
 

 

 

A NATURAL LANGUAGE PROCESSING 

APPROACH TO GENERATE                      

SBVR AND OCL 

 

By 

 

 

Imran Sarwar Bajwa 
 

 

 

 

 

 

A thesis submitted to 

The University of Birmingham 

for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

 

 

School of Computer Science 

The University of Birmingham 

June 2012 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



 
ii 

  



 
iii 

 

 

ABSTRACT 

The Object Constraint Language (OCL) is a declarative language. It is used to make well-

defined models of the Unified Modeling Language (UML) through defining a set of 

constraints.  However, it is a common knowledge that OCL is the least used language 

among the 13 UML languages. The main cause of less use of OCL is attributed to 

complex syntax of the language, overly expressive nature of OCL, and difficult 

interpretation of large OCL expressions. Since, a single OCL expression can be written in 

multiple possible ways, the expressive nature of OCL confuses OCL writers. The 

complexity of its syntax makes the writing of OCL code difficult. Complex syntax and 

descriptive nature of OCL result in very lengthy and complicated OCL expressions which 

are too complex to interpret for a user. Such issues make it difficult for one to write OCL 

constraints especially for the novice users. 

A natural language based interface can be useful in making the process of writing OCL 

expressions easy and simple. However, the translation of natural language (NL) text to 

object constraint language (OCL) code is a challenging task on account of the informal 

nature of natural languages as various syntactic and semantic ambiguities make the 

process of NL translation to formal languages more complex. SBVR is the OMG’s recent 

standard introduced to overcome the inherent ambiguity of natural languages. SBVR not 

only provides natural languages a formal abstract syntax representation but it is also close 

to OCL syntax as both languages (SBVR & OCL) are based on formal logic. 

In this research, the major contribution is a novel approach that aims at presenting a 

method based on natural language processing and model transformation technology to 

improve OCL usability. The aim of the method is to produce a framework so that the user 

of UML tools can write constraints and pre/post conditions in English. The framework is 

useful in translating such English expressions to the equivalent OCL statements. The 

proposed approach is implemented in Java as an Eclipse plugin named the 

NL2OCLviaSBVR. The tool generates OCL from NL constraints via SBVR and is a 
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proof of this concept. The NL2OCLviaSBVR allows software modelers and developers 

to generate well-formed OCL expressions that result in valid and precise UML models. 

An evaluation of the OCL constraints is also performed to test the performance of the 

tool. For this purpose, three famous case studies have been done using the 

NL2OCLviaSBVR tool.  The results of the case studies manifest that a natural language 

based approach to generate OCL constraints can not only help in significantly improving 

usability of OCL but also outperforms the most closely related techniques in terms of 

effectiveness and effort required in generating OCL.  

The designed system NL2OCLviaSBVR is always capable of producing the wrong 

analysis but that in such circumstances the produced formal representation is correct for a 

particular, valid and potentially correct interpretation and can be corrected by manual 

intervention. 
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CHAPTER 1 

INTRODUCTION 
 

This chapter presents the overview of the research area addressed in this thesis. The research 

problem has also been described in detail along with the research motivations, the major research 

objectives and the published work. 

1.1   Research Problem 

In object-oriented software engineering, the Unified Modelling Language (UML) is used to 

visually represent software models. UML has been adopted as the de-facto standard for the 

design, modelling and documentation of software systems [Gogolla, 2007]. There are lots of 

tools which allow not only modelling and design but also support creation of code, reverse 

engineering, versioning [Engles, 2001]and much more. However, it is a well-known fact that the 

least used of all UML languages is OCL.  This is often attributed to complex syntax of the 

language [Wahler, 2008].    

 The developer’s ability to use OCL is very important. Faultless OCL constraints and pre/post 

conditions quite significantly improve the clarity of software models and make models more 

precise [Wahler, 2008]. Users have to translate manually the NL representations of the 

constraints to OCL syntax. The manual effort to create an OCL constraint usually results in 

inaccurate and inconsistent constraints specification [Gogolla, 2007] for many reasons. First of 

all, the OCL syntax is very hard to code [Wahler, 2009]. Secondly, OCL is a highly expressive 

language that results in multiple possible OCL expressions from a single NL representation. This 

multiplicity of OCL expressions confuses the user during manual creation [Cabot, 2009]. 
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Thirdly, there are no means available for semantic verification of the OCL constraints so that it is 

not easy to decide if they mean exactly what they were written for.  

Besides, constraints specification, OCL can be used for specifying models for analysis purposes 

as shown in the UML2Alloy project [Shah, 2008]. Improving the usability of OCL will also 

assist developers who are not experts in formal methods for producing specifications in 

automatic analysis.  

The OCL usability issue becomes more critical on account of the absence of a tool that is capable 

of automatically creating OCL constraints from NL specification. This is critical because the 

existing OCL tools, e.g., Dresden OCL Toolkit [Demuth, 2009], IBM OCL Parser [IBM, 2009], 

USE [Gogolla, 2007], ArgoUML [Rompaey, 2007], Cybernetic OCL Compiler [Emine, 2008] 

are just limited to syntax verification and type checking.  

There is need of an approach that allows development of tools and techniques that provide 

assistance in writing OCL. Wahler has tried to tackle this problem using a template based 

approach [Wahler, 2008]. However, this thesis is adopting a radically new approach by bringing 

together two main domains of computer science: model transformation and Natural Language 

Processing (NLP). Using natural languages and transformation to OCL seems like an intuitive 

approach. However, we adopt a systematic way to use SBVR to restrict the domain of NL text 

and generate OCL code from the SBVR representation. The OCL usability can be increased 

through automatically generating accurate and consistent code for OCL constraints.  

Modelling Software is a process in software engineering, in which information or knowledge is 

represented in a structure. Since the emergence of object-oriented software engineering, visual 

models are very common to represents software schemas.In the context of the above described 

scenario, the proposed research addresses the following four key scientific questions: 

 How can the natural language text be analysed to understand meaning and extract the 

required knowledge from the text? 

 How can SBVR be useful in making natural language syntactically restricted and 

semantically formulated? 

 How can the informal representation i.e. natural language text be transformed into formal 

representation i.e. Object Constraint Language. 
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 What is the effect of Natural Language based software modeling in the software design 

process?  

1.2   Scope of the Research 

The contributions expected from this work are mainly centered in two areas: (1) NLP and (2) 

model-driven Software Engineering. The conversion of natural language text into OCL constraints 

requires syntactic and semantic knowledge. Here, a translation process is required that is robustly 

capable of dealing with natural language ambiguity and vagueness. The development of new 

methods for syntactic and semantic analysis is one of the main contributions of this research. 

Methodologies like Model Transformation and Markov Logics have been proposed to develop 

these new NLP methods. There are also other contributions in the NLP area, which is the study and 

modelization of language pragmatics and ambiguity resolution of NL. 

The researcher is aware of the fact that a NLP based solution cannot be 100% accurate due to 

informal nature of NL. The researcher has made pair usage of NL and automated generated 

SBVR. These can help in resolving ambiguities and clarifying vagueness by pointing them out. 

However, this will not be a 100% solution either and the researcher is aware of it. The designed 

system NL2OCLviaSBVR always tends to produce the wrong analysis but in such circumstances 

the produced formal representation is correct for a particular, valid and potentially correct 

interpretation and can be corrected by manual intervention. 

The other main contribution of this research is the development of new ways of helping software 

engineers to develop software models, making their work more productive and efficient. The 

most familiar language for humans is natural language. So a tool that could help translating what 

the software engineer wants into what the machine understands is a valuable tool for software 

companies. 

1.3   Research Motivation 

The use of natural langauge processing in software enigneering and specifically the translation of 

natural languages to formal specifications is not a brand new proposal. Automated translation of 

natural language (e.g. English) specifications to formal specification (e.g., E-R models, object 

oriented analysis, UML models, high-level languages code, database queries) have already been 
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achieved. Overmyer [2001] has presented conceptual modeling of natural language (NL) 

requirement specification and generation of Entity-Relationship models. Further, Osborne 

[1996], Mich [1996], Delisle [1999] have presented automated processing of NL based 

requirement specifications. Natural language processing was incorporated to automate object 

oriented analysis and modeling of NL based software requirement specifications is presented by 

Juristo [2000], Brown [2002], Perez-Gonzalez [2002], Cockburn [2002], Li [2005]. Natural 

language based requirement engineering and generation of UML models has also been presented 

by a few researchers. Rolland [1992] used a linguistic approach to process natural languages 

statements and generation of conceptual specification.  

A few Natural language based tools have also been introduced to generate formal specifications, 

e.g., NL-OOPS [Mich, 1996], LIDA [Overmyer, 2001], GOOAL [Perez, 2002], CM-Builder 

[Hermain, 2003], Rebuilder [Gomes, 2006], UML-Generator [Bajwa, 2008], R-TOOL [Vinay, 

2009], etc. None of these tools provides support for translating NL specification to OCL 

constraints. The aim of the proposed research is to extend this work by automating the process of 

annotating UML models with OCL constraints. An English based user-interface to create OCL 

constraints for UML models can make not only the OCL more adaptable but also assist in 

automatic analysis of object-oriented models. 

The main idea of the research is to propose the idea of writing constraints specification for a 

UML model in English and then transforming the English specification to OCL syntax. The 

automatic transformation of English specification to OCL syntax involves semantic analysis of 

English specification and its mapping with OCL constraints. The direct transformation of 

English specification to OCL constraints is difficult due to the informal syntax and inconsistent 

semantics of English. The researcher proposes the use of the Semantics of Business Vocabulary 

and Rules (SBVR) [OMG, 2008] to reduce complexity involved in the processing of natural 

languages as SBVR has already been used to represent Business designs [Raj, 2009].  SBVR is 

used as an intermediate language for English to OCL transformation as SBVR is a formal 

representation of English and close to OCL syntax. A methodology is designed for the automatic 

transformation of English to SBVR and SBVR to OCL constraints that will be based on a set of 

transformation rules. During English to SBVR transformation, SBVR specification is also 

mapped with the given UML model to semantically verify the defined constraints before it is 

finally transformed to OCL syntax. The proposed automated transformation will not only soften 
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the process of creating OCL but also enhance the adoptability of OCL by providing automatic 

mechanism of semantic verification with a UML model and semantic validation with user input. 

The researcher also aims at addressing OCL usability problem in this thesis. 

1.4Published Work 

During three years of PhD research, the major contributions by the researcher were published in 

reputed conferences and journals. An overview of the work published during PhD research is 

given below. 

The first paper was published in EDOC 2010, held in Brazil. The paper was based on the main 

idea of research that NL constraints can be automatically translated to OCL constraints [Bajwa, 

2010]. In this paper, the researcher presented how SBVR can play a useful role in translation of 

NL specification of constraints to OCL invariants and OCL pre/post conditions. 

In 2011, a paper was published in AAAI spring symposium, held in USA that was addressing the 

SBVR rules aspect of this research [Bajwa, 2011a]. In this research, the researcher is generating 

SBVR rules from NL constraints and then mapping such SBVR rules to OCL. In this paper, the 

researcher presented an automated approach that can process NL constraints to extract SBVR 

vocabulary and generate a complete SBVR rule. Another paper was published in ECMFA 2011 

conference, held in UK. This paper presented the set of transformation rules used to transform a 

SBVR rule to an OCL constraint [Bajwa, 2011b]. In 2011, another paper by the researcher was 

published in 14th IEEE INMIC, held in Pakistan. This paper presented the key findings during a 

study of SBVR and OCL standards. A comparison of both standards is also presented in this 

paper to highlight various similarities and differences in both standards [Bajwa, 2011c]. This 

study helped the researcher in SBVR to OCL transformation. 

A few more papers were published in 2012. A paper was published in CICLing 2012 (held in 

India) to present a set of identified syntactic ambiguities in NL specification of constraints and 

an approach to resolve such syntactic ambiguities [Bajwa, 2012a]. The presented approach was 

using metadata of UML Class Model to resolve identified syntactic ambiguities. Two more 

papers were published in 25th edition of FLAIRS, held in USA: the focus of one paper was the 

semantic Analysis of Software Constraints [Bajwa, 2012b] while the other paper highlights the 

identified set of semantic ambiguities in NL constraints. An approach is also presented in the 
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paper to address the identified set of semantic ambiguities in NL constraints [Bajwa, 2012c]. The 

present approach helps in improving semantic role labeling and quantifier scope resolution in 

terms of accuracy. Another paper presenting the results of Royal and Loyal modal case study 

was presented in Journal of King Saud University (JKSU) - Computer and Information Sciences 

[Bajwa, 2012d]. This paper highlights that the researcher’s NL-based approach is more accurate 

than the pattern based approach [Wahler, 2008]. An extension of this work is accepted in IEEE 

ICDIM 2012 (held in Macau), that focuses on generation of Alloy code from NL constraints 

[Bajwa, 2011e]. This work is also used in qualitative analysis of our approach presented in 

Chapter 7, Section 7.4 as the researcher generates Alloy of OCL (generated by our NL approach) 

and if Alloy is generated correctly, it means that OCL is also correct. The details of this 

evaluation are given in Section 7.4 of this thesis. 

1.5   Thesis Contribution 

In Section 1.1, a set of questions are raised that are core of this research thesis. To answer these 

questions various investigations were performed and new results were achieved. We have 

provided the details of each answer in various chapters of this thesis.  

1.5.1How the informal representation by natural language text can be transformed 

into a formal representation using the Object Constraint Language. 

To transform natural language representation of constraints to formal constraints, the NL2OCL 

approach is presented in this thesis. The NL2OCL approach is a fundament thrust of the 

presented research and is explained in Chapter 3, Section 3.3. The NL2OCL approach works in 

two phases: the NL to SBVR translation, explained in Chapter 4 and SBVR to OCL 

transformation, explained in Chapter 5. 

1.5.2   How a natural language text can be analysed to understand its meaning and 

extract the required knowledge from the text? 

To extract meaningof NL constraints, we had to deal with various syntactic and semantic 

ambiguities. The approach used to deal with syntactic ambiguity is explained in Chapter 4, 

Section 4.2,and while as the approach used to address the semantic ambiguity is explained in 

Chapter 4, Section 4.3. 
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1.5.3   How SBVR can be useful in making natural languages syntactically restricted 

and semantically formulated.  

In the NL2OCL approach, SBVR plays a key role as the researcher uses SBVR based 

intermediate representation in NL to OCL transformation.A detail of such intermediate 

representation is given in Chapter 4, Section 4.3. A set of model transformation rules to 

transform a SBVR rule to an OCL expression are explained in Chapter 5, Section 5.3. 

1.5.4How well the NL approach works for generating formal representation such as 

OCL? 

To evaluate the performance in terms of correctness of NL2OCL approach, three case studies are 

done. The details of these case studies with results are discussed in Chapter 7. 

1.6    Thesis Organization 

The remaining thesis is structured into a set of chapters. Each chapter describes a distinct part of 

research. Brief overview of each chapter is given below: 

Chapter 2 presents the preliminaries of the presented research. In this chapter we provide an 

overview of the fundamental concepts, such as OCL, SBVR, NLP, MDA and model 

transformations. The work related to the field of NL-based automated software modelling and 

automated transformations for SBVR and OCL is presented in the second part of the chapter to 

highlight the significance of the presented research. 

Chapter 3 presents the thesis statement of this research. A set of hypotheses are also highlighted 

in the chapter which the researcher has tried to prove in the rest of the thesis. Moreover, a sketch 

of the NL2OCL approach has also been provided. 

Chapter 4 presents the first part of the NL2OCL approach that deals with the processing of 

natural language constraints and generate a SBVR based logical representation. The core of this 

chapter is syntax and semantic analysis of NL constraints. The researcher also presents major 

innovations and contributions of the research in the same chapter.  

Chapter 5 presents the approach used to transform SBVR business rules to OCL constraints. This 

chapter provides the details of SiTra based model transformation and the transformation rules 

involved in SBVR to OCL transformation. 
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Chapter 6 highlights the key features and implementation details of the NL2OCLviaSBVR tool. 

Moreover, the architecture of the tool as well as the used libraries in transformation of NL to 

OCL has also been discussed.  

Chapter 7 presents evaluation criteria and also provides the details of three case studies solved to 

validate the performance of the tool discussed in Chapter 6. The results of all three cases studies 

have also been discussed under the headings of quantitative and qualitative evaluation. The 

chapter also presents a set of limitations of the presented approach. 

Chapter 8 discusses the key contribution in thesis. In addition, we conclude the presented work 

by highlighting the overall contributions of the research presented in this thesis. The chapter ends 

with pointed out areas for future research. 

Chapter 9 presents the concluding remarks of the thesis. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 
 

This chapter presents background of the research and a brief introduction to preliminary concepts 

which have been used later on in this thesis. The second half of the chapter presents the work 

related to translation of a Natural Language (NL) to formal and software engineering languages. 

Automated transformation and tools for OCL and SBVR are also discussed at the end of the 

chapter. 

2.1   Preliminaries 

The standards like UML, OCL and SBVR are involved in modern information systems to ensure 

quality and correctness. UML is a de-facto standard. UML provides a graphical notation to 

represent software conceptual schema or models. Here, OCL based textual constraints are used 

to restrict UML based conceptual schemas. Similarly, SBVR provides a formal representation for 

software and business requirements. On the other hand, SBVR based requirements are not only 

easy to read for users but also simple for machine-process.  

In this section, an introduction is presented of various concepts that are involved in the present 

research and have been used throughout the thesis. First, an introduction of the Object Constraint 

Language (OCL) along with its role in UML-based modelling is presented. Then the basics of 

SBVR and role of SBVR in modern software Engineering are discussed. Afterwards, the 

researcher describes fundamentals of Natural Language Processing (NLP) and elaborates typical 

phases involved in NLP. Finally, the concept of Model Driven Architecture (MDA) is elaborated 
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to highlight the basics of model transformation with Simple Transformers (SiTra) [Akehust, 

2007] that plays a key role in this research.    

Before going into details of OCL and SBVR, it is pertinent to define meta-models. A metamodel 

[OMG, 2010] is a key part of standards such as OCL and SBVR and metamodel is a simplified 

descriptive model (blueprint) of another descriptive model. 

2.1.1   Object Constraint Language (OCL) 

The Object Constraint Language (OCL) is an adopted standard of the Object Management Group 

(OMG) and typically used to annotate UML models with constraints. Constraints specified in 

OCL help to restrict UML models [Cabot, 2009] but they also increase maturity level of a UML 

model [Wahler, 2008]. OCL is a declarative language that can also be used with the Meta-Object 

Facility (MOF) standard. Recently, OMG proposed the role of OCL in the 

Queries/Views/Transformations (QVT) specification to be used for model transformations 

[OMG, 2010]. OCL is a side-effect free language. That means OCL does not introduce any new 

object in a UML model but completes the meanings of the existing objects. In addition, an OCL 

constraint always conforms to the OCL meta-model.  In the UML standards, OCL is also used 

for expressing constraints to satisfy the well-definedness criteria.  

In this thesis, we target the ability of OCL to write invariants for a UML class model. The 

following sections bring out a brief overview of OCL syntax with examples and highlight 

various features of OCL. 

