
A FRAMEWORK FOR THE ANALYSIS AND

COMPARISON OF PROCESS MINING

ALGORITHMS

by

PHILIP WEBER

A thesis submitted to the
University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Sciences
University of Birmingham

July 2013

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Process mining algorithms use event logs to learn and reason about business processes.

Although process mining is essentially a machine learning task, little work has been done

on systematically analysing algorithms to understand their fundamental properties, such

as how much data is needed for confidence in mining. Nor does any rigorous basis exist

on which to choose between algorithms and representations, or compare results.

We propose a framework for analysing process mining algorithms. Processes are viewed

as distributions over traces of activities and mining algorithms as learning these distribu-

tions. We use probabilistic automata as a unifying representation to which other repre-

sentation languages can be converted.

To validate the theory we present analyses of the Alpha and Heuristics Miner algo-

rithms under the framework, and two practical applications. We propose a model of noise

in process mining and extend the framework to mining from ‘noisy’ event logs. From

the probabilities and sub-structures in a model, bounds can be given for the amount of

data needed for mining. We also consider mining in non-stationary environments, and a

method for recovery of the sequence of changed models over time.

We conclude by critically evaluating this framework and suggesting directions for

future research.

This thesis is dedicated to my wife, Louise,
and daughters, Bethan, Ruth and Anna,
without whom it would not exist.

ACKNOWLEDGEMENTS

First and foremost, my sincerest thanks to Dr. Behzad Bordbar and Dr. Peter Tiňo
who supervised this work. I am amazed at your patience as I fumblingly started out in
research. Thank you for guiding and constantly challenging me, and for holding me to
intellectual and mathematical rigour. Above all, for helping me learn to think and write.

My road from industry to academia started with redundancy. Thus I owe thanks
to my former employer, but more importantly to former colleagues who showed interest
in my ideas and provided practical support. Thanks also to members of the School of
Computer Science, University of Birmingham, who believed I could succeed in a research
Masters, and to fellow students for friendship, support and intellectual stimulation.

My ‘thesis group’ members at Birmingham helped me develop my research ideas.
Thank you for your interest and taking the time to read reports, attend meetings, ask
probing questions and keep me on the road to achieving a thesis. I also thank the under-
graduate students who unwittingly helped me to express myself more clearly.

Basim Majeed and colleagues at the Etisalat BT Innovation Centre (EBTIC) invited
me to spend three months working on an industrial process mining project in Abu Dhabi.
Thank you for this priceless opportunity to consider my ideas in a practical setting, not
to mention, to experience another part of the world.

Without the ProM Process Mining Framework and other open source tools, process
mining research would be much harder to put into practice. Thanks to all the developers
for offering this work to the community. Thanks also to all the anonymous reviewers of
my academic paper submissions. Your patience, generosity with your time and helpful
comments have helped me become a member of the academic community.

This work was supported by a Doctoral Training Grant funded by EPSRC and the
School of Computer Science, University of Birmingham. Without this support, it could
not have gone ahead.

Last but definitely not least, I owe a boundless debt of gratitude to my family for
allowing me this opportunity to study, putting up with the times I found it difficult,
making do without me when I was absent, and tolerating my increased presence at other
times. Without you there is absolutely no chance I could have completed this thesis.

CONTENTS

I Framework for the Analysis of Process Mining Algorithms 1

1 Introduction 3

1.1 Interconnected and Regulated Business World 3

1.2 Processes and Process Management . 4

1.3 Process Mining . 6

1.4 The Lack of a Foundation for Process Mining 8

1.5 Structure of this Thesis . 8

1.6 Scope of this Thesis . 10

1.6.1 Success Criteria . 11

1.7 Contributions of this Thesis . 11

1.8 Publications Resulting from this Thesis . 11

2 Business Process Modelling 13

2.1 Petri Nets . 14

2.1.1 Running Example as a Petri Net 15

2.1.2 Workflow Nets . 16

2.2 Causal Matrices and Heuristics Nets . 16

2.3 Probabilistic Automata . 19

2.3.1 Conversion of Petri Nets to Probabilistic Automata 21

2.3.2 Conversion of Probabilistic Automata to Petri Nets 22

2.4 Other Business Process Representations 23

2.5 Chapter Summary . 24

3 Business Process Mining 27

3.1 Business Process Mining . 28

3.1.1 Notation . 30

3.1.2 Standard View of Process Discovery 31

3.1.3 Problem 1: Process are not Deterministic 32

3.1.4 Problem 2: Heterogeneous Mining Algorithms, Representations and

Metrics . 34

3.2 Common Process Mining Algorithms . 36

3.2.1 Alpha Miner Algorithm . 36

3.2.2 Heuristics Miner Algorithm . 39

3.2.3 Other Process Mining Algorithms 44

3.3 Process Mining Metrics . 45

3.3.1 Characteristics of Process Mining Metrics 45

3.3.2 Conformance Metrics from the Process Mining Literature 48

3.3.3 Metrics for Querying Business Process Repositories 51

3.4 The Need for a Framework for Process Mining 55

3.5 Chapter Summary . 57

4 A Framework for the Analysis of Process Mining Algorithms 59

4.1 Business Processes as Distributions over Traces 60

4.1.1 Distances between Probability Measures 62

4.1.2 Statistical Tests on PDFA and Event Logs 63

4.1.3 Hypothesis Tests on PDFA and Event Logs 64

4.1.4 Process Mining: a Machine Learning View 65

4.2 Framework for the Analysis of Process Mining Algorithms 70

4.2.1 Process Sub-Structures . 71

4.3 Discussion of Measures for Assessment of Process Mining Results 78

4.4 Chapter Summary . 80

II Applications of the Framework 81

5 Case Study: Analysis of the Alpha Algorithm 83

5.1 A Probabilistic Analysis of the Alpha Algorithm 83

5.2 Step 1: Probability Formulae for Basic Process Sub-Structures 84

5.2.1 Activity Ordering Relations . 85

5.2.2 Sequences . 85

5.2.3 Splits and Joins . 86

5.2.4 Exclusive Choice: XOR Split . 86

5.2.5 Exclusive Choice: XOR Join . 88

5.2.6 Parallelism: AND Split . 88

5.2.7 Parallelism: AND Join . 89

5.3 Step 2: Aggregation of Sub-Structures to Full Model 89

5.3.1 Compound Splits/Joins . 90

5.3.2 Extra Parallelism . 90

5.3.3 Combining Probabilities for Sub-Structures 91

5.4 Step 3: Analysis of Alpha Algorithm . 92

5.4.1 Analysis of Example Process . 95

5.4.2 Analysis of Large Example Process 98

5.5 Chapter Summary . 101

6 Case Study: Analysis of the Heuristics Miner Algorithm 103

6.1 A Probabilistic Analysis of the Heuristics Miner 103

6.1.1 The Dependency Measure . 104

6.2 Basic Process Structures . 110

6.2.1 Sequences . 110

6.2.2 Splits and Joins . 110

6.2.3 Exclusive (XOR) Splits and Joins 111

6.2.4 2-Way Parallel Splits (AND2) . 111

6.2.5 3-Way Parallel Splits (AND3) . 117

6.2.6 Splits and Joins with More than 3 Paths 126

6.2.7 Other Structures . 126

6.3 Experimental Evaluation Without Noise 127

6.4 Chapter Summary . 129

7 Application: Process Mining in Non-Stationary Environments 131

7.1 Real Time Business Process Mining (RTBPM) 132

7.2 Process Mining in Non-Stationary Environments 134

7.2.1 Method for Model Estimation and Online Mining 134

7.2.2 Evaluation of Methods to Detect Change 136

7.2.3 Evaluation of Mining in Non-Stationary Environments 138

7.3 Chapter Summary . 140

8 Application: Process Mining from Noisy Logs 145

8.1 Introduction . 145

8.2 Effect of ‘Noise’ on Mining with Heuristics Miner 147

8.2.1 A Model of ‘Noise’ in Process Mining 148

8.2.2 Introduction of Additional XOR Splits and Joins 151

8.2.3 Introduction of Parallelism . 152

8.3 Experimental Evaluation with Noise . 153

8.4 Analysis . 157

8.5 Chapter Summary . 163

III Evaluation 165

9 Conclusions and Future Work 167

9.1 Evaluation of the Framework . 167

9.1.1 Theoretical Contributions . 167

9.1.2 Practical Contributions . 169

9.2 Assumptions, Limitations and Criticisms 170

9.3 Future Work . 172

9.3.1 Broadening the Scope . 172

9.3.2 Deepening the Theory . 173

9.3.3 Practical Applications . 174

9.4 Conclusion . 174

Appendix A: Proofs of Propositions and Theorems 175

A.1 Analysis of the Alpha Algorithm . 175

A.1.1 Proof of Proposition 1, Chapter 5 175

A.1.2 Proof of Proposition 2, Chapter 5 176

A.1.3 Proof of Proposition 3, Chapter 5 176

A.1.4 Proof of Proposition 4, Chapter 5 177

A.1.5 Proof of Proposition 5, Chapter 5 177

A.1.6 Proof of Theorem 1, Chapter 5 . 179

A.2 Analysis of the Heuristics Miner Algorithm 181

A.2.1 Proof of Proposition 8, Chapter 6 181

Appendix B: Combining Probabilities for Process Sub-Structures 185

Appendix C: Gaussian Approximations to Distributions followed by Heuris-

tics Miner Dependency Measures 189

Appendix D: Tables of Results Supporting Heuristics Miner Analysis 193

D.1 Analysis of 2-Way Parallel Splits . 193

D.2 Analysis of 3-Way Parallel Splits . 193

D.3 Heuristics Miner Experimentation . 194

List of References 203

LIST OF FIGURES

1.1 Informal Business Process Diagram for fulfilling a Customer Order 5

2.1 Petri Net N0 for the Running Example, a simplified Business Process for

fulfilling an Order, highlighting the Sub-Structures in the Process. 15

2.2 Reachability Graph for Petri Net N0 (Figure 2.1). 15

2.3 Heuristics Nets for the Running Example Process, as produced by the

ProM Framework [170], with (right) and without (left) identifying the

Types of Splits and Joins. 18

2.4 Running Example in the Heuristics Net Representation used in this Thesis. 19

2.5 PDFA A0 corresponding to Petri Net N0 (Figure 2.1), with the addition of

Transition Probabilities. 20

3.1 Simplified Business Process for fulfilling an Order. 28

3.2 Standard View of Process Discovery. 32

3.3 Running Example Process for Fulfilling an Order (ModelM) as a Directed

Graph similar to a Heuristics Net. 42

4.1 Example of Process Sub-Structures in Petri Net N0. 72

4.2 Example of Process Sub-Structures in PDFA A0. 72

4.3 Sequence: Petri Net Fragment. 73

4.4 Sequence: PDFA Fragment. 73

4.5 XOR Split: Petri Net. 74

4.6 XOR Split: PDFA. 74

4.7 Parallel (AND) Split: Petri Net. 76

4.8 Parallel (AND) Split: PDFA. 76

4.9 PDFA A1 differing from A0 (Figure 2.5) in Probabilities only. 78

4.10 Petri Net N1 structurally different from N0 (Figure 3.1). 78

4.11 PDFA A2 corresponding to Petri Net N1 (Figure 4.10). 79

4.12 Comparison of Metrics: varying Probability of Parallel Sub-Structure. . . . 80

5.1 The Alpha Relations on a Pair of Activities Partition the possible Logs of

n traces. 84

5.2 Illustration of (C ∩D) \ (A ∪ B) for Proposition 5. 84

5.3 Petri Net Fragment showing Complex Splits and Joins (Sub-Structures A

and B) and ‘Extra’ Parallel Activities (Dotted Ellipses). 90

5.4 Probability of Mining (by the Alpha Algorithm) of a →n b for 10 Traces,

varying π(ab), π(ba). 93

5.5 Probability of Mining of a →n b for π(ba) = π(ab ∧ ba) = 0, i.e. from

Noise-Free Logs. Varying n (Traces) and π(ab). 93

5.6 Probability of Mining a#n b, for 50 Traces, varying π(ab), π(ba). 93

5.7 Probability of Mining of a ‖n b for varying n and π(ab), π(ab)+π(ba) = 0.4. 93

5.8 Simplex of all Points πia + πib + πic = 1, used as the triangular Base of

Figures 5.9 – 5.14. 94

5.9 Number of Traces for 95% Probability of correct Mining by Alpha of 3-way

XOR Split Sub-Structure. 94

5.10 Number of Traces for 95% Probability of correct Mining by Alpha of 3-way

AND Split Sub-Structure. 94

5.11 Probability of mining of 3-way XOR Split Sub-Structure from 10 Traces

(Noise-Free). 95

5.12 Probability of mining of 3-way XOR Split Sub-Structure from 50 Traces

(Noise-Free). 95

5.13 Probability of mining of 3-way XOR Split Sub-Structure from 10 Traces

With ‘Noise’ (π(ba) = 0.01). 95

5.14 Probability of mining of 3-way XOR Split Sub-Structure from 20 Traces

With ‘Noise’ (π(ba) = 0.01). 95

5.15 Results showing Convergence of Alpha to the Ground Truth, mining from

Logs of increasing size simulated from the Order Process Running Example

(PDFA A0). 97

5.16 Petri Net N3 representing more complex Example Process with represen-

tative Process Sub-Structures and ‘Extra’ Parallel Relations. 99

5.17 PDFA A3 corresponding to Petri Net N3, with the addition of Transition

Probabilities, used for producing Simulated Event Logs. 100

5.18 Results showing Convergence of Alpha to the Ground Truth, mining from

Logs of increasing size simulated from Larger Process Model (PDFA A3). . 102

6.1 Illustration of Dependency Measures A = DMia, B = DMba and their

Marginal Distributions gA, gB and Joint Density gAB. Shaded Area illus-

trates γn(DMia > DMab). 106

6.2 Example DM Distributions DMia (π(ia) = 0.05, π(ai) = 0), DMba (π(ba) =

0.95, π(ab) = 0.05), n = 320, also showing Gaussian Approximation (Sec-

tion 6.2.5). 108

6.3 a) AND2 True Structure, and Failures Due to b) Missing Path, c) Extra

Arc, or d) Interpreting as XOR Structure. 112

6.4 Illustration of DMba plotted against DMia, for Samples from an Example

‘AND2’ Distribution (π(ia) = 0.05, π(ib) = 0.95, n = 250 Traces). The

Overlay illustrates the Curve on which the Distribution lies, and the Areas

under the Marginal DMia and DMba Distributions for which γn(DMia >

DMba) (Equation 6.12). 114

6.5 Predicted Number of Traces for PHM,n

(

i → (a ‖ b)
)

≥ 0.95 (Equation

6.14), plotted against π(ia), π(ib) ∈ [0, 1]. (a) PO = 10,DT = 0.9,RTB =

0.05, (b) reducing PO makes Discovery easier except at the Peaks, where

RTB determines Discovery, (c) reducing RTB reduces the Height of the

dominating Peaks. 118

6.6 Example ‘AND3’ distribution for π(ia) = 0.05, π(ib) = 0.9, π(ic) = 0.05,

n = 250 Traces, π(b|ia) ∝ π(ib), i.e. π(b|ia) = π(ia)
1−π(ia)

, etc. For A and B

see Text. 120

6.7 Difference between Predicted and Simulated Traces for ‘Extreme’ AND3

Probabilities. (a) Approximation using ‘AND2 Method’, (b) DMs Approx-

imated with Gaussians, (c) Minimum of (a) and (b). Positive Difference

indicates Predictions are Underestimates. 122

6.8 Dual-Peak Joint Distribution, π(ia) = 0.05, π(ib) = 0.9, π(ci) = 0.05,

n = 250 Traces, ‘Extreme’ Probabilities π(b|ia) = 0.05, π(c|ia) = 0.95. . . . 124

6.9 Illustration of Extra Activities in Parallel paths. 127

6.10 Process Structures in the Example ProcessM. 128

6.11 Convergence of Mining, from Noise-Free Logs: Average Approximate Model

Correctness (JSD), and Probability of Approximately Correct Model (|JSD| <

0.05), plotted against Number of Traces. 129

7.1 Order-fulfilment business process, as PDFA with structures highlighted. . . 136

7.2 A PDFA with same Structure as Figure 7.1, but representing a significantly

different Probability Distribution. 139

7.3 Detection of true and false Changes in Fast-changing Environment, with

the Model re-estimated immediately, rather than waiting, after Change

Detection. 140

7.4 Fluctuations in X2 p-Value over Time, from unchanged Source Process. . . 141

7.5 Detection of XOR Probability Change using X2 p-Value. 141

7.6 Sequence of Simulated Changed Processes corresponding to Experiments

in Section 7.2.3, Table 7.2. 142

7.7 Sequence of Recovered Models corresponding to Underlying Simulated Mod-

els in Figure 7.6. 143

8.1 Running Example Order Process as Probabilistic Automaton, supporting

Distribution PM . 148

8.2 Simple Noise Model O1, in which Activities a and c are swapped. 149

8.3 Simple Noise Model O2. Any Activity can be followed by o. 149

8.4 Probability of Approximately Correct Model, Mining From Logs fromM

mixed with O1, Various κ, Measured using JSD. 155

8.5 Probability of Approximately Correct Model, Mining From Logs fromM

mixed with O2, Various κ, Measured using JSD. 156

8.6 Probability of Approximately Correct Model, Various Parameter Settings,

Mining From Logs fromM mixed with O2, κ = 0.1. 157

8.7 Learning Gaussians from Mixture with Various Noise κ (lowest Curve κ =

0.01, highest κ = 0.4). Inset shows Detail for κ = 0.2. 160

8.8 Results of ‘Bins’ Learning Algorithm. Bottom: Various Noise κ (Lowest

Curve κ = 0.01, Highest κ = 0.4). Top: Various Thresholds h (Leftmost

h = 1, Rightmost h = 10). The Lowest, Heavy-Weight Curve shows Results

with a Näıve Regularisation (see Text). 162

A.1 The Alpha Relations on a Pair of Activities Partition the possible Logs of

n traces. 176

A.2 Illustration of (C ∩D) \ (A ∪ B) for Proposition 5. 176

C.1 Illustration of Translation and Scale of the Joint DM Distribution, g(x, y),

to g′(x′, y′), to allow π(DMia > DMba +RTB) to be calculated using the

Distance d from the Origin to the transformed x = y Line, x′ = y′. See

Text and Equations (C.1)–(C.4). 191

LIST OF TABLES

2.1 Causal Matrix corresponding to the Running Example Process (Petri Net

N0, Figure 2.1), represented in the ProM Framework [170] as Heuristics

Net (Figure 2.3). 17

2.2 Process Representations by Process Mining Algorithm. 25

3.1 Example of Event Logs from the Running Example Process. 28

3.2 Part of Event Log of Traces randomly simulated from the Running Example

Process, represented as Strings. 29

3.3 Notation for Business Processes and Process Mining. 31

3.4 Counts of Traces (represented as Strings), in 10 Event Logs of 1000 Traces

randomly simulated from the Running Example Process. 32

3.5 Relevant Heuristic Miner Parameters . 40

3.6 Process Discovery Algorithms, in approximate Chronological Order. 46

3.7 Fitness (Precision) and Recall Process Metrics 53

3.8 Combined Precision and Recall, and Structural Process Metrics, and Met-

rics for Flexible Models . 54

4.1 Illustration of Distances between Process Models. 79

5.1 Metrics and Numbers of Traces at Threshold Points for mining the Order

Process Running Example (Petri Net Figure 3.1, PDFA A0 Figure 2.5). . . 98

5.2 Metrics and Numbers of Traces at Threshold Points for mining Larger

Example (Petri Net Figure 5.16, PDFA A3 Figure 5.17). 98

5.3 Predicted Numbers of Traces to mine Sub-Structures in N3, Bold shows

the Minimum Predictions for each Structure. 101

6.1 Top: Predicted Number of Traces for AND2 γn(DMia > DMba) ≥ 0.95,

Middle: γn
(

N(ia) > PO ∧N(ib) > PO
)

≥ 0.95, Bottom: γn(DMia >

DT) ≥ 0.95. 117

6.2 Predicted Number of Traces needed for correct mining from Noise-Free Logs.128

7.1 Detection by several Tests, of Changes of various Types and Magnitudes.

‘pdiff’ indicates Change in Probability in the Structure, from the Ground

Truth. h(s) indicates Number of Traces to Detection by Hypothesis Test

on Traces, h(a) Hypothesis Test on Arc Probabilities, X 2 Chi Square Test.

KL shows Kullback-Leibler Divergence between Mined Model and Ground

Truth. p-Value for the Chi Square test and Critical Value for the Hypoth-

esis Tests were set to 0.01. 137

7.2 Results for a Sequence of Changes. ‘Sample’ Traces were used for Mining,

Change detected in ‘Detect’ Iterations (averaged over 10 Experiments),

‘KL’ and ‘p-val’ record the Kullback-Leibler Divergence and Chi2 p-Value

between new and previous Estimate of Underlying Model. ‘Optimal Sam-

ple’ Results used the Method described for Minimal Sample size; ‘Large

Sample’ used excessively large Samples. 139

8.1 Predicted Number of Traces needed for correct mining, varying Noise κ,

from O1 (Top), O2 (Bottom). Determining Factors: achieving PO Traces

for Parallel Split C, except (s) achieving DMbe > DMde, (b) mining XOR

Split B. 153

8.2 Predicted Numbers of Traces for affecting of the Mined Model by Noise

from O1 (Top) or O2 (Bottom). Determining Factors: (s) DMbe > DMde,

(r) |DMic−DMac | < RTB, (p) N(ic) > PO, (d) DMic > DT, (fr)

|DMfo−DMco | < RTB, (fp) N(fo) > PO, (ed) DMeo > DT. 154

D.1 Predicted Number of Traces for γn(DMia > DMba) ≥ 0.95 for AND2. . . . 194

D.2 Simulated Traces for γn(DMia > DMba) ≥ 0.95 for AND2. 195

D.3 Predicted Number of Traces for γn
(

N(ia) > PO∧N(ib) > PO
)

≥ 0.95, for

AND2, PO = 10. 196

D.4 Difference between Predicted and Simulated Traces for Mining AND3, as

(Predicted−Simulated)/Predicted%. π(b|ia) proportional to π(ib), etc. . . 197

D.5 Difference between Predicted and Simulated Traces for Mining AND3, as

(Predicted−Simulated)/Predicted%. π(b|ia) = 0.5, etc., Likely Underesti-

mates in Bold. 198

D.6 Difference between Predicted and Simulated Traces for Mining AND3,

as (Predicted−Simulated)/Predicted%, with π(b|ia) = 0.95 or 0.05, etc.,

Likely Underestimates in Bold. 199

D.7 Predicted Number of Traces for correct mining, varying Noise κ, from O1

(Top), O2 (Bottom). Determining Factor: achieving PO Traces for Parallel

Split C, except (s) achieving DMbe > DMde, (b) mining XOR Split B. . . . 200

D.8 Predicted Number of Traces for Inclusion in the Mined Model of Noise from

O1 (Top) or O2 (Bottom), varying RTB and PO Parameters. Determining

Factors (s) DMbe > DMde, (r) |DMic−DMac | < RTB, (p) N(ic) > PO,

(d) DMic > DT, (fr) |DMfo−DMco | < RTB, (fp) N(fo) > PO, (ed)

DMeo > DT. 201

D.9 Predicted Numbers of Traces for Inclusion in the Mined Model of Noise

from O1 (Top) or O2 (Bottom), varying DT parameter. Determining Fac-

tors (s) DMbe > DMde, (r) |DMic−DMac | < RTB, (p) N(ic) > PO,

(d) DMic > DT, (fr) |DMfo−DMco | < RTB, (fp) N(fo) > PO, (ed)

DMeo > DT. 202

NOTATION

A A set of business activities.
M ‘Ground truth’ model (may be unknown).
PM Probability distribution over traces represented by modelM
Σ Alphabet of symbols encoding business activities.
{a, b, . . .} ∈ Σ Valid business activities in the process.
{x, y, . . .} ∈ Σ+ Non-empty strings representing sequences of activities.
T The set of all valid process traces (cases).
xy The concatenation of strings x and y.
xΣ∗ The set of strings with x as prefix.
Σ∗x The set of strings with x as suffix.
Σ∗xΣ∗ The set of strings with x as sub-string.
π(x) Probability of sub-string ab occurring in a trace.
π(→ a) Probability of ‘reaching’ a, i.e. π(→ a) = π(iΣ∗aΣ∗o).
W ⊂ {x|x ∈ T } Event or Workflow log, a bag or multi-set of traces.
Wn Event log of n traces.
N(x) Frequency of sub-string x in W.
Qn

(

N(x)
)

Distribution of N(x) in event log of n traces.
QA, q Set of states in PDFA A, single state.
q0, qF ∈ QA Single start, end state in PDFA A.
δA Conditional transition probability function between states in

PDFA A (arc probabilities).
d2(P1, P2) Euclidean Distance between probability distributions P1, P2.
dBhat(P1, P2) Bhattacharyya Distance between P1, P2.
dKL(P1, P2) Kullback-Leibler Divergence between P1, P2.
dJSD(P1, P2) Jensen-Shannon Divergence between P1, P2.
a → b Arc representing causal dependency from a to b.
a → (b1 ‖ b2 . . .) Parallel (‘AND’) split, from a to paths starting b1, b2,
a → (b1# b2 . . .) ‘XOR’ split from a to alternative paths starting b1, b2,
DMab Heuristics Miner Dependency Measure between a and b.
DMab,n Dependency Measure calculated from event log of n traces.
γn(E) Probability of a complex event E (specified in context).
Pα,n(S) Probability that the Alpha Algorithm mines structure S

correctly from the event log.
PHM,n(S) ditto Heuristics Miner.
c
(

N(ia), N(ib)
)

Correlation between number of sub-strings ia, ib (Chapter 6).

ABBREVIATIONS

ACM Adaptive Case Management
BAM Business Activity Monitoring
BI Business Intelligence
BPA Business Process Analysis
BPEL Business Process Execution Language
BPG Business Process Graph
BPM Business Process Management
BPMN Business Process Modelling Notation
CRM Customer Relationship Management
DM Dependency Measure (HM)
DT Dependency Threshold (HM)
EPC Event-driven Process Chain
ERP Enterprise Resource Planning
HM Heuristics Miner
HMM Hidden Markov Model
JSD Jensen-Shannon Divergence
KL Kullback-Leibler (Divergence)
OMG Object Management Group
PAC Probably Approximately Correct
PDFA Probabilistic Deterministic Finite Automaton
PM Process Mining
PN Petri Net
PO Positive Observations (HM)
RG Reachability Graph
RTB Relative To Best (HM)
RTBPM Real-Time Business Process Mining
SWF-Net Sound Workflow Net
UH ‘Use All-Activities-Connected’ Heuristic (HM)
UML Unified Modelling Language
WF Workflow
XOR Exclusive Or
YAWL Yet Another Workflow Language

Part I

Framework for the Analysis of

Process Mining Algorithms

2

CHAPTER 1

INTRODUCTION

In this thesis we present, demonstrate and evaluate a framework within which to objec-

tively analyse and compare process mining algorithms. We show that this provides a

rigorous foundation for addressing important process mining questions, such as assessing

the quality of process models, comparing results from different algorithms, dealing with

changing processes, or mining from noisy data. In this chapter we set this work in context.

We introduce process mining and establish the need for the work presented in this thesis.

1.1 Interconnected and Regulated Business World

Defining characteristics of the modern world are pressures on time and resources, and the

ubiquitousness of computer systems. Businesses operate in increasingly competitive mar-

kets, with reducing margins and increasing costs. Globalisation of business and communi-

cations has resulted in on the one hand, huge and complex multinational corporations, and

on the other, complex international interaction between businesses. Information systems

and telecommunications underpin and facilitate this intra- and inter-business complexity.

Managing, tracking and securing business activity therefore becomes increasingly dif-

ficult. Notorious frauds (e.g. Enron, Worldcom), and the financial crises beginning from

2008 have raised awareness of the complexity of banking systems; food distribution scan-

dals have created public awareness of the complex processes bringing food products from

3

supplier to consumer; and public transport and social and health services failures have

highlighted the complex interactions between public bodies delivering government ser-

vices. Widely rumoured industrial and state-sponsored ‘cyber-attacks’ (e.g. [31, 61, 105])

have increased government and industry awareness of security risks inherent in reliance

on information systems and internet-based services (see e.g. [58]), especially when their

operation and interaction is not fully understood.

These risks and crises have led to increasing business regulation: financial regulations

such as the Sarbanes-Oxley Act and Basel Accords; cyber-security regulation including the

US Homeland Security act; regulatory bodies such as the UK Financial Services Authority

and Information Commissioner’s Office. All impose requirements for organisations to show

that they manage their operations according to certain standards.

Businesses are thus under pressure to understand and manage their operations, in order

to cut down waste and optimise efficiency, show adherence to regulation, and maintain

their public image. This has engendered increasing interest in defining, understanding

and managing business processes, to specify and enforce how the business operates.

1.2 Processes and Process Management

A business process is defined as ‘step-by-step activities to solve a business problem or

need’ [76]. It runs continuously, but may be inactive until triggered by an event. For

example, receiving a customer order causes the order to be recorded and routed to the

correct department. The process may then become inactive again until order processing

begins. Typical business processes include fulfilling customer orders, paying invoices,

making purchases, changing IT systems, handling customer complaints, and so on.

Figure 1.1 is an informal view of a simplified process for fulfilling an customer order.

We will use this as a running example throughout this thesis. The supplier receives an

order (1), e.g. via its website or from another business, and registers it on an order pro-

cessing system (‘open order’). Next, stock is checked (2), which involves liaison between

4

Figure 1.1: Informal Business Process Diagram for fulfilling a Customer Order

the supplier and a warehouse department or business. If adequate stock is found (3), the

items are requested and despatched (4) and, in parallel, the bill issued by the finance

department. If stock is not available, the order is cancelled (6). The finance department

ensures payment (5). The process may also describe details such as who should carry out

the activities, timing, rules for following particular sequences of activities.

Reasons to analyse such a process include ensuring the order is satisfied correctly and

quickly, optimising the availability of stock, or ensuring prompt payment. Methodologies

such as Business Process Management (BPM), Business Activity Monitoring (BAM) and

Business Process Analysis (BPA) [155, 158], loosely grouped under the term ‘Business

Intelligence’, have been developed to manage and analyse this kind of structured process.

Formal languages such as Petri nets [112], BPMN [109] or BPEL [88] allow models of

processes to be rigorously defined and analysed. Recently, Adaptive Case Management

(ACM) [140] has been introduced to manage less structured work.

These methodologies and tools require process models to be manually created by

business analysts and management. Since these rely on human understanding of the

process, the resultant models may be incomplete or reflect desired operation rather than

reality. Business Intelligence tools provide metrics for performance and costs, etc,, but

provide no deep insight into the process behaviour such as interactions between activities,

people, and organisations; what governs different paths through the process, or whether

audit requirements are met. Process mining seeks to address these problems.

5

1.3 Process Mining

Process mining [144,148,155] is the discovery and analysis of models of business processes,

from data recorded in ‘event logs’ by business information systems. It brings together ideas

and techniques from business process modelling, data mining and machine learning.

Data mining involves finding and making use of complex and novel patterns and knowl-

edge in data [56], while machine learning (e.g. [103,104]) is concerned with computers using

data to learn to perform complex tasks and review and improve their performance. This

includes building models of data, for example to understand its structure or allow new

data to be classified. Process mining involves both modelling the structure of the process

(from data) and discovering patterns to give insight into the process behaviour.

A business process can be considered from various ‘perspectives’ [155]. We focus on

the control-flow, understanding what activities take place and in what order. This is

broadly split into discovery, conformance and extension.

Process discovery algorithms aim to reconstruct the underlying business process struc-

ture based on a sample event log containing a record of the enactment of process activities.

Algorithms typically assume that for each event is recorded as a minimum an activity

name, the case (single run through the process) to which it belongs, and either a start or

end time, or that activities are recorded in order of occurrence. Data is assumed to be

in a suitable format for mining, via a pre-processing step. MXML [167] and XES [178]

are standard event log formats used by many algorithms. Activity names are normally

assumed to be unique. Some algorithms relax some of these assumptions, for example

using both start and end times to obtain activity durations [29,117], allowing non-unique

activity names [78–80], or not requiring case IDs [63].

Many algorithms have been proposed, with different theoretical foundations and biases,

e.g. [20,46,63,67,133,145,156,164,164,194,195] (Chapter 3). This is a difficult problem.

Gold [69] showed that learning a regular grammar from example sequences of symbols is

NP-hard. Although event logs also record activities sequentially, they may have occurred

in parallel (e.g. carried out concurrently by different people). As the number of such

6

parallel activities increases, the number of possible ways in which they may be ordered

increases exponentially [155]. Discovery algorithms must differentiate between alternate

and parallel behaviour; which becomes additionally difficult when some sequences have

low probability of occurring.

Furthermore, algorithms usually produce process models for human interpretation.

Therefore processes are often assumed to be structured [133, 154], e.g. with matching

splits and joins, and limits are often required on the visual complexity of the mined

model. Business process modelling languages may use elements such as ‘hidden activities’

to define splits and joins, for which there is no direct evidence in the event log and which

must be inferred by the mining algorithm. Finally, problems in recording the event log or

errors in following the process may lead to discrepancies between the underlying process

and the record in the event log. This is sometimes interpreted as ‘noise’.

Most process discovery algorithms capture process control flow using non-probabilistic

representations in which nodes describe activities or groups of activities. These range from

simple directed graphs [7,44], to process-specific representations (e.g. [70,133]) which sup-

port concurrency and process structures [154], to Petri nets [112,157], the most common

representation used by algorithms mining structured processes (e.g. [20, 156, 195]). Less

formal representations [73, 172, 194] have been introduced to represent flexible processes.

Conformance analysis [12, 122, 124] is concerned with assessing the quality of process

mining results and comparing models, while process extension deals with using mined

models to enhance or derive additional information about the process, e.g. to optimise

[150,172], understand decisions [128], predict outcomes of active processes [131,135,165],

or simulate changes [123, 125].

Process mining is an active area of research and new algorithms continue to be devel-

oped. Important open questions include better mining of processes with concurrent and

cyclical behaviour, and the ‘completeness’ of event logs: how much data is needed to en-

sure sufficient representative process behaviour for the algorithm to mine it correctly [156]?

Other challenges are mining unstructured processes, event logs recorded at different levels

7

of abstraction or containing events from multiple processes, or affected by ‘noise’ so as

to not faithfully represent the underlying process; balancing representing the observed

behaviour with generalising to unseen data; dealing with non-stationary processes. Many

of these challenges are summarised in the IEEE Process Mining Manifesto [149].

1.4 The Lack of a Foundation for Process Mining

Many of these questions are difficult to answer objectively, because there is no agreed

framework within which to investigate them. Likewise, there is no formal basis against

which to evaluate and compare process models and mining algorithms. How should

process models in different representations be compared? Many existing conformance

measures are tied to specific representations. Is it reasonable to compare models from

algorithms with fundamentally different aims and biases? What basis do we have for mea-

suring the completeness of an event log, to know whether or not a process has changed,

or to generalise a model to unseen data while faithfully representing observed behaviour?

Because of the diversity of algorithms and representations, and these currently unan-

swerable questions, methods are needed for analysing the behaviour of algorithms. The

review of process mining in [144], and the comparison of metrics in [122] come to the

same conclusion: that more research is required into developing generic frameworks for

considering such process mining questions. This thesis introduces and analyses one such

framework to provide a common basis for analysing process mining algorithms and models,

independent of any representation.

1.5 Structure of this Thesis

In Chapter 2 we review business process modelling from a process mining perspective. We

focus on the most common process representations used by process mining algorithms,

Petri nets, Causal Matrices and Heuristics Nets, and review other representations. We

8

introduce probabilistic automata (PDFA) as a ‘common denominator’ to which other

process representations can be converted, and relate them to Petri nets. PDFA underpin

our framework for considering process mining algorithms.

In Chapter 3 we introduce business process mining and review process mining algo-

rithms and process metrics. We describe two common algorithms in more depth, the

Alpha Algorithm [156] and Heuristics Miner [194], which are analysed in later chapters

under the framework presented in this thesis. We introduce and motivate the problem ad-

dressed by the thesis, namely the lack of a common basis to discuss and compare process

mining algorithms and results, and to investigate the behaviour of process mining algo-

rithms. We discuss two problems: firstly, that the prevailing view of business processes

and process mining does not take adequate account of the stochastic nature of processes;

and secondly, the lack of methods for comparing the many algorithms, representations,

and metrics for assessing models.

Chapter 4 is the core of the thesis, presenting the theory of our framework for the

analysis of process mining algorithms. We propose a machine learning view of process

mining, in which business processes are represented by distributions over strings of sym-

bols representing business activities, and process mining algorithms as learning these

distributions. This provides a unified probabilistic framework for considering the learning

behaviour of different algorithms, regardless of their biases, assumptions, and the process

representations which they use. This framework provides the formal basis within which to

investigate the questions introduced in the previous sections, in particular to objectively

compare the behaviour of mining algorithms and process models. It allows the complete-

ness of an event log to be understood, and therefore quantification of the confidence that

can be placed in process mining results.

In Chapters 5 and 6 we show the theoretical value of our framework, by using it to

analyse two fundamental process mining algorithms. We show that probabilistic rules can

be derived for the behaviour of each algorithm, in the form of formulae for the probability

of correct mining of process ‘sub-structures’, from an event log of a given size, produced

9

by a known underlying process. We extend these results to mining full process models,

and verify experimentally using two representative artificial process models.

In the next two chapters we turn to two practical process mining problems. Firstly,

in Chapter 7 we consider process mining when the underlying process is changing, and

show that our framework enables a method for detecting changes which are significant,

in either the structure of or probabilities in the underlying business process, and recovery

of the sequence of changed models. Secondly, in Chapter 8 we investigate mining from

‘noisy’ process data. We propose a formal model of ‘noise’ in process mining, missing

from the existing literature, and analyse its effect on mining with the Heuristics Miner

algorithm [194]. We show that our framework provides a basis for understanding the

effect of ‘noise’ on the algorithm’s behaviour, and therefore of how much data should be

used for mining, and the effect of the algorithm’s parameters.

Finally in Chapter 9 we discuss the theory and applications presented in the foregoing

chapters, and evaluate the extent to which the thesis meets its aims. We summarise

the contributions of the work and assess its limitations. We conclude by outlining some

further questions raised by this work and suggest directions for future research.

1.6 Scope of this Thesis

In this thesis we consider only processes without cycles (loops), thus ensuring that all

distributions have finite support. We assume that processes have single input (start)

and output (end) activities, and the events of activities’ occurrence are recorded as they

occur. Events are atomic (take no time), and are uniquely labelled, the same label always

referring to the same event, and vice versa. No use is made of additional information (such

as timing) about events, merely the order in which they are recorded. The underlying

process model is assumed to be fixed1 (unlikely in reality, but change is assumed to be

slow enough to be ignored over the period that data is collected). These restrictions

1This basic assumption is retained in Chapter 7 when investigating non-stationary processes.

10

are equivalent to those used elsewhere in the literature, e.g. [7, 39, 156]. We also do not

set out to create new or improved mining algorithms, although the analyses of existing

algorithms may provide insights into possible improvements. Future work could remove

these restrictions without fundamentally changing the presented approach.

1.6.1 Success Criteria

The success criteria against which we evaluate this framework, are

1. coherent analyses of current, relevant process mining algorithms which explain and

provide insight into their behaviour, and

2. successful solutions to practical process mining problems, under this framework,

through application of the presented theory.

1.7 Contributions of this Thesis

Here we include a brief index to the main results in this thesis.

Probabilistic view of process mining [184] . 59

Probabilistic analysis of the Alpha [156] algorithm [184, 185] .83

Probabilistic analysis of the Heuristics Miner [194] algorithm [189] 103

Application to detecting process change [188] . 131

Application to understanding noise in business processes [189] . 145

1.8 Publications Resulting from this Thesis

Parts of the research in this thesis have been published in several papers:

[189] P. Weber, B. Bordbar and P. Tiňo.
A principled approach to mining from noisy logs using Heuristics Miner. In
2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM),
pages 119-26, 2013.

11

[23] B. Bordbar and P. Weber.
Automated prevention of failure in complex and large systems: Fighting fire with
fire. Accepted for publication in International Journal of Informatics Society
(IJIS), 5:(to appear), 2013.

[184] P. Weber, B. Bordbar and P. Tiňo.
A framework for the analysis of process mining algorithms. Systems, Man and
Cybernetics: Systems, IEEE Transactions on, 43(2):203–317, 2013.

[190] P. Weber, P. N. Taylor, B. Majeed and B. Bordbar.
Comparing complex business process models. In 2012 IEEE International Con-
ference on Industrial Engineering and Engineering Management (IEEM), 2012.

[188] P. Weber, P. Tiňo and B. Bordbar.
Process mining in non-stationary environments. In 20th European Symposium
on Artificial Neural Networks (ESANN), 2012.

[185] P. Weber, B. Bordbar and P. Tiňo.
A principled approach to the analysis of process mining algorithms. In H. Yin,
W. Wang, and V. J. Rayward-Smith, editors, IDEAL, volume 6936 of Lecture
Notes in Computer Science, pages 474–481. Springer, 2011.

[186] P. Weber, B. Bordbar and P. Tiňo.
Real-time detection of process change using process mining. In A. V. Jones,
editor, ICCSW, volume DTR11-9 of Department of Computing Technical Report,
pages 108–114. Imperial College London, 2011.

12

CHAPTER 2

BUSINESS PROCESS MODELLING

In this chapter we discuss business process modelling from a process mining perspective.

We focus on the main representations used by process mining algorithms to represent

business processes, relating them to our running example process.

Business processes describe the activities carried out to fulfil a business function, and

the relations between them [76]. Such functions include providing a service to customers

[68] or producing a product [126], making purchases and handling invoices [152], financial

management [84] or dealing with customer complaints.

Traditionally, business processes have been viewed as languages over activities, with

no probabilistic structure. Various representational mechanisms have been suggested for

capturing the control flow of business processes. These range from formal languages such

as Petri nets [107,112,157] or BPMN diagrams [109] which allow systematic analysis and

comparison, to flowchart notations used to informally discuss business processes.

We begin this chapter by reviewing Petri nets, the most common representation used

in process mining research. We also introduce Causal Matrices and Heuristics Nets, used

by the Heuristics Miner algorithm [194] (Chapter 6). We then introduce probabilistic

automata (PDFA) and their relation to Petri nets. PDFA are the main representational

framework which we use in this thesis to discuss business processes and process mining

algorithms. We close the chapter by reviewing the main other process representations.

13

2.1 Petri Nets

Petri nets [112], especially a subset known as Workflow (WF) Nets [157], are the most

common process representation used by process mining algorithms (e.g. [20, 156, 195]).

Petri nets allow concurrency to be explicitly modelled in a succinct way. Concurrency

is a critical feature of business processes, distinguishing them for example from finite

grammars, since sequences of activities in different parts of a process may be executed

in parallel by different people, perhaps synchronising at particular points in the process.

Petri nets are executable, with formal semantics, enabling formal analysis of processes.

There are various types of Petri net, details of which including their properties and exe-

cutable behaviour can be found in [112]. For a discussion of Workflow Nets, a restriction

of Petri nets commonly used in business processes, see [156, 157].

In general, a marked Petri Net is a 4-tuple N = (S, T,W,M), where T and S are finite

sets of transitions and places respectively, such that T ∩S = ∅. W ⊆ (S×T)∪ (T ×S) is

a flow relation defining the directed arcs of the graph, connecting places and transitions.

M is a multi-set over S called a marking M : S → N, describing the distribution of tokens

over places, defining the state of the process. The initial marking is M0. The workings of

the Petri net are defined by the marking and the firing of transitions. Transition t may

fire when there is a token in each of its input places, whereupon a token is removed from

each of the input places of t and a token added to each of the output places of t.

Figure 2.1 shows a Petri net N0 = (S, T,W,M0), where S = {p0, p1, . . . , p9}, T =

{i, a, b, . . . , o}, W = {(p0, i), (i, p1), (p1, a), . . . , (o, p9)}, M0 = (1, 0, . . . , 0). Solid rectan-

gles represent transitions, modelling process activities. Places are shown by circles, and

tokens by black dots in places. As depicted in Figure 2.1, only transition i can fire,

consuming the token in p0 and creating one in p1, thus enabling transition a.

Following the execution of a single transition, more than one following transition may

be enabled to fire next. For example, in N0, when place p2 contains a token, either b or

c is enabled to fire next. If b fires, a token is created in both places p3 and p4, enabling

both d and e. Therefore either d may fire next, followed by e, or e first followed by d. In

14

Figure 2.1: Petri Net N0 for the Running Example, a simplified Business Process for
fulfilling an Order, highlighting the Sub-Structures in the Process.

Figure 2.2: Reachability Graph for Petri Net N0 (Figure 2.1).

this way the net models d and e as concurrent activities.

The Reachability Set R(N0) of Petri net N0 is the state space of the net, the set of

markings reachable from M0 by firing a series of transitions. Marking M ′ is immediately

reachable from M if it can be reached by firing a single transition. A reachable marking

M ′′ is a marking that is immediately reachable from M , or from marking M ′, itself

immediately reachable from M . Figure 2.2 shows the Reachability Graph of Petri net N0

(Figure 2.1), representing R(N0) as a transition system. Each marking is represented by

a state, labelled with the places of the Petri net which contain tokens in that marking.

Arcs are labelled by the transitions fired to move from one state to the next.

2.1.1 Running Example as a Petri Net

Petri net N0 (Figure 2.1) formally represents the simple running example process (Chapter

1, Figure 1.1). When an order is received, it is first registered in the order processing

systems (i:open order). Next, stock is checked (a), then either the items picked from the

warehouse (b), or the order rejected (c), shown by XOR split B. Despatch (d) and billing

15

(e) take place in parallel (AND split C), then after checking payment (f), either a receipt

is issued (g) or payment chased (h), XOR split E. Finally the order is closed (o).

Clearly this is a simplified version of this process, which we use in this thesis to

benchmark our analyses of process mining algorithms. In a real process we might expect

that chasing payment (h) would be on a loop between f and g, allowing it to be repeated

until payment is received. Alternatively there might be a separate sub-process for recovery

of payment. In this thesis, however, we do not deal with cycles or hierarchical processes.

2.1.2 Workflow Nets

Sometimes business processes are constrained to a convenient subset of Petri Nets, called

Sound Workflow (WF) Nets [124,156]. A Sound WF-Net is a Petri net with a single start

and single end place and every transition on a path between these two places. Its marking

is a mapping S → {0, 1}, i.e. any place may hold at most one token. The initial marking

M0 is a single token in the start place, and final marking MF a single token in the end

place. When a process is started from M0, all transitions must be potentially executable,

and the process must terminate properly, i.e. in marking MF . Sound WF-nets allow for

all the basic routing constructs found in business processes.

