. The ratio of normal to tan-

gential resistance being larger than one is a defining feature of swimming at low Reynolds

numbers.

A local approximation to slender-body theory is resistive-force theory which was devel-
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oped by Gray and Hancock (1955) to model the sinusoidal planar beating of the flagellum

of sea-urchin sperm. The flagellum is considered as a series of small cylinders; on each

cylinder the force is calculated using estimated ‘resistance coefficients’ which suppose the

force on an element of the flagellum is proportional to the relative velocity of the segment

and the fluid. Additional progress was made by Batchelor (1970) who placed a series of

Stokeslets along the centreline of a long thin, but arbitrarily cross-sectioned body and

Cox who considered similar slender-bodies asymptotically in an undisturbed medium and

shear flows (Cox, 1970, 1971).

Machin (1958) considered the motion of a flagellum as an elastic beam attached to

the head, from where all the motion was derived; the inability of the model to accurately

predict observed beat patterns demonstrated that an internal mechanism was required.

Machin (1963) also demonstrated that nearby flagella will tend to synchronise. Sperm

flagella have a ‘9 + 2’ axoneme structure, which provides the motive power along the

length of the flagellum (Debuse, 1998). Pironneau and Katz (1974) utilised resistive-force

theory, in the case of small amplitude flagellar beating to obtain an optimally efficient

beat pattern.

Katz et al. (1975), whilst considering the motion of a slender-body near to and parallel

to a surface using resistive-force theory, noted that resistive-force theory was only strictly

valid for small amplitude motions and suggested that a new approach was needed. Im-

proving computing ability enables numerical solutions of the slender-body theory integral

equations for the force distribution required on the flagellum to be taken easily. There are

two approaches: (1) applying surface-velocity collocation directly to Hancock’s slender-

body theory, as in Higdon (1979a,c); Liron and Mochon (1976), or (2) to approximate

Hancock’s representation based on ‘integrating out’ the local Stokeslet/dipole contribu-

tion, as used by Lighthill (1976) and subsequently by Dresdner et al. (1980); Gueron and

Liron (1992); Fulford et al. (1998); Gueron and Levit-Gurevich (2001).
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Dresdner et al. (1980) developed a theory which extracted the local contributions due

to the normal and tangential motions, and allowed an iterative approach to solving for the

unknown force distribution using an initial estimate gained through using resistive-force

theory. The cell-body was modelled as spherical, and the concept of the effective radius

was introduced: that is to model the sperm’s head as a sphere with the same volume as

a real head. Typically, for human sperm, the effective radius is 1.25µm. This technique

was used in a number of papers to investigate forces, torques and power consumptions

of sperm in physiological scenarios (Dresdner and Katz, 1981; Baltz et al., 1988; Drobnis

et al., 1988).

The application of the surface-velocity collocation method was used by Liron and

Mochon (1976); the flagellum was divided in to sections over which the force was as-

sumed constant. This discretisation leads to a matrix equation, whose entries are the

Stokeslet/dipole integral equations, which must be solved to find the force coefficients.

The integrals were approximated using a ‘midpoint’ value of the Stokeslet on each seg-

ment. Higdon (1979a) utilised the same technique, but evaluated the integrals directly

using a change of co-ordinate system. An iterative solution scheme was used. With

modern technology, the accurate evaluation of Stokeslet integrals is achieved using Gauss

Quadrature (Stroud and Secrest, 1966), and the resulting matrix equations can be solved

either directly or iteratively. The method of modelling finite amplitude flagellar motion

devised by Higdon (1979a,c) is accurate and modifiable, and shall be exploited extensively

in this study.

A boundary-integral method for modelling non-spherical heads was developed by

Phan-Thien et al. (1987) who modelled a spheroid cell body propelled by a helical tail. His

results agreed with the slender-body theory of Higdon (1979c). A combined boundary-

integral slender-body model has been devised by Smith et al. (2008a) (based on work by

Pozrikidis (1992, 2002)) which utilised a more physiologically realistic spade-shaped head.
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Ramia et al. (1993) developed the technique to model three-dimensional helical swimming

near a circular plate; efficient computational methods were developed for solving the time-

dependent problem which arises once the rotational symmetry of the problem is broken

due to the presence of a boundary.

One of the over-riding factors of many of the studies is the focus on helical beat

patterns. In reality, this type of beat pattern is rarely observed in sperm: an exception

being sea-urchin sperm which can be induced to swim with a helical pattern at high

viscosities (Woolley and Vernon, 2001). Physically the observed beat pattern is a result

of the driving mechanisms of the flagellum and the external fluid dynamics – the systems

are inherently coupled (Fauci and Dillon, 2006). From the computational standpoint,

Fauci and McDonald (1995) devised an approach using an immersed boundary method

for a 2D sperm moving near a boundary or two other sperm cells, where the waveform

becomes an emergent property of the coupled fluid-structure problem, influenced by the

internal mechanics and the rheology. Dillon et al. (2007) developed a coupled model of the

internal generation of force, the passive elastic mechanics of microtubules and forces due

to the nexin link with a surrounding incompressible fluid. The results are considered for

both viscous and viscoelastic fluids. The internal mechanism that produces the modes of

beating is not fully understood and is an area of ongoing study; two models for the internal

generation of bending are Lindemann’s geometric control model (Lindemann, 2007) and

Brokaw’s curvature history control model (Brokaw, 2002), which we shall discuss further

in Chapter 5.

1.4.2 Development of mathematical models of peristaltic flows

The study of peristaltic flows can be traced back to Taylor (1951), who considered them

whilst discussing the motion of microscopic organisms illustrating how a self-contained

‘waving sheet’ is sufficient to drive fluid motion. Later study was motivated by an interest

in fluid transport and the use of peristaltic pumps in biomedical and industrial settings
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where contact of the fluid with a physical blade or impeller needs to be avoided. Burns and

Parkes (1967), Hanin (1968), Fung and Yih (1968) and Shapiro et al. (1969) produced

a series of papers which considered the solution for two-dimensional geometries, with

analytic progress being made for axisymmetric geometries by Burns & Parkes and Shapiro

et al. Solutions were presented for zero Reynolds number by Burns & Parkes and Shapiro

et al, whilst Hanin and Fung & Yih presented solutions for arbitrary Reynolds numbers;

other authors such as Zien and Ostrach (1970) required small, but not necessarily zero,

Reynolds numbers. All, except Shapiro et al., assumed that the amplitude ratio, the ratio

of wave amplitude to unperturbed height, was small. All the models considered were for

Newtonian fluids. A review of this early work was published by Jaffrin and Shapiro (1971),

who compared existing experimental work with asymptotic solutions and demonstrated

good agreement.

Two interesting phenomena were predicted and observed experimentally by Shapiro

et al. (1969), those of reflux and trapping. Their experimental setup consisted of a quasi

two-dimensional channel (wide enough to ignore 3D effects in the centre) formed with a

PVC tube and adjustable finger to mimic the peristaltic wave. Reflux is a situation where

there is fluid flow in the opposite direction to that of the travelling peristaltic wave, and

trapping is a situation where a circulating bolus of fluid is transported at the wave speed,

as if it were trapped by the wave. Yin and Fung (1971) produced experimental data to

support the theory of reflux; they observed channel flow in a rectangular cross section

with fixed side and top walls and a travelling wave along the bottom, using injected dyes.

Particle transport in two-dimensional peristaltic flow was studied experimentally by Hung

and Brown (1976) who demonstrated the reflux and trapping phenomena, and also the

effect of the Reynolds number on the particle’s trajectory. Non-Newtonian characteris-

tics were studied by Böhme and Friedrich (1983) by considering a low Reynolds number

linear Maxwell viscoelastic fluid. They found that the optimal wave speed corresponds
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to the memory of the fluid particles extending over several periods of the wave; however,

maximum efficiency (defined as the ratio of useful power to applied power) corresponds

to the Newtonian limit, that is as the Maxwell ‘memory’ term tends to zero.

Mittra and Prasad (1974) presented solutions for the effect of Poiseuille flow, due

to a pressure gradient, on peristaltic transport using a two-wall sinusoidal model; it was

found that the mean flow reversal is strongly dependent on the Poiseuille flow, and that the

position of reversal can vary significantly from the centre of the channel to the boundaries.

The study of Srivastava and Srivastava (1985) considered peristaltic flow applied to

the male reproductive system and the motion of a ‘power-law’ fluid in the vas deferens

using a zero Reynolds number and long-wavelength approximation. The theoretical flow

rates compare favourably with experimental data from fluid flow in the vas deferens of

rhesus monkeys and flow in the human small intestine. Pozrikidis (1987) considered the

motion of flow in a two-dimensional channel with sinusoidal waves applied through the

use of boundary integral methods for Stokes flow and results achieved agreed with earlier

analytic solutions (Burns and Parkes, 1967; Shapiro et al., 1969; Yin and Fung, 1971).

Brasseur et al. (1987) conducted a detailed analysis of the effect of the peripheral

layer; that is a thin layer of a different fluid near the boundary, on the bulk fluid motion,

and conclude that a more viscous layer near the boundary improves pumping performance

while a less-viscous boundary-layer impairs pumping. The assumption of an infinite wave

train was relaxed by Li and Brasseur (1993), who considered an arbitrary wave shape

and wavenumber for tubes of finite length, meaning the problem could not be reduced

to a steady problem in the wave frame. In particular, they studied the effect of a single

peristaltic wave against a ‘wave train’ and offer evidence to suggest that greater reflux

is observed in the case of a single wave compared to a wave train, under the lubrication

approximation, with zero Reynolds numbers in an axi-symmetric geometry.

The majority of models prescribe the position of the peristaltic walls, however, Nicosia
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and Brasseur (2002) consider a model of the muscular wall mechanics and from this they

derive the peristaltic motion of the wall of the oesophagus whilst moving a bolus of food.

The model proposed decomposes the oesophageal muscular movement into longitudinal

and circular components and after solving these equations, with suitable constitutive

equations, considered the motion of an elastic bolus of food.

There are a number of reasons for neglecting feedback and thus prescribing the position

of, in this case, the walls. Firstly, by making this assumption of neglecting feedback the

complexity of the problem is greatly reduced. It is also the case that often we do not

understand entirely the complexities of the underlying physiology, and moreover, even in

situations where the mechanism is understood physically, we may not be able to model

the problem accurately mathematically. It is worth noting that when we observed the

system in vivo, the experimental data we observed is already the result of the coupled

processes including the feedback.

The problem of a long-wavelength, low-Reynolds number approximation is revisited

for Newtonian flow by Mishra and Rao (2003) using an infinite wave train, as a solution in

powers of the wavenumber. They demonstrate that the phenomena of reflux and trapping

are at a maximum when the channel is symmetric. The same authors also consider the

same problem by utilising a domain transformation, (Rao and Mishra, 2004a), which

maps the channel into a domain of uniform cross section where higher order analysis

is more tractable. The authors also note that the effects of the Reynolds number and

asymmetry may play an important role in the development of mixing, but do not suggest

any particular biological applications.

Rao and Mishra (2004b) consider peristaltic flow under the long-wavelength, low-

Reynolds number approximation, with a power law fluid in an axi-symmetric tube. The

Beavers-Joseph and Saffman type slip boundary conditions (Beavers and Joseph, 1967;

Saffman, 1971) are applied on the surface of the tube which is assumed to be porous.
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Peristalsis works as a pump against the increased pressure observed with a shear thickening

fluid and the opposite for shear thinning fluid. The trapping phenomena is observed to

decrease as the ‘behaviour index’ is reduced from shear thickening to shear thinning fluids.

In the area of reproductive biology, Eytan and Elad (1999) and Eytan et al. (1999)

have considered the flow of fluid in the uterus as a result of the peristaltic contraction of

the uterine walls with experimentally derived parameters for the spacing of the walls, the

amplitude, frequency and phase shift of the waves. The lubrication approximation is used,

and the motion is considered as channel flow between two walls with sinusoidal travelling

waves which are not necessarily in phase. In Eytan et al. (2001b) clinical ultrasound data

was processed to obtain new characteristic features of the intrauterine fluid-wall interface

such as the existence of both downward (toward the cervix) and smaller upward (toward

the ovaries) propagating waves.

Hydrosalpinx is a condition whereby one, or both, oviducts become blocked, and

become substantially distended and filled with fluid. The condition of hydrosalphinx has

a known effect on the success rate of IVF treatment; Strandell et al. (1994, 1999, 2001)

found that the pregnancy rate for patients with persistent hydrosalpinx was only half that

of patients with other types of oviductal damage. Using the model of uterine peristalsis,

Eytan et al. (2001a) considered uterine fluid dynamics to model problems associated with

IVF embryo implantation for women with hydrosalphinx. They found that the existence

of areas of reflux may cause an embryo to be swept away from ideal site of fertilisation,

which may lead to a failure of implantation or an ectopic pregnancy (implantation of the

embryo in the lining of the oviduct, rather than uterus)

In Eytan et al. (2001c) the authors adopt a tapered two-dimensional geometry for

the wall, and show that the transport phenomena are strongly dependent on the phase

shift of wall displacement and the phase angle between the walls. Yaniv et al. (2003)

uses a finite element code to simulate the effect of embryo transfer in to the fluid-filled
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uterus, modelled as two-dimensional channel with oscillating walls, and conclude that, at

normal injection rates, the presence of a catheter in the uterus only affects the nature of

the flow within around 1mm of the catheter (catheter has diameter 0.3mm). The speed

at which the embryo is introduced from the catheter into the uterus is the main factor

in determining its eventual location. If the embryo is introduced at the same order of

magnitude as the peristaltic wave (0.5mm/s), then the eventual position is determined by

the natural peristaltic wave. If the embryo is introduced at an ‘excessively high injection

speed’ (8 times the peristaltic wavespeed) then an ectopic pregnancy may develop.

The work of Eytan et al, does not consider the effect of the cilia which line uterine

and oviductal surfaces; their rationale is that cilia are much smaller than the size of the

ovum and thus will not be effective in moving the ovum. However, work by Blake et al.

(1982), shows that the fluid flow caused by the cilia is sufficient to provide a mechanism

for the motion of the ovum in the oviduct. This is also shown in the mathematical models

of Anand and Guhal (1978) where using anatomical data for flow in the oviduct, ciliary

beating may lead to ovum movement at near normal rates in the absence of peristalsis.

1.4.3 Methods for modelling ciliary driven flows

The modelling of the fluid motion due to cilia draws on the combined studies of flagellar

and peristaltic propulsion. In particular, we could consider an array of cilia under the

singularity and slender-body theory method (Blake, 1972) or we could suppose that the

overall effect of the cilia could be modelled using an envelope placed on the ciliary tips

(Ross and Corrsin, 1974).

The advantage of the singularity method is obvious in terms of details, however, as

we require a large array of cilia the computational power required to solve such prob-

lems becomes a limiting factor. A continuous approximation to the singularity method is

the traction-layer method (Keller et al., 1975). The approximation is valid provided the

cilia density is sufficiently high, however, in making this approximating any information
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relating to the motion of an individual cilium is lost. Blake et al. (1982) applied the

traction-layer method for flow in the human oviduct along with a single non-travelling

wave model of peristalsis and illustrated that the ciliary component of the flow was im-

portant as it could drive flow in the oviduct.

In this thesis we shall adopt the envelope model as this can be seen to be very similar

to our modelling approach adopted for peristaltic flows and hence adding ciliary effects

to peristaltic flows is an achievable extension.

1.5 Fluid mechanics

In this section we outline the fundamental fluid dynamics which is relevant to this study.

In preparation for the application of slender-body theory and singularity methods to the

problem of sperm propulsion and the subsequent optimisation which follows, we discuss

the fundamental singularity of Stokes flow, otherwise known as the Stokes flow Green’s

function or more commonly the Stokeslet.

1.5.1 Equations of fluid motion

The governing equations of fluid dynamics are derived from the principles of the con-

servation of momentum and the conservation of mass applied to a fluid particle under

the continuum hypothesis. Adopting the standard index notation and the summation

convention the basic equations for fluid flow are

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=
∂σij

∂xj

+ ρFi, (1.1a)

∂ρ

∂t
+
∂ (ρuk)

∂xk

= 0. (1.1b)

where the parameters are defined as follows: velocity u = (u1, u2, u3), density ρ, the stress

tensor σ and body force F .
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1.5.2 Constitutive relation

Fluid behaviour can be categorised by the variation in shear stress on the rate of strain;

mathematically this is embedded through a constitutive relation between the rate of strain

and the shear stress.

The simplest relationship for the constitutive relation is linear and fluids which follow

this model are termed Newtonian. Many fluids, including water, obey this simple linear

relationship and it is these types of fluids which we shall consider in this thesis. If,

however, the relationship is non-linear then the fluid is termed non-Newtonian. Mucus

and blood are examples of biological fluid which are non-Newtonian (Wolf et al., 1977a;

Quemada, 1993).

1.5.3 Navier-Stokes equations

The constitutive equation for an incompressible Newtonian fluid is

σij = −pδij + µeij , (1.2)

with eij = ∂ui/∂xj+∂uj/∂xi. By combining this equation with the statements of conserva-

tion of mass and momentum (Equation (1.1)) we gain the following famous Navier-Stokes

equations viz.

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi

+ µ
∂2ui

∂xj
2

+ ρFi (1.3a)

∂uk

∂xk

= 0. (1.3b)

Equation (1.3a) is the momentum balance equation and Equation (1.3b) is the mass

conservation equation, or simply, the continuity equation.
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1.5.4 Non-dimensionalisation of the Navier-Stokes equations

The Navier-Stokes equations can be non-dimensionalised by scaling lengths by a typical

length scale L, velocities by a typical velocity U , and time by a typical frequency ω.

Upon rescaling two non-dimensional groups of parameters are derived; the Womersley

parameter α and the Reynolds number Re defined as

α2 =
ωL2

ν
and Re =

UL

ν
, (1.4)

where ν = µ/ρ is the kinematic viscosity. The Reynolds number is a measure of the ratio

of inertial to viscous effects in the flow. Flows where the Reynolds number is small (≪ 1)

are dominated by viscous forces and are discussed in depth below.

The dimensionless Navier-Stokes equations are

α2∂ûi

∂t̂
+ Re ûj

∂ûi

∂x̂j

= − ∂p̂

∂x̂i

+
∂2ûi

∂x̂2
j

+ F̂i,
∂ûk

∂x̂k

= 0. (1.5)

One should notice that the velocity, pressure and force are now non-dimensional quantities

identified with ‘hats’.

1.5.5 Re ≪ 1: The Stokes equations

As an example of why it is appropriate to consider the zero Reynolds number limit of

the Navier-Stokes equations we shall consider some typical values for the length scale,

velocity scale and viscosities associated with sperm motility, a situation which we shall

discuss later. For the case of a single sperm swimming, a typical length scale is its

length which is O(10−4m), and a sperm will typically swim no more than a body length

per second, hence typical velocities are O(10−4ms−1). Kinematic viscosities range from

‘watery media’ at O(10−6m2s−1) to ‘viscous media’ at O(10−3m2s−1). The upper-bound

for the Reynolds number is therefore O(10−2).
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Taking the limit as Re → 0 gives the equations of unsteady Stokes Flow,

α2∂ûi

∂t̂
= − ∂p̂

∂x̂i

+
∂2ûi

∂x̂2
j

+ F̂i,
∂ûk

∂x̂k

= 0. (1.6)

One should notice that in this limit of zero Reynolds number the flow is driven by viscous

effects and the non-linearity of the Navier-Stokes equations is removed.

The Womersley parameter α2, can be estimated in a similar fashion and provided that

frequencies are no larger than O(102Hz), then α2 ≪ 1. Typical beat frequencies of the

flagellum in sperm are of the order of 10 − 20Hz, which ensures that α2 ≪ 1 is a valid

assumption, thus allowing us to take the limit of α2 = 0 resulting in the reduction of

Equation (1.6) to the equations of quasi-steady Stokes Flow :

∂p̂

∂x̂i

=
∂2ûi

∂x̂2
j

+ F̂i

∂ûk

∂x̂k

= 0. (1.7)

That is to say the pressure gradient and body forces are balanced by viscous effects subject

to the continuity equation.

1.5.6 Fundamental singularity of Stokes flow: The Stokeslet

The Stokeslet is the Green’s function of Stokes flow with a point force as the only body

force F (x) = fδ(x) (f ∈ R
3) at the point x = 0. The governing (dimensional) Stokes

equations are

0 = −∇p + µ∇2u + F , ∇ · u = 0, (1.8)

where u ∈ R
3 and p ∈ R, with the far-field conditions |u| → 0 as |x| → ∞.

The solution for uj and p to Equation 1.8 is

uj =
fk

8πµ

(
δjk
|x| +

xjxk

|x|3
)
, (1.9a)
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p = − fkxk

4π|x| (1.9b)

The equation for uj (Equation 1.9a) is often written as uj = Sjkfk, where Sjk is the

fundamental solution of the Stokes Equations, often known as the Stokeslet

Sjk =
1

8πµ

(
δjk
|x| +

xjxk

|x|3
)
. (1.10)

The derivation of this result can be found in Appendix B.

Physically, Equations (1.9) represents the velocity field u and pressure field p, due to a

point force f at the origin in an unbounded fluid. Mathematically, the Stokeslet is the free-

space Green’s function for Stokes equations (1.8). Green’s Theorem enables us to conclude

that the flow about a collection of finite bodies may be represented by a distribution of

Stokeslets, and their normal derivatives over body surfaces; these derivatives are known

as higher-order singularities and some are discussed below. This is the basis of the very

powerful boundary-integral method. In connection with slender-body theory and the

centre-line theory which we shall employ, in principle it is possible to use a Green’s

function approach to provide a method for solving many problems posed in Stokes flow

(Higdon, 1979c).

1.5.7 Higher-order singularities

Due to the linearity of the Stokes flow equations, any derivative of the fundamental

solution the Stokeslet will, in infinite space, be a solution to the original problem. A

number of other singularities can be derived in this fashion and here we outline some of

them

The first derivative of the Stokeslet is known as the Stokes-doublet and is expressed,
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using the summation convention, as

ui =
djk

8πµ

[
δijxk

|x|3
− δikxj

|x|3
− δjkxi

|x|3
+

3xixjxk

|x|5
]
,

p =
djk

4π

[
− δjk

|x|3
+

3xjxk

|x|5
]
,

where djk is defined as the strength of the Stokes-doublet, which may be interpreted as the

negative value of the gradient in the k-direction of a Stokeslet orientated in the j direction.

We notice that the Stokes-doublet terms may be split into symmetric and anti-symmetric

terms as follows (Blake and Chwang, 1974)

uS
i =

djk

8πµ

[
−δjkxi

|x|3
+

3xixjxk

|x|5
]
, pS =

djk

4π

[
− δjk

|x|3
+

3xjxk

|x|5
]
. (1.11a)

uA
i =

djk

8πµ

[
δijxk − δikxj

|x|3
]
, pA = 0. (1.11b)

Equation (1.11a) is defined as a stresslet and corresponds to straining motion. The anti-

symmetric term, Equation (1.11b), corresponds to rotational motion and is called a rotlet

or a couplet. Alternatively the rotlet may be defined as

uA
i =

εijkΩjxk

8πµ|x|3 ,

where Ωj is the rotation vector, and djk(δij−δikδjk) = εijkΩj , where εijk is the permutation

symbol. The permutation symbol or Levi-Civita symbol εijk is defined as follows

εijk =






+1 if (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

−1 if (i, j, k) ∈ {(3, 2, 1), (1, 3, 2), (2, 1, 3)},

0 otherwise.

A force diagram, such as that shown in Figure 1.10, can be used to demonstrate the
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b b b≡ +2

Stokes-doublet Stresslet Rotlet

(a)

b b≡

Stokes-doublet Stresslet

(b)

Figure 1.10: (a) Decomposition of the Stokes-doublet into a symmetric stresslet term and
the antisymmetric rotlet term. (b) A symmetric Stokes-doublet is identical to a stresslet.
Redrawn from Blake and Chwang (1974).

decomposition of a Stokeslet-doublet into component parts.

The process may be continued and the second-derivative of the Stokeslet is known as

the Stokes-quadrupole.

1.5.8 Image systems

The theory derived thus far has considered the flow due to a point source in an infinite

domain. Clearly most physical flows have boundaries where the standard no-slip boundary

condition needs to be applied. The no-slip boundary conditions asserts that a fluid particle

on a boundary will move with the boundary; ie, the velocity of the boundary will be equal

to the fluid velocity on the boundary.