A.  OCL Syntax 

To define the basic structure of an OCL expression, OCL syntax is given in OCL 2.0 [OMG, 

2006] document. A simplistic view of OCL meta-model is shown in Figure 2.1. Abstract syntax 

typically deals with the grammar and structure of the OCL statements. OCL abstract syntax is 

further defined into OCL types and OCL expressions. Common OCL types are data types, 

collection types, message types, etc. While, OCL expressions can be call expression, if 

expression, literal expression, variable expression [OMG, 2006], etc. We have used a selected set 

of OCL abstract syntax for implementation that does not include OCL types.  

http://en.wikipedia.org/wiki/QVT
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Figure 2.1:Generic view of OCL metamodel 

The focus of the present research is the OCL expressions. Figure 2.2 shows the abstract syntax 

meta-model [OMG, 2006] of OCL expressions. It is shown that there are four possible types of 

an OCL expression such as CallExpression, IfExpression, LiteralExpression and 

VariableExpression. Here, a CallExpression can be a LoopExpression, and 

OperationCallExpresion. However, IteratorExpression can be a type of 

LoopExpression. Moreover, in the OCL expression meta-model, there is a 

VariableDeclaration object for aVariableExpression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Elements of selected OCL Expression metamodel 
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The syntax of a typical OCL expression is composed of the four components as explained below:  

i. Context: A context [OMG, 2006] in OCL constraint specifies the scope of that constraint as 

shown in Figure 2.3. The OCL context limits a world of an expression in which it is valid. 

Context can be different for an invariant and pre/post condition such as for an invariant, a 

context is a name of a class whereas for a pre/post condition a context is combination of a class 

and targeted operation of that particular class. Typical context is a class name which it belongs 

to. Keyword “self” is used to refer to a context in an OCL constraint.  

- context Person                          -- for invariant 

- context Person::setAge(newAge:int)      -- for pre/post condition 

Figure 2.3: An OCL constraint with a context 

ii. Property: An OCL property [OMG, 2006] represents an attributes or operation of a class. The 

“.” operator is used to specify such properties. A possible OCL property can be an attribute of a 

class, a method of a class or an association between two classes. An example of OCL property is 

shown in Figure 2.4. 

- person.age  or  self.age-- an attribute as OCL property 

- person.isAdult()  or  self.isAdult()-- a method as OCL property 

Figure 2.4: OCL examples with properties 

iii. Operation: An OCL operation [OMG, 2006] manipulates or qualifies a property on an 

attribute or set of attributes related to a class (see Figure 2.5). Collection types are also a part of 

OCL typically used to handle set of attributes. To perform various functions, various operations 

are available such as to return number of elements operation size() is used. Similarly, 

operation exists() returns that an object exists in a domain or not. Examples of OCL 

operations are shown in Figure 2.5. 

- self.items->size()        -- operation returns number of items 

- self.order->exists()        -- operation returns True if objects exists 

Figure 2.5: OCL example with an operation 
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iv. Keyword: The OCL keywords [OMG, 2006] are also important parts of any OCL constraint. 

Typically, used OCL keywords are if, then, else, and, or, not, implies, etc.  Some 

keywords like and, or, not, etc. are used to represent the conditional expressions in a 

constraint, while some other keywords like inv, result, pre, post, def, etc. are used to 

represent various sections of an OCL constraint. 

B.  Types of OCL Constraints 

An OCL constraint defines a restriction on state or behaviour of an entity in a UML model. A 

restriction on the state of an entity is represented using an OCL invariant, while behaviour of an 

entity is expressed using OCL pre/post condition. The OCL constraint defines a Boolean 

expression that always results in True or False. If the constraint results true, the system is in valid 

state. There are three types of OCL constraints:  

i. Invariants: An OCL invariant [OMG, 2006] is a constraint that must always be convened by 

all instancesof the class. An invariant is a condition that has to be TRUE always. Invariants 

typically represent structural information and used to restrict an entity in a model. An example of 

an invariant is shown in Figure 2.6.  

context Person 

inv: self.age<18 implies self.car -> forAll(v | not v.oclIsKindOf(Car)) 

Figure 2.6: An example of OCL Invariant 

ii. Precondition:A precondition [OMG, 2006] is a restriction on a method of a class. A 

precondition is a constraint that should be TRUE always before the execution of a method starts. 

Preconditions typically represent behavioural information. An example of a precondition is 

shown in Figure 2.7. 

context Person::setAge(newAge:int) 

pre: newAge >= 0 

Figure 2.7: An example of OCL Precondition 

iii. Postcondition:An OCL postcondition [OMG, 2006] is a constraint that should be TRUE 

always after the execution of a method has finished. Similar to OCL precondition, an OCL 
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postcondition also represents behavioural information. An example of a postcondition is shown 

in Figure 2.8. 

context Person::setAge(newAge:int) 

post: self.age=newAge 

Figure 2.8: OCL Postcondition 

C. Why Writing OCL is Difficult? 

During the literature review, the researcher found various reasons which make it difficult to write 

OCL, especially for the novice users. The researcher has compiled the reasons identified by 

various scientists into following three dimensions: 

i. OCL Syntax is Complex: In a typical software modelling scenario, a modeller has to manually 

process natural language constraints by extracting various OCL elements from NL constraints 

and then writing those elements in OCL syntax. However, writing OCL code manually is a 

difficult and cumbersome job due to many reasons. One of the reasons is complex nature of OCL 

syntax [Gogolla, 2007] that ultimately results in very lengthy and complex OCL expressions 

which are difficult to write manually [Wahler, 2008]. Moreover, various issues have been 

identified that are source of ambiguity in OCL postconditions [Cabot, 2006].  Such issues 

confuse a user in writing OCL postconditions. Another feature of OCL, that makes it difficult to 

write OCL, is expressive nature of OCL. Owing to expressive nature of OCL, there can be 

multiple possible ways to write an expression in an OCL constraint [Cabot, 2007] and this 

feature of OCL also confuses a user and makes it difficult to write an OCL constraint. On the 

basis of these facts, we can conclude that writing OCL is difficult especially for the novice users. 

ii. OCL is too Implementation Oriented: Natural Rule Language (NRL) is another initiative for 

providing a user-friendly alternative to languages like OCL, XSLT, etc. [Nentwich and James, 

2010]. It is identified by NRL community that OCL is too implementation-oriented and not well-

suited to conceptual modelling [Vaziri, 1999]. NRL community also presents an English-like 

syntax based language CLiX to specify constraints for XML. Later on, CLiX was extended in 

2006 to replace OCL in an environment as OCL was found inappropriate and difficult to write 

specifically for novice users [NRL Community, 2005].  

http://www.clixml.org/
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iii. Declarative Nature of OCL:OCL is a declarative language. OCL constraints describe what it 

wants to accomplish. While writing OCL a user’s focuses is to write declarative statements to 

show a relationship between various parts of an OCL constraint [Correa, 2007]. The declarative 

nature of OCL makes it difficult to understand the use and application of various OCL 

expressions such as navigation expression. Actually, it is difficult to decide that when to use 

navigation and when not to do. Moreover, it is also complex to identify a left hand side for a right hand 

side of a navigation expression. Typically, ‘→’ is used in a OCL navigation expression to express a 

relationship between two elements.  

A complex example of OCL constraint for the following NL specification is shown in Figure 2.9. 

This constraint exhibits most of the issues which make OCL difficult to write. First of all, there 

are three possible OCL representations for the NL constraint discussed in [Cabot, 2007]. 

Secondly, this constraint involves three navigation expressions, as well. The NL representation 

of this constraint is also given in [ibid] that is “The maximum salary of a junior employee those 

with an age lower than 25 cannot earn more than the maximum junior salary value defined for 

their department” [Cabot, 2007].  

context  Department 

inv: MaxSalary: Department.allInstances() -> forAll(d|not d.employee -> 

     select (e|e.age < 25) -> exists (e|a.salary > d.maxJuniorSal)) 

Figure 2.9:A complex OCL constraint 

Similarly, a more complex example of an OCL constraint is given in [Kleppe and Warmer, 2003] 

that is shown in Figure 2.10: “In the enroll()operation of LoyaltyProgram, the 

postcondition specifies that there is now one more customer than before and that the new 

customer’s loyalty account has no points and no transactions.”  

context LoyaltyProgram::enroll(int c:Customer) 

pre:   not customer -> includes(c) 

post:  customer = customer @ pre -> including(c) 

post:  membership -> select(customer=c) -> forAll( 

      loyaltyAccount -> notEmpty() and 

      loyaltyAccount.points = 0 and  

      loyaltyAccount.transations -> isEmpty) 

Figure 2.10: A more complex OCL constraint 
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2.1.2Semantic Business Vocabulary and Rules (SBVR) 

Semantic Business Vocabulary and Rules (SBVR) [OMG, 2008] is a recently introduced 

standard by OMG. The latest version SBVR v1.0 was introduced in January 2008. SBVR can be 

used to capture specifications in English and represent them in formal logic so that they can be 

machine-processed. SBVR can be effective in formal representation of information in multiple 

dimensions [Linehan, 2008], i.e. the production of the business vocabulary and rules, 

development for multilingual support, support for format interchange capabilities, formalizing 

syntactic and semantic structures, etc. An example of SBVR rule is “It is obligatory that 

nationality of a customer should be British”.  

SBVR has two major elements: SBVR business vocabulary and SBVR business rules. A brief 

description of both elements of SBVR is given below. 

A.   SBVR Vocabulary 

SBVR business vocabulary, also called SBVR vocabulary, consists of the specialized terms and 

concepts typically incorporated in the definition of a business domain in a particular organization 

[OMG, 2008].  There are various types of SBVR concepts. However, we are interested in three 

basic types of SBVR business vocabulary: Object Type, Individual Concept, and Fact Types. 

Figure 2.11 shows the SBVR meaning meta-model that highlights various types of SBVR 

concepts. 

 

 Figure 2.11: SBVR meaning metamodel [OMG, 2008] 
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Following is the overview of the used three types of SBVR concepts: 

i. Object Type: In SBVR 1.0, an Object Type is a Noun Concept that is also called a General 

Concept.  An Object Type is a Noun Concept that categorizes things on the basis of their 

common properties [OMG, 2008: Section 8.1.1]. Typically, in natural languages, the common 

nouns can be represented as Object Types. In the example discussed above, ‘customer’ is an 

Object Type. In UML class models, an Object Type can be mapped to a UML class. Simple 

examples of an Object Type can be ‘account’, ‘customer’, ‘student’, ‘book’, etc. 

ii. Individual Concept: In SBVR 1.0, an Individual Concept corresponds to only one object 

[OMG, 2008: Section 8.1.1].  In the example discussed above, ‘British’ is an Individual Concept. 

However, an Individual Concept cannot be an Object Type or Fact Type role. In English, proper 

nouns or quantified nouns are classified as Individual Concepts for example ‘Silver Account’, 

‘London’, ‘Commercial Bank’ etc. In UML class models, an Individual Concept can be mapped 

to an object. 

iii. Fact Type: In SBVR, a Fact Type is based on a verb phrase that involves one or more Noun 

Concepts and whose instances are all actualities [OMG, 2008: Section 8.1.1]. In SBVR 1.0, a 

Fact Type is also called a Verb Concept. In the example discussed above, ‘customer should be 

British’ is a Fact Type. A role of the Fact Type is one point of involvement of something in that 

instance for each instance of a Fact Type. A Fact Type can be of many various types. We have 

used following types of Fact Types in our research: 

a. Characteristic: A Characteristic is a type of Fact Type. A Characteristic always has exactly 

one role, but it can be defined using Fact Types having multiple roles. Basically, a Characteristic 

is is-property-of Fact Type. In the example discussed above, nationality is a Characteristic. In 

this example, nationality is property of Object Type customer. In English, a Characteristic can 

be an adjective or an associative noun. In UML class models, a Characteristic can be mapped to 

an attribute of a class. 

b. Binary Fact Type: A Binary Fact Type consists of exactly two roles those can be General 

Concept or Individual Concept. Typically, in a Binary Fact Type there is also a verb phrase that 

relates two roles. In example, “A customer opens an account”, customer and account are two 

roles and opens is a verb phrase that relates both roles with each other. In English, combination 
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of subject, verb and object form a Binary Fact Type. In UML class models, a Binary Fact Type 

can be mapped to an association in two classes. In SBVR 1.0, associative Fact Type [OMG, 

2008: section 11.1.5.1] is a concept very close to binary fact type. 

c. Partitive Fact Type: A Partitive Fact Type [OMG, 2008: Section 11.1.5.1] is a type of Fact 

Type that represents a composition of a given whole. In English, constructs such as “is-part-

of”, “included-in” or “belong-to” are used to represent a Partitive Fact Type. For example, 

“Edgbaston is included in Birmingham”. Here ‘Birmingham’ is composed of many areas where 

“Edgbaston” is one of them. In UML class models, a Partitive Fact Type can be mapped to a 

UML aggregation. 

d. Categorization Fact Type: A categorization Fact Type [OMG, 2008: Section 11.1.5.2] 

represents a particular concept that is a type or category of another concept. Here, each 

instance of the fact type is an actuality. In English, a categorization fact type is identified by 

various constructs such as “is-category-of” or “is-type-of”, “is-kind-of”. An example of a 

categorization fact type can be “Gold account is a special account”. Here ‘Gold account’ is 

category of ‘special account’. In UML class models, a categorization fact type can be mapped 

to UML generalizations. 

B.   SBVR Business Rules 

SBVR business rules or SBVR rules are used to represent the text logic. A SBVR rule can be 

formally defined as “an element of guidance that introduces an obligation or necessity” [OMG, 

2008]. A SBVR rule is typically based on various SBVR vocabulary items and represents 

relationship among these SBVR vocabulary items used in the SBVR rule. A typical SBVR rule 

can represent a piece of structural or behavioural information. On the basis of information 

represented in a SBVR rule, the SBVR rules can be classified into two types; definitional rule 

and behavioral rule: 

i. Definitional Rule: A definitional rule is used to define an organization’s setup and it represents 

the structure of the organization. A definitional rule is also called structural rule and typically a 

definitional rule is a claim of necessity [OMG, 2008: Section 12.1.2]. An example of a 

definitional rule is “It is necessary that each customer has at least one bank account”, and it 
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explains that a customer should have at least one account, though she can have more than one 

account.  

ii. Behavioural Rule: A behavioural rule expresses the conduct or behaviour of an entity. A 

behavioural rule is also called an operative rule.  Formally, a behavioural rule is a claim of 

obligation [OMG, 2008: Section 12.1.2]. For example, in a behavioural rule “It is obligatory 

that each customer can withdraw at most GBP200 per day”, the behaviour of a customer’s 

account is explained by saying that a customer cannot withdraw more than GBP200 from his 

account.  

C. Semantic Formulation 

In SBVR 1.0, logical formulations are used to semantically formulate the SBVR rules. A 

semantic formulation that shapes a proposition is called a logical formulation [OMG, 2008: 

Section 9.2]. There are five semantic formulations given in SBVR 1.0. A selective subset of 

SBVR meta-model including various semantic formulations is shown in Figure 2.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Elements of selected SBVR metamodel 
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i.   Modal Formulation: Modal formulations [OMG, 2008: Section 9.2.4] are logical formulations 

that are used to specify meanings of the other logical formulations. There are four basic types of 

modal formulations. 

a. Necessity Formulation: If a Logical Formulation is true in all possible worlds, it is represented 

as necessity formulation. In English, a sentence having words like ‘need’, ‘may’ and ‘might’ 

can be mapped to necessity formulation. In SBVR 1.0, a necessity formulation is represented 

using phrase “It is necessary that” [ibid]. 

b. Obligation Formulation: If a Logical Formulation is true in all acceptable worlds, it is 

represented as obligation formulation. In English, a sentence having words like ‘should’, 

‘must’, ‘ought’, and ‘have to’ can be mapped to obligation formulation. In SBVR 1.0, an 

obligation formulation is represented using phrase “It is obligatory that” [ibid].  

c. Permissibility Formulation: If a Logical Formulation is true in some acceptable worlds, it is 

represented as permissibility formulation. In English, a sentence having words like ‘is’ can be 

mapped to permissibility formulation. In SBVR 1.0, a permissibility formulation is represented 

using phrase “It is permitted that” [ibid]. 

d. Possibility Formulation: If a Logical Formulation is true in some possible worlds, it is 

represented as possibility formulation. In English, a sentence having words like ‘would’, ‘can’ 

and ‘could’ can be mapped to possibility formulation. In SBVR 1.0, a possibility formulation is 

represented using phrase “It is possibility that” [ibid]. 

ii. Logical Operations: Logical operations are used to combine one or more expressions, known 

as logical operand to produce complex Boolean expressions [OMG, 2008: Section 9.2.5]. We 

have incorporated these logical operations to map NL phrases to more complex logical 

expression. We are currently supporting the following six types of the logical expressions which 

are defined in SBVR v1.0 document [ibid]: 

a. Conjunction: In SBVR, a conjunction is a binary logical operation and it is used to formulate 

the meaning of a logical decision of two operands that each operand is true [ibid]. A 

conjunction can be represented, i.e., p AND q. 
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b. Disjunction: In SBVR, a disjunction is a binary logical operation and it helps to formulate the 

meaning of a logical decision of two operands that at least one operand between two operands 

is true [ibid].  A conjunction can be represented, i.e., p OR q. 

c. Equivalence: Equivalence in SBVR is another binary logical operation and it comprehends a 

logical decision that among two operands, the first operand is equal to the second operand 

[ibid]. An equivalence can be represented, i.e., p is equal to q or p is q. 

d. Implication: In SBVR, an implication is a binary logical operation that is used to formulate the 

meaning of a logical decision of two operands that second operand is true if first operand is 

true [ibid]. An equivalence can be represented, i.e., if p then q. 

e. Negation: In SBVR, negation is a unary operation for logical decision of one operand that 

formulates the meaning that the operand is false, i.e., NOT p [ibid]. 

iii. Quantification: Quantification is a logical formulation that uses a variable to specify the 

scope of a concept [OMG, 2008: Section 9.2.5]. Six basic types of quantifications have been 

defined in SBVR 1.0. Quantification types are briefly described below: 

a. Universal Quantification: A universal quantification in SBVR 1.0 document is defined as a 

reference for each element in a domain [ibid], e.g., “each item”. 

b. Existential Quantification: In SBVR 1.0, an existential quantification represents minimum 

cardinality one represented by a thing [ibid], e.g., “at least one item”. 

c. At most-n-Quantification: At most-n-quantification shows maximum cardinality represented 

by number n represented by a thing [ibid], e.g., “at most 5 items”. 

d. At least-n-Quantification: At least-n-quantification shows a minimum cardinality represented 

by number n represented by a thing [ibid], e.g., “at least 3 items”. 

e. Numeric Range Quantification: A numeric range quantification in SBVR exhibits both 

minimum and maximum cardinality represented by a thing [ibid], e.g., “3 to 5 items”. 

f. Exactly n Quantification: This quantification shows the exact cardinality is represented as 

exactly as n quantification represented by a thing [ibid], e.g., “4 items”. 



 

 

C
h

ap
te

r 
2

 
B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

 

22 

 

Here two quantifications “exactly one Quantification” and “at most one quantification” are not 

mentioned as we deal them under “exactly-n Quantification” and “at most-n quantification”, 

respectively. In the researcher’s approach, all these logical formulations are employed to 

transform English text to a SBVR rule. For further details of SBVR the reader is referred to 

[OMG, 2008]. 