Structured WF-Nets [156] restrict the allowed structure of places and transitions to

ensure each split corresponds with a join of the same type. Figure 2.1 is both a Sound

and a Structured WF-Net, in its initial marking M0.

2.2 Causal Matrices and Heuristics Nets

Causal Matrices were introduced as a process representation for the Genetic Process

Miner [47, 50] and Heuristics Miner [194] process mining algorithms. They were defined

to be as expressive as Petri nets in showing dependencies between activities and the char-

acteristics of splits and joins, without introducing constructs such as hidden transitions

and places, needed by Petri nets to describe process sub-structures. Such constructs can

16

Activity Input Output

i {} {{a}}
a {{i}} {{b, c}}
b {{a}} {{d}, {e}}
c {{a}} {{o}}
d {{b}} {{f}}
e {{b}} {{f}}
f {{d}, {e}} {{g, h}}
g {{f}} {{o}}
h {{f}} {{o}}
o {{g, h, c}} {}

Table 2.1: Causal Matrix corresponding to the Running Example Process (Petri Net N0,
Figure 2.1), represented in the ProM Framework [170] as Heuristics Net (Figure 2.3).

be problematic for process mining algorithms, since there is no direct evidence for them

in a Workflow log (Chapter 3).

A Causal Matrix is a 4-tuple CM = (A,C, I, O), where A is a finite set of activities

and C ⊆ A× A defines the relations between activities. I : A→ P
(

P(A)
)

and O : A→

P
(

P(A)
)

are functions describing the input and output conditions for each activity1. The

I and O relations define the characteristics of splits and joins. For a given activity, I and

O return a set of sets of activities (Table 2.1). Activities in a subset are exclusive (cannot

occur together in a trace), whereas those in different subsets are in parallel. Table 2.1

shows the Causal Matrix for the running example, the process in Figure 2.1. The input

to activity b is a single activity, a, while its output is d and e in parallel, thus defining a

parallel (AND) split from b to d and e. Similarly, the input to f is d and e in parallel, while

its output is g or h, defining a parallel join followed by an exclusive split. The Causal

Matrix therefore defines the same process sub-structures as Petri net N0. Indeed, a Petri

net, with certain restrictions, can be mapped to a Causal Matrix, and vice versa [47,50].

The ProM Process Mining Framework [170] depicts Causal Matrices graphically as

Heuristics Nets, as shown in Figure 2.3 for our example process. Each node represents an

activity2, and nodes and arcs are labelled with the number of times they were involved in

1P(A) is the power set of A, the set of all subsets of A.
2ProM allows for ‘begin’ and ‘complete’ events associated with an activity, defaulting to ‘complete’

where only one is present, shown in the labelling of the nodes in Figure 2.3.

17

i
(complete)

1000

a
(complete)

1000

 0.999

 1000

b
(complete)

889

 0.999

 889

c
(complete)

111

 0.991

 111

d
(complete)

889

 0.999

 889

e
(complete)

889

 0.995

 889

f
(complete)

889

 0.995

 889

 0.999

 889

g
(complete)

626

 0.998

 626

h
(complete)

263

 0.996

 263

o
(complete)

1000

 0.998

 626

 0.991

 111

 0.996

 263

i
(complete)

 1000

XOR

XOR

a
(complete)

 1000

XOR

 0.999

 1000

XOR

b
(complete)

 889

XOR and XOR

 0.999

 889

XOR

c
(complete)

 111

XOR

 0.991

 111

XOR

d
(complete)

 889

XOR

 0.999

 889

XOR

e
(complete)

 889

XOR

 0.995

 889

XOR and XOR

f
(complete)

 889

XOR

 0.995

 889

 0.999

 889

XOR

g
(complete)

 626

XOR

 0.998

 626

XOR

h
(complete)

 263

XOR

 0.996

 263

XOR

o
(complete)

 1000

 0.998

 626

 0.991

 111

 0.996

 263

Figure 2.3: Heuristics Nets for the Running Example Process, as produced by the ProM
Framework [170], with (right) and without (left) identifying the Types of Splits and Joins.

18

Figure 2.4: Running Example in the Heuristics Net Representation used in this Thesis.

parsing the log from which the model was mined. Optionally, splits and joins are labelled

with their type, XOR (exclusive choice) or AND (parallel). In this thesis we use a compact

representation showing the same information (Figure 2.4). Causal Nets [148, 193] have

been recently proposed as a representation specifically designed for process mining. Causal

Nets extend Causal Matrices, to merge the benefits of the formal semantics of Petri nets

with the understandability and graphical representation of Heuristics Nets.

2.3 Probabilistic Automata

In this section we introduce Probabilistic Automata and relate them to Petri nets. Al-

though representational limitations of such automata, especially their inability to ex-

plicitly represent concurrency, mean they are often not the most appropriate graphical

representation for business processes (see e.g. [148]), they are the main representational

framework which we will use in this thesis to discuss probability distributions generated

by processes (Chapter 4).

A PDFA is a five-tuple A = (QA,Σ, δA, q0, qF):

• QA is finite set of states;

• Σ is an alphabet of symbols;

• δA : QA×Σ×QA → [0, 1] is a mapping defining the conditional transition probability

function between states, δA(q1, a, q2) = Pr(q2, a|q1), i.e. the probability to parse

19

Figure 2.5: PDFA A0 corresponding to Petri Net N0 (Figure 2.1), with the addition of
Transition Probabilities.

symbol a and arrive in state q2 given currently in q1;

• q0 ∈ QA is a single start state; and

• qF ∈ QA is a single end state; such that:

∀q ∈ QA,
∑

q′∈QA,a∈Σ

δA(q, a, q
′) = 1,

and

Pr(q′|a, q) = 1.

The probabilities on arcs outgoing from a state sum to 1, and given a current state and

symbol, the next state is certain. There is a unique state path Q(x) through the automaton

for any string x that it can parse.

Example PDFA A0 (Figure 2.5) represents the same model as Petri net N0 (Figure

2.1). It has the same structure as the reachability graph (Figure 2.2), with the addition

of probabilities of following each arc, or parsing each symbol. Here Q = {q0, q1, . . . , q9},

Σ = {i, a, b, . . . , o}, δ = {(q0, i, q1) → 1.0, (q1, a, q2) → 1.0, . . . , (q8, o, q9) → 1.0}, q0 =‘q0’,

qF =‘q9’. States are shown by circles, the start state is indicated by an arrow and the final

state by a double border. The state path to parse x = iaco is Q(x) = {q0, q1, q2, q8, q9}.

Every PDFA A describes a distribution PA over Σ+:

PA(x) = δA(q0, s0, qs0)×
(

n−2
∏

i=1

δA(qsi−1
, si, qsi)

)

× δA(qsn−2
, sn−1, qF),

where x is a string of symbols s0s1 . . . sn−1 which can be parsed by the automaton to the

unique final state qF ; qsi denotes the state reached after symbol si is parsed. PA(x) = 0

20

for strings which cannot be parsed.

In A0 (Figure 2.5), PA(iaco) = δA(q0, i, q1)× δA(q1, a, q2)× δA(q2, c, q8)× δA(q8, o, q9) =

1.0× 1.0× 0.1× 1.0 = 0.1.

Note that the structure of allowed traces defined by sound WF-Nets can be naturally

captured by the support structure of distributions described by PDFA in the sense that

• there is a single start and end state,

• all states are accessible (reachable from the initial state),

• from any state, it is possible to reach the final state,

• for any given string x, the sequence of state transitions to generate x is unique, and

• given a state and a symbol, the next state is certain.

PDFA impose only a weak representational bias on a process model, whereas processes

tend to be structured. PDFA also cannot succinctly represent concurrency, an impor-

tant characteristic of business processes and problem for process mining algorithms. For

example, in Figure 2.5, PDFA A0 explicitly represents parallel activities d and e as alter-

native paths d→ e and e→ d. As the number of parallel activities increases, the number

of alternate paths to explicitly represent grows exponentially, cluttering the graphical

representation (see for example Figure 5.17, Chapter 5).

PDFA are therefore not favoured (e.g. [148]) for representing real business processes,

which may be large and complex, with many activities and relations between them, struc-

tured, and involve concurrency. However, PDFA are a useful representation for the anal-

ysis which we carry out in this thesis. A sound WF-Net does not hold any probability

information, but has finite state space, so the net’s structure can be converted to an

automaton with a finite number of states, as discussed in the following sub-sections.

2.3.1 Conversion of Petri Nets to Probabilistic Automata

A Sound WF-Net N holds no probability information, but its structure can be converted

to a PDFA via its Reachability Set R(N), and arc probabilities estimated, e.g. from

21

sample data. The ‘state space explosion’ may be a problem, especially in the conversion

of large Petri Nets with high concurrency.

Let N be a marked Sound WF-Net N = (S, T,W,M0), with single start and end

transitions ti, to ∈ T , initial and final markings M0,MF , and reachability set R(N).

There exists a structurally equivalent probabilistic automaton A = (QA,Σ, δA, q0, qF):

• QA = R(N),

• Σ = T ,

• δA : q × t × q′ → 1/n(q), q, q′ ∈ R(N), t ∈ T is enabled in marking q and firing t

moves the marking to q′. n(q) is the number of arcs leaving q in the PDFA structure.

• q0 =M0,

• qF =MF .

This definition of δA labels all transitions leaving a state, with equal probability, thus

assigning uniform probability to the paths following any exclusive or parallel split. Alter-

natively, maximum likelihood probabilities can be estimated from data.

2.3.2 Conversion of Probabilistic Automata to Petri Nets

The structure of a probabilistic automaton may be converted to a Petri Net using the

Theory of Regions (see e.g. [164]). Given PDFA A = (QA,Σ, δA, q0, qF), a region is a

subset of states Q′ ⊆ QA such that for each a ∈ Σ, one of the following holds true:

• all transitions δ(q1, a, q2) > 0 enter Q′ from outside, i.e. q1 /∈ Q′ ∧ q2 ∈ Q′, or

• all δ(q1, a, q2) > 0 exit Q′ from inside, i.e. q1 ∈ Q′ ∧ q2 /∈ Q′, or

• all δ(q1, a, q2) > 0 do not cross the boundary of Q′, i.e. q1, q2 /∈ Q′ ∨ q1, q2 ∈ Q′.

Region Q′ is a sub-region of another region Q′′ if Q′ ⊂ Q′′, and a region is minimal if

it contains no subregions. Q′ is a pre-region of symbol a ∈ Σ if ∃ q1 ∈ Q′, q2 /∈ Q′ :

δ(q1, a, q2) > 0. Q′ is a post-region of a if ∃ q1 /∈ Q′, q2 ∈ Q′ : δ(q1, a, q2) > 0.

There exists a marked Petri Net N = (S, T,W,M0) structurally equivalent to PDFA

A, with set of minimal regions R:

22

• S = R,

• T = Σ,

• W = {(s, t) ∈ (S × T) ∪ (t′, s′) ∈ (T × S) : s ∈ R is a pre-region of t, s′ ∈ R is a

post-region of t′, and

• M0 = (1, 0, 0, . . . , 0).

N may not be minimal. The Petri Net synthesis literature discusses what transition

systems may be converted to Petri Nets and how they can be reduced. For discussion and

references in the context of process mining, see [164].

2.4 Other Business Process Representations

While Petri nets, as introduced in Section 2.1, are the most common representation used

in the research literature relating to process mining and the analysis of business processes,

various representations have been used to capture the control-flow of processes (see e.g.

[148, Section 2.2]). Transition systems, used by some early approaches to process mining,

[39, 44], simply represent states of the process and the activities which cause the process

to change state. They allow reasoning about the process behaviour, but are unable to

express concurrent behaviour succinctly since every state must be represented (Section

2.3). YAWL (‘Yet Another Workflow language’) [166] was developed to allow many more

workflow patterns [154, 196] than those easily representable by Petri nets, such as non-

exclusive OR splits and joins, but has not been used for process mining.

While these representations allow models which are formally analysable, some con-

structs such as Petri net places cannot be directly derived from event (workflow) logs,

and must be inferred. Many process mining algorithms (e.g. [73, 194]) therefore use sim-

ple directed graph notations in which nodes represent activities and edges the causal

dependencies between them. These are intuitive to understand, but may not be rigor-

ously analysable. Causal Nets [148, 193] have recently been introduced as a representa-

tion specifically designed for process mining, merging the benefits of formal semantics

23

with understandability. Only a very few, non-mainstream, algorithms use probabilistic

representations, e.g. Hidden Markov Models [80], probabilistic automata [63].

Industry often favour easily-understandable representations. Event-driven Process

Chains (EPCs) [87] are used by the Multi-Phase Miner in relation to the SAP Enter-

prise Resource Planning (ERP) software [54, 171]. Notably they allow non-exclusive OR

splits, but their semantics are problematic due to unclear specification [161]. Business

Process Modelling Notation (BPMN) [109], standardised by the Object Management

Group (OMG) is currently favoured by practitioners and vendors. It provides for hi-

erarchical models and a rich and flexible notation. Business Process Execution Language

(BPEL) [88] is a non-graphical language for describing processes, particularly in the con-

text of Web Services. The Unified Modelling Language (UML) [129] state, activity and

sequence diagrams are used for object-oriented modelling, including of business processes.

Mappings exist between subsets of many of these representations [95]. For example,

BPEL to Petri nets [81, 139] and Workflow nets [162], BPMN to Petri nets [116], Petri

net to EPC [177], and UML diagrams to Petri nets [17].

In Table 2.2 we summarise the main process representations used in process mining,

by the process mining algorithms which make use of them.

2.5 Chapter Summary

In this chapter we reviewed the main representations used to model business processes,

concentrating on Petri nets, Causal Matrices and Heuristics Nets. We introduced Proba-

bilistic Automata as our main representational framework for discussing business processes

and process mining algorithms. This discussion supports the next chapter, in which we

introduce process mining and the problem addressed by this thesis, that of comparing

and analysing process models and mining algorithms. The multitude of process represen-

tations contributes to this problem.

24

Representation Language Algorithms/Authors

Automata
Process Activity Graph Datta [44]
Finite State Machine Datta [44], RNet, KTail, Markov [39], Two-Step

Approach [164]

Probabilistic
Probabilistic Automaton Expectation-Maximisation Algorithm (Unlabelled

Traces) [63]
Hidden Markov Model Herbst [80]

Other Directed Graphs
Simple Directed Graph Agrawal [7], Genetic Programming [145]
Causal Matrix Heuristics Miner [194], Heuristics

Miner++ [28, 29], Genetic
Miner, [46, 47,49,50,151],
Simulated Annealing [138]

Heuristics Net Heuristics Miner [194], Heuristics
Miner++ [28,29], Genetic Miner [46,47,49,50,151],
Context-Aware Trace Clustering [24,25]

Causal Net Flexible Heuristics Miner [193]
Adonis Definition Language InWoLvE [78–80]
Block-Structured Model Schimm [133]

Process Languages
Event-Driven Process Chain (EPC) Multi-Phase Miner [54,171]
Workflow Model Graph Interval Sorted Algorithm [113]
Statistical Dependency Table WorkFlowMiner [65]

Types of Petri Net
Structured Workflow (SWF) Net Alpha Algorithm [156], Alpha+ [48],

Alpha++ [195]
Other Petri Net Alpha#, γ ,τ , γ+ [199], Beta [117],

Region Miner [20,55], Two-Step [164], Agnes [67],
Trace Clustering [137]

S-Coverable Workflow Net Algorithm S [85]
History-Dependent Stochastic Petri
Net (HDSPN)

Predictive analysis [134]

Informal Representations
Fuzzy model/Process Map Fuzzy Miner [73,74,163], Clustering [27,91]
Simple Precedence Diagram Visualisation and Clustering [172]

Other Representations
Declarative Language Declare [97]
Markov Logic Network DPML, Alchemy [19,97]
Workflow Schema Hierarchy Discovery [51,70,71]
Self-Organising Map Trace Clustering [137]

Table 2.2: Process Representations by Process Mining Algorithm.

25

26

CHAPTER 3

BUSINESS PROCESS MINING

Having introduced business process modelling and process representations, we turn in this

chapter to business process mining, and introduce the problems addressed by this thesis.

We introduce process mining and the standard view of process mining algorithms. We

then discuss two problems with this view: non-determinism in business processes, and the

many different process mining algorithms, representations and comparison metrics. The

first problem leads to uncertainty in the correctness of models output by process mining

algorithms; the second makes it difficult to compare these models and algorithms.

Process mining is essentially a machine learning task, but little work has been done on

systematically analysing mining algorithms in this context, to discover their fundamental

properties, or to answer questions such as how much data is necessary for mining. Yet

such understanding is of critical importance to give confidence that an event log is an

adequate sample of the true behaviour, and thus in the correctness of the mined model.

In the remainder of the chapter we describe two common mining algorithms, the Alpha

Algorithm [156] and Heuristics Miner [194], which are analysed under our framework

in later chapters. To motivate the framework proposed in this thesis, for the analysis

and comparison of process mining algorithms, we review the main other process mining

algorithms, and metrics used for comparing process models.

27

Start Time Case ID User ID Activity Other Data

2013-07-01 12:00 0001 AB i:Open Order orderno
2013-07-01 15:30 0002 CD i:Open Order orderno
2013-07-01 15:35 0001 AB a:Check Stock
2013-07-02 9:20 0002 AB a:Check Stock
2013-07-02 11:00 0001 GH b:Pick stock level
2013-07-02 11:30 0001 GH d:Despatch
2013-07-03 9:00 0001 Fin1 d:Issue Bill terms
2013-07-03 10:15 0002 GH c:Reject
2013-07-03 17:05 0003 AB i:Open Order orderno

Table 3.1: Example of Event Logs from the Running Example Process.

Figure 3.1: Simplified Business Process for fulfilling an Order.

3.1 Business Process Mining

Businesses may design business processes, introduced in Chapter 2, to dictate work pat-

terns. Alternatively, business processes may result de facto from a company’s working

practices. Either way, as activities take place, the information systems involved record

information in ‘workflow’ or ‘event’ logs. Process mining uses these logs to discover and

analyse models of business processes.

In Table 3.1 we show an example of information which might be recorded for the

running example process (shown as a Petri net in Figure 3.1). Each record contains

information about a process event corresponding to one of the activities in the model,

‘Open Order’, ‘Check Stock’, etc. For each event is recorded: Start Time, Case ID

identifying activities belonging to the same run through the process, a User ID, and

perhaps additional information. Attributes not shown might include activity end time or

department ID. Table 3.1 shows the first few activities from three process cases running

28

Process Trace

iabdefgo

iabdefho

iabdefho

iabdefgo

iabdefgo

iabdefho

iaco

iabdefgo

iabedfgo

iabdefgo

iabdefgo

iabdefho

Table 3.2: Part of Event Log of Traces randomly simulated from the Running Example
Process, represented as Strings.

at the same time. This information might be stored in a database, in a homogeneous set

of logs in a standard format (e.g. from an ERP or CRM system), or in heterogeneous

text files produced by unrelated information systems. Process mining algorithms assume

that a pre-processing step has collated the information into a standard event log format

such as MXML [167] or XES [178].

Processes may be described from various ‘perspectives’ [155], including relationships

between activities (control-flow), timing, resources, or decision rules. In this thesis we

focus on the control-flow perspective. Abstracting from detail in the log, the ‘traces’ of

enactments of the process might be recorded in an event log as strings such as ‘iabdefgo’,

‘iaco’, where each symbol represents one of the activities in the model. An event log is

thus represented by a multiset of such strings (Table 3.2)

Process discovery algorithms use logs of such traces to produce models of process

control flow. Process mining also addresses performance analysis [172], troubleshooting,

auditing conformance [12, 122, 124], mining decision rules [128], or interaction between

resources [153]. A current focus is on managing complex processes or event logs, by

abstracting from detail or separating multiple processes recorded together [24, 70, 73, 74,

137,172]. More detail on process mining may be found in [148] and the reviews in [144,155].

We next introduce our notation for discussing business processes and process mining,

29

then outline the standard view of Process Discovery, and two problems with the standard

view which we address in this thesis. In the remainder of the chapter we describe in detail

two common process mining algorithms, and review other mining algorithms and process

mining metrics used for comparison of process models.

3.1.1 Notation

In this section we introduce notation used in this thesis to discuss business processes

and process mining (summarised in Table 3.3). The notation will be formally described

throughout the remainder of this chapter and the next.

We consider a set of business activities A and an underlying business process M

defined over A. In this thesis we propose a probabilistic view of process mining (Chapter

4). We represent a process by a probability distribution PM over non-empty strings

{x, y, . . .} ∈ Σ+ of symbols {a, b, . . .} ∈ Σ from a finite alphabet representing activities in

A. Such strings represent process traces. We write π(w) as shorthand for the probability

of sub-string w occurring in a process trace.

T ⊂ Σ+ is a subset of such strings, representing valid process traces. The set T is

finite, since we consider only acyclic models and impose that traces begin with symbol

i and end with symbol o. A Workflow or Event log W is therefore a multiset of strings

x ∈ T . We write xy to describe concatenation of strings x and y, xΣ∗, Σ∗x and Σ∗xΣ∗

for the sets of strings with x as prefix, x as suffix and x as sub-string, respectively.

We also consider frequencies N(x) with which strings x occur in a logWn of n traces.

We derive in this thesis formulae for the probability of correctly mining process sub-

structures S (e.g. sequences of activities, splits and joins) from Wn. These probabilities

are denoted Pα,n(S) for the Alpha Algorithm [156] (Section 3.2.1), PHM,n for the Heuristics

Miner algorithm [194] (Section 3.2.2). Table 3.3 includes algorithm-specific notation for

process sub-structures and probabilities, which we will introduce in Chapters 5 and 6.

30

A A set of business activities.
M ‘Ground truth’ model (may be unknown).
Σ Alphabet of symbols encoding business activities.
{a, b, . . .} ∈ Σ Valid business activities in the process.
{x, y, . . .} ∈ Σ+ Non-empty strings representing sequences of activities.
T The set of all valid process traces (cases).
xy The concatenation of strings x and y.
xΣ∗,Σ∗x, The set of strings with x as prefix, suffix,
Σ∗xΣ∗ . . . or sub-string. (rest of string may be empty).
W ⊂ {x|x ∈ T } Event (Workflow) log, a bag or multi-set of traces.
Wn Event log containing n traces.
N(x) Number of times x occurs in W.
PM Probability distribution over traces, describing processM.
π(w) Probability of sub-string w occurring in a trace.
π(→ a) Probability of ‘reaching’ a in the model: π(→ a) = π(iΣ∗aΣ∗o).
a → b Arc representing causal dependency from a to b.
a → (b1 ‖ b2 . . .) Parallel (‘AND’) split, from a to paths starting with b1, b2,
a → (b1# b2 . . .) ‘XOR’ split from a to alternative paths starting with b1, b2,
DMab ∈ [−1, 1] Heuristics Miner (HM) Dependency Measure (DM) between a

and b.
γn(DMia > DMba) Probability that HM constraint for correctly mining a structure

holds true from event log of n traces; also e.g. γn
(

N(ia) > PO
)

.
Pα,n(S) Probability that Alpha mines structure S correctly from W.
PHM,n(S) Probability that HM mines structure S correctly from W.

Table 3.3: Notation for Business Processes and Process Mining.

3.1.2 Standard View of Process Discovery

In Figure 3.2 we illustrate the standard view of process discovery. An underlying business

process modelM is assumed, which controls what activities take place. There may also

exist an ‘assumed’ or ideal business process modelM∗ which describes how the business

requires or believes the process to operate, perhaps resulting from business analysis or

process design activities. Alternatively, no such process may be known.

As business activities take place, information is recorded in an event log W. Process

mining algorithms use the ‘evidence’ in W to construct a mined model M′, using some

notation such as a Petri net (e.g. Figure 3.1). The recovered model M′ is assumed to

accurately represent the underlying processM. The recovered and ‘believed’ modelsM′

andM∗ can then be analysed to understand the reasons for divergence from the required

31

��������	
�����	�����	����������

��������������

��������������

��������������

��������������

������

������

������

������

������

���������
��	
������

������
������

underlying

business process
Pick

�������	�

��������	
������������

�����������	
��������

�
�� ��������	

Figure 3.2: Standard View of Process Discovery.

Process Trace Trace Counts in 1000 Trace Log

iabdefgo 529 583 543 544 540 538 541 541 545 531
iabdefho 185 160 185 195 190 184 189 186 178 179
iabedfgo 140 110 129 123 119 146 118 135 119 150
iabedfho 44 40 39 37 50 37 54 39 46 43
iaco 102 107 104 101 101 95 98 99 112 97

Table 3.4: Counts of Traces (represented as Strings), in 10 Event Logs of 1000 Traces
randomly simulated from the Running Example Process.

process, investigate performance or understand decision rules. When no M∗ is known,

M′ provides a first understanding of the ‘true’ business process, and can be used as a

basis for developing process improvements.

Since the core interest is in process control flow, many algorithms learn only the process

structure, without attempting to recover probabilities. In the next sections we look at

two problems with this standard view of process discovery.

3.1.3 Problem 1: Process are not Deterministic

Probabilities in the model may be of interest, for example where business rules restrict

the frequency of costly patterns of activity. However even where there is no interest

in producing a probabilistic model, it must be appreciated that traces are generated

randomly according to an underlying probability distribution unknown to the mining

algorithm. Not all activities or decisions are equally likely, and their probabilities may

have a dramatic effect on the amount of data needed for mining.

As an example, Table 3.4 shows the counts observed of the five possible traces sup-

ported by the running example process, from 10 event logs of 1000 traces each, randomly

32

simulated from the model. The observed counts vary between event logs, and it is conceiv-

able that an event log might contain no examples of a possible trace. This is particularly

a problem with parallel activities: n parallel activities may be recorded in the event log

in n! possible orders, some of which may have very low probability.

Noise is also a source of non-determinism in event logs. Noise in process mining is not

well defined, but includes problems in recording the event log (missing activities or parts

of traces, or activities recorded out of order), which will affect the probability of ‘correct’

traces in the event log and introduce ‘incorrect’ traces. We discuss noise in Chapter 8.

Traces in W therefore represent only samples of the possible process behaviour. As

the process executes, traces are generated randomly according to the underlying ‘real-

world’ processM, which describes the probability with which each sequence of activities

(process trace) will appear inW. It could be argued that traces do not appear randomly,

but rather their frequency inW is the result of many deterministic factors, such as business

rules, user preferences, market conditions, customer activity, season, and so on. However,

the complex interaction of these factors is effectively impossible to analyse. As a useful

abstraction we can state that a process trace t will occur with probability PM(t) given by

a probability distribution PM over traces, describing the processM.

The goal for a process discovery algorithm L is to use the evidence for the underlying

process M, recorded in event log W, to recover a model equivalent to the underlying

process modelM. The recovered modelM′ will only be an approximation toM, since

it depends on the random sample W, the inductive biases of L, and the representational

bias of the modelling notation used by L, as follows

Representational bias refers to limitations imposed by the modelling notation [148,

Sections 5.4.1, 6.1.1]. For example, the Alpha algorithm [156] (Chapter 5) assumes that

the underlying process is representable by a restricted Petri net known as a SWF-Net;

algorithms using finite automata cannot explicitly represent parallel behaviour; and many

algorithms insist that all nodes are labelled, and the labels are unique [159].

33

Inductive Bias refers to the set of assertions or assumptions made by the mining

algorithm to restrict the hypothesis space from which to select a process model [104,

Section 2.7]. The Alpha algorithm for example assumes that the behaviour of the process

can be completely described by pairs of activities seen inW. Other common assumptions

include that events are atomic (taking no time), are uniquely labelled (the same label

always refers to the same event and vice versa), and make no use of additional information

such as timing of events, merely the order in which they are recorded.

Therefore to ensure confidence thatM′ is a good approximation toM, it is crucial to

understand the nature of the distribution over traces PM(t), and how the behaviour and

biases of the algorithm L determine how L uses the evidence in W to produceM′.

3.1.4 Problem 2: Heterogeneous Mining Algorithms, Represen-

tations and Metrics

Process mining is a relatively young research area [155]. New algorithms continue to be

developed with different biases or theoretical foundations, or aimed at mining in specific

situations. This raises the question of which algorithm is best in a particular situation,

and how to compare algorithms.

In Chapter 2 we saw that various representational mechanisms have been suggested

for capturing process control flow. Traditionally, business processes have been viewed

as languages over activities, with no probabilistic structure. Many process mining al-

gorithms produce types of Petri net, but algorithms produce results in many different

representations, introducing different biases in the models they produce. This hetero-

geneity of modelling representations means that it is difficult to compare results from

different algorithms. Also, since most models are non-probabilistic, they cannot be used

directly to understand the learning behaviour of algorithms. It is highlighted in [158] –

‘the world is NOT a Petri net’ – that whatever the representation, the model is always an

abstraction and may not represent reality. Process mining literature however often reads

34

as if the purpose of a mining algorithm is to discover ‘the’ underlying Petri net. This is

exemplified by discussions of the ability of an algorithm to discover representation-specific

features which cannot be present in event logs, such as ‘invisible’ activities or duplicate

labelling of nodes.

Various methods have been proposed for comparing process models, evaluating a pro-

cess model against an event log from which it was mined, or comparing a mined model

with a reference model. These metrics are often applicable only to a specific algorithm or

based on the syntax of a particular process representation. Examples are replaying train-

ing or reference logs [46,70,73,194], measuring Petri net token behaviour [12,67] or string

edit distances [40], comparing incidence matrices [16] or coding costs using the Minimum

Description Length principle [32]. Measures may be along different ‘dimensions’ [122,124]

depending on the type of differences to be measured.

Many of these metrics are specific to the syntax or semantics of a particular repre-

sentation, are difficult to interpret, and do not allow for the comparison of models in

different representations. In general they do not consider the significance of differences.

The underlying process is stochastic (Chapter 4): sequences of activities (traces) occur

with specific probabilities, so there will be random variation in the distribution of traces

observed in different event logs produced by a process. This variation may cause differ-

ences between models mined from different event logs from the same process. The values

calculated for measures of difference between models therefore depend on factors such as

characteristics of the models, underlying event probabilities, how much data was used and

the learning behaviour of the mining algorithm.

We therefore face the problem of how to compare heterogeneous algorithms which

produce process models in a variety of incompatible representations. In the next section

we look in detail at two process discovery algorithms, the Alpha Algorithm [156] and

Heuristics Miner [194] which are analysed in later chapters under the framework presented

in Chapter 4, then review the main other process mining algorithms and process metrics.

35

3.2 Common Process Mining Algorithms

In this section we describe the Alpha [156] and Heuristics Miner [194] Algorithms.

The Alpha algorithm was designed to handle concurrency in processes, and proven to

correctly mine processes where the underlying process can be modelled by a Structured

Workflow net (SWF-Net), a subclass of Petri net (Chapter 2). The algorithm is simple to

apply, and although considered unsuitable for ‘real-world’ processes, is often used to obtain

a first insight into a process. Alpha requires a ‘complete’ event log, where completeness

means that for every pair of activities that the model allows to directly follow each other,

there is a trace in the log that exhibits this behaviour. Alpha uses such pairs of activities

identified from the event log, to attempt to exactly replicate the underlying process from

the traces in the event log. Therefore it is unable to handle ‘noise’. We discuss in Chapter

8 definitions of noise in process mining. For now, we note that process, system and data

problems may cause Alpha to produce a difficult to understand, or ‘spaghetti’ [148] model.

Heuristics Miner is explicitly designed to handle ‘noise’ in event logs, and for this reason

has been the algorithm of choice in many practical applications [35,191], where processes

have been found to be complex and poorly recorded. Examples are local government [152],

healthcare [99], finance [45] and telecoms [67]. Whereas Alpha makes hard decisions

based on the presence or absence of pairs of activities in the event log, Heuristics Miner

uses counts of pairs of activities, and differences between counts of different pairs of

activities, to determine which arcs to create in the process model. Several parameters to

the algorithm give control over these softer decision boundaries, and thus of the detail to

include in the mined model.

In Chapters 5 and 6 respectively we apply our framework to these two algorithms.

3.2.1 Alpha Miner Algorithm

Consider two events a and b from the set of activities A belonging to a processM recorded

in an event log W. Let N(ab) denote the number of times sub-string ab occurs in traces

36

in W. We say sub-string ab occurs in event log W (ab ∈ W) if N(ab) > 0. If ab ∈ W,

then b directly follows a in at least one trace, which we write as a > b. We define the

following four possible relations between a and b:

• a → b ⇐⇒ N(ab) > 0 and N(ba) = 0;

• b → a (which we can also write a →−1 b);

• a# b ⇐⇒ N(ab) = N(ba) = 0;

• a ‖ b ⇐⇒ N(ab) > 0 and N(ba) > 0.

Two activities are always related by either →, →−1, # or ‖, and these partition the set

of activities [156, Property 3.1].

The Alpha algorithm [156, Defn. 4.3] (Algorithm 1) derives an SWF-Net α(W) from

an event log W. First, three sets of activities are created. TW is the set of transitions

in the net, containing all unique activities from A that occur in W. TI and TO contain

the ‘input’ and ‘output’ transitions in the net, activities that appear first and last in

traces in W, respectively (obtained by auxiliary functions first(x), last(x)). In step 2

sets R>, R→, R‖, R# are created. Elements of R> are pairs of activities related by the >

relation, and similarly for the other relations.

Places PW in the net are defined in two stages. First (steps 3–18), XW is created as

the set of pairs (A,B) of sets of transitions for which each activity b in B is a successor

of each activity a in A, i.e. a → b, and all activities in A are related by the # relation,

as are activities in B. Thus,

XW = {(A,B) ∈ {P(TW)×P(TW)} |

∀a∈A∀b∈B a → b ∧ ∀a1,a2∈A a1# a2 ∧ ∀b1,b2∈B b1 # b2},

where P(TW) is the power set of TW (the set of all subsets of TW).

XW is created by iterating over all possible pairs of activities (a, b) ∈ TW ×TW . If two

such activities a, b are related by a→ b, a pair of sets (A,B) is created; A = {a}, B = {b},

and TW is then iterated over again (steps 8–15). Each activity that correctly relates to

37

Algorithm 1 Alpha Process Mining Algorithm (see [156, Property 3.1])

Input: W, an event log over activities A.
Output: an SWF-Net α(W) = (PW , TW , FW).

1: TW ← {a ∈ A | ∃x∈W a ∈ x}.
TI ← {a ∈ A | ∃x∈W a = first(x)}.
TO ← {a ∈ A | ∃x∈W a = last(x)}.

(Functions first(x), last(x) return the first and last activities, resp., of trace x.)
2: R> ← {(a, b) ∈ A | a > b}, R→ ← {(a, b) ∈ A | a → b},
R‖ ← {(a, b) ∈ A | a ‖ b}, R# ← {(a, b) ∈ A | a# b}.

3: XW ← ∅.
4: for a ∈ TW do
5: for b ∈ TW do
6: if (a, b) ∈ R→ then A← {a}, B ← {b}
7: T ′

W = TW . Add activities to A,B:
8: for c ∈ T ′

W do
9: if ∀d ∈ A, (c, d) ∈ R# ∧ ∀e ∈ B, (c, e) ∈ R→ then A← A ∪ c.

10: end if
11: if ∀d ∈ B, (c, d) ∈ R# ∧ ∀e ∈ A, (e, c) ∈ R→ then B ← B ∪ c.
12: end if
13: T ′

W = T ′
W \ c.

14: end for
15: XW ← XW ∪ (A,B).
16: end if
17: end for
18: end for
19: YW ← {(A,B) ∈ XW | ∀(A′,B′)∈XW

A ⊆ A′ ∧B ⊆ B′ =⇒ (A,B) = (A′, B′)}.
20: PW ← {p(A,B) | (A,B) ∈ YW} ∪ {iW , oW}}.
21: FW ← {(a, p(A,B)) | (A,B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈ YW ∧ b ∈ B}

∪{(iW , t) | t ∈ TI} ∪ {(t, oW) | t ∈ TO}.
Return: α(W) = (PW , TW , FW).

activities in A and B is added to the sets. Finally, the pair of sets (A,B) is added to XW .

Although the complexity of this stage is exponential in the number of activities, typically

there are relatively few activities (less than 100) and the complexity does not depend on

the size of the log [156]. YW is created by removing from XW any pairs (A′, B′) of sets of

activities which are subsumed by another pair of sets (A,B), i.e. A′ ⊆ A and B′ ⊆ B.

In step 20, the places PW in the net are identified. For each pair (A,B) of sets of

activities in YW , a place is created between the activities in A and those in B. iW and oW

are added as artificial unique start and end places. In step 21, FW defines the directed arcs

of the net: (a, p(A,B)) describes an edge from transition a to a place, (p(A,B), b) an edge from

38

a place to transition b. The algorithm returns the completed net α(W) = (PW , TW , FW).

For the running example, the following sets will be created,

TW = {i, a, b, c, d, e, f, g, h, o},

TI = {i},

TO = {o},

R> = {(i, a), (a, b), (a, c), (b, d), (b, e), (d, e), (e, d), (d, f), (e, f), (f, g), (f, h), (c, o),

(g, o), (h, o)},

R→ = {(i, a), (a, b), (a, c), (b, d), (b, e), (d, f), (e, f), (f, g), (f, h), (c, o), (g, o), (h, o)},

R‖ = {(d, e)},

R# = {(i, c), (i, d), (a, d), . . .},

XW = {({i}, {a}), ({a}, {c, b}), ({b}, {d}), ({b}, {e}), ({d}, {f}), ({e}, {f}),

({f}, {g, h}), ({c, g, h}, {o})},

YW = XW ,

PW = {p0 = iW , p9 = oW , p1 = p({i},{a}), p2 = p({a},{c,b}), . . . , p8 = p({c,g,h},{o})},

FW = {(p0, i), (i, p1), (p1, a), . . . , (o, p9)},

α(W) = (TW , PW , FW).

3.2.2 Heuristics Miner Algorithm

Recall that N(ab) denotes the count of sub-string ab in traces in W. and PHM,n(S)

the probability that Heuristics Miner mines process structure S correctly from a random

sample (event log) of n traces.

Heuristics Miner [194] (HM) uses such frequencies to calculate a Dependency Measure

which is an indication of the strength of the causal relation between a pair of activities,

The DM is used to determine the arcs, splits and joins in the process model1. The

1We describe Heuristics Miner (HM) as implemented in ProM 5.2 [170]. HM uses MXML format
logs [167], which allow additional attributes to be attached to activities, but does not use such attributes.

39

UH ∈ {T, F}: ‘Use
All-Activities-

-Connected’ Heuristic

Default true: assume connected graph, each activity except
start and end has at least one successor and predecessor.

PO ∈ N>0:
Positive Observations

Default 10: no. of observations of string ab needed to
consider adding additional arc a → b.

DT ∈ [0, 1]:
Dependency Threshold

Default 0.9: only add a → b if DMab > DT.

RTB ∈ [0, 1]:
Relative-To-Best
threshold

Default 0.05: only add a → b if DMab is within RTB of
largest DMs of relations to existing successors of a or
predecessors of b.

Table 3.5: Relevant Heuristic Miner Parameters

Dependency Measure (DM) between a, b ∈ Σ is

DMab =
N(ab)−N(ba)

N(ab) +N(ba) + 1
∈ [−1, 1]. (3.1)

Note that DMba = −DMab.

A number of threshold parameters, described in Table 3.5, act with the Dependency

Measure to control the detail in the mined model. In this way noisy logs are handled

by allowing user control of the size and complexity of the mined model. In this chapter

we assume the ‘Use All-Activities-Connected’ Heuristic is set to true, which ensures the

mined model is a connected graph, i.e. all activities other than the unique start and end

activity have at least one successor and predecessor.

The algorithm produces a Causal Matrix (CM), visually represented as a Heuristics

Net (Section 2.2), a directed graph in which nodes represent activities and arcs represent

causal dependencies. Splits are separately annotated as representing exclusive choice

(XOR) between subsequent activities, or to parallel paths (AND). Joins are annotated

similarly. Figure 3.3 shows the same information compactly, for our running example.

Given a log of traces, the model is constructed in three main steps, described next:

create Dependency Matrix, create Dependency Graph, and identify the types of splits

and joins (exclusive or parallel). The Causal Matrix encodes the Dependency Graph and

split/join types. Algorithm (2) outlines the main processing steps.

1. Create Dependency Matrix (steps 1–2): An |A| × |A| matrix M is created, whose

40

Algorithm 2 Outline of the Heuristics Miner Algorithm [194] (for Processes without
Cycles or ‘Long-Distance Dependencies’).

Input: W, an event log over s unique activities A, parameters AND, RTB, PO and
DT.
Output: Causal Matrix CM(W) = (VW , EW , IW , OW).

1: VW ← {a ∈ A | ∃x∈W a ∈ x}

2: M ←

M11 . . . M1s
...

. . .
...

Ms1 . . . Mss

,Mij =

N(aiaj)−N(ajai)

N(aiaj) +N(ajai) + 1
,

(where ai, aj represent the activities for row i, column j, respectively).
3: vS ← ai ∈ A | ∀j, 1 ≤ j ≤ s,Mij ≤ 0.
4: vE ← aj ∈ A | ∀i, 1 ≤ i ≤ s,Mij ≤ 0.
5: for 1 ≤ i ≤ s do ⊲ Arcs to successor activities.
6: k = 1
7: for 1 ≤ j ≤ s do
8: if Mij > Mik then k = j
9: end if
10: end for
11: EW = EW ∪ (vi, vk).
12: end for
13: for 1 ≤ j ≤ s do ⊲ Additional arcs to predecessors.
14: k = 1
15: for 1 ≤ i ≤ s do
16: if Mij > Mkj then k = j
17: end if
18: end for
19: EW = EW ∪ (vi, vk).
20: end for
21: Add extra arcs to EW if the conditions in Equations (3.4), (3.5) and (3.6) are met

with respect to the RTB, PO and DT parameters.
22: IW : a→ {B1, B2, . . . Bm}, where a ∈ VW , Bi ∈ P(VW), 1 ≤ i ≤ m, and

∀ (b, b′) ∈ Bi ×Bi, 1 ≤ i ≤ m,
N(bb′) +N(b′b)

N(ab) +N(ab′) + 1
< AND∧

∀ (b, c) ∈ Bi × Bj , 1 ≤ i < j ≤ m,
N(bc) +N(cb)

N(ab) +N(ac) + 1
≥ AND .

23: OW : a→ P(P(VW)) is created similarly.
Return: CM(W) = (VW , EW , IW , OW).

41

Figure 3.3: Running Example Process for Fulfilling an Order (Model M) as a Directed
Graph similar to a Heuristics Net.

elements Mij are the Dependency Measure (DM) between activities ai and aj corre-

sponding to row i, column j of M , 1 ≤ i, j ≤ |A|, i.e. Mij = DMaiaj . Note that M

is antisymmetric (M = −MT), since Mij = −Mji for all such i, j (Equation 3.1)1.

2. Create Dependency Graph (steps 3–21): A node is created for each activity in A

(step 1). A single start (resp. end) node vS (resp. vE) is assumed, the activity for

which none of the column (row) entries in M are positive (steps 3–4).

The graph is connected by identifying a successor and a predecessor activity for each

remaining node. This is a two-stage process. First (steps 5–12), activity successors

are identified. The successor of an activity a is the activity corresponding to the

largest DM in the row for a. Second (steps 13–20), predecessors are identified. The

predecessor of activity a is the activity corresponding to the largest DM in the

column for a. For example, in Figure 3.3, if DMab ≥ DMac then arc a → b will be

created2. Arc a → c will not be created until activity predecessors are identified,

when a will be chosen as the only predecessor of b.

Additional arcs are created (step 21) between two activities a, b if all of the following

hold,

(a) Mab exceeds the DT threshold parameter,

(b) ab occurs more than PO times in the log, and

(c) Mab is within RTB of the largest Dependency Measure to existing successors

1MT indicates the transpose of matrix M .
2If DMab = DMac then b or c is selected as the successor of a at random.

42

of a or predecessors of b.

This is summarised in Equations (3.2)–(3.6). We represent the Dependency Graph

through a graph adjacency matrix A, whose elements Aij = 1 iff

∀ k /∈ {i, j},Mik < Mij (3.2)

∨ ∀ k /∈ {i, j},Mkj < Mij (3.3)

∨
[

(Mij > DT) ∧
(

N(aiaj) > PO
)

∧ (3.4)

(

∃ k /∈ {i, j}, ∀ l /∈ {i, j, k},Mik > Mil ∧ |Mij −Mik| < RTB (3.5)

∨ ∃ k /∈ {i, j}, ∀ l /∈ {i, j, k},Mkj > Mlj ∧ |Mij −Mkj | < RTB
)]

, (3.6)

Aij = 0 otherwise. Terms (3.2) and (3.3) describe the UH parameter and are ignored

if this is set to false. The criteria for creating additional arcs are given in terms

(3.4), (3.5) and (3.6).

3. Identify Types of Splits and Joins: (steps 22–23): The ‘AND measure’ and asso-

ciated threshold determine whether a pair of activities b, c following activity a are

related exclusively (XOR) or in parallel (AND):

a → (b ‖ c) if N(bc) +N(cb)

N(ab) +N(ac) + 1
> AND, a → (b# c) otherwise,

In this way the IW relation relates each activity to a set of sets of its successor

activities, e.g. a → {B,C}. Each pair of activities in B are exclusive, as are

activities in C, but activities in B are in parallel with those in C. The relation OW

defines joins in a similar manner.

Here we ignore further steps in the Heuristics Miner to identify cycles and ‘long-distance’

relationships.

In the next two sections we review the main other approaches to process mining, and

metrics used for comparing process models.

43

3.2.3 Other Process Mining Algorithms

There are many approaches to process mining, beyond the two introduced in the pre-

vious section. Process mining algorithms can be broadly split into ‘local’ and ‘global’

approaches [155]. ‘Local’ approaches build models from relations between activities, e.g.

the Alpha Algorithm [156] (Section 3.2.1), and its extensions Alpha+ [48] which allows

‘short loops’, and Alpha++ [195] which allows ‘long-distance’ dependencies between ac-

tivities. These algorithms use pairs of activities in W to mine a Petri net. They assume

that the underlying process can be represented by an SWF-Net (Section 2.1), and thatW

contains no noise, i.e. is an exact representation of the underlying process. Extensions to

Alpha have been developed to mine processes adhering to specific representations or pro-

cess structures [199]. Heuristics Miner [194] (Section 3.2.2) and its derivatives similarly

use pairs of activities but with softer decision boundaries through (for example) counting

occurrences in the event log. ‘Global’ methods start with and refine a full model, e.g.

genetic mining [46, 145] and region mining [20, 164].