One of the situations we shall encounter is flow due to a point force in the presence

of a sphere, the point force being external to the sphere. The required image system was

derived by Oseen (1927).
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Image system for a sphere

The velocity at a point x due to a point force f at the point X in the presence of a sphere

of radius A centred at the origin is given by

uj(x) =
[
Sjk(x,X) + S⋆

jk(x,X)
]
fk, (1.12)

for |x| > A and |X| > A. Sjk is the standard expression for the Stokeslet and S⋆
jk is the

image system defined as follows:

S⋆
jk(x,X) =

1

8πµ

(
− A

|X|
δjk
r⋆

− A3

|X|3
(xj −X⋆

j )(xk −X⋆
k)

r⋆3

− |X|2 −A2

|X|

{
X⋆

jX
⋆
k

A3r⋆
− A

|X|2r⋆3

[
X⋆

j (xk −X⋆
k) +X⋆

k(xj −X⋆
j )
]

+
2X⋆

jX
⋆
k

A3

X⋆
l (xl −X⋆

l )

r⋆3

}
− (|x|2 − A2)

∂φk

∂xj

)
(1.13a)

with

∂φk

∂xj

=
|X|2 − A2

2|X|3
{
−

3Xk(xj −X⋆
j )

Ar⋆3
+
Aδjk
r⋆3

−
3A(xj −X⋆

j )(xk −X⋆
k)

r⋆5

−
2XkX

⋆
j

Ar⋆3
+

6Xk

A5
(xj −X⋆

j )(xl −X⋆
l )X⋆

l

+
3A

|X⋆|

[
X⋆

k(xj −X⋆
j )r⋆2 + (xj −X⋆

j )(xk −X⋆
k)|X⋆|2 + (r⋆ − |X⋆|)r⋆2|X⋆|δjk

r⋆3|X⋆|(|X⋆|r⋆ + xlX⋆
l − |X⋆|2)

]

− 3A

|X⋆|

[
(|X⋆|(xk −X⋆

j ) + r⋆x⋆
j )(X

⋆
kr

⋆2 − (xk −X⋆
k)|X⋆|2 + (xk − 2X⋆

k)r⋆|X|)
r⋆2|X⋆|(|X⋆|r⋆ + xlX⋆

l − |X⋆|2)2

]

− 3A

|X⋆|

[
xjX

⋆
k + |x||X⋆|δjk

|x||X⋆|(|x||X⋆| + xlX⋆
l )

]
+

3A

|X⋆|

[
(|X⋆|xj + |x|X⋆

j )(|X⋆|xk + |x|Xk)

|x||X⋆|(|x||X⋆| + xlX⋆
l )2

]}

(1.13b)
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where X⋆ is the inverse point defined by

X⋆ =
A2

|X|2X, (1.13c)

and r = |x − X| with r⋆ = |x − X⋆|.

S⋆
jk can be understood as those components necessary to provide the correct boundary

condition of no-slip on the surface of the sphere. For the radial component of the Stokeslet,

the images required are a Stokeslet, dipole and a stresslet at the inverse point. For the

transverse component, the images are a line distribution of Stokeslets, dipoles and Stokes-

doublets extending from the origin to the inverse point.

1.5.9 Advantages of the singularity method

The use of the singularity method for the solution of Stokes flow equations is tractable and

the process, as we discuss later, involves writing down the velocity in the fluid as a sum (or

integral) of a number (or distribution) of singularities; since the equations are linear hence

solutions may be summed. The boundary conditions are typically no-slip on surfaces and

no flow in the far field. The singularities need to have the correct strength in order to

satisfy the no-slip boundary conditions and the determination of these coefficients is the

unknown in the problem. Thus by using singularity methods the solution can be derived

by solving a series of equations along a line rather than at each point in the bulk flow; ie,

a three-dimensional problem is reduced to a one-dimensional one, which is a considerable

simplification.

1.6 The structure of this thesis

The structure of this thesis is outlined below.

The first part of the thesis concentrates on modelling and optimising sperm beat

patterns. In Chapter 2, we follow closely the classical model of slender-body theory
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for helical flagellar propulsion devised by Higdon (1979c), making adaptations where

necessary (such as allowing planar beating) to allow for the work in the following chapters.

Chapters 3 and 4 are two studies which are carried out using a novel modified envelope

function and wavenumber specification for the beat pattern based on a planar sinusoidal

beat pattern – in order to account for some of the variation observed in the experimental

work which is discussed in this thesis.

In Chapter 5, a new model for modelling sperm beat patterns is developed. Using

analysis of experimental data, a new specification for the beat pattern is made using

the shear-angle with only a small number of parameters. Despite the small number of

parameters, a large spectrum of beat patterns observed in vitro is encompassed by the

new model. The new kinematic model is then studied using slender-body theory in the

optimisation frame work and we offer an explanation for the modulation in beat pattern

observed in experiments.

In Chapter 6 we consider a mathematical model for flow in a general two dimensional

peristaltic channel, and discuss some special cases using analysis of pathlines, flowrates

and Lyapunov exponents. We consider the system using the envelope model for cilia as a

small perturbation on top of a larger peristaltic wave.

Finally in Chapter 7, we present conclusions of the work in this thesis and indicate

some further developments which could follow; in particular we highlight future uses of

the new model from Chapter 5.

In the Appendices we present background information relating to our problems; specif-

ically, the experimental methods and data processing (Appendix A), the derivation of the

Stokeslet (B), details of the numerical implementation of the slender-body theory code

(C.1), finite difference scheme (C.2) and the calculation of the local Lyapunov exponents

(C.3).

Appendix D is a copy of a paper cowritten with JR Blake and EO Tuck regarding
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the S-transform, its properties and use in slender-body theory in Stokes flow. Originally

intended as a method to transform integrals into linear equations for use in slender-body

theory modelling, it was later decided that the numerical approach which we shall adopt

is more adaptable.

Supporting movies and videos of experimental and theoretic work can be found at

http://web.mat.bham.ac.uk/∼wakeleyp.
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Chapter 2

Slender-Body Theory for a

Flagellated Cell

2.1 Introduction

In this chapter we develop the application of slender-body theory to the motion of a single

flagellated cell in an infinite Newtonian fluid following the concepts of Higdon (1979a,b,c).

The underlying mathematical model uses slender-body theory and singularity methods

to determine the solution for the induced fluid flow as a combination of the effects of the

head and the flagellum.

Higdon’s original papers considered the problem for a three-dimensional helical beat

pattern. Using his concept we develop a computer code capable of handling a greater

variety of beat patterns such as planar beat patterns, which we shall utilise later in this

thesis. Further details of the computational code are highlighted in Appendix C.1.

2.2 Geometry

Consider a sphere of radius A centered at the origin, attached to a flagellum of constant

radius a and length L. The position of the flagellum is known for all values of time and is

assumed as known a priori. We define a co-ordinate system (X, Y, Z) to have the origin

at, and moving with, the centre of the head. It is supposed that relative to a laboratory or

‘rest frame’ R, the body frame moves with velocity U0 and has angular velocity Ω0; both

of which are to be determined. The original model of Higdon specifies a helical flagellum,
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Figure 2.1: The geometry of the problem with a body reference frame centred at the
midpoint of the sphere, moving relative to the fixed frame R.

which is coiled around the X axis, as shown in Figure 2.1; we shall discuss this in depth

below.

2.3 Slender-body theory

The concept of slender-body theory is that we represent the fluid velocity at a point in

a 3D field due to the presence of a slender-body. To model the motion of a flagellum we

place a distribution of singularities of Stokes flow along the centreline of the flagellum.

The specification of the distribution function, which is equivalent to the force coefficients,

is the unknown in the problem. We make the assumption that the distribution function is

piecewise constant over small sections of the flagellum. By applying the no-slip boundary

condition on the surface of the slender-body, we obtain a series of equations for the values

of unknown distribution; this is the collocation method.

When the distribution is found, the velocity of any point in the flow can be calculated

by performing the integration along the centre-line using the now known distribution

function. An early example of the method, which also has an analytic solution, can be
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found in the work of Chwang and Wu (1975), where the solution for flow past a pinned

prolate-spheroid was considered.

2.3.1 The velocity induced by a flagellum

The velocity induced by the motion of a flagellum is written as a distribution of Stokeslets

and dipoles along the centre-line of the flagellum. The choice of Stokeslets and dipoles

to model the motion is used as these correspond to translational velocities and have been

shown to provide a constant velocity over each cross-section of the flagellum (Higdon,

1979a).

The definitions of the Stokeslet and the dipole are

Sjk(x,X) =
δjk
r

+
(xj −Xj)(xk −Xk)

r3
, (2.1a)

and

Djk(x,X) = −δjk
r3

+
3(xj −Xj)(xk −Xk)

r5
, (2.1b)

where these are the free-space Green’s functions for a point x due to a force singularity

at X, with r = |x − X|.

The reader should be aware that the definition of the Stokeslet is subtly different

from that derived in Section 1.5.6, where our definitions included a divisor of 8πµ. The

reason for the different notation used here is so that this chapter maintain consistency

with Higdon who defines his Stokeslets as in Equation (2.1a) (ie, without the divisor of

8πµ), so that the velocity induced by Higdon’s stokeslet is uj = Sjkfk/8πµ as opposed to

our derivation in Section 1.5.6 which gives velocity uj = Sjkfk as the 1/8πµ is already

included in the definition of the Stokeslet.

This definition of the Stokeslet and dipole enables us to say that the velocity induced

at a point x due to a distribution of Stokeslets and dipoles situated along the centre-line
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of the flagellum, with force distributions f and d respectively, is given by

uj(x) =

∫ L

0

[
Sjk(x,X(s))

fk(s)

8πµ
+Djk(x,X(s))

dk(s)

4π

]
ds. (2.2)

where s parameterises the arc-length of the flagellum, measured from the head/tail junc-

tion.

It was shown by Lighthill (1976), that the dipole strength d required to ensure that the

induced velocity is approximately constant around the flagellar cross section, is determined

by the component of the Stokeslet strength normal to the centre-line;

dk = − a2

4µ
(δkl − tktl)fl (2.3)

where t is the unit vector tangent to the flagellum. Recall that a is the radius of the

flagellum. This relationship allows us to cast Equation (2.2) as

uj(x) =

∫ L

0

[
Sjk(x,X(s)) −Djl(x,X(s))

a2

2
(δlk − tltk)

]
fk(s)

8πµ
ds. (2.4)

We do not consider the effects of the end of the flagellum here, except to make reference

to Tuck (1964) in which the effect of the blunt end is considered; the effect of the blunt

end on the rest of the body is shown to be at worst O(a/L), which with a = 300nm and

L = 60µm is O(a/L) = 10−3.

2.3.2 Image system for the head

We need to satisfy the no-slip boundary condition on the surface of the sphere centred at

the origin. This can be accomplished in two ways; firstly we could consider a distribution of

Stokeslets inside the sphere and solve the integral equation which results from applying the

no-slip boundary condition (like for the flagellum); however, this greatly complicates the

solution of the problem as we are required to solve an integral equation in two independent
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variables.

The second method, the method we shall adopt herein, is to utilise Green’s functions

for the flow external to a sphere in the presence of a point force; this implements the

boundary condition without introducing any additional unknowns. The Stokeslets in

Equation (2.2) needs to be replaced by a Green’s function of the form

Gjk(x,X) = Sjk(x,X) + S⋆
jk(x,X), (2.5)

where Sjk is the Stokeslet given in Equation (2.1a) and S⋆
jk is the image system for

the sphere. The expression for S⋆
jk was derived in Oseen (1927) and is presented in

Equation1 (1.13). The induced fluid velocity due to the point force at X and a sphere of

radius A located at the origin is given by

uj(x) =
[
Sjk(x,X) + S⋆

jk(x,X)
] fk

8πµ
.

We conclude the velocity induced by the flagellum, with the correction for the boundary

condition on the surface of the sphere has the form

uj(x) =

∫ L

0

[
Sjk(x,X(s)) + S⋆

jk(x,X(s)) −Djl(x,X(s))
a2

2
(δlk − tltk)

]
fk(s)

8πµ
ds. (2.6)

We have not included the image systems for the dipole in a sphere (the same as Higdon

(1979c)) as it is of higher order than the Stokeslet images system and as we shall see later

(Section 2.9) the Stokeslet image has negligible effect, therefore the higher order dipole

singularity is also negligible.

1The definition of the Oseen singularity in Section 1.5.8 already contains the factor of 1/8πµ, however,
to maintain consistency in this chapter with Higdon the S⋆

jk used does not contain this factor and thus
it must be re-introduced (as is the case for the way Higdon defined the Stokeslet above).
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2.3.3 Evaluating the integrals

In order to evaluate the integral in Equation (2.6), we suppose that the flagellum is split

up into N intervals, of not necessarily uniform length. We assume that over each of these

intervals the value of f is constant, and equal to f(sn), where n = 1, . . . , N . It is noted

that none of the functions to be integrated are singular within the domains in which we

shall be evaluating them; in particular notice that S⋆
jk is singular inside the sphere, but

as integration extends along the flagellum the singularities are avoided.

This ‘meshing’ allows us to approximate Equation (2.6) as

uj(x) =

N∑

n=1

Kjk(x,X(sn))fk(sn) (2.7a)

where

Kjk(x,X(sn))

=

∫ sn+δsn

sn−δsn

[
Sjk(x,X(s)) + S⋆

jk(x,X(s)) −Djl(x,X(s))
a2

2
(δlk − tltk)

]
ds

8πµ
. (2.7b)

It is understood that ‘2δsn’ is the width of the nth interval, centred at X(sn).

2.3.4 Evaluating the kernel Kjk

In a break from Higdon’s method, we shall integrate the expression in Equation (2.7a)

numerically. This has a number of advantages over the analytic method which Higdon

used. Firstly, it does not require the analytic evaluation of the integral for the Stokeslet

and dipoles, which has to be constructed through the movement to a local co-ordinate

system centred at each of the N points along the flagellum and the computational power

required to evaluate the integrals numerically is no longer a limiting factor.

To evaluate the integrals we use the Gauss-Legendre quadrature method (Stroud and

Secrest, 1966). In order to approximate integrating along the centre-line of the flagellum,
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Figure 2.2: Model of a sperm with a spherical head and helical flagellum. The circle
represents the head, the solid line the helical beat of the flagellum and the dashed grey
line the flagellar envelope.

we use a set of Gauss nodes placed along a straight line parallel to the tangent centred at

each of the X(sn). The standard Gauss nodes and weights are constructed for a domain of

[−1, 1] and these are transformed onto a domain of length 2δsn in our specified geometry.

Typically integration routines will use 8 gauss points.

2.4 Classical helical model

The centre-line of the flagellum is defined as X(X, t). The analysis of Higdon assumed

that the flagellum took a helical form of constant arc-length L, parameterised by a fully

developed amplitude of α and linear wavelength λ as shown in Figure 2.2.

We continue with the analysis as Higdon did, however, we make appropriate extensions

to allow for more general beat patterns in the work that is too follow.

We suppose that the flagellum attaches to the cell body radially at the point (A, 0, 0),

that is the intersection of the sphere and the centre-line of the helix – the X-axis. We

define the helical wave, as Higdon did, by

X(X, t) = (X, E(X − A)α cos(k(X −A) − ωt), E(X −A)α sin(k(X − A) − ωt)) (2.8a)

where

E(x) = 1 − exp
{
−(kEx)

2
}
. (2.8b)
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The wavenumber of the helix is k, ω is the frequency of the helical beat and kE determining

how quickly the helix grows to the asymptotic amplitude. We also note that E(0) = 0

and E ′(0) = 0 meaning that the flagellum is attached to the head at the fixed point

(A, 0, 0) with the tangent vector at this point parallel to the X-axis and E(x) grows to its

asymptotic value limx→∞ E(x) = 1, at a rate dependent on kE.

When the position of a point on the inextensible flagellum is given by X(s, t), where

s is the arc-length measured from X = A, the velocity of the point (with respect to the

body frame) is given by

u(s, t) =
∂

∂t
X(s, t).

The arc-length parameter s can be expressed as

s =

∫ X

A

[
1 +

(
∂Y (X, t)

∂X

)2

+

(
∂Z(X, t)

∂X

)2
] 1

2

dX,

which in the case of a helical wave specified above gives

s =

∫ X

A

[
1 + (αkE(X − A))2 + (αE ′(X −A))2

] 1

2 dX. (2.9)

Notice that this expression for s is a function of X only and it is independent of time and

therefore

∂

∂t
X(s, t) =

∂

∂t
X(X, t),

which in turn means the velocity of the centre-line of the flagellum can be found by

differentiating Equation (2.8a) to give

u(X, t) = (0, αωE(X − A) sin(k(X − A) − ωt),−αωE(X −A) cos(k(X −A) − ωt))

(2.10)
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It is noted that Equation (2.10) can be written as

u(X, t) = (−ω, 0, 0) × X. (2.11)

The length of the flagellum L, in the helical case, can be defined in terms of the number

of wavelengths Nλ and the linear wavelength λ of the helical wave to give

L =

∫ λNλ

0

{
1 + [αkE(x)]2 + [αE ′(x)]2

} 1

2 dx.

An analytic form of the velocity is not necessarily available; the expression for the

velocity u(X, t) in general can be derived numerically using finite differences. It is also

worth noting that the condition (2.9), which for the helical case demonstrates a constant

arc-length, in general does not hold and thus we must ensure that this condition is applied

in our code.

2.5 System of equations

2.5.1 Boundary conditions

We have so far computed the velocity of the flagellum with regard to the body frame

(Equation (2.11)). By the rotating axis theorem, the velocity relative to the rest frame is

uR(x) = U 0 + Ω0 × x + u(s, t), (2.12a)

or in the case of the helical wave

uR(x) = U 0 + Ω0 × x + (−ω, 0, 0) × x, (2.12b)
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where the body frame has velocity U 0 and angular velocity Ω0. The singularities needed

to match the velocity on the surface of the sphere are a Stokeslet and dipole for translation,

and a rotlet for rotation. The resulting velocity field produced is

uHj
(x) =

3

4
A

(
Sjk(x, 0) − A2

3
Djk(x, 0)

)
U0k

+
A3

|x|3 εjklxlΩ0k
. (2.13)

Thus the boundary condition for a point on the surface of the flagellum, must match the

velocity due to the singularity distributions (2.7a) and due to the rotation and translation

of the spherical head (2.13) with that due to the rotation of the body frame (2.12a/2.12b);

for the helical case we have,

U0j + εjklΩ0kxl + εjkl[(−ω, 0, 0)]kxl

=
3

4
A

(
Sjk(x, 0) − A2

3
Djk(x, 0)

)
U0k

+
A3

|x|3 εjklxlΩ0k
+

N∑

n=1

Kjk(x,X(sn))fk(sn).

(2.14)

By evaluating Equation (2.14) at N collocation points along the boundary of the

flagellum, x = X(sn), we obtain 3N equations for the 3N + 6 unknowns f(sn), U 0 and

Ω0. The six remaining equations are derived from the force and moment balances.

2.5.2 Force and moment balances

The sperm is self propelled and so is not subject to any net force. Thus, we have that

the total force and total moment is zero. Recall that a Stokeslet corresponds to a point

force, so in this case we require the total Stokeslet strength, including the cell head and

tail, to be zero. To calculate the total Stokeslet strength we consider the contributions of

the Stokeslets along the flagellum, their images within the sphere and the Stokeslets due

to the translation of the sphere.

The strength of the images is found by considering the radial and transverse compo-
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nents of a Stokeslet on the flagellum. Suppose F is a Stokeslet on the flagellum, then we

can write F as a sum of a radial component and a transverse component, relative to the

sphere:

Fk =

(
Fj

XjXk

|X|2
)

+

(
Fk − Fj

XjXk

|X|2
)
.

The total force on the sperm due to the Stokeslet F and its image is

Fk(1 + CT ) + Fj

(
XjXk

|X|2
)

(CR − CT )

where

CR = −3

2

A

|X| +
1

2

A3

|X|3 and CT = −3

4

A

|X| −
1

4

A3

|X|3 .

As the flagellum has a distribution of Stokeslets with force density f , we obtain the

force balance by considering the sum of the Stokeslets along the flagellum, the images and

the force due to translations; which in total is zero. This yields

N∑

n=1

{[
(1 + CT (sn))δjk +

(
Xj(sn)Xk(sn)

|X(sn)|2
)

(CR(sn) − CT (sn))

]
fj(sn)2δsn

}
+6πµAU0k

= 0

(2.15)

where 2δsn is the length of the nth interval. The drag of a sphere of radius A, in a fluid

of viscosity µ and speed U 0 has the classical result of 6πµAU0 (Stokes, 1851).

For the moment balance (relative to the centre of the head, the contribution of the

radial image Stokeslets is zero. The strength of the image rotlet in the sphere is

M = − A3

|X|3X × F ,

and the moment about the centre of a sphere due to a Stokeslet F at the point X and

its image is

εijkXjFk

(
1 − A3

|X|3
)
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The moment about the origin due to the rotation of the sphere is given as 8πµA3
Ω0. Once

again summing over all the Stokeslets on the flagellum, the moment balance becomes

N∑

n=1

{
εijkXj(sn)fk(sn)

(
1 − A3

|X(sn)|3
)

2δsn

}
+ 8πµA3Ω0i

= 0 (2.16)

2.6 Solution method

2.6.1 Computational scheme

Mathematically, the linear system derived has 3N + 6 unknowns fk(sn), U0k, Ω0k for

k = 1, 2, 3, n = 1, .., N , and 3N + 6 equations; 3N equations from applying the boundary

condition at N collocation points on the flagellum (Equation 2.14), three equations from

evaluating the force balance (Equation 2.15) and 3 equations from evaluating the moment

balance (Equation 2.16).

These equations form a matrix system which can be coded using a Matlab routine.

Throughout the computational slender-body theory code, where required, integration is

performed using Gauss-Legendre quadrature and differentiation (such as finding velocities

of the flagellum, or tangent and normal vectors) using second order central difference

methods. Occasionally forward or backward differences are required due to the geometry

of the problem, such as at the end points.

Appendix C.1 contains details of the numerical implementation of the code including

an outline of the code.

2.6.2 Coordinate systems for the helical case

There are a couple of points to note regarding the co-ordinate systems. The solution of

the system discussed above defines the motion of a sperm for a single point in time; thus

in general to obtain ‘average’ swimming velocities it is necessary to consider several time
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instances within the cycle, however, the rotational symmetry of a helically prescribed beat

pattern enables an analytic simplification. In general that is not the case and we must

evaluate the system at a number of time points within an time period to obtain average

values

Recall that we have a body frame in which the helix rotates, where the body frame is

fixed at the centre of the sperm’s head. If we consider a ‘phase frame’ which is rotating

at angular velocity (−ω, 0, 0) with respect to the body frame, then the flagellum will be

stationary in this frame; thus meaning the motion is identical for all values of time due to

the spherical nature of the head; thus solutions in the phase frame are time independent.

The velocity of the phase frame with respect to the rest frame is U 0, and the angular

velocity of the phase frame with respect to the rest frame is Ωp = Ω0 + (−ω, 0, 0). Thus,

the phrase frame rotates with constant angular velocity Ωp, and translates at constant

velocity U 0, where U 0 is with respect to the rest frame. These conditions imply that the

origin of the phrase frame moves along a helical path with the helical axis parallel to the

rotation vector Ωp. Thus the average swimming speed Ū is the component of U 0 parallel

to Ωp;

Ū =
(U 0 · Ωp)

|Ωp|
(2.17)

Higdon non-dimensionalises this average swimming speed using the parameter V = ω/k.

2.7 Power and efficiency: towards optimisation

In order to consider how efficient a particular configuration of the flagellum is we shall

consider the power consumption of the organism. The power consumption is the product

of the force and velocity integrated over the surface of the organism, which in this case

yields the simple relation

P =

N∑

n=1

(u(sn) · f (sn)) 2δsn (2.18a)

where u is given by Equation (2.11).
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In order to quantity an efficient beat pattern, Lighthill (1952) defines the quantity

inverse efficiency as a balance of average power consumption P̄ to average velocity Ū and

drag and is equal to

η−1 = P̄ /(6πµAŪ2), (2.18b)

where recall A is the head radius. It is worth noting that 6πµAŪ2 is the power which has

to be applied externally to keep a rigid sphere in uniform motion with velocity Ū , thus

we are comparing each type of beating with a fixed measure the power required to move

the head.

The term ‘inverse efficiency’ is used to distinguish from the normal concept of me-

chanical efficiency which scales on [0, 1] with 1 being the most efficient. η−1 is minimal

for the most efficient beating pattern; physically this represents the beat pattern with a

high velocity output for a given power consumption.

2.8 Validating the computational code against existing

results

In order to ensure the correct functioning of the code, the components of the code have

been tested against ‘test cases’ and the whole code was tested against the benchmark

values in Higdon (1979c).

2.8.1 Integration routines and singularities

The integration routines for the Stokeslets and dipoles were validated using the Chwang

and Wu (1975) solution for uniform flow past a prolate spheroid; where the result of the

numerically integrated Stokeslets and dipoles was compared with the analytic solution.

The solution of the boundary condition on the surface of the spheroid was verified and a

relative error for the force calculations was 2.0811×10−6 compared to the analytic solution.

This integration routine, like others we employ, used Gauss-Legendre quadrature with 8
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points.

In order to check the correct encoding of the Oseen image system, the value of Sjk+S⋆
jk

has also been verified to be zero on the surface of the sphere in a separate test program.

2.8.2 Grid density and convergence

Validating U 0 and Ω0

In order to test for the convergence for the value of U 0 and Ω0 we consider the results

of the convergence of Ū/V as this encompasses both components and can be compared

directly with results of Higdon.

Our investigations show that around 20 points are required for each wavelength on

the flagellum: In Figures 2.3 and 2.4 the values of the average swimming speed and the

power consumption for a fixed set of parameters and varying N are shown. In this case

Nλ = 3, and we notice convergence to within 1% when N > 50 for Ū/V and N > 60 for

η−1.

The additional variation experienced in η−1 can be attributed to the fact that it utilises

the square of Ū in its calculation thus compounding any numerical error.