D.   SBVR Notation 

In SBVR 1.0 document [OMG, 2008], the Structured English is proposed, in Annex C, as a 

possible notation for the SBVR rules. The Structured English provides a standardized 

representation for formalizing the syntax of natural language representation [Kliener, 2009]. In 

this thesis, the researcher has used the following Structured English specification: 

 Object Type is underlined e.g. customer 

  Verb phrase is italicized e.g. should be 

  Keyword is given in bold frame i.e. SBVR keywords e.g. each, at least, at most, etc. 

 Individuals Concept is underlined and italicized e.g. London. 

E.   SBVR Rules vs. OCL Constraints  

In business modeling, a business rule defines or constrains one aspect of business that aims to 

emphasize on the structure or behavior of the business [Ambler, 2003]. A comparison of SBVR 

rule and OCL constraints is presented in [Bajwa, 2011c]. Here, the researcher presents a few 

commonalities in a SBVR rule and OCL constraint. The different features of SBVR an OCL are 

not discussed here. For detail, we recommend the reader [Bajwa, 2011c]. 

i. Rules vs. Expression: The Rules [OMG, 2008: Section 12.1.2] in SBVR represent the 

specifications or the meanings of business constraints. Similar to Rules in SBVR, there are 

Expressions [OMG, 2010: Section 7.3] in OCL that make up a basic OCL constraint. Similarly, 

SBVR rules can be of two types: structural rules and behavioural rules. Similarly, OCL 

expressions are also of two types: structural constraints (such as invariant) and behavioural 

constraints (such as precondition or postcondition). Relation of a SBVR rules with OCL 

expressions can be explained as per two dimensions given below: 
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ii. Structural Rule vs. Invariant: The SBVR structural rules [OMG, 2008: Section 12.1.2] 

represent the structure of a business models and their underlying entities. The SBVR structural 

rules supplement definitions by using conditions and restrictions. Similar to SBVR structural 

rules, in OCL invariants [OMG, 2010: Section 7.3.3] are used to represent a structural constraint. 

OCL invariants typically specify structural information of UML models. 

iii. Behavioural Rule vs. Pre/Post Condition: The SBVR behavioural rules [OMG, 2008: Section 

12.1.2] govern the behaviour of business activities and operations. The behavioural or operative 

rules are ones that direct the activities involved in the business affairs. Akin to behavioural rules 

in SBVR, OCL’s behavioural constraints such as pre/post conditions [OMG, 2010: Section 7.3.4] 

are particularly specified to handle behaviour of respective methods of classes and objects. The 

OCL pre/post conditions also specify state change. 

F.   Why SBVR is Suitable for Intermediate Representation?  

Recently, in many approaches, SBVR is used as an intermediate representation [Cabot, 2010; 

Pau, 2008]. The following Characteristics of SBVR make it a suitable option for intermediate 

representation in translation of one language to another language, especially if one language in 

the translation is a natural language and the other is a formal language. Following is an overview 

of such Characteristics of SBVR [OMG, 2010;Chapin, 2008]: 

 SBVR vocabulary is concept centric, not word centric. That makes SBVR shareable in 

various communities. 

 SBVR can be used to produce business vocabularies and rules which can be shared by more 

than one domain. 

 SBVR supports precise Fact-oriented Modeling [OMG, 2008] in Formal Logic.   

 SBVR is portable due to the use of OMG's Meta-Object Facility [OMG, 2008] (MOF) and 

it’s supports of XML schema. With XML support, the business vocabularies and business 

rules can be interchanged among organizations and between software tools. 

 SBVR supports multilingual development as it keeps symbols separate from their meanings. 

 SBVR has support of textual notations such as Structured English and RuleSpeak [OMG, 

2008]. Such notation can also be mapped to the SBVR metamodel. 
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 SBVR is based on Formal Logic with natural language interface. 

 Since, SBVR has a meta-model, SBVR can be model transformed to other standards using 

model transformation technology. 

 SBVR supports rule-based Application Software Development and Configuration [Chapin, 

2008]. SBVR rules in combination with system design decisions are typically used to 

produce set of execution rules for software components. 

On the basis of these Characteristics of SBVR, we are interested in SBVR to use it as an 

intermediate representation in the presented translation. 

2.1.3   Natural Language Processing (NLP) 

Processing of a Natural Language (NL) has been an area of interest for researchers for many 

decades. In the late nineteen sixties and seventies, researchers like Noam Chomsky [Chomsky, 

1965], Chow and Liu [Chow, 1968] contributed in the areas of analysis and understanding of 

natural languages. However, automated processing of natural languages (such as English) is still 

a challenging task for NL community.  Many contributions have been presented in the area of 

NLP but still there are many open questions to answer. Automated processing of NL is difficult 

due to reasons such as   

 English is vast and has no domain boundaries. 

 English sentence structure is ambiguous. 

 Most English words have multiple meanings. 

 A single meaning can be represented in multiple ways. 

Typically processing a natural language involves a series of actions such as text segmentation, 

morphological analysis, Parts-of-Speech (POS) tagging, syntactic analysis, semantic analysis, 

and pragmatic analysis [Jurafsky and Martin, 2000]. In this research, the researcher will focus on 

a few of these, as pragmatic analysis is not involved in this research. Owing to the scope of our 

research, handling of discourse using pragmatic analysis is part of the future work. Currently, we 

are interested in lexical, syntax and semantic analysis of a natural language. In the following 

section, these phases are introduced as they are core of the presented research and will be 

discussed in forthcoming chapters. 
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A.   Text Segmentation 

Text segmentation is a primary phase in processing of a natural language. Text segmentation is a 

concept of linguistics typically used in computer science to break a stream of text up into 

meaningful elements. These meaningful elements are called tokens, lexicons or symbols. In 

computer science, the process of text segmentation is a part of lexical analysis in NLP.  

For text segmentation, first of all a piece of text is segmented into sentences and this process is 

called sentence splitting. Afterwards, each sentence is further segmented into tokens and this 

process is called tokenization. The researcher is interested in text segmentation as a NL 

constraint can be composed of a multiple sentences and to apply syntax and semantic analysis to 

each sentence, the researcher needs tokenized form of the input NL constraint. Here, a Java 

sentence splitter has been used for splitting sentences and Java Tokenizer for text segmentation.  

B.   Morphological Analysis 

Once the text is tokenized, next phase is morphological analysis and it is also a part of lexical 

analysis in NLP. Morphological analysis typically deals with the study of words (tokens) 

formation from smaller meaningful units called morphemes. Morphemes have two major types 

called: stems and affixes. The ‘Stem’ is the main morpheme of the word, which supplies the 

main meaning, and ‘Affixes’ add some additional meanings of various kinds. Affixes are further 

divided into prefixes, suffixes, infixes and circum-fixes. Prefixes precede the stem, suffixes 

follow the stem, circum-fixes do both and infixes are inserted inside the stem. 

Lemmatization is a key phase of typical morphological analysis. In lemmatization, the lemma or 

stem of each token is identified. In this research, the researcher is interested in lemmatization as 

he needs core part of each token to compare with UML class model. Lemmatization as mapping 

of un-lemmatized text with UML class model can result in mismatch and can affect accuracy of 

the translation. In our research, a token ‘customer’ is treated differently than a token ‘customers’. 

To consider both the tokens same, the researcher has to trim affix‘s’ of the second token. 

Actually, during lemmatization, the affixes which are trimmed from lemma are used for 

grammatical purpose and in mapping with UML class model, grammatical information is not 

required. 
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The simplest methodology used for the morphological analysis is Stemming. The stemmers are 

based on stemming algorithms presented by Lovins [1968] and afterwards enhanced by Porter 

[1978] for suffix stripping. Another simple approach is to use lexical databases that associate 

lemmas and word-forms with inflectional information i.e. MULTEXT [Bel, 1996] system 

provides lexical list of lemmas. CELEX [Baayen, 1991] is another large multilingual database 

with extensive lexicons of English, Dutch and German languages. However, only MULTEX is 

available for downloading but it was not able to integrate with our implementation in Eclipse. 

Moreover, a root of an inflected form of word returned by a stemmer is not in a 'proper' 

dictionary word, while the researcher is interested in a word with 'proper' dictionary form.  

In this research, the researcher aims to develop his own rule-based module for lemmatization. 

C.   Part- of-Speech (POS) Tagging 

The Part-of-Speech (POS) tagging is a process of assigning a grammatical category (such as a 

noun, verb, determiner, etc.) to each token in a sentence. Each POS category is represented using 

a set of POS tags like NN (common noun), NNS (plural noun), NNP (proper noun), CD (cardinal 

number), VB (verb base form), VBZ (verb present, 3d person), VBD (verb past), MD (modal), 

RB (adverb), JJ (adjective), DT (determiner), IN (preposition), POS (possessive ending), 

CC(coordinating conjunction)[Toutanova, 2000], etc. 

We are interested in generation of POS tags as syntax analysis uses POS tags in forming a parse 

tree and generating dependencies. In this research, POS tags can be involved in identification of 

various SBVR vocabulary items. As, the identified SBVR vocabulary items ultimately become 

the part of logical representation in semantic analysis, POS tagging is a key part of this research.  

There are many examples of automatic POS taggers those can be used in building automatic 

word-sense disambiguation algorithms. The ENGTOWL tagger [Karlsson, 1995] is based on rule 

based architecture. Illieva [2005] introduced a methodology that can perform POS tagging using 

a tabular representation to identify subject, verb an object. Similarly, Li [2005] developed a 

methodology that does POS tagging using predefined rules. An additional support for POS 

tagging is WordNet [Fellbaum, 1998] that is a database of lexical relations that helps in 

extracting the lexical relations. Another example of POS tagger is the Stanford POS tagger was 

originally written by Kristina Toutanova [2000]. The Stanford POS tagger is an entropy-based 

POS tagger that uses of cyclic dependency network [Toutanova, 2003]. The Stanford POS tagger 
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is 97% accurate in POS tagging [Manning, 2011]. Owing to its high accuracy, the researcher has 

used the Stanford POS tagger in his approach. 

An issue, in typical POS tagging, is assignment of wrong tags to a token due to ambiguous 

tokens as there are many tokens in English which can be assigned multiple POS tags at a time 

e.g. a token ‘books’ can be identified as a noun as well as a verb in English. However, wrong 

POS tagging can be very dangerous as the accuracy of syntax and semantic analysis totally relies 

on accuracy of POS tagging. In this thesis, the researcher aims at dealing with such issues in 

POS tagging. 

D.   Syntax Analysis 

In syntax analysis, syntactic or grammatical relationship is identified in various parts of a 

sentence. A parse tree is a typical way of graphically representing the grammatical relationships 

in a sentence. Traditionally, there are two types of parsers; top-down (goal-directed) parser and 

bottom-up (data-directed) parser. A top-down parser searches for a parse tree by trying to build 

from the root node S down to the leaves. On the other hand, a bottom-up parser starts with the 

leaves (words of the input) and tries to build a tree by applying rules from grammar one at a 

time. A typical parse tree involves various phrasal categories such as Noun Phrase (NP), Verb 

Phrase (VP), Preposition Phrase (PP), and Quantificational Phrase (QP). A parse tree is also the 

base of dependencies [Marneffe, 2006] that is the target of our syntax analysis. The syntactic 

dependencies help the researcher to identify possible relationships among various syntactic 

constituents of a NL constraint.  

The researcher is interested in syntax analysis of NL text due to multiple reasons: (1) syntax 

analysis can provide the researcher with a parse tree and a set of dependencies. Such 

dependencies are actually relationships in various syntactic structures of a NL constraint. In this 

research, the researcher aims at mapping such relationship into equivalent relationship in SBVR 

and OCL; (1) during syntax analysis, the researcher can sort out voice of a sentence as in this 

research an active-voice sentence is treated differently than a passive-voice sentence; (3) with the 

help of syntax analysis, the researcher can deal with the logical operators in English as such 

logical operators play key role in our research. 

A common way of parsing is bydependency grammar [Tesniere, 1959; Johansson, 2008]. In 

dependency grammar based parsing, structures are determined by the relations between a word 
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and its dependents. Another way of syntactic parsing is phrase structure grammar proposed by 

Noam Chomsky [1968]. It was introduced by Gawron [1982] that phrase structure rules can be 

used in phrase structure grammar based parsing. Another type of parsers is probabilistic parsers 

(such as the Stanford parser). The Stanford parser is a lexically driven probabilistic parser. The 

Stanford parser is a Java implementation of a probabilistic natural language parser based on 

Probabilistic Context-Free Grammars (PCFG). The Stanford parser provides two outputs: (1) a 

phrase structure tree; and (2) a Stanford dependencies output. The researcher aims at using the 

Stanford parser in our approach for syntax analysis. To best of the researcher’s knowledge the 

Stanford parser provides higher accuracy than do the other available parsers. The Stanford parser 

can be up to 84.1% [Cer, 2010] accurate. An additional benefit of the Stanford parser is that it 

also provides the typed dependencies. Here, typed dependencies are compact form of typical 

dependencies.  

E.   Semantic Analysis 

Semantic analysis is used to identify different constituents of a sentence and analyse the input 

text to extract its explicit meanings, i.e., direct or apparent meanings of a sentence. During 

semantic analysis, the apparent meanings of a sentence are represented using a logical form.  

The researcher is interested in semantic analysis for a number of reasons. First, semantic analysis 

can help us to identify SBVR based semantic roles. Secondly, quantifications, implication and 

negation can be processed with the help of syntactic analysis. Thirdly, a logical representation 

can also be generated as an end-product of semantic analysis. Such logical representation can be 

mapped to other formal representations such as SBVR, OCL, Alloy, etc. 

There are different ways of analyzing semantics of NL text. Typically, semantic analysis is 

performed into two phases: shallow semantic parsing and deep semantic parsing. A brief 

description of both phases is given below: 

In semantic analysis, a key phase is shallow semantic parsing in which the semantic or 

thematic roles are typically assigned to easy syntactic structure in a NL sentence. This 

process is also called Semantic Role Labelling. Typically used semantic roles are agent, 

action, patient, beneficiary, etc. However, in this research, the researcher has used SBVR 

based semantic roles as the researcher aims at generating SBVR based logical 

representation from NL constraint. Frame nets are commonly used for semantic role 
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labelling [Fillmore, 2003]. The actual purpose of semantic role labelling is identifying 

relationship of participants (semantic arguments) with the main verb (semantic predicate) 

in a clause. SRL is a most common way of representing lexical semantics of NL text. 

Semantic labelling on a substring (semantic predicate or a semantic argument) in a 

constraint (NL sentence) ‘C’ can be applied. Every substring ‘s’ can be represented by a 

set of indices as following: 

S ⊆ {1, 2, 3, …., n} 

Formally, the process of semantic role labelling is mapping from a set of substrings from 

‘C’ to the label set ‘L’. Where ‘L’ is a set of all argument semantic labels,  

L = {a1, a2, a3,…., m} 

The semantic roles can act as an intermediate representation in NL to SBVR translation. Croft 

(1991) explained that exact number of roles cannot be specified. Various scientists have defined 

various semantic roles. Similarly, it was investigated that it is difficult to define boundaries in 

various role types [Dowty, 1999]. 

The typical resources required for the automatic role-semantic analysis can be lexicons and 

corpora. Common examples of a corpora is FrameNet that is a English lexical database [Baker, 

1998] and it consists of a list of lexicons and a frame ontology that helps in identifying the 

semantic roles for each frame and frame-to-frame relations. Similarly, SALSA [Burchardt, 2006] 

is another corpus of German. SALSA is efficient for statistical systems. Another example is 

VerbNet [Kipper, 2000] that identifies semantic roles for lexicon in hierarchal categories. 

VerbNet uses set of semantic roles for syntactic transformations. PropBank [Palmer, 2005] is 

another support for semantic role annotation. However, in this research, the researcher aims at 

using UML class model as a lexical knowledge base due to the fact that a UML class model is 

context of its constraints.  

Deep semantic analysis typically involves actions like word sense disambiguation, handling 

quantifications, quantifier scope resolution, anaphora (i.e. pronouns) resolution, and generating a 

logical representation. In our research we are interested in all of them except anaphora resolution 

as typically pronouns are not part of NL constraints and resolution of pronouns is not part of 

current scope of this research. Word sense disambiguation has a very wide scope. In word sense 

disambiguation, various issues such as polysemy, coherence, inference and discourse analysis are 
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addressed. In this research, the researcher has employed word sense disambiguation at a very 

limited level as during labeling of semantic roles, there is possibility that a token may be 

assigned more than one semantic roles at a time. The researcher aims at resolving such issues in 

this thesis. Similarly, the researcher also aims working on quantifications and quantifier scope 

resolution as quantifications are always an important part of NL constraints. Final aim of deep 

semantic analysis is to generate a logical representation from NL text. This research  aims  at 

exploring the role of SBVR in a logical representation. 

In semantic analysis another important field is handling of discourse and dealing with a donkey 

sentence. A donkey sentence is a classical NLP problem, e.g., “Every farmer who owns a donkey 

beats it”. Donkey sentences cannot be solved using first-order logic as one has to deal with a 

certain kind of anaphora (statements about other statements). One approach to deal with such 

issues is Discourse Representation Theory (DRT) [Kamp,1981]. DRT is typically based on 

dynamical databases called Discourse Representation Structures (DRS). The DRS's are 

associated with a particular sense. Another approach associated with the dynamic semantics is 

Dynamic Predicate Logic (DPL) presented by Mus [1991]. DPL helps in specifying meanings of 

an action that modifies the receiver’s information state. Semantic Frame [Fillmore, 1992] is a 

concept used to share the same set of roles using a set of predicates. The concept of semantic 

frame also assists in sorting out the definitional problems of semantic roles in universal sets. 

Frame semantics are helpful in machine translation [Boas, 2005] due to their ability of having 

similar frame-to-frame relations in the source and target languages. Pinkal [1991] proposed a 

revised semantic binding condition to address this issue by permitting the binding of indefinite 

NP in accordance with intuitions. However, Pinkal proved that in donkey sentences, the 

anaphoric relations are not solely specified by syntactic components. The work, discussed above 

proposes a solution for donkey sentences. However, processing of the donkey sentences is not 

part of scope of this research. 

2.1.4   Model Driven Architecture 

Model Driven Architecture (MDA) [OMG, 2010] is a flavor of model-driven development 

(MDD) proposed by the OMG. MDA is a software design approach and its typical application is 

development of software systems. Using MDA, platform independent models can be mapped to 
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domain specific code. However, in this thesis, the researcher complements that functionality by 

using model transformations to generate formal language’s code from NL specifications.  

 

 

 

 

 

 

 

Figure 2.13: An overview of MDD 

Model transformation is the core process in MDD and MDA that involves automated creation of 

new models, depicted in Figure 2.13, can be described briefly as follows:  

Model Transformations rely on the “instanceof” relationship between models and meta-

models to convert models [Dang, 2009]. Model Transformations define the mappings 

rules between two modeling languages meta-models. Rules typically define the 

conversion of element(s) of the source meta-model to equivalent element(s) of the 

destination meta-model. The Model Transformation frameworks execute the Model 

Transformation implementations on models. Upon execution with a given model, the 

necessary rules are applied by the transformation framework applying rules to generate 

an equivalent model in the destination modeling language.  