Within this local/global split, some algorithms consider different size contexts around

an activity (‘Extended Relations’, Table 3.6). These include approaches which aim to

be flexible in dealing with noisy or unstructured processes [164]; allow for ‘long-distance’

relations between activities [195]; use clustering and abstraction at the level of traces

[24,70,137] or activities [73,74,172] to mine processes at different levels of detail; or extract

multiple processes from a single event log [71]. Furthermore, while most algorithms build

a single model, others build first a model for each type of trace, then aggregate these into

a single model, e.g. [54, 141, 171]. Others, rather than specifying the allowed behaviour,

use ‘declarative languages’ to specify the process by the behaviour that is disallowed [96].

Recent work has focussed on efficient mining from large event logs, such as decomposing

processes into ‘passages’ to enable distributed process mining algorithms [160].

In Table 3.6 we summarise the main algorithms with respect to the modelling repre-

sentations which they use and their inductive biases, or the assumptions which they make.

We use the term ‘Other Directed Graphs’ to refer to simple directed graphs (Section 2.4).

44

These are differentiated from ‘informal’ models such as ‘Fuzzy Models’ [73] and ‘Simple

Precedence Diagrams’ [172] which use nodes to represent either activities or aggregations

of activities, varying according to how their parameters are set in interactive use.

The table also notes some of the assumptions made by algorithms to reduce the search

space for a mined model. Activities may be treated as atomic (taking no time) or as having

duration. Data attributes other than timestamps may be used, for example to cluster

activities. Nodes in the model may be required to be uniquely labelled or multiple nodes

allowed the same label (‘Duplicate Nodes’). All of the detail in the event log may be used,

or activities or traces clustered or aggregated to produce a higher-level representation.

Only a few algorithms take a probabilistic approach [39, 44, 63, 80]. Finally, we note

two specific problems addressed: event logs containing only positive examples [52, 67],

by artificially generating negative examples to improve learning (‘Negative Events’), and

mining from logs lacking case IDs [63] (‘Unlabelled Traces’).

Some of these approaches to process mining, e.g. Genetic Mining, use process metrics

to enable them to converge to their optimal output model. Metrics are also used more

widely, to compare process models and assess the quality of models produced by process

mining algorithms. We discuss process metrics in the next section.

3.3 Process Mining Metrics

Many methods have been proposed for assessing process mining results and algorithms,

and comparing business process models. These are often based on the syntax of the

representations used. In the next sections we review generally accepted characteristics of

process mining metrics, and summarise existing metrics according to their characteristics.

3.3.1 Characteristics of Process Mining Metrics

A distance metric d(A,B) between entities A,B in a metric space is characterised by [132]

45

Representation Inductive Bias

Algorithm/Author A
u
to
m
at
a

O
th
er

D
ir
ec
te
d
G
ra
p
h
s

P
ro
b
ab

il
is
ti
c

T
y
p
e
of

P
et
ri

n
et

In
fo
rm

al
P
ro
ce
ss

L
an

gu
ag
es

O
th
er

R
ep

re
se
n
ta
ti
on

L
o
ca
l
R
el
at
io
n
s

E
x
te
n
d
ed

R
el
at
io
n
s

G
lo
b
al

R
el
at
io
n
s

A
to
m
ic

E
ve
n
ts

T
im

ed
E
ve
n
ts

E
x
tr
a
A
tt
ri
b
u
te
s

A
ct
iv
it
y
A
gg
re
ga
ti
on

T
ra
ce

A
gg
re
ga
ti
on

N
eg
at
iv
e
E
ve
n
ts

M
u
lt
ip
le

P
ro
ce
ss
es

A
gg
re
ga
te

T
ra
ce

M
o
d
el
s

P
ro
b
ab

il
is
ti
c

D
u
p
li
ca
te

N
o
d
es

U
n
la
b
el
le
d
T
ra
ce
s

Agrawal [7] X X X

Datta [44] X X X X

InWoLvE [78–80] X X X X

Herbst HMM [80] X X X X X X

RNet [39] X X X X

KTail [39] X X X X

Markov [39] X X X X X

Schimm Block-Structured [133] X X X

Alpha Algorithm [156] X X X

Alpha+ [48] X X X

Interval Sorted [113] X X X X

Multi-Phase Miner [54,171] X X X X X

Heuristics Miner [194] X X X

Two-Step Approach [164] X X X X X

Genetic Miner [46,47,49,50,151] X X X

Hierarchy Discovery [51,70,71] X X X X X

Alpha++ [195] X X X

Alpha#,γ, τ, γ+ [199] X X X

Beta [117] X X X

Region Miner [20,55] X X X

Fuzzy Miner [27,73,74,91,163] X X X X X

Genetic Programming [145] X X X

Simulated Annealing [138] X X X

Trace Clustering [24,25,137] X X X X X

Visualisation [172] X X X X

Expectation-Maximisation [63] X X X X X

Agnes [67] X X X X

WorkFlowMiner [65] X X X X X

S Algorithm [85] X X X

Heuristics Miner++ [28, 29] X X X

Flexible Heuristics Miner [193] X X X

DPML, Alchemy [19,97] X X X

Declare [97] X X X

Aperture [141] X X X X X

Table 3.6: Process Discovery Algorithms, in approximate Chronological Order.

46

• non-negativity : d(A,B) ≥ 0,

• symmetry : d(A,B) = d(B,A),

• identity of indiscernibles : d(A,B) = 0 iff A = B, and the

• triangle inequality : d(A,C) ≤ d(A,B) + d(B,C).

Becker and Laue [18] apply these to distance metrics for comparing process models (for

searching a repository of processes) and add the following desirable characteristics:

1. take into account commonality between models as well as differences, e.g. the num-

ber of different nodes relative to the total number of nodes;

2. take account of similarity between activity names;

3. impose no specific restrictions on structure (such as disallowing cycles); and

4. be efficient to calculate.

More generally, Rozinat et al. [127] define desirable characteristics of a metric for process

mining as

1. validity : the measure should be correlated with the property being measured, e.g.

as the difference between models increases, so does the metric;

2. stability : the metric should be affected as little as possible by properties other than

that being measured;

3. analysability : values must ‘make sense’, for example varying intuitively between

optimal best and worst values;

4. reproducibility : between the same two models, the metric must always evaluate to

the same result; and

5. localisability : the method of calculating the metric should enable differences to be

related to locations in the model structure.

Four dimensions [122] are commonly used for describing comparisons between process

models and between models and event logs:

• fitness : how much of the event log could have been produced by the mined model

(also known as recall);

47

• behavioural appropriateness : the opposite, i.e. how much extra behaviour the model

allows, for which there is no evidence in the event log (also known as precision);

• structural appropriateness : notions of the simplicity or efficiency of the structure of

the model; and

• generalisation: how well the model fits ‘extra behaviour’ likely to exist in the un-

derlying model, which was not seen in the samples seen in the event log.

There are tensions between these dimensions: A more general model allows extra be-

haviour not seen in the log, and so is less behaviourally appropriate. Similarly, fitness

and behavioural appropriateness are in tension, while a simpler structure may either re-

strict or extend the set of traces supported by the model, depending on the representation.

3.3.2 Conformance Metrics from the Process Mining Literature

We briefly review metrics from the process mining literature, along these dimensions.

Fitness Metrics: Completeness [70], Näıve Behavioural RecallB [12, 168] and Parsing

Measure [194] measure the proportion of traces in a log, which are supported by the mined

model. Weijters et al. [194] argue that this over-penalises the model and that partially-

fitting traces should be penalised less heavily. Therefore the Continuous Parsing Measure

(CPM) [194], reduces the granularity of comparison to the activity level. Token-Based

Fitness (f) [124,127] refines CPM in the context of ‘replaying’ traces through a Petri net,

penalising for tokens artificially created to ‘force’ the parsing, or remaining after parsing.

f takes account of frequencies of traces in the log, but it is affected by the structure of

the net, and penalises a series of missing activities no more than just one.

Literature on Genetic Process Mining [46, 47, 49, 145, 151] refines f to allow varying

‘punishment’ of different types of error, to attempt to construct improved fitness functions

for the evolutionary evaluation of fitness. These measures are most commonly known as

PFcomplete, although this name is also used for a different metric at the trace level [66] and

for a metric combining recall and precision [181]. An enhanced version of f [12, 46, 168]

48

allows comparison of a model with ‘observed behaviour’ in a ‘reference’ event log, possibly

different from the log from which the model was mined. The idea is that the reference

log is in some sense a ‘ground truth’ (large sample), approximating the true underlying

behaviour. The distance is scaled by frequency and length of traces, and size of the log.

Other ‘recall’ metrics include: rpB [67] which measures as ‘false negatives’ just the part

of f where transitions were forced to fire to parse the log; Event Coverage cE [124] which

counts the event labels (in the log) which are also activity labels (in the model); and a

simple structural metric [113] which counts arcs missing from a mined model compared

with a target model.

Precision/Generalisation: Soundness [70] and Näıve Behavioural PrecisionB [12,168]

measure the proportion of the traces which could be generated by the model, for which

there is evidence in the log. The models to which these are applied are acyclic, so the

behaviour is finite. Behavioural Appropriateness aB is first defined [124,127] as the ratio

of number of Petri net transitions enabled as traces are replayed, to number of activities

in the model. This is motivated by the assumption that the more transitions that are

enabled, the more extra behaviour the model is likely to support. aB takes account of

trace frequencies, but can measure trace-equivalent models differently and over-penalises

parallelism. Improved [127] and Advanced [124] Behavioural Appropriateness a′B refine

the measure to the activity level by comparing activities which sometimes follow or pre-

cede each other in the model, and in the log. These metrics are computationally costly,

requiring exploration of the state space of the model: practical implementations employ

heuristics to limit this exploration. Behavioural Specificity snB [67] avoids this problem

since its associated process mining method (Agnes) artificially generates ‘negative exam-

ples’ and calculates the measure during replay of these traces with negative examples.

Other Behavioural Precision metrics [12,46,168] penalise extra behaviour allowed by a

model compared with a reference log, scaling for the lengths and frequency of traces, and

the size of the log. Various measures called PFprecise are defined, in [46,66,145] as weaker

49

measures related to those already described, and in [181] as a unified recall and precision

metric for Genetic Process Mining. ETC Precision takes a different approach [106]. It

aims to efficiently estimate the effort to correct (compared with the log) the mined (Petri

net) model, and to locate discrepancies in the model. A transition system TSM is built

from the model and assumed to be bigger (more states and transitions) then TSL built

from the log, so transitions from TSM which ‘escape’ from TSL are counted. Model

Coverage cT [124] measures how many labels of visible activities in the model are also

event labels in the log. A simple structural metric [113] counts arcs in the mined model,

which are not in a target model.

Structural Metrics: These attempt to reward ‘simple’ or otherwise efficient or coherent

model structures, such as those using ‘workflow patterns’ [154]. Several measures compare

two models, i.e. a mined and a reference model: precisionS and recallS compare the

numbers of connections between transitions in two Petri nets, Structural Precision SP and

Recall SR [46] similarly compare ‘Causal Matrices’. Duplicates Precision DP and Recall

DR are similar but take account of duplicately labelled activities. A similar measure is

used in [113]. These measures however are able to assign a high similarity to models

which are in fact structurally very different, and do not take account of model semantics

such as whether splits are exclusive (XOR) or parallel (AND).

Other measures apply to a single model. Improved [127] or Advanced [124] Struc-

tural Appropriateness a′S applies to Petri nets and penalises duplicately labelled activities

which do not occur together in a trace, and redundant ‘invisible’ transitions. Lassen et

al. [90] discuss metrics for process models generally (rather than specifically for process

mining). The Cardoso Metric allocates penalties to different types of split, and the Ex-

tended Cardoso Metric applies this to Petri nets. They argue however that the penalties

applied do not correspond well to the behaviour of the model and introduce the Extended

Cyclomatic Metric to measure the ‘connectedness’ of the reachability graph of a Petri

net. Finally the Structuredness Metric is introduced. It is calculated algorithmically by

50

decomposing a Petri net into well-defined components, assigning weights to the steps in

the process. This is used [181] as part of a genetic fitness measure PFuncomplex.

Combined Metrics: In the Genetic Process Mining literature [46, 66, 145, 181] several

measures are combined and weighted to produce flexible genetic fitness functions. Ferreira

and Gillblad [63] define G-score (in fact the Bhattacharyya Coefficient [21]) as a similarity

measure between processes described as probabilistic automata, which in effect combines

recall and precision. Dependencies between activities in two models are compared in [29],

defining the F1 measure as the ‘harmonic mean between precision and recall’.

Recent Work: Process mining conformance remains an area of active research. Re-

cent work is motivated by a move towards more flexible processes (cf Adaptive Case

Management [140]) and related representations. Fitness measures associated with ‘semi-

flexible’ models [5] are defined, with a modified A∗ search algorithm to fit (partial) traces

to the model. Related work [6] allows costs to be allocated to skipping or inserting extra

activities. Behavioural profiles [192] attempt a more intuitive and flexible measure of

the precision of a model, by comparing the relations between pairs of activities. These

partially take into account that the log is only a sample of behaviour, by defining some

relations (e.g. sequential) to ‘subsume’ others (e.g. parallel). The view is taken in [60]

that processes are ‘artefact centric’ (described by the interaction of objects) and may split

into and join sub-processes, known as ‘proclets’, for example to split an order between

suppliers and customers. Related measures of conformance are defined.

3.3.3 Metrics for Querying Business Process Repositories

The wider business process literature also introduces metrics for comparing process mod-

els, for example to search Business Process repositories for a specific model, or models

which fully or partially match some criteria such as structural fragments or data attributes.

The problems of determining isomorphism of two graphs, and calculating graph edit dis-

51

tance between them, are thought to be of NP-Complete complexity (see e.g. [62, 102]),

i.e. without known solutions of polynomial complexity. Approximate matching methods

for very large graphs have been developed for bioinformatics (see e.g. [198]). However,

graphs for business processes tend to be relatively smaller and more structured [133,154].

Bae et al. [15, 16] compare the structures of two directed process graphs using their

graph adjacency matrices to calculate the sum of squares of arc differences. This is

extended in [190] to allow for weighted arcs and data attributes associated with nodes.

Van Dongen et al. [173, 174] investigate efficient storage and retrieval of process models.

They define Causal Footprints to describe the behaviour of processes in terms of the sets

of activities which may follow or precede each activity. Causal Footprints are represented

as vectors and compared by their inner product. They also present methods comparing

activities by string comparison of their names, and based on their neighbouring nodes

in the model. These methods are extended [53] to compare models by node similarity,

structural similarity (graph edit distance), and behavioural similarity (Causal Footprints).

The methods are described for ‘Business Process Graphs’, designed as a superset of other

representations.

Uba et al. [146] aim to detect similar processes, rather than calculating distances.

Using a method due to Vanhatalo et al. [176] models are deconstructed to a Refined Process

Structure Tree (RPST) of component structures. The problem of detecting isomorphic

graphs is simplified using characteristics of these structures, and representing graphs as

unique strings. Other methods include comparing processes by the Principal Transition

Sequences which they support [182], broken into full sequences, sequences before and

after cycles, and cycles. This method aims to be structurally-independent, and efficiently

deal with models with infinite state spaces. The Transition Adjacency Relation (TAR)

presented by Zha et al. [200, 201] is described as a ‘genetic footprint’ of a (Petri net)

model and as a true metric. Efficient methods for calculating the TAR are given, applied

to clustering process models. A similar method in [8] is based on deconstructing a sound

Petri net using the Alpha algorithm [156] relations.

52

Log
Model
ReferenceModel

Automata
DirectedGraph
Probabilistic
TypeofPetrinet
FlexibleModel U

n
it

of
B
eh

av
io
u
r

Syntactic
Semantic
Probabilistic

F
it
n
e
ss

M
e
tr
ic
s

C
om

p
le
te
n
es
s
[7
0]

X
X

X
tr
ac
e

X

N
äı
ve

B
eh

av
io
u
ra
l
R
ec
al
lB

[1
2,
16
8]

X
X

X
tr
ac
e

X

P
ar
si
n
g
M
ea
su
re

[1
94
]

X
X

X
tr
ac
e

X

C
on

ti
n
u
ou

s
P
ar
si
n
g
M
ea
su
re

(C
P
M
)
[1
94
]
X
X

X
ac
ti
v
it
y

X

T
ok
en

-B
as
ed

F
it
n
es
s
(f
)
[1
24
,1
27
]

X
X

X
ac
ti
v
it
y

X

P
F
c
o
m
p
le
te

[4
6,
47
,4
9,
14
5,
15
1]

X
X

X
ac
ti
v
it
y

X

P
F
c
o
m
p
le
te

[6
6]
,
[1
81
]

X
X

X
ac
ti
v
it
y

X

f
[1
2,
46
,1
68
]

X
X

X
ac
ti
v
it
y

X

B
eh

av
io
u
ra
l
R
ec
al
l
r
p B
[6
7]

X
X

X
ac
ti
v
it
y

X
X

L
og

C
ov
er
ag
e
C
E
,C

L
E
[1
24
]

X
X

X
ac
ti
v
it
y

X

S
im

p
le

st
ru
ct
u
ra
l
m
et
ri
c
[1
13
]

X
X

X
n
o
d
e/
ar
c

X

P
re

c
is
io
n
/
G
e
n
e
ra

li
sa

ti
o
n

S
ou

n
d
n
es
s
[7
0]

X
X

X
tr
ac
e

X

N
äı
ve

B
eh

av
io
u
ra
l
P
re
ci
si
on

B
[1
2,
16
8]

X
X

X
tr
ac
e

X

B
eh

av
io
u
ra
l
A
p
p
ro
p
ri
at
en

es
s
a
B

[1
24
,1
27
]
X
X

X
ac
ti
v
it
y

X

Im
p
ro
ve
d
B
eh

.
A
p
p
ro
p
.
a
′ B

[1
27
]

X
X

X
ac
ti
v
it
y

X

A
d
va
n
ce
d
B
eh

.
A
p
p
ro
p
.
a
′ B

[1
24
]

X
X

X
ac
ti
v
it
y

X

B
eh

av
io
u
ra
l
S
p
ec
ifi
ci
ty

s
n B

[6
7]

X
X

X
ac
ti
v
it
y

X
X

P
F
p
r
e
c
is
e
[4
6,
66
,1
45
]

X
X

X
ac
ti
v
it
y

X

P
F
p
r
e
c
is
e
[1
81
]

X
X

X
ac
ti
v
it
y

X

E
T
C

P
re
ci
si
on

[1
06
]

X
X

X
ac
ti
v
it
y
/a
rc

X

M
o
d
el

C
ov
er
ag
e
C
T
,C

L
T
[1
24
]

X
X

X
ac
ti
v
it
y

X

S
im

p
le

st
ru
ct
u
ra
l
m
et
ri
c
[1
13
]

X
X

X
n
o
d
e/
ar
c

X

T
ab

le
3.
7:

F
it
n
es
s
(P

re
ci
si
on

)
an

d
R
ec
al
l
P
ro
ce
ss

M
et
ri
cs

53

Log
Model
Reference Model

Automata
Directed Graph
Probabilistic
Type of Petri net
Flexible ModelU

n
it

of
B
eh

av
iou

r

Syntactic
Semantic
Probabilistic

C
o
m
b
in
e
d

M
e
tric

s
G
en

etic
[46,66,145,181]

X
X

X
activ

ity
X
X

G
-score

[63]
X
X

X
X

trace
X

F
1
m
easu

re
[29]

X
X

X
activ

ity
X

D
ep

en
d
en

cy
D
iff
eren

ce
d
[15,16]

X
X

X
n
o
d
e/arc

X

C
au

sal
F
o
otp

rin
ts

[53,173,174]
X
X

X
X

activ
ity

X

P
rin

cip
al

T
ran

sition
S
eq
u
en

ces
[182])

X
X

X
p
art

traces
X

T
A
R

[200,201]
X
X

X
tran

sition
s

X

S
tru

c
tu

ra
l
M

e
tric

s
p
r
ecis

io
n
S
[12,168]

X
X

X
tran

sition
p
air

X

r
eca

ll S
[12,168]

X
X

X
tran

sition
p
air

X

S
tru

ctu
ral

P
recision

S
P
[46]

X
X

X
arc

X

S
tru

ctu
ral

R
ecall

S
R
[46]

X
X

X
arc

X

D
u
p
licates

P
recision

D
P
[46]

X
X

X
arc

X

D
u
p
licates

R
ecall

D
R
[46]

X
X

X
arc

X

S
im

p
le

stru
ctu

ral
m
etric

[113]
X
X

X
n
o
d
e/arc

X

Im
p
roved

S
tru

ct.
A
p
p
rop

.
a
′S
[127]

X
X

tran
sition

/activ
ity

X

A
d
van

ced
S
tru

ct.
A
p
p
rop

.
a
′S
[124]

X
X

tran
sition

/activ
ity

X

C
ard

oso
M
etric

[90]
X

X
su
b
-stru

ctu
re

X

E
x
ten

d
ed

C
ard

oso
M
etric

[90]
X

X
su
b
-stru

ctu
re

X

E
x
ten

d
ed

C
y
clom

atic
M
etric

[90,181]
X

X
su
b
-stru

ctu
re

X

F
le
x
ib
le

M
o
d
e
l
M

e
tric

s
F
lex

ib
le-M

o
d
el

M
etrics

[5]
X
X

X
activ

ity
X

A
lign

-B
ased

P
recision

M
etric

A
1P
[4]

X
X

X
activ

ity
X

C
ost-B

ased
f
[6]

X
X

X
activ

ity
X

T
ab

le
3.8:

C
om

b
in
ed

P
recision

an
d
R
ecall,

an
d
S
tru

ctu
ral

P
ro
cess

M
etrics,

an
d
M
etrics

for
F
lex

ib
le

M
o
d
els

54

In Tables 3.7 and 3.8 we summarise the main process mining metrics by the dimen-

sion which they measure, and by their characteristics. The table indicates which metrics

compare an event log with a process model, and which compare two models; the repre-

sentation on which they operate; and the unit of behaviour which is measured, i.e. traces

or activities, or nodes/arcs in the representation. The final three columns show whether

the metric is tied to syntactic elements of the representation (e.g. presence of nodes or

arcs), semantic elements (e.g. ‘playing the token game’ in a Petri net), or are in any

way probabilistic. Only very few metrics take a probabilistic view; the G-score [63] which

compares the log and model as probabilistic automata, and the Behavioural Specificity

snB and Recall rpB [67], which use the semantic behaviour of the Petri net but are also

dependent on the probability of adding artificial negative events to the event log.

3.4 The Need for a Framework for Process Mining

The fundamental problem motivated by the discussion in the preceding sections is that

there are many algorithms, process representations and metrics, which do not admit direct

comparison, and no unifying representation or framework within which process models

and process mining algorithms may be analysed and compared.

Parts of this problem have been considered. In [122] an ‘architectural’ framework

is proposed. This would be a repository for algorithms, methods for comparison, and

example event logs and process mining tools. Existing metrics are reviewed and compared

with a method of assessing algorithms using k-fold cross-validation. Metrics are found

to have the advantage of allowing different aspects of models’ behaviour to be compared,

and differences localised in the representation in use, but do not provide a common basis

for comparing models in different representations, or upon which to objectively discuss

other process mining tasks such as generalisation, clustering or abstraction. The k-fold

approach uses an experimental method from machine learning, and allows the significance

of differences to be quantified. However, it does not provide a theoretical foundation for

55

analysing the learning behaviour of algorithms and predicting how much data is needed

for mining. The paper concludes that more research is needed. Process metrics are also

reviewed in [144], which concludes that ‘more research is required to enable the production

of a generic framework for the quantified comparison of processes’.

The problem of multiple process representations, particularly the differences between

languages with formal semantics, favoured in the academic community, and less formal

representations preferred by the business community, are discussed in [95]. Methods are

reviewed for translating various representations to Petri nets as a unifying representation.

Business Process Graphs (BPGs) are introduced in [53] as a generic representation which

can capture the details of other model representations, although no methods are given for

transforming models in other representations into BPGs. Neither of these models allow

for a probabilistic view of processes.

Researchers have begun to consider the question of how much data is needed for

mining. Bose et al. [26] highlight that this question has ‘hardly yet been addressed’, noting

that ‘it would be interesting to know the lower bound on the number of traces required to

discover a process model with a desired fitness’. The effect of an algorithm’s inductive bias

on the ‘completeness’ of the log is discussed in [148, 156]. For example, when activities

can occur in parallel, then the number of possible sequences of activities (traces) which

can appear in W increases exponentially with the number of parallel activities. When

cycles are allowed, the number of possible traces is infinite. To mitigate this, the Alpha

algorithm, rather than needing to see all possible traces, requires only that any pair of

activities that can occur in succession, must appear in W. However, these discussions do

not take into account the probability of these sequences appearing in W.

Yang et al. [197], and van Hee et al. [175] do consider this question probabilistically.

In [197], the Chebyshev inequality, which bounds the likely deviation of observed samples

from a distribution from their expected values, is used to discuss bounds on the length of

the log used for mining, to ensure all possible traces are included, and for trace frequencies

to approximate the probabilities in the underlying distribution. These bounds are very

56

loose since they take no account of the behaviour of the mining algorithms. In [175], sim-

ilar methods are applied to the Alpha algorithm, using Hoeffding bounds and hypothesis

tests on the probabilities of seeing each required pair of activities in the log. The method

proposed in this thesis is more general, and can be used to derive closer bounds for specific

algorithms and models.

Some early process mining approaches made use of probabilistic concepts to produce

non-probabilistic models [44], discover concurrency [38], or estimate some probabilities

in the model (e.g. [78, 79]). These approaches did not take a fully probabilistic view of

process mining such as we present in this thesis. Our work has more in common with that

in [63], which considers a stream of symbols representing activities, produced by multiple

random sources, and uses an Expectation-Maximisation procedure to construct a type of

stochastic automaton most likely to represent the underlying process. We rather consider

a single source generating traces.

We conclude that this is an important problem, which we address in the next chapters.

3.5 Chapter Summary

In this chapter we reviewed business process mining and described the problem addressed

by this thesis. Our main question is how to think about process mining algorithms and

process models, in a way which allows different algorithms and their results to be com-

pared objectively, and provides a rigorous basis for addressing process mining questions of

interest, such as simplifying or generalising models, dealing with noisy data, or simulating

changes to the process. We introduced two common process mining algorithms in detail,

the Alpha Algorithm [156] and Heuristics Miner [194]. We also reviewed the other main

mining algorithms and process metrics used to compare the models which they produce.

In the next chapter we present a probabilistic framework for considering process mining

algorithms, which allows this type of analysis and comparison. In subsequent chapters we

apply the framework to the analysis of two common algorithms, and to the investigation

of two practical applications.

57

58

CHAPTER 4

A FRAMEWORK FOR THE ANALYSIS OF

PROCESS MINING ALGORITHMS

Because of the diversity of process mining algorithms and representation languages for

business processes, methods are needed for analysing the behaviour of algorithms. In

this chapter we introduce a framework for one such method. Given a probability and a

process mining algorithm, how much data of a given, finite process do we need to, with

a stated probability, produce a business process ‘close enough’ to the original? There are

two main prerequisites to answering this question. Firstly, a unifying view of processes

to allow objective, language-independent analysis, and secondly a notion of ‘closeness’ to

evaluate how similar two processes are.

To satisfy these requirements, we consider the control-flow of business processes as

probability distributions over traces of activities, and mining algorithms in terms of their

ability to learn such distributions. We use probabilistic automata (e.g. PDFA [179]) as a

unifying representation, as these represent a large class of probability distributions over

sequences, and act as a lowest common denominator to which to convert models in other

languages. The distance between processes can be calculated from PDFA with various

metrics. In this chapter we use the d2 distance, and metrics based on the Bhattacharyya

Coefficient [21, 37] and on the Kullback-Leibler Divergence. Under this view, the main

task of a process discovery algorithm is then to learn such distributions from data: a

machine learning problem.

59

We begin in Section 4.1 by describing and motivating our probabilistic view of business

processes and machine learning view of process mining. Then in Section 4.2 we introduce

and describe our framework. We show how a process model can be broken down into

sub-structures and the probability of correct mining of those sub-structures, and thus

of the full model, accurately calculated. The probabilistic view is supported in Section

4.3 by a comparison of the distances which we use to compare processes, with existing

metrics. Much of the material in this chapter was first presented in [184].

In subsequent chapters we will validate the framework presented in this chapter by

applying it to the analysis of two process mining algorithms and to two practical problems

of current interest in the process mining field.

4.1 Business Processes as Distributions over Traces

In this section we describe our probabilistic view of business processes as distributions

over traces, using the notation introduced in Table 3.3. We show how this view enables

comparison of processes using distances between probability distributions, and using sta-

tistical and hypothesis tests, and motivates a machine learning view of process mining.

While early process mining approaches made use of probabilistic concepts to produce

non-probabilistic models (e.g. [38,44]), or estimated some probabilities in the model (e.g.

[78]), we view the control-flow of a business process in an abstract sense as a distribution

over strings of symbols representing process traces (see [184]). This has more in common

with the work of [63].

We make some restrictions to simplify the analysis, equivalent to those used elsewhere

in the literature, e.g. [7, 39, 156]. A process has a single input (start) activity (or task),

labelled i, and a single output (end) activity labelled o. The events of activities’ occurrence

are recorded as they occur, and events are atomic (take no time) and are uniquely labelled,

the same label always referring to the same event, and vice versa. No use is made of

additional information (such as timing) about events, merely the order in which they are

60

recorded. The underlying process model is assumed to be fixed. This is unlikely in reality,

but we assume that any change is slow enough to be ignored over the period that data is

collected. Also, we do not consider cycles.

We view the control-flow of business processes as probability distributions over strings

of symbols a ∈ Σ representing activities (Table 3.3). In other words, a business process can

be considered a stochastic regular languageM that describes the probability distribution

PM over Σ+ (the set of all non-empty strings of activities), such that

∑

x∈Σ+

PM(x) = 1. (4.1)

PM(x) therefore gives the probability that if a single trace is drawn at random from

processM, that trace will be equal to x.

We define the set of valid process traces T ⊂ Σ+. Since we are not considering cycles,

T is finite, each valid trace x ∈ T is finite in length, and no activity a ∈ Σ occurs more

than once in x, In addition, each trace begins with the start activity i and finishes with

end activity o, and x = iwo, w ∈ {Σ \ {i, o}}∗ (w may be empty). Note that

x /∈ T ⇒ PM(x) = 0, but PM(x) = 0 ; x /∈ T .

If trace x is not in the set of valid traces T , then it cannot be supported by the process

modelM. However, if x has probability zero under distribution PM describing M, this

does not mean it is not a valid process trace (e.g. in some other process model).

Given an underlying source M, let PM(a|y) denote the probability that after seeing

the sequence of activities given by string y ∈ Σ+, the next symbol to be seen will be

a ∈ Σ. This is given by the total probability of all strings with prefix ya (Table 3.3),

conditioned on the probability of all strings with prefix y:

PM(a|y) = PM(yaΣ∗)

PM(yΣ∗)
.

61

This extends naturally to sub-strings z ∈ Σn:

PM(z|y) = PM(yzΣ∗)

PM(yΣ∗)
, where

∑

z∈Σn

PM(z|y) = 1.

We also introduce some shorthand notation: We write π(ab) for PM(iΣ∗abΣ∗o), the prob-

ability of ab occurring in a trace, i.e. the sum of probabilities of all strings beginning

with i, ending with o, and containing ab. Similarly, we write π(b|→a) for PM(b|iΣ∗a), the

conditional probability that given that a occurs in a trace, the next symbol will be b.

Consider event log Wn of n traces drawn from M. Since we assume no cycles, a

sub-string w ∈ Σ+ occurs zero or one times in any trace in Wn, with probability π(w).

Then N(w), the number of times w occurs in event log Wn, is Binomially distributed,

Qn

(

N(w)
)

= Bin
(

π(w), n
)

.

This extends to full traces, N(x) is Binomially distributed for each full trace x ∈ Wn, with

probability parameter π(x). If Wn contains m unique traces (i.e. excluding duplicates),

then the joint distribution of the counts N(xi) of the unique traces xi in Wn, 1 ≤ i ≤ m,

are described by a multinomial distribution.

The notation is summarised in Table 3.3.

In this thesis, such distributions will be described using transition-labelled Probabilistic

Deterministic Finite Automata (PDFA) (Section 2.3, cf DPFA [179], PDFA [57], DSFA

[33]). See also [63, 79]. PDFA provide a ‘common denominator’ to which processes in

other modelling languages can be converted and analysed,

4.1.1 Distances between Probability Measures

Viewing business processes as probability distributions, we can quantify differences be-

tween two business processes P1 and P2 (e.g. the ‘ground truth’ and its inferred proxy)

via distances on the space of distributions over traces, e.g.

62

Euclidean Distance

d2(P1, P2) =

√

∑

x

(

P1(x)− P2(x)
)2
,

Bhattacharyya Distance [37]

dBhat(P1, P2) =

√

1−
∑

x

√

P1(x)P2(x),

Kullback-Leibler Divergence [89]

dKL(P1, P2) =
∑

x

P1(x) log
P1(x)

P2(x)
.

Note that Kullback-Leibler Divergence is not a distance measure since it is not symmetric.

Also it requires P1 and P2 to have the same support. This is straightforward to work

around, e.g. by postulating the Jensen-Shannon Divergence [93]

dJSD(P1, P2) = dKL(P1, ψ) + dKL(P2, ψ), (4.2)

where ψ(x) = 1
2

(

P1(x) + P2(x)
)

.

4.1.2 Statistical Tests on PDFA and Event Logs

Our probabilistic view of business processes also allows statistical tests between an event

log and a process represented as a distribution. Consider event log W of n traces drawn

from an unknown process, and a reference process distribution PM . Let m = |T | be

the number of valid traces supported by PM . Since PM has finite support (as we do

not consider cycles), and we assume traces to be drawn i.i.d., Pearson’s Chi Square Test

63

[110, 136] for example can be used to test whether W was sampled from PM :

χ2
s =

m
∑

i=1

(

N(x)− nPM(x)
)2

nPM(x)
, and

p = Pr(χ2
m−1 ≥ χ2

s) =

∫ ∞

χ2
m−1

=χ2
s

f(χ2
m−1) d(χ

2
m−1).

N(x) is the number of times x occurs in W, χ2
s the sample Chi2 statistic, and f(χ2

m−1)

the density function of the Chi2 distribution with m−1 degrees of freedom. N(x) is Bino-

mially distributed with mean nPM(x), and for large enough n, approximately Normally

distributed. Since the differences N(x) − nPM(x), will also be approximately Normally

distributed, their squares will follow a Chi2 distribution. p (the ‘p-value’) gives the proba-

bility that the Chi2 distribution exceeds the measured value. A low p (typically p ≤ 0.05)

indicates a more statistically significant result, i.e. that W was not drawn from PM .

4.1.3 Hypothesis Tests on PDFA and Event Logs

We can also compare the structure of PDFA rather than the distributions which they

describe. Consider two PDFA A1, A2, differing only in arc probabilities. Let A1 =

(Q,Σ, δ1, q0, qF) represent the reference process distribution PM , andA2 = (Q,Σ, δ2, q0, qF)

be mined from event log W. Let q
a−→ q′ denote a single arc in A2, from state q to q′,

(q, q′ ∈ Q), labelled with a ∈ Σ. For each trace x ∈ W, there is a unique state sequence

Q(x) as A2 parses x (Section 2.3) and N2(q) traces from W will visit q as the event log is

parsed by A2.

N2(q) = |{x ∈ W|q ∈ Q(x)}|.

Let N2(q, a) be the number of times arc q
a−→ q′ is followed, such that

N2(q, a) = N2(q)δ2(q, a, q
′).

64

Following [83] we model N2(q, a) as a Binomial random variable X , and test the null

hypothesis that X is distributed Binomially according to the probability of the arc in A1,

i.e. X ∼ Bin
(

δ1(q, a, q
′), N2(q)

)

. Then if the probability is low under this distribution, of

the observed arc usage count N2(q, a) differing from its expected value,

Pr
(

|X −N2(q)δ1(q, a, q
′)| ≥ |N2(q, a)−N2(q)δ1(q, a, q

′)|
)

≤ p

2
,

then with probability 1 − p, A1 and A2 represent different distributions, i.e. for δ =

δ1(q, a, q
′),

(

N2(q,a)
∑

k=0

(

N2(q)

k

)

δk(1− δ)N2(q)−k +

N
∑

k=N2(q,a)

(

N2(q)

k

)

δk(1− δ)N2(q)−k
)

≤ p.

An interpretation is that with probability 1− p, the traces in W which generated PDFA

A2, were not drawn from PM which generated A1. A similar approach can be used to

compare the observed frequency of traces inW with their expected frequencies under PM .

We use these approaches in Chapter 7.

4.1.4 Process Mining: a Machine Learning View

In this section we formalise a machine learning view of process mining, noting that some

of these ideas are implicit in other work, e.g. [7, 79]. In particular, in [63] a stream

of symbols representing activities is produced by multiple random sources. We rather

consider a single source generating traces.

We first review relevant machine learning concepts from a process mining viewpoint.

Machine Learning

Machine learning algorithms are designed to automatically learn from experience [104].

In particular, an algorithm is said to learn from experience E with respect to some class

of tasks T and performance measure P , if performance of tasks in T , measured by P ,

65

improves with experience E [104]. With respect to process mining, typically the task is

to recover a process modelM equivalent to the underlying model, and the experience is

the presentation of traces of business activities from an event log W. A process mining

metric may be used to evaluateM (Section 3.3).

This can be considered as a search problem, to find the optimal hypothesis (M), within

some hypothesis space which constrains what models may be considered. Process mining

algorithms make use of knowledge about the structure of the search space, to restrict and

assist the search, to improve efficiency and the quality of mined models [72].

We consider several specific learning activities in the context of process mining:

Density estimation : given examples X = x1, x2, . . . , xn from an unknown distribu-

tion P (x), learn a distribution P ′(x) to approximate P (x), such that the distance

d
(

P (x), P ′(x)
)

between the distributions is minimised, for some notion of distance

between probability distributions. While most process mining algorithms produce

models in non-probabilistic representations, we argue in this thesis for considering

the core process mining activity of discovering models of the control-flow structure

of processes, as one of density estimation.

Clustering : given examples X = x1, x2, . . . , xn, partition X into k sets such that the

sum of distances between examples in each set is minimised, for some measure of

distance between examples. Process mining algorithms use clustering techniques to

create simpler models with ‘representative’ nodes that aggregate similar activities

(e.g. [27,73,91]), or to create several process models from a single event logW, each

representing a subset of the recorded process behaviour (e.g. [24, 25, 137]).

Classification : for example, given k clusters, to which cluster does a new observation

belong? From a process mining perspective, given a process model M, was a new

observed process trace x′ generated byM?

Decision trees can be used for classification, and also may be applied to understanding

decision points in a process model [128]

Mǎruşter [108] made an early study of process mining from a machine learning viewpoint.

66

Machine learning techniques were used to cluster data in an event log in order to use

it to create process models, and rules, metrics and algorithms were proposed for the

construction of process models from sequences of activities. Herbst [77, 79] also takes a

machine learning view, using Hidden Markov Models to infer workflow models from data.

Machine learning tasks can be classified as supervised or unsupervised, and active or

passive. Under supervised learning, the learning machine receives feedback from training

data. For example, learning a classifier C, the learning machine will be told whether it

has classified an example xi correctly, and can adjust its behaviour based on this feedback.

Unsupervised learners, such as clustering algorithms, must infer the structure of the data

without feedback. Related to this, active learners are able to ask questions, for example

of an oracle, or select what data to use, whereas a passive learner simply uses the data it

is given. Process mining is typically unsupervised and passive, making it difficult. One

approach to alleviate this [67] artificially generates negative examples, which enables a

classification algorithm to be used to construct a Petri net model.

Learning Theory

Process mining has been compared with the inference of grammars from example strings

(e.g. [39, 122, 155]), the major difference being that grammars typically do not allow for

concurrency. Nevertheless, the learning theory for grammar inference problems has been

well studied and can be applied to the process mining field.

Machine learning theory is the study of questions such as the capability of machine

learning algorithms, under what circumstances learning is possible, and what conditions

are necessary to ensure an algorithm’s success [104, Chapter 7].

Gold [69] introduced the paradigm of Language Identification in the Limit. A sequence

of examples x from a grammar G is presented to a learner L. After each example is pre-

sented, L attempts to reconstruct G. If L eventually generates a grammar G′ equivalent

to G, and G′ does not change with further examples, then L is said to learn G in the limit.

It was proven that only limited classes of languages are learnable under this criterion, es-

67

pecially when only positive examples (strings supported by G) are presented. Carrasco

and Oncina [33] built on work by Angluin [13] to show that statistical regularity in the

distribution of examples in G can compensate for the lack of negative examples, allow-

ing Stochastic Regular Languages (representable by PDFA) to be learned. A heuristic

algorithm is presented (see also [143]).

Valiant [75, 147] introduced the Probably Approximately Correct (PAC) paradigm for

learning. Examples x generated randomly from grammar G (e.g. according to an under-

lying distribution PG) are presented to the learner L. G is PAC-learnable by L if with

probability (1 − δ) it outputs grammar G′, such that d(G,G′) < ǫ for some measure of

distance d(·, ·) between grammars, 0 < δ, ǫ≪ 1, in time polynomial in 1/δ, 1/ǫ, and some

measure of the complexity of G. This learning paradigm has been applied to learning

PDFA, e.g. [180]. Clark and Thollard [36] discuss PAC-learnability of probabilistic au-

tomata and prove that PDFA are PAC-learnable given certain assumptions on the length

of strings and distinguishability between states.

Other theories have been proposed, such as learning with queries to an oracle, mistake-

bound learning and weighted majority. However in this thesis we consider the behaviour

of process mining algorithms under the PAC framework due to the parallels between

the stochastic regular grammars with which it was introduced, and our view of business

processes. We discuss this next.

A Machine Learning View of Process Mining

A process discovery algorithm is essentially a learning machine, whose task is to model the

control flow of a business process, using traces of the execution of the process, recorded

in an event log W, which is a multi-set over traces. Each trace represents a single run

through the process from start to end. Traces can be encoded as strings x ∈ Σ+, where

Σ is an alphabet of symbols representing activities.

We assume that an unknown probability distribution D over traces (from Σ+) is re-

sponsible for generating the traces in the log W. Although various factors affect what

68

activities take place, such as business needs or user preferences, different traces in fact

occur with specific probabilities, and thus it can be argued that the underlying process is

inherently stochastic. From the machine learning point of view, the primary task of the

process mining algorithm is to construct a modelM of D from a finite sample of traces

(event log W).

The log file W will contain only a finite number of process traces, and therefore is

a stochastic sample drawn i.i.d. (independently and identically distributed) from the

unknown distribution D (the ‘ground truth’). In other words, each trace occurs with

probability according to the same distribution D, and one trace occurring does not change

the probability of others. Since the log is of finite size, we expect the frequency of traces

in the log to vary from their probabilities under D.

The challenge for the learning machine (process discovery algorithm) is to use this

finite sample to construct a modelM of D which does not simply represent the data in

the finite log, but is as ‘close’ as possible to the true generating source D, i.e. generalises

well. This raises questions such as: How much data is needed to do this with certain

(given) confidence and precision1? How to quantify the learning machine’s performance?

Since both D and M are distributions, it is natural to assess the learning machine’s

performance by quantifying how ‘close’M is to D, for which there are various measures.

This allows direct comparison of the ‘reality’ represented by the models, rather than

similarity/dissimilarity of syntactic representations ofM and D in the modelling language

in use, which seems to be a common theme [12, 16, 46, 70] (Section 3.3).

Machine learning theory is concerned with the convergence properties of machine learn-

ing algorithms, in terms of the circumstances in which they can be expected to converge

to the ground truth, and the amount of data needed. While different process discovery

algorithms have different strengths and weaknesses, they can be compared under this

unifying framework, i.e. in terms of their convergence properties within the restrictions

within which they operate. From the ground truth and an understanding of the behaviour

1This corresponds to the PAC framework.

69

of an algorithm, one can predict, and experimentally verify, whether the mined model will

converge to the ground truth model, and how fast it will do so.

While in real applications the process discovery algorithm will not have access to the

ground truth distribution governing trace generation, it is standard practice in machine

learning [14,104] to study learning algorithms by imposing a certain class of ground truth

distributions and then to verify empirically and/or theoretically how fast and how well

the ground truth can be ‘learnt’ by the algorithm from finite samples. In this framework,

the algorithm does not know the ground truth, but because we have access to it, the

success of the learning algorithm as more samples become available can be measured.

4.2 Framework for the Analysis of Process Mining

Algorithms

In this section we outline a framework within which to analyse process mining algorithms

with regard to their probabilistic behaviour, process sub-structures, and number of traces;

in the context of their ability to discover a probability distribution over traces, which

converges to a ‘ground truth’. To analyse algorithms, we assume that we have access to

this ground truth and know probabilities of all strings (sequences of activities).

The steps below describe the approach taken here to analyse and experimentally val-

idate process mining algorithms.

Step 1. Analyse the algorithm to develop formulae for the probability of discovery of all

important process sub-structures (e.g. splits and joins, or parallel action flows),

based on these string probabilities, agnostic of whether these sub-structures are

‘correct’, i.e. assuming nothing about the underlying model, save that it is acyclic,

and traces are generated according to an unknown probability distribution.

Step 2. Extend to aggregate the sub-structure results (joining sub-structures from the pre-

vious step into the full model) to enable calculation of overall discovery probability

of arbitrary models.

70

Step 3. Analyse the algorithm’s characteristics, such as rate of convergence, issues affecting

convergence, possible relation to other algorithms, etc.

Theoretical analysis will be complemented by empirical investigations as follows:

1. Design ‘ground truth’ test models with varying topological and probability struc-

tures. Depending on the complexity of the designed models, probabilities of strings

and sub-strings x ∈ Σ+ may be read from the model, or estimated by counting the

number of times x occurs in traces in a ‘large’ log of n traces randomly simulated

from the designed model, e.g. π(x) ≈ N(x)
n

.

2. From the test models generate multiple sample sets of event logs of various sizes, to

test for convergence.

3. Run the process mining algorithms under investigation on such data, converting

mining results to PDFA as necessary (Sections 2.3.1 and 2.3), and compare distri-

butions of traces represented by these automata with the ‘ground truth’1.

In the following subsections we introduce the important process sub-structures, then

in Chapter 5 we apply the framework to an analysis of the Alpha algorithm [156].

4.2.1 Process Sub-Structures

Business processes are composed of sub-structures [133, 154]. We consider only acyclic

structures in this thesis. A few basic structures are sufficient, although more complex

patterns exist [154]. The sub-structures in our example process are highlighted in Figures

4.1 (Petri net) and 4.2 (equivalent PDFA).

In the next sections we define process sub-structures in terms of the restrictions which

they imply on the set T of valid process traces starting with i and ending with o, and on

the probability distribution over traces PM .