2.8.3 Force distribution

The calculated terms from the slender-body theory code are the components of the force

distribution, f , at each of the N sections of the flagellum. In Figure 2.5, the components

of the force vector f (sn) are plotted as a function of the X co-ordinate, for different values

of N , specifically N = 50 and N = 100. In this case the other parameters are Nλ = 1,

αk = 1, k/kE = 1, with L/A = 5 and a/A = 0.02.

The discrepancy on the end values of the force is due to the end effects of the singularity

method, as is discussed in details in Tuck (1964). Part of the problem arises because we

are modelling a cylinder of constant radius (the flagellum), using the solution to flow
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Figure 2.3: Example of the calculation of the velocity for different values of N . Notice
convergence within 1% of the asymptote for N > 50

around an prolate spheroid, without regard for the ends. The code is however, verified to

ensure that the total force and total moment balances are correct in all cases.

Due to the nature of the construction of the solution, and the piecewise constant

nature of the calculated force distribution, it is not easy to make a direct comparison

numerically between the two data sets for N = 50 and N = 100, however, we can verify

the solution qualitatively through Figure 2.5 and by considering the ‘peak force’ values

shown in Table 2.1, which also shows excellent agreement.

2.8.4 Optimal Nλ

In the following sections we repeat the analysis of Higdon (1979c) and show agreement

between his model and our implementation of it.

50



0 20 40 60 80 100 120 140 160
150

160

170

180

190

200

210

220

230

Number of points N

In
ve

rs
e 

E
ffi

ci
en

cy
  

η−
1

Band is ± 1% on the
converged value of 227.45

Figure 2.4: Example of the calculation of η−1 for different values of N . Notice convergence
within 1% of the asymptote for N > 60

Maximum f1 f2 f3

N = 100 0.5297 2.1035 1.9724
N = 50 0.5322 2.1101 1.9720
Relative Error 0.0047 0.0032 0.0002

Table 2.1: Comparison of the ‘peak’ force values for N = 100 and N = 50 nodes used in
evaluating the solution. (Parameters are Nλ = 1, a/A = 0.02, αk = 1 and k/kE = 1, with
L/A = 5, as in Figure 2.5)

We are interested in five parameter groupings to consider optimal power usage; three

wave parameters Nλ, αk, k/kE and two body parameters a/A and L/A. In general we

shall consider the effect of the parameters on the inverse efficiency η−1.

Firstly, we wish to consider the optimal motion achieved by varying the parameter

Nλ, that is the number of wavelengths along the flagellum. In Figure 2.6 we plotted Ū/V
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Figure 2.5: The components of the force f = (f1, f2, f3) for values along the curve pa-
rameterised by their X co-ordinate. The two test values are N = 50 and N = 100.

for a variety of different length flagella as a function of Nλ. In each case we notice that

velocity increases to a maximum and then falls off less steeply after the maximum value

of η−1 has been achieved; in the case of L/A = 20, the maximum swimming speed is for

Nλ > 6.

The explanation for this behaviour arises from considering the geometry of the prob-

lem; as the number of wavelengths Nλ increases, the amplitude and the wavelength reduce.

The torque on the flagellum is proportional to the length times the amplitude squared.

Thus, increasing the number of waves reduces the torque.

The slow decay of the velocity after a peak value, can be explained hydrodynamically.
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Figure 2.6: Average swimming speed Ū/V for a variety of the number of wavelength Nλ,
for different length flagella. Other parameters are a/A = 0.02, αk = 1 and k/kE = 1.

We noted earlier that the basis of flagellar propulsion is the fact that the resistance of

a long slender-body is much greater for normal motion as opposed to tangential motion.

In the case of waves travelling on a flagellum, the significant parameter is the logarithm

of the ratio of the wavelength to flagellar diameters, and as above, as Nλ increases, the

wavenumber will decrease as will the slenderness ratio - and thus this mechanism of

propulsion becomes less effective.

It is the interplay of these two mechanisms (exploiting the ‘2:1’ ratio, and torque

balance) that leads to the shape of curve. It is when the two mechanisms are balanced

that the maximum swimming speed occurs - and varying Nλ will causes a penalty in terms

of average speed.
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Figure 2.7: Inverse efficiency η−1, for a variety of number of wavelengths Nλ, for different
length flagella. Other parameters are a/A = 0.02, αk = 1 and k/kE = 1.

For the same set of parameters, we plot the inverse efficiency η−1, as shown in Fig-

ure (2.7). Optimal efficiency (∝ P/Ū2) occurs when Nλ = 1 for L/A = 5; Nλ = 2 for

L/A = 10, and Nλ = 4.5 for L/A = 20.

2.8.5 Optimal αk

The variation in average swimming speed and inverse efficiency for changing the parameter

αk can be seen in Figure 2.8 and 2.9 respectively. The optimal values of αk for inverse

efficiency vary only slightly from αk = 1 and Higdon uses this for his optimal parameter

in all cases. The parameter αk = 1 corresponds to the segments of the flagellum making

an angle of 45◦ with the helical axis; when αk < 1 the angle is smaller and each segment
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Figure 2.8: Average swimming speed Ū/V as a function of αk, for different length flagella
with a/A = 0.02, optimal Nλ and k/kE = 1.

contributes less thrust per unit length.

Once again we observe that the maximum swimming speed (Figure 2.8) occurs at

αk ≈ 2; but once again in reaching the maximum swimming speed (which for shorter

flagellum levels plateau for αk > 2) the amount of power required, due to the orientation

of the flagellum, is disproportionately high.

2.8.6 Optimal k/kE

The final wave parameter is k/kE, the ratio of the wavenumber to the ‘factor’ determin-

ing how the wave grows to its maximum amplitude, with smaller values of k/kE being
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Figure 2.9: Inverse efficiency η−1 as a function of αk, for different length flagella with
a/A = 0.02, optimal Nλ and k/kE = 1.

associated with a fast transition to the maximum amplitude.

From Figure 2.10, we can see that variation in power consumption with k/kE is low

for L/A = 5, k/kE < 3; L/A = 10, k/kE < 5 and for all values of k/kE with L/A = 20.

The conclusion we draw from this is that as long as the flagellum is long enough for the

amplitude variation to occupy a small proportion of the total length, its effect is negligible.

It is important to note that the parameter set studied by Higdon misses parameters we

may be interested in for sperm motility, where, as we observed in Figure 1.1, the beat

pattern is often confined to the distal end of the flagellum.
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Figure 2.10: Inverse efficiency η−1 as a function of αk, for different length flagellum with
a/A = 0.02, optimal Nλ and k/kE = 1.

Nλ αk k/kE

L/A = 5 1 ≈ 1 < 3
L/A = 10 1.5 ≈ 1 < 5
L/A = 20 4.5 ≈ 1 no limit

Table 2.2: Summary of the optimal wave parameters for Higdon’s helical model.

2.8.7 Higdon’s optimal helically flagellated micro-organism

Higdon’s optimal helically flagellated micro-organism is summarised in terms of parame-

ters in Table 2.2. An example micro-organism is plotted in Figure 2.11 for L/A = 20.
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2.9 Biologically relevant parameters for sperm and the

effect of S⋆jk

The definition of S⋆
jk in Equation (1.13), by design, results in the no-slip boundary con-

dition being satisfied on the surface of the sphere since Sjk + S⋆
jk ≡ 0 for all points on

the surface of the sphere. We have verified this numerically in §2.8.1. However, the cal-

culation and integration of the S⋆
jk image system presents several difficulties; firstly it

is costly in terms of computational time and secondly it does not ensure the boundary

condition on the sphere is satisfied for singularities other than the Stokeslet(For example,

the viscoelastic or Brinkman analogues of the Stokeslet will have a different image system

to the Oseen singularity)

As a precursor to the optimisation routines in future chapters, we shall briefly consider

the effect of the image system on the resultant average swimming speed of a biologically

realistic sperm cell.

Within the Higdon framework which has been constructed, we are able to vary the

parameters to those expected in real human sperm cells. Although we have noted that

human sperm do not have spherical heads, following the lead from Dresdner et al. (1980),

we can account for the effect of the head, by utilising a sphere of an effective radius

A = 1.25µm, so that the volume of the physiological head and the spherical representation

are the same. An example set of parameters for a more biologically correct sperm with a

whip-like pattern is λ = 50; Nλ = 1; α = 5, A = 1.25, a = 0.002.

Figure 2.12 shows the average swimming speed Ū/V and Figure 2.13 the power con-

sumption η−1 for a variety of Nλ for the solution including the full image system S⋆
jk, and

that without S⋆
jk. One should notice that except for Nλ < 1, there is excellent agreement

between the solutions for average swimming speed and power consumption. The relative

error is calculate as the difference between the results with and without the image system,

divided by the result with the image system.
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From this one concludes that when ‘biologically relevant’ parameters, and in particular

a small sphere radius, are used, the effect of the Oseen image system S⋆
jk can be neglected,

provided that Nλ is bigger than 1.25.

2.10 Conclusions

In this chapter we have implemented a numerical code based on Higdon’s model for a

flagellated cell using slender-body theory and singularities, to model a single flagellated

micro-organism in an infinite viscous fluid. The resulting system of equations has been

coded using Matlab, and results presented compare favourably with the results Higdon

(1979c) presented. The model has been validated using a number of numerical checks.

The parameter search undertaken by Higdon, and repeated here, yields an optimal

set of parameters for a helically propelled micro-organism. It is important to notice here

that the parameters and helical model adopted by Higdon does not adequately capture

the scales and range of beat patterns associated with human sperm motility. We have

illustrated that for biologically relevant parameters (small heads) the effect of the Oseen

image system is negligible.

The extensions written in to the code allow for non-helical specification of beat patterns

including time-sequenced experimental data. The slender-body theory code will now be

utilised in subsequent chapters using new models of specifying the beat pattern. By

investigating the effect of the parameters of the new model on the outputs of the slender-

body theory code we consider the concept of an optimal beat pattern for human sperm,

in relation to our experimental observations.
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Figure 2.11: An example of Higdon’s ‘optimal’ helically propelled organism, for L/A = 20
with Nλ = 4.5, αk = 1, k/kE = 2.5 and a/A = 0.02.
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Figure 2.12: Solution for Ū/V for varying values of Nλ for a biologically ‘realistic’ sperm,
with S⋆

jk = 0 and S⋆
jk 6= 0. The lower subplot shows the relative error, with is less than

1% for Nλ > 0.75.
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Figure 2.13: Solution for η−1 for varying values of Nλ for a biological ‘realistic’ sperm,
with S⋆

jk = 0 and S⋆
jk 6= 0. The lower subplot shows the relative error, with is less than

1% for Nλ > 1.25.
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Chapter 3

Optimisation of a Parameterised

Sperm Beat Pattern: Hybrid

Envelope Model

3.1 Introduction

In this chapter we consider the optimisation of a new beat pattern parameterisation as

a model for human sperm. The sperm cell is assumed to have a prescribed planar beat

pattern based on a sinusoidal wave modulated by an envelope function. The choice of a

planar beat is twofold; firstly, reliable experimental data is currently only two-dimensional

and, in certain cases, shows little variation in overall tail length and secondly, the existence

of a longitudinal thickening of the fibrous sheath on the sperm tail running along opposite

sides of the tail, is interpreted as ribs or struts which may restrict motion in certain

directions (Fawcett, 1958). The specification of the beat pattern is such that it allows

variation in amplitude, position of the development of the beat and the wavenumber. The

introduction of a mechanism to control how distal the development of the beat pattern

is, is a novel addition to the previous studies.

Experimental evidence, such as Figure 1.1, illustrates that a helix is not an appropriate

model. The motivation for this chapter is that the section of the flagellum nearest the

head of the sperm is often inactive in beating, a feature not replicated using Higdon’s

helical model.
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In order to allow for the types of beat patterns observed experimentally, in our

modelling, we will utilise a hybrid exponential-arctan envelope. Motivation is drawn

from Dresdner et al. (1980), who used an arctan function to represent the non-constant

wavenumber; however, we adopt a hybrid version to provide a novel model for the en-

velope function. We interpret the effect of the parameters by using information about

velocity, efficiency, power consumption and energy usage, derived using the slender-body

theory code developed in the previous chapter.

3.2 Novel specification of the flagellar envelope

We shall adopt the refined slender-body theory of Higdon (1979b) and consider the motion

of a single sperm cell in an infinite domain, where the physical dimensions of the sperm

are taken from experimental data and assumed constant. We specify a flagellum of length

L = 56µm and radius a = 0.05µm, and a spherical head of A = 1.25µm, using the concept

of effective radius from Dresdner et al. (1980) and discussed earlier. We have also shown

(Section 2.9) that removing the Oseen correction for the slip on the head has negligible

effect on the overall result for such small head sizes, and this is confirmed by the uses of

a hybrid boundary-element slender-body theory method (Smith et al., 2008a).

Higdon specified the position of the flagellum as X(X, t) (Equation 2.8a) in the body

frame as a helical wave modified by an envelope function E (Equation 2.8b). We specify

the beat pattern as a sinusoidal planar wave affected by a modified envelope function,

where A is the head radius, as follows

X(X, t) = (X, E(X − A) cos(k(X − A) − ωt), 0) (3.1a)

where

E(x) = α
(
1 − exp(−x2)

) (
tan−1 (σ(x− δxmax))π

−1 + 0.5
)

(3.1b)
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With the added condition that the total arc-length is fixed in time with L = 56µm.

The reasons for specifying a modified exponential-arctan envelope is that it allows a

parametrisation which adjusts how near the posterior of the tail the beat pattern develops

- or in other words how much of portion of the tail nearest the head is not active in high

amplitude beating.

The model parameters and their interpretations are as follows

• Fixed parameters: ω is fixed so that the frequency of the beat pattern is 18Hz. The

frequency of the beat does vary with viscosity (Pate and Brokaw, 1980; Ishijima

et al., 1986), however, 18Hz is a typical value observed and by fixing it we reduce

the complexity of the problem; we know that as power scales to the square of

frequency and linearly with viscosity, inverse efficiency is unaffected by frequency.

The parameter σ is considered to be fixed and equal to 1.5; σ is responsible for the

rate of transfer from the zero- to the large-amplitude state and this assumption of

fixing its value is discussed in detail in Section 3.4.1.

• Variable parameters: α is the amplitude of the fully developed wave pattern, and

δ ∈ (0, 1) adjusts how far along the flagellum the beat pattern switch changes from

the zero to α amplitude state. The wavenumber k = 2π/(xmax/kv), is chosen so that

the parameter kv is a measure of how many wavelengths occur along the length of

the flagellum.

The effect of the model parameters is shown in Figure 3.1. We have three parameters

that we shall optimise for: α, δ and kv.
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Figure 3.1: Effect of the parameters α (top), δ (middle) and kv (bottom) on the beat
patten and envelope. The solid blue and red lines represent an instantaneous flagellar
position for a set of parameters, which is associated with the matching colour envelope
function. In each case the total length of the flagellum is a fixed parameter L = 56µm.

3.3 Optimisation method

3.3.1 Optimisation functionals

The raw outputs of the slender-body theory code are the force distribution, the velocity of

the sperm cell and the angular velocity of the sperm cell. From these outputs we are able

to calculate certain measures which are used in assessing the optimality of a particular

beat pattern.

Compared to Higdon’s helical wave model, our specification is no longer time invariant,

therefore, we need to calculate the average of the outputs over a series of time points within
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the period of the beat pattern. It is important that we ensure that the total arc-length

of the flagellum is fixed.

From the outputs we construct four functionals for comparison

• average swimming speed Ū ,

• average power consumption P̄ ,

• average inverse efficiency η−1,

• average energy consumption ∝ P̄ /Ū .

The instantaneous power consumption can be calculated as

P (t) =
N∑

n=1

(u(sn) · f (sn)) 2δsn,

and thus the average power consumption is the time average of this quantity.

In order to quantify an efficient beat pattern we utilise the inverse efficiency

η−1 = P/(6πµAŪ2) (3.2)

The inverse efficiency is a balance of power consumption to velocity and drag. Due to

the construction of η−1, we seek the lowest value of η−1 which corresponds to the most

efficient parameter set.

3.3.2 Newton’s method and descent methods

Finding the stationary points of a function corresponds to finding the zeros of the deriva-

tive of the function and as such we can utilise root finding methods such as the Newton-

Raphson approach, which in higher dimensions is simply known as Newton’s method.

In order to find a maximum or a minimum of a function f , we need to calculate its

derivative and second derivative. We do not necessarily need analytic forms for these
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derivatives, as we shall shortly consider using a finite difference approach to calculate

them. To find a zero for the one-dimensional function f , we use an iterative Newton-

Raphson scheme, whereby the next solution xk+1, can be found from the current value xk

as follows

xk+1 = xk − f(xk)/f
′(xk). (3.3)

A natural extension to Equation (3.3), in order to find the stationary/turning points

of f (that is where the derivative is zero), we utilise the formula

xk+1 = xk − f ′(xk)/f
′′(xk). (3.4)

Newton’s method can be extended into higher, say, m-dimensions, in order to find

extrema of a multi-dimensional surface. Considering the situation of finding the maximum

or minimum of an function f : R
m → R, as we shall in this chapter, the first derivative is

replaced by the gradient vector d = −∇f (dimension m× 1) and the second derivatives

form the Hessian matrix (dimension m×m) which is defined as

[H ]ij =
∂2f

∂xi∂xj

. (3.5)

The iterative algorithm now becomes

xk+1 = xk + H−1
k dk. (3.6)

where Hk and dk are the values of the Hessian matrix and the gradient vector calculated

at the point xk respectively.

An alternative to Newton’s method is the (steepest) descent method. Newton’s method

is a fast algorithm for determining the zeros of a function, which converges quadratically,

however, the quality of the initial starting guess is very important, and a poor starting
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method can cause Newton’s method to fail to converge (Süli and Mayer, 2003). In the

descent method, iterations are always performed in the direction of maximum decrease of

the function, parallel to the gradient vector d = −∇f ; with a to-be-determined multiplier

τk

xk+1 = xk + τkdk. (3.7)

The value of τk is chosen as follows (for the steepest descent method)

τk =
‖dk‖2

dT
k Hkdk

. (3.8)

The descent method converges more slowly than Newton’s method and still requires the

calculation of the gradient vector and the Hessian matrix, but despite this, in the initial

stages of the root search, it has been found to be more robust than Newton’s method

(Süli and Mayer, 2003). Therefore, we adopt a combined scheme that utilises the slower

descent method for the first few, say 3 or 4, iterations, and then the faster Newton’s

method afterwards.

Details of implementing the calculation of the required derivatives using finite differ-

ence is presented in Appendix C.2

3.3.3 Pseudo-code diagram

In this section we outline how the optimisation code, the slender-body theory code and

the parameters are linked in our scheme. Figure 3.2 shows a ‘black-box’ diagram for the

solution of our problem.

In our situation the slender-body theory code developed earlier plays the role of the

function and for a set of parameters returns a set of useful measures such as the inverse

efficiency, which can then be used to optimise over. Specifically, for a given set of parame-

ters, the slender-body code needs to be run a number of times, for a very small alteration

in parameters in order to calculate the gradient vector and the Hessian matrix; this is
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Figure 3.2: Black-box diagram, illustrating the pseudo-code, showing the relationship of
the optimisation code, the slender-body theory code and the model parameters.

the time consuming step of the process. The updated parameter set is then calculated

using Newton’s method and the process is then repeated by calculating the Hessian and

gradient vectors based on the new parameters. Convergence is determined by considering

the value of the gradient vector and the difference in each successive set of parameters

through the iteration.

3.4 Results

3.4.1 Effect of σ

Firstly, we shall explore the effect of the parameter σ on inverse efficiency, thus setting

f = η−1. The aim of this preliminary study is to fix the value of σ for future work, and

thus reduce the dimension of the optimisation problem. Intuitively, it is the parameter

which is likely to heave least affect on the overall result since it controls the gradient of

the flagellum as it transfers from the zero-amplitude state to the fully-developed state
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Figure 3.3: Inverse efficiency η−1 versus σ. Different combinations of α and δ are given,
for fixed kv = 1.

and we require σ to stay small enough so the curvature of the flagellum does not go too

high.

Figures 3.3–3.5, show the variation in the inverse efficiency as a function of σ for

values of kv = 1, 1.5 and 2 respectively and for different pairing of α and δ. Recall α

corresponds to the amplitude and δ corresponds to how far along the flagellum the beat

pattern develops; thus δ = 0.2 corresponds to beating along the majority of the flagellum,

whereas δ = 0.8 corresponds to beating on the distal one-fifth of the flagellum.

In Figure 3.3 we see that when one wavelength is observed on the tail (kv = 1), then

once σ is above a critical value of around 1 the behaviour for all the values of (α, δ)

is similar – that is the curves have reached a plateau, or grow only slightly, with little

variation. The pattern is even more striking in Figure 3.4 where kv = 1.5. Here, as in the
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Figure 3.4: Inverse efficiency η−1 versus σ. Different combinations of α and δ are given,
for fixed kv = 1.5.

previous figure, once past a similar critical value, the behaviour is very similar.

Figure 3.5 illustrates the situation whereby for some combinations of (α, δ), the mini-

mum inverse efficiency is observed for very small values of σ, whereas others display the

plateau or slow growth behaviour. Although a critical value is less obvious here, following

from the previous two diagrams, choosing a value of σ > 1, but not too large will ensure

we are near-optimal in most cases. It is important to notice that if we push σ too high,

say σ > 4, although mathematically the equations are still tractable, the shapes gener-

ated for the flagellum are too ‘sharp’, the curvature is too high and thus unphysical (see

Figure 3.6).

Based on the evidence presented in this section, we make the assumption that we can

fix the value of σ = 1.5 for all subsequent calculations.
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3.4.2 Two-dimensional optimisation - α and δ

We consider the case of two-dimensional optimisation for the two parameters α and δ,

whilst leaving σ = 1.5 as before, and also fixing the value of kv = 1.5. This will enable us

to gain some insight into interaction of the two parameters α and δ.

Figures 3.7-3.10 illustrate the variation in average speed, average power consumption,

inverse efficiency and measure of energy usage, for varying values of α and δ.

Figure 3.7 illustrates that the maximum average speed of the cell occurs when the

amplitude α is large, and when δ is small, that is physically the situation of a large

amplitude beat pattern which is fully developed along most of the flagellum; this is not

a counter-intuitive result as it corresponds to most of the flagellum being involved in
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Figure 3.6: The effect of setting σ too high is demonstrated in the second plot; with
α = 7, δ = 0.5 and kv = 2. The combined exponential-arctan envelope is given by the
dashed blue lines. The first plot has σ = 1.5, whereas in he second plot is σ = 5 and we
see that the flagellum, whilst mathematically acceptable, is physically unrealistic due to
the high curvature. The dashed lines represent the flagellar envelope.

beating. However, compared with Figure 3.8, we see that this extra speed comes at a cost

– a much higher power consumption, however, we immediately notice that the maxima of

these two graphs do not coincide.

The combination of power consumption and average swimming velocity discussed in

Section 3.3.1 as inverse efficiency, gives us a measure of whether the increase in velocity

occurs at disproportionate cost to an organism’s power consumption. Figure 3.9 illustrates

the variation in the inverse efficiency for different values of α and δ.

There are a number of important points to notice in Figure 3.9 and in particular its

relation to Figures 3.7 and 3.8 from which it is derived. Firstly notice the existence of two

minima in our parameter region of interest; a minimum at (α, δ) = (6.8, 0.30) and another
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Figure 3.7: Plot of average swimming speed Ū for varying α and δ for σ = 1.5 and
kv = 1.5.

region, for high-posterior beating with large amplitude – the point marked is (8.5, 0.82).

Although the first value is the global minimum, the existence of another region of low

inverse efficiency is interesting. Firstly it should be noted that this region has a lower

swimming velocity and power consumption, but the organism is still motile.

The existence of two regions of minimal inverse efficiency suggests that there may be

some other mechanisms which means that beat pattern opts for one choice over another.

We shall explore this by considering the average energy consumption of the sperm.
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Figure 3.8: Plot of average power consumption P̄ for varying α and δ for σ = 1.5 and
kv = 1.5.

The average energy consumption ∝ P̄ /Ū is given in Figure 3.10, and once again

demonstrates that, as expected, large amplitude, well developed beat patterns require the

most energy. We consider the energy consumption of the two regions of minimum inverse

efficiency. We notice that the energy consumption of the local minimum (8.5, 0.82) is

much lower than that of the global minimum (6.8, 0.3); which suggests that if energy is a

physical constraint then it may cause a switch to another, although slower, still efficient

but more energy saving mode of beating.
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Figure 3.9: Plot of average inverse efficiency η−1 for varying α and δ for σ = 1.5 and
kv = 1.5. Marked, in red, are the two minima of the inverse.

3.4.3 Two-dimensional optimisation - δ and kv

In this section we explore the link between the parameters δ and kv; that is we explore

the relationship between how posterior the beat pattern is and the wavenumber.

Firstly, in Figure 3.11 we observe that the highest swimming speeds are achieved for

beating which occurs across the majority of the tail and with a low number of wavelengths,

however, as one would expect this comes at a cost with fully developed beat patterns have

high power consumption for a wide range of kv, as shown in Figure 3.12.
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Figure 3.10: Plot of average energy consumption for varying α and δ for σ = 1.5 and
kv = 1.5. Marked on are the two minima of the inverse efficiency functional.