There are different types of model transformations such as model-to-model, model-to-text and 

text-to-model transformations [Cabot, 2007]. The Model-to-Model Transformation is used to 

transform a model into another model e.g. transforming UML/OCL to Alloy [Anastasakis, 2007], 

SBVR to UML [Raj, 2008], [Hina, 2011] UML/OCL to SBVR [Cabot, 2009], Alloy to 

UML/OCL [Shah, 2009], SBVR to SQL [Moschoyiannis, 2010], SBVR to BPMN [Steen, 2010], 

etc. The Model-to-Text Transformation is used to translate a model to a natural language 

representation e.g. transforming OCL/UML to NL [Raquel, 2008]. The Text-to-Model 
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Transformation talks over interpreting the natural language text and creates a model from the 

interpretation. 

In this research, the researcher aims at using model-to-model transformation for automated 

transformation of SBVR to OCL.  A Typical Model Transformation can be employed by creating 

abstract syntax of source model and then converting it into the target model representation using 

the model transformation rules. To achieve this goal, the researcher aims at using a set of 

transformation rules to perform the proposed transformation of SBVR to OCL.  

Basic approaches used to perform a model transformation are Graph Transformation and 

Relational Model Transformation [Kuster, 2004]. Graph Transformation is employed by creating 

abstract syntax of source model using typed attributed graphs [ibid] and then finally converting 

them into the target model representation using graph transformation rules. On the other hand 

Relation Model Transformation approach proposes the use of QVT 

(Query/View/Transformation) [ibid] approach.  

A.    Transformation Rules 

A typical model transformation is carried out by using a rule based approach to translate source 

text or a model conforming to its meta-model into a target text or model conforming to its meta-

model. Rule based model transformations employ set of transformation rules to map source 

model to a target model. A transformation rule r maps one component of the source model using 

a source transformation rule rs with one component of target model using a target transformation 

rules rt.  It can be represented as r: S → T.  

Transformation rules were individually defined for SBVR to OCL transformation. Defined 

transformation rules were based on If-then-Else structure. Each rule consists of a component 

from the source model (such as SBVR) and one component from the target model (such as OCL) 

inspects source input and the mapping.  

The researcher has defined a number of states
1
 for the source model, e.g.  Y = {y1, y2,….., yn} is 

a set of states for source model. Similarly, a number of states for the target model have been 

defined, e.g.  Z = {z1, z2, ….., zn} is a set of states for target model. For mapping, the states of 

                                                           
1
 State is an element of the metamodel 
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input source model are matched with possible states of the target model. An occurrence of X 

from the source model is looked within the all occurrences of Z from the source model and if the 

match is found, the matched state of source model is given concrete syntax of the target model.  

B.   Simple Transformer (SiTra) 

Simple Transformer (SiTra) has been developed by Akehurst et al. [2008]. It is a simple and 

lightweight implementation of an extensible transformation engine. A conceptual outline of the 

SiTra framework is shown in Figure 2.14. There are two interfaces in theSiTra transformation 

framework: the Transformer interface and the Rule interface. The Transformer interface 

provides the skeleton of the methods to achieve the transformation. The Transformer 

interface consists of two key methods: the transform()method and the 

transformAll()method. On the other hand, the Rule interface is a set of mapping rules 

(defined by the user), which need to be implemented by the modeller according to the 

transformation rules. 

 

Figure 2.14: Explanation of SiTra Model 

We have defined such transformation rules in Section 5.3. However, the use of SiTra is very 

simple as modeller needs to implement the Rule interface by using defined set of 

transformation rules. The Rule interface consists of three methods as depicted in Figure 2.14. 

First method is check()that is involved in the rule interface. The second method build() 

method is executed to generate the target model element. The third method 

setProperties()is involved in setting the attributes and links of the newly created target 

element. 
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2.2   Related Work 

In this section, related work in the area of NLP application in software engineering is presented. 

Moreover, an account of related work in the area of model transformations and tool support for 

OCL and SBVR is given in this section. The related work discussed in this section not only 

emphasizes the significance of the research but also highlights the motivations of the research. 

2.2.1   NLP for Automated Software Engineering 

Applications of NLP in the field of software engineering are significant especially to improve 

accuracy, productivity, flexibility, multilinguality and robustness [Leidner, 2003]. An example of 

an application of NLP is automated software modeling (such as automated object-oriented 

analysis and automated generation of UML models) from NL software requirements 

specifications. Similarly, NLP has been applied to provide NL interfaces for automatically 

generating E-R models and SQL queries as well. Automated generation of OCL constraints for 

software (UML) models is also related to this area of research. An account of the work related to 

above mentioned fields is given below: 

A. NLP for Automated Object Oriented Analysis 

The role of NLP in the field of object oriented software modeling has been very important. One 

of the various contributions for automated object oriented analysis of natural language software 

requirements specifications and extraction of object oriented information from the NL 

specification was presented by Mich [1996] and the presented approach was implemented in a 

tool LOLITA [ibid]. Delisle [1999] and Perez-Gonzalez [2002] also presented NL based tools 

which could be used for object oriented analysis of NL specifications of software requirements. 

Similarly, linguistic information was used to analyse syntactically and semantically informal 

specifications and employ a semiformal procedure to extract object-oriented information [Juristo, 

2000] that could be used to construct a model. Similarly, Li presented his work in which he 

addressed various issues in NL based automated object oriented analysis [Li, 2003]. MOVA 

[Clavel, 2007] is another tool that models, measures and validates UML class diagrams. Such 

techniques consume less time and require less human effort and expertise in analysis of NL 

software requirements. A similar approach can save time and resources when we analyse NL 
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constraints to extract the SBVR vocabulary that will be used to construct a SBVR rule or an 

OCL constraint. 

B. NLP for Automated UML Modelling 

Various approaches and tools have been presented to automatically generate software models 

from NL specifications. An example of such work is the semi-natural language (4WL) presented 

to automatically generate object models from natural language text [Hector, 2002].  Its prototype 

tool GOOAL [Perez-Gonzalez, 2002] produces object oriented static and dynamic model views 

of the problem. Much research has been done on analysis of NL requirement specification 

[Bryant, 2008] and their translation to object oriented models [Seco, 2004], and programming 

languages [Bajwa, 2006]. A significant contribution by Harmain and Gaizauskas was their NL 

based CASE tool named CM-Builder [Harmain, 2003]. This CASE tool was restricted to create a 

primary class model. Such tools are real motivation for automated software modeling. NOESIS 

(Natural Language Oriented Engineering System for Interactive Specifications) is a WordNet 

based NL text analysis module [Nuno, 2003]. A tool REBUILDER based on NOISES is 

introduced by Gomes [2004] to generate class diagrams from NL specification. To generate the 

class diagrams, NOESIS first performs basics steps of NLP such as morphology, syntax and 

semantics analysis. Then a CBR (Case Based Reasoning) engine is used to retrieve cases from 

the case library based on the similarity with the target problem.  

The work discussed above addresses only generation of UML models from NL specification of 

software requirements. However, no work is presented for automated generation of OCL from 

NL specification. Since OCL is an important part of UML models, there is a gap in research that 

demands an automated approach and a tool that can generate OCL constraints for the UML 

models. However, the presented techniques are a motivation for a NL based approach that can 

facilitate generation of OCL constraints. 

C.   NLP for Automated E-R Modelling 

In addition to automated translation of NL requirements specifications to UML models is 

translation of NL specification to ER models [Omar, 2006]. Semantic heuristics were used to 

extract the relevant ER elements such as entities, attributes, and relationships from the 

specifications. The used approach is an extension of syntactic heuristic based tool ER-Converter. 
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ER-Converter provides 85% precision and to improve its accuracy the concept of semantic 

heuristics were employed. E-R Generator [Gomez, 1999] is another rule-based designed tool that 

performs semi-automatic generation of E-R Models from NL specifications. A heuristic based 

parsing algorithm was used to parse NL statements and then the linguistic structures were 

transformed into ER concepts.  

The work we have discussed above is a real encouragement for the development of a NL 

approach that can simplify the generation of OCL. 

D.   NLP for Automated SQL Query Generation 

Another application of NLP are natural language interfaces for databases. A model is presented 

for auto analysis of user requirement using NLP and custom model database generation [Al-

safadi, 2009]. A CASE tool DBDT (Database designer in the Database development) is also 

presented. Similarly, Popescu [2003] and Nihalani [2011] presented a natural language interface 

for databases. In the same way natural language interfaces are also presented to communicate 

with data warehouses [Kuchmann-Beauger, 2011;Naeem, 2012].  

The researcher’s approach to generate OCL constraints automatically from NL specification of 

constraints is really motivated by such work as discussed above. 

2.2.2   Automated Generation of OCL 

Though usability of OCL is a long standing challenge for research community, not very much 

work has been presented so far to facilitate the writing of OCL. One effort has been done by 

Wahler [2008] to generate OCL using a pattern based approach. However, there are two issues 

with Wahler’s approach. The first issue relates to the applications of Wahler’s approach as it is 

semi-automatic [ibid] and the user has to extract manually the required information from NL 

constraints and then he/she has to select manually one or more patterns required to generate a 

specific OCL constraint. The second issue is that Wahler’s approach is 69% accurate [ibid]. Here 

accuracy means failed vs. successful generations of constraints. Hence, it can be deduced that 

Wahler’s approach cannot process almost one third of given number of constraints in a scenario. 

However, there are plenty of margins for improvement in accuracy.  
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In light of above mentioned facts, we can conclude that there is need of an approach that is not 

only fully autonomic but also more accurate in generating OCL expressions. 

2.2.3   OCL Transformations 

Various automated transformations have been presented from OCL to other formal languages. 

Examples of such transformation are OCL to JML [Hamie, 2004], OCL to Alloy [Anastasakis, 

2007], OCL to NL [Burke, 2007], [Raquel, 2008], OCL to SQL [Heidenreich, 2008], OCL to 

SBVR [Cabot, 2009], etc. A brief description of these transformations is given below: 

OCL is transformed to Java Modeling Language (JML) by Hamie [2004], where JML is a 

specification language to state Java classes and interfaces. It was further presented that 

OCL to JML transformation can assist in automated mapping of object-oriented models 

expressed in UML and OCL to Java classes and interfaces.  

OCL has also been transformed to natural language (English) by Burke [2007]. The 

presented work is the part of the Key Project and the major emphasis of the presented 

work was to integrate the formal software specification and verification into the industrial 

software engineering process. A Grammatical Framework (GF) is used that is based on a 

grammar formalism and toolkit. GF grammars separate abstract from concrete syntaxes. 

A similar contribution was presented by Raquel [2008]. 

OCL to Alloy transformation is presented by Anastasakis [2007]. The presented 

transformation was used for automated analysis of UML models. The reverse of this 

transformation Alloy to OCL is presented by Shah [2009]. The presented work uses SiTra 

[Akehurst, 2007] library to transform OCL/UML to Ally and back. 

A transformation from OCL to SQL was presented by Heidenreich [2008]. The focus of 

research was to provide an automated way of generating SQL queries from integrity 

constraints specified in OCL. The presented transformation not only decreases 

development costs but also increases software quality. 

OCL was transformed to SBVR by Cabot [2010]. In OCL to SBVR transformation, all 

possible textual objects in constraint language (OCL) that complement the UML 
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graphical elements were mapped to SBVR. Such a transformation presents several 

benefits and applications and opens the door to representing the initial UML/OCL 

specification in a variety of different languages and notations for which a predefined 

mapping from SBVR has been already proposed. This work can help in generating 

business vocabularies from the already designed software models. 

The work the researcher has discussed above highlights various transformation for OCL or 

transformation to OCL. However, presently, there is no approach that can transform NL or 

SBVR to OCL. The gap in current research really motivates for research and development of an 

approach automated transformation of NL and SBVR to OCL. 

2.2.4   OCL Tool Support 

A continuous research is in practice for designing tools to automate the process of OCL type 

checking. One of such tools is IBM OCL Parser [IBM, 2009] that is the first OCL tool written in 

Java by IBM. A model or OCL expression was given as input in a special file format. OCL 

parser was able to perform syntax checking and partial type checking. Dresden OCL Toolkit 

[Demuth, 2009] is another OCL compiler. This OCL toolkit was using a compiler that parses and 

semantically analyses the OCL expression to validate logic or meanings of an expression. 

Another famous tool is USE (UML-based Specification Environment) [Gogolla, 2007] used for 

the validation of UML models and OCL constraints. USE validation tool is comprised of two 

main components: a UML model simulator and an OCL parser and interpreter for constraint 

checking. OCL interpreter supports validation of OCL expression syntax and performs strong 

type-checking. ArgoUML [Rompaey, 2007] is an open source CASE tool which provides typical 

OCL syntax and type checking. This tool is based on Dresden OCL compiler. ModelRun 

[Akehurst, 2001] is one of the tools that not only provide support for direct execution of OCL 

expression but also are endowed with OCL based query execution shore up. ModelRun is 

product of Boldsoft and it has integrated support for the creation of model prototypes.  

Cybernetic OCL Parser [Emine, 2008] is a complete OCL compiler that provides syntactic and 

type checking of the OCL expressions was introduced by Cybernetic Inc. Cybernetic is a 

software company that is working on logical consistency checks in OCL expressions.   
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None of the tools, discussed above, provide support for automated generation of OCL 

constraints. However, a semi-automated tool Copacabana is presented [Wahler,2008] to enhance 

maturity level of UML class models. However, the tool is not available for download and it is 

not possible to decide up to what extent the tool can solve OCL usability problem. 

Most of the tools the researcher has mentioned above are related to syntax checking, semantic 

checking, dynamic validation, test automation, code verification and synthesis. However, there is 

none of the tools available that can automatically generate OCL from NL constraints. Absence of 

any tool for automated generation of OCL from NL constraints is another motivation factor for 

the presented research. 

2.2.5   SBVR Transformations 

SBVR can be used for capturing natural language software requirements specifications. Since, 

SBVR is easy to machine process, software requirement specifications represented using SBVR 

can be automatically translated to other formal specifications. Example of such transformation is 

model transformation of SBVR to UML [Raj, 2008], [Hina, 2011], SBVR to R2ML [Nicolae & 

Wagner, 2008], SBVR to SQL [Moschoyiannis, 2010], SBVR to BPMN [Steen, 2010], SBVR to 

Ontologies [Karpovic, 2010], etc. A brief description of such transformation is given below: 

SBVR was introduced by OMG to provide a formal representation to capture software and 

business requirements. The business models represented in SBVR are mapped to UML models 

by Raj [2008]. Similarly, the software requirements represent using SBVR rules are model 

transformed to UML class models by Hina [2011]. The focus of both transformations was to 

facilitate the generation of UML models from business and software requirements specifications 

represented in SBVR. A transformation from SBVR to R2ML is presented by Nicolae and 

Wagner [2008]. The purpose of this transformation was to generate R2ML language for existing 

SBVR rules to get higher semantic representation that can improve the level of business logic 

abstraction. Moreover, SBVR is transformed to Structured Query Language (SQL) by 

Moschoyiannis [2010]to generate automatically SQL queries from existing SBVR rules in a 

business domain. Another example of SBVR transformation is automated transformation of 

UML and OCL to SBVR [Cabot, 2009], explained in previous sections. To facilitate the 

automated generation of ontologies from SBVR business rules a transformation was presented by 
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Karpovic [2010]. One more contribution was by Friedrich [2011] to generate Business Processes 

(expressed in Business Process Modelling Notation) from SBVR business rules. 

The present work draws attention to the gap in research on transformation of NL to SBVR and 

SBVR to OCL. To fill the gap in the existing research an approach is required for NL to SBVR 

and SBVR to OCL transformation. 

2.2.6SBVR Tool Support 

The SBeaVeR is a business model editor developed as an Eclipse plugin [Tommasi, 2006]. The 

SBeaVeR assists business modellers and analysts to create SBVR based business models and 

rules. The SBeaVeR uses a SBVR linguistic engine to validate the sentences representing fact 

types and business rules. The SBeaVeR also provides support to formalize the semantics of 

business knowledge in the form of business rules represented using the Structured English 

notation [ibid]. Another SBVR editor that provides syntax highlighting and auto-completing 

facility is presented by Marinos [2011]. 

The work discussed above highlights that currently there is no tool available that can generate 

SBVR rule representation from NL specification of constraints. This gap in research motivates 

for developing a tool that provides facility of automatic generation of SBVR rules from NL 

specifications. 

2.3   Summary 

In this chapter the researcher has presented an overview of the basic concepts such as OCL, 

SBVR, NLP and model transformations. These concepts have been used throughout the thesis. In 

the second section of the chapter, related work in the area of automated transformations has been 

presented. It is found that various researches have been conducted to translate NL specifications 

to UML diagrams, E-R models, SQL queries, etc. However, no work has been presented to 

translate NL specifications to OCL constraints. Similarly, OCL is mapped to Alloy, SBVR and 

other standard using model transformation technology. On the other hand, SBVR is mapped to 

UML, BPMN, SQL, and other formal languages. However, no research has been presented to 

model transform SBVR to OCL. 

http://dl.acm.org/author_page.cfm?id=81488659278&coll=DL&dl=ACM&trk=0&cfid=86802208&cftoken=81858077
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The presented related work identifies not only a gap in research for automated generation of 

OCL from NL specification but also highlights the need and want for an automated approach to 

generate OCL from NL specifications so that the software/business modelers may be assisted in 

the modeling of software/business models. The presented work related to model transformation 

highlights that such automated transformation can facilitate the writing of OCL and can improve 

the usability of OCL. 
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CHAPTER 3  

PROPOSED SOLUTION 
 

This chapter presents the thesis statement that reflects on the challenges undertaken in this 

research and sketches the solution provided. Moreover, a set of hypotheses are also stated that 

the researcher aimed at addressing in the rest of the thesis.  

3.1   Thesis Statement 

Two major factors can be identified contributing to low adaption of OCL: (1) usability of OCL 

and (2) absence of tool support to facilitate OCL writing. On the basis of the research discussed 

in the previous chapter, the researcher could identify various aspects that play a role in usability 

of OCL and make writing OCL difficult. A primary aspect is the complex syntax of OCL 

[Gogolla, 2007] because OCL is a declarative language and focuses on establishing relationships 

among various elements. Wahler [2008] presented a template based approach to contribute to 

OCL adaption by providing a simple interface for automated generation of OCL constraints. 

Wahler’s approach allows the user to choose a required template from a wide range of OCL 

templates, assign the parameters and use them. Such approach can help an expert user. However, 

the key challenge for a novice user is the selection of a correct template and if a constraint 

involves more than one template, the scenario becomes more complex. The second aspect of 

OCL’s usability problem is the ambiguous nature of OCL constraints as several equivalent 

implementations for a constraint are possible in OCL [Cabot, 2008]. Cabot proposed an approach 

for automatic disambiguation of the constraints by means of providing a default interpretation for 
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each kind of ambiguous expression. But a designer has to be aware of all the possible states 

while writing an OCL constraint to avoid the identified ambiguities. The third aspect of OCL’s 

usability problem is understandability of overly complex OCL expressions commonly used in 

large software models [Correa, 2007]. The refactoring techniques are used to improve the 

understandability of OCL specifications but the employment of refactoring technique can be an 

overhead in the process of software modeling. 