1Where algorithms produce non-probabilistic models, heuristic methods can be used to allocate uni-
form or maximum likelihood probabilities to transitions.

71

Figure 4.1: Example of Process Sub-Structures in Petri Net N0.

Figure 4.2: Example of Process Sub-Structures in PDFA A0.

Sequences

If activities a and b form a sequence, a → b, then if a occurs, it is immediately followed

by activity b, and no other, in the model. Activities b and a cannot occur in the reverse

order. Figures 4.3, 4.4 show Petri net and PDFA fragments respectively, depicting the ab

sequence. Structure A in the example process (Figures 4.1, 4.2) represents sequence ia.

In the event log, other parallel activities may ‘interfere’, so π(b|a) ≤ 1. The following

will hold: if a occurs in a trace, b will occur before the end of the trace, i.e.:

if uav ∈ T , then v = wbq,

where a, b ∈ Σ, and u, w, q ∈ {Σ \ {a, b}}∗.

The sequence imposes the following restrictions on the distribution over traces:

• π(ab) ≥ 0. Although according to the model, b always follows a, nevertheless it may

be that ab does not occur in any traces in W (due to occurrence of other parallel

activities). This is a problem for many algorithms such as Alpha [156] and Heuristics

Miner [194] which derive a model using local relations between activities in W.

72

Figure 4.3: Sequence: Petri Net Fragment. Figure 4.4: Sequence: PDFA Fragment.

• ∀u ∈ {Σ \ {a, b}}∗, ∃w ∈ {Σ \ {a, b}}∗ s.t. π(wb|ua) = 1. If a trace contains a, then

b must occur before the end of the trace.

• π(bua) = 0, u ∈ {Σ\{a, b}}∗. If b can occur before a, a and b do not form a sequence.

In the running example process (Figure 4.1), no other activities occur in parallel with ia,

so we see every trace in the example log (Table 3.2) begins with ia and none contain ai,

i.e. suggesting that for this model, π(ia) = 1 and π(ai) = 0.

Exclusive-OR Split

An m-way XOR split, a → (b1 # . . . # bm) (Petri net Figure 4.5, PDFA Figure 4.6),

occurs where there is a choice between m mutually exclusive paths through the model

after activity a, each path starting with an activity t ∈ {bi|1 ≤ i ≤ m}. If a occurs in a

trace, then exactly one t ∈ {bi|1 ≤ i ≤ m} will occur in the rest of the trace:

if uav ∈ T , then ∃i : 1 ≤ i ≤ m, such that v = wbiq,

where a, bi ∈ Σ, and u, w, q ∈ {Σ \ {a, b1, . . . , bm}}∗.

The XOR split places the following restrictions on the PDF:

• π(abi) ≥ 0, ∀ 1 ≤ i ≤ m. Although the model allows any bi to directly follow a, as

with sequences, the probability may be zero for some such sequences occurring in

the log; a problem for many algorithms.

• ∀1 ≤ i ≤ m, ∀u ∈ {Σ\{a, b1, . . . , bm}}∗, ∃w ∈ {Σ\{a, b, . . . , bm}}∗ s.t. π(wbi|ua) >

0. Given that a occurs in the trace, it must be possible for any bi to appear in the

remainder of the trace.

• π(biua) = 0, ∀ 1 ≤ i ≤ m, u ∈ {Σ \ {a, bi}}∗. As for sequences, activities before and

73

Figure 4.5: XOR Split: Petri Net. Figure 4.6: XOR Split: PDFA.

after the split cannot occur in the reverse order.

• π(biubj) = 0, ∀ 1 ≤ i < j ≤ m, u ∈ {Σ \ {a, bi, bj}}∗. If the trace contains multiple

‘post-split’ activities bi, bj , etc. then these are not exclusive.

Structures B and E in the example process represent two-way splits, from activity a to

either b or c, and from activity f to g or h respectively.

In Table 3.2, each trace contains a, immediately followed by either b or c (no other

activities can occur in parallel). In the traces that contain f , it is always followed (immedi-

ately) by g or h. From this small sample, b and c do not occur together in traces, nor do g

and h. Thus as described above, π(ab) > 0, π(ac) > 0, π(fg) > 0, π(fh) > 0 and we could

estimate that π(ba) = π(ca) = π(bc) = π(cb) = π(gf) = π(hf) = π(gh) = π(hg) = 0.

Exclusive-OR Join

An m-way XOR join, (b1# . . . # bm) → c, occurs where m mutually exclusive paths

rejoin before activity c. The final activity in each path prior to c is a activity t ∈ {bi|1 ≤

i ≤ m}. If c occurs in a trace, then exactly one activity t ∈ {bi|1 ≤ i ≤ m} will be in the

trace before c:

if ucv ∈ T , then ∃i : 1 ≤ i ≤ m, such that u = wbiq,

where c, bi ∈ Σ, and v, w, q ∈ {Σ \ {c, b1, . . . , bm}}∗.

Similar restrictions are placed on the PDF to those imposed by the split:

• π(bic) ≥ 0, ∀ 1 ≤ i ≤ m. Although the model allows any bi to directly precede c,

74

again probabilities may be zero for seeing some of these sequences in the log.

• π(c|wbiq) = 1, ∀ 1 ≤ i ≤ m,w, q ∈ {Σ \ {c, b1, . . . , bm}}∗. If any bi occurs in the

trace, then c must appear in the remainder of the trace.

• π(cubi) = 0, ∀ 1 ≤ i ≤ m, u ∈ {Σ \ {a, bi}}∗. As for sequences, activities before and

after the split cannot occur in the reverse order.

• π(biubj) = 0, ∀ 1 ≤ i < j ≤ m, u ∈ {Σ \ {a, bi, bj}}∗. If the trace contains multiple

‘pre-split’ activities bi, bj , etc. then these are not exclusive.

Structure F in the example process represents a three-way join from activities c, g and h

to o. Referring to the example traces in Table 3.2, c, g and h are always followed by o,

with none of the disallowed sequences of activities such as og or gc.

Parallel Split

An m-way parallel (AND) split, a → (b1 ‖ . . . ‖ bm) (Petri net Figure 4.7, PDFA Figure

4.8), occurs where m paths through the model proceed in parallel, following activity a,

each path starting with a activity t ∈ {bi|1 ≤ i ≤ m}. If each path contains only a single

activity bi, and there are no restrictions on the order of the activities, and no other parallel

parts of the model, then the next m activities in the trace will be b1, b2, . . . , bm, in one

of m! permutations. Otherwise, there will be more possibilities for the trace following a.

In reality, it is likely that only a subset of the possible orderings will be highly probable.

If a occurs in a trace, then the remainder of the trace following a will contain each

t ∈ {bi|1 ≤ i ≤ m}:

if uav ∈ T , then ∀i : 1 ≤ i ≤ m, (∃w, q ∈ {Σ \ {a, bi}}∗, such that v = wbiq),

where a, bi ∈ Σ, u ∈ {Σ \ {a, b1, . . . , bm}}∗.

The parallel split places similar restrictions on the PDF to those imposed by XOR splits:

• π(abi) ≥ 0, ∀ 1 ≤ i ≤ m. As for XOR, it must be possible for any bi to directly

follow a, but some probabilities of seeing the sequences in the log, may be zero.

75

Figure 4.7: Parallel (AND)
Split: Petri Net.

Figure 4.8: Parallel (AND) Split: PDFA.

• ∀u ∈ {Σ \ {a, b1, . . . , bm}}∗, ∀1 ≤ i ≤ m, ∃w ∈ {Σ \ {a, bi}}∗ s.t. π(wbi|ua) = 1.

Given that a occurs in the trace, each bi must appear in the remainder of the trace

(in some order).

• π(biua) = 0, ∀ 1 ≤ i ≤ m, u ∈ {Σ \ {a, bi}}∗. As for sequences, activities before and

after the split cannot occur in the reverse order.

• π(biubj) > 0, ∀ 1 ≤ i < j ≤ m, u ∈ {Σ \ {a, bi, bj}}∗. Conversely to XOR splits,

it must be possible for multiple ‘post-split’ activities bi, bj , to occur in a trace, else

they are not in parallel.

• ∀u ∈ {Σ \ {a, b1, . . . , bm}}∗, ∀1 ≤ i < j ≤ m, ∃v, w ∈ {Σ \ {a, bi, bj}}∗ s.t.

π(vbiwbj|ua) = 1. This extends the previous restriction: if a occurs, then the

remainder of the trace must contain all bi.

A PDFA fragment to depict a parallel split is visually more complex than its Petri net

equivalent, as all possible activity sequences are shown explicitly (Figure 4.8). After the

first parallel activity there are
(

m

1

)

states,
(

m

2

)

after the second, to
(

m

m−1

)

states before the

last parallel activity. Structure C in the example process represents a two-way parallel

split from activity b to d and e in parallel.

In Table 3.2, both de and ed can occur in traces. If either d or e occurs, they both

do. Since in this simple model there are no other parts of the model in parallel, no

activities occur between d and e. Therefore from this small sample we could estimate

76

π(d|e) = π(e|d) = 1. Neither of the ‘disallowed’ strings db or eb occur.

Parallel Join

Anm-way parallel (AND) join, (b1 ‖ . . . ‖ bm) → c, occurs wherem parallel paths rejoin

(synchronise) before a activity c. The final activity in each path is one of b1, b2, . . . , bm.

If c occurs in a trace, then the trace up to c will contain each t ∈ {bi|1 ≤ i ≤ m}:

if ucv ∈ T , then ∀i : 1 ≤ i ≤ m, (∃w, q ∈ {Σ \ {c, bi}}∗, such that u = wbiq),

where c, bi ∈ Σ, v ∈ {Σ \ {c, b1, . . . , bm}}∗.

The parallel split places similar restrictions on the PDF:

• π(bic) ≥ 0, ∀ 1 ≤ i ≤ m. As for XOR, it must be possible for any bi to directly

follow a.

• π(c|wbiq) = 1, ∀ 1 ≤ i ≤ m,w, q ∈ {Σ \ {c, bi}}∗. If any bi occurs in the trace, then

c must appear in the remainder of the trace.

• π(cubi) = 0, ∀ 1 ≤ i ≤ m, u ∈ {Σ \ {c, bi}}∗. Activities before and after the split

cannot occur in the reverse order.

• π(biubj) > 0, ∀ 1 ≤ i < j ≤ m, u ∈ {Σ \ {a, bi, bj}}∗. Conversely to XOR joins, it

must be possible for multiple ‘pre-split’ activities bi, bj , to occur in a trace, else they

are not in parallel.

Structure D in the example process represents a two-way parallel join from parallel ac-

tivities d and e to f . Table 3.2 shows that as for the split, d and e occur together, and

are followed by f . Activity f does not precede d or e.

Non-Exclusive OR Splits and Joins

These occur where one or many of several paths may be taken. They can be modelled as

combinations of XOR and parallel structures, and place corresponding restrictions on the

distribution over traces. In this thesis we do not consider such splits and joins further.

77

Figure 4.9: PDFA A1 differing from A0 (Figure 2.5) in Probabilities only.

Figure 4.10: Petri Net N1 structurally different from N0 (Figure 3.1).

4.3 Discussion of Measures for Assessment of Process

Mining Results

In this section we use the running example to compare distances between distributions,

with existing Petri net based process mining metrics, and show that distances give a clearer

view of how different two process models are. This is confirmed by the experimentation

in the next chapter (Sections 5.4.1 and 5.4.2).

Let PDFA A0 (Figure 2.5) describe the ground truth distribution over process traces

for a simple process. Figure 4.9 shows PDFA A1 produced by a hypothetical process

mining algorithm L1, mining from a particular log W1, a finite sample from the ground

truth distribution. The trace frequencies in W1 vary from the ground truth probabilities,

preventing L1 from creating PDFA A1 with the exact ground truth probabilities.

Petri net N0 (Figure 3.1) models the same process without probability information,

in that it supports the same set of traces as the ground truth. The Petri net can be

compared with the ground truth by converting to a PDFA, by labelling its reachability

graph (Figure 2.5) with probabilities (Sections 2.3.1 and 2.3).

Another algorithm L2 might mine a Petri net directly, producing net N1 (Figure 4.10).

This algorithm has failed to discover the parallelism, instead using an XOR split/join.

78

Figure 4.11: PDFA A2 corresponding to Petri Net N1 (Figure 4.10).

Models 1− dBhat 1− d2/
√
2 1− dJSD/2 Fitness f

A0 : A1 0.897 0.926 0.985 1.0
A0 : A2 0.051 0.413 0.1 0.893

Table 4.1: Illustration of Distances between Process Models.

This net, and its corresponding PDFA A2 (Figure 4.11), are structurally different from

the ground truth, therefore supporting a different set of traces. This is a serious problem,

as this model does not allow for both despatch of the product and billing.

Table 4.1 shows the distances between these PDFA and the ground truth, using the

distance measures described (scaled and subtracted from 1 to allow comparison with

Fitness f). Models A0, A1 are measured as quite similar, but A0, A2 as almost 100%

different. Although structurally ‘similar’, they support fundamentally different behaviour

since the split/join type has been changed. What is more, this part of the model accounts

for 90% of the probable traces. Conversely, Fitness f measures A2 as relatively well fitting.

Although it takes account of the frequency of non-fitting traces, it penalises traces only

(approximately) at the level of the non-fitting events. Thus, effectively, only event d or e is

penalised in a non-fitting trace, while i, a, b, c, f, g, h, o are not. This leads to a misleading

picture of the correctness of this model.

This can be seen further in the graph in Figure 4.12. Here we varied the probability of

the part of the model containing the parallel sub-structure. The graph shows the closeness

of the mined model to the ground truth, for the various metrics, as the probability of

the parallel part of the model varies from very low, to very high. Figure 4.12 suggests

the distance metrics to be more analysable (Section 3.3.1 and [124]) than Fitness (f),

measuring the mined model to be almost optimal where the parallel sub-structure is

79

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of Parallel Structure in Model

M
e
a
s
u
re

 o
r

D
is

ta
n
c
e

Fitness f
1−d

2
/√2

1−d
Bhat

1−d
JSD

/2

Figure 4.12: Comparison of Metrics: varying Probability of Parallel Sub-Structure.

unlikely to be involved (where the error in the model does not affect many traces), reducing

to zero as traces involving the parallel sub-structure form the majority of the behaviour.

4.4 Chapter Summary

This chapter introduced the probabilistic framework for analysing process mining algo-

rithms, which is the core theoretical contribution of the thesis. We described representing

business processes as distributions over strings of symbols, and representing these distri-

butions using probabilistic automata. We motivated this view by describing a machine

learning view of process mining as the learning of probability distributions over strings

of symbols, from samples from the underlying distributions. Finally, we described basic

process sub-structures in terms of the restrictions which they imply on such distributions.

In the next two chapters we apply this framework to the theoretical analysis of two

well-known process mining algorithms. We show that this provides insight into the learn-

ing behaviour of these algorithms, and provides a basis for practical applications of our

method in subsequent chapters.

80

Part II

Applications of the Framework

82

CHAPTER 5

CASE STUDY: ANALYSIS OF THE ALPHA

ALGORITHM

In this chapter we use the probabilistic framework described in the previous chapter, to

analyse the well-known Alpha process mining algorithm [148,156]. We apply the analysis

to our simple running example, and to a more complex model illustrative of larger systems.

The experimentation shows that our method gives insights into the behaviour of the Alpha

algorithm when mining these models.

Alpha was an early process mining algorithm, developed to mine concurrent processes

and formally proven to correctly mine processes representable by Structured WF-Nets

(SWF-Nets), from noise-free logs1. These limitations mean that it is not regarded as a

practical mining algorithm in real-world situations. However, it is in fact often used, due

to its simplicity, which also makes it appropriate for a first analysis under our framework.

It is also used as the basis for several other algorithms (e.g. [48, 85, 92, 117, 195]).

Much of the material in this chapter was originally presented in [184].

5.1 A Probabilistic Analysis of the Alpha Algorithm

The Alpha algorithm was described in Chapter 3. The four Alpha relations →, →−1, #

and ‖, on a pair of activities a, b partition the set of all logs of n traces, as illustrated in

1In this chapter we informally understand ‘noise-free’ event logs as being recorded without error by
an underlying process which is followed without error. We propose a formal definition in Chapter 8.

83

Figure 5.1: The Alpha Relations on
a Pair of Activities Partition the
possible Logs of n traces.

Figure 5.2: Illustration of (C ∩D) \
(A ∪B) for Proposition 5.

Figure 5.1. In this chapter we write the relations as a >n b, etc., to indicate discovery

within n traces. Consider event space Ω, the set of all logs of n traces. Let A be the set of

these logs that include at least one trace containing sub-string ab (a >n b), and B those

with at least one trace with ba (b >n a). Then

• A \B is the set of logs that cause Alpha to infer the causal relation a →n b,

• B \ A those for which Alpha infers b →n a,

• A ∩B those for which Alpha infers a ‖n b, and

• ¬(A ∪B) those for which Alpha infers a#n b.

In the following section we apply the steps described in Chapter 4 Section 4.2 to the

Alpha algorithm.

5.2 Step 1: Probability Formulae for Basic Process

Sub-Structures

Under the assumptions in Chapter 4, we have access to the ground truth and knowledge

of probabilities of all sequences of activities, we next give formulae for the probability of

discovery of the Alpha relations and process sub-structures.

84

5.2.1 Activity Ordering Relations

These are the basic relations between activities in the log which Alpha uses to construct a

Petri net model1. The following Propositions give the probability of Alpha inferring these

relations between two activities a and b, from a log of n traces, based on the sub-string

probabilities described in Section 4.1. We give the proofs in Appendix A.1.

We use Pα,n(a >n b) to denote the probability that Alpha infers the relation a > b

over n traces, and similarly for the other Alpha relations.

Proposition 1. The probability that Alpha infers a >n b is

Pα,n(a >n b) = 1−
(

1− π(ab)
)n
.

Proposition 2. The probability that Alpha infers a#n b is

Pα,n(a#n b) =
(

1− π(ab)− π(ba)
)n
.

Proposition 3. The probability that Alpha infers a →n b is

Pα,n(a →n b) =
(

1− π(ba)
)n −

(

1− π(ab)− π(ba)
)n
. (5.1)

Proposition 4. The probability that Alpha infers a ‖n b is

Pα,n(a ‖n b) = 1−
(

1− π(ab)
)n −

(

1− π(ba)
)n

+
(

1− π(ab)− π(ba)
)n
.

5.2.2 Sequences

Discovery of a basic sequence of two activities a and b (Petri net Figure 4.3, PDFA Figure

4.4) simply requires discovery of a →n b.

1Alpha+, implemented in the ProM framework [170] as Alpha, modifies these to allow for short loops.

85

5.2.3 Splits and Joins

Alpha uses the relations a →n b, a#n b and a ‖n b to identify Petri net places, which

determine the types of splits and joins (XOR or AND). Since the events of the discovery

of these relations between several activities arise from Alpha’s interpretation of a log of

n traces, they are not independent: any, all or no relations may be discovered. Thus

Pα,n

(

(a →n b) ∧ (a →n c)
)

≤ Pα,n(a →n b)× Pα,n(a →n c). Therefore for exact proba-

bilities for discovery of splits and joins, the basic sub-string probabilities (probabilities of

activity pairs which must/must not be seen in the log) must be used.

5.2.4 Exclusive Choice: XOR Split

To discover an m-way XOR split from a to b1, b2, . . . , bm (Petri net Figure 4.5, PDFA

Figure 4.6), denoted a →n (b1 # . . . # bm): Alpha must infer the relations a →n b1,

a →n b2, . . . , a →n bm, b1#n b2, b1#n b3, . . . , bm−1 #n bm [156, Defn 4.3 step 4]. So

over a log of n traces, Alpha must:

• see at least one of each of m sub-strings ab1, ab2, . . . , abm representing pairs of ac-

tivities; and

• not see any of the m ‘reverse’ pairs b1a, b2a, . . . , bma, or any of mP2 pairs of ‘post-

split’ activities: b1b2, b2b1, . . ., bm−1bm, bmbm−1

(

where mP2 ,
m!

(m−2)!

)

.

Let N = {Ni = (ti, t
′
i)|1 ≤ i ≤ (m+ mP2), ti 6= t′i} be the set of activity pairs which must

not be seen in the log, and Y = {Yi = (ti, t
′
i)|1 ≤ i ≤ m, ti 6= t′i} be the set of activity

pairs which must be seen in the log.

We define Sn(X)→ [0, 1], where X = {Xi = (ti, t
′
i)|1 ≤ i ≤ |X|} is the probability of

not seeing any of the |X| activity pairs (ti, t
′
i) ∈ X in n traces, and π(Xi) = π(tit

′
i).

86

Proposition 5. The probability that Alpha infers an XOR split is

Pα,n

(

a →n (b1# . . . # bm)
)

= Sn(N)−
∑

1≤i≤m

Sn

(

N ∪ {Yi}
)

+
∑

1≤i<j≤m

Sn

(

N ∪ {Yi, Yj}
)

− . . .+ (−1)mSn(N ∪ Y), (5.2)

where

Sn(X) =

(

1−
∑

1≤i≤|X|

π(Xi) +
∑

1≤i<j≤|X|

π(Xi ∧Xj)−

. . .+ (−1)|X|π(X1 ∧X2 ∧ . . . ∧X|X|)

)n

. (5.3)

Given knowledge about the underlying model, many of the terms may be zero, sig-

nificantly simplifying the formulae. Nevertheless, they can become cumbersome to work

with, requiring knowledge of many probabilities. Nor do they relate intuitively to the

working of the algorithm. However, these formulae can be effectively simplified without

loss of accuracy to give formulae which intuitively follow from the working of the Alpha

algorithm, and are simpler to calculate. Theorem 1 illustrates for Proposition 5, the

discovery of an XOR split.

Theorem 1. The probability of discovery of an XOR split may be upper bounded by

assuming independence between discovery of Alpha relations over n traces. The probability

is over-stated but error rate decreases exponentially with increasing n:

Pα,n

(

a →n (b1 # . . . # bm)
)

≤
∏

1≤i≤m

Pα,n(a →n bi)×
∏

1≤i<j≤m

Pα,n(bi #n bj). (5.4)

The proof is given in Appendix A.1. In what follows we use the upper bound in

Theorem 1 to derive formulae for discovery of XOR joins, and analogous results (not

presented here) for AND splits and joins.

87

5.2.5 Exclusive Choice: XOR Join

This is similar to the XOR split. To discover a m-way join between exclusive paths

from b1, b2, . . . , bm to c, denoted (b1 #n . . . #n bm) →n c: Alpha must infer the relations

b1 →n c, b2 →n c, . . . , bm →n c, b1 #n b2, b1#n b3, . . . , bm−1 #n bm , so over a log of

n traces, Alpha must:

• see at least one of each of m sub-strings b1c, b2c, . . . , bmc representing pairs of activ-

ities; and

• not see any of the m ‘reverse’ pairs cb1, cb2, . . . , cbm, or any of mP2 pairs of ‘pre-split’

activities: b1b2, b2b1, . . . , bm−1bm, bmbm−1.

N , Y , Sn(X) are defined as for the XOR split, and Pα,n

(

(b1 # . . . # bm) →n c
)

as for

equation (5.2), for the appropriate pairs of activities:

The discovery of an m-way XOR join can be bounded in a similar way:

Pα,n

(

(b1 # . . . # bm) →n c
)

≤
∏

1≤i≤m

Pα,n(bi →n c)×
∏

1≤i<j≤m

Pα,n(bi #n bj).

5.2.6 Parallelism: AND Split

The behaviour of the Alpha algorithm when mining an AND split (Petri net Figure 4.7,

PDFA Figure 4.8) is similar to that when mining an XOR split, with more ‘must see’ and

fewer ‘must not see’ sub-strings. To discover am-way parallel split from a to b1, b2, . . . , bm,

denoted a →n (b1 ‖ . . . ‖ bm): Alpha must infer the relations a →n b1, a →n b2, . . . ,

a →n bm, b1 ‖n b2, b1 ‖n b3, . . . , bm−1 ‖n bm [156, Defn 4.3 step 4].

For the parallel split, now N = {Ni = (t, t′)|1 ≤ i ≤ m, t 6= t′} is the set of activity

pairs which must not be seen in the log, and Y = {Yi = (t, t′)|1 ≤ i ≤ (m+ mP2), t 6= t′}

the set of activity pairs which must be seen in the log. The probability of mining the

parallel split is given by equation (5.5) with the modified sets N and Y , i.e..

88

Proposition 6. The probability that Alpha infers a parallel (AND) split is

Pα,n

(

a →n (b1 ‖ . . . ‖ bm)
)

= Sn(N)−
∑

1≤i≤m+mP2

Sn

(

N ∪ {Yi}
)

+
∑

1≤i<j≤m+mP2

Sn

(

N ∪ {Yi, Yj}
)

− . . .+ (−1)mSn(N ∪ Y), (5.5)

where Sn(X) is again defined as in Equation (5.3). It can be bounded similarly,

Pα,n

(

a →n (b1 ‖ . . . ‖ bm)
)

≤
∏

1≤i≤m

Pα,n(a →n bi)×
∏

1≤i<j≤m

Pα,n(bi ‖n bj).

5.2.7 Parallelism: AND Join

This is similar to the AND split. To discover a m-way parallel join from b1, b2, . . . , bm to

c, denoted (b1 ‖n . . . ‖n bm) →n c: Alpha must infer the relations b1 →n c, b2 →n c,

. . . , bm →n c, b1 ‖n b2, b1 ‖n b3, . . . , bm−1 ‖n bm.

N , Y , Sn(X) are defined as for the AND split, and Pα,n

(

(b1 ‖ . . . ‖ bm) →n c
)

as

for equation (5.5), for the appropriate pairs of activities.

Similarly the following bound applies:

Pα,n

(

(b1 ‖ . . . ‖ bm) →n c
)

≤
∏

1≤i≤m

Pα,n(bi →n c)×
∏

1≤i<j≤m

Pα,n(bi ‖n bj).

5.3 Step 2: Aggregation of Sub-Structures to Full

Model

Having dealt with sub-structures, we now need to derive probability Pα,n(M) of correctly

mining the full process model M (e.g. Figure 4.1 with sub-structures labelled A . . . F).

For exact calculation the approach of Proposition 5 could be extended to consider the

probabilities of all the sub-strings which Alpha must or must not see in the log to construct

the Petri net correctly, as these probabilities are not independent (Section 5.2.3). This is

89

Figure 5.3: Petri Net Fragment showing Complex Splits and Joins (Sub-Structures A and
B) and ‘Extra’ Parallel Activities (Dotted Ellipses).

infeasible, and does not reduce the complexity of the problem.

As discussed above (Theorem 1), we can instead treat sub-structures as built from

independent Alpha relations rather than from individual sub-strings. Three further areas

then need to be considered in analysing full models.

5.3.1 Compound Splits/Joins

A single Workflow net sub-structure as mined by Alpha may combine both join and split

(Figure 5.3 sub-structure B) or combine parallel and exclusive behaviour (sub-structure

A). In general, if m paths of which p are XOR (the remainder parallel) join and then

split to n paths of which q are XOR, probability of discovery is approximated using the

approach of Theorem 1, multiplying probabilities for the relevant→n, #n and ‖n relations.

5.3.2 Extra Parallelism

Where parallel paths contain more than one activity, such as a, b, c, d in Figure 5.3, for each

pair of activities a, b not part of the split or join, either a ‖n b or a#n bmust be discovered,

to prevent extra dependencies from being inferred. Let a =n b denote (a ‖n b)∨(a#n b).

These are independent (Figure 5.1), so Pα,n(a =n b) = Pα,n(a ‖n b) + Pα,n(a#n b).

90

5.3.3 Combining Probabilities for Sub-Structures

Let Pα,n(S) be the probability of discovering sub-structure S from an event log of n

traces. Intuitively, if a split has been mined correctly, then mining the corresponding

join is ‘almost certain’, as each path between the split and join should be in the log. So

sub-structures in the model can be considered as dependent on ‘previous’ sub-structures.

For example,

Pα,n(M) = Pα,n(A)× Pα,n(B|A)× Pα,n(C|B)× Pα,n(D|C)× Pα,n(E|D)× Pα,n(F |B,E),

where Pα,n(F |B,E) indicates the probability of discovering F conditional that B and E

have been mined correctly. This affects the formulae from Section 5.2 in two ways. For

each event (such as ‘see no ab in the log of n traces’),

1. the probabilities of the sub-strings are conditioned by the probabilities of the prefix

strings leading up to those sub-strings, i.e. π(ab) becomes π(b|→a); and

2. we only consider the traces within which those sub-strings are expected to occur.

To illustrate, for Alpha, the formulae for probability of correct mining of the Alpha

relations become:

Pα,n(a >n b) = 1−
(

1− π(ab)

π(→a)
)n·π(→a)

,

Pα,n(a →n b) =
(

1− π(ba)

π(→a)
)n·π(→a)

−
(

1− π(ab)

π(→a) −
π(ba)

π(→a)
)n·π(→a)

,

Pα,n(a ‖n b) = 1−
(

1− π(ab)

π(→a)
)n·π(→a)

−
(

1− π(ba)

π(→a)
)n·π(→a)

+

(

1− π(ab)

π(→a) −
π(ba)

π(→a)
)n·π(→a)

, and

Pα,n(a#n b) =
(

1− π(ab)

π(→a) −
π(ba)

π(→a)
)n·π(→a)

.

This has the effect of a modest reduction in the probability Pα,n(S) of successfully

mining structure S in n traces. The predicted number of traces n can also be obtained by

91

using the ‘local’ probabilities within S, and dividing by the probability of traces ‘reaching’

the structure. We discuss this further in Appendix B.

5.4 Step 3: Analysis of Alpha Algorithm

We next explore some of the behaviour of Alpha shown by the probability formulae. In

this section we refer to ‘noise’ in event logs. Informally, we define ‘noise-free’ logs as those

recorded without error, by a process which is followed without error. For example, when

considering the relation Pα,n(a →n b), a noise-free log contains no instances of sub-string

ba. Conversely we may specify a ‘noise’ probability, e.g. π(ba) = 0.1. We propose a

formal definition of noise in Chapter 8.

Basic Relations

Figure 5.4 shows Pα,n(a →n b) increasing sharply with increasing π(ab) (probability of

trace including string ab), but reducing sharply with any probability of the ‘reverse’ string,

π(ba). The effect is stronger as n increases, since this also increases the chance of at least

one ba in the log. Non-zero probability of ba may be due to errors in logging, or indicate

that the real relation is parallel but with ab more likely than ba. Figure 5.5 shows the

behaviour when the event log is ‘noise-free’, i.e. π(ba) = 0. The probability of correct

mining then increases rapidly as either π(ab) or n increases.

Relation a#n b means a and b are unrelated. Figure 5.6 shows that the probability of

this being inferred reduces very quickly as n increases, if either π(ab) or π(ba) is non-zero.

In Figure 5.7, the parallel relation a ‖n b, for which both ab and ba must be seen, is

seen to be most likely when the probability of either order is similar (note that in Figure

5.7, π(ba) = 0.4−π(ab)). This is important, since when multiple activities are allowed to

occur in any order (parallel), in practice certain orderings may be more likely, reducing

the probability of discovering the true parallelism, and necessitating more data.

92

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

π(ba)π(ab)

P
α
(a

 →
 b

)

Figure 5.4: Probability of Mining (by the
Alpha Algorithm) of a →n b for 10 Traces,
varying π(ab), π(ba).

0

10

20

30

0

0.5

1
0

0.2

0.4

0.6

0.8

1

n tracesπ(ab)

P
α
(a

 →
 b

)

Figure 5.5: Probability of Mining of a →n b
for π(ba) = π(ab ∧ ba) = 0, i.e. from Noise-
Free Logs. Varying n (Traces) and π(ab).

0

0.05

0.1

0

0.05

0.1
0

0.2

0.4

0.6

0.8

1

π(ba)π(ab)

P
α
(a

 #
 b

)

Figure 5.6: Probability of Mining a#n b, for
50 Traces, varying π(ab), π(ba).

0
5

10
15

20

0

0.5

1
0

0.2

0.4

0.6

0.8

1

n tracesπ(ab)

P
α
(a

 |
|
b

)

Figure 5.7: Probability of Mining of a ‖n b
for varying n and π(ab), π(ab)+π(ba) = 0.4.

Simple Structures

We next consider the behaviour of Alpha when mining a 3-way XOR split from activity i

to activities a, b or c, where π(ia) + π(ib) + π(ic) = 1. All possible combinations of these

probabilities are indicated by points on the simplex illustrated in Figure 5.8. This simplex

is used as the triangular base in the graphs in Figures 5.9–5.14: towards the vertices, one

of π(ia), π(ib) or π(ic) approaches one, the other two approach zero; towards the edges,

one path probability approaches zero, the sum of the other two approaches one. In the

interior of the triangle, all three path probabilities are non-zero but they sum to one.

Figure 5.9 shows the number of traces required for Alpha to achieve 95% probability

93

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.8: Simplex of all Points πia+πib+πic = 1, used as the triangular Base of Figures
5.9 – 5.14.

1

1.0

0

10

20

30

40

n
 t

ra
c
e

s

Figure 5.9: Number of Traces for 95% Prob-
ability of correct Mining by Alpha of 3-way
XOR Split Sub-Structure.

1

1.0

0

10

20

30

40

n
 t
ra

c
e
s

Figure 5.10: Number of Traces for 95%
Probability of correct Mining by Alpha of
3-way AND Split Sub-Structure.

of discovery of this XOR split. The greatest number of traces is needed where the proba-

bilities are most imbalanced, i.e. around the edges, with the peaks at each corner showing

where only one path has a non-negligible probability.

Figures 5.11–5.14 illustrate the probability of correct mining of the 3-way XOR split

as the number of traces vary. The probability is highest when the path probabilities are

most evenly split (Figure 5.11), approaching certainty as the number of traces increases

(Figure 5.12), except where one or more paths have very low probability. With only a

small amount of noise, π(ba) > 0, with few traces the probability of mining is initially

similar (Figure 5.13), but never exceeds 0.6, and rapidly reduces as n increases and the

probability increases of seeing at least one ba in the log (Figure 5.14).

94

1

1.0

0

0.2

0.4

0.6

0.8

1

P
α
(X

O
R

 s
p
lit

)

Figure 5.11: Probability of mining of 3-way
XOR Split Sub-Structure from 10 Traces
(Noise-Free).

1

1.0

0

0.2

0.4

0.6

0.8

1

P
α
(X

O
R

 s
p
lit

)

Figure 5.12: Probability of mining of 3-way
XOR Split Sub-Structure from 50 Traces
(Noise-Free).

1

1.0

0

0.2

0.4

0.6

0.8

P
α
(X

O
R

 s
p
lit

)

Figure 5.13: Probability of mining of 3-way
XOR Split Sub-Structure from 10 Traces
With ‘Noise’ (π(ba) = 0.01).

1

1.0

0

0.2

0.4

0.6

0.8

P
α
(X

O
R

 s
p
lit

)

Figure 5.14: Probability of mining of 3-way
XOR Split Sub-Structure from 20 Traces
With ‘Noise’ (π(ba) = 0.01).

Finally, mining of XOR and AND show similar behaviour (Figures 5.9 and 5.10).

Around 10% more traces are needed for the AND split than for XOR. In Figure 5.10,

points on the triangular base indicate the possible combinations of probabilities of the

paths following the parallel split starting with one of the parallel activities. Again, π(ia)+

π(ib) + π(ic) = 1.

5.4.1 Analysis of Example Process

We used the methods presented to predict the number of traces needed for the probability

of successful mining of the running example (Figure 3.1) to exceed various thresholds.

AutomatonA0 (Figure 2.5) was specified as the ground truth, encoded using theOpenFst

format [9], and randomly walked to produce 30 sets of MXML format [167] event logs of

95

increasing size from 1 to 45 traces. A ‘ground truth’ log of 1000 traces was also simulated.

We mined Petri net models from these files using Alpha as implemented in the ProM

Framework [170], and calculated the Fitness (f) [124] and Behavioural Appropriateness

(a′B) [12] values using the Conformance Analysis plugin. The Petri nets were converted

to PDFA by labelling their reachability graphs with maximum likelihood probability esti-

mates derived from the ground truth log file. The d2 and Bhattacharyya (dBhat) distances,

and Jensen-Shannon Divergence (dJSD) were calculated between the distributions repre-

sented by these PDFA and the ground truth distribution represented by A0.

The graph in Figure 5.15(a) shows the average approximate correctness of the models

mined by Alpha from logs of increasing size, as measured by the metrics and distances,

plotted against the number of traces in the log. The numbers of traces predicted for

90%, 95% and 99% confidence in correct mining are indicated by the vertical rules. The

graph shows:

1. Probability distance measures converge in a similar way to f , but the distances from

the ground truth are distributed over a clearer scale, from almost 1 for the very unfit

models produced by few traces, through to 0, whereas f ranges from approx 0.8 to

1 (see Section 4.3).

2. The distance measures show convergence to approximate correctness at the pre-

dicted points.

3. Irregularities may indicate points of interest in the behaviour of the algorithm,

worthy of further investigation (see Section 5.4.2).

4. a′B was 1 for each model, indicating that none of the models allowed behaviour not

found in the logs.

Note that close convergence to predictions is possible, because the distribution to be learnt

is known in advance, and test data drawn from that distribution. Also, exact formulae

rather than bounds are used to predict the numbers of traces.

The graph in Figure 5.15(b) shows the probability of mining an approximately correct

model, measured by f exceeding 0.9, 0.95 and 0.99, and dBhat not exceeding 0.1, 0.05 and

96

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

M
e

a
s
u

re
 o

r
D

is
ta

n
c
e

Fitness
Beh. Approp. a’

B

d
2

d
Bhat

d
JSD

(a) Average Metrics plotted against Number of Traces

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

P
ro

b
a

b
ili

ty
 o

f
A

p
p

ro
x
im

a
te

ly
 C

o
rr

e
c
t

M
o

d
e

l

Fitness f ≥ 0.9

Fitness f ≥ 0.95

Fitness f ≥ 0.99

d
Bhat

 ≤ 0.1

d
Bhat

 ≤ 0.05

d
Bhat

 ≤ 0.01

(b) Probability of approximately correct Model.

Figure 5.15: Results showing Convergence of Alpha to the Ground Truth, mining from
Logs of increasing size simulated from the Order Process Running Example (PDFA A0).

97

Probability of Success 50% 90% 95% 99%

Predicted/Actual Traces 11/10 25/23 31/29 44/45

f 0.992 0.998 1.000 1.0
a′B 1.0 1.0 1.0 1.0

1− d2 0.935 0.974 0.984 1.0
1− dBhat 0.866 0.950 0.978 1.0
1− dJSD 0.962 0.991 0.998 1.0

Table 5.1: Metrics and Numbers of Traces at Threshold Points for mining the Order
Process Running Example (Petri Net Figure 3.1, PDFA A0 Figure 2.5).

Probability of Success 50% 90% 95% 99%

Predicted/Actual Traces 37/− 63/65 75/75 100/115

f 0.984 0.989 0.998 1.0
a′B 0.962 0.984 0.998 1.0

1− d2 0.951 0.983 0.997 1.0
1− dBhat 0.766 0.881 0.980 1.0
1− dJSD 0.768 0.903 0.983 1.0

Table 5.2: Metrics and Numbers of Traces at Threshold Points for mining Larger Example
(Petri Net Figure 5.16, PDFA A3 Figure 5.17).

0.01. A single data point is calculated for each size log; the percentage of mined models

for which f was above, or dBhat was below the threshold. The probability distance (solid

lines) is less sensitive to the threshold used (all three lines are super-imposed), due to

operating over a greater range, whereas f (dashed lines) indicates convergence too soon.

Table 5.1 shows the predicted and actual numbers of traces, and corresponding values

of the metrics.

5.4.2 Analysis of Large Example Process

The running example is rather simple. To validate the methods and probabilistic analysis

of Alpha, we used a larger example (Petri net Figure 5.16, ‘ground truth’ PDFA Figure

5.17), which permits more detailed analysis and interpretation. This model is a sound

WF-net, and so is mineable by Alpha. It shows the handling of a request placed with

a technical support call centre. After the call is received (activity i), three streams of

98

Figure 5.16: Petri Net N3 representing more complex Example Process with representative
Process Sub-Structures and ‘Extra’ Parallel Relations.

activity run in parallel, synchronised at η1. Next either g or h occurs, followed by a series

of nested choices (e.g. various actions to resolve the call), before the call is closed (o).

This model was artificially designed as a realistic process with a mix of simple, com-

pound and nested sub-structures, and ‘extra’ parallelism (parallel activities not part of a

split or join sub-structure). Splits in the PDFA were allocated uniform probabilities. The

PDFA was simulated to produce event logs from 5 to 150 traces in increments of 5 traces.

Table 5.3 shows for each sub-structure in the model, the number of traces needed

for 95% probability of mining the sub-structure correctly. ’Global’ indicates the number

of traces calculated using the ground truth probabilities for each sub-string, e.g. π(km)

in the XOR split G. ‘Local’ gives the number of traces using the local probabilities in

1a ‘hidden’ transition, not recorded in the log, which simplifies the depiction of the net. Alpha produces
a behaviourally equivalent net without η.

99

Figure 5.17: PDFA A3 corresponding to Petri Net N3, with the addition of Transition
Probabilities, used for producing Simulated Event Logs.

each sub-structure, assuming traces that include that part of the model, e.g. π(km|→k).

‘Context’ shows the number of traces given the sub-structure in its context in the model,

i.e. for G, only π(→k) of the traces are expected to reach k, so the number of traces

estimated in the ‘Local’ column is divided by π(→k).

The graphs (Figure 5.18) again show convergence as predicted (Table 5.2). The shapes

of the graphs suggest correspondence with the numbers of traces predicted for discovery

of sub-structures (Table 5.3), e.g. the ‘plateaus’ between 30 − 35, 40 − 45, and 50 − 55

traces. By 30 traces a = f (and XOR split H) will be mined correctly, with high

confidence. By 40 traces all the ‘extra parallelism’ will be, and by 50 traces A also should

be discovered, giving confidence that most of the first (complex) part of the model will

be correct. By 60 traces, with 95% confidence all sub-structures will be mined correctly.

100

Structure Global Local Context

A: AND/XOR split 49 49 49
B: Sequence 5 5 5
C: XOR join 13 6 6
a= f, c= e, d = e ‘ 26, 51, 60 26, 34, 36 26, 34, 36
D: AND/XOR join/split 56 56 56
E: XOR join 6 1 1
F,G,H : XOR splits 6, 13, 28 6, 6, 6 6, 12, 24
I: Sequence 23 1 9
J : XOR join. 28 1 1

Table 5.3: Predicted Numbers of Traces to mine Sub-Structures in N3, Bold shows the
Minimum Predictions for each Structure.

Between these points (35, 45, 55 traces) no additional structures are expected to be mined

correctly. Fitness and Behavioural Appropriateness are both below 1 at low numbers of

traces, indicating that the mined models do not fit all the traces in the log, and are also

too general, allowing behaviour not seen in the log. This is captured in the shape of the

distance graphs at low numbers of traces; showing that convergence is initially slow.

5.5 Chapter Summary

We applied the framework for analysing process mining algorithms (Chapter 4), to the

Alpha algorithm [156]. We developed formulae for the probability of correct mining

by Alpha of basic process structures, and extended these to a method for predicting

the number of process traces needed for confidence in correctly mining arbitrary process

models. Experimentation on representative process models showed the accuracy of these

predictions, and that the method gives insight into the learning behaviour of the algorithm.

Alpha is relatively simple and makes many assumptions such as correct recording of

the traces (no ‘noise’), and that the underlying process can be modelled by a Structured

Workflow Net, but the same method can in principle be applied to any process mining

algorithm. We next investigate in the same manner a more practically useful algorithm.

101

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

M
e

a
s
u

re
 o

r
D

is
ta

n
c
e

Fitness
Beh. Approp. a’

B

d
2

d
Bhat

d
JSD

(a) Average Metrics plotted against Number of Traces

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

P
ro

b
a

b
ili

ty
 o

f
A

p
p

ro
x
im

a
te

ly
 C

o
rr

e
c
t

M
o

d
e

l

Fitness f ≥ 0.9

Fitness f ≥ 0.95

Fitness f ≥ 0.99

d
Bhat

 ≤ 0.1

d
Bhat

 ≤ 0.05

d
Bhat

 ≤ 0.01

(b) Probability of approximately correct Model.

Figure 5.18: Results showing Convergence of Alpha to the Ground Truth, mining from
Logs of increasing size simulated from Larger Process Model (PDFA A3).

102

CHAPTER 6

CASE STUDY: ANALYSIS OF THE HEURISTICS

MINER ALGORITHM

In the previous chapter we analysed a simple process mining algorithm, the Alpha Algo-

rithm [156], under our framework for analysis of process mining algorithms introduced in

Chapter 4. We showed that by breaking a process model into basic structures, we can

use the probabilities in these structures to predict the number of process traces needed

for Alpha to correctly mine them, and thus the full model. We showed that using this

probabilistic view of process mining gives useful insights into the learning process.

Alpha is an early, simple algorithm, initially created to prove that a certain class of

processes could be mined, and to explicitly deal with concurrent activities. In this chapter

we apply the framework to the analysis of a more practically useful mining algorithm, the

Heuristics Miner [194]. This algorithm is so called because it uses a number of parameters

and thresholds to control the complexity of the mined model. The algorithm is quite

simple, but as we will see, this masks complex probabilistic behaviour.

An abridged version of the material in this chapter was first presented in [189].

6.1 A Probabilistic Analysis of the Heuristics Miner

The Heuristics Miner algorithm was described in Chapter 3. The key to the behaviour

of the algorithm is the Dependency Measure (Equation 3.1, Chapter 3) (DM), used to

103

indicate the strength of causal relationship between pairs of activities, and thus which

arcs to include in the model. We first investigate the behaviour of the DM, then how it

is used to construct basic process structures.

6.1.1 The Dependency Measure

Since we assume no cycles, a sub-string w ∈ Σ+ occurs zero or one times in any trace

in W, with probability π(w). N(w), the number of times w occurs in event log W of n

traces, is Binomially distributed (Chapter 4),

Qn

(

N(w)
)

= Bin
(

π(w), n
)

.

We also write Qn

(

N(w), N(v)
)

, where v ∈ Σ+, for the joint probability of N(w) and N(v)

in the event log, and Qn

(

N(w)|N(v)
)

for the conditional probability of N(w) occurrences

of sub-string w, given N(v) occurrences of sub-string v in W.

The DM (3.1) between two activities a and b is a random variable which we can write

as a function τ of two such counts obtained from W,

DMab = τ
(

N(ab), N(ba)
)

=
N(ab)−N(ba)

N(ab) +N(ba) + 1
. (6.1)

The expected value of DMab obtained from a log is with respect to Qn

(

N(ab), N(ba)
)

,

EQn(N(ab),N(ba))[DMab] =

n
∑

N(ab)=0

n
∑

N(ba)=0

Qn

(

N(ab), N(ba)
)

τ
(

N(ab), N(ba)
)

.