Shown in Figure 3.13 is the calculated inverse efficiency for this data. Firstly we notice

that the most efficient beat patterns coincide with those of the highest velocity. It is also

worth noting, that the ‘band’ of efficient beating patterns then extends out in to the (kv,

δ) space, suggesting that in order to maintain an efficient beat pattern, that for a fixed

amplitude, if a beat pattern is more proximal, then the number of wavelengths on the tail

should increase, and vice-versa. The trend is illustrated by a white line on Figures 3.13

and 3.14.

There is a second mode of very efficient, but slower beating around δ = 0.8 for small

kv; this is similar to the secondary region found in the first optimisation.

Figure 3.14 illustrates that moving along the general path highlighted in Figure 3.13 is

moving in the direction of increasing energy consumption; and thus this mechanism may

not be advantageous compared to switching to the alternative mode of beating highlighted
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Figure 3.11: Plot of average swimming speed Ū for varying kv and δ for σ = 1.5 and
α = 6.

earlier. However, it is still interesting to consider this region, as the swimming speeds are

still high here compared to the second region.

3.5 Discussion

3.5.1 (α, δ) optimisation

The results for the two-dimensional optimisation of the amplitude and the measure of

how posterior the beat pattern forms (α, δ), has illustrated several key points. We have

highlighted that there are two regions of optimal beating for inverse efficiency. Figure 3.15

illustrates these two optimal beat patterns identified; recall at this stage the wavenumber

is fixed. Figure 3.15(a) shows beating which is developed along the majority of the tail

and at a lower amplitude, compared to the beating which is confined to the posterior of
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Figure 3.12: Plot of power consumption P̄ for varying kv and δ for σ = 1.5 and α = 6

the tail and occurs at a larger amplitude.

We have demonstrated that we have an alternative optimal solution, which has a lower

overall speed, but at an appropriate power reduction. We have also seen that despite the

reduction in velocity of the local minimum over the global minimum, there is a saving to

be made in energy consumption. The reason why a sperm cell may opt between these

two minima is an open question and the answer is unlikely to be found by studying the

fluid dynamics alone. Combining fluid dynamics with an understanding of the physical

process which occur in the cells such as how quickly ATP (Adenosine triphosphate – the

energy currency of cells) can be transported along the flagellum, should provide a better

insight. However, at present intracellular processes are not fully understood.
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Figure 3.13: Plot of average inverse efficiency η−1 for varying kv and δ for σ = 1.5 and
α = 6. The white line highlights a path through the parameter space, which seeks to
minimise inverse efficiency.

3.5.2 (δ, kv) optimisation

The results of the optimisation of kv and δ demonstrate that in order to maintain an effi-

cient beat pattern, it is necessary to increase the number of wavelengths on the flagellum

if the posteriority of the beat pattern is increased, and vice-versa.

So far in the considering the optimisation of (δ, kv), we have had a fixed amplitude α,

however, we have seen previously that amplitude and δ linked. Figure 3.16 illustrates the

variation in the inverse efficiency for values of α, when we use the values of δ and kv lying

within our optimal region on the inverse efficiency plot (values along the white line). We

observe the optimal value for the amplitude parameter α is about constant and equal to

7 for all the different parameters sets along the optimal region.
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Figure 3.14: Plot of average energy consumption P̄ /Ū for varying kv and δ for σ = 1.5
and α = 6
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Figure 3.15: Plot of the two optimal sperm cells with (top) α = 6.8, δ = 0.3, and (bottom)
α = 8.5, δ = 0.82. The dashed line represents the flagellar envelope.
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3.6 Conclusions

In this chapter we have considered the optimisation of a parameterised sperm beat pattern

using a new parametrisation which enables us to consider how posterior a beat pattern

is. The mathematical model used is that of slender-body theory based upon the ideas

of Higdon (1979c), modified to use a planar sinusoidal beat pattern with a combined

exponential-arctan envelope.

By considering the three-parameter space, we have demonstrated that the three pa-

rameters – amplitude, posteriority of the beat pattern, and wavenumber are intrinsically

linked with regard to minimising inverse efficiency. In particular we have shown that

there are two different modes of optimal beatings for a given amplitude - with a reduction

in overall velocity being compensated by a reduction in energy consumption. We have

also illustrated that wavenumber and the posteriority of the beat pattern are linked – the

more posterior the beat pattern, the more wavelengths are required on the flagellum to

maintain a level of optimality, whilst the amplitude is fixed.

We have illustrated that in determining the optimal solution, all three parameters we

have explored are linked in their effect on the velocity and power consumption and have

qualitatively illustrated that the linking of parameters is consistent with experimental

observations, such as those beat patterns seen in Figure 1.1.

One of the limitations of this model is that the wavenumber is assumed constant. In

the next chapter, we relax this assumption to allow for a wavenumber which increases

with the arc-length.
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Chapter 4

Optimisation of a Parameterised

Sperm Beat Pattern: Non-constant

Wavenumber model

4.1 Introduction

In the previous chapter we investigated, as a model for human sperm, a sinusoidal planar

wave modified with a combined exponential-arctan envelope. This specification previously

adopted however, like the helical model of Higdon (1979c), did not allow for non-constant

wavenumber. It is not obvious that the wavenumber should be assumed constant and

experimental data (Smith et al., 2008b) suggests that the wavenumber is not constant

along the flagellum and tends to increase towards the posterior of the flagellum; this

can be observed in our motivating figures (Figure 1.1(b)). In order to account for this

mathematically, we adapt our hybrid exponential-arctan model introduced in the previous

chapter, to allow for an underlying sinusoidal planar wave with a non-constant wavenum-

ber. Similarly to the previous chapter we shall explore, using the slender-body theory

code, the relationship between the model parameters and the useful measures such as

power and inverse efficiency.
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4.2 Specification of the flagellum

We suppose that the position of the flagellum in the (X, Y, Z) space X(X, t), is given as

follows

X(X, t) = (X, E(X −A) cos([Λ(X − A)] (X −A) − ωt), 0), (4.1a)

with the envelope function

E(x) = α
(
1 − exp(−x2)

) (
tan−1 (σ(x− δxmax))π

−1 + 0.5
)
. (4.1b)

These equations should be compared with those in the previous chapter; the expression for

the envelope function is the same, however, the constant wavenumber k in Equation (3.1a)

is replaced by a function Λ in Equation (4.1a).

The form of Λ is

Λ(x) =

[
2πkv

xmax

](
x

xmax

)θ−1

. (4.1c)

The reason for this choice of Λ is so that in the case θ = 1, then Λ(x) reduces to Λ(x) =

2πkv/xmax which is the same as the expression for constant wavelength, and that kv plays

the role of the number of wavelengths as in the previous chapter. If θ > 1 the number of

wavelengths increasing towards the posterior of the tail, whilst for θ < 1 it decreases; as

illustrated in Figure 4.1.

The model parameters are the same as those in the previous chapter, except with the

addition of θ, as discussed above, and the slightly modified interpretation of kv.

As in Chapter 3, we consider the effect of changing the parameters on the useful

measures which are derived from the outcome of the slender-body theory code developed

in Chapter 2.
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Figure 4.1: The effect of the parameters kv (fixed in columns) and θ (fixed in rows). kv

has a similar role as in Chapter 3 (the number of wavelengths), and θ affects the effective
wavenumber along the flagellum.

4.3 Results and discussion

4.3.1 Optimisation of (α, θ)

In this section we explore the relationship between the amplitude parameter α and the

new parameter θ which provides the non-constant wavenumber. The other parameters

are fixed as σ = 1.5, δ = 0.3 and kv = 1.5, which are the optimal parameters derived in

the previous chapter.

Figure 4.2 illustrates the effect on the average swimming speed for a sperm cell for

a varying values of α and θ. The fastest speeds occur for the higher amplitude beat

patterns, which is consistent with our previous finding. Moreover, we find that the fast
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Figure 4.2: Average swimming speed Ū against α and θ, for the non-constant wavenumber
envelope model.

speeds occurs when θ = 1, that is to say that the wavenumber is constant along the

flagellum.

Considering power consumption in Figure 4.3, we observe that as θ increases for a

fixed value of α the power consumption increases. Combining these quantities of speed

and power consumption generates the inverse efficiency, which is what we are seeking

to minimise. Figure 4.4 illustrates that the minimum inverse efficiency has a ‘saddle

point’ type structure with two optimal regions. There is a region for θ = 1 with between

α = 6 and 7 which corresponds to a near maximum swimming speed. There is also a

secondary region of optimal efficiency, for smaller amplitudes between α = 3 and 5, but

for increasing wavenumber, in particular for θ > 3. The speed of this second region is

however much slower than the most optimal region with θ = 1. Figure 4.5 illustrates

typical configurations from the two optimal regions.
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Figure 4.3: Average power consumption P̄ against α and θ.

4.3.2 Optimisation of (kv, θ)

In this section we present the result for the optimisation of the parameter combination kv

and θ. These parameters both form part of the specification of the variable wavenumber

formulation Λ.

Figure 4.6 illustrates that the maximum average cell speeds occur when kv = 0.5 and

θ > 2, which corresponds to increasing wavenumber towards the rear of the flagellum,

however with a small multiplier kv, meaning even at the end the wavenumber will still

only be 0.5. Figure 4.7 illustrates a beat pattern configuration with these parameters,

which corresponds to a whip-like configuration.

There is a second region of high average swimming speed when θ = 1 with k = 1.3;

this corresponds to the results found in the previous chapter.

In terms of the inverse efficiency, Figure 4.9 illustrates that for any given value of kv
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Figure 4.4: Average inverse efficiency η−1 against α and θ.

then setting θ = 1 is the most efficient configuration. Overall, θ = 1 and kv = 0.5 is the

most efficient configuration, however, in this case this does not correspond to the fastest

swimming pattern but in fact a very efficient slow swimmer with low power consumption

as shown in Figure 4.8. The region corresponding to the highest speeds (as discussed

earlier) are near optimal.
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Figure 4.5: Two optimal sperm configurations found by optimising kv and θ. The first
sperm has a larger amplitude but constant wavenumber; for the second slower configura-
tion the amplitude is lower but the wavenumber is not constant and increasing towards
the posterior of the tail.
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Figure 4.6: Average swimming speed Ū against kv and θ.
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Figure 4.7: An example of a maximum swimming speed beat pattern, with α = 6.76,
δ = 0.3, kv = 0.5 and θ = 3. Notice the whip-like beat pattern configuration.

Figure 4.8: Average power consumption P̄ against kv and θ.

4.3.3 Optimisation of (δ, θ)

In this section we present the results for the optimisation of the posteriority of the wave

δ and parameter associated with causing the non-constant wavenumber θ.
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Figure 4.9: Average inverse efficiency η−1 against kv and θ.

Figure 4.10 illustrates the average swimming velocity for different combinations of δ

and θ. The first thing to notice are two modes of high velocity swimming for δ = 0.3 and

θ = 1 (constant wavenumber) and importantly, for δ = 0.1 and θ = 4. These two modes

are illustrated in Figure 4.11.

The inverse efficiency plot (Figure 4.12) illustrates a region of parameter space which

results in configurations with similar inverse efficiencies. For δ < 0.3, all values of θ are

permissible and display near optimal efficiency. This region, labelled 1, encompasses our

two previous modes of fastest swimming, and all the region of fast swimming illustrated

in Figure 4.10. We also notice that this region coincides with the area of medium energy

consumption as shown in green in Figure 4.13 (onto which the regions have been marked).

The second region, with 0.4 < δ < 0.65 and 1 < θ < 2, is a region in which the inverse

efficiency is low, however we notice that as δ increases the speed decreases, but so does
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Figure 4.10: Average swimming speed Ū against δ and θ

the energy consumption. The final region occupies a triangle for 0.75 < δ < 0.9 and

for increasing values of kv from 2 towards 4; this region has the slowest swimming speed,

however, it also has the lowest power consumption. This region 3 corresponds to proximal

beating and an increasing wavenumber. Example configurations from each region are

shown in Figure 4.14.
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Figure 4.11: Examples of the maximum swimming speed beat patterns for (δ, θ).
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Figure 4.12: Average inverse efficiency η−1 against δ and θ. Marked on the graph are the
three regions discussed in the text.
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Figure 4.13: Average energy consumption P̄ /Ū against δ and θ; the regions of similar
inverse efficiency from Figure 4.12 are marked on for comparison.
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Figure 4.14: Example configurations from (top) region 1 with (δ, θ) = (0.2, 2.5); (middle)
region 2 with (0.55, 1.5) and (bottom) region 3 with (0.85, 3). In each case α = 6.76 and
kv = 1.5.
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4.4 Conclusions

In this Chapter we have developed a variable wavenumber extension of the model devel-

oped in Chapter 3. We have demonstrated the existence of optimal beat configurations

which could not be adequately described using a fixed wavenumber model. In particular

we have illustrated that the combination of the posteriority of the development of the

beat pattern and an increasing wavenumber can be used to stay within optimal regions

of the beat pattern. We have observed a whip-like configuration for the beat pattern and

found two regions of optimality corresponding to varying the amplitude and the parameter

controlling the non-constant wavenumber of the beat pattern.

In this chapter and the preceding chapter, we have used the concept of an underlying

beat pattern – a planar sinusoidal wave – modified by an envelope function with a number

of parameters. This specification, however, does not admit configuration such as the

meandering patterns observed in vitro, as seen in Figure 1.1. In both chapters the results

have agreed qualitatively with the experimental observation discussed earlier, however, in

order to match the experimental data more accurately the number of parameters required

is approaching a limit of what can be reasonably explored. In the next section, we devise

and adopt a new method for specificating the beat pattern of a flagellum by considering

the angle that the flagellum makes with the horizontal, parameterised by arc-length. This

shear-angle method is devised based on experimental observation and is discussed in detail

in the next chapter.
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Chapter 5

Experimentally Based

Parametrisation of Beat

Kinematics using Shear-Angle

5.1 Introduction

In this chapter we formulate a new model for the specification of a flagellar beat pattern by

specifying the angle which the flagellum makes with the horizontal (in the body frame) as

a function of arc-length and time. The concept of applying this technique to flagellar beat

patterns was used by Hines and Blum (1978) and Dresdner et al. (1980). The advantage

of specifying an angle as a function of arc-length rather than the Y position as a function

of the X position, allows configurations which are not expressible when Y = Y (X), such

as a ‘meandering’ type pattern where the angle to the horizontal may increase above 90◦.

By considering experimental data we are able to make certain generalisation upon which

our model is based. The resultant model benefits from having only a small number of

parameters.

Following the development of the new model, the second part of this chapter considers

the application of this new model under our optimisation regime, using the slender-body

theory code. We provide an explanation for the initial motivating experimental data.
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X

Y

T
α(s, t)

Figure 5.1: An example plot of a hyperactivated sperm beat recovered from experimental
data (Smith et al., 2008b). The red arrow represents the tangent vector and α(s, t) is the
angle which the tangent vector makes with the X-axis.

5.2 Beat pattern specification

Formally, we specify the position of a planar flagellum in the X, Y body frame as

X(s, t) =

∫ s

0

cos(α(s′, t))ds′, (5.1a)

Y (s, t) =

∫ s

0

sin(α(s′, t))ds′, (5.1b)

where s ∈ [0, 1] parameterises the arc-length and α(s, t) is the angle that the flagellum

makes with the horizontal at arc-length s and time t. Figure 5.1 illustrates an exam-

ple beat pattern, taken from experimental data of human sperm in Earle’s medium with

Methylcellulose 4000 at 2% concentration, with viscosity approximately 1.3Pa·s. The rela-

tionship between the bend angle α, the horizontal and the tangent vector T is highlighted

in Figure 5.1.

In general the problem arises in determining the form of α(s, t). The aim is to devise

a specification for α(s, t) which is not based on a parameterised function which must be

assumed a priori. In the next section we consider experimental data for different types of

sperm motility and from these make assumptions upon which our model is developed.
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5.3 Experimental data

Using data from Smith et al. (2008b,c) we are able to obtain Matlab data for the

flagellum position of a human motile sperm in time sequenced frames. The data are

first manipulated so that the data are all considered in the body frame such that the

origin is located at the centre of the (assumed) spherical head and the tangent vector

of the head/flagellar junction is parallel to the X-axis (as in Figure 5.1). The Y axis

is right-hand perpendicular to the X-axis and thus the unused Z axis points out of the

page.

In Figures 5.2 and 5.3 are two example sperm beat patterns with their associated bend

angle as a function of arc-length taken from experimental data for a human sperm in a

high viscosity medium (Figure 5.2 – Earle’s medium with methylcellulose 4000 at 2%)

and in a watery media (Figure 5.3 – Earle’s medium only).

Notice that whilst the two physical beat flagellar beat patterns have many differences,

the plots of their shear-angle (as a function of arc-length) have similarities; it is these

similarities that we shall exploit in order to determine an appropriate model. The aim is

to represent the shear angle as a function of space and time, through the use of a small

number of knot points to form the basis of a cubic interpolation to complete the full

specification of the angle profile in space with the time dependence arising from changing

the amplitudes of the knots in time. Recall that the shear-angle is a two variable function

having a dependence on arc-length s and time t. Our first approach is to consider fixing

a set of knots at fixed values of s⋆
i and then considering how these evolve in time using

Fourier analysis of the experimental data.
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Figure 5.2: An example of a plot of a sperm beat pattern from experimental data and
associated shear-angle. This sperm has a ‘meandering’ beat pattern; notice that the
largest angles are near the posterior and that the first portion of the flagellum is not
involved in bending. The experimental data has been scaled so that the total arc-length
of the flagellum is 1.

5.4 Mathematical model

5.4.1 Fixed knots

We suppose that the knots are fixed at set values s⋆
i in s space; the choice of the location

of the knots is however, free. By taking the fast-Fourier transform of the experimental

shear-angle at each of these knots over time and using Fourier analysis we are able to

derive an expression for the value of α(s⋆
i , t) at each of the fixed knot points as a Fourier

series. Each knot requires, as a minimum, an amplitude, a phase shift and a frequency

which we found to be constant over all the knots. The number of parameters is thus quite

high given we need at least five or more knots to adequate capture even the basic form
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Figure 5.3: An example of a plot of a sperm beat pattern from experimental data and
associated shear-angle. This sperm has a ‘whip-like’ beat pattern. In common with
Figure 5.2, notice that the largest angle occurs near the posterior and the first portion of
the flagellum is not involved in beating.

of the data. Our preliminary investigations however, highlighted no obvious relationship

between the remaining parameters.

Additionally and moreover, the method was found to be unsatisfactory at modelling

the variety of beat patterns we could expect and the prediction of the model would often

lose many of the important features of the experimental data. One of the problems of the

fixed knot model is that despite fitting certain periods of the data well, for certain time

values all the knots may have very low amplitudes, and thus the cubic interpolation fitted

to recover the continuous form of α is a poor match to the actual data, losing many of the

important features. As an example consider the data used in Figure 5.2, if we fix knots a

priori, as say evenly, there are instances in time when the Fourier series representation is
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Experimental Data
Fixed Knot Points
Cubic Spline fitted data

Figure 5.4: Experimental data of a meandering sperm beat pattern shown in blue. The
red stars are the fixed knot points with amplitude predicted using Fourier series analysis.
The dashed red line is the cubic interpolation which is calculated from the knot points.
The red tail pattern is the predicted pattern from the interpolated shear-angle. Notice
that the match is very poor and the features of the beat pattern are lost.

very good, whilst for other times, such as that illustrated in Figure 5.4, the match is very

poor.

The reason for the poor match is that the important features of the shear-angle namely

the extrema are often missed by the knot fixed points; resulting in a loss of structure.

Clearly the problem can be circumvented by increasing the number of knots points – this

is true of many kinds of data fitting procedures, however, in this case extra knots bring

additional parameters. Our aim is to have a model parameterised in such as way as the

parameter space can be studied in detail. A mechanism for capturing the extrema of the

shear-angle is thus required; a solution lies in smartly moving the knots.
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Figure 5.5: The variation in the shear bend angle as a function of arc-length and time.
Notice the bands of maximum bending (red) and minimum bending (blue) which move
towards the posterior of the flagellum with near constant speed and spacing. (Processing
of the data by Mr Hermes Gadêlha (Oxford), using techniques in Smith et al. (2008b))

5.4.2 Moving knots

The important points in determining the nature of a curve, when approximating it with

cubic interpolation, are the extrema - these are the maxima and minima of the curve.

In order to consider this in detail we present experimental data of how the shear-angle

changes with time. Figure 5.5 illustrates the change in bend angle as a function of arc-

length and time for the sperm with a meandering beat pattern (such as that in Figure 5.2).

The data are for a human sperm swimming in methylcellulose 4000 at 1%; notice that

the beat pattern for this particular sperm is not symmetric about the X axis.

The extrema, shown as red (maximum) and blue (minimum) bands, move towards the

posterior of the tail as time increases. There is only negligible deviation from α = 0 in
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the region when s 6 0.2 and we shall adopt this as a modelling assumption – backed-

up by the fact that this region contains the ‘midpiece’ containing the mitochondria (see

Figure 1.2). From this data we can extract, assuming that the extrema progress linearly,

a speed of progression of the extrema against arclength as traversing from s = 0.2 to s = 1

in around 0.5 seconds, giving a speed of 8/5 s−1. We shall discuss the speed parameter

in detail below. We must also make an assumption about how the amplitude of the

shear-angle varies with the knots’ position; we make the assumption that the amplitude

increases linearly from zero at s = 0.2 to some maximum value a1 which is the (positive)

value an extremum will take if it occurs at s = 1. We shall shortly consider an upper

limit on the value of a1, which turns out to be dependent on the other parameters, to

avoid self-intersecting beat patterns.

We wish to parameterise the distance between the extrema; we use a parameter Ne,

analogous to Nλ in Chapter 2, so that when Ne is an integer it denotes the number of

extrema in s ∈ [0.2, 1], however, it can take any positive value, as 0.8/Ne is the knot

spacing.

From Figure 5.5, we see that the spacing of the extrema are approximately constant

and uniform; we shall adopt this as a modelling assumption.

A summary of the modelling assumptions is as follows

• There is no deviation in the range s < 0.2, and consequently α(s < 0.2, t) ≡ 0, for

all t.

• Extrema are uniformly spaced between s = 0.2 and s = 1, and there are Ne in this

range.

• Extrema move linearly in time with a known speed.

• Amplitude of the knots increases linearly from zero at s = 0.2 to a maximum

absolute value of a1 at s = 1.
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• The shear-angle is ‘symmetric’ – the absolute value of the amplitude of an extremum

at s = 1 is the same for maxima and minima.

As an example of the method, consider applying it to the example where the fixed knot

scheme failed above (Figure 5.4). Using the moving knot model with Ne = 4.7 and

a1 = 120◦, the results, which show a much better level of agreement than the fixed knot

model, are illustrated in Figure 5.6. It is worth noting that although the new model does

not match the experimental data exactly we have developed a scheme which, with a very

small number of parameters, captures the important features of a beat pattern seen in

vitro. The model for devising the beat pattern allows the beat pattern to be easily scaled

back onto a realistic sized sperm with a flagellum length of L = 56µm

It is worth noting at this point that we have just three parameters, one of which, the

speed, we shall discuss below in more detail below. Compare this with the number of

parameters in the fixed knot model considered in Section 5.4.1, where as a result of the

Fourier analysis, we had for the 5 fixed knots, 11 parameters which were poorly defined

and required direct Fourier analysis of the experimental data – moreover, the 11 parameter

model was a poor fit to the data, especially compared to our moving knot model.

5.4.3 The speed parameter and time period

We currently have three free parameters; the number of extrema Ne, the maximum bend

angle a1 and the speed of the knots v. We have a number of derived parameters - firstly

the spacing of the knots which is = 0.8/Ne and a fundamental time period T defined to

be the time between the ‘generation’ (at s = 0.2) of successive maxima. As the extrema

are spaced uniformly and travel with speed v, subsequent maximum will be generated

every T = 2(0.8/Ne)/v – the need for the multiplier of 2 is that generation of extrema

alternatives between maxima and minima. Outside the fundamental time period T , the

beat pattern simply repeats due to the progression of the extrema.
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Experimental Data
Moving knots fixed on extrema
Cubic spline fitted Angle Signature and prediction

Figure 5.6: Experimental data of a meandering sperm beat pattern shown in blue. The red
stars are the moving knot points which form the extrema of the fitted cubic interpolation.
The red line is the cubic interpolation which is calculated from the knot points and is then
converted into the representation of the tail in the top portion of the figure. Notice that
the match is much better, especially as we have fitted it using only two parameters. The
important features of the beat pattern are captured in this model. The model parameters
are Ne = 4.7 and a1 = 120◦.

Assuming nothing at present about the form of v, we can see that T is inversely

proportional to Ne; that is, as the number of extrema increases the time period T will

decrease, increasing the frequency – this contradicts experimental results of Ishijima et al.

(1986) who, for human sperm, observe a whip-like beat pattern in Hank’s solution (with

viscosity 1cp) with frequency 11.8 ± 2.2 Hz; and a ‘meandering’ distal beat pattern in

Methylcellulose at 4000cp of 7.0 ± 1.2 Hz, and 12.3 ± 1.8 Hz in cervical mucus at 4360cp.

A reasonable assumption is that the frequency can be therefore be assumed to not depend

on the type of beat pattern.