In parallel to difficult syntax of OCL, absence of a tool (that facilitates writing OCL) also 

contributes to least adoptability of OCL. None of the currently available tools is capable of 

assisting users in writing OCL constraints. The available OCL tools do not provide any 

assistance in writing OCL expressions syntactically correct and simple enough to interpret 

semantically. Examples of such tools are Dresden OCL Toolkit [Demuth, 2009], IBM OCL 

Parser [IBM, 2009], USE [Gogolla, 2007], ArgoUML [Rompaey, 2007], Cybernetic OCL 

Compiler [Emine, 2008], etc. All these tools are limited to syntax verification and type checking 

of the already written OCL constraints. As discussed in Chapter 2, Section 2.2.2, Wahler’s 

approach is semi-automatic and less accurate as well. To the best of this researcher’s knowledge, 

there is currently no tool that can automatically generate OCL from NL.  

In the context of the above described scenario, the proposed research will address the problem of 

easing adaption of OCL by providing a NL based user interface to write OCL. The following are 

the key scientific issues involved in the proposed solution: 

 The syntactic and semantic analysis of the NL constraint to understand the meaning of 

the given text and extract the OCL constraints related knowledge from that text. 

 How the informal representation (such as NL constraint) can be transformed into formal 

representation (i.e. SBVR and OCL).The generated SBVR is checked and verified by the 

SBeaVeR tool and generated OCL is checked by the USE tool. 

 Investigating how SBVR can be incorporated in making natural languages syntactically 

and semantically restricted and also exploring how SBVR can be used as an intermediate 

representation for NL to OCL transformation to generate OCL constraints.  

The facts presented above highlight the need of an approach that allows development of tools 

and techniques to provide assistance in writing OCL. In this thesis, the researcher presents a 

radically new approach by bringing together two main domains of computer science: (1) natural 
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language processing and (2) model transformation. Using natural language processing for 

transformation of NL constraints to OCL is a novel work. But the researcher adopted a 

systematic way that transforms NL constraints to OCL by using SBVR as an intermediate 

representation. Here, use of SBVR not only helped in dealing with ambiguities of NL constraints 

but also assisted in transformation to OCL due to its basis on formal logic.  

3.2   Hypothesis and Assumptions 

This thesis aims at extending the existing work in the field of NLP by defining a model for 

understanding and analyzing natural language constraints and translating them into a formal 

specification such as OCL. This work aims at using NLP to translate NL constraint to SBVR 

rules and then using model transformation technology to transform the SBVR representation of 

constraints to OCL. The hypotheses for the presented work are stated below: 

1. That it is possible to build a tool using a model transformation-based approach in the NLP 

domain that can translate informal specification (i.e., English constraints) into a formal 

specification (i.e., OCL invariants, preconditions and post-conditions). The presented tool 

can also be used with the existing Eclipse platform as an Eclipse plugin and the generated 

OCL constraints can be directly used in major CASE tools. 

2. That by using the presented approach and tool, it is also possible to assist the software 

designers in generating syntactically accurate, semantically precise and consistent OCL 

constraints that can be incorporated to annotate UML models. This will allow the software 

designers to solely concentrate on the software quality issues rather than designing details. 

3. Having two versions of text (i.e., NL constraint and SBVR rule); NLP and the SBVR 

standard can help in validating a part of the transformation to ensure correct interpretation of 

the NL constraint. 

4. We assume that the UML model is a suitable representation of the domain and the statements 

are made about this model and not the actual world. This is to say we assume models are 

reasonable representation of the domain. All models are wrong whereas some are useful.  

5. There are sufficient consistencies in the language used in this approach that are amenable to 

automated NLP. For example, we assume most inherently ambiguous NL statements have a 
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default specific interpretation and truly ambiguous sentence for which there are several 

competing likely interpretations are rare.  

6. The ability to map to OCL gives us sufficient assurance that we can map to other formalisms. 

Because, OCL is rather complex has three value logic with classic login embedded.   

Additionally, this work aims at evaluating the effectiveness of such systems by seeing how well 

it meets the needs of software designers. Moreover, various case studies will also be used to 

evaluate the performance of the presented approach. 

It is pertinent to mention here that the researcher is aware of the fact that the presented solution 

to generate OCL from NL constraints cannot be 100% accurate due to the informal nature of NL 

and infinite size of NL (such as English) vocabulary. Since, the researcher has used NL and 

automated generated SBVR in pair to resolve NL ambiguities and to clarify vagueness by 

pointing them out, this will not be a 100% solution either and the researcher is aware of it. 

3.3   Used Approach 

The NL2OCL is a NL-based approach that generates OCL from NL specification of constraints 

with respect to a target UML class model, where SBVR plays a role of an intermediate 

representation. The NL2OCL approach takes two inputs: (1) a NL statement (that is a 

specification of a constraint) and (2) a UML class model (that is the target of the NL constraint). 

Figure 3.1 depicts various phases of the NL2OCL approach. 

The NL constraint is transformed to OCL in multiple phases. First of all, the NL constraint is 

linguistically analysed by the NL module. Linguistic analysis of the NL constraint involves 

syntactic analysis and semantic analysis and the output of the NL module. Then, another UML 

module parses the UML class model and extracts the SBVR vocabulary, e.g., Object Types, 

Characteristics, Fact Types, etc. The SBVR module maps the output of the NL module and the 

UML module to ensure that the output of the NL module should comply with the output of the 

UML module. Here, if any part of NL module’s output does not comply with the UML module’s 

output, the unmatched part does not become the part of the SBVR rule and user is given a message 

about the inconsistency. Finally, the OCL module maps the SBVR rule to an OCL constraint 
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Figure 3.1: The NL2OCL Approach 

All the steps involved in the NL2OCL approach (shown in Figure 3.1) for translating NL 

constraints to OCL are expressed in the form of an algorithm. The algorithm on which the 

NL2OCL approach is based is given below: 

1. Give as input a text document that contains the NL description of a constraint   

2. Give as input a UML class model that is the target of the NL constraint.  

3. Parse the UML class model to extracts SBVR vocabulary, e.g., Noun Concepts, Object 

Types, Individual Concepts, Verb Concept, Characteristics, etc. 

4. Pre-process the NL constraint to get rid of un-necessary text and prepare text for detailed 

syntax and semantic analysis 

5. Perform syntax analysis to identify structural relationship among various syntactic parts 

of the NL constraint. If there is error/inconsistency with the SBVR vocabulary, give 

message to the user. 
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6. Use the identified structural relationship for SBVR based semantic role labeling of each 

part of the NL constraint. If there is error/inconsistency with the SBVR vocabulary, give 

message to the user. 

7. Map the SBVR vocabulary with the output of the semantic analysis of the NL constraint. 

If there is error/inconsistency with the SBVR vocabulary, give message to the user 

8. If the mapping is successful, generate the SBVR rule by applying semantic formulations 

or else notify the user to correct the NL constraint by removing the extra contextual
2
 

information from the NL constraint. 

9. Identify the type of the SBVR rule, e.g., a structural rule or a behavioural rule. 

10. If the type of a SBVR rule is a structural rule then it is translated to an OCL invariant. 

11. If the type of a SBVR rule is a behavioural rule then it is mapped to an OCL pre-

condition or post-condition. 

12. Generate OCL context. If context is not given in NL constraint, give error message to the 

user and restart processing. 

13. Generate body of OCL constraints involving expression and navigations. If there is 

error/inconsistency with the UML model or some information is missing, give message to 

the user. 

14. Integrate output of step 12 and 13 to generate a complete OCL constraint. 

Algorithm 3.1: Algorithm to Translate NL constraints to OCL 

The steps of Algorithm 3.1 represent a generalized form of the actions performed in the 

NL2OCL approach. However, a single step in the algorithm can have sub-steps, as well. 

Theoretical detail of all these steps is explained in Chapter 4 and Chapter 5 with examples, while 

the implementation details are provide in Chapter 6. 

The proposed solution to automatically generate OCL from NL specificationis always capable of 

producing the wrong analysis but that in such circumstances the produced formal representation 

is correct for a particular, valid and potentially correct interpretation and can be corrected by 

manual intervention. 

                                                           
2
Any piece of information that is not part of the target UML class model 
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3.4   Summary 

In this chapter, thesis statement has been discussed in a detail. Moreover, the solution to address 

the problem of OCL usability has also been presented in this chapter with a set of hypothesis. 

Additionally, the NL2OCL approach has been presented based on an algorithm discussed in 

Section 3.3. The details of the NL2OCL approach are given in following chapters. 
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CHAPTER 4 

TRANSLATING NATURAL LANGUAGE TO SBVR 
 

As the researcher said in the previous chapter, the Semantics of Business Vocabulary and Rules 

(SBVR) standard is used as a pivotal representation in Natural Language (NL) to Object 

Constraint Language (OCL) transformation. SBVR is chosen as a pivotal representation due to 

its peculiar features that is SBVR is not only easy to understand for the natural language readers 

but also is simple to transform to other formal languages such as OCL. Moreover, a SBVR based 

representation is easy to interchange among multiple platforms and tools due to the support of 

XMI (XML Metadata Interchange) and MOF (Meta-Object Facility) [OMG, 2008]. Since, SBVR 

has already been used as an intermediate representation [Cabot, 2010], [Pau, 2008], we aim to 

exploit the strength of SBVR in NL2OCL translation. There are many features (discussed in 

Chapter 2, Section 2.2.3) of SBVR that make it a suitable option for intermediate representation 

in translation of one language to another language, especially if one language in the translation is 

a natural language and the other is a formal language.Though, the approach uses automated 

generated SBVR in pair with NL representation to resolve NL ambiguities and clarify NL 

vagueness by pointing them out; even then the NL2OCL approach cannot be 100% correct. In 

this chapter, the first half of the NL2OCL approach is presented that deals with NL to SBVR 

translation. 

To generate SBVR representation from NL constraints, two things are required: (1) SBVR 

vocabulary (such as Object Types, Individual Concepts, Fact Types, etc.) and (2) relationships 

among various SBVR vocabulary items. We use NL to SBVR translation to extract both these 

types of elements from NL constraints. In NL to SBVR translation, the researcher applied typical 
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NLP techniques such as syntax and semantic analysis to extract the required information. The 

syntax analysis provides the researcher with a parse tree and set of dependencies while semantic 

analysis uses these dependencies to generate a SBVR vocabulary based logical representation 

that contains both SBVR vocabulary and relations among various SBVR vocabulary items. 

NL to SBVR translation is an automated approach based on NLP. In NL to SBVR translation, 

there are two key challenges: (1) analyzing NL constraints to generate a SBVR vocabulary based 

logical representation and (2) mapping the logical representation to SBVR rule representation. In 

the researcher’s approach, analysis of NL constraints involves three sub-phases such as pre-

processing, syntax analysis, and semantic analysis. The used framework for analysis of NL 

constraints is shown in Figure 4.1, where the researcher has shown two layers: (1) logical layer 

and (2) user interface layer. Here, the user interface layer provides both the inputs and receives 

the output, while the logical layer handles actions like pre-processing, syntax and semantic 

analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: A framework for analysis of natural language constraints 

The NL2OCL approach is always capable of producing the wrong analysis but that in such 

circumstances the produced formal representation is correct for a particular, valid and potentially 

correct interpretation and can be corrected by manual intervention. 
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In the remaining part of the chapter, Section 4.1, 4.2, and 4.3 provide the details of the three 

steps involved in processing of NL constraints and Section 4.4 highlights the details of 

generation of SBVR rule representation. 

4.1   Pre-processing 

In the pre-processing phase, the input NL text is prepared for the detailed processing such as 

syntactic and semantic analysis. The input text contains a natural language specification of a 

constraint that is specifically defined for a UML class model. Major steps involved in pre-

processing phase are splitting the sentences, tokenizing the words, and lemmatization. Following 

are the brief description of these three sub-phases of pre-processing.  

4.1.1   Sentence Splitting 

If the input text contains multiple sentences, each sentence is considered as a separate entity. 

During sentence splitting, the margins of a sentence are identified and each sentence is separately 

stored and is treated as a separate constraint. The Stanford POS tagger is used for the sake of 

sentence splitting. 

4.1.2   Tokenization 

After sentence splitting, each sentence is further processed to identify tokens. The purpose of the 

tokenization phase is to identify tokens in a given piece of text for the detailed syntactic analysis. 

A simple example of the tokenized text is shown in Figure 4.2:  

English:     An increase is awarded to all workers with injury. 

Tokens:    [An] [increase] [is] [awarded] [to] [all] [workers] [with] [injury] [.] 

Figure 4.2: Tokenized text using Stanford Parser 

Here, Figure 4.3 shows a complex example of tokenization as it involves ‘s that should be treated 

as a separate token. The researcher has used the Stanford POS tagger that can handle such 

difficult cases. 
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English:     A customer’s age cannot be more than 18 years. 

Tokens: [A] [customer] [’s] [age] [can] [not] [be] [less] [than] [18] [years] [.] 

Figure 4.3: Tokenized text using Stanford Parser 

4.1.3   Lemmatization 

In lemmatization, the morphological analysis of words is partially performed to remove the 

inflectional endings and it returns the base form or dictionary form of a word. The base form of a 

word is typically represented as ‘lemma’. We identify lemma (base form) in the tokens by 

removing various affixes attached to the tokens. Here we store two copies of each sentence: one 

copy with the original tokens and the second copy contain the lemmatized tokens. The copy of 

NL constraints with original list of tokens is important to save as the removed parts are used to 

identify POS tags in the syntactic analysis phase. An example of lemmatization is representation 

of a token “awarded” as “award+ed”. Similarly, in Figure 4.3, another token “workers” is 

processed as “worker + s”.  

4.2   Syntax Analysis 

In syntax analysis phase, the pre-processed text is processed to extract grammatical structure and 

possible dependencies between particular grammatical structures. Grammatical structure of a 

sentence is pertinent to identify as sentences with different grammatical structures are treated 

differently. For example, the algorithms used to process the active-voice sentences cannot be 

used to process a passive-voice sentence. 

The output of a typical syntax analysis phase is a parse tree. A parse tree can be represented 

using a textual representation or a graphical representation. The example parse trees discussed in 

this chapter are represented using the textual representation generated by the Stanford parser. 

Besides parse tree generation, the researcher also performs some additional steps for robust 

extraction of detailed information required in the semantic analysis, such as classification of 

active-voice and passive-voice analysis of logical operators, etc. It is a fact that the accuracy of 

syntax analysis affects the semantic analysis and rest of the processing phases as the output of 

the syntax analysis is input of semantic analysis phase. Hence, any mistake or misinterpretation 
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during syntax analysis phase propagates in rest of the processing such as semantic analysis, 

SBVR rule generation, and OCL generation. Considering the importance of syntax analysis, 

following steps are performed to syntactically analyse a NL constraint:  

1. POS Tagging 

2. Generating Parse Tree and Dependencies 

3. Voice Classification 

4. Processing Conjunctions an Disjunctions 

5. Generating an Intermediate Representation 

The description of all the five steps involved in the syntax analysis of NL constraints is given 

below. 

4.2.1   Part-of-Speech (POS) Tagging 

POS-tagging is the first phase of syntax analysis. In POS tagging, each token is assigned a part-

of-speech such as noun, verb, preposition, etc. A set of name abbreviations such as NN, NNS, 

CD, VB, VBZ, etc., are the output of POS-tagging. The researcher has used the Stanford POS 

tagger for the sake of POS tagging due to its accuracy that is 97% [Manning, 2011]. The 

Stanford POS tagger was originally written by Kristina Toutanova [2000]. The Stanford POS 

tagger is an entropy-based POS tagger that laterally involved the use of cyclic dependency 

network [Toutanova, 2003].  

The researcher has used the Stanford POS tagger version 3.0.3 that can identify 44 various POS 

tags. An example of POS tagging of a simple NL constraint is shown in Figure 4.4 that involves 

one determiner ‘a’, two singular nouns ‘customer’ and ‘age’, one possession ‘’s’, one Modal 

verb ‘can’, one negation ‘not’, one verb ‘be’, one comparative adjective ‘less’, one subordinating 

conjunction ‘than’, one cardinal number ‘18’ and one plural noun ‘years’: 

 

English:     A customer’s age cannot be more than 18 years. 

Tokens: [A/DT]  [customer/NN]  [‘s/POS]  [age/NN]  [can/MD]  [not/RB]  [be/VB]  [less/JJR]  

[than/IN]   [18/CD]  [years/NNS]  [./.] 

Figure 4.4:  Parts-of-Speech tagged text 
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Despite the high accuracy of the Stanford POS tagger, the researcher has identified a few cases 

where the Stanford POS tagger identifies wrong tags for a token. Identification of wrong tags is 

due to lexical ambiguity [Uejima, 2003]. In linguistics, a lexical ambiguity occurs when a word 

in a phrase or a sentence exhibits different syntactic representations in different cases. The wrong 

POS tagging by the Stanford POS tagger becomes more serious as the Stanford parser generates 

wrong parse trees and wrong dependencies. 

A complex example of such cases is shown in Figure 4.5 where a token ‘books’ is wrongly 

tagged as ‘NNS’ by the Stanford POS tagger while, the token ‘books’ is a verb and should be 

tagged as ‘VBZ’. The effect of wrong POS tagging is also shown in Figure 4.5 where the 

Stanford parser generates a wrong parse tree as there is no verb phrase in the tree. Similarly, the 

typed dependencies (collapsed) generated by the Stanford parser are also wrong as det(books-

3, A-1)should be det(customer-2, A-1), nn(books-3, customer-2) should 

bensubj(books-3, customer-2),and dep(books-3, items-5) should benobj(books-

3, item-5). As these dependencies are directly translated to a logical representation in 

semantic analysis, it is very important to handle such issues. 

English:   A customer books two items. 

POS Tagging:[A/DT] [customer /NN] [books/NNS] [two/CD] [items/NNS] [./.] 

Parse Tree:(ROOT 

           (NP 

             (NP (DT A) (NN customer) (NNS books)) 

             (NP (CD two) (NNS items)) 

            (. .))) 

Typed Dependencies:det(books-3, A-1) 

nn(books-3, customer-2) 

num(items-5, two-4) 

dep(books-3, items-5) 

Figure 4.5:   Wrong POS tagging by the Stanford POS tagger 

The researcher explained some other examples of lexical ambiguity in NL constraints in [Bajwa, 

2012a]. One more example of lexical ambiguity is “A customer can bank on manager”. In this 

example, word ‘bank’ is wrongly POS tagged ‘NN’ but the correct POS tag is ‘VB’. A similar 

example is “The manager made him type on typewriter.” In this example word ‘type’ is wrongly 

tagged as ‘NN’, while the correct tag is ‘VB’. Cases of lexical ambiguity are quite common in 
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the natural language sentences. Moreover, the incorrect POS tagging of such cases result in 

incorrect parse trees generated by the Stanford parser. 

The researcher has used the Stanford parser for parsing the NL constraint and his semantic 

analyser totally relies on the performance of the Stanford parser, if POS tags go wrong, the parse 

tree is wrong and eventually the semantic analysis goes wrong resulting in wrong SBVR and 

OCL. To address cases of incorrect POS tagging due to ambiguity, contextual information is 

needed. As UML class model is target of NL constraints, the information of UML class models 

is used to decide the correct tags. As a solution, the POS tags identified by the Stanford POS 

tagger are also confirmed by mapping all POS tags with the UML class model. For NL to UML 

mapping, the researcher has used the set of mapping rules in Table 4.1.Here, a user is expected to 

use the vocabulary that is part of the target UML class model. 