By simulation and numerical integration it can be demonstrated that

EQn(N(ab),N(ba))[DMab] = EQn(N(ab),N(ba))

[N(ab)−N(ba)

N(ab) +N(ba) + 1

]

=
EQn(N(ab))[N(ab)]− EQn(N(ba))[N(ba)]

EQn(N(ab))[N(ab)] + EQn(N(ba))[N(ba)] + 1
=

nπ(ab)− nπ(ba)
nπ(ab) + nπ(ba) + 1

,

i.e. expected value of DMab can be obtained from expected values of the sub-string counts.

104

Activities Which Occur in One Order Only

If π(ai) = 0 and π(ia) ∈]0, 1[, then activities i and a can only occur in one order, i.e.

only ia may be seen in event log W. Qn

(

N(ia), N(ai)
)

= 0 for N(ai) 6= 0 and

EQn(N(ia),0)[DMia] =
n
∑

N(ia)=0

Qn

(

N(ia)
)

τ
(

N(ia), 0
)

=
nπ(ia)

nπ(ia) + 1
.

EQn(N(ia),0)[DMia] increases monotonically with growing n, from 0 to 1, e.g.

EQn(N(ia),0)[DMia] = 0, when n = 0,

lim
n→∞

EQn(N(ia),0)[DMia] =
π(ia)

π(ia)
= 1.

Activities Which Occur in Either Order

Next consider two activities a and b which may occur in either order (which Heuristics

Miner interprets as occurring in parallel). Without loss of generality let 0 < π(ab) ≤

π(ba) < 1. Since we do not consider cycles, ab and ba cannot occur together in a trace,

and π(ab) + π(ba) ≤ 1. Then EQn(N(ba),N(ab))[DMba] converges to some d ∈ [0, 1] as n

increases:

EQn(N(ba),N(ab))[DMba] = 0, when n = 0, or n > 0 and π(ab) = π(ba),

lim
n→∞

EQn(N(ba),N(ab))[DMba] =
π(ba)− π(ab)
π(ba) + π(ab)

= d ∈ [0, 1].

For such DMia and DMba there will always exist some number of traces n′ ≥ 0 above

which EQn(N(ia),0)[DMia] > EQn(N(ba),N(ab))[DMba] such that for a log of n traces,

if n ≤ n′ then EQn(N(ia),0)[DMia] ≤ EQn(N(ba),N(ab))[DMba],

if n > n′ then EQn(N(ia),0)[DMia] > EQn(N(ba),N(ab))[DMba].

Since Dependency Measures are random variables, we are not interested in n′ but

105

Figure 6.1: Illustration of Dependency Measures A = DMia, B = DMba and their Marginal
Distributions gA, gB and Joint Density gAB. Shaded Area illustrates γn(DMia > DMab).

probabilities such as γn(DMia > DMba), that DMia obtained from a given event log W

exceeds DMba from the sameW. This is represented by the shaded area in Figure 6.1. As

a shorthand let A = DMia, B = DMba, and let gA be the Probability Density Function

(PDF) of A, gB the PDF of B, and gAB the joint density. Likewise GA (etc.) for the

corresponding Cumulative Distribution Function (CDF),

GA(A) =

∫ t=A

t=−∞

gA(t) dt.

Then

γn(A > B) =

∫ A=+∞

A=−∞

∫ B=A

B=−∞

gAB(A,B) dA dB.

If DMia and DMba are independent,

γn(A > B) =

∫ A=+∞

A=−∞

∫ B=A

B=−∞

gA(A)gB(B) dA dB =

∫ A=+∞

A=−∞

gA(A)GB(A) dA. (6.2)

106

Probability Distributions for Dependency Measures

We next investigate the form of the probability distributions followed by Dependency

Measures. This will be used in subsequent sections in considering the requirements for

correctly mining acyclic process structures (such as sequences of activities, XOR or AND

splits and joins), including correct ordering of DMs between activities within structures.

To simplify notation, let X = N(ba), Y = N(ab), Z = X − Y , W = X + Y + 1, then

the Dependency Measure (DM),

DMba =
N(ba) −N(ab)

N(ba) +N(ab) + 1
=

X − Y
X + Y + 1

=
Z

W
, (6.3)

follows a discrete distribution which is the ratio of two random variables Z and W . Z is

the difference between two Binomial random variables X and Y , W the sum of X and

Y . The distribution of DMba is complex and difficult to model analytically. However,

if we assume the conditions are satisfied to approximate X and Y by Gaussians, then

Z and W can also be approximated by Gaussians and we can model the distribution

of the Dependency Measure as the ratio of two Gaussians, following the framework of

Marsaglia [100, 101] and Cedilnik et al. [34].

Marsaglia shows that the ratio of arbitrary Gaussian random variables follows a dis-

tribution which is the product of a standard centred Cauchy distribution and a bimodal

distribution, and is itself difficult to handle analytically [100]. Marsaglia presents empir-

ical analysis of the types of distributions which result from ratio variables with various

different means and variances. It turns out that for the variables which we encounter in

the Dependency Measures (means in the range [−1, 1]), the distribution will have only one

significant mode. The distributions of the Dependency Measures vary from approximately

Gaussian in shape, to significantly skewed. Figure 6.2 shows two examples.

Let DMba be a Dependency Measure with CDF Gba(t) = γn(DMba ≤ t), PDF gba(t) =

G′
ba(t). X and Y are outcomes of a Multinomial distribution, which we marginalise

and approximate with Gaussians with means µX = nπ(ba), µY = nπ(ab) and variances

107

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
0

5

10

15

20

25

30

35

Dependency Measure

DM

ia

DM
ba

N Approx DM
ia

N Approx DM
ba

EQn(N(ia),N(ai))[DMia]
EQn(N(ba),N(ab))[DMba]

Figure 6.2: Example DM Distributions DMia (π(ia) = 0.05, π(ai) = 0), DMba (π(ba) =
0.95, π(ab) = 0.05), n = 320, also showing Gaussian Approximation (Section 6.2.5).

vX = nπ(ba)
(

1 − π(ba)
)

, vY = nπ(ab)
(

1 − π(ab)
)

respectively. Let µz, µw and vz, vw be

the means and variances of the numerator (Z) and denominator (W) of the DM:

µz = µX − µY , µw = µX + µY + 1,

vz = vX + vY − 2cov(X, Y), vw = vX + vY + 2cov(X, Y),

where cov(X, Y) = nπ(ab)π(ba) is the covariance between X and Y given by the Multi-

nomial distribution. We also require the covariance between Z and W :

Lemma 1. The covariance c between Z and W is c = vX − vY .

Proof. Taking the expectations with respect to distribution Qn

(

N(ba), N(ab)
)

,

c = E[
(

Z − E[Z]
)(

W − E[W]
)

]

= E[
(

X − Y − E[X − Y]
)(

X + Y + 1− E[X + Y + 1]
)

].

Multiplying out and simplifying leads to

c = E[X2 − Y 2 − 2XE[X] + 2Y E[Y] +
(

E[X]
)2 −

(

E[Y]
)2
]

= E[
(

X − E[X]
)2 −

(

Y − E[Y]
)2
] = vX − vY .

108

Then following [100], the CDF and PDF of the DM are

Gba(t) = Φ
(tµw − µz√

vz − 2tc+ t2vw

)

, and

gba(t) = G′
ba(t) = φ

(tµw − µz√
vz − 2tc+ t2vw

)µwvz − cµz + (µzvw − cµw)t

(vz − 2tc+ t2vw)
3

2

, (6.4)

where

φ(t) =
e−

1

2
t2

√
2π

, Φ(x) =

∫ x

−∞

φ(t)dt =
1

2

[

1 + erf
(t√

2

)]

. (6.5)

Figure 6.2 illustrates the distributions followed by two DMs, DMia and DMba. The

taller peak is DMia (mean tends to 1 with increasing n), the wider peak is DMba (mean

tends to 0.9). Equations (6.4, 6.5) have some similarity with the formula for a Gaussian

centred at the expected value of the DM, but with variance dependent on t, which explains

the skew of the distribution. The variance also depends on n via the variances of the

Binomial random variables X and Y . As n increases, not only do the DMs tend to their

limiting values (from an infinitely large event log), but their variances reduce. This has

the effect of ‘separating’ the two distributions, concentrating the joint distribution to

one side of the DMia = DMba line (see Figures 6.4, 6.6 later). The lighter curves are

Gaussian approximations to the distributions (Section 6.2.5), illustrating varying skew of

distributions of different DMs.

The formulae for the distributions (6.4) are difficult to work with. The joint distri-

bution even for two Dependency Measure variables, even assuming independence (6.2),

cannot be integrated analytically.

Often, independence between the Dependency Measures cannot be assumed, and fur-

ther approximations will be needed. In the next subsections we introduce methods and

approximations for obtaining the probability of correct mining by Heuristics Miner of basic

process structures, from noise-free logs. We consider only acyclic structures: sequences,

exclusive-OR (XOR) and parallel (AND) splits.

109

6.2 Basic Process Structures

Business processes tend to be well structured, see e.g. [133,154]. In Chapter 4 we described

representations of acyclic process structures in our probabilistic framework. In this section

we discuss the requirements for Heuristics Miner to correctly mine these basic acyclic

process structures, assuming noise-free logs.

6.2.1 Sequences

As with the Alpha algorithm (Chapter 5), if activities a and b form a sequence in the

model then if a occurs, it is immediately followed by activity b, and no other. In the

simplest case that no other activity c can occur in parallel with a or b, neither ac nor cb is

possible in W. So if at least one trace contains ab, DMab will be the only positive DM in

the row for a and the column for b in the Dependency Matrix. No traces will include ba.

since we assume no noise. The UH parameter ensures arc a → b is created, regardless

of the other parameters. The probability of discovery of the sequence (over n traces) is

therefore the complement of the probability that every trace in W will not contain ab,

PHM,n(a →n b) = 1−
(

1− π(ab)
)n
. (6.6)

If an earlier XOR split means the sequence is not always executed, then π(ab) < 1. If

other parts of the model may execute in parallel, then other activities may ‘interfere’ in

recording ab in W, e.g. acb might be recorded, reducing π(ab). This suggests that other

structures may be mined instead of sequence ab, such as a split from a → (x# b), and

that (6.6) is an oversimplification. We return to this in Chapter 8, Section 8.2.

6.2.2 Splits and Joins

In the next sub-sections we consider mining exclusive and parallel splits and joins. Re-

call from Section 3.2.2 that Heuristics Miner uses an ‘AND measure’ and corresponding

110

threshold to differentiate exclusive (XOR) and parallel (AND) splits and joins. In this

chapter we do not consider these as they are only involved when event logs are highly

‘noisy’ (i.e. a large proportion of the traces in the log do not truly represent the un-

derlying process). When we consider noise-free logs (this chapter) or limited amounts

of noise (Chapter 8), the main requirement for determining the types of splits and joins

is rather that the Dependency Measures are ordered correctly, ensuring that the correct

causal links (those supported by the underlying model) are re-created in the Dependency

Graph.

6.2.3 Exclusive (XOR) Splits and Joins

An m-way XOR split occurs where there is a choice between m mutually exclusive paths

through the model after activity a, each path starting with an activity b′ ∈ {bi|1 ≤ i ≤ m}.

It is specified in a similar way as for Alpha. Similarly to discovery of a sequence, at least

one trace in W must contain ab1, ab2. and so on. Since there is no noise, we may assume

π(b1a) = π(b2a) . . . π(bma) = 0, and likewise none of the activities bi will occur together

in a trace, i.e. π(bibj) = 0, ∀ 1 ≤ i, j ≤ m. Each bi can only have a as a predecessor, so

the PO, RTB and DT parameters are again not involved. Therefore in a similar way as

for Alpha (Section 5.2.4), the probability of discovery of the split from a log of n traces is

PHM,n

(

a →n (b1 # . . . # bm)
)

= 1−
∑

1≤i≤m

(

1− π(abi)
)n

+
∑

1≤i<j≤m

(

1− π(abi)− π(abj)
)n−

. . .+ (−1)m
(

1−
∑

1≤i≤m

π(abi)
)n
. (6.7)

Joins are treated in the same way.

6.2.4 2-Way Parallel Splits (AND2)

A two way parallel split (‘AND2’, Figure 6.3a) occurs where two paths through the model

proceed in parallel, following activity i. Let one path start with activity a, the other with

111

Figure 6.3: a) AND2 True Structure, and Failures Due to b) Missing Path, c) Extra Arc,
or d) Interpreting as XOR Structure.

b. We consider first the simplest case, where no other parts of the model occur in parallel,

i.e. π(ia) + π(ib) = π(→ i) ∈ [0, 1], ignoring any activities that follow a, b in the parallel

paths. Only two part traces, iab, iba, are possible and N(ab) = N(ia), N(ba) = N(ib) =

m−N(ia), where m = N(ia) +N(ib). With no noise, N(ai) = N(bi) = 0. So

DMia = τ
(

N(ia), 0
)

=
N(ia)

N(ia) + 1
, (6.8)

DMba = τ
(

N(ba), N(ab)
)

= τ
(

m−N(ia), N(ia)
)

=

(

m−N(ia)
)

−N(ia)

(m−N(ia)) +N(ia) + 1
=
m− 2N(ia)

m+ 1
. (6.9)

Without loss of generality we assume π(ib) > π(ia), so EQn(ab,ba)[DMab] < 0 and we can

assume DMib > DMab.

Consider sub-matrix MS of Dependency Matrix M relevant to activities i, a, b, and

how its elements must relate to each other to correctly discover the arcs for the AND2

split. As the number n of traces in W, increases,

lim
n→∞

MS =

activity i a b

i 0 1 1

a −1 0 −P

b −1 P 0

,

in which P = lim
n→∞

EQn(N(ba),N(ia))[DMba] ∈ [0, 1].

To correctly mine (Figure 6.3(a)) the split from the log we require

1. DMia > DMba: otherwise DMba would be the largest in the a column of the depen-

112

dency matrix, and b would be chosen instead of i as the predecessor of a1:

if MS =

activity i a b

i 0 DMia < DMba → 1

a n/a 0 −DMba

b n/a DMba > DMia 0

then the mined model will contain iba in sequence (Figure 6.3(b)), and not support

the alternate order iab.

2. Either DMia > DMba +RTB, N(ba) < PO or DMba < DT (see Equations (3.2) –

(3.6)): otherwise extra arc b → a will be retained (Figure 6.3(c)).

3. Both N(ia) > PO and N(ib) > PO: otherwise the split will be XOR rather than

parallel (Figure 6.3(d)).

We now consider estimating the probability of these requirements being met, given

event log W of n traces. From (6.8)–(6.9), DMia and DMba both depend on N(ia) only,

so DMba is functionally dependent on DMia and the joint distribution of DMia and DMba

lies on a line, illustrated in Figure 6.4. We show in proposition 7 that the dependency is

negative, i.e. DMba decreases with increasing DMia, so the slope of the curve is negative.

Proposition 7. DMba is monotonically decreasing with increasing DMia.

Proof. Differentiating DMia with respect to N(ia) shows that DMia increases with N(ia).

∂ DMia

∂N(ia)
=

1
(

N(ia) + 1
)2 > 0 for N(ia) > 0.

Similarly, DMba decreases with increasing n, independent of N(ia):

∂ DMba

∂N(ia)
=
−2
n + 1

< 0.

1Recall that using ‘Use All-Activities-Connected’ Heuristic (UH), a predecessor and successor will be
chosen for each activity, except for the start and end activities.

113

0.7 0.75 0.8 0.85 0.9 0.95

0.7

0.75

0.8

0.85

0.9

0.95

DM
ia

D
M

b
a

AND2 Samples (n=250)

AND2 Distribution (n=250)
DM

ia
= DM

ba

DM
ia

= DM
ba

± 0.05

Figure 6.4: Illustration of DMba plotted against DMia, for Samples from an Example
‘AND2’ Distribution (π(ia) = 0.05, π(ib) = 0.95, n = 250 Traces). The Overlay illustrates
the Curve on which the Distribution lies, and the Areas under the Marginal DMia and
DMba Distributions for which γn(DMia > DMba) (Equation 6.12).

Therefore as N(ia) increases, DMia increases and DMba decreases, so DMba decreases with

increasing DMia, i.e. the slope of the curve is always negative.

Thus we can calculate γn(DMia > DMba) by equating the right hand sides of Equations

(6.8) and (6.9) to obtain the value N(ia)′ of N(ia) for which DMia = DMba,

N(ia)′

N(ia)′ + 1
=
m− 2N(ia)′

m+ 1

⇒ N(ia)′(m+ 1) =
(

N(ia)′ + 1
)(

m− 2N(ia)′
)

⇒ 2N(ia)′2 + 3N(ia)′ −m = 0, (6.10)

which has only one valid solution for N(ia)′ ∈ [0, m], for which the DMs are equal,

N(ia)′ = 1
4

(

− 3 +
√
8m+ 9

)

.

114

For every realisation of N(ia) which is greater than N(ia)′, DMia > DMba, i.e.

γn(DMia > DMba) =
n
∑

N(ia)>N(ia)′

Qn

(

N(ia)
)

. (6.11)

Since DMia increases with N(ia), this is equivalent to marginalising out DMba, effectively

projecting the joint distribution in Figure 6.4 onto the DMia axis, and integrating the

marginal distribution using DM′
ia obtained from N(ia)′, e.g.

γn(DMia > DMba) =

∫ ∞

t=DM′
ia

gia(t)dt

= 1− Φ
(DM′

ia µw − µz
√

vz − 2cDM′
ia+vw DM′2

ia

)

. (6.12)

This is illustrated by the shaded areas in Figure 6.4.

The second requirement for correctly mining the split is to ensure the b → a arc is

not retained, by meeting conditions (3.4)–(3.6). The method above extends to calculating

requirement (3.6), γn(DMia > DMba+RTB), equivalent in Figure 6.4 to shifting the

DMia = DMba line to the right by RTB, making it harder to concentrate the distribution

to the right of the line by reducing its variance with increasing n. Let R = RTB,

DMia = DMba+R =
m− 2N(ia)′

m+ 1
+
R(m+ 1)

m+ 1

⇒N(ia)′(m+ 1) =
(

N(ia)′ + 1
)(

m− 2N(ia)′ +R(m+ 1)
)

⇒ 2N(ia)′2 +
(

3n− R(m+ 1)
)

N(ia)′ −
(

m+R(m+ 1)
)

= 0.

From which N(ia)′ is obtained to calculate the probability from (6.11) as before.

The probabilities of meeting the DT and PO requirements (3.4) are obtained from

γn
(

DMba < DT
)

=

∫ DT

t=−∞

gba(t)dt,

γn
(

N(ba) < PO
)

= γn
(

N(ib) < PO
)

=
PO−1
∑

N(ib)=1

Qn

(

N(ib)
)

, (6.13)

115

The final requirement is N(ia) > PO and N(ib) > PO:

γn
(

N(ia) > PO ∧N(ib) > PO
)

=
n
∑

N(ia)=PO+1

n
∑

N(ib)=PO+1

Qn

(

N(ia), N(ib)
)

,

i.e. for n traces drawn from a multinomial distribution with three outcomes, where a

trace contains either ia or ib (not both), or neither, more than PO traces contain ia, and

more than PO contain ib.

Combining the previous requirements,

PHM,n

(

i →n (a ‖ b)
)

= γn(DMie > DMfe)

× γn
(

N(fe) < PO ∨ DMfe < DT ∨ |DMie−DMfe | > RTB
)

× γn
(

N(ia) > PO ∧N(ib) > PO
)

, (6.14)

where e, f ∈ {a, b}, e 6= f such that EQn(ef,fe)[DMef] > 0, i.e. obtain the probability using

the ‘more difficult’ requirement, the Dependency Measure which is likely to be positive.

Equation (6.14) assumes the requirements to be independent, whereas in reality there

will be some positive correlation (e.g. as n increases, the probabilities of meeting the re-

quirements will all increase). The calculated probability of correct mining will therefore be

underestimated. In practice we identify the number of traces such that each requirement

is met with probability at least 1− ǫ (for small 0 < ǫ≪ 1), and therefore PHM,n ≥ 1− ǫ.

Experimental Evaluation of AND2 Method

Table 6.1 (full version in Appendix Table D.1) records the predicted numbers of traces

using the described methods, for γn(DMia > DMba) > 0.95, for π(ia), π(ib) ∈ [0, 1] in

intervals of 0.05. The table also shows the number of traces for both N(ia) and N(ib)

to exceed PO, and for a single DM to exceed DT. PO is the the determining factor in

mining a split (as AND2 rather than XOR) except for highly imbalanced splits.

This is seen in Figure 6.5(a), which shows the number of traces to meet the combined

116

π(ib) π(ia) = 0.05, 0.1, . . . , 1.0

0.05 109 46 28 20 15 12 9 8 6 . . . 1
0.1 133 53 31 21 16 12 10 8 7
. . .

0.55 299 99 53 34 24 18 14 11 8
316 104 55 35 25 18 14 11
332 108 57 36 25 19 15
348 113 59 38 26 20
364 117 61 39 27
379 121 63 40
395 126 65
410 130

0.95 425

PO = 10 311 154 102 76 60 49 42 36 32 28 . . .
PO = 5 181 89 59 44 34 28 24 21 18 16 . . .

DT = 0.9 306 151 99 74 58 48 40 35 30 27 . . .

Table 6.1: Top: Predicted Number of Traces for AND2 γn(DMia > DMba) ≥ 0.95, Middle:
γn
(

N(ia) > PO ∧N(ib) > PO
)

≥ 0.95, Bottom: γn(DMia > DT) ≥ 0.95.

requirements (6.14). At the peaks, the extra arc remains until the RTB requirement is

met. Reducing PO (Figure 6.5(b)) enables discovery in fewer traces except at these peaks,

which then extend to more cases where one probability is small. Reducing RTB (Figure

6.5(c)) reduces the number of traces for γn(DMia > DMba +RTB) > 0.95 at these peaks.

Simulation shows that these predictions are slight overestimates (Appendix Table D.2),

so represent a safe lower bound for mining.

6.2.5 3-Way Parallel Splits (AND3)

For a 3-way parallel split (‘AND3’) from activity i to paths beginning a, b or c, there

are now 6 possible sequences of activities, iabc, iacb, ibac, ibca, icab, icba, and 3 pairs of

Dependency Measure requirements: (i) DMia > DMba and DMib > DMab, (ii) DMia >

DMca and DMic > DMac, and (iii) DMib > DMcb and DMic > DMbc. As for AND2, in

each of these pairs, one DM is the negation of the other, so only three requirements need

be satisfied, plus the requirements from Equations (3.4)–(3.6) to ensure the extra arcs

b → a or a → b, etc. are not created, and N(ia), N(ib), N(ic) > PO.

117

0

0.5

1 0 0.2 0.4

0

200

400

600

800

1000

#
 t

ra
c
e
s

(a)

0

0.5

1 0 0.2 0.4

0

200

400

600

800

1000

#
 t

ra
c
e
s

(b)

0

0.5

1 0 0.2 0.4

0

200

400

600

800

1000

#
 t

ra
c
e
s

(c)

Figure 6.5: Predicted Number of Traces for PHM,n

(

i → (a ‖ b)
)

≥ 0.95 (Equation 6.14),
plotted against π(ia), π(ib) ∈ [0, 1]. (a) PO = 10,DT = 0.9,RTB = 0.05, (b) reducing
PO makes Discovery easier except at the Peaks, where RTB determines Discovery, (c)
reducing RTB reduces the Height of the dominating Peaks.

We continue to consider γn(DMia > DMba). Now N(ba) is the sum of N(ibac) and

N(icba) and likewise, N(ab) = N(iabc) +N(icab). The counts N(ia), N(ibac), N(ibca),

N(icab), N(icba) can be considered as the 5 outcomes of a Multinomial distribution with

probabilities π(ia), π(iabc), etc. and in total m traces which pass through the split. We

redefine Qn

(

N(ia)
)

as the probability of ia occurring N(ia) times in event log W under

this Multinomial distribution, Qn

(

N(ibac)|N(ia)
)

for the conditional probability of ibac

occurring N(iabc) times given N(ia) occurrences of ia, and Qn

(

N(ia), N(ibac)
)

as the

joint probability of N(ia) and N(iabc). We write c
(

N(ia), N(iabc)
)

for the correlation

between N(ia) and N(iabc), etc.

Lemma 2. Correlation c
(

N(ia), N(ibac)
)

between N(ia) and N(ibac) is negative,

c
(

N(ia), N(ibac)
)

= −
√

π(ia) · π(ibac)
(1− π(ia))(1− π(ibac)) < 0,

Proof. N(ia) and N(ibac) are two outcomes of a Multinomial distribution, similarly

c
(

N(ia), N(ibca)
)

, c
(

N(ia), N(icab)
)

, c
(

N(ia), N(icba)
)

.

Lemma 3. Correlation c
(

N(ia), N(iabc)
)

between N(ia) and N(iabc) is positive,

c
(

N(ia), N(iabc)
)

=
π(iabc)

π(ia)
> 0.

Proof. ia is followed by b with probability π(b|ia), otherwise by c. Otherwise it is not

118

representable in our framework. The correlation is the conditional probability of the trace

containing iab given that it contains ia.

We have the Dependency Measures

DMia = τ
(

N(ia), 0
)

,

DMba = τ
(

N(ba), N(ab)
)

= τ
(

N(ibac) +N(icba), N(iabc) +N(icab)
)

.

DMba is conditionally dependent on DMia due to the correlations between string counts.

Correlation c
(

N(ia), N(iabc)
)

gives the strength of the linear relation between N(ia)

and N(iabc). Therefore given observed N(ia) = N(ia)′ we obtain a conditional expected

value for N(iabc). Let δia be the difference between the expected N(ia) and the observed

value N(ia)′,

δia = N(ia)′ − EQn(N(ia))[N(ia)].

Then the expected value of N(iabc) conditional on N(ia) = N(ia)′ is

EQn(N(iabc)|N(ia)′)[N(iabc)] = EQn(N(iabc))[N(iabc)] + c
(

N(ia), N(iabc)
)

δia

= EQn(N(iabc))[N(iabc)] + c
(

N(ia), N(iabc)
)(

N(ia)′ − EQn(N(ia))[N(ia)]
)

,

(6.15)

and we obtain conditional expected values of N(ba) and N(ab),

F (ab) = EQn(N(ab)|N(ia)′)[N(iab)] = EQn(N(iabc)|N(ia)′)[N(iabc)] + EQn(N(icab)|N(ia)′)[N(icab)],

(6.16)

F (ba) = EQn(N(ba)|N(ia)′)[N(iba)] = EQn(N(ibac)|N(ia)′)[N(ibac)] + EQn(N(icba)|N(ia)′)[N(icba)].

(6.17)

Writing the expected value of DMba given DMia calculated from N(ia)′, the observed

119

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

DM
ia

D
M

b
a

AND3 Samples

AND2 Distribution
DM

ia
= DM

ba

DM
ia

=DM
ba

±0.05

A

B

Figure 6.6: Example ‘AND3’ distribution for π(ia) = 0.05, π(ib) = 0.9, π(ic) = 0.05,

n = 250 Traces, π(b|ia) ∝ π(ib), i.e. π(b|ia) = π(ia)
1−π(ia)

, etc. For A and B see Text.

value of N(ia),

EQn(N(ba),N(ab)|DMia)[DMba] = EQn(N(ba),N(ab)|N(ia)′)[DMba]

=
n
∑

N(ba)=0

n
∑

N(ab)=0

Qn

(

N(ba), N(ab)|N(ia)′
)

τ
(

N(ba), N(ab)
)

=
n
∑

N(ba)=0

n
∑

N(ab)=0

Qn

(

N(ba)|N(ia)′
)

.Qn

(

N(ab)|N(ba), N(ia)′
)

τ
(

N(ba), N(ab)
)

.

which, as in Section 6.1.1, we can rewrite

EQn(N(ba),N(ab)|DMia)[DMba] = τ
(

F (ba), F (ab)
)

,

again confirmed by simulation and numerical integration. This gives a functional depen-

dency between DMia and the conditional expected value of DMba, illustrated by the curve

in Figure 6.6. We next show the dependency to be negative.

Proposition 8. For all relevant DM ‘requirements’, EQn(N(ba),N(ab)|DMia)[DMba] is nega-

120

tively related to DMia, i.e. as DMia increases, EQn(N(ba),N(ab)|DMia)[DMba] decreases.

Proof. The proof is similar to that for Proposition 7 and given in full in Appendix A.2.

We therefore approximate γn(DMia > DMba) using the ‘AND2 method’ described

for 2-way parallel splits, Section 6.2.4, Equations (6.10)–(6.12). Effectively, the joint

distribution of DMia and DMba is projected onto the line given by plotting DMia against

EQn(N(ba),N(ab)|DMia)[DMba] for all values of N(ia) ∈ [0, m], ignoring variation in DMba.

Figure 6.6 shows an example distribution. For the part of the distribution labelled A,

DMba is less than DMia but will be counted as larger. This will be approximately equal

to part B for which the reverse will be the case.

Using the following constants defined in the proof (Appendix Section A.2.1),

D1 = m
[

π(ibac) + π(icba)− π(iabc)− π(icab)− π(ia)
(

c
(

N(ia), N(ibac)
)

+

c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
))]

,

D2 = c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
)

,

D3 = m
[

π(ibac) + π(icba) + π(iabc) + π(icab)− π(ia)
(

c
(

N(ia), N(ibac)
)

+

c
(

N(ia), N(icba)
)

+ c
(

N(ia), N(iabc)
)

+ c
(

N(ia), N(icab)
))]

+ 1, and

D4 = c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

+ c
(

N(ia), N(iabc)
)

+ c
(

N(ia), N(icab)
)

.

(6.18)

we can write the expected value of DMba as follows,

EQn(N(ba),N(ab)|DMia)[DMba] =
D1 +D2N(ia)

D3 +D4N(ia)
,

and rework (6.10) to obtain N(ia)′ for which DMia = EQn(N(ba),N(ab)|DMia)[DMba]:

N(ia)′

N(ia)′ + 1
=
D1 +D2N(ia)′

D3 +D4N(ia)′

⇒ N(ia)′
(

D3 +D4N(ia)′
)

=
(

N(ia)′ + 1
)(

D1 +D2N(ia)′
)

⇒ N(ia)′2(D4 −D2) +N(ia)′(D3 −D1 −D2)−D1 = 0. (6.19)

121

−0.5

0

0.5

−0.5

0

0.5

1

−50

0

50

100

150

200

250

#
 T

ra
c
e

s

−0.5

0

0.5

−0.5

0

0.5

1

−50

0

50

100

150

200

250

#
 T

ra
c
e

s

−0.5

0

0.5

−0.5

0

0.5

1

−5

0

5

10

15

#
 T

ra
c
e
s

Figure 6.7: Difference between Predicted and Simulated Traces for ‘Extreme’ AND3
Probabilities. (a) Approximation using ‘AND2 Method’, (b) DMs Approximated with
Gaussians, (c) Minimum of (a) and (b). Positive Difference indicates Predictions are
Underestimates.

γn(DMia > DMba) is obtained using N(ia)′ obtained from (6.19), in (6.11).

Equation (6.19) can be extended for γn(DMia > DMba +RTB). Let R = RTB, then

N(ia)′

N(ia)′ + 1
=
D1 +D2N(ia)′

D3 +D4N(ia)′
+R =

D1 +D2N(ia)′ +R
(

D3 +D4N(ia)′
)

D3 +D4N(ia)′

⇒ N(ia)′
(

D3 +D4N(ia)′
)

=
(

N(ia)′ + 1
)(

(D1 +D3R) + (D2 +D4R)N(ia)′
)

⇒ N(ia)′2
(

D4(1−R)−D2

)

+N(ia)′
(

D3(1−R)−D1 −D2 −D4R
)

− (D1 +D3R) = 0.

The three requirements to satisfy to mine AND3 correctly are DMif > DMef , such

that EQn(ef,fe)[DMef] > 0. e, f ∈ {a, b, c}, e 6= f . Without loss of generality, assume these

to be DMia > DMba,DMia > DMca,DMib > DMcb. Then we approximate by multiplying

the probabilities,

PHM,n

(

i →n (a ‖ b ‖ c)
)

≥

γn(DMia > DMba)× γn(DMia > DMca)× γn(DMib > DMcb)

× γn
(

N(ba) < PO ∨ DMba < DT ∨ |DMia−DMba | > RTB
)

× . . .

× γn
(

N(ia) > PO ∧N(ib) > PO ∧N(ic) > PO
)

. (6.20)

As for AND2, this assumes the probabilities of the multiple requirements to be indepen-

dent, which will tend to underestimate the probability.

122

Experimental Evaluation of AND3 Method

Using (6.20) we predicted the traces needed for 95% probability of correctly mining AND3

splits, for all combinations of the probability of the first activity (a, b or c) after the split,

i.e. π(ia) + π(ib) + π(ic) ∈ [0, 1], in intervals of 0.05. Rather than attempt to record and

visualise predictions in the six dimensions produced by also allowing all possible variations

in the probabilities of the second activity after the split, we made predictions using three

different assumptions for the behaviour of the probabilities of this second activity, i.e. the

conditional probabilities π(b|ia), π(c|ia), π(a|ib), π(c|ib), π(a|ic) and π(b|ic):

1. ‘Proportional’: We assume the probability of activity a occurring as second activity

after the split, after b or c, to be proportional to its probability of occurring first. So if

a has low probability of being the first activity after i, then it also has proportionally

low probability of following b or c. Thus π(a|ib) = π(ia)
π(ia)+π(ic)

, π(c|ib) = π(ic)
π(ia)+π(ic)

,

and so on.

2. ‘Even’: Here we simply assume that after the first activity following the split, the

remaining two occur with equal probability as the second activity in the path, i.e.

π(b|ia) = π(c|ia) = 0.5, π(a|ib) = π(c|ib) = 0.5, π(a|ic) = π(b|ic) = 0.5.

3. ‘Extreme’: Here we assume that one of the two remaining activities is significantly

more likely than the other, i.e. π(b|ia) = π(a|ib) = π(a|ic) = 0.05, and π(c|ia) =

π(c|ib) = π(b|ic) = 0.95.

Appendix Tables D.4, D.5 and D.6 record the difference between predicted and simulated

traces to meet the Dependency Measure requirements in the three cases.

For splits with ‘proportional’ second probabilities, the predictions slightly overesti-

mate the numbers of traces, so represent a safe lower bound on the number of traces to

use for mining. Similarly for ‘even’ second probabilities, except for slight underestimation

where one of π(ia), π(ib), π(ic) is relatively small. However, with ‘extreme’ probabili-

ties, π(ba) or π(ab) is often small (near 0) or large (near 1). The method significantly

overestimates the probabilities in many cases (Figure 6.7a). In most of these cases, the

123

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

DM
ia

D
M

b
a

AND3 Samples

AND2 Distribution
DM

ia
= DM

ba

DM
ia

= DM
ba

± 0.05

Figure 6.8: Dual-Peak Joint Distribution, π(ia) = 0.05, π(ib) = 0.9, π(ci) = 0.05, n = 250
Traces, ‘Extreme’ Probabilities π(b|ia) = 0.05, π(c|ia) = 0.95.

Gaussian approximations to the Binomial random variables are poor, e.g. one or more of

nπ(ab), n(1 − π(ab)) ≤ 5. The DMba distribution then has two peaks, seen in the simu-

lated joint distribution in Figure 6.8, which causes the approximation of the distribution

by the line mapping DMia to EQn(N(ba),N(ab)|DMia)[DMba] to incur too much error.

We next introduce a simple approximation method, which is successful where approx-

imation using the ‘AND2 method’ described in Section 6.2.5 fails.

Approximating Dependency Measures with Gaussians

Rewriting the PDF for the Dependency Measure (6.4) suggests approximation by a Gaus-

sian. Denoting by Z the the normalisation factor,

gba(t) = Z−1φ
(tµw − µz√

vz − 2tc+ t2vw

)

= Z−1φ
(t− µz

µw

1
µw

√
vz − 2tc+ t2vw

)

,

= Z−1φ
(t− EQn(N(ba),N(ab))[DMba]

1
µw

√
vz − 2tc+ t2vw

)

, (6.21)

124

implying the Gaussian approximation to the Dependency Measure

g′ba(t) ∼ N (µ, σ2), where µ =
µz

µw

= EQn(ba,ab)[DMba], (6.22)

σ =
1

µw

√

vz − 2cEQn(ba,ab)[DMba] + vw(EQn(ba,ab)[DMba])2.

Since the skew in the original distribution is ignored, the behaviour will be different as

the DMs are ‘separated’ as n increases. This turns out to be a good approximation in

those cases when approximation with the ‘AND2 method’ underestimates.

To estimate γn(DMia > DMba) we approximate each DM in this way and also assume

they are independent. This assumption is reasonable because when the Binomial dis-

tributions of N(ba) or N(ab) are not approximated well by Gaussians, the probabilities

π(ba), π(ab) must be close to 0 or 1. In either case, the correlations with N(ia) will be

small, hence low correlation between DMia and DMba. The joint distribution is translated

by the means of both Gaussians (the DM values) and scaled by the standard deviations.

γn(DMia > DMba) can then be calculated from a Standard Normal distribution, using the

distance from the origin to the transformed DMia = DMba line.

We give further details of this method in Appendix C.

This method underestimates by up to 40% the number of traces needed for mining in

cases where the predictions by the ‘AND2 method’ are good, but overestimates in approx-

imately the cases where that method underestimates. Figure 6.7b shows the differences

between the predicted and simulated numbers of traces. Figure 6.7c shows the maximum

difference between simulations and predictions (i.e. errors), for both methods. In most

cases, one of the predictions, chosen as follows, gives an adequate approximation:

• The method in Section 6.2.5 should be used when the Binomially distributed counts

(N(ia), N(iabc), etc.) can with acceptable accuracy be approximated by Gaussians.

• The approximation in this section should be used where this approximation is not

accurate enough for one or more probabilities.

Finally we note that the methods for 3-way parallel splits also apply to 2-way splits

125

where either other parts of the model are in parallel with the split, or the paths following

the split contain more than one activity. In both cases there are more possible strings,

e.g. π(iaa′) > 0 where a′ ∈ Σ \ {i, a, b}.

Parallel joins, i.e. paths ending with a, b and c, joining to o, are treated in the same

way, e.g. satisfying DM requirements DMao > DMab and DMao > DMac, and so on.

6.2.6 Splits and Joins with More than 3 Paths

Where more than 3 paths follow the split, or there are other parts of the model in parallel

with the split, the ‘AND3 method’ (Section 6.2.5) can be used if all of the sub-string

probabilities and correlations can be identified. These are included in the factors (6.18),

then (6.19) is applied. This will underestimate the probabilities, since it assumes the DMs

to be negatively correlated, and hence overestimate the number of traces needed.

As the number of parallel paths increases, the correlations between the probabilities

of different sub-strings will tend to reduce (since they are drawn from a Multinomial

distribution with increasing number of outcomes), so the DMs also become less correlated.

Therefore the method of approximating the DMs by Gaussians will become increasingly

accurate and more practical.

6.2.7 Other Structures

In structured process models, in addition to sequences, splits and joins, we also find ‘extra

parallelism’ and complex splits and joins. If after activity i there are 3 parallel paths, e.g.

a → a′, b → b′ → b′′, and c → c′ (Figure 6.9), two concerns are introduced. Firstly

that the parallel split is mined correctly, and secondly that no extra arcs such as b → a′

are introduced. For the split, traces such as ibb′a are possible, so DMia must not only be

greater than DMba and DMca, but also greater than DMb′a,DMc′a, etc.:

126

Figure 6.9: Illustration of Extra Activities in Parallel paths.

DMia > DMja,∀ j ∈ {b, b′, b′′, c, c′},

DMib > DMkb,∀ k ∈ {a, a′, c, c}, and

DMic > DMla,∀ l ∈ {a, a′, b, b′, b′′}.

These are dealt with as in Section 6.2.6, as a split to more than three parallel paths.

We also require activities in different paths to be mined as parallel (e.g. (a′ ‖ b′)).

This is the same as ensuring that sequences (a → a′), etc. do not become splits or joins,

by the creation of extra arcs. This is equivalent to local ‘noise’ affecting the correct mining

of the sequences; we discuss it in the context of mining from noisy logs, in Section 8.2.

‘Complex’ splits combining XOR and parallel splits can be handled by combining the

methods in the previous sections.

6.3 Experimental Evaluation Without Noise

We used the methods described in the previous sections to predict the number of traces

needed for correct mining of the example process, shown again in Figure 6.10 with the

structures highlighted. Let this be process modelM, then (as Section 5.3.3, Chapter 5),

PHM,n(M) = PHM,n(A)× PHM,n(B|A)× PHM,n(C|B)× PHM,n(D|C)

× PHM,n(E|D)× PHM,n(F |B ∧ E).

PHM,n(B|A) is the probability of correct mining of structure B given A correctly mined.

127

Figure 6.10: Process Structures in the Example ProcessM.

κ defaults RTB PO DT
0.01 0.1 5 1 0.5 0.95

0 84 84 84 49 45 84 84

Table 6.2: Predicted Number of Traces needed for correct mining from Noise-Free Logs.

We used automaton A0 (Figure 2.5) to predict the numbers of traces needed for mining

using Heuristics Miner from noise-free logs, for various values of HM’s parameters. These

predictions are shown in Table 6.2. The only parameter that affects mining this model is

PO, indicating that seeing enough traces to decide the split is parallel, not XOR, is the

determining requirement.

To verify these predictions experimentally, the automaton was randomly walked to

produce logs of traces in the MXML format [167] (10 of each number of traces), i.e. sam-

ples from PM , the distribution represented by the true business process. A large ‘ground

truth’ log of 10, 000 traces was also produced. The Heuristics Miner implementation and

conversion plugins in ProM 5.2 [170] were used to mine process models from these logs

and convert them to Petri nets, which were converted to probabilistic automata as for

Alpha (Chapter 5). The example graph in Figure 6.11 illustrates that convergence is as

predicted, measured by the average JSD distance (4.2) between PM and PM ′, the distri-

bution represented by the mined model, calculated using methods described by Cortes et

al. [42]. Distances are averaged over the 10 models mined from each log size. The graph

also shows the number of mined models of each size for which JSD was below 0.05.

128

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 95% Conv

Number of Traces

D
is

ta
n

c
e

 o
r

P
ro

b
.

A
p

p
ro

x
.

C
o

rr
e

c
t

M
o

d
e

l

JSD

|JSD| ≤ 0.05

Figure 6.11: Convergence of Mining, from Noise-Free Logs: Average Approximate Model
Correctness (JSD), and Probability of Approximately Correct Model (|JSD| < 0.05),
plotted against Number of Traces.

6.4 Chapter Summary

In this chapter we applied our framework to the Heuristics Miner algorithm [194]. We

discovered that although the algorithm is simple to describe and specify, this masks com-

plex probabilistic behaviour. We took the theoretical analysis as far as was possible, then

presented empirical results to confirm the validity of approximate methods for predicting

the amount of data needed for correct mining.

The work in this chapter shows that the methods presented in the previous two chap-

ters are of practical use in real-world situations, and provide a useful framework within

which to consider process mining behaviour, even when full analytical analysis is not

possible. In Chapter 8, we apply the analysis of Heuristics Miner to investigate ‘noise’

in process mining. First, in Chapter 7, we apply the framework to process mining in

non-stationary environments.

129

130

CHAPTER 7

APPLICATION: PROCESS MINING IN

NON-STATIONARY ENVIRONMENTS

In the previous chapters we introduced a probabilistic framework for considering process

mining (Chapter 4) and applied it to analyses of the behaviour of the Alpha Algorithm

[156] (Chapter 5) and Heuristics Miner [194] (Chapter 6). We now apply the framework

and analyses to a practical application, process mining in non-stationary environments.

Process mining algorithms tend to assume the underlying process to be fixed, but this

is unlikely to be the case in reality. The Process Mining Manifesto [149] lists one of the

main challenges for process mining (Challenge C4) as detection of change in the underlying

process, and analysis of the impact of the change on the process mining activity.

Businesses operate in real time, under pressures such as time, cost, competition and

the need to continually customise their proposition to the market [114]. Business processes

play a key rôle in managing the business, allowing it to react to changes in the market,

financial situation or legislature; and detect and respond to problems in a timely manner.

Therefore processes need to be adaptable, to allow rapid response to the changing envi-

ronment [118]. Process mining, supporting these processes, cannot assume stationarity.

We first consider how our framework supports ‘Real-Time Business Process Mining’,

and apply this idea to detecting process change. We then show how using our framework

we can recover the sequence of changed process models over time from a business process.

Much of the material in this chapter was originally presented in [186, 188].

131

7.1 Real Time Business Process Mining (RTBPM)

One approach to mining from a non-stationary process is to use only a subset of an event

log, within which the process is known to be stationary. To do so, we need a method to

determine what is the minimum number of traces to use for mining, to be confident in

mining the correct process model. In Chapter 4 we introduced one such method, and in

Chapters 5 and 6 applied it to the Alpha and Heuristics Miner algorithms. Knowing this

minimum number of traces is also beneficial if process data is expensive or time-consuming

to collect, or the mining algorithm is computationally expensive.

We consider ‘real-time’ process mining, by asking how accurate an algorithm can be

on a limited data set. However, the term ‘real-time’ is used with varying rigour.

1. Informally, but subjectively, systems which appear to process information ‘fast’, or

update it as it is received. For example, streaming video in acceptable quality.

2. Formally, real-time systems ‘must react within precise time constraints to events in

the environment’ [30]. They impose timing bounds: times or events before which

data will not be available or tasks cannot start, and after which data will not be

useful, or tasks must have completed [94, 98].

Predictability and results guaranteed within a specified timeframe, rather than speed,

is key, ‘Hard’ real-time systems consider late results as wrong, perhaps catastrophically.

‘Soft’ real-time allows some flexibility. Nevertheless, understanding timing is critical [115].

Goals of process mining suggest the restrictions of ‘soft’ real-time are relevant. Busi-

nesses are interested in identifying and understanding differences between the ‘believed’

and actual process, which may necessitate decisions to respond to these findings. For

process mining to support the ‘real-time enterprise’ [114] a model should be mined that

is not only correct, but also produced within a guaranteed time. Processing time can be

linked to both the complexity of the algorithm, and the amount of data needing to be

processed, so we can impose two main constraints on the process mining activity:

Constraint 1. Accuracy of the Mined Model. Process mining algorithm L, mining from

132

event log Wn of n traces produced by an underlying ground truth processM, should with

probability 1−δ return modelM′ = L(Wn) such that d(PM , PM ′) ≤ ǫ, for 0 < δ, ǫ≪ 1 and

some notion of distance d(PM , PM ′) between the true (PM) and inferred (PM ′) distributions

over traces. This is equivalent to requiring

Pα,n(M) ≥ (1− δ), PHM,n(M) ≥ (1− δ),

for probability Pα,n(M) of correct mining of modelM by the Alpha algorithm, or PHM,n(M)

of correct mining using Heuristics Miner (Chapters 5, 6).