We shall shortly consider the beat kinematics, through the bending rate ∂α/∂t, as a
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function of our model parameters. We observe that the bending rate is proportional to

a1, Ne and v. The rate at which a flagellum can bend is a physical limitation and we

propose the assumption that the bending rate should not be dependent on the number

of extrema, but just the maximum bend angle. This can be achieved by choosing v such

that v ∝ 1/Ne. This choice has the added benefit that the fundamental time period, and

hence the frequency, is now fixed for all beat pattern configurations.

We have observed that in the motivating experimental data (Figure 5.5) with Ne = 5,

the extrema traverse the final four-fifths of the flagellum length in 0.5 seconds. For other

data with a symmetric pattern and Ne ≈ 5 we have observed that the final four-fifths

of the flagellum length are traversed in 0.7 seconds. As we have made the modelling

assumption that v is inversely proportional to Ne, based on experimental data we set

v = 5.33/Ne flagellum lengths per second which yields a time period of T = 0.3s.

5.4.4 Computational implementation

The computational code is devised in two parts: a program to calculate the bend angle

α(s, t) as a function of s and t and a program which calculates the coordinates of the

flagellum in (X, Y ) space. The second program outputs for a given t the coordinates of

the N points used to represent the tail in the body frame, (Xn, Yn) (for 1 < n < N). The

integration required to calculate (Xn, Yn) from α(s, t) in Equations 5.1 is performed using

Gauss-Legendre quadrature.

The first program is used to calculate the value of α for a given value of s and t. Recall,

that the underlying model is that we specify the movement of the knots from which the

continuous function of α(s, t) is determined using cubic interpolation.

Pseudo-code for determining α(s, t)

In order to successfully encode the mathematical model and ensure that the cubic in-

terpolation is ‘well behaved’ in the region of interest s ∈ [0, 1] we need to implement
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two small procedures in the computational scheme for α(s, t). Firstly, to ensure that the

predicted angle is well behaved in the region between the last knot and s = 1, we need

to place ‘ghost knots’ in the region s > 1 to ensure that the resultant cubic interpolation

is bounded in our region of interest. Secondly, in order to ensure smooth derivatives of

the angle with respect to time, the propagation of the knots in the region near to s = 0.2

needs to be modified slightly. In particular to ensure that ∂α/∂s|s=0.2 ≈ 0 for all values of

t, we place a series of ghost knots in [0.1, 0.2) with zero coefficient. Moreover, the knots in

the region near to s = 0.2 with s > 0.2, have their amplitudes by an exponential envelope

1 − exp {−100(s− 0.2)2} to ensure that the required derivatives are smooth.

The pseudo-code for determining α(s, t), give the number of extrema Ne and maximum

amplitude a1 is as follows

• You will have need a total of ⌈Ne⌉ knots.

• These are spaced a distance 0.8/Ne apart.

• The knots progress forward in s space in time at speed v.

• The coefficients of the knots take alternating positive and negative values.

• The coefficients of the knots are determined based on the linearly increasing as-

sumption, with the exponential envelope modification near s = 0.2.

• The continuous form of the data is derived using cubic interpolation using the Mat-

lab function pchip (piecewise cubic Hermite interpolating polynomial), which has

the advantage over standard cubic splines that the resultant (spatial) interpolation

will have a continuous second derivative.

• Any knots with s 6 0.2 are set to have amplitude zero.

Figure 5.7 illustrates the construction of α, including the ghost-knots, the exponential

envelope modification and the cubic spline.
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Figure 5.7: An example of a shear angle plot illustrating the important points in the
computational scheme, with parameters are Ne = 5.25 and a1 = 180◦.

5.4.5 Self-intersection

As we are concerned with planar wave forms, it is necessary to ensure that we do not

consider any regions of parameter space which, for any time, admit self-intersecting forms

of the beat pattern. Figure 5.8, illustrates the permissible region of parameter space,

derived from a numerical experiment.

5.4.6 Range of beat patterns

In the section we shall look at the possible beat pattern configurations available by ranging

over the parameter space of Ne and a1. Both parameters are encoded in such a way as to

be continuous, with the understanding that Ne > 1 and that a1 > 0, and small enough

that the sperm’s tail does not intersect (this is discussed above). In Figure 5.9 we illustrate
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Figure 5.8: The parameter space (Ne, a1) divided into regions which admit permissible
beat patterns and those with self-intersecting patterns which are not permissible under
our implementation.

the possible beat pattern configuration for values of the parameters Ne and a1; figure 5.10

is the corresponding shear-angle against arc-length for the previous figure. For necessity

of presentation, the beat patterns are shown as discrete points in the parameter space the

representation is continuous.

5.4.7 Experimental example

As an example of the application of the new model to experimental data, consider the

photographs used as motivation for this study in Chapter 1 (Figure 1.1). The photographs

are reproduced in Figure 5.11 along with their representations under the new model.

It is worth noting that the moving knot model, with just two parameters, enables

experimental data to be fitted to the model by eye rather than requiring detailed image
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Figure 5.9: Examples of the different well specified beat patterns available by traversing
the (Ne, a1) parameter space for an instance in time. Notice that both ‘whip-like’ and ‘me-
andering’ beat pattern configuration are available using this parametrisation. Figure 5.10
illustrates the corresponding shear-angles as a function of arc-length.

processing and Fourier analysis of the data to obtain the relevant coefficients. A data

fitting routine could be introduced to determine exact values of the parameters.

5.4.8 An extension to the model – asymmetric beat patterns

At present the model only permits symmetric beat patterns; this was a modelling as-

sumption. As a tool for understanding the beat dynamics this is a reasonable assumption

as it reduces the dimensions of parameter space. However, many beat patterns observed

in reality are not symmetric and it is worth noting the steps required to modified our

proposed model for asymmetric beat patterns.
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Figure 5.10: The model predicted shear-angles versus arc-length – corresponding to the
beat patterns shown in Figure 5.9. The horizontal axis is arc-length s and the vertical
axis shear-angle α in each of the subplot (the labels were excluded for clarity)

Firstly, the assumption that needs to be relaxed is that maxima and minima occurring

at s = 1 take the same (absolute) value for the angle a1. By making the assumption

that a maximum occurring at s = 1 will take the value amax and that a minimum will

take the value −amin, we have introduced one new parameter, however, the type of beat

patterns achievable greatly increased. There is no formal specification for the ranges of

the parameters amax and amin, however, the caveat is that the beat patterns do not self-

intersect. The values of the parameters need not necessarily be positive; the value of the

parameters form a ‘wedge’ in angle-space which the cubic interpolation is within. This

wedge can become too small for reasonable beat pattern configurations if the values of

the parameters are too small, or if the parameters have opposite signs and are of similar
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(b) meandering pattern with approximate viscosity 1.3Pa · s.

Figure 5.11: Photographs of human sperm taken at different viscosities and their config-
uration using the new model. The parameters are (a) Ne = 1.5 and a1 = 130◦ and (b)
Ne = 5.5 and a1 = 110◦.

magnitude.

Figure 5.12 illustrates an example of applying the asymmetric model to an example

configuration with the a fixed amax = 120◦ and a variable amin ∈ [0, 160◦]. Notice the

case when amin = 120◦ which corresponds to the symmetric case. In each case the corre-

sponding shear-angle as a function of arclength is plotted, along with the envelope. One

particular interesting case is where amin = 0; in which case you develop a completely

one-sided beat pattern, where the bend angle is always positive.
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Figure 5.12: An example of the asymmetric beat pattern available by introducing one
additional parameter. In all cases Ne = 5.5 and amax = 120◦.
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5.5 Analysis of the model

In the following sections we assume that the head radius is A = 1.25µm and the flagellum

has length L = 56µm and radius a = 0.05µm.

5.5.1 Beat kinematics – bending rates

Firstly, we shall consider the bending rate, and particulary, the peak bending rate of a

flagellum configuration using our new model; by design we have removed a linear depen-

dence on Ne through v, but still expect a dependence on a1.

The bending rate is defined at ∂α(s, t)/∂t, and is illustrated for an example fixed time

along the flagellum in Figures 5.13 and 5.14 for a meandering and whip-like beat pattern

respectively using the parameters from the matched experimental data in Figure 5.11.

Notice that the maximum bending rate occurs at the maximum curvature of the flagellum.

The time series equivalent of Figures 5.13 and 5.14 are shown in Figure 5.15 and 5.16 over

a fundamental time period; notice that the peak bending rates move linearly in s and

strengthen with time.

In Figure 5.17 we have considered the peak bending rate predicted at each configura-

tion in our parameter space. That is to say, for each Ne and a1, plotted is

max
s∈[0,1]

max
t∈[0,T ]

∂α(s, t)

∂t
.

Notice that the maximum bend rates occur for the very whip-like beat patterns with high

values of a1. We notice a difference between our two experimental examples in that the

meander configuration has a lower peak bending rate than the whip-like structure; this is

interesting as the whip-like structure occur at lower viscosity.
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Figure 5.13: The bending rate plotted along the flagellum for an example beat whip-like
configuration with Ne = 1.5 and a1 = 130◦.

5.5.2 Optimisation – speed and efficiency

In this section we explore the properties, such as speed and efficiency, of the different beat

pattern configurations permissible under the new model which we have developed.

In Figure 5.18, we illustrate the swimming speed of a sperm cell with the beat pattern

as specified by the model parameters a1 and Ne. Interestingly the fastest beat pattern

configurations are those with a small number of extrema and the highest bend angle – the

region of parameter space which we would identify as whip-like patterns. The cell speed

drops off significantly for small values of a1 and large values of Ne; however, the cells are

still motile.

Figure 5.19 illustrates the power consumption of the cells with beat pattern config-

urations using our two parameters. Importantly notice that the configurations which

121



0 10 20 30 40 50
−10

−5

0

5

10  
Bending rate ∂α/∂t; Maximum absolute value is = 2228.6894

X

 

Y

−2000

−1000

0

1000

Figure 5.14: The bending rate plotted along the flagellum for an example beat meandering
configuration with Ne = 5.5 and a1 = 110◦.

corresponded to the fastest swimming speeds also correspond to those with the highest

power consumption. The relationship of these two parameters, power and speed, mani-

fests itself through the inverse efficiency. Figure 5.20 illustrates the inverse efficiency as

a function of the model parameters. The fastest swimming configurations of whip-like

beat patterns also correspond to the most efficient beat patterns; if a balance of power

to velocity was the only concern of the cell, then a whip-like pattern should be adopted.

Notice, however, that the decay of the inverse efficiency is not uniform; there are regions

are region of high and low inverse efficiency. The region with Ne ∈ (3, 4) is poor, in

terms of efficiency, in comparison to its neighbour regions. Moreover, the region with

Ne ∈ (4, 5.5) for values of a1 ∈ (60, 110◦), is a local minimum of the inverse efficiency.

Notice that our example cells (Figure 5.11) fall within the two regions we have high-

lighted; firstly the whip-like configuration is a (interestingly) near optimal swimmer with
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Figure 5.15: The bending rate ∂α/∂t as a function of s and t, for the whip-like beat
pattern in Figure 5.13. Notice that the maximum and minimum bands moves towards
the posterior of the flagellum and strengthen.

a fast efficient beat pattern, whilst the meandering configuration is near the local mini-

mum for slower, but yet still locally efficient beating. The reason for switching between

one beat and another is not clear from this analysis alone.

We have already noted that the whip-like beat patterns which are the fastest, have the

highest bending rates. We shall now proceed to consider the bending moment density; a

quantity which has a physical interpretation as it is the result of the active bending of the

flagellum due to the dynein plus the elastic bending moment due to the ultrastructure.
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Figure 5.16: The bending rate ∂α/∂t as a function of s and t, for the meandering beat
pattern in Figure 5.14.
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Figure 5.17: The maximum bending rate as a function Ne and a1.
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Figure 5.18: Average swimming speed as a function of the model parameters Ne and a1.
The fastest configurations are the whip-like patterns with high final angle a1.
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Figure 5.19: Average power consumption as a function of the model parameters. The
configuration with the highest power consumption correspond to the cells with the highest
speed.
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Figure 5.20: Average inverse efficiency as a function of the model parameters.
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Figure 5.21: The bending moments (Mint) and shear forces (FNint
and FTint

) that must be
applied to the cut ends of a flagellum to preserve its motion. Reproduced from Hines and
Blum (1978).

5.5.3 Bending moment density

The viscous bending moment density (Hines and Blum, 1978) is the component of the

integral force F in the direction normal to the flagellum,

mv(s) = F (s) · n(s),

where n(s) is the normal vector to the flagellum at arc-length s. The integral force is

given by

F (s) = 6πµAU0 +

∫ s

0

f(s′) ds′, (5.2)

where f (s) is the force distribution along the flagellum, calculated using the slender-body

theory code.

The understanding of the integral force (Equation 5.2) is given in Hines and Blum

(1978) and illustrated in Figure 5.21. If, during beating, a flagellum were to be suddenly

cut at some point s, two internal forces F int and a bending moment Mint, would be needed

at the cut end to retain the original motion of that point. Consequently, the sum of the

external force due to the head, the force produced up to the cut at s and the internal

force F int must be zero (to ensure that the flagellum does not accelerate); therefore the

expression for F in Equation (5.2) is a measure of the internal force generated.

The total moment is a sum of that due to the dynein activity, the viscous moment and
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Figure 5.22: Bending moment density in a sliding filament model of the flagellum (a) An
element along the length of the flagellum, subject to shear u between the filaments, θ
denotes the shear angle, which in our study is denoted α. (b) Active moment Ma along a
short length of flagellum ds. The bending moment density m produced by dynein activity
is given by m ≈ (Ma(s+ds)−Ma(s))/ds. (c) Flagellar bending caused by positive active
shear in a small length of flagellum. Reproduced from Brokaw (1971).

the elastic moment, and the total of these is zero. In general during bending the active

moment will be greater than the viscous moment |m| > |mv|. Therefore, by considering

the viscous moment (which we can calculate) we place a bound on the value of the active

moment - which is a result of the active bending within the flagellum.

The technique of bending moment density has been used by Hines and Blum (1978)

and Brokaw (1970, 1971) to formulate model of flagellar internal mechanics, including

Brokaw’s curvature control model (Brokaw, 2001, 2002). Figure 5.22 (from Brokaw (1971))

illustrates how a bending moment within a short section of flagellum can generate a

curvature of the flagellum.

Schmitz et al. (2000) estimates from experimental observations that each dynein arm

produces a maximum force of 10 pN. Recall that the internal structure of the flagellum has

9+2 microtubules (Figures 1.6 and 5.23). The spacing of the microtubules is 3.25×10−7m,

and they have a density along the flagellum of 70 dynein arms per micrometre (Schmitz

et al., 2000). For a bend in a given direction, only half of the dynein arms will be involved

in producing this bend (See Figure 5.23). It is worth noting that this method will over

estimate the bending moment density as not all 4 dyneins on the sides which is bending
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Figure 5.23: Functional schematic of the mammalian sperm axoneme, illustrating the
sliding induced by the microtubules. Notice that for a thrust into the page on those
marked • are active and × for thrust out of the page. Reproduced from Schmitz et al.
(2000).

will contribute equally as they are not all perpendicular to the bend direction.

The estimate of bending moment density is the product of the spacing of the dyneins,

the force per dynein arm, the density of the dyneins and the number of dyneins involved

in bending. This gives (3.25 × 10−7) × (10 × 10−12) × (70 × 106) × 4 ≈ 1 nN.

As the dyneins can only produce a given force, and this relates to the moment that

can be generated it can be seen that there is a limit to the bending moment density that

a sperm flagellum can generated.

The bending moment density for a given beat pattern configuration scales linearly

with viscosity. In our modelling regime the beat patterns are generated without prior

knowledge of the bending moment density and thus a beat pattern can be specified which

may have too high a bending moment density to exist in reality. Therefore studying the

predicted bending moment densities of the different types of beat patterns which can

be generated, in combination with our velocity/power efficiency measure, may provide a

mechanism to explain why certain beat pattern are observed at given viscosities

The bending moment and bending moment density can be calculated from the viscous

forces acting on a moving flagellum from data describing the bending behaviour of the
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Figure 5.24: Bending moment density for a given time period, as a function of arc-length
for a whip-like beat pattern configuration with Ne = 1.5 and a1 = 130◦.

flagellum, using concepts discussed in Brokaw (1970).

As noted, the bending moment density is a function of arclength and will vary de-

pending on time, therefore to compare individual beat pattern configurations, we shall

consider the peak value for the bending moment density for a given configurations taken

over arclength and a time period. The rationale for considering the peak value, rather

than an average or cumulative total, is that the peak value highlights the maximum force

to be generated by a cell – if this is more than a cell can generate then the beat pattern

is unphysical.

Figures 5.24 and 5.25 illustrate the (absolute) bending moment density of two example

beat pattern configurations as a function of arc-length. The figures relate to the exper-

imental whip-like sperm and the meandering sperm. Notice that the highest bending

moment densities are found in the whip-like configuration.
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Figure 5.25: Bending moment density for a given time period, as a function of arc-length
for a meandering beat pattern configuration with Ne = 5.5 and a1 = 110◦

Figures 5.26 and 5.27 are the time-dependent equivalents of the example configurations

shown in Figures 5.24 and 5.25 showing the variation in bending moment density as a

function of the arc-length and time.

The peak absolute bending moment density of any given beat pattern configuration

will indicate if a beat pattern configuration is physically permissible. This peak value can

be found by taking the maximum value of the bending moment density over s ∈ [0, 1] and

t ∈ [0, T ]. Figure 5.28 illustrates the log of the peak absolute bending moment density as

a function of the model parameters. The peak bending moment density is highest for the

whip-like beat pattern configuration.

From Figure 5.28 we notice that to move to a region (for a given viscosity) of lower

peak bending moment density (or conversely to stay below an upper limit for bending

moment density as viscosity is increased) we must reduce the maximum bend angle a1
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Figure 5.26: Absolute bending moment density as a function of arc-length and time for a
whip-like beat pattern configuration with Ne = 1.5 and a1 = 130◦.

and increase the number of extrema Ne. Moreover, if we are interested in maintaining

our measure of efficiency we have illustrated, that once Ne is above about 3, it is more

efficient to have a beat pattern with Ne ∈ (4, 5.5).

We observe that the whip-like beat pattern in our experimental data was near optimal

in terms of speed and viscosity, however, these types of beating patterns also have the

highest peak bending moment density. The peak bending moment density scales linearly

with viscosity as highlighted in in Figure 5.29 for two beat pattern configurations. We

have shown previously that there should be physical limit to bending moment density (due

to the active bending of the dyneins). From Figure 5.29 we can see that if the whip-like

beat pattern, for a given viscosity is unacceptable, then the locally efficient meandering

type pattern always had a lower bending moment density.
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Figure 5.27: Absolute bending moment density as a function of arc-length and time for a
meandering beat pattern configuration with Ne = 5.5 and a1 = 110◦.
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Figure 5.28: Log of the peak absolute bending moment density as a function of the
model parameters a1 and Ne. Notice that the whip-like beat patterns have the highest
bending moment density; whilst meandering patterns have a much lower value (for a given
viscosity).
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Figure 5.29: A log-log plot for peak bending moment density as a function of viscosity µ,
for two different beat pattern configurations: A whip-like beating pattern Ne = 1.5 and
a1 = 180◦ and a meandering beat pattern with Ne = 4.5 and a1 = 80◦. The whip-like
pattern is near optimal in terms of inverse efficiency and the meandering pattern is in the
second local optimum region for inverse efficiency.
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5.6 Conclusions

In this section we have devised a new model for the specification of a sperm beat pat-

tern configuration using the angle shear. Based upon experimental data a number of

assumptions were devised and the resultant mathematical model has a very small num-

ber of parameters, but yet encompasses an array of beat patterns observed in vitro. A

symmetric model was used for the future analysis, however, the model was extended for

asymmetric beat patterns.

The mathematical model was used to fit parameters to our motivating experimental

examples, with the added benefit that this can be done by eye, therefore not requiring

detailed image processing or data analysis.

Analysis of the speed and power consumption of the cell with different beat pattern

configurations was conducted. We found that there are a number of regions of efficient

beating. By considering the bending moment density, which scales with viscosity, we were

able to identify a mechanism which could cause the modulation of sperm beat pattern in

vitro.

We conclude that the fastest and most efficient beat pattern is the ‘whip-like’ beat

pattern observed in low viscosity medium; however, the value of the maximum bending

moment density is high. If the viscosity is increased, thus increasing the bending moment

density, then in order to maintain a physically acceptable beat configuration with a near

maximum velocity, a suitable alternative beat pattern configuration is the meandering

tail pattern, which is locally efficient.

It is worth noting that the region of near highest speed corresponds to the parameters

fitted to the experimental data in watery medium (low viscosity) (Figure 5.11(a)) and

the region of meandering patterns acceptable at high viscosities includes the parameters

fitted to the experimental data in Figure 5.11(b).
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Chapter 6

An Asymptotic Analysis of

Peristaltic and Ciliary Flows:

Mixing in the Oviduct

6.1 Introduction

The human oviduct is a complicated feature of the human reproductive system. Its main

function is to transport the passive ovum from the ovaries at the time of ovulation to the

uterus, where, if fertilisation has been successful, the ovum implants into the uterine wall

to develop into a pregnancy.

The main mechanisms for the motion of a passive ovum are the peristaltic contractions

of the oviduct and the uterus, and the action of the cilia which line the interior surfaces of

the oviduct (Debuse, 1998). There are a number of other mechanisms in the human body

that rely on peristaltic and/or ciliary activity; examples include: the alimentary system,

where food is transported peristaltically through the digestive system; the lungs where

cilia are responsible for the movement of mucus which lines the lung walls that protects

the lungs by trapping pollutants and bacteria and removing them from the lungs. Other

examples of peristaltically driven flows are the movement of immature sperm cells in the

vas deferens of males, and the movement of urine from the kidneys to the bladder. Bio-

mechanically, the ‘heart-lung’ machine and the kidney dialysis machine both use peristalsis

to move blood.
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The beat of a single cilium can be considered as having two distinct phases; firstly

the fast ‘effective stroke’ in the direction of fluid motion and a slower ‘recovery stroke’

in which the cilium moves back to the initial position, whilst having minimal impact on

the fluid motion. This particular type of motion is necessary due to the length scales and

velocities experienced; typically the Reynolds number is very small, and thus viscosity

dominates inertia, meaning that the motion of the cilium must be ‘non-symmetric’ to

avoid the reversibility of Stokes flow (Blake and Sleigh, 1974).

The movements of adjacent cilia in one direction are out of phase, which is termed

metachronism, and gives ciliated surfaces the appearance of a corn-field with wind blowing

over it, as the motion of the cilia progresses like a wave over the surface.

This chapter aims to show, through mathematical analysis, that a combination of

peristaltic and ciliary activity, can lead to flows in which mixing occurs.

The purpose of this chapter is to consider the fluid mechanics of flow in the oviduct;

it is noted that peristaltic flows have been studied for many years (as illustrated in the

literature review in Chapter 1), however, many of the recent studies have only limited

applications to reproductive biology.

6.2 Peristaltic flow in a two-dimensional channel

We consider, as a model for flow in the oviduct/uterus, flow in a two-dimensional narrow

channel with aspect ratio β = d/l ≪ 1 < 1; with a typical longitudinal lengthscale of l

and a typical transverse width of the channel d. The Navier-Stokes equations are non-

dimensionalised as follows: t = L
U
t′, x = lx′, y = dy′, u = Uu′ v = βUv′ and p = Pp′,

where dash denotes a dimensionless variable. The particular scaling for v coming from

consideration of the continuity equation. The scaling for pressure, P , is to be determined.
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For velocity components u = (u, v), the x- and y-momentum equations are

βRe

(
∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′

)
= −βPL

µU

∂p′

∂x′
+ β

∂2u′

∂x′2
+ β−1∂

2v′

∂y′2
, (6.1a)

βRe

(
∂v′

∂t′
+ v′

∂v′

∂x′
+ v′

∂v′

∂y′

)
= −β−1PL

µU

∂p′

∂y′
+ β

∂2v′

∂x′2
+ β−1∂

2v′

∂y′2
, (6.1b)

Where Re = ρUL/µ is the Reynolds number. Data from Eytan et al. (2001a) estimates

the aspect ratio β ∼ 0.01 and the Reynolds number Re ∼ 10−4 both to be small. In

the lubrication approximation it is important that βRe ≪ 1 (Batchelor, 1967) and this is

the case for the class of biological flows which we are going to consider (Vann and Blake,

1982; Eytan et al., 2001a; Fauci and Dillon, 2006).

To obtain a leading order balance in Equation 6.1a, we require that PL/µU ∼ O(β−2);

thus we choose the viscous pressure scaling of P = β−2µU/L. For the benefits of clarity,

from herein we shall drop the dashes and all quantities are implied as dimensionless.