Table 4.1:  Mapping of English elements to UML class model elements 

UML class model elements English language elements 

Class names     → Common Nouns 

Object names     → Proper Nouns 

Attribute names    → Generative Nouns, Adjectives 

Method names     → Action Verbs 

Associations     → Action Verbs 
   

The mappings shown in Table 4.1 work as follows: if a token matches an operation or a 

relationship name, then that token should be classified as a verb. A token matches to a classor an 

attribute, then the token is classified as a common noun or proper noun. 

Figure 4.6 shows a UML class model, in which it is shown that ‘books’ is an association in two 

classes ‘Customer’ and ‘Item’. By using the set of mappings given in Table 4.1, it can be 

identified that the token ‘books’ cannot be a noun in the context of UML class model. However, 

the token ‘books’ should be classified as a verb and the correct POS tag of  token ‘books’ should 

be ‘VBZ’ as the token ‘books’ comes after a model verb (MD) ‘can’ in the NL constraint. We 

have written a small rule-based module that corrects output of the Stanford POS tagger and the 

Stanford parser. 



 

 

C
h

ap
te

r 
4

 
Tr

an
sl

at
in

g 
N

at
u

ra
l L

an
gu

ag
e 

to
 S

B
V

R
 

56 

 

 

Figure 4.6: A UML Class model involving scenario of Customer booking an item 

Once the POS tags of a NL constraint are corrected by using the mappings (given in Table 4.1) 

and the information given in the UML class model (shown in Figure 4.6), the parse tree and set 

of dependencies for the example (given in Figure 4.5) can be corrected. The corrected parse tree 

and the dependencies for the above discussed example are as shown in the Figure 4.7.There is a 

possible case that the UML model has multiple representations of ‘books’. In that case, the user 

is given a message that he should manually select the correct meanings. 

English:    A customer books two items. 

Tagging:  [A/DT] [customer /NN] [books/VBZ] [two/CD] [items/NNS] [./.] 

Parse:(ROOT 

         (S 

           (NP (DT A) (NN customer)) 

           (VP (VBZ books) 

             (NP (CD two) (NNS items))) 

           (. .))) 

Typed Dependencies:    det(customer-2, A-1) 

nsubj(books-3, customer-2) 

num(items-5, two-4) 

dobj(books-3, items-5) 

Figure 4.7: Corrected Parts-of-Speech tag, parse tree and dependencies 

4.2.2   Generating Syntax Tree and Dependencies 

A parse tree represents the syntactic structure of a NL constraint. Phrase structure rules are a 

common way to describe a given language’s syntax. Such rules help in breaking down a NL 

sentence into chunks (phrasal categories) such as Noun Phrase (NP), Verb phrase (VP), 

Preposition Phrase (PP), and Quantificational Phrase (QP). A parse tree is also the basis of 

dependencies [Marneffe, 2006].Among various syntactic structures, the dependencies are the 
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target of our syntax analysis. The syntactic dependencies help us in identifyingthe possible 

relationships among various syntactic structures of a NL constraint. 

English:         An increase is awarded to any worker with injury. 

Parse Tree:(ROOT 

  (S 

    (NP (DT An) (NN increase)) 

    (VP (VBZ is) 

      (VP (VBN awarded) 

        (PP (TO to) 

          (NP 

            (NP (DT any) (NN worker)) 

            (PP (IN with) 

              (NP (NN injury))))))) 

    (. .))) 

Typed Dependencies:det(increase-2, An-1) 

nsubjpass(awarded-4, increase-2) 

auxpass(awarded-4, is-3) 

root(ROOT-0, awarded-4) 

det(worker-7, any-6) 

prep_to(awarded-4, worker-7) 

prep_with(worker-7, injury-9) 

Figure 4.8:  Syntactic Tree generated using the Stanford Parser 

The researcher has used the Stanford parser for generating a parse tree and the dependencies. The 

Stanford parser is 84.1% [Cer, 2010] accurate in generation and its dependencies. The Stanford 

parser provides two outputs: a parse tree and a set of dependencies. The Stanford parser 

generates two sets of dependencies: (1) dependencies and (2) typed dependencies. Here, typed 

dependencies are a compact version of simple dependencies. In the researcher’s approach, typed 

dependencies are involved in representing the grammatical relations in a NL constraint.  An 

example of a parse tree, for the above discussed example of NL constraint, generated by the 

Stanford parser is shown in Figure 4.8. 

English:   The pay is given to all employees with bonus. 

Tagging:[The/DT]  [pay/NN]  [is/VBZ]  [given/VBN]  [to/TO]  [all/DT]  [employees/NNS]  [with/IN]  

[bonus/NN]  [./.] 
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Parse Tree:(ROOT 

            (S 

              (NP (DT The) (NN pay)) 

              (VP (VBZ is) 

                (VP (VBN given) 

                  (PP (TO to) 

                    (NP 

                      (NP (DT all) (NNS employees)) 

                      (PP (IN with) 

                        (NP (NN bonus))))))) 

              (. .))) 

 Typed Dependency:det(pay-2, The-1) 

nsubjpass(given-4, pay-2) 

auxpass(given-4, is-3) 

det(employees-7, all-6) 

prep_to(given-4, employees-7) 

prep_with(employees-7, bonus-9) 

Figure 4.9: Typed dependency (collapsed) generated using the Stanford Parser 

The typed dependencies generated by the Stanford parser are quite helpful in establishing 

relationships in various parts of a sentence. The Stanford parser is fairly efficient in processing 

complex sentences. However, the researcher has identified a few cases where the Stanford parser 

generates a correct parse tree, but wrong dependencies on account of attachment ambiguity. 

Attachment ambiguity is a type of syntactic ambiguity where a prepositional phrase or a relative 

clause in sentence can be lawfully attached to one of two parts of that sentence [Kiyavitskaya, 

2008]. An example of such cases is shown in Figure 4.9. In this example, it is shown that the 

typed dependencies generated by the Stanford parser are wrong such as 

prep_with(employees-7, bonus-9). However, the correct typed dependency for this 

example should be prep_with(pay-2, bonus-9)to represent the actual meaning of the 

example, i.e., the pay with bonus is given to all the employees. As the researcher explained 

earlier, the output of the Stanford parser is input of our semantic analyser, the wrong typed 

decencies lead to wrong semantic role labelling and wrong logical representation. For correct NL 

to SBVR an OCL transformation, we need to resolve such cases. 

It is a common knowledge that involvement of context is the major reason of attachment 

ambiguity. Contextual information, such as a UML class model, can be used to resolve such 

issues. Figure 4.10 shows a UML class model that can help us to identify the correct 

dependencies of the example discussed in Figure 4.9. 
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Figure 4.10: A UML class model involving employee, pay, and bonus 

The relationships in UML class model, such as associations (directed and un-directed), 

aggregations and generalizations, can help us to deal with such cases of attachment ambiguities 

in English. To correctly identify the attachment of the noun ‘pay’ with other nouns ‘bonus’ 

instead of noun ‘employee’, the researcher maps the (three) candidate English elements in the 

NL constraint (such as nouns) to the classes in the UML class model.  

The used mapping for attachment ambiguity resolution is slightly different from the mapping 

used in Section 4.2.1 to resolve lexical ambiguity. To resolve such cases, the researcher has 

written a simple algorithm as below: 

1. Each noun is mapped to a class name in the input UML class model.  

2. If all nouns are mapped to respective classes in the UML class model, the associations 

between those classes are analysed.  

3. If there is a direct association between two candidate classes, they are attached to each other. 

Otherwise they are not attached to each other. 

Algorithm 4.1: An algorithm to handle attachment ambiguity 

The case of attachment ambiguity given in Figure 4.9  involves three nouns ‘pay’, ‘employees’, 

and ‘bonus’. All these three nouns are mapped to classes (such as ‘Pay’, ‘Employee’, and 

‘Bonus’) in the UML class model shown in Figure 4.10. After this mapping, the associations in 

all three classes are analysed. The Stanford parser wrongly identifies that noun ‘bonus’ is 

attached to the noun ‘employees’. However, the UML class model shows that there is no direct 
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relationship in classes ‘Bonus’ and ‘Employee’. While, there is a direct relationship in class 

‘Pay’ and class ‘Bonus’.  By using this information, we can correct the wrong dependencies by 

associating ‘Bonus’ to ‘Pay’ instead of ‘Employee’. The corrected parse tree and dependencies 

are shown in Figure 4.11.  

English:       The pay is given to all employees with bonus. 

Tagging: [The/DT]  [pay/NN]  [is/VBZ]  [given/VBN]  [to/TO]  [all/DT]  [employees/NNS]   

[with/IN]  [bonus/NN]  [./.] 

Parse Tree:(ROOT 
(S 

             (NP 

               (NP (DT The) (NN pay)) 

               (PP (IN with) 

                 (NP (NN bonus)))) 

             (VP (VBZ is) 

               (VP (VBN given) 

                 (PP (TO to) 

                   (NP 

                     (NP (DT all) (NNS employees)))))) 

             (. .))) 

Typed Dependency:    det(pay-2, The-1) 

nsubjpass(given-4, pay-2) 

auxpass(given-4, is-3) 

det(employees-7, all-6) 

prep_to(given-4, employees-7) 

prep_with(pay-2, bonus-9) 

Figure 4.11: Corrected typed dependencies (collapsed) 

As we cannot change code of the Stanford parser, we correct the output of the Stanford parser to 

reflect the correct relationships in dependencies. The researcher has written a rule-based module 

that can perform the steps given in Algorithm 4.1that is used to correct the dependencies, if they 

are wrong. After correction the corrected dependencies are shown to the user for his approval. If 

the user is satisfied, rest of the processing is performed. Otherwise, the user is allowed to correct 

the dependencies. Here the output is shown to the user by a message and the user can manually 

classify if it is not correctly classified. 

The researcher has generalized the used approach so that all the variations of the discussed type 

of attachment ambiguity can be handled. For this purpose, the analysis of the relationships in 
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classes of a UML class model such as associations (directed and un-directed), aggregations and 

generalizations can play a key role.  

4.2.3   Voice Classification 

In voice classification phase, a sentence is classified into the active or passive voice category. It 

is important to classify voice in NL constraints, as passive-voice sentences are treated differently 

as compared to active-voice sentences in the NL2OCL approach, due to different grammatical 

structure of both types of sentences. Typically, the passive voice implies focus on the 

grammatical patient (thematic object or beneficiary of the action) in place of the agent (actor of 

the action) of the sentences. Various grammatical features manifest passive-voice representation 

such as the use of past participle tense with main verbs can be used for the identification of a 

passive-voice sentence (see Figure 4.12). 

[The] [order][was] [Past_participle_Tenseplaced][   .] 

Figure 4.12: Identifying passive voice sentences 

The use of ‘by’ preposition in the object part is also another sign of a passive-voice sentence. 

However, the use of by is optional in passive-voice sentences (see Figure 4.13). Using this 

information, a set of rules was defined to classify the voice of a sentence. The examples in 

Figure 4.13 show the use of past participle tense and ‘by’ preposition in passive voice sentences. 

[The] [order][was] [Past_participle_Tenseplaced] [by_prepositionby] [the] [customer][   .] 

Figure 4.13: Identifying passive voice sentences with ‘by’ preposition 

After voice classification, various parts of a sentence are classified into a subject, verb or object. 

In case of a NP relation, there can be more than one subject or object relating to a verb. 

Similarly, in a VP relation, more than one verb can relate to a subject. This process is also called 

shallow syntactic parsing in which a sentence is analysed to identify various constituents such as 

subject, verb, object, etc. A set of heuristic rules were used to read the parse tree and classify the 

text into subject, object or nothing. Each sentence is divided into three sections: first section 

called subject starts from the first word of the sentences and ends before the start of the helping 
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verb or main verb. Second section is verb that is combination of auxiliary verb and/or main verb. 

The third section object starts from the first word after verb section and ends at the last word of 

the sentence. To handle passive-voice sentences, we swap subject with the object. 

4.2.4   Processing Conjunction and Disjunction 

In the NL2OCL approach, the processing of logical operators is an important phase in analysis of 

NL constraints. Logical operators such as conjunction and disjunction can be analysed using 

syntactic information. It is important to identify the role of conjunctions and disjunctions in a NL 

constraint, as the conjunctions and disjunctions are reflected in logical representation and 

ultimately become part of the SBVR and OCL representation.  

The following sub-sections explain the way conjunctions and disjunction are handled. 

A.   Resolving Conjunction 

The researcher has used the parse tree information to identify conjunction (p ˄ q) in English 

sentences. Typically, conjunction is represented using a few words such as “and”, “but”, “yet”, 

“so” “moreover”, “however”, “although”, “even though”, etc. Conjunction can be used to join 

two nouns or two verbs. The ‘and’ conjunction used with two nouns is easy to interpret e.g. “A 

student and teacher can borrow a book”. However, the use of “and” conjunction with two verbs 

can be ambiguous e.g. “John opened the door and went out”. In this example, ‘and’ is exposing a 

sequence. We aim to handle such implicatures in the pragmatic analysis that is the part of the 

future work.  

B.   Resolving Disjunction 

In natural language text, disjunction can be inclusive or exclusive. Typically, inclusive 

disjunction (p ∨ q) means either p is true or q is true or both. In English, inclusive disjunction 

represented using “or” word. Similar to “and”, the use of “or” is also ambiguous in English as 

sometimes it disjoins nouns/adjectives and sometimes disjoins two propositions. The researcher 

has identified this difference and defined simple rules to classify the different use of “or” in all 

three possible situations. For example “A student can borrow a book or a CD.” Other possible 

representation of inclusive disjunctions in English can be the use of “unless”, “and/or”. 
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Exclusive disjunction  (p ⊕q) (XOR) is also used in English, e.g., "Do you want milk or sugar in 

your coffee?" doesn't give a constraint "milk" XOR "sugar". In another context, the example, "do 

you want milk and sugar in your coffee?" suggests "milk" AND "sugar". Both are examples of 

inclusive OR. The researcher is aware of such subtle aspects. However, we have not handled this 

type of relations until mentioned explicitly. In natural languages, there are very few cases with 

XOR relations. Hence, the exclusive disjunction does not seriously affect our approach. 

However, the researcher aims to address the possible cases of exclusive disjunction in future. 

4.2.5   Generating an Intermediate Logical Representation 

In this phase, an intermediate logical representation is generated for the further semantic analysis 

performed in the next phase. At this stage, a tabular representation is generated containing the 

various syntactic chunks and their associated representations such as syntax type (e.g. subject, 

verb or object), various quantifications, logical operator if used in the NL constraint, and 

preposition associated to various nouns.  

An example of an intermediate logical representation for a natural language constraint is shown 

in Table 4.2. 

Table 4.2: An intermediary logical representation of a NL constraint 

#  Chunk  Syntax Quantification Logical Operator Preposition EOS 

1 customer  Subject 1 
   

2 can  H.Verb 
 

Not 
  

3 place  M.Verb 
    

4 order  Object more than 1 
  

True 

A major feature of this intermediary representation is that the active-voice and passive-voice are 

mapped to same representation such as subject of a passive-voice sentence is represented as 

object and object of a passive-voice sentence is represented as subject. 

4.3   Semantic Analysis 

A typical semantic analysis yields a logical form of a sentence. The logical form is used to 

capture semantic meaning and depict this meaning independent of a particular context. The goal 
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of semantic analysis is to understand the exact meaning of the input text and identify various 

chunks of a sentence, such as Object Types, Verb Concepts, etc. For a complete semantic 

analysis of domain specific text, we have to analyse the text in respect of a particular domain 

such as a UML class model. Domain specific text analysis demands knowledge from the 

application domain to be mapped with the input English. In this research, UML class model is an 

application domain of the input NL specification of constraints.  

The researcher’s semantic analyser performs the following three steps to identify semantic 

relations in various parts of a NL constraint: 

1. Shallow Semantic Parsing 

2. Deep Semantic Parsing 

3. Semantic Interpretation 

All these steps of semantic analysis are explained below. 

4.3.1  Shallow Semantic Parsing 

In shallow semantic parsing the semantic or thematic roles are typically assigned to easy 

syntactic structure in a NL sentence. This process is also called Semantic Role Labeling. 

Typically used semantic roles are agent, patient, beneficiary, etc., whereas the researcher 

introduces SBVR vocabulary base semantic roles such as Object_Type, Fact_Type, etc. The 

researcher proposes the use of SBVR vocabulary based semantic roles in NL2OCL approach as 

the researcher aims at generating SBVR rule representation from NL constraint. If the researcher 

had used the typical semantic roles in this approach, he had to map the typical roles to SBVR 

vocabulary that was an overhead and could complicate the process semantic roles labelling.  

The used SBVR based semantic roles in shallow semantic parsing are shown in Table 4.3: 

Table 4.3:  SBVR based semantic role labels used in SRL 

English language elements SBVR based role labels 

Common nouns     → Object_Type/ Characteristic 

Proper nouns     → Individual_Concept 

Main verb   → Verb_Phrase/ Fact_Type 
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Generative Phrases, Adjectives   → Characteristic 

 

A sequence of steps was performed for labelling SBVR based semantic roles to respective 

semantic predicates and their arguments given in a NL constraint. Following are the three main 

steps involved in the phase of semantic role labelling. 

A.   Identifying Predicates 

In semantic role labelling, the primary step is the identification of the terms in a sentence that can 

be semantic predicates or predicate arguments. The semantic predicates and their respective 

predicate arguments are the basis of a logical representation as output of the semantic analysis in 

the NL2OCL approach. Once the semantic predicates and their respective predicate arguments 

are identified, each semantic predicate and predicate argument is annotated with a suitable 

semantic role. In the identification of predicates, the information extracted in the syntactic 

analysis phase plays a key role. Besides the syntactic information the researcher further needs to 

extract semantic features which can be helpful in the identification of a semantic predicate, a 

predicate argument and relations between predicate and arguments.  

Following are the description of the approach used to extract predicates and their arguments. 

i. Extracting Semantic Predicates: In this phase, we extract the possible semantic predicates. 

This module relies mainly on external resources, thus the elements in the target UML Class 

models (class names, attribute names, method names) are likely to be semantic predicates and 

predicate arguments. The chunks not matching the elements of the target UML Class model are 

not considered as semantic predicates or predicate arguments.  For extracting semantic predicates 

we check for a simple verb, a phrasal verb or a verbal collocation and tag the verb phrase as a 

Verb Concept. A Verb Concept is a SBVR vocabulary and we map SBVRVerb Concepts to 

semantic predicates. An example of the extraction of a Verb Concept is shown in Figure 4.14. 

[A] [customer] [cannot][ Verb_Conceptplace] [more][than][one][order][   .] 

Figure 4.14: Identifying Verb phrases 
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In English sentences, Verb Concepts are typically represented in a combination of auxiliary verb 

and main verb (possibly following participle). However sometimes, there are only auxiliary 

verbs and no main verbs.  

ii.   Extracting Predicate Arguments: A few statistical methods (based on FrameNet and 

PropBank) are available for the extraction of predicate argument [Giuglea, 2006]. However, 

statistical methods are typically less accurate in the extraction of predicate-argument structures 

on account of the data sparsity problem. However, the researcher proposes the use of decision 

tree as theyachieve high accuracy [Surdeanu, 2003] as compared to statistical methods. The 

researcher has used a simple decision tree that identifies predicate arguments on the basis of the 

use of pre-modifiers and post-modifiers in a sentence. Additionally the type of phrases also helps 

in identification of predicate arguments. 