Constraint 2. Efficiency. Assume that mining with algorithm L, from event log Wn of

n traces takes s(L, n) time steps, and L has fixed overhead of S steps and takes c steps to

process a trace, then we can impose a real-time constraint η steps within which a result is

required, such that

s(L, n) = S + nc ≤ η. (7.1)

Constraint (2) reflects the time within which a decision must be made, or a problem

detected, typically expressed by the business in terms of time, such as number of seconds

within which a result is required. Rearranging (7.1) gives an upper bound on the number

of traces which can be used for mining, above which the time constraint will be violated:

n ≤ (η−S)
c

traces. Clearly n > 0, so η > S is a lower bound on the time needed for mining.

From the previous chapters we know that some minimal number of traces nmin will

be needed, such that the model accuracy constraint (1) is only satisfied when n > nmin.

It is in our interest to understand this lower bound on traces, to be able to set realistic

expectations for constraint (2), the time allowable for process mining. Our framework

enables this understanding. We next turn to applying this to the detection of change in

non-stationary processes, and the recovery of the sequence of changed models over time.

133

7.2 Process Mining in Non-Stationary Environments

In this section we consider process mining in non-stationary environments in an online

manner. Business process research has discussed the need for flexibility and allowing for,

and timely detection of, process change [118, 135, 183]. Questions of how much data is

needed and how to identify when the process has changed, have been less investigated.

In [3, 26] statistical tests on features in log files are used to identify where in a log file

the process changed. Here we use our framework to propose a principled approach to

efficiently mine and detect change to both model probabilities and structures, recovering

the sequence of changed process models. The model changes we can detect are of more

subtle nature than those detectable by re-estimation of standard process models, such as

Petri nets.

7.2.1 Method for Model Estimation and Online Mining

We assume a real business process M generates traces into event log W, and that we

can model this process as a PDFA. These assumptions allow process mining with, for

example, the Alpha [156] or Heuristics Miner [194] algorithms. For simplicity, and to

avoid effects in the experimental results from factors other than change in the underlying

process, in this chapter we also assume traces are generated without noise1 and confine

our discussion and experimentation to the Alpha algorithm.

The main idea behind the method is as follows. Since traces are generated randomly

according to an unknown distribution, we use the behaviour of the mining algorithm

and probabilities of traces to determine the minimum traces needed to be confident that

the mining algorithm will create the correct model, and thus that if a different model is

produced, the underlying model has changed, rather than being a feature of the sample.

To initially estimate M, we use the most recent n0 (a known over-estimate) traces

fromW. We convert the Petri net mined by Alpha to a PDFA by labelling its reachability

1In this chapter we continue to refer informally to event logs without ‘noise’ as those recorded without
error by an underlying process which is followed without error. We discuss ‘noise’ in Chapter 8.

134

graph with probability estimates derived from the frequencies of activities in the traces

used for mining (Section 5.4.1). The distribution PM that this automaton generates, is

the estimate of the underlying model M. We use the formulae developed in Chapter 5

for Alpha, to obtain n such that when mining with n traces we will with probability 1− ǫ

return the Petri net corresponding to the underlying modelM, for a desired confidence

level 0 < ǫ≪ 1. Thus if mining produces a different model, we can have confidence 1− ǫ

that the underlying process has changed.

To detect change, we mine repeatedly from Wn, the most recent n traces from event

log W, to obtain at each iteration a model M′. Rather than use distances between

distributions, for which it is not clear what distances are significantly significant, we use

statistical and hypothesis tests, for detecting changes in the mined distribution or its

PDFA representation (Sections 4.1.2 and 4.1.3).

We compare the distribution of traces in Wn with the ground truth estimate PM

using a Chi Square test [110,136] (Section 4.1.2) to test the statistical significance of the

differences between the observed (N(x)) and expected (nPM(x)) frequencies of traces. We

interpret the Chi2 test p-value as indicating that, with probability 1− p, the process has

changed. We also use a hypothesis test (Section 4.1.3) to compare the probability under

PM of process traces occurring with the observed frequency, to determine whether the

underlying distribution has changed. We assume the count N(x) of trace x in Wn to be

Binomially distributed. If the probability of the observed N(x) is less than p under the

hypothesis test, then with probability 1− p the distribution has changed.

While the process is unchanged, we assume that successive Petri nets mined by the

Alpha algorithm will be the same, and therefore PDFA obtained from their reachability

graphs (Section 2.3.1) will have the same state structure. Since Alpha does not assign

probabilities to the mined model, we use frequencies of the traces in W to label arcs in

the PDFA with probability estimates. Therefore as traces in W are randomly sampled

from the underlying process M, the probabilities in successive PDFA may vary even if

the underlying distribution has not changed. We use a similar hypothesis test to compare

135

Figure 7.1: Order-fulfilment business process, as PDFA with structures highlighted.

the significance of differences between the probabilities assigned to equivalent arcs in

successive models.

After detecting change, we wait for n traces, then re-estimateM and n.

7.2.2 Evaluation of Methods to Detect Change

Applying the analysis described in Chapter 5 to the running example as the initial under-

lying model (Figure 7.1), 45 traces are needed for 99% confidence in mining the correct

Petri Net, but as probabilities vary this can increase to 500.

The results in Table 7.1 show the numbers of traces required to detect change using

each of the methods described, for various changes introduced to the ground truth (Chi2

p-value = 0.01, hypothesis test critical value = 0.01). In the first part of the table,

probabilities in the XOR split (structure B) were varied from the ground truth values

(δA(q2, b, q3) = 0.9, δA(q2, c, q8) = 0.1), through to δA(q2, b, q3) = 0.1, δA(q2, c, q8) = 0.9,

in increments of 0.1. The ‘pdiff’ column shows the difference in δA(q2, b, q3) from the

ground truth (δA(q2, c, q8) = 1−δA(q2, b, q3)). In the centre part of the table, probabilities

in the parallel split (structure C) were varied similarly. For this set of experiments,

δA(q2, b, q3) = 0.9, i.e. there was a high probability of traces passing through the parallel

split. The lower part of the table shows the same experiments repeated with δA(q2, b, q3) =

0.1, low probability of traces passing through the parallel split.

The ‘KL’ column shows the Kullback-Leibler divergence between the changed mined

model and ground truth. The remaining columns show the number of traces needed for

each statistical test to detect change: X 2 for the Chi Square test, h(s) for hypothesis

136

Change type pdiff KL X 2 h(s) h(a)

XOR Split Probabilities 0.2 0.357 28 27 27
(Structure B) 0.3 0.430 22 21 21

0.4 0.396 20 19 19
0.5 1.190 15 15 14
0.6 1.265 8 7 7
0.7 ∞ 6 6 6
0.8 2.099 9 8 8

Parallel Split Probabilities 0.1 0.150 58 58 53
(Structure C) 0.2 0.427 86 87 84
(with δA(q2, b, q3) = 0.9) 0.3 0.724 24 24 23

0.4 1.051 13 13 8
0.5 0.813 10 9 8
0.6 1.804 11 8 6
0.7 2.036 16 16 8

Parallel Split Probabilities 0.2 0.033 207 - 188
(Structure C) 0.3 0.061 153 - 139
(with δA(q2, b, q3) = 0.1) 0.4 0.071 99 - 99

0.5 0.058 118 - 100
0.6 0.035 73 - 71
0.7 0.094 80 136 75

Table 7.1: Detection by several Tests, of Changes of various Types and Magnitudes.
‘pdiff’ indicates Change in Probability in the Structure, from the Ground Truth. h(s)
indicates Number of Traces to Detection by Hypothesis Test on Traces, h(a) Hypothesis
Test on Arc Probabilities, X 2 Chi Square Test. KL shows Kullback-Leibler Divergence
between Mined Model and Ground Truth. p-Value for the Chi Square test and Critical
Value for the Hypothesis Tests were set to 0.01.

test on traces, and h(a) for hypothesis test on arc probabilities. The entries in bold show

which test was the first to detect the change1.

Results show that change is detectable using the methods described and that more

significant change is detected in fewer traces. Small variations (< 0.1) in the probabilities

were not detectable, although the Kullback-Leibler Divergence was seen to increase. For

the XOR split, the tests all identified the change after approximately the same number

of traces. When variation of the parallel probabilities (structure C) was tested with low

probability of the structure in the model (δA(q2, b, q3) = 0.1) change was detected first

by arc differences (h(a)). The string difference hypothesis test h(s) failed to detect the

1These are representative results rather than averages over multiple runs.

137

changes. This is explained by the probability of traces passing through the AND structure

being too low to detect significant changes, but for those that do, changes to arc usage are

local to individual states and thus not affected by the global probability of the structure.

7.2.3 Evaluation of Mining in Non-Stationary Environments

Table 7.2 shows detection of a sequence of changes introduced to probabilities and struc-

tures in the model, beginning with the ground truth model (Figure 7.1):

1. Change of arc probabilities in XOR split structure B, from δA(q2, b, q3) = 0.9 and

δA(q2, c, q8) = 0.1, to δA(q2, b, q3) = 0.1 and δA(q2, c, q8) = 0.9.

2. Change of arc probabilities in B, back to δA(q2, b, q3) = 0.9, δA(q2, c, q8) = 0.1.

3. Change of arc probabilities in parallel split structure C, from δA(q3, d, q4) = 0.8,

δA(q3, e, q5) = 0.2 to δA(q3, d, q4) = 0.2, δA(q3, e, q5) = 0.8.

4. Change of arc probabilities in C, back to δA(q3, d, q4) = 0.8, δA(q3, e, q5) = 0.2.

5. Change of parallel split C to exclusive choice between d or e.

6. Removal of arc q7
h−→ q8.

The first part of the table shows that varying numbers of traces were estimated as neces-

sary for mining (‘Sample’ column). ‘Detect’ reports the number of new traces generated

before detecting the change. In each case, the changes were discovered, with no false

positives (incorrect detection of change). To correspond to the 99% confidence in mining,

p-values below 0.01 were taken as significant. The Kullback-Leibler divergence between

each changed and original estimate of the underlying model is shown for comparison, but

there was no clear correspondence between these values and change detection.

As a comparison, we repeated the experiment mining from logs of 500 traces. All

changes were again detected, but as the second part of Table 7.2 shows, in general many

more traces elapsed before detection.

Since we wait before re-estimation so that the traces used for mining will all have

been drawn from the changed underlying model, we can be confident that the mined

138

Change (Optimal Sample) Sample Detect Stdev KL p-val

XOR split B: b, c 0.9, 0.1→ 0.1, 0.9 45 9.7 4.2 0.182 0.010
XOR split B: b, c 0.1, 0.9→ 0.9, 0.1 271 19.7 5.5 0.026 0.007
AND split C: d, e 0.8, 0.2→ 0.5, 0.5 45 29.3 13.7 0.192 0.004
AND split C: d, e 0.5, 0.5→ 0.8, 0.2 45 39.7 19.8 0.126 0.007
AND split C changed to XOR 45 35.5 9.5 0.167 0.007
XOR split E changed to Sequence 45 36.5 19.2 0.421 0.004

Change (Large Sample) Sample Detect KL p-val

XOR split B: b, c 0.9, 0.1→ 0.1, 0.9 500 34.2 14.3 0.013 0.034
XOR split B: b, c 0.1, 0.9→ 0.9, 0.1 500 21.4 9.1 0.011 0.046
AND split C: d, e 0.8, .2→ 0.5, 0.5 500 122.1 30.5 0.013 0.037
AND split C: d, e 0.5, 0.5→ 0.8, 0.2 500 142.5 15.4 0.013 0.040
AND split C changed to XOR 500 415.3 68.4 0.015 0.043
XOR split E changed to Sequence 500 116.2 51.9 0.016 0.034

Table 7.2: Results for a Sequence of Changes. ‘Sample’ Traces were used for Mining,
Change detected in ‘Detect’ Iterations (averaged over 10 Experiments), ‘KL’ and ‘p-
val’ record the Kullback-Leibler Divergence and Chi2 p-Value between new and previous
Estimate of Underlying Model. ‘Optimal Sample’ Results used the Method described for
Minimal Sample size; ‘Large Sample’ used excessively large Samples.

Figure 7.2: A PDFA with same Structure as Figure 7.1, but representing a significantly
different Probability Distribution.

models show the sequence of changed process models over time. Figure 7.7 shows such a

sequence of models, corresponding to the models in Figure 7.6 which were simulated in

this experiment. We also find that in many cases change is significant but only evident in

the PDFA probabilities (e.g. Figure 7.2), whereas the Petri net structure is unchanged.

So for change detection, a probabilistic modelling language such as PDFA seems more

appropriate than a purely structural representation.

To simulate a fast-changing environment we tried re-estimating the model without

waiting after detection. This results in false detections (Figure 7.3) until enough traces

have been generated for the log to reflect the new model. The initially estimated model

will be invalid as the log will contain a mix of traces from the old and new models.

139

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Iterations

X
2
 p

−
v
a
lu

e

Chi
2
 p−value

Change Point

Detect Point

False Positives

Figure 7.3: Detection of true and false Changes in Fast-changing Environment, with the
Model re-estimated immediately, rather than waiting, after Change Detection.

However, although we cannot say with confidence whether these changes are valid, we

can suggest that there may have been a change, and that after the n traces estimated

as needed for confidence 1 − ǫ in mining the correct model, have been generated, using

p-value ǫ we can with confidence 1− ǫ accept the next change detected as true.

Figures 7.4 and 7.5 underline the use of the predicted minimum number of traces.

With the optimal 45 traces for mining the ground truth, while no change is introduced to

the generating distribution, the variation seen in the X 2 value shows that the distributions

at each iteration vary considerably. The lower graph shows that as the number of traces

is increased, frequency and amplitude of these variations is reduced, with no significant

(0.05) p-values. The cost is slower detection of change (Figure 7.5). Conversely, the upper

graphs show that reducing the number of traces, change may be detected sooner, but less

convincingly, since the X 2 values do not converge clearly to a low value.

7.3 Chapter Summary

In this chapter we applied the probabilistic view of process mining, to online mining of

processes in non-stationary environments. Since our framework allows estimation (with

a given confidence level) of the number of traces needed for mining, we can mine in ‘real-

time’ using the minimum necessary number of traces. Using statistical methods to discover

change in the mined distributions, we can be confident that discovered change is true

rather than an artefact of the log files, and so recover the set of changed process models

140

0 100 200 300 400
0

0.5

0

0.5

0

0.5

1

Iterations

X
2
 p

−
v
a

lu
e

17 Trace

44 Trace

100 Trace

Figure 7.4: Fluctuations in X2 p-Value over
Time, from unchanged Source Process.

10 20 30 40 50 60
0

0.5

0

0.5

0

0.5

1

Iterations

X
2
 p

−
v
a
lu

e

17 Trace

44 Trace

100 Trace

Figure 7.5: Detection of XOR Probability
Change using X2 p-Value.

in use over time. In addition, whereas process mining typically uses non-probabilistic

representations such as Petri nets, this method is able to discover change that is only

apparent in the probabilities in the model, while the structure is unchanged.

In the next chapter we consider a different practical application, that of mining from

‘noisy’ event logs.

141

(a) Ground Truth Process

(b) Changed XOR Split Probabilities

(c) Changed Parallel Split Probabilities

(d) Parallel Split changed to XOR

(e) XOR Split changed to Sequence

Figure 7.6: Sequence of Simulated Changed Processes corresponding to Experiments in
Section 7.2.3, Table 7.2.

142

(a) Ground Truth Process

(b) Changed XOR Split Probabilities

(c) Changed Parallel Split Probabilities

(d) Parallel Split changed to XOR

(e) XOR Split changed to Sequence

Figure 7.7: Sequence of Recovered Models corresponding to Underlying Simulated Models
in Figure 7.6.

143

144

CHAPTER 8

APPLICATION: PROCESS MINING FROM NOISY

LOGS

In this chapter we investigate a second practical problem using our framework, that of

mining from ‘noisy’ event logs. This is of practical importance when process mining is

applied in ‘the real world’, since event logs often contain errors, unexpected behaviour,

and may mix traces from several processes or record activity at different levels of detail.

We consider what constitutes ‘noise’ in event logs, and introduce one model of noise

in process mining. We then extend the analysis of the Heuristics Miner [194] (Chapter

6) to understand how it is affected by noise. This leads to a method for identifying the

minimum and maximum number of traces ‘safe’ to use for mining for a known process

and amount of ‘noise’.

An abridged version of the material in this chapter was first presented in [189].

8.1 Introduction

One key challenge in process mining (C6 in the Process Mining Manifesto [149]) is mining

from noisy logs. In machine learning, noise generally refers to data errors such as signal

error, variations in measurements, or random errors in data labels for classification. This

would relate in process mining to problems in the recording of event logs. However, in

process mining the term ‘noise’ tends to be used to refer to infrequent behaviour [148]. In

145

either case we face the same problem. We wish to use some of the evidence in the event

log to build the process model, while ignoring other evidence, and to end up with a model

of ‘reasonable complexity’.

In the process mining literature there is no standard or rigorous method for defining

noise in the process mining context nor its effect on the learning behaviour of algorithms.

Without such a foundation, it is not possible to compare and predict the behaviour

of algorithms in noisy situations. Practically, we cannot describe ‘how much’ noise a

particular algorithm is robust to, nor how much data we should use to mine the true

underlying model while excluding noise. These are important questions, since errors

such as disk failure, software problems or erroneous use of systems can lead to errors in

recording event logs.

In this section we introduce one formal model of noise in process mining. In Chapter

6 we described a probabilistic analysis of the Heuristics Miner algorithm [194], allowing

insight to be gained into the learning behaviour of the algorithm, and prediction of the

number of process traces necessary for mining to ensure that, with high confidence, a

correct model will be mined. We use this analysis as a foundation to describe in Section

8.2 a model of noise in process mining and to consider the behaviour of Heuristics Miner

when mining from noisy event logs.

In summary, we consider traces in event log W to be drawn from several underlying

probability distributions, a ‘ground truth’ PM (the true business process) and one or more

noise distributions. For example with a noise model PO, W is a sample from mixture

distribution PT ,

PT (t) = (1− κ)PM(t) + κPO(t),

such that a trace t ∈ W is drawn with a fixed probability 0 < κ ≪ 1 from PO (a ‘noisy’

trace), otherwise from PM . In this framework, a process mining algorithm should output

a model that corresponds to PM , rather than any convolution of PM and PO.

146

We show that upper bounds can be obtained on the number of traces ‘safe’ to use

for mining known models, and that Heuristics Miner is more robust to some types of

noise than to others. We also show that the effect of the algorithm’s parameters can be

predicted, allowing them to be set in an informed manner. After experimentally validating

these methods (Section 8.3), we discuss in Section 8.4 the learning behaviour of Heuristics

Miner, relating it to standard learning concepts. The insights gained suggest modifications

that may improve the algorithm.

8.2 Effect of ‘Noise’ on Mining with Heuristics Miner

The most common current definition of noise in process mining is as ‘outliers’ or excep-

tional events [148, 149], i.e. parts of the process which occur infrequently. It is assumed

that the mined model should not include such behaviour, which would cause a ‘cluttered’

or ‘spaghetti’ model, not useful for understanding the main process behaviour. This differs

from the standard machine learning view in which noise refers to erroneous data which

occurs according to some model of noise. In the context of process mining we would

understand this as incorrect logging of the events that take place and their order. The

justification for the current process mining view is that since an algorithm cannot distin-

guish incorrect logging from exceptional events, true noise (data errors) should be cleaned

from the log using expert input, prior to process mining, so that the mining algorithm

can assume that the log reflects what really happened.

Similarly, Fahland et al. [59] consider that a log may be partitioned into three sets

of traces, (i) those supported by an external model, (ii) those not supported because the

model is incorrect, and (iii) those not supported because they represent ‘noise’. An expert,

or prior knowledge, is required to identify this partition and remove the noisy traces. The

cleaned log is then used to ‘repair’ a pre-existing model.

Historically, noise has been viewed both as errors in executing or recording the process,

and as infrequent behaviour. Process mining algorithms attempt to deal with it by using

147

Figure 8.1: Running Example Order Process as Probabilistic Automaton, supporting
Distribution PM .

thresholds to prune input data, parts of the model or internal representations [7,38,64,70].

Agrawal et al. [7] note the difficulty of setting thresholds, and the sensitivity of the final

model to the settings. Methods based on machine learning or optimisation techniques,

such as Genetic mining [46] or Inductive Logic Programming [67] are inherently robust

to noise but do not explain or predict its effect. The Heuristics Miner literature [193,194]

similarly views noise as external influences on the event log, causing five types of errors:

deletion of the (i) head or (ii) tail or (iii) part of the body of a trace, (iv) removal of one

event, or (v) interchange of two randomly chosen events from a trace. No model of noise

generation is considered.

We next describe a more formal view of noise in process mining, which covers both

errors in recording events, and infrequent behaviour.

8.2.1 A Model of ‘Noise’ in Process Mining

As introduced in Section 8.1 we consider traces in W as drawn from a mixture of a

‘ground truth’ distribution, representing the true business process, and one or more noise

distributions. To illustrate with the running example, PM is the distribution over traces

representing the true business process, represented by the probabilistic automaton in

Figure 8.1. We then consider a single distribution PO over all ‘noise’ traces. PO could

allow any activity to occur at any time with equal probability, or (more likely) only certain

types of noise are possible.

W is then a sample from a mixture distribution PT over traces, which is a convex

combination of PM and PO, such that any trace t ∈ W is drawn with some fixed probability

148

Figure 8.2: Simple Noise Model O1, in which Activities a and c are swapped.

Figure 8.3: Simple Noise Model O2. Any Activity can be followed by o.

0 < κ≪ 1 from PO (a ‘noisy’ trace), otherwise from PM :

PT (t) = (1− κ)PM(t) + κPO(t). (8.1)

We would like our process mining algorithm to output a model that supports PM , rather

than any convolution of PM and PO.

This is just one possible model of noise. but having such a formal model allows inves-

tigation of a process mining algorithm to answer questions such as: For what proportion

and types of noise will the algorithm be robust? What is the effect of the noise on the

amount of data needed to be confident in the accuracy of the mined process models?

A simple example of noise caused by the process being followed (or recorded) incor-

rectly is the model O1 (Figure 8.2). The only ‘noise’ trace introduced by this model is

icao, in which activities c and a have been swapped. This means that occasionally, an

order is rejected before the stock is checked. A second example is model O2 (Figure 8.3),

which allows a trace to end (with activity o) after any activity. This could illustrate sys-

tems failures (such as disk failure), which might occur with low probability at any point

in the process. This model introduces traces such as iao, iabo, iabdo, . . . , and so on.

We define the support of the ground truth model as a set of traces TM , the support

149

of the noise model as a set TO of ‘unexpected’ traces, and the traces in W as a set TW :

TM = {t|PM(t) > 0} ⊆ Σ+, TO = {t|PO(t) > 0} ⊆ Σ+. and

TW ⊆ TM ∪ TO, where TM ∩ TO = ∅.

TW is only a subset of the union of TM and TO since the log is only a sample, and may

include not all the traces supported by the models. TM and TO are disjoint because by

definition any trace supported by the true model is not noise, and vice versa.

Since Heuristics Miner operates on pairs of activities, we define the possible pairs of

activities which may occur in traces from these sets,

BM = {ab|πM (ab) > 0}, BO = {ab|πO(ab) > 0}, and

BW = {ab|πW (ab) > 0},

where πM (ab) = PM(iΣ∗abΣ∗o), πO(ab) = PO(iΣ
∗abΣ∗o), and

πW (ab) = (1− κ)πM (ab) + κπO(ab).

Again, BW is a subset of BM ∪BO, but now BM ∩BO may be non-empty, since the same

pairs of activities may exist in traces from both the true and the noise models.

Since each trace is a sample from a mixture of PM and PO, noise may reduce the prob-

abilities of pairs of activities under PT . For all ab in BW , πW (ab) ≤ πM(ab), because some

traces in TO may not include some pairs of activities in BM , reducing their probability in

W. Since these probabilities influence correct mining of structures, with noise it is likely

that more traces will be needed to correctly mine the structures in the process model,

and thus the full model.

A model mined from W is also at risk of two types of problems (still assuming no

cycles), described in the next subsections.

150

8.2.2 Introduction of Additional XOR Splits and Joins

Recall that each trace begins with the same activity i, and ends with the same activity

o. Then any ‘noise’ trace from TO will partially match at least one true trace from TM ,

i.e. they share a common prefix x and suffix y. Let Σ′,Σ′′,Σ′′′ partition Σ, then

∀ tO ∈ TO, tO = xvy ∧ ∃ tM ∈ TM , tM = xuy. where

x ∈ i{Σ′}∗, y ∈ {Σ′′}∗o, u, v ∈ {Σ′′′}∗. (8.2)

Let a be the last activity in the common prefix x, a′ the first activity in u, and a′′ the first

activity in v. Similarly b is the first activity in the common suffix y, b′ the last activity

in u, and b′′ the last activity in v. Then (8.2) says that for any ‘noisy’ trace, the first

part (prefix) will match the prefix of a true trace up to a at which they diverge, and the

last part (suffix) will match the suffix of a true trace after they converge at b. Between

the common prefix and suffix, the noisy and partially-matching true trace differ. Since

there are no repeated activities, the prefix, suffix, and non-matching part of the traces

are drawn from non-overlapping subsets of the alphabet of activities.

Then we have the risk that Heuristics Miner will create an extra XOR split a →

(a′ # a′′) at the divergence point, or an extra XOR join (b′ # b′′) → b at the convergence

point. These splits and joins may be at the beginning and end of the model, when the

noise trace does not match a true trace apart from the start and end activities. There

may be multiple such splits and joins introduced by a trace with multiple matches.

Consider the risk of creating an unwanted XOR split. Let the true process model

M contain a sequence i → a → a′, and the noise model introduces a pair aa′′ ∈ BO.

A new arc a → a′′ will be created in the model mined from W if the Heuristics Miner

requirements of Equations (3.4)–(3.6) (Chapter 6) are met, i.e.

N(aa′′) > PO ∧ DMaa′′ > DT

∧
(

|DMaa′′ −DMaa′ | < RTB ∨ |DMaa′′ −DMea′′ | < RTB
)

,

151

where e is an existing predecessor of a′′. So we can use at most n′ traces for mining,

to keep the probability of each of these requirements below some acceptable probability

0 < ǫ≪ 1:

n′ = argmin
n

[

γn(N(aa′′) > PO) ≥ ǫ ∧ γn(DMaa′′ > DT) ≥ ǫ

∧
(

γn(|DMaa′′ −DMaa′ | < RTB) ≥ ǫ ∨ γn(|DMaa′′ −DMea′′ | < RTB) ≥ ǫ
)

]

− 1.

Compare with mining from noise-free logs, where a minimum number of traces are needed

for confidence greater than 1− ǫ in mining a correct model. Mining from noisy logs, there

is also a maximum number of traces above which confidence in mining falls below 1− ǫ.

8.2.3 Introduction of Parallelism

The second problem is that parallel structures may be introduced. If the pairs of activities

BO supported by the noise model include a pair (e.g. ba) that is the reverse of a pair

(ab) from BM , then HM will conclude these are in parallel if the requirements are met

for mining a parallel split (Section 6.2.4). If the ground truth M contains sequence

i → a → b, then when W is drawn from PM only, DMib is zero since πM (ib) = 0, and

DMab tends to 1 as the number of traces in W increases, because πM (ba) = 0. However

whenW is drawn from a mixture of PM and PO, and under PO, ba has non-zero probability,

DMib will tend to 1 and DMab to d ∈ [0, 1]. This introduces these risks:

1. arc i → b created because DMib > DMab,

2. arc i → b created because PO and DT requirements are met for ib, and DMib is

within RTB of ab, or

3. arc i → b created because PO and DT requirements are met for ib, and DMib is

within RTB of ia.

Initially these will create an XOR rather than parallel split, but nevertheless introduce a

‘noise structure’ into the mined model. For ‘safe’ mining all of these probabilities must

152

κ defaults RTB PO DT
0.01 0.1 5 1 0.5 0.95

0 84 84 84 49 45 (s) 84 84

0.01 85 85 85 49 45 (s) 85 85
0.05 89 89 90 52 47 (s) 90 90
0.1 94 95 95 55 50 (s) 94 94
0.3 122 122 122 71 66 (s) 122 122
0.5 171 171 171 100 95 (s) 172 172

0.01 84 84 84 52 (s) 52 (s) 84 84
0.05 81 81 81 48 (s) 48 (s) 81 81
0.1 78 78 78 45 44 (s) 78 78
0.3 67 66 66 42 (b) 42 (b) 66 66
0.5 59 (b) 59 (b) 59 (b) 59 (b) 59 (b) 59 (b) 59 (b)

Table 8.1: Predicted Number of Traces needed for correct mining, varying Noise κ, from
O1 (Top), O2 (Bottom). Determining Factors: achieving PO Traces for Parallel Split C,
except (s) achieving DMbe > DMde, (b) mining XOR Split B.

be less than small 0 < ǫ ≪ 1 representing an acceptable risk of the mined model being

disrupted by noise, and again there is a range of traces within which mining is possible.

8.3 Experimental Evaluation with Noise

We used the methods in the previous sections to predict the effect of various amounts of

different types of noise on the running example. In separate experiments, PM was mixed

with either of the noise models O1,O2 outlined in Section 8.2.1.

The top half of Table 8.1 shows the effect of varying κ in the mixture model (8.1), on

the number of traces to with probability 0.95 successfully mine the correct model from

an event log W sampled from a mixture of PM and PO1
. Success means mining a model

which supports the traces in TM but not those in TO1
. Only the PO parameter has any

effect, indicating that meeting the PO requirement for HM to decide the split is AND,

rather than XOR, is the determining factor. For PO > 1, other parameters only affect the

removal of the extra d → e arc, but the split will still be XOR. For PO = 1, DMbe > DMde

becomes the determining factor (labelled (s)). Increasing noise reduces the probability of

the valid traces, making the requirements harder to achieve.

153

noise defaults RTB : 0.01 PO : 1 DT : 0.95

0.001 6676 (r) 18308 (r) 6676 (r) 13058 (d)
0.002 2714 (p) 4158 (r) 2620 (d) 5025 (s)
0.003 1559 (s) 1559 (s) 1559 (s) 1559 (s)
0.004 554 (s) 554 (s) 554 (s) 554 (s)
0.005 444 (s) 444 (s) 444 (s) 444 (s)

0.01 5622 (fr) 36700 (fr) 5622 (fr) 5878 (ed)
0.05 889 (fr) 6372 (fr) 889 (fr) 1178 (ed)
0.1 246 (fp) 2466 (fr) 237 (ed) 590 (ed)
0.3 84 (fp) 84 (fp) 80 (ed) 199 (ed)
0.5 51 (fp) 75 (fr) 49 (ed) 121 (ed)

Table 8.2: Predicted Numbers of Traces for affecting of the Mined Model by Noise from
O1 (Top) or O2 (Bottom). Determining Factors: (s) DMbe > DMde, (r) |DMic−DMac | <
RTB, (p) N(ic) > PO, (d) DMic > DT, (fr) |DMfo−DMco | < RTB, (fp) N(fo) > PO,
(ed) DMeo > DT.

Repeating for model O2 (lower half of Table 8.1) we find counter-intuitively that

increasing noise reduces the number of traces needed, until large amounts of noise are

introduced. Traces from O2 include the pair be, required for the AND split, with higher

probability than in traces from PM . The noise traces increase πW (be), increasing the

likelihood of correctly mining the AND split. Eventually the number of traces reduces to

the point where a different structure (B) is the limiting factor (labelled (b)).

Table 8.2 shows predictions for the numbers of traces at which the different types of

noise will with probability greater than 0.05 affect the mined model, above which mining

is ‘unsafe’. The top half of the table shows the predictions for the parallel structure a ‖ c

from O1. As expected, increasing noise reduces the number of traces safe to use. For

the lowest noise, this is when DMic increases to within RTB of DMac, which causes arc

i → c to be created, as PO and DT are also achieved. The risk can thus be reduced by

decreasing RTB or increasing DT. With more noise, the limiting factor is DMic > DMac,

which is not affected by varying parameters.

The lower half of Table 8.2 shows the maximum traces safe for mining from event logs

sampled from a mixture of PM and PO2
. Since there are six possible noise structures, and

mining of any one of them represents failure, we recorded the minimum number of traces

154

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log (Number of Traces)

J
S

D

k = 0.002

k = 0.003

k = 0.004

k = 0.005

k = 0.010

Figure 8.4: Probability of Approximately Correct Model, Mining From Logs from M
mixed with O1, Various κ, Measured using JSD.

at which the probability of any one noise structure exceeded 0.05. For this model, the

arcs from d, e or f to o are discovered first. For low noise, this happens when DMfo is

within RTB of DMco, and the risk can be reduced by reducing RTB. With more noise,

N(fo) > PO is the limiting factor and the risk can be controlled with PO. DMeo > DT

then becomes the limit and DT can be used to control the risk of noise discovery.

These predictions were verified by simulating logs from traces randomly selected from

O1 (similarly O2) or M according to the value of κ. Figure 8.4 shows the average dis-

tance between the ground truth and model mined fromM mixed with O1 (default HM

parameters, DT = 0.9,RTB = 0.05,PO = 10) for various values of κ. The JSD distance

is plotted against number of traces (log scale). The results confirm the predicted ranges

of traces (Table 8.2). Figure 8.5 shows the results forM mixed with O2. For κ ≥ 0.4, the

predictions are that noise will affect the mined model before correct mining. The graph

confirms that with this much noise, the JSD distance always exceeds 0.05.

Figure 8.6 illustrates effects of modifying the Heuristics Miner parameters, for noise

level κ = 0.1, noise model O2. As predicted, reducing PO allows correct mining in fewer

155

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Log (Number of Traces)

J
S

D

k = 0.01

k = 0.02

k = 0.05

k = 0.10

k = 0.20

k = 0.30

k = 0.40

k = 0.50

Figure 8.5: Probability of Approximately Correct Model, Mining From Logs from M
mixed with O2, Various κ, Measured using JSD.

traces, since parallel splits are more easily identified as parallel rather than XOR. The

effect of noise can be delayed by reducing RTB or increasing DT, making it harder for the

algorithm to accept a new arc. Increasing PO has no effect in this case, but the previous

discussion shows that it might be effective for other types of noise or parameter settings;

there is a complex, but predictable, relationship between probabilities in the model and

parameter settings.

The experimentation illustrates a general result, that Heuristics Miner is quite robust

to the type of noisy traces that risk introducing additional XOR splits and joins, e.g.

traces with missing heads, tails, or new traces (up to 30% for this example), but much

less robust to noise that introduces parallelism, such as activities executed in the wrong

order (only 1% here). The former can be reduced using the parameters (but increasing

risk of omitting true infrequent arcs), but the latter is inevitable as it is discovered when

the DM for a ‘noise’ pair of activities ‘overtakes’ a DM from the true model, which is not

affected by parameters.

One interpretation is Heuristic Miner being most robust to systems failures, which are

156

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

10
1

10
2

10
3

10
4

J
S
D

D
i
s
t
a
n
c
e

Number of Tr aces (l og scal e)

PO = 10, RTB = 0. 05, DT = 0. 90
PO = 5, RTB = 0. 05, DT = 0. 90
PO = 1, RTB = 0. 05, DT = 0. 90

PO = 10, RTB = 0. 01, DT = 0. 90
PO = 10, RTB = 0. 10, DT = 0. 90
PO = 10, RTB = 0. 05, DT = 0. 99

PO = 5, RTB = 0.05, DT = 0.90
PO = 1, RTB = 0.05, DT = 0.90
PO = 10, RTB = 0.01, DT = 0.90
PO = 10, RTB = 0.1, DT = 0.90
PO = 10, RTB = 0.05, DT = 0.99

PO = 10, RTB = 0.05, DT = 0.90 (default)

default:

 PO = 10

 RTB = 0.05

 DT = 0.9

PO = 5

PO = 1

RTB = 0.1

RTB = 0.01

DT = 0.99

Number of Traces (log scale)

J
S

D
 D

is
ta

n
c
e

Figure 8.6: Probability of Approximately Correct Model, Various Parameter Settings,
Mining From Logs fromM mixed with O2, κ = 0.1.

most likely to cause partial traces, and less so to errors in the order in which participants

in the business process execute or record the process.

8.4 Analysis

In this chapter we extended the results in Chapter 6 to show that for a known process, a

minimum and a maximum number of traces can be identified, between which we can be

confident that Heuristics Miner (HM) will mine the correct model. Below the minimum,

we have too few traces to be confident in seeing enough process behaviour to mine the

model (Chapter 6); above the maximum, we risk noise in the event log affecting the mined

model (this chapter). It would be desirable to increase this range of traces ‘safe’ to use

for mining, e.g. by raising the maximum. This amounts to controlling the interaction

between Dependency Measures, parameters and thresholds, which controls what arcs are

created (Algorithm 2). We want to optimise this interaction to ensure correct arcs are

created and invalid arcs inhibited, from as wide a range as possible of size of event log.

At first glance, the behaviour of HM seems strange. When learning from a noisy

157

sample, using more data gives a lower quality model. In this section we look at a simple

learning task which provides a loose analogy and provides insights into the learning be-

haviour of HM and suggests ways of improving the algorithm by increasing the maximum

number of traces ‘safe’ to mine from, delaying the point at which noise is likely to affect

the mined model.

First we describe an analogue of our notion of ‘noise’ in process mining. Suppose

we have a sample W of data drawn from a mixture of two Gaussians, a ‘Ground Truth’

PM ∼ N (µM , σ
2
M), and a ‘noise’ distribution PO ∼ N (µO, σ

2
O). i.e.

PT (x) = κPO(x) + (1− κ)PM(x),

for 0 < κ ≪ 1. We hope that PM will be dominant, i.e. κ small, and we want to use

W to find a single Gaussian to approximate PM . When we take a data point from W ,

we want one that came from PM but this will only be the case with probability (1 − κ).

The rest of the time we get a point drawn from PO, representing noise. This is analogous

to the process mining case, where we have two (or more) distributions generating traces,

and want to find a model of the dominating distribution (the ground truth process).

This differs from common notions of noise such as additive noise. In that case, such

as taking a measurement of some physical property, we assume that the measurement zi

of the true value xi of the property, is corrupted by some random noise, e.g.

zi = xi + Yi, where Yi ∼ Y (µY , σY),

for some distribution Y parametrised by µY , σY .

We want to learn PM from n samples drawn from PT . We use Maximum Likelihood

to estimate a single Gaussian Q(n) ∼ N (µQ, σ
2
Q) which we hope will be close to PM ,

measured by DKL

(

PM , Q(n)
)

, the Kullback-Leibler Divergence (KL) [89]. Maximising

Maximum Likelihood is equivalent to minimising KL (e.g. [2, Defn.2.3]), so Q(n) is the best

estimate for PM . As n increases, we might intuitively expect Q(n) to initially approach

158

PM , since samples are more likely to be drawn from PM than from PO. Then as n increases

further we might expect samples from PO to pull Q(n) away from PM towards PO.

Q(n) is the Gaussian that minimises DKL

(

PT , Q(n)
)

[130, Theorem 3.2]. The KL

Divergence between two Gaussians PM , Q(n) is defined (see e.g. [10, 111]) by

DKL(PM , Q(n)) = ln
σQ
σM

+
1

2

[σ2
M

σ2
Q

− 1 +
(µM − µQ)

2

σ2
Q

]

.

DKL

(

PM , Q(n)
)

is not dependent on n. As n increases, µQ, σQ will converge uniformly

to µT , σ
2
T , the mean and variance of the mixture PT , so any non-uniformity in convergence

of DKL

(

PM , Q(n)
)

will only be due to random effects at low numbers of samples. A

sample comes from either PM or PO randomly, according to the Bernouilli distribution

with probability parameter κ. The number of samples drawn from PO therefore follows a

Binomial distribution NO ∼ Bin(κ, n). Above some number of samples n′ the probability

M (n) that no traces have been drawn from O will be negligible, e.g. for small 0 < ǫ≪ 1,

M (n) = (1− κ)n′ ≤ ǫ⇒ n′ ≤ ln(ǫ)

ln(1− κ) . (8.3)

Thus for 0 < n < n′ samples we expect no samples to be drawn from PO, so the ML

estimate Q(n) will approach PM . For n > n′, samples will be drawn from both PO and

PM in a proportion which converges uniformly to κ
1−κ

, so Q(n) will approach N (µT , σ
2
T),

i.e. move away from PM .

Figure 8.7 shows DKL

(

PM , Q(n)
)

plotted against n for various κ, confirming the initial

approach to PM is real but only just outside standard error (see inset for κ = 0.2). For

this experiment, PM ∼ N(10, 1), PO ∼ N(5, 1) and results were averaged over 1000 trials.

Since M (n) decreases exponentially (8.3), only a slight approach to PM is possible before

reaching n′ and subsequently moving away. The effect is most noticeable for k ∈ [0.1, 0.3].

With more noise, for even small n the probability of drawing from PO is too high to see

any approach to PM . With too little noise, PO has too minor an effect on the accuracy

of Q(n) in estimating PM , for any local minimum KL to show in the convergence graph.

159

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Samples

D
K

L
(P

M
,Q

(n
))

k = 0.01

k = 0,05

k = 0.1

k = 0.2

k = 0.3

k = 0.4

0 5 10 15 20 25 30 35 40 45 50
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Samples

D
K

L
(P

M
,Q

(n
))

0.6

0.4
0 50

k = 0.01

k = 0.05

k = 0.1

k = 0.2

k = 0.3

k = 0.4

Samples

Figure 8.7: Learning Gaussians from Mixture with Various Noise κ (lowest Curve κ =
0.01, highest κ = 0.4). Inset shows Detail for κ = 0.2.

So the intuition is correct, but the effect almost negligible. We can however construct a

modified algorithm (Algorithm 3) which exhibits the ‘convergence/divergence’ behaviour

more strongly. This would be a strange way of solving this learning problem, but we will

see that it has analogies with the behaviour of Heuristics Miner. Essentially, we treat

the distributions as discrete, dividing the range of samples into bins, and only accept a

limited number of samples from each bin.

The lower half of Figure 8.8 shows graphs for various κ. KL initially reaches a local

minimum as before (Figure 8.7), but then diverges markedly. Intuitively, for each new

sample either (i) previously ‘unfilled’ bin in PM becomes ‘full’ (this is the h + 1 sample

from the bin), (ii) equivalently a bin in PO, or (iii) no effect, sample is from a bin which

is already ‘full’ or contains fewer than h samples. The probabilities of these events are

Pr(i) = (1− κ)UM , P r(ii) = κUO,

P r(iii) = 1− P (i)− P (ii),

160

Algorithm 3 ‘Bins’ Estimation of True Gaussian from Mixture

1: Set the range from which we expect most samples,

X = [a, b] s.t. PT (x) < δ, ∀x < a, x > b, 0 < δ ≪ 1.

2: Divide X evenly into m ‘bins’.
3: Draw n samples xi ∈ X from PT , 1 ≤ i ≤ n.
4: Count a bin as ‘full’ if more than h samples fall into it, for some threshold h ≥ 1.

Estimate µT , σ
2
T using a representative point (e.g. the mid-point) from each ‘full’ bin

(counting a bin only once), i.e.

Y =
{

yi|1 ≤ i ≤ m ∧ yi = a+
i− 1

2

m
(b− a) ∧ |x ∈ X, yi − 1

2m
< x ≤ yi +

1
2m
| > h

}

,

µQ =
1

|Y |

|Y |
∑

i=1

yi, σ2
Q =

1

|Y |

|Y |
∑

i=1

(y2i)− µ2
Q.

where UM is the probability that a random sample from PM is from a ‘bin’ with exactly

h samples, likewise UO. For low n, less than some n′, Pr(i) > Pr(ii), since (1− κ) > κ,

and UM > UO because more bins cover PM . Q(n) approaches PM . As samples are

accepted from PM , UM reduces faster than UO as bins ‘fill’, until from some n = n′′ > n′,

Pr(i) < Pr(ii) and Q(n) moves away from PM towards PT . Eventually all bins are ‘full’

and Pr(i) = Pr(ii) = 0. Divergence from PM is apparently worse than for the first

algorithm; we seem to have lost something.

But the top half of Figure 8.8 is more interesting. DKL

(

PM , Q(n)
)

is plotted against

n for various values of the threshold parameter h. Increasing h delays reaching minimum

Kullback-Leibler Divergence, but the minimum is lower and crucially, divergence from

this minimum is delayed. So increasing h sacrifices speed of learning and quality of the

model learned from an ‘infinite’ sample, but increases the quality of the model learned

from a carefully selected sample size.

Algorithm (3) is a toy example which provides insights into the learning behaviour of

Heuristics Miner. HM learns discrete components (arcs and process structures) of a model

which we consider to represent a distribution over traces. These components are learned

discretely at various thresholds of numbers of traces as the Dependency Measures become

161

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Samples

D
K

L
(P

M
,Q

(n
))

k = 0.01

k = 0,05

k = 0.1

k = 0.2

k = 0.3

k = 0.4

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Samples

K
L

M

h = 1

h = 2

h = 3

h = 4

h = 5

h = 10

regularised

Samples

Samples

h � �

h � �

h � �

h � �

h � �

h � ��

regularised

k = 0.01

k = 0.05

k = 0.1

k = 0.2

k = 0.3

k = 0.4

Figure 8.8: Results of ‘Bins’ Learning Algorithm. Bottom: Various Noise κ (Lowest Curve
κ = 0.01, Highest κ = 0.4). Top: Various Thresholds h (Leftmost h = 1, Rightmost
h = 10). The Lowest, Heavy-Weight Curve shows Results with a Näıve Regularisation
(see Text).

ordered correctly. With more data we expect more correct structures in the mined model,

but additional data does not change the structures that are already learned (approaching

PM) – until noise starts affecting them (moving away from PM to a noisy model).

Figure 8.8 is illustrative of the behaviour of the HM parameters, tuning of which can

assist learning by increasing the range of sample sizes for which successful learning can

be expected (cf Table 8.2). However, noise always eventually affects the model. It would

be desirable to ‘regularise’ the learning in some way so that good convergence would be

achieved without subsequent divergence. The graphs are reminiscent of the ‘bias-variance

tradeoff’ (e.g. [22]). For example when training a Neural Network, an overly complex

model can be avoided by stopping training early or by using a regularisation parameter

to limit changes to the model parameters. Our method for predicting the amount of data

for mining correctly without being affected by noise is equivalent to early stopping since

it enables use of the optimal amount of data, where too much would overfit the model.