We shall assume that the wall of the channel are at y = h2(x, t) and y = h1(x, t) as

illustrated in Figure 6.1, and that we have the boundary conditions of no-slip, so that a

fluid particle on the boundary with the boundary. We assume also, that the boundaries

only move perpendicular to the x-axis, giving the boundary conditions

u = 0,

v =
∂hi

∂t
,





on y = hi, i = 1, 2. (6.2)

At leading order, equation 6.1a and 6.1b reduce to the following

−∂p
∂x

+
∂2u

∂y2
= 0 (6.3a)

∂p

∂y
= 0 (6.3b)

∂u

∂x
+
∂v

∂y
= 0 (6.3c)
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y = h2(x, t)

y = h1(x, t)

O(β)

β ≪ 1

Figure 6.1: Schematic of the flow through a two-dimensional channel with flexible walls.

which we solve subject to the boundary conditions 6.2

The solution for the longitudinal velocity component u can be found by integrating

Equation 6.3a in combination with the u(y = hi, t) = 0 for i = 1, 2 boundary condition

to yield

u =
1

2

∂p

∂x
(y − h1)(y − h2). (6.4a)

Utilising the Continuity Equation, we can determine the equation for v, up to a function

C0(x, t) to be determined

v = −1

2

∂2p

∂x2

(
y3

3
− (h1 + h2)

y2

2
+ h1h2y

)

− 1

2

∂p

∂x

(
− ∂

∂x
(h1 + h2)

y2

2
+

∂

∂x
(h1h2)y

)
+ C0(x, t), (6.4b)

To determine C0(x, t), we consider the application of the boundary condition for v,

which results in two equations

∂hi

∂t
= −1

2

∂2p

∂x2

(
h3

i

3
− (h1 + h2)

h2
i

2
+ h1h2hi

)

− 1

2

∂p

∂x

(
− ∂

∂x
(h1 + h2)

h2
i

2
+ hi

∂

∂x
(h1h2)

)
+ C0(x, t), for i = 1, 2. (6.5)

Subtracting the resulting equations, yields a partial differential equation for the pressure
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gradient,

∂2p

∂x2
+

3(h2
2 + h2

1)

(h2 − h1)3

∂

∂x
(h2 − h1)

∂p

∂x
+

12

(h2 − h1)3

∂(h2 − h1)

∂t
= 0, (6.6)

which can be solved to yield

∂p

∂x
=

C(t)

(h2 − h1)3
+

12

(h2 − h1)3

∫
∂(h2 − h1)

∂t
dx (6.7)

where C(t) is a function related to time relating to the pressure at the end of the tube.

Thus, from Equation (6.5), we can specify C0(x, t) therefore specifying the solution of

the problem to within a function of time,

C0(x, t) =
∂h1

∂t
+

1

2

d2p

dx2

(
h3

1

3
− (h1 + h2)

h2
1

2
+ h2

1h2

)

+
1

2

dp

dx

(
− ∂

∂x
(h1 + h2)

h2
1

2
+ h1

∂

∂x
(h1h2)

)
(6.8)

Recall that for a two-dimensional flow field u = (u, v), if the streamfunction ψ exists

then u =
∂ψ

∂y
and v = −∂ψ

∂x
. By using Equations (6.4a) and (6.4b) the form of the

streamfunction can be derived as

ψ =
1

2

dp

dx

(
y3

3
− (h1 + h2)

y2

2
+ (h1h2)y

)
−
∫
C0 dx. (6.9)
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6.3 Measures of system dynamics

6.3.1 Particle tracking

It is possible to cast the two dimensional system derived above into standard dynamical

systems form, by writing for position vector x = (x, y), the following expression

d

dt



x

y


 =



u(x, y, t)

v(x, y, t)


 , (6.10)

where u and v are given in Equations (6.4a) and (6.4b) respectively.

By utilising the Matlab function ode45, we are able to plot out particle paths for a

variety of different starting positions. The advantage of using particle paths is that this

allows us to track the motion of individual particles over time rather than taking a ‘snap

shot’ of the global situation as one does at successive time when considering contours of

the streamfunction.

6.3.2 Lyapunov exponents: a measure of mixing

A useful measure for the quantification of mixing is the Lyapunov Exponent (Ottino, 1989;

Eckhardt and Yao, 1993; Otto et al., 2001); the basic principle behind the Lyapunov expo-

nent is that it measures the divergence of trajectories from similar given initial conditions.

The divergence of trajectories with similar but not identical initial conditions is a classical

hallmark of chaos. Two initial particle positions, which vary only slightly, are evolved for-

ward in time and the image length (the distance between the evolved points) is compared

to the original length (the distance between the initial conditions). There is an infinite

time and a finite time Lyapunov exponent which measures the overall dynamics of the

system and that experienced at a point in the domain within a set period respectively. It

is the latter that will be of more use in biological systems because effects maybe localised
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and biological systems operate on a finite time scale.

The definition of the Lyapunov Exponent is

λLE = lim
t→0

[
1

t
log

( ||δx(t)||
||δx(0)||

)]
(6.11)

where ||δx|| is the image length at time t (the distance between the evolved points).

Owing to the infinite time limit required, this Lyapunov exponent is often termed the

infinite time Lyapunov exponent. In practice the calculation of the infinite time limit is

problematic, and at least for ‘real world’ biological systems as we are interested in mixing

on a finite time scale, a finite alternative is required. For this purpose we define the finite

time, or local Lyapunov exponent after Eckhardt and Yao (1993) as

λLLE(x0, t) =
1

t
log

( ||δx(t)||
||δx(0)||

)
(6.12)

One should notice now that the LLE depends on both time and the initial position.

The higher the (geometric) dimension of the problem, the greater the possible number

of Lyapunov exponents there are; in theory it is possible to derive a different Lyapunov

exponent for each of the linearly independent directions. The maximum Lyapunov expo-

nent will correspond to the expansion which is aligned with the average direction of the

most expansion of the system. Therefore the maximum Lyapunov exponent gives only a

rate of stretching and not a direction.

We shall now briefly outline the structure used in calculating Lyapunov Exponents.

Consider the image of two neighbouring points under the action of a map M . The points

are initially situated a small known distance apart; after an action of the map this distance

will either have expanded or contracted (or possibly not changed). In either case, by

comparing the new separation distance with the separation of the initial points, we can

quantify the expanding or contracting effect of the map. When the ratio of distances
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between the points is less than one, the distance is reducing and the map is decreasing.

A small ratio (above but near 1) indicates the flow is mostly rotational in that region,

showing little divergence from the initial conditions. If the ratio is significantly greater

than one, then the distance between points after applying the map is greater than the

initial distance and therefore the map is expanding. As λLLE is proportional to the log

of the ratio, if the map is contracting then the ratio is < 1, and λLLE < 0; a static

map will have λLLE = 0 and an expanding map will have λLLE > 0. A large amount of

stretching after a certain fixed time scale indicates extensive mixing within a region under

consideration. This would be characterised by a large Lyapunov exponent. Ottino (1989)

comments that “positive Lyapunov exponent implies an exponential rate of stretching of

material elements, and hence, good mixing”. For biological systems we seek system which

demonstrate mixing with a finite period of time.

Details of implementing the calculation of the local Lyapunov exponents can be found-

ing Appendix C.3.

6.4 Analysis of two cases

To consider the dynamics of the system more fully, it is necessary to specify the wall

shapes h1 and h2.

6.4.1 A wave propagating along the upper wall

We firstly consider the case where the lower wall is fixed and planar (h1 = 0) and suppose

that the upper wall is given by the expression

h2(x, t) = 1 + g(x− ct) + εh(κ(x− ct))f(t) (6.13)

where ε ≪ 1. This is a travelling wave with wave speed c plus a small time-dependent

perturbation. The rationale behind this formulation is drawn from biological contexts, and
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in particular where the underlying muscular peristalsis can be thought of at g(x− ct) and

the effect of the tips of the cilia lining the surface can be viewed as a small perturbation

εh(κ(x− ct)), which does not necessarily occur at the same rate.

The leading order streamfunction is:

ψ =
1

2(1 + g)3
(C − 12cg)

(
y

3
− 1 + g

2

)
y2. (6.14)

The method we adopt of using a travelling wave to model the net effect of a ciliated

surface is called the ‘envelope model’ (Ross and Corrsin, 1974; Blake and Sleigh, 1974),

and is based on the ‘swimming sheet’ method of Taylor (1951). We have already discussed

this and other methods in detail in Section 1.4.3.

Moving to a travelling reference frame with

x̂ = x− ct, (6.15)

then we have the steam function

ψ̄ = ψ − cy, (6.16)

then

ψ̄ = ψ̄0(x̂, y) + εψ̄1(x̂, y, t). (6.17)

The unperturbed system (ε = 0) is integrable and the time periodic perturbation will

introduce possible chaotic effects in the motion.

In the moving reference frame we seek stagnation points as these correspond to the

centre of trapped regions which are moving with a velocity equal to the travelling wave

velocity. For stagnation points in the reference frame, we require u = v = 0. The
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expression for the u velocity component is

u =
C/2 − 6ch2

(1 + g)3
y(y − (1 + g)) − c. (6.18)

Considering u = 0 yields, from Equation (6.18), a quadratic in y which admits real

solutions if the discriminant is positive

∆ = (1 + g)2

(
K + 4c− 2cg

K − 6cg

)
> 0, (6.19)

where for brevity we have written K = C/2.

The condition in Equation (6.19) is equivalent to either

Case A. K − 2cg + 4c > 0 and K − 6cg > 0, (6.20a)

or Case B. K − 2cg + 4c 6 0 and K − 6cg < 0, (6.20b)

and the y co-ordinate of the stagnation point is therefore

yst;1,2 =
1 + g ±

√
∆

2
. (6.21)

We are interested only in stagnation points which exist within the physical boundaries of

the flow 0 < yst;1,2 < 1 + h2, and note this requires c(1 + g) 6 0.

We can recover the v−velocity component and find

v =
y2

(1 + g)4

dh2

dx̂
[K (y − (1 + g)) + c(1 + g) (4y − 3(1 + g))] . (6.22)

For the stagnation point we require v = 0, and this will occur, in general, at co-ordinates

(xst, yst). In general the equation in the square parentheses does not admit real solutions.

However, v = 0 when the derivative of h2 (with respect to x̂) is zero. Thus stagnation
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points correspond to the maxima and minima of the unperturbed wall shape.

Thus, we conclude the existence of stagnation points at (xst, yst) such that xst corre-

sponds to maxima or minima of the upper wall shape, and yst is given in Equation (6.21).

To determine the stability of these stagnation points we consider the sign of the Hessian

(King et al., 2003),

H =

(
∂2ψ̄

∂x̂∂y

)2

− ∂2ψ̄

∂x̂2

∂2ψ̄

∂y2
(6.23)

evaluated at the stagnation points. Under the conditions of Case A, for the class of points

(xst, yst;1,2) we find that

sign(H) = sign

(
d2g

dx̂2

)
(6.24)

thus maxima of the wall correspond to d2g/dx̂2 > 0, and hence this class of stagna-

tion points correspond to elliptic points, whereas the minima of the walls correspond to

d2g/dx̂2 < 0, and hence saddle points.

6.4.2 Two waves - the symmetric case

We shall consider the case where the upper and lower walls are symmetric wave forms;

specificially where h1(x, t) ≡ −h2(x, t). We define, the wall shape, as in the previous

section as

h2(x, t) = 1 + g(x− ct) + εh(κ(x− ct))f(t) (6.25)

By moving to a a travelling reference frame, which is moving with the wave, with

x̂ = x− ct, ψ̄ = ψ − cy, ψ̄ = ψ̄0(x̂, y) + εψ̄1(x̂, y, t). (6.26)

We find the leading order streamfunction to be

ψ =
(C + 24cg)(y2 − 3(1 + g)2)y

48(1 + g)3
. (6.27)
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We consider the existence of stagnation points at leading order. The u−velocity

component at leading order is

u =
1

48(1 + g)3
(C − 24cg) (3y2 − 3(1 + g)2) − c. (6.28)

To determine the stagnation points, we equate (6.28) to be zero, which leads to a quadratic

for y for the co-ordinates of the stagnation points, which admits real solutions if

∆ = 4(1 + g)2 (C − 4cg + 8c)

(C − 12cg)
> 0 (6.29)

thus we require

sign(C − 4cg + 4c) = sign(C − 12cg), (6.30)

which naturally leads to two cases

Case A. C − 4cg + 8c > 0 and C − 12cg > 0, (6.31a)

or Case B. C − 4cg + 8c 6 0 and C − 12cg < 0. (6.31b)

Under the appropriate regime, we find that position of the stagnation points is given by

yst;1,2 = ±(1 + g)

√
C − 4cg + 8c

C − 12cg
(6.32)

We require both the stagnation points to be within the walls, and thus require

c(1 + g) 6 0, (6.33)

or simply c 6 0.
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The vertical velocity component is recovered as

v = − 1

16(1 + g4)
y
dh2

dx̂

[
y2(C − 16cg + 8c) − (C(1 + g)2 + 24c(1 + g)2)

]
(6.34)

and again we consider the class of stagnation points with dg/dx̂.

The stability of these equilibrium points is determined by the sign of the Hessian

which as in the one-wall case, is determined by the sign of the second derivative of the

wall shape, d2g/dx̂2, and thus maxima of the walls correspond to elliptic points and

minima correspond to saddle points.

6.5 Results

In this section we shall discuss the observed dynamics of the one-wall and two-wall cases

we have discussed previously, through the consideration of streamlines, particle paths,

flow-rates and local Lyapunov exponents.

6.5.1 One-wall case

Unperturbed streamlines

We shall consider the upper wall to take the following form

h2(x, t) = 1 + a cos(x− ct) + εa cos(κ(x− ct)) sin(kt),

where a = 0.1. The statement is consistent with the general theory discussed previously.

The solution for the unperturbed streamlines (ε = 0) can be seen in Figures 6.2 and

6.3 where the two different structures of the solution are observed. Firstly, in Figure 6.2

we have the solution where the parameter set predicts the existence of elliptic orbits

and saddle points. These stagnation points are identified with crosses (elliptic) and stars

(saddles). The stable branches of the saddle point are those approaching from the ‘upper-
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Figure 6.2: Streamlines of the unperturbed case with wall shape 1+0.1 cos(x̂). Parameters
are c = −1 and C = 20. Recall the c is the wave speed, and C is a constant dependent
on the pressure gradient.

left’ and the ’lower-right’. The vortex structure about the elliptic point therefore rotates

clockwise.

Figure 6.3 demonstrates the regular streamlines predicted in the case when stagnation

points are not predicted to exist within the boundaries of the flow.

Perturbed streamlines

We consider the case now when ε 6= 0 and consider the variation in the streamlines over

time. Note this is a snap shot of the streamlines at a given instance and does not show

particle trajectories. Figures 6.4, 6.5 and 6.6, all demonstrate the variation in streamlines

over time for different wavespeed of the perturbation (varied by κ). Notice that by

introducing a perturbation, the structure of the elliptic point and the heteroclinc orbits

(Figure 6.2) is broken; this introduces mixing layers and provides a mechanism for mixing

in a low Reynolds number flow. One should notice in particular when κ = 2.5 and κ = 4,
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Figure 6.3: Streamlines of the unperturbed case with wall shape 1+0.1 cos(x̂). Parameters
are c = 1 and C = 20. Notice the absence of the vortex structure.
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Figure 6.4: Time variation of the streamlines for the one-wall case as t ∈ [0, 2π]. Param-
eters are C = 100, c = −5, ε = 0.01, κ = 1 and k = 1.

the breaking of the vortex structure and the formation of daughter vortices.
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Figure 6.5: Time variation of the streamlines for the one-wall case as t ∈ [0, 2π]. Param-
eters as in Figure 6.4 except the speed of the perturbation is varied with κ = 2.5.
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Figure 6.6: Time variation of the streamlines for the one-wall case as t ∈ [0, 2π]. Param-
eters as in Figure 6.6 except κ = 4.
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Figure 6.7: Plot of flow rate Q, as a function of c the wave speed, for various values of
the pressure gradient C. Notice the existence of regions of reflux when C 6= 0.

Flow Rate

The flow rate, for the one-wall case, is defined as

Q =

∫ 1+h2(x̂)

0

u(x̂, y)dy,

and by the continuity equation is independent of the choice of x.

Figure 6.7 shows the calculated flow rate as a function of the wave speed parameter

c. The essential features to notice is the flow rate changes sign depending on c, however

except for C = 0, it does not pass through the origin. The regions where c < 0, Q > 0 and

c > 0, Q < 0 correspond to non-reflux flow; the regions where c and Q are of the same

sign correspond to the reflux phenomena, and regimes in which we observe the vortex

structure. The existence of reflux is dependent on the pressure term C.
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Figure 6.8: A series of particle paths starting from x = 0 (blue) and x = 7 (red). The
system is unperturbed and the parameters are as follows C = 1/0.04 and c = −1

Particle Paths

Presented in Figures 6.8 and 6.9 are a set of particle paths for the unperturbed (6.8)

and perturbed (6.9) cases. The blue particles were all started on the y-axis and the red

particles were started on x = 7 (to deliberately avoid the stagnation points).

It is precisely the deviation of these particle paths which are of interest in calculating

Lyapunov Exponents which we shall calculate for the two-wall case. Notice as time extends

(moving away from the starting axes) that in the perturbed case some pathlines can be

seen to cross.

6.5.2 Two-wall case

Unperturbed streamlines

Figure 6.10 is a plot of the streamlines for the unperturbed case when h(x, t) = 1 +

0.1 cos(x̂); notice the existence of the vortices and the saddle points marked with crosses
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Figure 6.9: A series of particle paths (parameters as in Figure 6.8) for the perturbed
system; ε = 0.1 and κ = k = 2.
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Figure 6.10: Streamlines of the unperturbed case with upper wall shape 1 + 0.1 cos(x̂).
Parameters are c = −1 and C = 20.

and stars respectively, as predicted and as observed also in the one-wall case.
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Figure 6.11: Time variation of the streamlines of the two wall shape with c = −1 and
C = 20, ε = 0.1, k = 2 and κ = 1.

Perturbed streamlines

We consider the wall shapes to take the following form

h2(x, t) = 1 + a cos(x− ct) + εa cos(κ(x− ct)) sin(kt), h1 = −h2.

we once again observe the breakdown of the vortex structure and heteroclinic orbits are

shown in Figures 6.11 and 6.12.

Flow Rate

Figure 6.13 shows the calculated flow rate for variation in the wave speed parameter c.

As in the one-wall case, we observe the feature of reflux.

Particle Paths

Presented in Figures 6.14 and 6.15 are a set of particle paths for the unperturbed and

perturbed cases, respectively. The blue particles were all started on the y-axis and the
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Figure 6.12: Time variation of the streamlines of the two wall shape with c = −1 and
C = 20, ε = 0.1, k = 2 and κ = 4.
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Figure 6.13: Plot of flow rate against varying values of c, for various values of C. Notice
the line does not cross at the origin (except for C = 0), and thus provides evidence of
reflux - associated with the vortex structure.
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Figure 6.14: A series of particle paths starting from x = 0 (blue) and x = 7 (red). The
system is unperturbed and the parameters are as follows C = 1/0.04 and c = −1

red particles were started on x = 7 (to deliberately avoid the stagnation points, located

at x = nπ (n ∈ Z)).

Quantification of mixing: Lyapunov exponents

As discussed in Section 6.3.2, the Lyapunov exponent and in particular the local Lyapunov

exponent is a useful measure of mixing and stretching within a system. Presented in

Figures 6.16–6.18 are plots of the local Lyapunov exponents after 10, 50 and 99 periods

of the wall motion.

Notice the existence of structured areas of the higher Lyapunov exponents in particular

along the heteroclinc orbits which separate two regions of the flow (that in the vortices

and that which lies above/below the vortices; it is in these areas that we expect to see the

exchange of particles between the two regions. We also note in Figures 6.17 and 6.18 the

formation of a structure mirroring the boundary just below it. In some sense this layer

marks the edge of the particles which are directly affected by the perturbation of the wall.
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Figure 6.15: A series of particle paths (parameters as in Figure 6.8) for the perturbed
system; ε = 0.1, k = 2 and κ = 3.5.
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Figure 6.16: Local Lyapunov exponents for the two-wall case, after 10 periods. C = 25,
c = −1, k = 2, κ = 1, ε = 0.1.
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Figure 6.17: Local Lyapunov exponents after 50 periods. Parameters as in Figure 6.16.
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Figure 6.18: Local Lyapunov exponents after 99 periods. Parameters as in Figure 6.16.
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Figure 6.19: Plot of maxλLLE against time periods, for the same parameters as in Fig-
ure 6.16. Notice that although a limit is not clear, the values of the maximum are small,
but positive.

Figure 6.19 illustrates the change in the maximum local Lyapunov exponent as a

function of time elapsed. We notice that the Maximum Lyapunov Exponent is always

positive, it is small which indicates the existence of rotation, mixing and stretching of the

fluid.

6.6 Biological implications

We have highlighted that the combined effect of peristaltic flow and ciliary beating is

important in describing the fluid flow in the oviduct.

The transportation of the embryo to the correct site for implantation in the uterus is

important; ideally the embryo should implant at the top of uterus (in the fundus). An

embryo which implants too low in the uterus can lead to the placenta developing over
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Figure 6.20: Local Lyapunov exponents for the two-wall case, after 99 periods with an
increased rate of perturbation – κ = 4. Other parameters are C = 25, c = −1, k = 2,
ε = 0.1.

the cervix (a condition called placenta previa), which can lead to a ruptured placenta

(Eytan and Elad, 1999). The successful implantation of embryos is important in natu-

ral conception when the embryo has entered the uterus from the oviduct and in in vitro

fertilisation, where embryos are transferred into the uterus a few days before implanta-

tion is expected. Laboratory fertilisation in IVF is 90% successful, however only 25% of

cycles result in successful births – problems with implantation may explain some of this

discrepancy (Yaniv et al., 2003). In both in vitro and in vivo situations the embryo will

be present in the uterus for 3–4 days prior to implantation.

We have implemented a zero Reynolds number analysis of flow in the oviduct/uterus,

in particular we have noted have noted the existence of reflux for certain values of the

wave speed and pressure gradient and a mechanism to interchange fluid between regions

164



of the channel. There is evidence to suggest that near to the ovum, there may be some

short-range chemotactic effect (Bahat and Eisenbach, 2006), however, the effect of the

mixing we have demonstrated compared to diffusion is difficult to quantify, as the Péclet

number for such flows is often an open question – partly due to the uncertain nature of

the precise chemotactic agents involved.

Sperm are known to accumulate near boundaries, and to ‘crawl’ along surfaces within

the human reproductive system (Rothschild, 1963; Fauci and Dillon, 2006). The existence

of a mechanism to move fluid (and particles) from nears the walls toward to the centre

of the channel and towards the uterus may be important in the movement of sperm cells

towards the site of fertilisation either directly by causing the sperm to be moved toward

the site, or by allowing possible chemotactic agents to be transported to the sperm to act

as a ‘orientation mechanism’.

Our work highlights regions of flow within the channel which are in the opposite

direction to the bulk flow. This lends theoretical evidence to the experiential observations

of Sjösten et al. (2004) where starch particles are observed near the ovaries after their

introduction at the cervix. This observation suggests some flow contrary to the direction

of bulk flow, from the ovaries towards the uterus.

Implications of our work on the case of ‘embryo/ovum present’ situations are difficult to

specify, especially as the diameter of the embryo (150µm) may not be neglected compared

to the width of the uterine channel (∼ 1000µm) (Eytan and Elad, 1999), meaning that

to fully understand the interaction of the embryo/ovum and the structure driven fluid

flow requires us to account for the non-zero volume of the embryo. Following ovulation

the ovum is surrounded by a coating of cumulus cells, which need to be removed prior

to fertilisation. The fluid flow generated, could be a potential mechanism to assist in the

removal of these cumulus cells.
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6.7 Conclusions

In this chapter, through an asymptotic analysis of flow in a channel with a small aspect

ratio, we demonstrated that a small perturbation to a bulk peristaltic flow is important

in the overall dynamics and mixing of the system.

We have demonstrated the motion of the fluid and particles in the channel, through the

use of streamlines and pathlines, and demonstrated parameter ranges under which reflux

occurs by considering the bulk flow rate. By utilising Lyapunov Exponents we have shown

there are regions of mixing in the flow, typically around the edge of the observed vortex

structure. This demonstrates that ciliary propulsion, although of a smaller amplitude

than peristaltic waves, can be an important factor for motion - in particular with regards

to mixing and exchanging fluids in Stokes flow.

Areas of future work should focus on adding additional biological features to the mathe-

matical model, such as studying the motion in the oviduct with the ovum/embryo present,

considering a axi-symmetric geometry for the oviduct, and considering non-Newtonian flu-

ids such as power law fluids (where some asymptotic analysis should be possible)
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Chapter 7

Conclusions

We conclude this thesis by summarising and commenting upon the results we have pre-

sented from a mathematical and biological context. We also provide an indication of

future topics in this area, that warrant further investigation.

7.1 Summary

This thesis has considered the motion of human sperm and the flow in the human oviduct.

The motility of human sperm has been modelled mathematically, using slender-body

theory and the singularity methods for Stokes flow. The kinematic models have been

devised and implemented based upon experimental observations. The outcome of the

mathematical modelling is an insight into the physical properties of the modes of beating

observed.

We have developed a slender-body theory code based on the work of Higdon (1979c),

which is implemented computationally using numerical integration as to allow for future

extensions - such as more complex fluid media and boundaries. We have extended existing

mathematical models for planar sinusoidal propagation of the beat pattern to a hybrid

‘exponential-arctan’ envelope: We conclude that the parameters of amplitude, wavenum-

ber and the position of the beat pattern are intrinsically linked, moreover, the more

posterior the beat pattern is, the shorter the wavelength must be in order to maintain a

level of optimality whilst the amplitude is fixed, which is consistent with our experimental

observations
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The model was extended to include the effect of a non-constant wavenumber and

consequently we demonstrated that an optimally efficient beat pattern configuration could

not be adequately described using a fixed wavenumber model. In particular we highlighted

a link between an increasing wavenumber and the how posterior a beat pattern is. We

also noted the optimality of whip-like beat pattern configurations.