The use of pre-modifiers and post-modifiers is very common in English sentences. In a typical 

English sentence, the noun concepts are represented with a pre-modifier and/or a post-modifier. 

An example of such cases is shown in Figure 4.15: 

[Pre-ModifierThe] [customer] [Post_Modifieron the Chair]…….[   .] 

Figure 4.15: English sentence with a prepositional phrase as a post modifier 

In Figure 4.15 it is shown that an article (a determiner) can be a possible pre-modifier. A post-

modifier such as prepositional phrases (see Figure 4.15), relative (finite and non-finite) clauses 

(see Figure 4.16 and Figure 4.17), and adjective phrases (see Figure 4.17) can also be used in a 

English sentence. Another example of noun concepts can have a pre-modifier such as adjective 

phrase and a post modifier such as relative finite clause as shown in the Figure 4.16. 

 [The] [Pre-Modifiergold] [customer] [Post_Modifierwho applied for the account]…….[   .] 

Figure 4.16: English sentence with an adjective phrase and a relative finite clause 

[Pre-ModifierThe] [customer] [Post_Modifierapplying for an account]…….[   .] 

Figure 4.17: English sentence with a relative infinite clause as a post modifier 

http://dl.acm.org/author_page.cfm?id=81100357992&coll=DL&dl=ACM&trk=0&cfid=75887008&cftoken=41299454
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By excluding the pre-modifiers and post modifiers, we can extract the noun concepts. For further 

classification of Object Types and Individual Concepts the POS type of the noun concept is 

checked. If the POS type is common noun, it is categorized as an Object Type and if the POS 

type is proper noun, it is categorized as an Individual Concept. 

a. Processing Phrases: Once the noun concepts are extracted, the next phase is to process 

phrases to generate a semantic representation. We have identified three types of phrases in 

typical constraints as following: 

Processing Phrases: Typical phrases are a combination of two or more words. In SBVR, both 

Object Types and Individual Concepts are represented in the form of phrases. The following 

two examples show how phrases are processed to a semantic representation: 

English: credit customer 

FOL: ∃x  isa (x, customer) ʌ Object_Type(x, credit)  

 

English: gold credit customer 

FOL: ∃x  isa (x, customer) ʌ Object_Type (x, credit) ʌ Object_Type(x, gold) 

 

Generative Noun Phrases: The generative noun phrases are also very common in constraints. 

Especially the SBVR Characteristics are described by using generative noun phrases e.g. 

customer’s age, customer’s salary, etc. The following examples show the way the researcher 

has processed generative noun phrases to a semantic representation. 

English: customer’s account 

FOL: ∃x  isa (x, account) ʌ Object_type(x, customer)  

 

English: account of customer 

FOL: ∃x  isa (x, account) ʌ Object_Type(x, customer)  

 

Adjective Phrases: Adjective phrases are not common in constraints but the researcher has 

processed the adjective phrases as they can be a possible case. Following are the examples 

showing the processing of adjective phrases: 

English: The customer is happy. 

FOL: ∃x  isa (x, customer) ʌ Characteristic(x, happy) 
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English: This is a gold customer. 

FOL: ∃x  isa (x, customer) ʌ Characteristic(x, happy) 

B. Sense Recognition 

The researcher has identified various cases where a predicate or a predicate argument can be 

associated with more than one semantic role. In Table 4.3, the researcher has shown that a 

common noun can be mapped to an Object Type or as well as a Characteristic. For example, in 

Figure 4.18, it is shown that there are two common nouns (or predicate arguments): customer 

and name. However, one noun ‘customer’ is an Object Type and other noun ‘name’ is a 

Characteristic. By using the mappings given in Table 4.3, it is not possible to correctly identify 

the semantic roles for all common nouns. 

 

[A] [NNcustomer][enters] [his][ NNname] [ .] 

Figure 4.18: English sentence mapped with a UML class model 

Similarly, it is also shown in Table 4.3 that a verb (predicate) can be mapped to a Verb Concept 

or a Fact Type, as in English a verb can be in the form of a simple verb, a phrasal verb or a 

verbal collocation. This case is very important to resolve, because if a verb is labelled as a Verb 

Concept then it will be mapped to navigation expression in OCL or else it is ignored. For 

example, in Figure 4.19, the token ‘place’ can be a Verb Concept or part of a Fact Type. 
 

[A] [Class_namecustomer][cannot] [Association_nameplace ][more than one][Class_nameorder] [ .] 

Figure 4.19: English sentence mapped with a UML class model 

These multiple mappings are due to semantic ambiguity. Typically, semantic ambiguities are due 

to the absence of context.  Hence, to resolve the above discussed semantic ambiguities, the exact 

sense of the predicates and predicate arguments needs to be recognized so that accurate semantic 

roles may be assigned. The researcher proposes the use of information given in the target UML 

class model to identify the actual sense of a predicate or a predicate argument. 
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Table 4.4:  SBVR based semantic role labels used in SRL 

English Elements UML Elements SBVR based Semantic Roles 

Common Noun 
Class Object Type 

Attribute Characteristic 

Proper Noun Class Individual Concept 

Generative Noun, Adjective Attribute Characteristic 

Verb 
Method Verb Concept 

Association Fact Type 

 

In Table 4.4, it is shows that each common noun is mapped to the target UML class model and if 

a common noun maps to a class, then it is represented as an Object Type or if a common noun 

maps to an attribute of a class, it is represented as a Characteristic. To solve the ambiguity of the 

NL constraint given in Figure 4.18, we use the UML class model given in Figure 4.20 where it is 

given that ‘customer’ is a class hence, ‘customer’ is tagged as Object_Type and name is an 

attribute if class Customer hence name is tagged as a Characteristic.  

 

 

Figure 4.20: A UML class model involving a customer and an order class. 

Table 4.4 also represents that if a verb maps to a method in the target UML class model, the verb 

should be tagged as Verb_phrase, else if a verb maps to an association in the target UML class 

model, the verb should be tagged as a Fact_Type. Similarly, there are two additional benefits of 

mapping a verb with an association as below: 

i. A unary association or a binary association in a UML class model helps to 

identify that a fact type is a unary fact type or a binary fact type. 

ii. Direction of the association helps in identifying the active and passive elements in 

a fact type.  
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For example, after mapping the NL constraint in Figure 4.19, we find that predicate arguments 

‘Customer’ and ‘Order’ are mapped to classes customer and order respectively and there is 

a directed association between these two classes. The directed association shows that the 

‘Customer’ is an agent or an actor and ‘Order’ is a patient or a thematic object. In the light of this 

information it is simple to identify that the predicate arguments should be like 

place(customer, order). Another benefit of such mapping is that if English sentence in 

passive voice the same predicate will be generated e.g. place(customer, order). 

C.  Role Classification 

After sense recognition, the exact semantic label or semantic role is assigned to each substring in 

a sentence. The substrings are labelled with a semantic role. The used approach for semantic role 

labelling works as the syntactic tree representation of a sentence is mapped into a set of syntactic 

constituents. Finally, each syntactic constituent is classified into one of semantic roles. An 

example of classification of semantic roles is shown in Figure 4.21. 

[A] [Object_Typecustomer][cannot] [Fact_Typeplace ][more than one][Object_Typeorder] [ .] 

Figure 4.21: English sentence mapped with a UML class model 

The classification is performed on the basis of the sentence structural features or the linguistic 

context of the target constituent. Role classification is performed as the syntactic information 

(part of speech and syntactic dependencies) with predicate and predicate role set are given input 

and the output of this phase is semantic predicates and predicate arguments (see Figure 4.21) 

labelled with its corresponding roles. 

4.3.2   Deep Semantic Analysis 

In computational semantics, the key is understanding the complete meaning of a natural language 

sentence instead of focusing on text portions only. For the sake of computational semantics, we 

perform deep semantic analysis of the input text. Typically, deep semantic analysis involves 

generation of a fine-grained semantic representation from the NL text. Traditionally, various 

aspects are involved in deep semantics analysis. However, we are interested in a most commons 
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aspect such as identifying quantifications, quantification scope resolution, and processing 

semantic logical operators. Following is the description of all these three steps. 

A.   Identifying Quantifications 

Quantification is a very common part of a natural language sentence. In NL sentences, 

quantifications are typically expressed with noun phrases (NPs). Similarly, in First-Order Logic 

(FOL), the variables are quantified at the start of the logical expressions. Generally, the natural 

language quantifiers are much more vague and varied. This vagueness makes translation of NL 

to FOL complex. However, the researcher has done two things to handle quantifiers variable 

scoping. 

With respect to the researcher’s target representation (SBVR rules), he  has identified the 

following four types of quantifications that he needs to handle, as SBVR 1.0 also support these 

four types of quantifications. The first two quantifications such as universal quantification and 

existential quantification are commonly used. However, these two types do not cover all possible 

types in detail. The researcher covers all possible types of quantifications in natural languages. 

Besides, the researcher has used two other types such as uniqueness and solution quantification. 

Hence, it will be simple to map these NL quantifications to SBVR quantifications. 

i. Universal Quantification (∀X): The universal quantifier is represented using all sign “∀” and 

means all the objects X in the universe. The universal quantification is mapped to Universal 

Quantification in SBVR. The NL quantification structures ‘each’, ‘all’, and ‘every’ are mapped 

to universal quantificational structures. Similarly, the determiners ‘a’ and ‘an’ used with the 

subject part of the sentence can be treated as universal quantification due to the fact that the 

researcher is processing constraints and generally constraints are mentioned for all the possible X 

in a universe (see Figure 4.22). However, the researcher has addressed the role of determiners as 

quantifiers in next section of quantifier scope resolution. 

ii. Existential Quantification (∃X): The existential quantifier is represented using exists sign “∃” 

and means at least one object X exists in the universe. The existential quantification is mapped to 

Existential Quantification in SBVR. The keywords like many, little, bit, a bit, few, a few, 

several, lot, many, much, more, some, etc. are mapped to existential quantification. 
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iii. Uniqueness Quantification (∃=1 X): The uniqueness quantifier is represented using “∃=1” or 

“∃!” means exactly one object X in the universe. The uniqueness quantification is mapped to 

Exactly-One Quantification in SBVR. The determiners ‘a’ and ‘an’ used with object part of the 

sentence are treated as uniqueness quantification. However, we have addressed the role of 

determiners as quantifiers in next section of quantifier scope resolution. 

iv. Solution Quantification (§X): The solution quantifier (Hehner, 2004) is represented using 

section “§” sign and means n object in the universe. The solution quantification is mapped to 

Exactly-n Quantification in SBVR. If the keywords like more than or greater than are used with n 

then solution quantifier is mapped to At-most Quantification (see figure 8). Similarly, if the 

keywords like less than or smaller than are used with n then solution quantifier is mapped to At-

least Quantification. 

[Universal_QuantificationA] [Object_Typecustomer][cannot] [Fact_Typeplace ] 

[at_least_n_Quantificationmore than one][Object_Typeorder] [ .] 

Figure 4.22: Semantic roles assigned to input English sentence. 

Two other types of quantifications are also available such as Plaucal quantification (∃manyX) and 

mutal Quantification (∃fewX). However, we are not using these both quantifications as both of 

them are not supported by SBVR and UML and ultimately can’t be translated to OCL.  

B.   Quantifier Scope Resolution 

In quantification resolution, the second issue is quantifier scope resolution. For quantification 

variable scoping, the researcher has treated syntactic structures as logical entities. However, in a 

few cases quantifier scope resolution is difficult due to ambiguities. Context plays an important 

role in resolution of such ambiguities in scope of quantifiers [Villalta, 2007].  As UML class 

models are the scope of a constraint, the information given in a UML class model such as 

multiplicity of associations is used. For this purpose, we have used the following algorithm 

1. Each noun after a determiner is mapped to the class names in the input UML class model.  

2. If a noun is found in the UML class model, the associations in this set of classes are 

analysed and checked for the associated multiplicity with the noun.  
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3. If the multiplicity is found for the noun, map the cardinality to quantification as 

a. If multiplicity is *, then quantification should be universal (∀X) 

b. If multiplicity is 1, then quantification should be uniqueness (∃=1X) 

c. If multiplicity is 1..n, then it should be existential quantification (∃X) 

d. If multiplicity is 0..n or n, then it should be solution quantification (§X) 

Algorithm 4.2: An algorithm to handle attachment ambiguity 

To address the determiner ‘a’ used with noun ‘customer’ in above example (see Figure 4.21) can 

be solved by using Algorithm 4.2 and the information available in the UML class model shown 

in Figure 4.20. As the associated multiplicity with ‘customer’ class in the given UML class 

model is ‘1’ and algorithm’s step 4.b says, it should be expressed as uniqueness (∃=1X) 

quantification. In a case if UML model disagrees with NL, user is given a message that he should 

recheck the given NL input. 

[Solution_QuantificationA] [Object_Typecustomer][cannot] [Fact_Typeplace ] 

[at_least_n_Quantificationmore than one][Object_Typeorder] [ .] 

Figure 4.23: Semantic roles assigned to input English sentence. 

Figure 4.23 shows the NL constraint after handling the scope of quantifier represented by a 

determiner. 

C.   Processing Negation and Implication 

We described the processing of conjunctions and disjunctions in Section 4.2.3. However, there 

are some other important logical operators typically involved in natural language constraints are 

negation and implication. These two types of logical operators cannot be processed just using the 

syntactic information. For processing negation and implication, semantic information is also 

required. 

i. Negation: Negation is an important construct that is used to negate a structure by using 

keywords no and not e.g. “A customer cannot apply for more than one account.” Here, negation 

has been used to restrict customers to a single account. We have also worked out the double 

negation as a positive sentence. Hence, ¬ ( ¬p) = p. Another possible way of representing a 
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negation in a natural language is negative adjective, e.g., unhappy, bad, etc. Since, adjectives are 

not common part of constraints, currently, our approach does not support negative adjectives. 

However, if the user exclusively mentioned no/not in a NL sentence, our approach is able deal 

with such cases.  

ii. Implication: In English, a few expression are used to represent implications such as “if p, then 

q”, “if p, q”, “q if p”, “p only if q”,  “p implies q”, “p entails q”, “p hence q”, “q provided p”, “q 

follows from p”. For example “If a student is adult, he can get a pass.” The researcher has also 

identified that some expressions such as “q since p”, “since p, q”, “because p, q”, “q because p”, 

“p therefore q” are not true cases of implications. A set of rules were devised to handle possible 

types of implications in NL constraints. 

4.3.3   Semantic Interpretation 

In lexical semantics, the frame is also considered a useful tool in text semantics and the 

semantics of grammar. The interpreter of a text invokes a frame when assigning an interpretation 

to a piece of text by placing its contents in a pattern known independently of the text. A text 

evokes a frame when a linguistic form or pattern is conventionally associated with that particular 

frame. A simplified template that is used to generate a logical representation for a NL constraint 

is shown in Figure 4.24: 

Template:(Predicate_Name 

     (Semantic_Role = (Quantification ~(Predicate_Arg ? Var))) ...) 

Figure 4.24: Logical Representation of a NL constraint 

The semantic representation shown in Figure 4.25 is enriched from of first-order logic. Besides 

Predicate name and variables, we have added some extra information such as predicate type 

(such as Object Type or Individual Concept), extra quantification (such as Solution 

quantification, Uniqueness quantification). By adding such extra information in typical first-

order logic, we can prepare the logical representation more useful. Figure 4.24 shows a template 

used to create the logical representation. The template has 5 elements that constitute a complete 

logical representation such as Predicate_Name (that is Verb Concept), Semantic_Role (that is 

Object Type, Individual Concept or Characteristic),Quantification(Universal, Existential, 
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Solution or uniqueness quantification), Predicate_Arg ( that is predicate argument), and var 

(that is a variable name). 

The researcher has written a rule based module that uses the generalized template shown in 

Figure 4.24 that generates a logical representation based on SBVR vocabulary. The output of this 

module is a SBVR based logical representation (is shown in Figure 4.25). 

Semantic Interpretation:(place 

          (Object_Type = (∃=1X ~ (customer ? X))) 

          (Object_Type = (§Y ~ (order ? Y)))) 

Figure 4.25: Logical Representation of a NL constraint 

4.4   Generating SBVR Rule Representation 

Once the logical representation is extracted from a NL constraint, the next phase is to generate a 

SBVR rule representation from the SBVR vocabulary and the logical representation extracted in 

previous phases. Here, two types of SBVR rules can be generated: structural rule or behavioural 

rule on the basis of type of information represented in the NL constraint. A typical SBVR rule is 

generated in three phases as below. 

4.4.1   Constructing SBVR Rules 

To generate a SBVR rule from NL constraint, it is primarily analysed that it is a structural rule or 

a behavioural rule. Following are two types of SBVR rules those can be classified on the basis of 

the various features of a NL constraint: 

A.   Generating Structural Rules 

The use of auxiliary verbs such as ‘is’, ‘has’, etc. is identified to classify a NL constraint as a 

SBVR structural requirement. A sentence representing a state of being, e.g., “Robby is a robot” 

or a state of possession, e.g., “robothastwo arms” can be categorized as structural requirement. 

B.   Generating Behavioural Rules 

The use of auxiliary verbs such as ‘should’, ‘must’ are identified to classify requirement as a 

behavioural rule. In case of “should have” or “must have”, our parser looks for “should” only, 
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additional “have” will have no impact. Moreover, the use of action verb can be categorized as a 

behavioural rule, e.g., “robot picks up parts”. The example discussed in Figure 4.23 is mapped to 

a SBVR Fact Type (see Figure 4.26) that becomes base of a SBVR rule generated in next phase. 

customer cannot place order. 

Figure 4.26: SBVR Fact Type generated from NL constraint. 

4.4.2   Applying Semantic Formulation 

Once a raw representation of a SBVR rules is generated, a set of semantic applications are 

applied to comply with SBVR standard. A set of semantic formulations are applied to each fact 

type to construct a SBVR rule: 

A.   Apply Modal Formulation  

Modal formulation (OMG, 2008) specifies seriousness of a constraint. Modal verbs e.g. ‘can’ 

and ‘may’ are mapped to possibility formulation while the modal verbs ‘should’, ‘must’ or Verb 

Concept “have to” are mapped to obligation formulation. Description of various types of modal 

formulations is given in Chapter 2, Section 2.1.2-C. Figure 4.27 shows that a modal formulation 

is applied on the SBVR rule generated in Figure 4.26 by adding a phrase ‘It is possibility’ and 

this phrase is concatenated to SBVR rule using a word ‘that’. 

It is possibility that customer cannot place order. 

Figure 4.27: Applying modal formulation to core SBVR rule. 

B.   Apply Logical Formulation 

A SBVR rule can have multiple fact types using logical operators [OMG, 2008] e.g. AND, OR, 

NOT, implies, etc. In logical formulation, the tokens ‘not’ or ‘no’ are mapped to negation(⌐ a). 