162

As an illustration of regularisation, we add the following heuristic to algorithm (3).

Retain µ1, σ1 as the estimates of the mean and standard deviation of Q(n) obtained from

a small sample (0 < n ≪ n′), which should be reasonably unaffected by noisy samples

(although not a good final estimate). Then accept only subsequent samples which are not

too different from these estimates, e.g. xi ∈ [µ1− 2σ1, µ1+2σ1]. The heavy line in Figure

8.7 shows that this results in successful convergence with very little subsequent divergence.

Essentially we use prior knowledge to bootstrap the parameters, to restrict the hypothesis

space and the global properties of the sample learned model (see for example [86]).

This suggests that some sort of regularisation could be used to improve the robustness

of Heuristics Miner when mining from noisy logs. Parallelism (model O1) is introduced

when an unwanted DMic > DMac. This might be mitigated by limiting the maximum

value of a DM to some 0≪ d < 1, i.e.

DMab = min
(N(ab)−N(ba)

N(ab) +N(ba) + 1
, d
)

.

Extra XOR splits (noise model O2) would only be delayed by this. Instead, modifying

PO to describe a fraction of the number of traces in the log rather than an absolute

number, would regularise learning by ensuring that larger logs required more positive

observations to evidence new behaviour. Clearly these changes may have other effects,

and merit further research.

This discussion shows the importance of understanding the learning algorithm, pre-

dicting amount of data, and informed setting of parameters

8.5 Chapter Summary

In this chapter we explored a second practical application of our probabilistic framework

for considering process mining. We presented a formal model of noise in process mining

in which traces in an event log are generated at random by a mixture model consisting

163

of a distribution over traces from the true process, mixed with one or more distributions

over erroneous traces. Algorithms should mine a model supporting only the traces from

the true distribution.

We used the analysis of the Heuristics Miner algorithm [194] in Chapter 6 to investigate

the ability of this algorithm to handle noise. This gave insight into the effects of different

types of noise on the algorithm’s behaviour, and into the effect of varying its parameters.

Heuristics Miner is seen to be quite robust to the type of noise that risks additional XOR

splits and joins, but less so to noise introducing parallelism. This is a general result,

since the former can be controlled using the parameters of the algorithm, at the risk of

omitting true low-probability arcs, but the latter will always affect the model once the

‘noisy’ Dependency Measure grows bigger than the true one. This is not affected by the

parameter settings, unless the UH parameter is unset.

We related these findings to standard machine learning concepts, showing that this

type of analysis can provide useful insights into the behaviour of process mining algorithms

and provide guidance for making improvements. Practically, this work provides a method

to mine ‘safely’ in the presence of ‘noise’, and to support informed setting of parameters.

This chapter brings to a close the theoretical and practical contributions of this thesis.

The practical examples show that the theory presented in Chapter 4 provides a useful

framework within which to successfully address real problems in process mining. In the

next chapter we critically evaluate the work which has been presented, and discuss the

ways in which it may usefully be extended.

164

Part III

Evaluation

166

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The main contribution of this thesis is a probabilistic framework within which to consider

process mining and analyse process mining algorithms. We presented the framework in

Chapter 4, then validated it by application to analyses of two fundamental process mining

algorithms (Chapters 5 and 6), and investigation of two practical and current process

mining questions (Chapters 7 and 8). We showed the applicability of the framework

to understanding the behaviour of process mining algorithms, predicting the amount of

data needed for successful mining from both ‘noise-free’ and ‘noisy’ process event logs,

and mining in both stationary and online (changing) environments. In this chapter we

critically evaluate this work and suggest ways in which it may be extended.

9.1 Evaluation of the Framework

We first summarise and evaluate the main contributions of this thesis.

9.1.1 Theoretical Contributions

Many process discovery algorithms assume complete logs or only recreate the behaviour in

the log, and do not recover model probabilities. However, real processes are probabilistic,

so a log is only a sample of the true behaviour. The amount of data needed to be confident

in mining depends on the underlying distribution, and on the behaviour of the algorithm.

167

We discussed process mining from a machine learning viewpoint, and introduced a

probabilistic framework for considering processes and mining algorithms. We proposed

that the primary task of mining the control-flow of the process is to learn the ground truth

distribution over process traces, from a finite random sample of process traces drawn from

the ground truth. Process mining algorithms secondarily address additional requirements

such as the representation language to use, abstraction from detail, and so on. Within this

framework, process models may be compared using distances between the distributions

which they generate, rather than representation-dependent methods, and the behaviour

of algorithms considered in terms of their convergence to the ground truth.

We analysed the well-known Alpha and Heuristics Miner process mining algorithms

under this framework (Chapters 5 and 6), confirming known behaviours of the algorithms,

and giving additional insights. Alpha is formally proven to correctly mine models whose

underlying process is representable by a Structured Workflow Net [156], but only from

noise-free logs. It uses a few simple rules to derive relations between pairs of activities

observed together in an event log, and constructs a Petri net using these relations. Our

analysis derived a correspondingly small set of formulae for the probability of correct

discovery of these relations and process sub-structures. The behaviour of Alpha is thus

predictable under our framework. Using the derived formulae we confirmed and explained

the inability of the algorithm to mine correctly from noisy event logs. Our method could

not be applied in its current form to unstructured processes, but such processes are not

mineable by Alpha.

Heuristics Miner similarly uses relations between pairs of activities observed together

in an event log, but instead of making hard decisions, uses frequencies and relative fre-

quencies of observations of pairs of activities in the event log. These are combined with

threshold parameters to allow user control of construction of the model. This gives flexible

control of the detail in the mined model, but complicates the analysis under our frame-

work. Formulae can still be derived, to bound the amount of data needed for successful

mining. Heuristics Miner is differentiated from Alpha by its tolerance of noise in event

168

logs, and its use of parameters [194]. Our framework allowed analysis of both of these

characteristics, enabling us to show and quantify that Heuristics Miner is still susceptible

to noise, and to gain insights into how the tolerance to noise might be improved. The

analysis, and the ability to analyse under this framework, confirm Heuristics Miner as

more practical than Alpha in ‘real-world’ applications (e.g. [35, 45, 67, 99, 152, 191]).

Although we investigated only two algorithms, and limited our analysis to the control-

flow of processes, our probabilistic approach is general, Any process mining activity that

uses an event log is learning from a random sample, from underlying aspects of the true

process. Any mining algorithm can in principle be analysed probabilistically in terms

of how it uses the data in the log and the rules it applies to construct a process model.

However, some algorithms (e.g. Heuristics Miner) can be difficult to fully analyse in this

way. A simple algorithm may mask complex probabilistic behaviour. The usefulness

and ease of application of our approach will be improved by developing more general

approaches to understand the behaviour of types of algorithms, or use key characteristics

of a process model to give bounds for the amount of data to use for mining.

9.1.2 Practical Contributions

The first practical application of this probabilistic view of processes and mining algorithms

is the ability to estimate, to a given confidence level, the number of traces needed for

mining. This is an important question (see Chapter 3 and [26,175,197]). We demonstrated

the utility of our method using several example processes (Chapters 5 and 6). We also

demonstrated in Chapter 5 how convergence graphs, from mining from event logs of

increasing size, can yield insights into the learning behaviour of an algorithm. This could

be applied to estimating the number of traces needed for mining the core behaviour of, or

significant sub-structures in, a process, and thus to applying process mining to Automated

Case Management (ACM) [140], which deals with less structured processes.

Our framework provides a foundation on which to address practical applications of

current importance in process mining. We investigated mining from changing processes

169

(Chapter 7) and from ‘noisy’ event logs (Chapter 8), both mentioned in the Process

Mining Manifesto [149]. We presented a novel method for online mining of processes in

non-stationary environments, showing how to efficiently recover the sequence of signifi-

cantly different process models over time, where differences may be in either structure

or probabilities. Previous methods [26] to detect changed processes were not able in a

principled manner to assess significance of change nor to detect change online.

Chapter 8 introduced a formal model of noise in process mining and compared it with

current definitions of noise [59,148,193,194]. This model is general. Although we used only

a single noise distribution, the event log could contain traces from a mixture of multiple

models. We showed that this model of noise provides a sound basis for understanding the

range of process traces ‘safe’ to use for mining. The analysis also showed that a formal

approach can counter incorrect intuitions about an algorithm’s behaviour. One might

expect that using more (noisy) data would result in a better model, since for example

when estimating a measurement subject to some error, averaging repeat measurements

will give a more accurate result. Process mining literature refers to the ‘completeness’

of logs affecting the ability of algorithms to mine (see Chapter 3). Our analysis however

showed that in the presence of noise, using more data is not sufficient to ensure correct

mining. The process mining task is more complex than estimating a measurement, as are

the algorithms involved. Completeness itself is a problem when the data is noisy.

9.2 Assumptions, Limitations and Criticisms

The main assumption underlying this work is that the control-flow of a business process

can be considered as a distribution over sequences of activities. Traces in the event

log are assumed to be identically and independently drawn (i.i.d.) from an unchanging

underlying distribution. The discussion of online process mining in Chapter 7 retained

this assumption, i.e. that the process is stationary between changes. This assumption

enabled the analysis and prediction discussed in the preceding chapters.

170

It could be argued that this assumption is not always valid. For example, the probabil-

ities of following a cycle may reduce as the number of iterations increases. Or there may

be structure in the distribution: perhaps a worker is likely to follow the same sequence

of actions each time they follow the process. We have taken the frequentist approach

of assuming that in the long run, the process is approximately random, but it would be

interesting to investigate the use of more expressive probabilistic models to model such

structure and time dependency in processes. Little work has been done in this area,

although History-Dependent Stochastic Petri Nets have been proposed for prediction of

process outcomes [134] based on the history of traces, and some algorithms (e.g. [169,195])

model longer-distance dependencies in the data, relaxing the Markov assumption that the

probability of an activity depends only on the previous activity. However, since process

mining exists to support the business community, and understandable representations are

preferred, such more expressive models may be too complex to be of practical use.

Our analysis also assumes that the models produced by process mining algorithms can

be converted to probability distributions. This is not always the case, for example in [141]

an algorithm and representation is presented which loses the distinction between exclusive

and parallel splits. Such cases represent particular business requirements, and would

necessitate further research to understand how to apply our framework and analyses.

As discussed in Chapter 1, our analysis is limited to acyclic processes, which simplifies

the analysis since process distributions have finite support. We also assume, as elsewhere

in the literature, e.g. [7, 39, 156], processes with single start end activities, atomic activ-

ities which are recorded as they occur, and algorithms which make no use of additional

information such as timing. These assumptions do not limit the framework, which could

be relatively easily extended to encompass a wider set of process models and algorithms.

A more serious limitation of our method is that the process of analysing an algorithm

is difficult and needs to be applied from scratch to each algorithm. The analysis of

Heuristics Miner in Chapter 6 showed that a relatively simple algorithm can mask complex

probabilistic behaviour. More complex algorithms such as the Genetic Miner [50] may

171

prove impractical to analyse in this way. We believe that on the basis of this work, more

general approaches can be developed to understand the behaviour of particular types

of algorithms, and to use key characteristics of, or limited information about, a process

model or algorithm to predict the amount of data needed for mining.

In the same way, to understand algorithms’ behaviour, we assume a known process

model, and investigate the amount of data needed to successfully mine that model. Pro-

cess mining is a practical activity, and one of its main benefits is the ability to mine an

event log from an unknown process to gain an initial insight into the underlying process.

Our framework, together with the analysis of existing algorithms to develop knowledge

about general types of algorithm, could be extended to give methods for assessing the

confidence to be placed in the results of mining from logs from unknown processes.

A criticism that has been levelled at this work is the use of probabilistic automata,

which impose only a weak representational bias on a process model, whereas business

process models tend to be structured. Probabilistic automata also do not succinctly

represent parallel behaviour. However, we do not advocate the use of automata for mining.

In fact, our framework is representation-independent. Probabilistic automata provide a

convenient working representation for the distributions which we model, as a ‘lowest

common denominator’ to which other representations may be converted. They also lead

to useful methods for efficient comparison of distributions (e.g. [41, 42]).

9.3 Future Work

The work presented in this thesis may be developed in several ways.

9.3.1 Broadening the Scope

Initial future work should seek to remove the dependency of the framework on the assump-

tions in the previous section. This, together with analysis of more and different types of

process mining algorithm, would fill out the gaps in the framework, allowing for processes

172

with cycles, activities with duration, and making use of other data attributes associated

with activities and processes (see for example [141, 190]). Rather than simply repeating

the analysis per algorithm, work should focus on simplifying the prediction mechanism

and developing general theory for understanding the behaviour of mining algorithms.

9.3.2 Deepening the Theory

We have considered process mining within a Probably Approximately Correct (PAC)

framework [147]. Future work should attempt to develop bounds within this framework,

that are significantly simpler and easier to compare theoretically than the exact analyt-

ical formulae which we have presented for specific algorithms. Such bounds should be

generally applicable to classes of algorithm. This would enable objective comparison of

any algorithms and better understanding of what factors affect algorithms’ behaviours in

various situations. Ultimately, this would lead to general principles and learning theory

about the capabilities of different classes of process mining algorithm.

In general, real-world processes are complex, and the visual results of process mining

difficult to understand [148]. While this can be addressed by abstraction and clustering

methods (e.g. [73]), preprocessing, extracting multiple processes from an event log (e.g.

[24,70]), work patterns may simply be flexible, as assumed by Adaptive Case Management

(ACM) (e.g. [140]). Our framework would be made more generally applicable by explicit

extension to analysing core process behaviour, or of the structured parts of processes.

A machine learning view of process mining, applied to existing algorithms, may give

insight into how algorithms may be improved. We showed (but did not test) an example for

the Heuristics Miner, in Chapter 8. The Alpha algorithm is only guaranteed to successfully

mine models whose underlying process is representable by a Structured Workflow Net

[156], but the algorithm does not use this knowledge to limit itself to this hypothesis

class. Incorporating such prior knowledge could lead to improved learning.

173

9.3.3 Practical Applications

While it is useful to understand how much data is needed for known models, as discussed

above, process mining is often applied where the underlying model is not known. Future

work should extend the methods we have proposed, to enable methods for quantifying

the confidence which can be placed in the correctness of models mined in such situations.

Our initial investigation of process mining in online environments (Chapter 7) leaves

many open questions, such as whether the analysis can be applied to more refined process

mining algorithms, noisy log files, or complex or unstructured processes. Future research

should develop methods for mining from continuously changing underlying distributions.

Finally, our framework provides a foundation on which to address other practical

applications in a rigorous way. These include generalising process models in a principled

manner, to unseen data, analysing the factors influencing decision points in process models

[128], and predicting the outcome of active process instances [135, 165]. While many of

these areas have been addressed in the literature, our framework provides a method to be

statistically confident in the conclusions which are drawn.

9.4 Conclusion

This thesis proposed a framework for the analysis of process mining algorithms. We vali-

dated this framework on representative algorithms, and showed its applicability to solving

real-world process mining problems. In this final chapter, we have shown that this work

is a foundation on which future research may build, to develop general learning theory

for process mining, allow mining algorithms to be objectively compared and selected, and

provide practical solutions to current and future business problems.

174

APPENDIX A

PROOFS OF PROPOSITIONS AND THEOREMS

In this appendix we present details of proofs omitted from the main text.

A.1 Analysis of the Alpha Algorithm

Proofs of the propositions and theorem in Chapter 5 follow. γn(E) denotes the probability

that a requirement E for mining a structure, holds true in a log of n traces. For example,

γn(A) for set A in Figure A.1, is ‘the probability that at least one trace in a log of n

traces contains sub-string ab’. Pα,n(a >n b) is the probability that Alpha infers the

relation a >n b over n traces, and similarly for the other Alpha relations.

A.1.1 Proof of Proposition 1, Chapter 5

Proposition. The probability that Alpha infers a >n b is

Pα,n(a >n b) = 1−
(

1− π(ab)
)n
.

Proof. To infer that b can follow a, at least one of the n traces must contain sub-string

ab, so the relation will be discovered unless all traces do not contain ab. A single trace

contains ab with probability π(ab), so all n independent traces fail to contain ab with

probability
(

1− π(ab)
)n
.

175

Figure A.1: The Alpha Relations
on a Pair of Activities Partition the
possible Logs of n traces.

Figure A.2: Illustration of (C∩D)\
(A ∪B) for Proposition 5.

A.1.2 Proof of Proposition 2, Chapter 5

Proposition. The probability that Alpha infers a#n b is

Pα,n(a#n b) =
(

1− π(ab)− π(ba)
)n
.

Proof. To infer no relationship between a and b, each trace in the log must contain neither

ab nor ba. This is ¬(A∪B) in Figure A.1. Since we assume no cycles, a single trace cannot

contain both ab and ba, so π(ab ∧ ba) = 0.

A.1.3 Proof of Proposition 3, Chapter 5

Proposition. The probability that Alpha infers a →n b is

Pα,n(a →n b) =
(

1− π(ba)
)n −

(

1− π(ab)− π(ba)
)n
. (A.1)

Proof. This is represented by the set A\B in Figure 5.1, which can be seen to be equivalent

to ¬B \ ¬(A ∪B):

γn(B) = 1−
(

1− π(ba)
)n

(by Prop. 1)

⇒ γn(¬B) =
(

1− π(ba)
)n
, and by Prop. 2, (A.2)

176

γn
(

¬(A ∪ B)
)

=
(

1− π(ab)− π(ba)
)n
. (A.3)

From equations A.2 and A.3, because ¬(A ∪B) ⊂ ¬B,

Pα,n(a →n b) = γn
(

¬B \ ¬(A ∪ B)
)

= γn(¬B)− γn
(

¬(A ∪B)
)

=
(

1− π(ba)
)n −

(

1− π(ab)− π(ba)
)n
.

This is intuitively interpretable as the probability of not seeing ba in any of n traces

(good), minus the probability of also not seeing ab in any of those n traces (bad).

A.1.4 Proof of Proposition 4, Chapter 5

Proposition. The probability that Alpha infers a ‖n b is

Pα,n(a ‖n b) = 1−
(

1− π(ab)
)n −

(

1− π(ba)
)n

+
(

1− π(ab)− π(ba)
)n
.

Proof. The relations partition the set of possible logs (Figure 5.1); thus Pα,n(a ‖n b) =

1− Pα,n(a →n b)− Pα,n(b →n a)− Pα,n(a#n b), following the previous results.

A.1.5 Proof of Proposition 5, Chapter 5

Proposition. The Probability that Alpha infers an XOR split is

Pα,n

(

a →n (b1# . . . # bm)
)

= Sn(N)−
∑

1≤i≤m

Sn

(

N ∪ {Yi}
)

+
∑

1≤i<j≤m

Sn

(

N ∪ {Yi, Yj}
)

− . . .+ (−1)mSn(N ∪ Y), (A.4)

177

where

Sn(X) =

(

1−
∑

1≤i≤|X|

π(Xi) +
∑

1≤i<j≤|X|

π(Xi ∧Xj)−

. . .+ (−1)|X|π(X1 ∧X2 ∧ . . . ∧X|X|)

)n

. (A.5)

Proof. We begin with the probability that the pairs of tasks which must not be seen in

the log, do indeed not occur in the log, then use the ‘inclusion-exclusion principle’ to

remove the probability that any of the pairs of tasks which must be present in the log,

are also missing from the log.

For events Ei in a probability space with N events,

γn

(

⋃

1≤i≤N

Ei

)

=
∑

1≤i≤N

γn(Ei)−
∑

1≤i<j≤N

γn(Ei ∩ Ej) +

. . .+ (−1)N−1γn

(

⋂

1≤i≤N

Ei

)

. (A.6)

As a simplified example, we consider discovery of a two-way XOR split from a to b and

c, and assume π(ba) = π(ca) = 0. For Alpha to discover the split, the log must include

ab and ac, but not bc or cb. If Figure A.2 represents the set of all logs of n traces, then

let set A contain all logs which contain no ab, B no ac, C no bc, and D no cb. Then we

need the probability contained in the shaded area:

γn
(

(C ∩D) \ (A ∪ B)
)

= γn(C ∩D)− γn
(

(C ∩D) ∩ (A ∪B)
)

= γn(C ∩D)− γn
(

(C ∩D ∩ A) ∪ (C ∩D ∩B)
)

= γn(C ∩D)− γn(C ∩D ∩A)− γn(C ∩D ∩B)

+ γn(C ∩D ∩ A ∩B) (by equation A.6). (A.7)

Sn(N) is represented by (C∩D), Sn(N∪Y1) by (C∩D∩A), etc. If we make no assumptions

about the ground truth, then a single trace may include any of these sub-strings, so the

178

same approach is needed to calculate Sn(X).

A.1.6 Proof of Theorem 1, Chapter 5

Theorem. The probability of discovery of an XOR split may be upper bounded by

assuming independence between discovery of Alpha relations over n traces. The probability

is over-stated but error rate decreases exponentially with increasing n:

Pα,n

(

a →n (b1# . . . # bm)
)

≤
∏

1≤i≤m

Pα,n(a →n bi)×
∏

1≤i<j≤m

Pα,n(bi #n bj). (A.8)

Proof. To demonstrate, we assume that an underlying model with an XOR split from a

to (b1, b2, . . . , bm) is followed without error, and traces are recorded without error (‘noise-

free’). Thus π(b1a) = π(b1b2) = 0, etc. and the previous equations may be simplified.

Equation A.1 reduces to Pα,n(a →n b) = 1−
(

1− π(ab)
)n
, and so on.

Let bi be shorthand for π(abi), and label equations (A.4) as F (n) and (A.8) as G(n).

Equation (A.4) (discovery of multiple Alpha relations from one log not independent)

reduces to

F (n) = 1−
∑

1≤i≤m

(1− bi)n +
∑

1≤i<j≤m

(1− bi − bj)n

−
∑

1≤i<j<k≤m

(1− bi − bj − bk)n + . . .+ (−1)m
(

1−
∑

1≤i≤m

bi
)n
, (A.9)

while equation (A.8), which assumes that discovery of the relations can be treated as

independent, to

G(n) =
∏

1≤i≤m

Pα,n(a →n bi) =
∏

1≤i≤m

(

1− (1− bi)n
)

= 1−
∑

1≤i≤m

(1− bi)n

+
∑

1≤i<j≤m

(1− bi)n(1− bj)n − . . .+ (−1)m
∏

1≤i≤m

(1− bi)n. (A.10)

179

The error in assuming independent relations is given by H(n) = |F (n)− G(n)|. The

first two terms of F (n) and G(n) cancel, leaving (m − 1) terms. The difference between

the third terms of F (n) and G(n) determines the rate of decay of the error, since the

absolute values of subsequent terms in F (n) will be not greater than the third term.

This is because the value of each term, and all bi, will be between 0 and 1, so the terms

are decreasing in absolute value. Similarly for G(n) because each subsequent term is

multiplied by a further factor between 0 and 1, itself decreasing exponentially. Now let

fij(n) = (1− bi − bj)n,

gij(n) = (1− bi)n(1− bj)n = (1− bi − bj + bibj)
)n

hij(n) = gij(n)− fij(n),

λij = 1− bi − bj ,

µij = λij + bibj . (A.11)

Then hij(n) = µn
ij − λnij, so the error is bounded by

H(n) ≤ (m− 1)
[

∑

1≤i<j≤m

(µn
ij − λnij)

]

. (A.12)

This is always positive, since µij > λij for all i, j; and decays exponentially in n after a

maximum at relatively low n.

The rate of decay of the error is also exponential:

h′ij(n) = µn
ij lnµij − λnij lnλij . (A.13)

This is always negative after hij(n) reaches its maximum, and decays exponentially in n,

as the log factors are relatively negligible. The maximum error in hij(n) is reached when

h′(n) = µn
ij lnµij − λnij lnλij = 0

180

and therefore the number of traces

n = ln
(lnλij
lnµij

)/

ln
(µij

λij

)

. (A.14)

n will be largest when λij ≈ µij, when the denominator of equation (A.14) tends to 0.

This occurs when when the probabilities are small, as the difference between λij and µij is

π(abi)π(abj). But the discovery probability F (n) or G(n) will be correspondingly small,

due to the second terms of F (n), G(n). With the number of traces required to give only a

50% probability of discovery across all possibilities for the probabilities in a 3-way split,

the difference in the number of traces predicted using F (n) and G(n) is negligible.

A.2 Analysis of the Heuristics Miner Algorithm

Proofs of propositions in Chapter 6 follow.

A.2.1 Proof of Proposition 8, Chapter 6

Proposition. For all relevant DM ‘requirements’, EQn(N(ba),N(ab)|DMia)[DMba] is nega-

tively related to DMia, i.e. as DMia increases, EQn(N(ba),N(ab)|DMia)[DMba] decreases.

Proof. Equation (6.15) gave the expected value of N(iabc) conditional on N(ia) = N(ia)′:

EQn(N(iabc)|N(ia)′)[N(iabc)] = EQn(N(iabc))[N(iabc)] + c
(

N(ia), N(iabc)
)

δia

= EQn(N(iabc))[N(iabc)] + c
(

N(ia), N(iabc)
)(

N(ia)′ − EQn(N(ia))[N(ia)]
)

.

(A.15)

Note that in (A.15), EQn(N(iabc))[N(iabc)] = mπ(iabc), where m is the number of traces

which pass through the split, and similarly for the other sub-strings. Also

EQn(N(ab))[N(ab)] = EQn(N(iabc))[N(iabc)] + EQn(N(icab))[N(icab)], (A.16)

181

and similarly EQn(N(ba))[N(ba)]. Then for all valid N(ia) ∈ [0, m],

EQn(N(ba),N(ab)|DMia)[DMba] ,
C

D
=

EQn(N(ba)|N(ia))[N(ba)] − EQn(N(ab)|N(ia))[N(ab)]

EQn(N(ba)|N(ia))[N(ba)] + EQn(N(ab)|N(ia))[N(ab)] + 1
.

(A.17)

Following (A.15) we can write the numerator C and denominator D as follows:

C = m
(

π(ibac) + π(icba)− π(iabc)− π(icab)
)

+ c
(

N(ia), N(ibac)
)(

N(ia)−mπ(ia)
)

+ c
(

N(ia), N(icba)
)(

N(ia) −mπ(ia)
)

− c
(

N(ia), N(iabc)
)(

N(ia)−mπ(ia)
)

− c
(

N(ia), N(icab)
)(

N(ia)−mπ(ia)
)

,

(A.18)

D = 1 +m
(

π(ibac) + π(icba) + π(iabc) + π(icab)
)

+ c
(

N(ia), N(ibac)
)(

N(ia)−mπ(ia)
)

+ c
(

N(ia), N(icba)
)(

N(ia) −mπ(ia)
)

+ c
(

N(ia), N(iabc)
)(

N(ia)−mπ(ia)
)

+ c
(

N(ia), N(icab)
)(

N(ia) −mπ(ia)
)

.

(A.19)

We define some constants

D1 = m
[

π(ibac) + π(icba)− π(iabc)− π(icab)− π(ia)
(

c
(

N(ia), N(ibac)
)

+

c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
))]

,

D2 = c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
)

,

D3 = m
[

π(ibac) + π(icba) + π(iabc) + π(icab)− π(ia)
(

c
(

N(ia), N(ibac)
)

+

c
(

N(ia), N(icba)
)

+ c
(

N(ia), N(iabc)
)

+ c
(

N(ia), N(icab)
))]

+ 1, and

D4 = c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

+ c
(

N(ia), N(iabc)
)

+ c
(

N(ia), N(icab)
)

.

And rewrite (A.17)

EQn(N(ba),N(ab)|DMia)[DMba] =
D1 +D2N(ia)

D3 +D4N(ia)

182

Differentiating with respect to N(ia),

∂EQn(N(ba),N(ab)|DMia)[DMba]

∂N(ia)
=
D2

(

D3 +D4N(ia)
)

−D4

(

D1 +D2N(ia)
)

(

D3 +D4N(ia)
)2

=
D2D3 −D1D4
(

D3 +D4N(ia)
)2 ,

C ′

D′
. (A.20)

The numerator C ′ of (A.20) determines the sign of the correlation of DMba with N(ia).

Expanding,

C ′ = m
[

c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
)]

×
[

π(ibac) + π(icba) + π(iabc) + π(icab)

− π(ia)
[

c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

+ c
(

N(ia), N(iabc)
)

+ c
(

N(ia), N(icab)
)]

]

+ c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
)

−m
[

c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

+ c
(

N(ia), N(iabc)
)

+ c
(

N(ia), N(icab)
)]

×
[

π(ibac) + π(icba)− π(iabc)− π(icab)

− π(ia)
[

c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
)]

]

= 2m
(

π(iabc) + π(icab)
)

(

c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

)

− 2m
(

π(ibac) + π(icba)
)

(

c
(

N(ia), N(iabc)
)

+ c
(

N(ia), N(icab)
)

)

+
(

c
(

N(ia), N(ibac)
)

+ c
(

N(ia), N(icba)
)

− c
(

N(ia), N(iabc)
)

− c
(

N(ia), N(icab)
)

)

, C ′
1 − C ′

2 + C ′
3.

Recall that c
(

Nia), N(iabc)
)

is positive and all the other correlations negative. Therefore

• C ′
1 < 0 since the first factor is positive, second negative.

• C ′
2 < 0 only when |c

(

N(ia), N(icab)
)

| > |c
(

N(ia), N(iabc)
)

| which means π(icab) >

183

π(iabc). Also C ′ is positive only if C ′
2 < C ′

1, when c
(

N(ia), N(iabc)
)

is relatively

larger than the other correlations. But then π(ab) > π(ba) so DMba < 0, and

DMia > DMba is certain.

• C ′
3 has relatively little effect since it does not involve m.

The derivative of EQn(N(ba),N(ab)|DMia)[DMba] with respect to N(ia) is therefore negative

for all cases when the requirement DMia > DMba is of interest.

184

APPENDIX B

COMBINING PROBABILITIES FOR PROCESS

SUB-STRUCTURES

We elaborate on the discussion in Section 5.3.3 on the effect on the formulae for discovery

of Alpha relations and process sub-structures, of considering sub-structures in the model

as dependent on ‘previous’ sub-structures. For the running example process model (Figure

4.1), the probability Pα,n(M) of correctly mining the full process modelM is

Pα,n(M) = Pα,n(A)× Pα,n(B|A)× Pα,n(C|B)× Pα,n(D|C)× Pα,n(E|D)× Pα,n(F |B,E).

(B.1)

The probabilities of sub-strings in the Alpha formulae are conditioned by the probabilities

of the prefix strings leading up to those sub-strings, i.e. π(ab) becomes π(b|→a); and only

traces within which those sub-strings are expected to occur, are considered, e.g.

Pα,n(a >n b) = 1−
(

1− π(ab)

π(→a)
)n·π(→a)

, etc.

This has the effect of a modest reduction to the probability Pα,n(S) of successfully

mining structure S in n traces. The predicted number of traces n can also be obtained by

using the ‘local’ probabilities within S, and dividing by the probability of traces ‘reaching’

the structure. We formalise this in the following proposition.

Proposition. The number of traces nc predicted as necessary for correctly mining

process sub-structure S in a process modelM, conditional on correctly mining structures

185

A,B, . . . before S in M, is the same as the number of traces nl predicted using ‘local’

sub-string probabilities in S, scaled by the probability π(→ S) of ‘reaching’ S inM.

Proof. Consider an XOR split S = a → (b# c). Then we have π(→ S) = π(→ a). The

probabilities of sub-strings involved in S in the context of the model (‘model’ probabilities)

are π(ab), π(ac), etc., and the ‘local’ sub-string probabilities are π(ab| → a), π(ac| → a),

etc. Let the desired probability of correct mining be 1− ǫ for small 0 ≤ ǫ≪ 1.

We consider nM , nl, nc, the numbers of traces predicted as necessary for 100(1− ǫ)%

confidence in correctly mining the Alpha relation a →n b, respectively using 1) ‘model’

sub-string probabilities, 2) ‘local’ sub-string probabilities, and 3) ‘model’ sub-string prob-

abilities taking into account the number of traces expected to pass through S:

1. Ignoring the context of structure S in the model, using the ‘model’ sub-string prob-

abilities,

1−
(

1− π(ab)
)nM ≥ (1− ǫ) ⇒ nM ln

(

1− π(ab)
)

≥ ln ǫ

⇒ nM ≥
ln ǫ

ln
(

1− π(ab)
) . (B.2)

This treats mining of each structure as independent of mining of all other structures.

2. Calculating Pα,n(S) using conditional ‘local’ sub-string probabilities in S,

1−
(

1− π(ab)

π(→ a)

)nl ≥ (1− ǫ)

⇒ nl ln
(

1− π(ab)

π(→ a)

)

≥ ln ǫ

⇒ nl ≥
ln ǫ

ln
(

1− π(ab)
π(→a)

)
≤ nM . (B.3)

This treats S as a standalone structure. nl ≤ nM given by (B.2) since the denomi-

nator of nl will never be larger than that of nM .

3. Treating S in context in the model, using the conditional sub-string probabilities,

186

and considering only traces which are expected to involve S,

1−
(

1− π(ab)

π(→ a)

)nc.π(→a)

≥ (1− ǫ)

⇒ ncπ(→ a) ln
(

1− π(ab)

π(→ a)

)

≥ ln ǫ

⇒ nc ≥
ln ǫ

π(→ a) ln
(

1− π(ab)
π(→a)

) . (B.4)

Therefore nc =
nl

π(→ a)
. The same argument applies to the other Alpha relations and the

formulae for mining of sub-structures.

This is intuitive. If nl traces would be needed to discover S if it were standalone (‘local’

probabilities), and the probability of a trace involving S is π(→ S), then considering the

context of S in M we expect on average nπ(→ S) trace of an event log of n traces to

involve S. Then intuitively nc =
nl

π(→S)
traces will be needed to discover S in the context

of the whole model. For example, if we have enough traces for confidence in mining a

split, then having the necessary traces for the corresponding join is almost certain, since

all traces that pass through the split will also pass through the join.

Using ‘local’ sub-string probabilities reduces the number of traces predicted for correct

mining, but considering only the subset of traces in W that pass through S increases the

predicted number of traces needed. Overall, the modified formulae result in a modest

reduction in the number of traces predicted.

187

188

APPENDIX C

GAUSSIAN APPROXIMATIONS TO

DISTRIBUTIONS FOLLOWED BY HEURISTICS

MINER DEPENDENCY MEASURES

In this appendix we present further details of the method introduced in Section 6.2.5

to calculate π(DMia > DMba), assuming the distributions followed by the Dependency

Measures to be approximated by Gaussians.

For simplicity consider the space of (x, y) coordinates, where DMia is plotted on

the x axis, DMba on the y axis (Figure C.1). DMia is approximated by a Gaussian

gx ∼ N (µX, σ
2
x), DMba by gy ∼ N (µY , σ

2
y). We assume the Dependency Measures to be

mutually independent, and write g(x, y) for the joint density. Then transform to coordi-

nate basis (x′, y′), such that

x′ =
x− µX

σx
, y′ =

y − µY

σy
. (C.1)

The x = y line is transformed to x′ = y′,

x′σx + µX = y′σy + µY ⇒ y′ =
σx
σy
x′ +

µX − µY

σy
. (C.2)

The point (x1, y1) on this line, closest to the origin is where it intersects a line x′′ (Figure

189

C.1) orthogonal to it which passes through the origin,

y = −σy
σx
, (C.3)

The intersection (x1, y1) is obtained by setting the right-hand side of Equation (C.2) equal

to the right-hand side of (C.3),

σx
σy
x1 +

µX − µY

σy
= −σy

σx
x1 ⇒

(σx
σy

+
σy
σx

)

x1 =
µY − µX

σy
⇒
(σ2

x + σ2
y

σx

)

x1 = µY − µX ,

and therefore

⇒ x1 =
σx(µY − µX)

σ2
x + σ2

y

and y1 =
σy(µX − µY)

σ2
x + σ2

y

.

The distance from the origin to the x′ = y′ line (C.2), marked d in Figure C.1, is

d =
√

x21 + y21 =

√

[σ2
x(µY − µX)2 + σ2

y(µX − µY)2

(σ2
x + σ2

y)
2

]

=

√

[(σ2
x + σ2

y)(µY − µX)2

(σ2
x + σ2

y)
2

]

=
|µY − µX |
√

σ2
x + σ2

y

.

To the transformed x = y + RTB line (for separation by more than RTB),

d =
|µY − µX + RTB |

√

σ2
x + σ2

y

.

Since these are affine transformations, co-linearity and ratios of vectors along a line are

preserved, and the transformed joint distribution g′(x′, y′) is a standard two-dimensional

Gaussian with zero mean and unit standard deviation. Since the transformed x = y+RTB

line cuts this distribution, we can integrate a one dimensional Standard Gaussian to find

γn(x > y ± RTB).

γn(x > y + RTB) = 1−
∫ x′=d

x′=−∞

N(0, 1)dx′. (C.4)

190

Figure C.1: Illustration of Translation and Scale of the Joint DM Distribution, g(x, y),
to g′(x′, y′), to allow π(DMia > DMba +RTB) to be calculated using the Distance d from
the Origin to the transformed x = y Line, x′ = y′. See Text and Equations (C.1)–(C.4).

191

192

APPENDIX D

TABLES OF RESULTS SUPPORTING

HEURISTICS MINER ANALYSIS

In this appendix we provide fuller versions of the results presented in Chapter 6.

D.1 Analysis of 2-Way Parallel Splits

Table D.1 shows the number of traces predicted for γn(DMia > DMba) ≥ 0.95 for two-

way parallel splits, for all combinations of π(ia) + π(ib) ≤ 1, in intervals of 0.05. The

highlighted entries show where this is greater than γn(N(ia) > PO ∧N(ib) > PO) (Table

D.3), which can be seen to only be the case for very imbalanced splits.

Table D.2 shows the corresponding numbers of traces identified by simulation.

D.2 Analysis of 3-Way Parallel Splits

Table D.4 shows the difference between the predicted and simulated numbers of traces

for meeting the three requirements such as γn(DMia > DMba) ≥ 0.95 for three-way

parallel splits, under the assumption of ‘second’ probabilities proportional to the ‘first’,

i.e. π(b|ia) = π(ib)
π(ib)+π(ic)

. See Section 6.2.5 (page 123) for descriptions of these assumptions.

Prediction is using the ‘AND2 Method’, projecting the joint distribution of DMia,DMba

to the line given by plotting DMia against EQn(N(ba),N(ab)|DMia)[DMba] for all values of

193

π(ib) π(ia) = 0.05, 0.1, . . . , 1.0

0.05 109 46 28 20 15 12 9 8 6 5 5 4 3 3 2 2 1 1 1
0.1 133 53 31 21 16 12 10 8 7 6 5 4 3 3 2 2 2 1

154 59 34 23 17 13 10 8 7 6 5 4 3 3 2 2 2
175 64 36 24 18 14 11 9 7 6 5 4 4 3 2 2
194 70 39 26 19 14 11 9 8 6 5 4 4 3 3
213 75 41 27 20 15 12 9 8 6 5 4 4 3
231 80 44 29 20 16 12 10 8 7 6 5 4
249 85 46 30 21 16 13 10 8 7 6 5
266 90 48 31 22 17 13 10 9 7 6
283 94 51 33 23 17 13 11 9 7
299 99 53 34 24 18 14 11 9
316 104 55 35 25 18 14 11
332 108 57 36 25 19 15
348 113 59 38 26 20
364 117 61 39 27
379 121 63 40
395 126 65
410 130

0.95 425

Table D.1: Predicted Number of Traces for γn(DMia > DMba) ≥ 0.95 for AND2.

N(ia) ∈ [0, m], where m is the number of traces which pass through the split. Table D.5

shows the same data where ‘second’ probabilities are even splits, i.e. π(b|ia) = π(c|ia) =

0.5, etc. Negative entries indicate underestimates, that more traces were required by the

simulation than were predicted, highlighted in bold. These occurs only when the split is

imbalanced with one split probability being relatively small. Table D.6 shows the same

data for ‘extreme’ imbalanced second probabilities, i.e. π(b|ia) = 0.05, π(c|ia) = 0.95 etc.

The method underestimates significantly where one of the probabilities is very small, as

discussed in Section 6.2.5.

D.3 Heuristics Miner Experimentation

In this section we provide fuller versions of the results for mining from noisy event logs

with the Heuristics Miner algorithm, presented in Chapter 6.

Table D.7 presents the predicted minimum numbers of trace needed for PHM,n(M) ≥

194

π(ib) π(ia) = 0.05, 0.1, . . . , 1.0

0.05 94 29 19 14 11 8 7 6 5 4 4 4 2 2 2 1 1 1 1
0.1 124 46 30 14 14 8 7 6 5 4 4 4 2 2 2 1 1 1

124 46 30 22 17 8 7 6 5 4 4 4 2 2 2 1 1
153 62 30 22 17 8 7 6 5 4 4 4 2 2 2 1
181 61 30 22 17 8 7 10 5 4 4 4 2 2 2
208 61 40 22 17 14 12 10 6 4 4 4 2 2
208 76 40 22 17 14 12 10 7 4 4 4 2
234 76 40 30 17 14 12 10 7 4 4 4
260 89 50 30 20 14 12 10 6 4 4
260 90 50 30 21 14 12 10 8 8
286 90 50 30 22 14 12 10 8
291 103 50 30 23 19 12 10
312 103 59 37 24 19 12
337 103 59 37 23 19
360 116 59 37 24
381 116 59 37
386 118 59
399 128

0.95 410

Table D.2: Simulated Traces for γn(DMia > DMba) ≥ 0.95 for AND2.

0.95 of correct mining of the running example model M, with various amounts of noise

κ and various parameter settings. Tables D.8 and D.9 give the predicted maximum

numbers of traces safe to use for mining before probability is greater than 0.05 that the

mined models will be affected by noise structures.

195

π(ib) π(ia) = 0.05, 0.1, . . . , 1.0

0.05 311 311 311 311 311 311 311 311 311 311 311 311 311 . . .

0.1 311 154 154 154 154 154 154 154 154 154 154 154 154 . . .

311 154 102 102 102 102 102 102 102 102 102 102 102 . . .

311 154 102 76 76 76 76 76 76 76 76 76 76 . . .

311 154 102 76 60 60 60 60 60 60 60 60 60 . . .

311 154 102 76 60 49 49 49 49 49 49 49 49 . . .

311 154 102 76 60 49 42 42 42 42 42 42 42
311 154 102 76 60 49 42 36 36 36 36 36
311 154 102 76 60 49 42 36 32 32 32
311 154 102 76 60 49 42 36 32 28
311 154 102 76 60 49 42 36 32
311 154 102 76 60 49 42 36
311 154 102 76 60 49 42
311 154 102 76 60 49
311 154 102 76 60
311 154 102 76
311 154 102
311 154

0.95 311

Table D.3: Predicted Number of Traces for γn
(

N(ia) > PO∧N(ib) > PO
)

≥ 0.95, for
AND2, PO = 10.

196

π
(i
a
)

π
(i
b)

=
0.
05
,0
.1
,.
..
,1
.0

0.
05

9
6

14
6

7
9

9
3

3
3

3
9

9
7

6
2

6
9

0.
1

6
11

15
8

5
15

16
3

4
3

16
15

8
4

13
12

6
2

15
5

16
7

7
10

10
10

10
7

5
16

5
15

2
6

8
16

6
13

19
4

0
4

19
13

6
16

8
6

7
5

5
13

15
10

14
14

5
15

13
7

5
7

9
13

7
19

10
15

12
15

10
19

7
13

9
8

15
10

4
14

12
12

14
4

10
15

8
3

4
12

0
10

15
14

0
12

6
3

3
4

12
4

5
10

4
12

4
3

3
6

10
19

15
19

10
6

3
3

14
7

13
13

7
14

3
9

13
7

6
7

13
9

9
5

16
16

4
9

7
8

5
1

7
6

15
15

6
3

12
3

6
6

0.
95

9

T
ab

le
D
.4
:
D
iff
er
en
ce

b
et
w
ee
n
P
re
d
ic
te
d
an

d
S
im

u
la
te
d
T
ra
ce
s
fo
r
M
in
in
g
A
N
D
3,

as
(P

re
d
ic
te
d
−S

im
u
la
te
d
)/
P
re
d
ic
te
d
%
.
π
(b
|ia

)
p
ro
p
or
ti
on

al
to
π
(i
b)
,
et
c.

197

π
(ia

)
π
(ib)

=
0
.05

,0
.1
,...

,1
.0

0
.05

−
5

7
15

15
27

34
28

35
36

38
35

29
34

27
15

14
6
−
4

0
.1

7
−
2

3
14

25
21

28
30

31
28

28
21

25
16

2
0

7
14

5
2

14
14

21
29

29
29

29
18

11
14

2
3

15
15

14
12

21
4

15
20

20
16

15
0

18
14

14
15

25
25

11
4

5
19

19
19

19
5

4
11

27
26

34
19

21
15

19
25

12
25

19
15

21
21

34
29

28
26

16
19

12
12

19
20

26
26

29
35

28
29

20
19

25
19

20
29

28
34

38
31

29
16

19
19

20
29

31
38

38
28

26
15

5
15

29
30

38
34

28
18

4
4

18
28

33
30

21
14

18
14

19
30

34
27

12
14

24
34

25
14

2
14

25
14

3
3

14
17

0
15

8
6

0
.95

−
4

T
ab

le
D
.5:

D
iff
eren

ce
b
etw

een
P
red

icted
an

d
S
im

u
lated

T
races

for
M
in
in
g
A
N
D
3,

as
(P

red
icted−

S
im

u
lated

)/P
red

icted
%
.
π
(b|ia

)
=

0.5,
etc.,

L
ikely

U
n
d
erestim

ates
in

B
old

.