These two initial models, assumed that the underlying beat pattern was a planar

sinusoidal wave. By studying the experimental data, and considering the shear-angle, we

derived a number of assumptions and, based upon these, devised a new model for the

beat pattern configuration, with a small number of parameters. The new model removed

the necessity to assume a priori a functional form of the beat pattern. This new model

encompasses the broad range of beat patterns observed in vitro with the benefit of only

needing two parameters and was extended to allow asymmetric beat patterns, by relaxing

one of our modelling assumptions and the introduction of one new parameter.

Analysis of the speed and power consumption of the different configurations was con-

ducted and it was found there are a number of groups of configurations with near optimal

speed. By considering the bending moment density, which scales with viscosity, we were

able to identify a mechanism which could explain the modulation of sperm beat pattern

configurations. We conclude that the fastest beat pattern is the ‘whip-like’ beat pattern

observed in low viscosity medium; however, the value of the maximum bending moment

density is high. If the viscosity is increased, thus increasing the bending moment density,

then in order to maintain a physically acceptable beat configuration with a near maximum

velocity, a suitable alternative beat pattern configuration is the meandering tail pattern.

The regions of optimal parameters show excellent agreement with the experimental data.

Through an asymptotic analysis of flow in a channel with a small aspect ratio, we

demonstrated that a small perturbation to a bulk peristaltic flow is important in the

overall dynamics and mixing of the system. The work also suggests regions of flow within
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the channel which are in the opposite direction to the bulk flow. This observation suggests

some flow contrary to the direction of bulk flow, from the ovaries towards the uterus; which

is consistent with experimental observations, such as Sjösten et al. (2004) where starch

particles are observed near the ovaries after their introduction at the cervix. We have

demonstrated that ciliary propulsion, although of a smaller amplitude than peristaltic

waves, can be an important factor for motion - in particular with regards to mixing and

exchanging fluids in Stokes flow.

7.2 Future developments

There are several ways that the new model devised for flagellar propulsion could be

utilised. As a tool for modelling sperm beat patterns, the new model encompass a broad

range of beat patterns observed in vitro with a small number of parameters meaning

that the model is of valuable use in aspects of the modelling of planar sperm beating.

Moreover, the model can be used to predict the properties of human sperm observed in

vitro using the slender-body theory code. As the beat pattern parameters can be fitted

by eye the model avoids the need for detailed image processing and data analysis, which

is required if we are to calculate Fourier coefficients directly. Alternatively, accurate and

less subjective parameters could determined through the use of a more sophisticated data

fitting routine.

It would be beneficial to consider the motion of human sperm in a non-Newtonian

fluid, such as a simple linear viscoelastic Maxwell fluid as a model for cervical mucus.

A similar study could be undertaken as has been done in this thesis to consider the

importance of the viscoelastic component of the flow on human sperm motility and the

relation of the non-Newtonian component on the model parameters, for example the effect

of the memory parameter in a linear Maxwell fluid or the effect of shear-thinning in a

shear-dependent viscosity fluid.
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The model could also be linked to a hybrid boundary-element slender-body theory

code being devised by Smith et al. (2008a). The hybrid code seeks to model the ‘correct’

morphology of the human sperm head rather than using a sphere of ‘effective radius’.

The motion of sperm could also be considered in a number of situations more com-

plex than in isolation in a Newtonian fluid. For example, the model could be adopted to

consider the effect of rheotaxis (an oncoming fluid flow) or by coupling with an appro-

priative advection/diffusion equation as a model for chemotaxis. The motion of sperm

near boundaries – both planar, moving – and near the ovum could also be studied.

A current drawback of the model proposed is that it considers only planar beating.

An extension to allow for three-dimensional beating should be considered, however, this

is dependent on new experimental data regarding the motion of human sperm in the

third-spatial dimension being available.

Future analysis of peristaltic flows in the oviduct may include the addition of a third-

dimension or axi-symmetric flow with more realistic geometries and by considering non-

Newtonian fluids such as power law fluids asymptotically. A particular area of interest

should be the introduction in to the modelling the non-zero volume of the ovum and to

consider the interactions of this on the fluid flow.
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Appendix A

Experimental Methods and in vitro

Processes

There are a number of techniques for studying the motility of human sperm in vitro.

In this section we shall briefly outline two of the techniques available and make a more

detailed analysis of the particular method that was used to recover the data used and

considered in this thesis.

A.1 Obtaining sperm cells for analysis

There are a variety of methods for obtaining sperm from semen for the use in experi-

mentations. The preferred method by colleagues in the Birmingham Women’s Hospital

is a technique known as ‘swim-up’. Upon ejaculation, semen coagulates into a gel which

after around twenty minutes liquefies again. At this stage, 1ml of semen is placed in a

test-tube, and then layered with 1ml of Earle’s medium (Mortimer, 1991; World Health

Organisation, 1999). The vessel is then incubated for 30 minutes at 37◦C at 5% CO2,

after which time a small amount of the Earle’s medium is removed, which now contains

some motile sperm cells.

Some motile sperm will, during the incubation, swim-up from the semen at the bottom

into the medium at the top. The advantage of the swim-up method is that the process

easily differentiates between motile and non-motile cells, as the non-motile ones will not

swim into the Earle’s medium and hence will not be part of the study. Additionally, having

sperm in medium allows us to control their environment and remove other molecules, such
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as proteins or bacteria from the sample, which may affect the result.

An alternative method that is available is to utilise a centrifuge, typically centrifuging

semen at several hundred ‘g’s for ten to fifteen minutes (as used in Ishijima et al. (1986));

however, the physiological effects on the sperm, of such high forces for a prolonged period

of time are not understood fully.

To study in vitro the motion of sperm in cervical mucus, requires extracting cervical

mucus from a female and using this in the laboratory; however, this is difficult as the

cervical mucus degrades very quickly. Substitute media are often used; firstly hyaluronic

acid (Neuwinger et al., 1991), which is a component of natural cervical mucus or alter-

natively methylcellulose which has been shown to be an acceptable medium for clinical

tests (Ivic et al., 2002).

Once prepared the cells can be studied using a number of methods, two of which are

outlined below. In both cases the sperm will be contained in a chamber, microscope slide

or capillary tube. The World Health Organisation (1999) manual states that “[coverslip]

depths less than 20 microns may constrain the rotational movement of the sperm”. For

accurate focusing and clean imaging, a typical depth of coverslip used by colleagues is

20-40µm. As the head of a sperm is around 5µm in width in the broader direction, the

use of a small coverslip ensures that most sperm swim in parallel horizontal plane which

is beneficial for the purposes for imaging.

A.2 Computer assisted semen analysis

Computer Assisted Semen Analysis, can be undertaken using the Birmingham Women’s

Hospital’s Hamilton Thorne IVOS system. The Casa process provides a variety of mean

averaged parameters from a sample of sperm; the averaging being done over the individual

sperm cells, and over successive time periods.

An example output achieved using sperm in medium, collected using ‘swim-up’ is
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Parameter Value Units Standard
Deviation

Path Velocity VAP 85.4 µm/s 27.6
Prog. Velocity VSL 77.3 µm/s 27.8
Track Speed VCL 122.3 µm/s 46.7
Lateral Amplitude ALH 4.0 µm 1.9
Beat Frequency BCF 3.8 Hz 3.3
Straightness STR 90 % 16
Linearity LIN 66 % 20
Elongation 66 % 15
Area 4.9 µm

2 1.4

Figure A.1: An example table of data available from the Hamilton Thorne IVOS Casa

system.

Figure A.2: Sperm motility trajectories showing the average path velocity (VAP), curvi-
linear velocity (VCL) and straight line velocity (VSL). From Kay and Robertston (1998).

presented in Figure A.1. The output is a series of motility parameters shown in the

table as path velocity (VAP), progressive velocity (VSL), curvilinear velocity (VCL), the

amplitude of lateral head displacement (ALH) beat cross frequency (BCF), straightness

(STR=VSL/VAP) and linearity (LIN=VSL/VCL). The relation between VAP, VCL and

VSL are shown if Figure A.2 for a sample trajectory. Elongation is the ratio of head width

to head length and is used to distinguish non-motile sperm from other static objects; sperm

have a head shape with elongation < 75%, other objects such as bacteria will have larger

elongation.
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A.3 High speed imaging: acquisition and processing

Using high speed cameras attached to microscopes, Birmingham Women’s Hospital also

has the ability to collect image data of sperm beat pattern at speed of up to 1000 frames

per second. As sperm beat at around 10-20Hz, a complete beat cycle is encompassed in

around 50 frames meaning that many subtleties of the beat pattern can be noticed.

Typically, sperm cells prepared using swim-up are then introduced into a Kremer

tube; a Kremer tube is a glass tube with rectangular cross section. Typically the tube

may have a depth and width of 0.4mm and a length of 50mm. By considering sperm at

different lengths along the Kremer we are able to reduce the concentration as to make

detailed analysis of a single sperm swimming possible. Figure A.3 illustrates some example

photographs taken using a Photron Super 10K High Speed digital camera

Once the photographs have been recorded we need to obtain quantitative data about

the position of the head and flagellum. This is done using image processing techniques

developed by Dr Eamonn Gaffney (Oxon) using Matlab’s image processing toolbox.

Some examples of the initial photographs and the recovered data are shown in Figure A.4.

The outcome of the image processing is a Matlab file which contains time series data

for, amongst other things, the position of the flagellum and the position of the head. The

data can then be manipulated in Matlab; for example, in our case it is necessary to

translate each frame to occur in a ‘body frame’, with the head centered at (0, 0) and the

head/flagellar junction parallel to the X axis. Some example data, prior to translation

and rotation is presented in Figure A.5.

The advantage of high speed imaging and acquisition over Casa type analysis is that

we can track the motility of individual sperm cells in great detail, rather than comparing

mean parameters determined from a number of sperm cells. The high speed imaging also

allows careful tracking and analysis of the motion of the head and flagellum of a single cell.

Advances in image acquisition are providing an understanding of free-swimming motile
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a) b)

c) d)

Figure A.3: Example images taken using Photron Super 10K High Speed Digital Camera;
the width of each frame is approximately 150µm. The human sperm are imaged swimming
in a Kremer tube (50 mm length, 4mm width, 0.4mm depth) loaded with hyaluronic acid,
which is a polymer which is used as a cervical mucus analogue. The interval between
successive photographs is 10ms. (Personal Communications: Kirkman-Brown and Smith)

sperm that were previously only available in fixed sperm.
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Figure A.4: Example data for a single human sperm in Methylcellulose 4000cps at 2%.
The original photographs are shown on the left; the right hand pictures illustrate the
recovered position of the tail (green) and the centroid of the head (red cross – very faint).
The ‘halo’ around the sperm’s head causes some problems obtaining an accurate fix on
the head’s location.
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Figure A.5: Example experimental data captured from high speed photographs, processed
using Matlab. The four ‘snap-shots’ are from data taken 30 frames apart at approxi-
mately 400 frames per second, so each snap-shop is approximately 75ms from the previous
one.
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Appendix B

Derivation of the Stokeslet

Green’s functions are an important mathematical technique for solving inhomogeneous

differential equations. The Stokeslet is the Green’s function for Stokes flow with a point

force as the only body force F (x) = fδ(x) (f ∈ R
3) at the point x = 0. The governing

Stokes equations are (we have used the standard notation ∆ ≡ ∇2 in this section for

clarity),

0 = −∇p + µ∆u + F , ∇ · u = 0, (B.1)

where u ∈ R
3 and p ∈ R, with the far-field conditions |u| → 0 as |x| → 0.

We cast the Stokes equations in R
3 as

Lu = F , (B.2)

where u = (u, v, w, p) and the operator is

L =




−µ∆ 0 0 ∂/ ∂x

0 −µ∆ 0 ∂/ ∂y

0 0 −µ∆ ∂/ ∂z

∂/ ∂x ∂/ ∂y ∂/ ∂z 0




.

To calculate the fundamental solution tensor G for L we consider the integral repre-
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sentation of the solution in the whole space

u(x) =

∫

R3

G(x − y)F (y) dy. (B.3)

The Fourier space representation of Equation (B.2) is

L̂u = L̂û = F̂

where

L̂ =




µk2 0 0 −ik1

0 µk2 0 −ik2

0 0 µk2 −ik3

−ik1 −ik2 −ik3 0




with k = (k1, k2, k3) and k2 = k · k.

Therefore

u(x) =

∫

R3

L̂−1F̂ (k)eik·x dk

=
1

2π

∫

R3

∫

R3

L̂−1F (y)eik·(x−y) dk dy

Comparing this to Equation (B.3) we deduce that L̂−1(k) is related to Ĝ(k) as

Ĝ(k) =
1

2π
L̂−1(k) =

1

2πk2α(k)




k2
2 + k2

3 −k1k2 −k1k3 ik1α(k)

−k1k2 k2
1 + k2

3 −k2k3 ik2α(k)

−k1k3 −k2k3 k2
1 + k2

2 ik3α(k)

−ik1α(k) ik2α(k) ik3α(k) α(k)2




where α(k) = µk2
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Hence using the properties of the Fourier transform, we find that in R
3

G =




−
(
∂2

∂y2
+

∂2

∂z2

)
GQ

∂2

∂x∂y
GQ

∂2

∂x∂z
GQ − ∂

∂x
G∆

∂2

∂x∂y
GQ −

(
∂2

∂x2
+

∂2

∂z2

)
GQ

∂2

∂y∂z
GQ − ∂

∂y
G∆

∂2

∂x∂z
GQ

∂2

∂y∂z
GQ −

(
∂2

∂x2
+

∂2

∂y2

)
GQ − ∂

∂z
G∆

− ∂

∂x
G∆ − ∂

∂y
G∆ − ∂

∂z
G∆ −µ∆G∆




G∆ is the fundamental solution for the negative Laplacian and GQ is the fundamental

solution for the operator Q = −∆(−µ∆) = µ∆2; namely

G∆ = − 1

4π|x| , GQ = − |x|
8πµ

. (B.4)

Therefore, given our form for G, using the convolution (B.3), together with our form

of the force as F = fδ(x), we easily recover the equations for (uj, p) as such

uj(x) =
fk

8πµ

(
δjk
|x| +

xjxk

|x|3
)
, (B.5)

p(x) = − fkxk

4π|x|

The Kronecker delta is defined as δij such that if i = j then δij = 1, and if i 6= j then

δij = 0.

The equation for uj (Equation B.5) is often written as uj = Sjkfk, where Sjk is the

fundamental solution of the Stokes Equations, known as the Stokeslet

Sjk(x) =
1

8πµ

(
δjk
|x| +

xjxk

|x|3
)
.
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Appendix C

Computational Implementation and

Pseudo-code

In this appendix, we briefly outline the computational method in the slender-body theory

problems in chapters 2-5, the finite difference scheme used in calculating the derivatives

for the optimisation routines (chapters 3-5) and in determining the Lyapunov exponents

used in Chapter 6

C.1 Slender-body theory code

This section outlines the algorithm used for constructing the solution to the Higdon

problem.

Mathematically, we have 3N + 6 unknowns fk(sn), U0k, Ω0k, k = 1, 2, 3, n = 1, .., N ,

and 3N +6 equations; 3N equations from applying the boundary condition at N colloca-

tion points on the flagellum (Equation C.1), 3 equations from evaluating the ‘force’ balance

(Equation C.2) and 3 equations from evaluating the moment balance (Equation C.3).

U0j + εjklΩ0kxl + εjkl[(−ω, 0, 0)]kxl

=
3

4
A

(
Sjk(x, 0) − A2

3
Djk(x, 0)

)
U0k

+
A3

|x|3 εjklxlΩ0k

+

N∑

n=1

∫ sn+δsn

sn−δsn

Kjk(x,X(s))fk(sn) ds. (C.1a)
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with

Kjk(x,X(sn))

=
1

8πµ

[
Sjk(x,X(s)) + S⋆

jk(x,X(s)) −Djl(x,X(s))
a2

2
(δlk − tl(sn)tk(sn))

]
(C.1b)

N∑

n=1

{[
(1 + CT (sn))δjk +

(
Xj(sn)Xk(sn)

|X(sn)|2
)

(CR(sn) − CT (sn))

]
fj(sn)2δsn

}
+6πµAU0k

= 0

(C.2)

N∑

n=1

{
εkjiXj(sn)fi(sn)

(
1 − A3

|X(sn)|3
)

2δsn

}
+ 8πµA3Ω0k

= 0 (C.3)

These 3N + 6 equations essentially form a matrix system of the form Ax = b, the con-

struction of which we shall discuss in some detail.

C.1.1 The kernel Kjk

We pay particular attention to the kernel Kjk; computationally construction of this is the

most time consuming part of the problem. Written crudely there will be many nested for

loops, however, we can investigate the properties of the Kernel further, and then construct

a Matlab routine which harnesses the matrix handling capabilities of Matlab.

Considering the last term in Equation (C.1a) (which calculates a velocity, which to

avoid ambiguity we call u⋆), we see that for each point {xm}16m6N ∈ R
3, we have

u⋆
j(xm) =

N∑

n=1

∫ sn+δsn

sn−δsn

Kjk(xm,X(s))fk(sn) ds =

3∑

k=1

(
N∑

n=1

∫ sn+δsn

sn−δsn

Kjk(xm,X(s)) ds

)
fk(sn).

(C.4)
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This is equivalent to the block system




u⋆
1

u⋆
2

u⋆
3




=




K11 K12 K13

K21 K22 K23

K31 K32 K33







f1

f2

f3



, (C.5)

where u⋆
j ,fk ∈ R

N and Kij ∈ R
N×N , and (fk)n = fk(sn) and

(Kjk)mn =

∫ sn+δsn

sn−δsn

Kjk(xm,X(s)) ds (C.6)

= δsn

∫ 1

−1

Kjk(xm,X(s+ tδsn)) dt (C.7)

= δsn

nl∑

l=1

wlKjk(xm,X(s+ ξlδsn)) (C.8)

where (wl, ξl) defines a Gauss-Legendre quadrature rule on [−1, 1] with nl points.

C.1.2 Assembling the matrix

Section C.1.1 demonstrates how to calculate the coefficients of the force components due

to the boundary conditions. The overall structure of the matrix (∈ R
(3N+6)×(3N+6)), is as

follows




K11 K12 K13

K21 K22 K23

K31 K32 K33

∣∣∣∣∣∣∣∣∣∣

3N × 6 from

boundary conditions

3 × (3N + 6) rows from force balance

3 × (3N + 6) rows from moment balance







f1

f2

f3

U 0

Ω0




= b (C.9)

where f k ∈ R
N with (f k)n = fk(sn) as before, and U 0,Ω0 ∈ R

3.

This resultant system can then be inverted to yield the quantities of interest fk(sn), U0j

and Ω0j .
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C.1.3 Schematic of the Matlab code

Presented below is an outline of the structure of the Matlab code used to solve this

single sperm swimming problem.

• Setup all global parameters,

• Calculate the weights and node (wl, ξl) for Gauss-Legendre quadrature; typically

nl = 10,

• Ensure the arc-length of the flagellum, adjusting any derived quantities as appro-

priate,

• Calculate the position of the flagellum, to give N midpoints X,

• Calculate the arc-length between successive midpoint; the δsn’s,

• Calculate the Tangent and Normal vectors at each midpoint,

• Calculate the N collocation point XB by projecting a distance a along the normal

vector from each midpoint,

• Construct the Kernel Kjk,

• Construct the coefficients of U 0 and Ω0 due to the boundary condition (utilising

for loops),

• Construct the coefficients of f k(sn), U 0 and Ω0 due to the force and moment rows

(using for loops),

• Solve the system Ax = b as x=A\b, to find the desired values,

• Calculate quantities of interest, such as power P , inverse efficiency η−1, average

swimming speed Ū and bending moment densities.
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C.2 Calculating the Hessian matrix with finite differ-

ence

For a particular function f , such as inverse efficiency (being an output of the slender-body

theory code), we will not necessarily have an analytic form for the partial derivatives re-

quired to construct the Hessian (3.5), and it will be necessary to construct these using

numerical methods, in particular finite differences. A standard approach is to use the

central difference formulae which are second order accurate. For example, in two dimen-

sions (x, y), with grid spacing (∆x,∆y) we find the central difference finite difference

approximations to the first and second derivatives as follows

(
∂f

∂x

)

i,j

=
fi+1,j − fi−1,j

2∆x
+ O((∆x)2), (C.10a)

(
∂2f

∂x2

)

i,j

=
fi+1,j − 2fi,j + fi−1,j

(∆x)2
+ O((∆x)2), (C.10b)

(
∂2f

∂x∂y

)

i,j

=
fi+1,j+1 − fi+1,j−1 − fi−1,j+1 + fi−1,j−1

4∆x∆y
+ O((∆x)2) + O((∆y)2). (C.10c)

The calculation of the finite difference derivatives, requires the evaluation of the function

in 2-dimensions at 32 = 9 places in a grid as shown in Figure C.1(a); in n-dimensions

this figure is 3n function evaluations. This can often be computationally intensive, so a

reduction in the number of function evaluations required would be beneficial.

The formulae given in Equation (C.10) are second-order accurate, however, as we have

a choice over the values of ∆x and ∆y (the grid spacing) we can utilise the first-order

accurate forward difference formulae, and by making the grid spacing arbitrarily small

maintain similar accuracy. However, this may be a poor trade-off if we inadvertently

increase the number of iterations and hence matrix assemblies required, and hence the

overall computational time.

Calculating the forward difference second derivative with respect to one variable, re-

quires 3 function evaluations; thus there is no saving to be made adopting forward dif-
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ference solution for the non-mixed second derivatives. As the calculation of either the

forward or central difference first derivatives requires the use of two out of the three

points which have to be used in order to calculate the non-mixed second derivative we

can make no computational saving here either.

We can however, make a saving by modifying the scheme to calculate the mixed partial

derivatives. From Figure C.1(a), we can see that the four points utilised to calculate

the second derivative in the central difference scheme are used solely for this purpose.

By adopting a forward difference approach, we move to Figure C.1(b), where we need

only calculate one additional function value above those used to calculate the non-mixed

derivatives. The particular form of the mixed partial derivative then becomes

(
∂2f

∂x∂y

)

i,j

=
fi+1,j+1 − fi+1,j − fi,j+1 + fi,j

∆x∆y
+ O(∆x) + O(∆y). (C.11)

This modification results in three fewer function evaluations in the two-dimensional case.

Thus the total number of points required to evaluate the function and construct the

Hessian under this hybrid scheme is now 32 − 3 = 6, or in m-dimensions, 2m +m.

Alone this saving in the number of function evaluations appears promising; for example

in 3-dimensions, the naive central difference approach requires 27 function evaluations,

whereas the hybrid method requires only 11. However, this must come with the caveat

that we have made a reduction in accuracy from a second order method to a first order

method, and we may have a trade-off in terms of requiring more iterations to converge

sufficiently to the correct solution.

C.3 Local Lyapunov Exponents

Recall that the definition of the Local Lyapunov Exponent at a point x0 at time t, is

λLLE(x0, t) =
1

t
log

( ||δx(t)||
||δx(0)||

)
. (C.12)
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b b b

b b b

b b b

i − 1, j − 1 i, j − 1 i + 1, j − 1

i − 1, j i, j i + 1, j

i − 1, j + 1 i, j + 1 i + 1, j + 1

b b b

b b b

b b b

i, j − 1 i + 1, j − 1

i − 1, j i, j i + 1, j

i, j + 1

(a) Central difference scheme (b) Hybrid scheme

Figure C.1: A comparison of the number of points required to calculate the derivatives
using (a) central and (b) forward finite difference. The blue line represents the first and
second derivatives with respect to the same co-ordinate and are taken as central difference
in each case, and the red lines the points required for the calculation of the mixed partial
derivatives – the off-diagonal elements of the Hessian.

The algorithm used to construct the Local Lyapunov Exponents is as follows

Setup the x and y spatial ranges and the t temporal range; x and y need to

form a meshgrid.

for each point (x, y)

Construct the initial separation δx(0), eg (0,−10−4)

Set X1 = (x, y) and X2 = (x, y) + δx(0).

for each time period [ti, ti+1)

Evolve forward the points X1 (to X⋆
1 ) and X2 (to X⋆

2 ) using RK4

routine

Calculate the distance between X⋆
1 and X⋆

2 , to give ||δx(ti+1)||

Calculate the logarithm of the ratio ||δx(ti)||/||δx(0)||

Store 1
ti+1

log ||δx(ti)||/||δx(0)||, against original (x, y)
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Set X1 = X⋆
1 and X2 = X⋆

2

end

end

C.3.1 ODE solvers

In this section we consider two numerical methods for solving the general system of

differential equations

dy

dt
= f(t,y), subject to y(0) = y0 (C.13)

Improved Euler – ‘Heun’ Scheme

The Heun method is a second order, improved Euler Scheme. The mathematical statement

of this method is as follows

yn+1 = yn +
h

2
(K1 + K2) (C.14a)

where

K1 = f(t,yn) (C.14b)

K2 = f(t+ h,yn + hK1) (C.14c)

The Heun method is second order accurate. The pseudo-code required to implement this

computationally is

for each time tj

Calculate K1 = f (tj,yn)

Calculate K2 = f (tj + h,yn + hK1)

Calculate yn+1 = yn + h
2
(K1 + K2)
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end

Runge-Kutta Fourth Order Scheme - ‘RK4’

The Runge-Kutta fourth order scheme, often abbreviated to RK4, is the most commonly

used solver for the form of differential equations given in Equation (C.13). The reason are

the high level of accuracy (RK4 is accurate to O(h4)) combined with the straightforward

computation. RK4 is available in Matlab as the built-in function ode45.

The mathematical statement of the RK4 method is as follows

yn+1 = yn +
h

6
(K1 + 2K2 + 2K3 + K4) (C.15a)

where

K1 = f (xi, t) (C.15b)

K2 = f

(
xi +

h

2
K1, t+

h

2

)
(C.15c)

K3 = f

(
xi +

h

2
K2, t+

h

2

)
(C.15d)

K4 = f (xi + hK3, t+ h) (C.15e)

The pseudo-code required to implement this computationally is

for each time tj

Calculate K1 = f (xi, tj)

Calculate K2 = f
(
xi + h

2
K1, tj + h

2

)

Calculate K3 = f
(
xi + h

2
K2, tj + h

2

)

Calculate K4 = f (xi + hK3, tj + h)

Calculate yn+1 = yn + h
6
(K1 + 2K2 + 2K3 + K4)

end
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Appendix D

The S-transform and slender-body

theory in Stokes flow

This appendix represents a study which has been cowritten with JR Blake and EO Tuck

regarding the S-transform, its properties and use in slender-body theory in Stokes flow.

Originally it was planned to use the S-transform to transform integrals to linear equa-

tions, however, it was later decided that the numerical approach described earlier is more

robust.

Abstract: The Slender-body transform, known in abbreviated form as the

S–transform, arises naturally from the asymptotic analysis of very viscous flow

around slender bodies. This paper considers some of the properties of the S–

transform as well as exploiting the special properties associated with Legendre

polynomials to generate a range of slender-body shapes with fixed drag. The

viable parameter space for these examples is also presented.

D.1 Introduction

The S–transform arises naturally from the asymptotic analysis of very viscous flow around

slender bodies. It is defined as follows

Sf(x) =
1

2

∫ 1

−1

f(x) − f(t)

|x− t| dt, |x| < 1, (D.1)
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where f(x) is differentiable on (−1, 1). Tuck (1964), discovered that for Legendre poly-

nomials Pn(x), it has the elegant relationship

SPn(x) = σnPn(x), (D.2)

where σ0 = 0 and σn = 1 + 1
2

+ · · ·+ 1
n
, for n > 1; so that the operator S has eigenvalues

σn and eigenfunctions Pn. Although this relationship arises from consideration of slender-

body theory in two different co-ordinate systems (prolate spheroidal and cylindrical),

Tuck proved the relationship independently through the use of recurrence relations and

the method of mathematical induction. In the Appendix some further properties of the

S–transform are listed for general differentiable functions, polynomials, Legendre and

Hermite polynomials.

D.2 Slender-body theory in Stokes flow

Slender-body theory is the study of fluid flow associated with bodies which are char-

acterised by a small slenderness ratio; that is where the width of the body is small in

comparison to the length. Examples of slender bodies occurs in biological applications;

propulsion of microorganisms by flagella (Higdon, 1979a) or cilia (Blake, 1972), and in

industrial applications such as the extrusion of polymers in the petrochemical industry,

where slender fibres move near to a free surface.

Stokes flow is fluid flow that is characterised as being viscosity dominated; that is a

flow in which the Reynolds number, which is the ratio of inertial to viscous forces, is very

small. In this case we take the zero Reynolds number limit of the Navier-Stokes equations

and arrive at the Stokes flow equations,

∇p = µ∇2u, ∇ · u = 0. (D.3)
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The Stokes flow equations provide a balance between the viscous forces with the pressure

gradient.

A general solution for the motion of a slender-body moving in a quiescent fluid can

be found in terms of a distribution of Stokeslets and higher order singularities along the

axis of symmetry of the body.

D.2.1 Singularities of Stokes flow

The fundamental singularity of Stokes flow is the Stokeslet which is the solution of the

Stokes flow equations with a point force acting at the point X,

∇p = µ∇2u + F δ(x − X), ∇ · u = 0. (D.4)

The solution is of the form

ui(x) =
Fj

8πµ

[
δij

|x − X| +
(xi −Xi)(xj −Xj)

|x − X|3
]
, (D.5a)

p(x) =
Fj(xj −Xj)

4π|x − X|3 . (D.5b)

We observe the velocity decays inversely with distance and the induced axial velocity

at an equal distance from the point force on the axis is twice that an equivalent radial

position above the point force. The unphysical attributes of infinite flux, infinite kinetic

energy and non-uniform validity of the solution in the far-field may create problems when

in infinite domains.

D.2.2 Flow around a slender-body: zeroth order approximation

Consider a slender-body of length 2ℓ and radius r0(x) |x| 6 ℓ, so that the major axis of the

body is aligned with the x-axis of the cylindrical co-ordinate system. The approximate

solution for flow around this body can be written down as an integral along the x-axis of
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Stokeslets and potential source-doublets (or dipoles). The solution has the form

ui(x) =
1

8πµ

∫ ℓ

−ℓ

Fj(ξ)

[
δij

|x − ξ| +
(xi − ξi)(xj − ξj)

|x − ξ|3
]

+Dj(ξ)

[
− δij
|x − ξ|3 +

3(xi − ξi)(xj − ξj)

|x − ξ|5
]

dξ. (D.6)

The force and dipole strength per unit length are Fj and Dj respectively, and ξ = (ξ, 0, 0)

is the ‘dummy variable’ of integration along the x-axis. Indeed an exact solution exists for

a prolate spheroid with a constant Stokeslet distribution and a parabolic source doublet

distribution between the two foci (Chwang and Wu, 1975).

We can make some initial progress by supposing that Fj and Dj do not vary along the

length of the slender-body, and thus treating them as constant, Equation (D.6) becomes;

ui(x) =
Fj(x)

8πµ

∫ ℓ

−ℓ

[
δij

|x − ξ| +
(xi − ξi)(xj − ξj)

|x − ξ|3
]

dξ

+
Dj(x)

8πµ

∫ ℓ

−ℓ

[
− δij
|x − ξ|3 +

3(xi − ξi)(xj − ξj)

|x − ξ|5
]

dξ. (D.7)

D.2.3 Longitudinal motion

We shall consider flow around the slender-body in the direction parallel to the x-axis, in

particular the resulting velocity will be of the form U = (U1, 0, 0).

Along the slender-body we shall have that

|x − ξ| =
√

(x− ξ)2 + r2
0.
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This allows us to reduce Equation (D.7) to the following form

ui(x) =
Fj(x)

8πµ

∫ ℓ

−ℓ



 δij
(
(x− ξ)2 + r2

0

) 1

2

+
(xi − ξi)(xj − ξj)
(
(x− ξ)2 + r2

0

) 3

2



 dξ

+
Dj(x)

8πµ

∫ ℓ

−ℓ



− δij
(
(x− ξ)2 + r2

0

) 3

2

+
3(xi − ξi)(xj − ξj)
(
(x− ξ)2 + r2

0

) 5

2



 dξ. (D.8)

We are able to make some progress here by remembering that as we are dealing with

slender bodies, that r0 ≪ ℓ, or more precisely that r0/ℓ is a small parameter.

By defining

Iij =

∫ ℓ

−ℓ



 δij
(
(x− ξ)2 + r2

0

) 1

2

+
(xi − ξi)(xj − ξj)
(
(x− ξ)2 + r2

0

) 3

2



 dξ, (D.9a)

Jij =

∫ ℓ

−ℓ



− δij
(
(x− ξ)2 + r2

0

) 3

2

+
3(xi − ξi)(xj − ξj)
(
(x− ξ)2 + r2

0

) 5

2



 dξ, (D.9b)

we find the following values for the slender-body approximation for Iij




2 ln (4(ℓ2 − x2)/r2
0) − 2 0 0

0 ln (4(ℓ2 − x2)/r2
0) + 2 cos2 θ sin 2θ

0 sin 2θ ln (4(ℓ2 − x2)/r2
0) + 2 sin2 θ




and for Jij 


0 0 0

0 1
r2
0

− 2
r2
0

cos2 θ − sin 2θ
r2
0

0 − sin 2θ
r2
0

1
r2
0

− 2
r2
0

sin2 θ



.

For the longitudinal motion we obtain

U1 =
F1

8πµ

(
2 ln

(
4(ℓ2 − x2)

r2
0

)
− 2

)
, (D.10)
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which can be rearranged to yield the following expression for the force distribution

F1(x) =
4πµU1

ln
(

4(ℓ2−x2)
r2
0

)
− 1

=
4πµU1

2 ln 2ℓ
r⋆
0

− 1 + 2 ln
((

1 − x2

ℓ2

) 1

2

/
r0/r

⋆
0

) , (D.11a)

∼ 2πµU1

ln 2ℓ
r⋆
0

− 1
2

, (D.11b)

where 2ℓ/r⋆
0 is twice the ratio of the major to minor axis.

A good estimate for the total axial drag is therefore

D1 =
4πµU1ℓ

ln 2ℓ
r⋆
0

− 1
2

. (D.12)

Indeed we could get closer to an exact solution by considering a prolate spheroid given

by r = r⋆
0 (1 − x2/ℓ2)

1

2 .

D.2.4 Transverse motion

In the case where the flow is perpendicular to the flow to the major axis of the slender-

body, we have a velocity profile of the form U = (0, U2, 0), and we obtain

U2 =
F2

8πµ

(
ln

(
4(ℓ2 − x2)

r2
0

)
+ 2 cos2 θ

)
+

D2

8πµ

(
1

r2
0

− 2 cos2 θ

r2
0

)
. (D.13)

If we remove the θ dependence by choosing D2(x) = r2
0F2(x), then we have

U2 =
F2

8πµ

(
ln

(
4(ℓ2 − x2)

r2
0

)
+ 1

)
, (D.14)
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which gives the expression for the force as

F2(x) =
8πµU2

ln
(

4(ℓ2−x2)
r2
0

)
+ 1

=
8πµU2

2 ln 2ℓ
r⋆
0

+ 1 + 2 ln
((

1 − x2

ℓ2

) 1

2

/
ro/r

⋆
0

) , (D.15a)

∼ 4πµU2

ln 2ℓ
r⋆
0

+ 1
2

. (D.15b)

The transverse drag approximation is

D2,3 =
8πµU2,3ℓ

ln 2ℓ
r⋆
0

+ 1
2

, (D.16)

where for convenience we have also include the component for the x3-direction.

Contrasting equations (D.15a), the force strength for longitudinal motion, and (D.11a),

the force strength for transverse motion; we observe, for r0/ℓ ≪ 1 – the slender-body

approximation, we have that F2 is almost twice F1. Therefore a slender-body falling

under the action of gravity, in a viscous fluid, falls nearly twice as quickly longitudinally

than transversely. As noted earlier, this is a direct consequence of the tensorial nature

of the Stokeslet and the resulting induced velocities in the axial and equi-distant radial

position.

D.3 Higher order approximation for axial motion: stream-

function

There are advantages in using the streamfunction formulation for considering axial motion

in Stokes flow. We write the streamfunction for a slender-body in a constant stream U

as follows (Tuck, 1968),

ψ(x, r) =
1

2
Ur2 − 1

2
r2

∫ ℓ

−ℓ

F1(ξ) dξ

[(x− ξ)2 + r2]
1

2

− 1

2

∫ ℓ

−ℓ

(x− ξ)D′
1(ξ) dξ

[(x− ξ)2 + r2]
1

2

. (D.17)

For convenience we have chosen to integrate the source-doublet term by term to yield
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a source distribution, hence the derivative D′
1(ξ) in the second integral of (D.17). Thus

(D.17) consists of terms representing the free stream, a Stokeslet distribution and a source

distribution. The boundary conditions on the slender-body are the no-slip condition

1

r

∂ψ

∂r
=

1

r

∂ψ

∂x
= 0 on r = r0(x). (D.18)

The second condition can be replaced with ψ = 0 without loss of generality.

Applying the boundary conditions leads to

0 =
1

2
Ur2

0 −
1

2
r2
0

∫ ℓ

−ℓ

F1(ξ) dξ

[(x− ξ)2 + r2
0]

1

2

− 1

2

∫ ℓ

−ℓ

(x− ξ)D′
1(ξ) d(ξ)

[(x− ξ)2 + r2
0]

1

2

, (D.19a)

0 = U +

∫ ℓ

−ℓ

F1(ξ)
[
(x− ξ)2 + 1

2
r2
0

]
dξ

[(x− ξ)2 + r2
0]

3

2

+
1

2

∫ ℓ

−ℓ

(x− ξ)D′
1(ξ) d(ξ)

[(x− ξ)2 + r2
0]

3

2

. (D.19b)

We impose the conditions

F1(±ℓ) = 0 and D′
1(±ℓ) = 0. (D.20)

The detailed asymptotic analysis of Tuck (1964, 1968), leads to the following expression

for the streamfunction,

ψ(x, r) =
1

2
Ur2 +D1(x) +

(
F1(x) +

1

2
D′′

1

)
r2 log r +

[
b2 +

b′1
2
− D′′

1

4

]
r2 + E, (D.21a)

where

b1 = −D′
1(x) log 2(ℓ2 − x2)

1

2 +
1

2

∫ ℓ

−ℓ

D′
1(x) −D′

1(ξ)

|x− ξ| dξ, (D.21b)

b2 = −F1(x) log 2(ℓ2 − x2)
1

2 +
1

2

∫ ℓ

−ℓ

F1(x) − F1(ξ)

|x− ξ| dξ. (D.21c)

and E is o(r2 log r).

The importance of the integral terms in (D.21b) and (D.21c) is associated with the
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‘non-local’ effects due to the change of source and stokeslet strength along the axis, espe-

cially near the ends x = ±ℓ. Tuck (2004), in a review paper, discusses the importance of

‘non-local’ factors in a range of applications from classical potential slender-body theory

through to compressible, viscous and elastic problems.

Other studies have concentrated on particular aspects of slender-body theory, both

analytical and computational developments. For example, Johnson (1980) investigated the

asymptotic and end effects, Lighthill (1996) and Gueron and Liron (1992, 1993) developed

techniques for de-singularising the integral equations while Higdon (1979a), Liron and

Mochon (1976) and Smith et al. (2007c) adapted the theory to facilitate more accurate

calculations.

On applying the boundary condition ψ = 0, it is immediately clear that D1 = O(r2
0).

The second boundary condition yields

0 = U + 2F1 log r0 + F1 + 2b2. (D.22)

This may be written as an inverse problem, where the radius of the slender-body is a

function of the force distribution F1(x). Thus,

r0(x) = 2
√
ℓ2 − x2 exp

(
−
[
F1 +

∫ ℓ

−ℓ

F1(x) − F1(ξ)

|x− ξ| dξ + U

]/
2F1

)
, (D.23)

with a drag given by

D = 4πµ

∫ ℓ

−ℓ

F1(x) dξ. (D.24)

If we non-dimensionalise with respect to ℓ and U , we obtain the following form for the

dimensionless slender-body radius R(x) (|x| 6 1), given by,

R(x) = 2
√

1 − x2 exp

(
−A + 2SA + 1

2A

)
, (D.25)
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in terms of the dimensionless force A, noting the drag D is given by,

D = 4πµUℓ

∫ 1

−1

A(ξ) dξ. (D.26)

D.4 The inverse problem: slender-body shapes

With the argument for the radius containing the S–transform, it is of interest to represent

the force distribution as a finite sum of Legendre polynomials. Thus we represents A(x)

by

A(x) =

N∑

n=0

AnPn(x), (D.27)

yielding

R(x) = 2
√

1 − x2 exp

(
−
∑N

n=0CnPn(x)
∑N

n=0AnPn(x)

)
, (D.28)

where C0 = 1
2

+ 1
2
A0 and Cn = (σn + 1

2
)An for n > 1.

The drag is given by the first term as follows,

D = 8πµUℓA0. (D.29)

We consider three special cases – (i) the prolate spheroid, A0 6= 0, An = 0 n > 1, (ii) A0,

A1, A2 6= 0, all other An = 0 and (iii) A0, A2, A4 6= 0, all other An = 0. While these

choices represent only a small subset of possible slender-body shapes with the same drag,

they do reveal a range of different body shapes with varying volumes.

(i) Prolate Spheroid (A0 6= 0, An = 0 for n > 1)

The drag is given by Equation (D.29) and the radius by

R(x) = 2
√

1 − x2 exp

[
−A0 + 1

2A0

]
. (D.30)
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The slenderness ratio ε is defined by,

ε = max
|x|61

R(x) = 2 exp

[
−A0 + 1

2A0

]
, (D.31)

which yields a drag

D =
4πµUℓ

log 2
ε
− 1

2

, (D.32)

which provides the same result as the earlier zeroth order solution. Payne and Pell (1960)

give the exact solution as,

D =
8πµUℓ

(1 + ζ2) coth−1 ζ − ζ
, (D.33)

where ℓζ and ℓ(ζ2 − 1)
1

2 are the semi-axes of the meridional ellipse, thus yielding ε =
√
ζ2 − 1/ζ , and thence leading to the formula,

D =
8πµUℓ(1 − ε2)

(2 − ε2) coth−1(1 − ε)−
1

2 − (1 − ε2)
. (D.34)

For small ε this leads to the leading order term given by Equation (D.32). Although

outside the range of discussion for a slender-body ε = 0.52 yields a spheroid with drag

5% less than that of a sphere of the same volume.

(ii) Slender-body with A0, A1, A2 6= 0, all other An = 0.

In this case the radius of the slender-body is given by

R(x) = 2
√

1 − x2 exp

(
−C0P0 + C1P1 + C2P2

A0P0 + A1P1 + A2P2

)
, (D.35)

where C0 = 1
2

+ 1
2
A0, C1 = 3

2
A1, C2 = 2A2.

We require A0 + A1P1 + A2P2 > 0 for |x| < 1, but since A0 > 0, this reduces to the
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parameter space (a, b) given by,

1 + aP1 + bP2 > 0 |x| < 1.

Minima can occur at four point 0, ±1 and − a
3b

. This immediately defines the (a, b)

parameter space by

(i) 1 + a + b > 0,

(ii) 1 − a+ b > 0,

(iii)
1

3b
(a2 + 3(b− 1)2 − 3) < 0.

The parameter space is depicted in Figure D.1.

a

b

(3

2
, 1

2
)(− 3

2
, 1

2
)

1-1

-1

2

Figure D.1: The viable parameter space for case (ii).

Examples of slender-body shapes for (±1.5, 0.5), (1, 0) and (0, 0) are illustrated in

Figure D.2. It is noted that (a, b) and (−a, b) yield the same shape but orientated in the

opposite direction, expected on reversibility grounds. The volume calculations are also
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revealing, as they have the same drag to this order. If we choose A0 = 0.2 and take the

spheroid as a basis for comparison we obtain the volume ratios given in Table D.1.

(A1/A0, A2/A0) Volume ratio

(0, 0) – spheroid 1.00
(1, 0) 1.29

(−1, 0) 1.29
(1.5, 0.5) 1.38

(−1.5, 0.5) 1.38
(0.7, 0.3) 1.02

(−0.7, 0.3) 1.02

Table D.1: Volume ratios for case (ii) with A0 = 0.2 and the spheroid is taken to have
volume 1 for comparison.

(iii) Slender-body with A0, A2, A4 6= 0, all other An = 0

In this case we obtain the following expression for the radius R(x),

R(x) = 2
√

1 − x2 exp

(
−C0P0 + C2P2 + C4P4

A0P0 + A2P2 + A4P4

)
, (D.36)

where C0 = 1
2

+ 1
2
A0, C2 = 2A2, C4 = 2 7

12
A4.

In this case the parameter space for a = A2/A0 and b = A4/A0 requires

1 + aP2 + bP4 > 0 |x| 6 1.

It has minima at
(
0,±1,±

√
15b−6a

35b

)
, yielding the following constraints

(i) 1 + a+ b > 0,

(ii) 1 − 1

2
a +

3

8
b > 0,

(iii)
1

b
(280b+ 40ab− 36a3 − 120b2) > 0.

The parameter space for (a, b) is shown in Figure D.3
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As for the previous example a range of shapes are obtained covering ‘dumb-bell’ shapes

through to a highly cusped shape, interestingly with the largest volume ratio compared

to the spheroid. Examples are shown in Figure D.4. Some volumes are presented in

Table D.2

Body (A2/A0, A4/A0) Volume

Spheroid (0, 0) 1.00
Near–cylinder (5

7
, 1) 0.72

Pinched cylinder (5
7
, 12

7
) 0.71

Dumb–bell (20
7
, 8

7
) 0.54

Max. Volume (−10
7
, 3

7
) 1.53

Table D.2: Volume ratios for case (iii) with the spheroid taken to have volume 1 for
comparison.

The maximum volume case has some interesting implications, possibly in a biological

context when organisms are seeking to maximise cellular volume for a fixed drag. It

would also be interesting to see if considering a larger parameter space of An would lead

to further improvement.

D.5 Conclusion

In this paper we have presented a range of results for the S–transform when applied to

polynomial functions including the Legendre and Hermite special functions. In the case

of Legendre functions, they are the eigenfunction of

Sf(x) = λf(x),

where λ = σn = 1 + 1
2

+ · · · + 1
n
.

The S–transform is exploited to generate a range of special slender-body shapes with

fixed drag which may prove useful in a range of biological and engineering problems.
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D.6 Appendix: Further properties of the S–transform

The S–transform is again defined as follows

Sf(x) =
1

2

∫ 1

−1

f(x) − f(t)

|x− t| dt, |x| < 1, (D.37)

where f(x) is differentiable on (−1, 1). From the definition of Sf(x) it is clearly linear,

i.e.,

S(af(x) + bg(x)) = aSf(x) + bSg(x), (D.38)

where a and b are constants. It is also clear that the integrand is discontinuous at t = x,

lim
t→x−

f(x) − f(t)

|x− t| = f ′(x), (D.39a)

lim
t→x+

f(x) − f(t)

|x− t| = −f ′(x), (D.39b)

provided that f ′(x) 6= 0. The integral may also be written in terms of the sgn function

Sf(x) =
1

2

∫ 1

−1

sgn(x− t)
f(x) − f(t)

x− t
dt, (D.40a)

or by splitting the integrals

Sf(x) =
1

2

∫ x

−1

f(x) − f(t)

x− t
dt− 1

2

∫ 1

x

f(x) − f(t)

x− t
dt. (D.40b)

The linearity of the S–transform enables the common recurrence relations for special

functions to be immediately written down. For example, the recurrence relations and
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properties for Legendre polynomials Pn(x),

(n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x), Pn(1) = 1,

(2n+ 1)Pn(x) = P ′
n+1(x) − P ′

n−1(x), Pn(−1) = (−1)n, (D.41a)

yield

(n + 1)SPn+1(x) + nSPn−1(x) = (2n+ 1)xSPn(x) + Pn+1(x) − Pn−1(x). (D.41b)

Whereas for Hermite polynomials, the recurrence relations

Hn(x) = 2xHn−1(x) − 2nHn−2(x), 2nHn−1(x) = H ′
n(x), (D.42a)

yield

SHn(x) + 2nSHn−2(x) = 2xSHn−1(x) +
1

2n
(2Hn(x) −Hn(1) −Hn(−1)) . (D.42b)

It is noted that both these recurrence relations (D.41b) and (D.42b) are non-homogenous

It has already been shown by Tuck (1964) that the relation

SPn(x) = σnPn(x), (D.43)

where σn = 1 + 1
2

+ · · · + 1
n

holds. In proving this relationship by induction the relation

for Sxn was required for n = 1 and 2. More generally, the relationship is given by,

Sxn = σnx
n − 1

2

n∑

m=1

(1 + (−1)m)
xn−m

m
. (D.44)
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It may also be shown that the inner product is symmetric, i.e.,

∫ 1

−1

G(x)SF (x) dx =

∫ 1

−1

F (x)SG(x) dx, (D.45)

where both F (x) and G(x) are continuously differentiable on (−1, 1). The position of the

inverse operators may need further analysis. We note that if

S−1SA(x) = A(x), (D.46)

and we let

SA(x) = B(x) =
∞∑

n=0

BnPn(x), (D.47)

then

A(x) = A0 +
∞∑

n=1

Bn

σn

Pn(x), (D.48)

where A0 remains arbitrary.
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Figure D.2: Plots of R(x) for a variety of slender bodies with A0, A1, A2 6= 0 and all other
An = 0. For all cases A0 = 0.2 and
Solid line - A1/A0 = 0 A2/A0 = 0;
Dotted line - A1/A0 = 1, A2/A0 = 0;
Dashed line - A1/A0 = 1.5, A2/A0 = 0.5;
Dot-Dashed line - A1/A0 = −1.5, A2/A0 = 0.5.
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Figure D.3: The viable parameter space for case (iii).
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Figure D.4: Plots of R(x) for a variety of slender bodies with A0, A2, A4 6= 0 and all other
An = 0. For all cases A0 = 0.2 and
Solid line - A2/A0 = 5/7, A4/A0 = 1;
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