198

0.
05

6
−
8
−
1
1

−
1
1

−
1
2

−
1
3

−
1
4

−
1
9

−
1
8

−
2
1

−
2
5

−
2
8

−
3
0

−
3
6

−
4
4

−
6
8
−
8
3
−
1
0
7

0.
1

0
−
2
0
−
3
3

−
3
3

−
3
5

−
3
8

−
4
0

−
4
3

−
5
8

−
6
5

−
6
9

−
6
9

−
7
6

−
7
6
−
1
0
5
−
1
3
9
−
6
1

5
−
1
2
−
4
9

−
5
8

−
6
1

−
6
0

−
6
5

−
6
9

−
8
6

−
8
3

−
8
8
−
1
0
1
−
1
3
5
−
1
7
1
−
1
3
1

−
1
0

3
0
−
4
6

−
7
3

−
7
9

−
8
6

−
8
6
−
1
1
6
−
1
2
4
−
1
2
9
−
1
4
7
−
1
8
7
−
1
6
3

−
3
8

20
7

8
−
3
0

−
8
9
−
1
0
7
−
1
2
6
−
1
3
8
−
1
9
7
−
1
9
1
−
1
8
1
−
1
6
1

−
9
2

−
1
5

17
11

12
−
3
8

−
7
7
−
1
6
0
−
2
0
7
−
2
2
3
−
1
9
6
−
2
0
8
−
1
4
8

−
4
1

11
30

7
3
−
3
0
−
1
2
2
−
1
5
4
−
1
8
0
−
1
9
5
−
1
6
7
−
1
0
0

−
7

24
35

4
5
−
2
4

−
7
1

−
9
6
−
1
0
4

−
8
6

−
3
6

−
3
0

37
37

6
11

−
1
0

−
3
6

−
4
3

−
2
9

−
9

17
37

35
8

14
−
2

−
8

0
8

20
36

37
3

15
10

−
3

10
19

35
37

8
16

10
0

12
26

33
1

7
14

7
9

29
3

7
13

16
16

7
8

−
2

19
8

5
19

9
2

0.
95

−
8

T
ab

le
D
.6
:
D
iff
er
en
ce

b
et
w
ee
n

P
re
d
ic
te
d

an
d
S
im

u
la
te
d

T
ra
ce
s
fo
r
M
in
in
g
A
N
D
3,

as
(P

re
d
ic
te
d
−S

im
u
la
te
d
)/
P
re
d
ic
te
d
%
,
w
it
h

π
(b
|ia

)
=

0.
95

or
0.
05
,
et
c.
,
L
ik
el
y
U
n
d
er
es
ti
m
at
es

in
B
ol
d
.

199

κ
d
efau

lts
R
T
B

P
O

D
T

0
0
.01

0
.1

5
1

0
.5

0
.8

0
.95

0
.99

0
84

84
84

84
4
9

4
5
(s)

84
84

84
84

0
.01

85
85

85
85

4
9

4
5
(s)

85
85

85
85

0
.02

86
86

86
85

5
0

4
5
(s)

87
87

87
87

0
.03

87
87

87
87

5
0

4
6
(s)

87
87

87
87

0
.05

89
89

89
90

5
2

4
7
(s)

90
90

90
90

0
.1

94
95

95
95

5
5

5
0
(s)

94
94

94
94

0
.2

106
106

106
107

6
2

5
7
(s)

106
106

106
106

0
.3

122
122

122
122

7
1

6
6
(s)

122
142

122
142

0
.4

143
142

142
143

8
0

7
8
(s)

143
143

143
143

0
.5

171
171

171
171

1
0
0

9
5
(s)

172
172

172
172

0
.01

84
84

84
84

5
2
(s)

5
2
(s)

84
84

84
84

0
.02

84
84

84
84

5
1
(s)

5
1
(s)

83
83

83
83

0
.05

81
81

81
81

4
8
(s)

4
8
(s)

81
81

81
81

0
.1

78
78

78
78

4
5

4
4
(s)

78
78

78
78

0
.2

72
72

72
72

4
2

3
8
(s)

72
72

72
72

0
.3

67
66

66
66

4
2
(b
)

4
2
(b
)

66
66

66
66

0
.4

62
62

62
62

4
9
(b
)

4
9
(b
)

63
63

63
63

0
.5

59
(b
)

59
(b
)

59
(b
)

59
(b
)

59
(b
)

59
(b
)

59
(b
)

59
(b
)

59
(b
)

59
(b
)

T
ab

le
D
.7:

P
red

icted
N
u
m
b
er

of
T
races

for
correct

m
in
in
g,

vary
in
g
N
oise

κ
,
from

O
1
(T

op
),O

2
(B

ottom
).

D
eterm

in
in
g
F
actor:

ach
iev

in
g
P
O

T
races

for
P
arallel

S
p
lit
C
,
ex
cep

t
(s)

ach
iev

in
g
D
M

be
>

D
M

d
e ,
(b
)
m
in
in
g
X
O
R

S
p
lit
B
.

200

κ
m
in
im

u
m

d
ef
au

lt
s

R
T
B

P
O

d
is
ta
n
ce

0
0.
01

0.
1

5
1

0.
00
1

0.
05

66
76

(r
)

2
8
2
8
9
(s
)

1
8
3
0
8
(r
)

5
4
2
7
(p
)

66
76

(r
)

66
76

(r
)

0.
00
2

0.
05

27
14

(p
)

5
0
2
5
(s
)

4
1
5
8
(r
)

2
7
1
4
(p
)

2
6
2
0
(d
)

2
6
2
0
(d
)

0.
00
3

0.
05

15
59

(s
)

15
59

(s
)

15
59

(s
)

15
59

(s
)

15
59

(s
)

15
59

(s
)

0.
00
4

0.
05

55
4
(s
)

55
4
(s
)

55
4
(s
)

55
4
(s
)

55
4
(s
)

55
4
(s
)

0.
00
5

0.
1

44
4
(s
)

44
4
(s
)

44
4
(s
)

44
4
(s
)

44
4
(s
)

44
4
(s
)

0.
01

0.
25

11
3
(s
)

11
3
(s
)

11
3
(s
)

11
3
(s
)

11
3
(s
)

11
3
(s
)

0.
01

n
/a

56
22

(f
r)

n
/a

3
6
7
0
0
(f
r)

2
4
4
3
(f
p
)

56
22

(f
r)

56
22

(f
r)

0.
02

26
77

(f
r)

1
7
7
6
2
(f
r)

1
2
2
3
(f
p
)

26
77

(f
r)

26
77

(f
r)

0.
05

88
9
(f
r)

6
3
7
2
(f
r)

4
9
0
(f
p
)

88
9
(f
r)

88
9
(f
r)

0.
1

24
6
(f
p
)

2
4
6
6
(f
r)

24
6
(f
p
)

2
3
7
(e
d
)

2
3
7
(e
d
)

0.
2

12
4
(f
p
)

12
4
(f
p
)

12
4
(f
p
)

1
2
0
(e
d
)

1
2
0
(e
d
)

0.
3

84
(f
p
)

84
(f
p
)

84
(f
p
)

8
0
(e
d
)

8
0
(e
d
)

0.
4

63
(f
p
)

63
(f
p
)

63
(f
p
)

6
1
(e
d
)

6
1
(e
d
)

0.
5

51
(f
p
)

7
5
(f
r)

51
(f
p
)

4
9
(e
d
)

4
9
(e
d
)

T
ab

le
D
.8
:
P
re
d
ic
te
d
N
u
m
b
er

of
T
ra
ce
s
fo
r
In
cl
u
si
on

in
th
e
M
in
ed

M
o
d
el

of
N
oi
se

fr
om
O

1
(T

op
)
or
O

2
(B

ot
to
m
),

va
ry
in
g
R
T
B

an
d
P
O

P
ar
am

et
er
s.

D
et
er
m
in
in
g
F
ac
to
rs

(s
)
D
M

be
>

D
M

d
e
,
(r
)
|D

M
ic
−
D
M

a
c
|<

R
T
B
,
(p
)
N
(i
c)
>

P
O
,
(d
)
D
M

ic
>

D
T
,
(f
r)

|D
M

f
o
−
D
M

c
o
|<

R
T
B
,
(f
p
)
N
(f
o)
>

P
O
,
(e
d
)
D
M

e
o
>

D
T
.

201

κ
m
in
im

u
m

d
efau

lts
D
T

d
istan

ce
0
.5

0
.8

0
.95

0
.99

0
.001

0
.05

6676
(r)

6675
(r)

6675
(r)

1
3
0
5
8
(d
)

2
8
2
8
9
(s)

0
.002

0
.05

2714
(p
)

2714
(p
)

2714
(p
)

5
0
2
5
(s)

5
0
2
5
(s)

0
.003

0
.05

1559
(s)

1559
(s)

1559
(s)

1559
(s)

1559
(s)

0
.004

0
.05

554
(s)

554
(s)

554
(s)

554
(s)

554
(s)

0
.005

0
.1

444
(s)

444
(s)

444
(s)

444
(s)

444
(s)

0
.01

0
.25

113
(s)

113
(s)

113
(s)

113
(s)

113
(s)

0
.01

n
/a

5622
(fr)

5622
(fr)

5622
(fr)

5
8
7
8
(ed

)
3
7
7
7
5
(ed

)
0
.02

2677
(fr)

2677
(fr)

2677
(fr)

2
9
4
0
(ed

)
1
8
8
9
2
(ed

)
0
.05

889
(fr)

889
(fr)

889
(fr)

1
1
7
8
(ed

)
7
5
6
1
(ed

)
0
.1

246
(fp

)
246

(fp
)

246
(fp

)
5
9
0
(ed

)
3
7
8
4
(ed

)
0
.2

124
(fp

)
124

(fp
)

124
(fp

)
2
9
7
(ed

)
1
8
9
6
(ed

)
0
.3

84
(fp

)
84

(fp
)

84
(fp

)
1
9
9
(ed

)
1
2
6
6
(ed

)
0
.4

63
(fp

)
63

(fp
)

63
(fp

)
1
5
0
(ed

)
9
5
2
(ed

)
0
.5

51
(fp

)
51

(fp
)

51
(fp

)
1
2
1
(ed

)
7
6
3
(ed

)

T
ab

le
D
.9:

P
red

icted
N
u
m
b
ers

of
T
races

for
In
clu

sion
in

th
e
M
in
ed

M
o
d
el

of
N
oise

from
O

1
(T

op
)
or
O

2
(B

ottom
),

vary
in
g

D
T

p
aram

eter.
D
eterm

in
in
g
F
actors

(s)
D
M

be
>

D
M

d
e ,

(r)
|D

M
ic −

D
M

a
c |

<
R
T
B
,
(p
)
N
(ic)

>
P
O
,
(d
)
D
M

ic
>

D
T
,
(fr)

|D
M

f
o −

D
M

c
o |
<
R
T
B
,
(fp

)
N
(f
o)
>

P
O
,
(ed

)
D
M

e
o
>

D
T
.

202

LIST OF REFERENCES

[1] Proceedings of the IEEE Symposium on Computational Intelligence and Data Min-
ing, CIDM 2011, part of the IEEE Symposium Series on Computational Intelligence
2011, Paris. IEEE, 2011.

[2] N. Abe and M. K. Warmuth. On the computational complexity of approximating
distributions by probabilistic automata. In Proceedings of the 3rd Annual Workshop
on Computational Learning Theory, pages 52–66, San Mateo, CA, USA, 1990.

[3] R. Accorsi and T. Stocker. Discovering workflow changes with time-based trace
clustering. In K. Aberer, E. Damiani, and T. S. Dillon, editors, SIMPDA, volume
116 of LNBIP, pages 154–168. Springer, 2011.

[4] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and W. M. P.
van der Aalst. Alignment based precision checking. In Rosa and Soffer [121], pages
137–149.

[5] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Towards robust
conformance checking. In M. zur Muehlen and J. Su, editors, BPM Workshops,
volume 66 of LNBIP, pages 122–133. Springer, 2010.

[6] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Conformance
checking using cost-based fitness analysis. In EDOC, pages 55–64. IEEE Computer
Society, 2011.

[7] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In H.-J. Schek, F. Saltor, I. Ramos, and G. Alonso, editors, EDBT, volume
1377 of LNCS, pages 469–483. Springer, 1998.

[8] F. Aiolli, A. Burattin, and A. Sperduti. A business process metric based on the
Alpha algorithm relations. In Daniel et al. [43], pages 141–146.

203

[9] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A general
and efficient weighted finite-state transducer library. In J. Holub and J. Zdárek,
editors, CIAA, volume 4783 of LNCS, pages 11–23. Springer, 2007.

[10] L. Allison. KL-distance between Gaussians. http://www.allisons.org/ll/MML/

KL/Normal/ (retrieved 8/1/2013).

[11] G. Alonso, P. Dadam, and M. Rosemann, editors. Business Process Management,
5th International Conference, BPM 2007, Brisbane, Proceedings, volume 4714 of
LNCS. Springer, 2007.

[12] A. K. A. de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters. Quantifying
process equivalence based on observed behavior. Data and Knowledge Engineering,
64(1):55–74, 2008.

[13] D. Angluin. Identifying languages from stochastic examples. Technical Report
YALEU/DCS/TR614, Yale University, 1988.

[14] D. Angluin. Computational learning theory: Survey and selected bibliography. In
STOC, pages 351–369. ACM, 1992.

[15] J. Bae, L. Liu, J. Caverlee, and W. B. Rouse. Process mining, discovery, and
integration using distance measures. In Proceedings of the 2006 IEEE International
Conference on Web Services (ICWS), pages 479–486, Chicago, 2006.

[16] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae. Development of distance
measures for process mining, discovery, and integration. International Journal of
Web Services Research, 4(4):1–17, 2007.

[17] L. Baresi and M. Pezzè. On formalizing UML with high-level Petri Nets. In G. Agha,
F. de Cindio, and G. Rozenberg, editors, Concurrent Object-Oriented Programming
and Petri Nets, volume 2001 of LNCS, pages 276–304. Springer, 2001.

[18] M. Becker and R. Laue. Analysing differences between business process similarity
measures. In F. Daniel, K. Barkaoui, and S. Dustdar, editors, BPM Workshops (2),
volume 100 of LNBIP, pages 39–49. Springer, 2011.

[19] E. Bellodi, F. Riguzzi, and E. Lamma. Probabilistic declarative process mining. In
Y. Bi and M.-A. Williams, editors, KSEM, volume 6291 of LNCS, pages 292–303.
Springer, 2010.

204

[20] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process mining based on
regions of languages. In Alonso et al. [11], pages 375–383.

[21] A. Bhattacharyya. On a measure of divergence between two statistical populations
defined by their probability distributions. Bulletin of the Calcutta Mathematical
Society, 35:99–109, 1943.

[22] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[23] B. Bordbar and P. Weber. Automated prevention of failure in complex and large
systems: Fighting fire with fire. Accepted for publication in International Journal
of Informatics Society (IJIS), 5:(to appear), 2013.

[24] R. P. J. C. Bose and W. M. P. van der Aalst. Context aware trace clustering:
Towards improving process mining results. In SDM, pages 401–412. SIAM, 2009.

[25] R. P. J. C. Bose and W. M. P. van der Aalst. Trace clustering based on conserved
patterns: Towards achieving better process models. In Rinderle-Ma et al. [119],
pages 170–181.

[26] R. P. J. C. Bose, W. M. P. van der Aalst, I. Zliobaite, and M. Pechenizkiy. Handling
concept drift in process mining. In H. Mouratidis and C. Rolland, editors, CAiSE,
volume 6741 of LNCS, pages 391–405. Springer, 2011.

[27] R. P. J. C. Bose, H. M. W. Verbeek, and W. M. P. van der Aalst. Discovering
hierarchical process models using ProM. In S. Nurcan, editor, CAiSE Forum, volume
734 of CEUR Workshop Proceedings, pages 33–40. CEUR-WS.org, 2011.

[28] A. Burattin and A. Sperduti. Automatic determination of parameters’ values for
Heuristics Miner++. In IEEE Congress on Evolutionary Computation, pages 1–8.
IEEE, 2010.

[29] A. Burattin and A. Sperduti. Heuristics Miner for time intervals. In Proceedings of
ESANN 2010, Bruges, Belgium, 2010.

[30] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Kluwer Academic Publishers, Norwell, USA, 1997.

[31] E. Byres and J. Lowe. Myths and facts behind cyber security risks for industrial
control systems. Engineering Technology, 7(10):48–50, 2004-2005.

205

[32] T. Calders, C. W. Günther, M. Pechenizkiy, and A. Rozinat. Using minimum
description length for process mining. In S. Y. Shin and S. Ossowski, editors, SAC,
pages 1451–1455. ACM, 2009.

[33] R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of
a state merging method. In R. C. Carrasco and J. Oncina, editors, ICGI, volume
862 of LNCS, pages 139–152. Springer, 1994.

[34] A. Cedilnik, K. Krošmelj, and A. Blejec. The distribution of the ratio of jointly
Normal variables. Metodološki zvezki – Advances in Methodology and Statistics,
1(1):99–108, 2004.

[35] J. Claes and G. Poels. Process mining and the ProM framework: an exploratory
survey. In Rosa and Soffer [121], pages 187–198.

[36] A. Clark and F. Thollard. PAC-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research, 5:473–497, 2004.

[37] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(5):564–77, 2003.

[38] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf. Discovering models of behavior for
concurrent workflows. Computers in Industry, 53(3):297–319, 2004.

[39] J. E. Cook and A. L. Wolf. Discovering models of software processes from event-
based data. ACM Transactions on Softw. Eng. Methodol., 7(3):215–249, 1998.

[40] J. E. Cook and A. L. Wolf. Software process validation: Quantitatively measuring
the correspondence of a process to a model. ACM Transactions on Softw. Eng.
Methodol., 8(2):147–176, 1999.

[41] C. Cortes, M. Mohri, and A. Rastogi. On the computation of some standard dis-
tances between probabilistic automata. In O. H. Ibarra and H.-C. Yen, editors,
CIAA, volume 4094 of LNCS, pages 137–149. Springer, 2006.

[42] C. Cortes, M. Mohri, A. Rastogi, and M. Riley. Efficient computation of the relative
entropy of probabilistic automata. In J. R. Correa, A. Hevia, and M. A. Kiwi,
editors, LATIN, volume 3887 of LNCS, pages 323–336. Springer, 2006.

206

[43] F. Daniel, K. Barkaoui, and S. Dustdar, editors. BPM Workshops, BPM 2011
International Workshops, Clermont-Ferrand, France, 2011, Revised Selected Papers,
Part I, volume 99 of LNBIP. Springer, 2012.

[44] A. Datta. Automating the discovery of AS-IS business process models: probabilistic
and algorithmic approaches. Information Systems Research, 9(3):275–301, 1998.

[45] F. de Lima Bezerra, J. Wainer, and W. M. P. van der Aalst. Anomaly detection using
process mining. In T. A. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt,
P. Soffer, and R. Ukor, editors, BMMDS/EMMSAD, volume 29 of LNBIP, pages
149–161. Springer, 2009.

[46] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst. Genetic
process mining: an experimental evaluation. Data Mining and Knowledge Discovery,
14(2):245–304, 2007.

[47] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst. Genetic
process mining: A basic approach and its challenges. In volume 2812 of LNCS,
pages 203–215, Heidelberg, 2005.

[48] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M.
Weijters. Process mining: Extending the Alpha algorithm to mine short loops,
BETA Working Paper 113, Eindhoven University of Technology, 2004.

[49] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst. Using
Genetic Algorithms to mine process models: Representation, operators and results,
BETA Working Paper 124, Eindhoven University of Technology, 2004.

[50] A. K. A. de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven : Technische
Universiteit Eindhoven, 2006.

[51] A. K. A. de Medeiros, A. Guzzo, G. Greco, W. M. P. van der Aalst, A. J. M. M.
Weijters, B. F. van Dongen, and D. Saccà. Process mining based on clustering: A
quest for precision. In ter Hofstede et al. [142], pages 17–29.

[52] J. de Weerdt, M. de Backer, J. Vanthienen, and B. Baesens. A robust F-measure
for evaluating discovered process models. pages 148–155, Paris, 2011.

[53] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, and J. Mendling. Sim-
ilarity of business process models: Metrics and evaluation. Information Systems,
36(2):498–516, 2011.

207

[54] B. F. van Dongen. Multi-phase process mining: aggregating instance graphs into
EPCs and Petri Nets. In In PNCWB 2005 workshop, pages 35–58, 2005.

[55] B. F. van Dongen, N. Busi, and G. M. Pinna. An iterative algorithm for applying
the theory of regions in process mining, BETA Working Paper 195, Eindhoven
University of Technology, 2007.

[56] M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice-Hall,
2002.

[57] P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic automata and
Hidden Markov Models: probability distributions, learning models and induction
algorithms. Pattern Recognition, 38(9):1349–71, 2005.

[58] W. H. Dutton and G. Blank. Next generation users: the internet in Britain. Oxford
Internet Survey, 2011. Oxford Internet Institute, University of Oxford.

[59] D. Fahland and W. M. P. van der Aalst. Repairing process models to reflect reality.
In A. P. Barros, A. Gal, and E. Kindler, editors, BPM, volume 7481 of LNCS, pages
229–245. Springer, 2012.

[60] D. Fahland, M. de Leoni, B. F. van Dongen, and W. M. P. van der Aalst. Confor-
mance checking of interacting processes with overlapping instances. In Rinderle-Ma
et al. [120], pages 345–361.

[61] J. P. Farwell and R. Rohozinski. Stuxnet and the future of cyber war. Survival,
53(1):23–40, 2011.

[62] N. Ferraro, L. Palopoli, S. Panni, and S. E. Rombo. Asymmetric comparison and
querying of biological networks. IEEE-ACM Transactions on Computational Biology
and Bioinformatics, 8(4):876–889, 2011.

[63] D. R. Ferreira and D. Gillblad. Discovering process models from unlabelled event
logs. In U. Dayal, J. Eder, J. Koehler, and H. A. Reijers, editors, BPM, volume
5701 of LNCS, pages 143–158. Springer, 2009.

[64] F. Folino, G. Greco, A. Guzzo, and L. Pontieri. Discovering expressive process
models from noised log data. In B. C. Desai, D. Saccà, and S. Greco, editors,
IDEAS, ACM International Conference Proceeding Series, pages 162–172. ACM,
2009.

208

[65] W. Gaaloul, K. Gaaloul, S. Bhiri, A. Haller, and M. Hauswirth. Log-based trans-
actional workflow mining. Distributed and Parallel Databases, 25(3):193–240, 2009.

[66] D. Gao and Q. Liu. An improved simulated annealing algorithm for process mining.
In 2009 13th International Conference on Computer Supported Cooperative Work
in Design, pages 474–9, Piscataway, NJ, USA, 2009.

[67] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust process discovery
with artificial negative events. Journal of Machine Learning Research, 10:1305–1340,
2009.

[68] S. Goedertier, J. de Weerdt, D. Martens, J. Vanthienen, and B. Baesens. Pro-
cess discovery in event logs: An application in the telecom industry. Applied Soft
Computing, 11(2):1697–1710, 2011.

[69] E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[70] G. Greco, A. Guzzo, and L. Pontieri. Discovering expressive process models by
clustering log traces. IEEE Transactions on Knowledge and Data Engineering,
18(8):1010–1027, 2006.

[71] G. Greco, A. Guzzo, and L. Pontieri. Mining taxonomies of process models. Data
and Knowledge Engineering, 67(1):74–102, 2008.

[72] G. Greco, A. Guzzo, G. Manco, L. Pontieri, and D. Saccà. Mining constrained
graphs: The case of workflow systems. In J.-F. Boulicaut, L. de Raedt, and H.
Mannila, editors, Constraint-Based Mining and Inductive Databases, volume 3848
of LNCS, pages 155–171. Springer, 2004.

[73] C. W. Günther and W. M. P. van der Aalst. Fuzzy mining – adaptive process
simplification based on multi-perspective metrics. In Alonso et al. [11], pages 328–
343.

[74] C. W. Günther, A. Rozinat, and W. M. P. van der Aalst. Activity mining by global
trace segmentation. In Rinderle-Ma et al. [119], pages 128–139.

[75] D. Haussler. Probably approximately correct learning. In H. E. Shrobe, T. G.
Dietterich, and W. R. Swartout, editors, AAAI, pages 1101–1108. AAAI Press /
The MIT Press, 1990.

209

[76] M. Havey. Essential Business Process Modeling. O’Reilly Media, Inc., 2005.

[77] J. Herbst and D. Karagiannis. Integrating machine learning and workflow man-
agement to support acquisition and adaptation of workflow models. International
Journal of Intelligent Systems in Accounting, Finance and Management, 9(2):67–92,
2000.

[78] J. Herbst and D. Karagiannis. Workflow mining with InWoLvE. Computers in
Industry, 53(3):245–264, 2004.

[79] J. Herbst. A machine learning approach to workflow management. In R. L. de
Mántaras and E. Plaza, editors, ECML, volume 1810 of LNCS, pages 183–194.
Springer, 2000.

[80] J. Herbst and D. Karagiannis. Integrating machine learning and workflow manage-
ment to support acquisition and adaption of workflow models. In DEXA Workshop,
pages 745–752, 1998.

[81] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets. In W. M. P.
van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Business Process
Management, volume 3649, pages 220–235, 2005.

[82] W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58(301):13–30, 1963.

[83] S. Jacquemont, F. Jacquenet, and M. Sebban. Mining probabilistic automata: A
statistical view of sequential pattern mining. Machine Learning, 75(1):91–127, 2009.

[84] M. Jans, J. M. E. M. van der Werf, N. Lybaert, and K. Vanhoof. A business process
mining application for internal transaction fraud mitigation. Expert Systems with
Applications, 38(10), 2011.

[85] S. Jianchun and Y. Dongqing. Process mining: Algorithm for s-coverable workflow
nets. In WKDD, pages 239–244. IEEE Computer Society, 2009.

[86] M. J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM, 45(6):983–1006, 1998.

210

[87] G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Prozessmodellierung
auf der Grundlage Ereignisgesteuerter Prozessketten (EPK). 1992. Institut für
Wirtschaftsinformatik, Universität des Saarlandes: Saarbrücken, 2009.

[88] R. Khalaf, N. Mukhi, F. Curbera, and S. Weerawarana. The business process
execution language for web services. In Process-Aware Information Systems. Wiley,
2005.

[89] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathe-
matical Statistics, 22(1):79–86, 1951.

[90] C. B. Lassen and W. M. P. van der Aalst. Complexity metrics for workflow nets.
Information and Software Technology, 51(3):610–626, 2009.

[91] J. Li, R. P. J. C. Bose, and W. M. P. van der Aalst. Mining context-dependent and
interactive business process maps using execution patterns. In volume 66 of LNBIP,
pages 109–121, Hoboken, NJ, United States, 2011.

[92] J. Li, D. Liu, and B. Yang. Process mining: Extending α-algorithm to mine dupli-
cate tasks in process logs. In K. C.-C. Chang, W. Wang, L. Chen, C. A. Ellis, C.-H.
Hsu, A. C. Tsoi, and H. Wang, editors, APWeb/WAIM Workshops, volume 4537 of
LNCS, pages 396–407. Springer, 2007.

[93] J. Lin. Divergence measures based on the Shannon entropy. IEEE Transactions on
Information Theory, 37(1):145–151, 1991.

[94] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[95] N. Lohmann, E. Verbeek, and R. M. Dijkman. Petri Net transformations for business
processes – a survey. T. Petri Nets and Other Models of Concurrency, 2:46–63, 2009.

[96] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst. Efficient discovery
of understandable declarative process models from event logs. In J. Ralyté, X.
Franch, S. Brinkkemper, and S. Wrycza, editors, CAiSE, volume 7328 of LNCS,
pages 270–285. Springer, 2012.

[97] F. M. Maggi, A. J. Mooij, and W. M. P. van der Aalst. User-guided discovery of
declarative process models. In CIDM [1], pages 192–199.

211

[98] G. K. Manacher. Production and stabilization of real-time task schedules. Journal
of the ACM, 14(3):439–465, 1967.

[99] R. S. Mans, H. Schonenberg, M. Song, W. M. P. van der Aalst, and P. J. M. Bakker.
Application of process mining in healthcare – A case study in a Dutch hospital. In
A. L. N. Fred, J. Filipe, and H. Gamboa, editors, BIOSTEC (Selected Papers),
volume 25 of Communications in Computer and Information Science, pages 425–
438. Springer, 2008.

[100] G. Marsaglia. Ratios of Normal variables. Journal of Statistical Software, 16(4):1–
10, 2006.

[101] G. Marsaglia. Ratios of Normal variables and ratios of sums of uniform variables.
Journal of the American Statistical Association, 60:193–204, 1965.

[102] M. Minor, A. Tartakovski, and R. Bergmann. Representation and structure-based
similarity assessment for agile workflows. In R. Weber and M. M. Richter, editors,
ICCBR, volume 4626 of LNCS, pages 224–238. Springer, 2007.

[103] T. M. Mitchell. The discipline of machine learning. Technical Report CMU-ML-06-
108, Carnegie Mellon University, Machine Learning Department, 2006.

[104] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[105] P. M. Esfahani, M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson.
Cyber attack in a two-area power system: Impact identification using reachability.
In 2010 American Control Conference (ACC 2010), pages 962–7, Piscataway, NJ,
USA, 2010.

[106] J. Muñoz-Gama and J. Carmona. A fresh look at precision in process conformance.
In R. Hull, J. Mendling, and S. Tai, editors, BPM, volume 6336 of LNCS, pages
211–226. Springer, 2010.

[107] T. Murata. Petri Nets: properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[108] L. Mǎruşter. A Machine Learning Approach to Understand Business Processes.
PhD thesis, Eindhoven : Technische Universiteit Eindhoven, 2003.

212

[109] OMG. Business Process Model and Notation (BPMN), 2009.

[110] K. Pearson On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. Philosophical Magazine Series 5,
50(302), pages 157–175, 1900.

[111] W. Penny and S. Roberts. Variational Bayes for generalised autoregressive models.
Technical Report PARG-00-12, Department of Engineering Science, University of
Oxford, 2000.

[112] J. L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):223–252, 1977.

[113] S. S. Pinter and M. Golani. Discovering workflow models from activities’ lifespans.
Computers in Industry, 53(3):283–96, 2004.

[114] R. M. Podorozhny, A. H. H. Ngu, and D. Georgakopoulos. Business process learning
for real time enterprises. In C. Bussler, M. Castellanos, U. Dayal, and S. B. Navathe,
editors, BIRTE, volume 4365 of LNCS, pages 118–132. Springer, 2006.

[115] P. Puschner and C. Koza. Calculating the maximum execution time of real-time
programs. Real-Time Systems, 1:159–176, 1989.

[116] I. Raedts, M. Petkovic, Y. S. Usenko, J. M. E. M. van der Werf, J. F. Groote,
and L. J. Somers. Transformation of BPMN models for behaviour analysis. In
J. C. Augusto, J. Barjis, and U. Ultes-Nitsche, editors, MSVVEIS, pages 126–137.
INSTICC PRESS, 2007.

[117] C. Ren, L. Wen, J. Dong, H. Ding, W. Wang, and M. Qiu. A novel approach for
process mining based on event types. In IEEE SCC, pages 721–722. IEEE Computer
Society, 2007.

[118] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems – a survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

[119] S. Rinderle-Ma, S. W. Sadiq, and F. Leymann, editors. BPM Workshops, BPM
2009 International Workshops, Ulm, Germany, 2009. Revised Papers, volume 43 of
LNBIP. Springer, 2010.

213

[120] S. Rinderle-Ma, F. Toumani, and K. Wolf, editors. Business Process Management,
9th International Conference, BPM 2011, Clermont-Ferrand, France, 2011, Pro-
ceedings, volume 6896 of LNCS. Springer, 2011.

[121] M. La Rosa and P. Soffer, editors. BPM Workshops, BPM 2012 International
Workshops, Tallinn, Estonia, 2012. Revised Papers, volume 132 of LNBIP. Springer,
2013.

[122] A. Rozinat, A. K. A. de Medeiros, C. W. Günther, A. J. M. M. Weijters, and
W. M. P. van der Aalst. Towards an evaluation framework for process mining
algorithms. BPM Center Report BPM-07-06, 2007.

[123] A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst. Discovering simu-
lation models. Information Systems, 34(3):305–327, 2009.

[124] A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[125] A. Rozinat, M. T. Wynn, W. M. P. van der Aalst, A. H. M. ter Hofstede, and
C. J. Fidge. Workflow simulation for operational decision support using YAWL and
ProM. BPM Center Report BPM-08-04, 2008.

[126] A. Rozinat, I. S. M. de Jong, C. W. Günther, and W. M. P. van der Aalst. Process
mining applied to the test process of wafer scanners in ASML. IEEE Transactions
on Systems, Man, and Cybernetics, Part C, 39(4):474–479, 2009.

[127] A. Rozinat and W. M. P. van der Aalst. Conformance testing: Measuring the fit
and appropriateness of event logs and process models. In C. Bussler and A. Haller,
editors, BPM Workshops, volume 3812, pages 163–176, 2005.

[128] A. Rozinat and W. M. P. van der Aalst. Decision mining in ProM. In S. Dustdar,
J. L. Fiadeiro, and A. P. Sheth, editors, Business Process Management, volume 4102
of LNCS, pages 420–425. Springer, 2006.

[129] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education, 2004.

[130] A. R. Runnalls. Kullback-Leibler approach to Gaussian mixture reduction. IEEE
Transactions on Aerospace and Electronic Systems, 43(3):989–999, 2007.

214

[131] D. Ruta and B. Majeed. Business process forecasting in telecom industry. In 2011
IEEE GCC Conference and Exhibition, GCC 2011, pages 389–392, Dubai, UAE,
2011.

[132] S. Santini and R. Jain. Similarity measures. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(9):871–883, 1999.

[133] G. Schimm. Mining exact models of concurrent workflows. Computers in Industry,
53(3):265–281, 2004.

[134] H. Schonenberg, N. Sidorova, W. M. P. van der Aalst, and K. M. van Hee. History-
dependent stochastic Petri Nets. In A. Pnueli, I. Virbitskaite, and A. Voronkov, edi-
tors, Ershov Memorial Conference, volume 5947 of LNCS, pages 366–379. Springer,
2009.

[135] H. Schonenberg, B. Weber, B. F. van Dongen, and W. M. P. van der Aalst. Sup-
porting flexible processes through recommendations based on history. In M. Dumas,
M. Reichert, and M.-C. Shan, editors, BPM, volume 5240 of LNCS, pages 51–66.
Springer, 2008.

[136] G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State University
Press, Ames IO, 8th edition, 1989.

[137] M. Song, C. W. Günther, and W. M. P. van der Aalst. Trace clustering in process
mining. In D. Ardagna, M. Mecella, and J. Yang, editors, BPM Workshops, volume
17 of LNBIP, pages 109–120. Springer, 2008.

[138] W. Song, S. Liu, and Q. Liu. Business process mining based on simulated annealing.
In Proceedings of The 9th International Conference for Young Computer Scientists
(ICYCS), pages 725–730, Washington, DC, USA, 2008. IEEE Computer Society.

[139] A. Staikopoulos and B. Bordbar. A metamodel refinement approach for bridging
technical spaces, a case study. In Proceedings of the 4th MoDELS Workshop in
Software Model Engineering (WiSME 2005), 2005.

[140] K. D. Swenson, N. Palmer, J. P. Ukelson, T. Shepherd, and J. T. Matthias. Mas-
tering the Unpredictable. Meghan-Kiffer Press, New York, 2010.

[141] P. Taylor, M. Leida, and B. Majeed. Case study in process mining in a multina-
tional enterprise. In K. Aberer, E. Damiani, and T. Dillon, editors, Data-Driven

215

Process Discovery and Analysis, volume 116 of LNBIP, pages 134–153. Springer
Berlin Heidelberg, 2012.

[142] A. H. M. ter Hofstede, B. Benatallah, and H.-Y. Paik, editors. BPM Workshops,
BPM 2007 International Workshops, Brisbane, 2007, Revised Selected Papers, vol-
ume 4928 of LNCS. Springer, 2008.

[143] F. Thollard, P. Dupont, and F. de la Higuera. Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In P. Langley, editor, ICML, pages
975–982. Morgan Kaufmann, 2000.

[144] A. Tiwari, C. J. Turner, and B. Majeed. A review of business process mining:
state-of-the-art and future trends. Business Process Management Journal, 14(1):5–
22, 2008.

[145] C. J. Turner, A. Tiwari, and J. Mehnen. A genetic programming approach to
business process mining. In C. Ryan and M. Keijzer, editors, GECCO, pages 1307–
1314. ACM, 2008.

[146] R. Uba, M. Dumas, L. Garćıa-Bañuelos, and M. La Rosa. Clone detection in
repositories of business process models. In Rinderle-Ma et al. [120], pages 248–264.

[147] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[148] W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg Dordrecht London New York, 2011.

[149] W. M. P. van der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, T. Baier,
T. Blickle, R. P. J. C. Bose, P. van den Brand, R. Brandtjen, J. C. A. M. Buijs, A.
Burattin, J. Carmona, M. Castellanos, J. Claes, J. Cook, N. Costantini, F. Curbera,
E. Damiani, M. de Leoni, P. Delias, B. F. van Dongen, M. Dumas, S. Dustdar,
D. Fahland, D. R. Ferreira, W. Gaaloul, F. van Geffen, S. Goel, C. W. Günther,
A. Guzzo, P. Harmon, A. H. M. ter Hofstede, J. Hoogland, J. E. Ingvaldsen, K.
Kato, R. Kuhn, A. Kumar, M. La Rosa, F. M. Maggi, D. Malerba, R. S. Mans, A.
Manuel, M. McCreesh, P. Mello, J. Mendling, M. Montali, H. R. M. Nezhad, M. zur
Muehlen, J. Muñoz-Gama, L. Pontieri, J. Ribeiro, A. Rozinat, H. S. Pérez, R. S.
Pérez, M. Sepúlveda, J. Sinur, P. Soffer, M. Song, A. Sperduti, G. Stilo, C. Stoel,
K. D. Swenson, M. Talamo, W. Tan, C. Turner, J. Vanthienen, G. Varvaressos,
E. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber, M. Weidlich, T. Weijters,
L. Wen, M. Westergaard, and M. T. Wynn. Process mining manifesto. In Daniel
et al. [43], pages 169–194.

216

[150] W. M. P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying history on
process models for conformance checking and performance analysis. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

[151] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M. Weijters. Genetic
process mining. In Applications and Theory of Petri Nets 2005. 26th International
Conference, ICATPN 2005, Proceedings, volume 3536 of LNCS, pages 48–69, Berlin,
2005.

[152] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van Dongen,
A. K. de Medeiros, M. Song, and H. M. W. Verbeek. Business process mining: An
industrial application. Information Systems, 32(5):713–732, 2007.

[153] W. M. P. van der Aalst, H. A. Reijers, and M. Song. Discovering social networks
from event logs. Computer Supported Cooperative Work, 14(6):549–593, 2005.

[154] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[155] W. M. P. van der Aalst and A. J. M. M. Weijters. Process mining: a research
agenda. Computers in Industry, 53(3):231–244, 2004.

[156] W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discov-
ering process models from event logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, 2004.

[157] W. M. P. van der Aalst. The application of Petri Nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[158] W. M. P. van der Aalst. Trends in business process analysis – from verification to
process mining. In J. Cardoso, J. Cordeiro, and J. Filipe, editors, ICEIS (1), pages
5–9, 2007.

[159] W. M. P. van der Aalst. On the representational bias in process mining. In S. Reddy
and S. Tata, editors, WETICE, pages 2–7. IEEE Computer Society, 2011.

[160] W. M. P. van der Aalst. Decomposing process mining problems using passages. In
S. Haddad and L. Pomello, editors, Petri Nets, volume 7347 of LNCS, pages 72–91.
Springer, 2012.

217

[161] W. M. P. van der Aalst, J. Desel, and E. Kindler. On the semantics of EPCs: A
vicious circle. In M. Nüttgens and F. J. Rump, editors, EPK, pages 71–79. GI-
Arbeitskreis Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten,
2002.

[162] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H. M. W. Verbeek.
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets. In F. Leymann, W. Reisig, S. R. Thatte, and W. M. P. van der Aalst, editors,
The Role of Business Processes in Service Oriented Architectures, volume 06291 of
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[163] W. M. P. van der Aalst and C. W. Günther. Finding structure in unstructured
processes: The case for process mining. In T. Basten, G. Juhás, and S. K. Shukla,
editors, ACSD, pages 3–12. IEEE Computer Society, 2007.

[164] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen, E.
Kindler, and C. W. Günther. Process mining: a two-step approach to balance
between underfitting and overfitting. Software and System Modeling, 9(1):87–111,
2010.

[165] W. M. P. van der Aalst, M. H. Schonenberg, and M. Song. Time prediction based
on process mining. Information Systems, 36(2):450–475, 2011.

[166] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245–275, 2005.

[167] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A. J. M. M. Weijters. Workflow mining: A survey of issues and approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

[168] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M. Weijters. Process
equivalence: comparing two process models based on observed behavior. In Busi-
ness Process Management, 4th International Conference, BPM 2006, Proceedings,
volume 4102 of LNCS, pages 129–44, Berlin, 2006.

[169] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen, E.
Kindler, and C. W. Günther. Process mining: A two-step approach to balance
between underfitting and overfitting. Software and Systems Modeling, 9(1):87–111,
2010.

218

[170] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters,
and W. M. P. van der Aalst. The ProM framework: A new era in process mining
tool support. In G. Ciardo and P. Darondeau, editors, ICATPN, volume 3536 of
LNCS, pages 444–454. Springer, 2005.

[171] B. F. van Dongen and W. M. P. van der Aalst. Multi-phase process mining: building
instance graphs. In Conceptual Modeling – ER 2004. 23rd International Conference
on Conceptual Modeling, Proceedings, volume 3288 of LNCS, pages 362–76, Berlin,
2004.

[172] B. F. van Dongen and A. Adriansyah. Process mining: Fuzzy clustering and per-
formance visualization. In Rinderle-Ma et al. [119], pages 158–169.

[173] B. F. van Dongen, R. M. Dijkman, and J. Mendling. Measuring similarity between
business process models. In Z. Bellahsene and M. Léonard, editors, CAiSE, volume
5074 of LNCS, pages 450–464. Springer, 2008.

[174] B. F. van Dongen, J. Mendling, and W. M. P. van der Aalst. Structural patterns for
soundness of business process models. In EDOC, pages 116–128. IEEE Computer
Society, 2006.

[175] K. M. van Hee, Z. Liu, and N. Sidorova. Is my event log complete? – A probabilistic
approach to process mining. In RCIS, pages 1–7. IEEE, 2011.

[176] J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure tree. Data
and Knowledge Engineering, 68(9):793–818, 2009.

[177] H. M. W. Verbeek and B. F. van Dongen. Translating labelled P/T nets into EPCs
for sake of communication. BETA Working Paper 194, Eindhoven University of
Technology, 2007.

[178] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. Van Dongen and W. M. P. van der
Aalst. XES, XESame, and ProM 6. In P. Soffer and E. Proper, editors, Informa-
tion Systems Evolution (CAiSE Forum 2010), volume 72 of LNBIP, pages 60–75.
Springer, 2011.

[179] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco. Prob-
abilistic finite-state machines – part I. IEEE Transactions on Pattern Analysis and
Machine Intelligence , 27(7):1013–25, 2005.

219

[180] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco. Prob-
abilistic finite-state machines – part II. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(7):1026–39, 2005.

[181] A. Wang, W. Zhao, C. Chen, and H. Wu. A GP process mining approach from a
structural perspective. In Proceedings of the International Conference on Artificial
Intelligence and Computational Intelligence, AICI 2009, pages 121–30, Berlin, 2009.

[182] J. Wang, T. He, L. Wen, N. Wu, A. H. M. ter Hofstede, and J. Su. A behav-
ioral similarity measure between labeled Petri Nets based on principal transition
sequences – (short paper). In R. Meersman, T. S. Dillon, and P. Herrero, editors,
OTM Conferences (1), volume 6426 of LNCS, pages 394–401. Springer, 2010.

[183] B. Weber, S. W. Sadiq, and M. Reichert. Beyond rigidity – dynamic process lifecycle
support. Computer Science – R&D, 23(2):47–65, 2009.

[184] P. Weber, B. Bordbar, and P. Tiňo. A framework for the analysis of process min-
ing algorithms. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
43(2):303–317, 2013.

[185] P. Weber, B. Bordbar, and P. Tiňo. A principled approach to the analysis of process
mining algorithms. In H. Yin, W. Wang, and V. J. Rayward-Smith, editors, IDEAL,
volume 6936 of LNCS, pages 474–481. Springer, 2011.

[186] P. Weber, B. Bordbar, and P. Tiňo. Real-time detection of process change using
process mining. In A. V. Jones, editor, ICCSW, volume DTR11-9 of Department of
Computing Technical Report, pages 108–114. Imperial College London, 2011.

[187] P. Weber, B. Bordbar, P. Tiňo, and B. Majeed. A framework for comparing process
mining algorithms. In 2011 IEEE GCC Conference and Exhibition (GCC), pages
625–628, Dubai, UAE, 2011.

[188] P. Weber, P. Tiňo, and B. Bordbar. Process mining in non-stationary environments.
In Proceedings of ESANN 2012, Bruges, Belgium, 2012.

[189] P. Weber, B. Bordbar, and P. Tiňo. A principled approach to mining from noisy logs
using Heuristics Miner. In 2013 IEEE Symposium on Computational Intelligence
and Data Mining (CIDM), pages 119–26, Piscataway, NJ, USA, 2013.

220

[190] P. Weber, P. N. Taylor, B. Majeed, and B. Bordbar. Comparing complex business
process models. In IEEE International Conference on Industrial Engineering and
Engineering Management – IEEM 2012, page (to appear), 2012.

[191] J. de Weerdt, M. de Backer, J. Vanthienen, and B. Baesens. A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Information Systems, 37(7):654–676, 2012.

[192] M. Weidlich, A. Polyvyanyy, N. Desai, and J. Mendling. Process compliance mea-
surement based on behavioural profiles. In B. Pernici, editor, CAiSE, volume 6051
of LNCS, pages 499–514. Springer, 2010.

[193] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible Heuristics Miner (FHM). In
CIDM [1], pages 310–317.

[194] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. A. de Medeiros. Pro-
cess mining with the HeuristicsMiner algorithm. BETA Working Paper Series 166,
Eindhoven University of Technology, 2006.

[195] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun. Mining process models with
non-free-choice constructs. Data Mining and Knowledge Discovery, 15(2):145–180,
2007.

[196] Workflow Patterns Initiative. Workflow patterns, 2007. http://www.

workflowpatterns.com/ (accessed 30/03/2010).

[197] H. Yang, A. H. M. ter Hofstede, B. F. van Dongen, M. T. Wynn, and J. Wang. On
global completeness of event logs. BPM Center Report BPM-10-09, 2010.

[198] B.-J. Yoon, X. Qian, and S. M. E. Sahraeian. Comparative analysis of biological
networks: Hidden Markov Model and Markov chain-based approach. IEEE Signal
Processing Magazine, 29(1):22–34, 2012.

[199] D. Yue, X. Wu, H. Wang, and J. Bai. A review of process mining algorithms.
In Business Management and Electronic Information (BMEI), 2011 International
Conference on, volume 5, pages 181–185, 2011.

[200] H. Zha, J. Wang, L. Wen, and C. Wang. A label-free similarity measure between
workflow nets. In M. Kirchberg, P. C. K. Hung, B. Carminati, C.-H. Chi, R.

221

Kanagasabai, E. D. Valle, K.-C. Lan, and L.-J. Chen, editors, APSCC, pages 463–
469. IEEE, 2009.

[201] H. Zha, J. Wang, L. Wen, C. Wang, and J. Sun. A workflow net similarity measure
based on transition adjacency relations. Computers in Industry, 61(5):463–471,
2010.

222