Similarly, the tokens ‘that’ and ‘and’ are mapped to conjunction (a ˄ b) and token ‘or’ is mapped 

to disjunction (a ˅ b) and the tokens ‘imply’, ‘if, ‘infer’ are mapped to implication (a ⟹ b). 
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C.   Apply Quantification 

Quantification [OMG, 2008] is used to specify the scope of a concept. Quantifications are 

applied by mapping tokes like “more than” or “greater than” to at least n quantification; token 

“less than” is mapped to at most n quantification and token “equal to” or a positive statement is 

mapped to exactly n quantification. Figure 4.28 shows that quantification is applied on the core 

SBVR rule (generated in Figure 4.26) by adding two quantifications: quantification is added to 

the ‘customer’ Object Type that is ‘exactly one’ and second quantification is added to the ‘order’ 

Object Type.  

It is possibility that exactly one customer cannot place at most one order. 

Figure 4.28: Applying quantification to complement SBVR rule. 

4.4.3   Applying Structured English Notation 

The last step in generation of a SBVR rule is application of the Structured English notation.  To 

apply Structured English notation, the Object Types are printed in bold frame and underlined e.g. 

customer; the Verb Concepts are italicized e.g. cannot place; the SBVR keywords are printed in 

bold frame e.g. at most; the Individual Concepts are underlined e.g. Patron. Similarly, the 

Characteristics are also italicized and underlined with a different colour: e.g. name. An example 

of a SBVR rule with Structured English notation is shown in Figure 4.29. 

 

It is possibility that exactly one customer cannot place at most one order. 

Figure 4.29: Semantic roles assigned to input English sentence. 

4.5   Summary 

In this chapter, the researcher has explained various steps involved in generation of SBVR rules 

representation from NL constraints. To achieve this goal, the NL constraints were processed 

using typical phases of NLP phases. However, the researcher came across various cases with NL 

constructs involving syntax ambiguities(such as lexical ambiguity, and attachment, ambiguity) 

and semantic ambiguities. The researcher also developed a novel approach to handle the 

identified types of ambiguities in NL constraints.  The used approach to address syntactic and 
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semantic ambiguities involves the information from the target UML class model that is the 

context of the information given in the NL constraints. An additional benefit of mapping 

information (given in NL constraints) with UML class model is that the finally generated SBVR 

and OCL will also be semantically consistent with UML class model. Here, semantic consistency 

means that the generated SBVR rules or OCL constraints will not have any information that is 

not the part of the target UML class model. 

There are two contributions of this chapter: (1) Resolution of syntactic and semantic ambiguities 

(2) SBVR Intermediate representation. The approach used to resolve syntactic ambiguities was 

also presented in [Bajwa, 2011a]. Similarly, The approach used to resolve semantic ambiguities 

was also presented in [Bajwa, 2011c]. By resolving syntactic and semantic ambiguities, more 

accurate OCL constraints can be generated. Other major contribution is SBVR based 

intermediate representation that can not only be simply transformed to OCL but also other 

important formal languages such as Alloy, B, BPMN, BPML, etc. 
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CHAPTER 5 

MODEL TRANSFORMATION FROM SBVR TO OCL 
 

In the previous chapter, the researcher explained the generation of a logical representation and a 

SBVR rule representation from NL constraints. In this chapter, the transformation from SBVR to 

OCL is explained. The SBVR based logical representation and SBVR rule generated in the 

previous chapters are mapped to OCL representations using model transformation technology. 

For a model transformation of SBVR to OCL, the researcher needs to do two things to generate 

OCL constraints, as explained below: 

i. Choose an appropriate OCL template (such as invariant, pre/post conditions, collections, etc.) 

from given set of templates. 

ii. Map source elements of the logical form to the equivalent elements in the used OCL 

templates.  

In the remaining part of this chapter, the researcher explains the transformation from SBVR to 

OCL using a set of transformation rules and templates. 

5.1   OCL Templates 

The researcher has designed generic templates to generate traditional OCL expressions: OCL 

invariant, OCL pre-condition, and OCL post-condition. One of the given three templates is 

chosen automatically on the basis of the type of SBVR rule. For a SBVR structured rule, the 

template for OCL invariant is chosen, while templates for OCL pre/post conditions are chosen if 

the SBVR rule is a behavioural rule. Once a template is chosen for one of the constraints, the 
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missing elements in the template are extracted from the logical representation of English 

constraint. Figure 5.1 shows the template used to generate an OCL invariant: 

package [UML-Package] 

context [UML-Class] 

inv: [Body] 

Figure 5.1: Template for OCL invariant 

To generate an OCL invariant, we need three things: a UML-Package that is a package of the 

invariant, a UML-Class that is context of the invariant and the Body of the invariant.  

Figure 5.2 shows the template we used for OCL pre-condition. To generate an OCL pre-

condition, first thing needed is UML-Package that is package of the pre-condition. 

Additionally, a context is required that is composed of a UML-Class (a UML class), a Class-

Op (an operation or method of the UML class used) with Param (set of parameters of the related 

class operation) and the Return-Type (return type of the used class operation). Finally, to 

complete the pre-condition Body is also required. 

package [UML-Package] 

context [UML-Class::Class-Op(Param):Return-Type] 

pre: [Body] 

Figure 5.2: Template for OCL pre-condition 

The template the researcher used to generate an OCL prost-condition is shown in Figure 5.3. 

Similar to OCL pre-condition, to generate an OCL post-condition, the first thing needed is a 

UML-Package that is package of the post-condition. Additionally, a context is also required 

that is composed of a UML-Class (a UML class), a Class-Op (an operation or method of the 

UML class used) with Param (set of parameters of the related class operation) and the Return-

Type (return type of the used class operation). To complete the post-condition Body is also 

required. Finally, another element result is also involved. However, the result is optional 

in post-conditions. 
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package [UML-Package] 

context [UML-Class::Class-Op(Param):Return-Type] 

post: [Body] 

result: [Body]        -- optional 

Figure 5.3: Template for OCL post-condition 

In the all shown templates, elements written in brackets ‘[ ]’ are required. The researcher gets 

these elements from the logical representation of English sentence. The following mappings are 

used to extract these elements: 

i. UML-Package is the package name of the target UML class model.  

ii. UML-Class is the name of the class in the target UML Class model and UML-Class should 

also be an Object Type in the subject part of the English Constraint. 

iii. Class-Op is one of the operations of the target class (such as context) in the UML Class 

model and Class-Op should also be the Verb Concept in English constraint. 

iv. Param is the list of input parameters of the Class-Op and they are retrieved from the UML 

class model. These parameters should be of type Characteristics in English constraint.  

v. Return-Type is the return data type of the Class-Op and they are retrieved from the UML 

class model. The return type is the data-type of the used Characteristic in English constraint 

and this data type is extracted from the UML class model.  

vi. Body can be a single expression or combination of more than one expression. The details of 

Body are given in the next section. Here, for each type of expression in the body, the 

researcher designed a small template.  

In contrast to Wahler’s approach [Wahler, 2008], where he used large templates to generate a 

complete OCL constraint, the researcher has small templates those generate small expressions 

and the researcher has integrated all those expression to form body of an OCL constraint. To 

integrate the generated expressions, the researcher has used the relationships given in the SBVR 

based logical form generated in Chapter 4, Section 4.3.3. Such small expressions are based on 

the relations that the researcher has explained in the form of tables, explained in the next section. 
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5.2   Mapping SBVR based Logical Form to OCL 

The Body of the invariants and the pre/post-conditions is generated from the logical form 

generated in Section 4.3.3. A set of transformation rules [Bajwa, 2011b] were used to transform a 

SBVR based logical representation to OCL constraints by mapping element(s) of the SBVR 

metamodel to equivalent element(s) in the OCL metamodel. These rules are explained in Section 

5.3.  

For SBVR to OCL transformation, a model-to-model transformation is used for automated 

transformation of SBVR rules to OCL invariants. A typical model transformation technology is 

used by creating abstract syntax of source model and then converting it into the target model 

representation using the transformation rules. Here, SBVR metamodel, OCL metamodel and a set 

of transformation rules are used to perform the transformation of SBVR to OCL.The OCL 

metamodel is explained in Section 2.1.2 and the SBVR metamodel is explained in Section 2.2.2. 

For SBVR to OCL transformation, the SiTra library was used as shown in Figure 5.4: 

 

 

 

 

 

 

 

 

 

Figure 5.4: SBVR to OCL Transformation Framework 

Moreover a set of mappings were used to map logical elements to OCL elements. Following is 

brief overview of the used mappings from logical representation to OCL: 

SBVR Metamodel 

SBVR Modal  

(Source Model) 

Mapping 

 

Rules 

SiTra Engine 

OCL Metamodel 

OCL Modal 

 (Target Model) 

 

<<instance of>> 

 

<<instance of>> 
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5.2.1   Logical Expression 

In OCL, two expressions are concatenated using a logical operator. Here, the SBVR 

representation is mapped to the equivalent OCL representation Table 5.1 shows the possible cases 

of logical expressions: 

Table 5.1:  Mapping logical expressions 

SBVR Representation OCL Representation 

p or q p or q 

p and q, p but q, p yet q, p so q, p moreover q, p however q, p although q, p 

even though q 
p and q 

p then q, if p q, q if p, q only if p,  p implies q, p entails q, p hence q, q 

provided p, q follows from p 
p implies q 

 

5.2.2   Relational Expressions 

In OCL, two expressions can be concatenated using a relational operator. Table 5.2 shows the 

possible cases of relational expressions: 

Table 5.2:  Mapping relational expressions 

SBVR Representation OCL Representation 

p is q, p is exactly q p = q 

p is at least q p > q 

p is at most q p < q 

p is at least or exactly q p >= q 

p is at most or exactly q  p <= q 

 

5.2.3   Postfix Expressions 

In OCL, there can be a postfix expression such as self. A possible mapping of postfix expressions 

is shown in Table 5.3. An example of such cases can be “name of a customer” is mapped to 

self.name if customer is a context.  
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Table 5.3:  Mapping postfix expressions 

SBVR Representation OCL Representation 

Characteristic of the Object Type self.[attribute] 
 

5.2.4   Navigation 

Navigation expressions are the most common expressions in OCL. A possible mapping of 

navigation expressions is shown in Table 5.4. For example, “name of a customer” is mapped to 

customer.name and if customer is a context then it is mapped as self.name. Some other 

expressions of OCL operations are also shown in Table 5.4. We have implemented a selected set of 

OCL operations those are commonly used. Implementation of the remaining OCL operations is future 

work. 

Table 5.4:  Mapping navigation expressions 

SBVR Representation OCL Representation 

p’s q, q of P p.q 

 p is q() p.q() 

size of p, number of p p->size() 

 number of p in q p->count(q) 

p is empty, no p, zero p p->isEmpty() 

sort p, arrange p p->sortBy() 

q exists in p, there is q in p p->exists(q) 

 

5.2.5   Conditional Expression 

In OCL, there can be a conditional expression. The conditional expressions can be of two types: 

if-then expressions, and if-then-else expressions. Table 5.5 shows a possible mapping of 

conditional expressions. Here, Relational-Exp are conditions of the if structure and these 

conditions are generated using the mappings given in Table 5.2. 
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Table 5.5:  Mapping conditional expressions 

SBVR Representation OCL Representation 

if  p then q if [Relational-Exp] 
thenq 
endif 

if  p then q else R if [Relational-Exp] 
thenq 

elseR 
endif 

5.3   SBVR to OCL Transformation Rules 

The researcher presents an automated approach for the transformation of the SBVR based logical 

representation to OCL constraints. This approach not only softens the process of creating the OCL 

syntax but also verifies the formal semantics of the OCL expressions with respect to the target 

UML class model. Here, verification of formal semantics mean that the generated OCL 

constraints semantically complies with the target UML class model and the OCL expression will 

not have any extra contextual (UML class model) information. As OCL should comply with its 

context, it is necessary to verify an OCL expression against the target UML model. The SiTra 

library [Akehurst, et al., 2007] based model transformation framework is shown in Figure 5.4 to 

transform SBVR rules to OCL constraints using a set of transformation rules.  

 

The mapping of SBVR rules to OCL code is carried out by creating different fragments of OCL 

expressions and then concatenating these fragments to compile a complete OCL expression. 

Typically, OCL expressions can be of two types: OCL invariant and OCL query operation. In this 

thesis, the researcher has presented only the creation of OCL invariants. The creation of OCL 

query operation is part of the future work. 

It is possibility that exactly one customer can place exactly one order. 

It is possibility that exactly one p can function_1()exactly one q. 

Figure 5.5: Applying quantification to complement SBVR rule 
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The SBVR rule and logical representation, created in the previous chapter, is further analysed to 

extract the business information as shown in Figure 5.5. Where, p is Object Type “customer”. 

Similarly, q is also an Object Type “order”. However p and q can also be Individual Concepts 

in some other examples. Additionally function_1()is verb phrases “place”. The analysed 

SBVR rule is further transformed to the logical representation after omitting the SBVR keywords 

as following 

p  q if p.function_1()→ q.size() = 1 

This generalized representation is finally transformed to the OCL constraint by using the defined 

transformation rules. A typical transformation rule comprises of the variables, predicates, queries 

[Akehurst, et al., 2007], etc. A typical transformation rule consists of two parts: a left-hand side 

(LHS) and a right-hand side (RHS). The LHS is used to access the source model element 

whereas the RHS expands it to an element in the target model.  

In this Chapter, the transformation rules for each part of the OCL constraints are based on the 

abstract syntax of SBVR and OCL that are given in the following section. Here, all the 

transformation rules are represented in the form of functions. 

5.3.1   Generating OCL Context 

The context of an OCL expression defines the scope of the given invariant or pre/post condition. 

To specify the context of an OCL invariant, the major Object_Type or 

Individual_Concept in the SBVR rule is extracted to specify the context. To specify the 

context of an OCL pre/post condition, the action performed by the actor in a SBVR rule is 

considered as the context. If the context is missing in the NL constraint, the user is given a 

message to include at-least one class in NL constraint that can work as a context. Rule 5.1.1 

shows the OCL context for invariant expressions and Rule 5.1.2 shows the context of for the 

pre/post condition of an operation: 

context-inv(Object_Type){  

                     context-name= Object_Type 

                     return context-name 

                } 

Rule 5.1.1: Returns the context for an invariant 
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context-cond(Object_Type, Verb_Phrase){ 

                 context-name = Object_Type 

                 operation-name = Verb_Phrase 

                 return context-name + “::” + operation-name 

                } 

Rule 5.1.2: Returns context for a pre/post condition 

Precondition and post-condition can co-exist in a single OCL expression. However, the both 

precondition and post-condition can share the same context. 

5.3.2   Generating OCL Constraints 

Transformation rules for mapping of the SBVR specification to OCL constraints are defined in 

this section. As, we explained above that OCL constraints can be of three types: invariants 

precondition and postcondition, we have defined three templates separately for each type OCL 

constraints. Rule 5.2.1 shows the template used for OCL invariant. Similarly, rules for OCL 

precondition and postcondition are described in Rule 5.2.2 and Rule 5.2.3, respectively. Each of 

the rules for these constraints consists of two elements: context of the constraint and body of the 

constraint.   

invariant( context-inv, inv-body ){ 

          return  “context” + context-inv + “\n inv:”  + inv-body 

          }      

Rule 5.2.1: Returns an invariant 

pre-cond(context-cond, pre-cond-body){ 

          return “context” + context-cond + “\n pre:” + pre-cond-body 

          }      

Rule 5.2.2: Returns a precondition  

pre-cond(context-cond, post-cond-body){ 

          return “context” + context-cond +  

                 “\n post:” + post-cond-body 

          }      

Rule 5.2.3: Returns a postcondition 
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5.3.3   Generating OCL Invariants 

The OCL invariant specifies a condition on a class’s attribute or association. Typically, an 

invariant is a predicate that should be TRUE in all possible worlds in UML class model’s 

domain. The OCL context is specified in the invariants by using the self keyword in place of 

the local variables.  

inv-body(ocl-exp){ 

                 return “inv:” + ocl-exp 

                 } 

Rule 5.3.1: Returns body of an invariant 

An invariant can be expressed in a single attribute or set of attributes from a class. There can be 

three type of expressions in a typical OCL invariant; a general expression, a collection 

expression or if expression (see Rule 5.3.2). A collection expression is based on a single or set 

of collection operations those are used to perform basic operations on the set of attributes (see 

Rule 5.3.3). Other possible expressions are if expression (see Rule 5.3.4). 

ocl-exp(){ 

           Return “self.” + ( Expression |collection-exp | if-exp )               

         } 

Rule 5.3.2: Returns body of an invariant with self-keyword 

collection-exp(Expression){ 

          Return Expression →  collection-op |  

   Expression →  collection-op → collection-exp | “”  

        } 

Rule 5.3.3: Returns collection expression 

if-exp(Condition, Expression-1, Expression-2){ 

    Return “If” + Condition + “then” + Expression-1 + 

             “else” + Expression-2  + “endif”  

         } 

Rule 5.3.4: Returns if expression 
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5.3.4   Generating OCL Pre/Post Conditions 

Similar to the OCL invariant, the OCL preconditions and the OCL post-conditions are used 

specify conditions on operations of a class. Typically, a precondition is a predicate that should be 

TRUE before an operation starts its execution, while a post-condition is a predicate that should 

be TRUE after an operation completes its execution.  

pre-cond-body (ocl-exp){ 

    return “pre:” + ocl-exp} 

Rule 5.4.1: Returns body of a pre-condition 

post-cond-body( ocl-exp, value ){ 

    Return “post:” + ocl-exp | “post:” + result = value} 

Rule 5.4.2: Returns body of a pre-condition 

value( thematic-object ){ 

    Return Integer-value | Double-value |  

              String-value | Boolean-value 

      } 

Rule 5.4.3: Returns body of a pre-condition 

A pre/post condition can be expressed in a single attribute or set of attributes from a class. Rule 

5.3.2 and Rule 5.3.3 are reused here to accompany Rule 5.4.1 and Rule 5.4.2. In Rule 5.4.3 the 

attribute value is verified that the provided value is of accurate type e.g. integer, double, or 

String, etc. Here, SBVR Structural rules can be mapped to invariants and SBVR behavioural 

rules can be mapped to pre/post-conditions 

5.3.5   Generating OCL Expressions 

The OCL expressions express basic operations that can be performed on available attributes of a 

class. An OCL expression in the OCL invariant can be used to represent arithmetic, and logical 

operations. OCL arithmetic expressions are based on arithmetic operators e.g. ‘+’, ‘–’, ‘/’, etc, 

while, logical expressions use relational operators e.g. ‘<’, ‘>’, ‘=’, ‘<>’, etc and logical 

operators e.g. ‘AND’, ‘implies’, etc. 
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Expression( Expression ){ 

    Return prefix-oper + Expression | Expression  +   

              infix-oper + Expression  | Expression 

      }                 

Rule 5.5.1: Returns an expression 

infix-oper(Quantification ){ 

    Return + | - | * | / | = | > | < | >= | <= |   

<> | OR | AND |implies 

      }                

Rule 5.5.2: Returns an in-fix expression 

prefix-oper( Quantification ){ 

    Return  -|NOT       

      }                

Rule 5.5.3: Returns a pre-fix expression 

5.3.6   Generating OCL Operations 

The OCL collections represent a set of attributes of a class. A number of operations can be 

performed on the OCL collections e.g. sum(), size(), count(), isEmpty(), etc. 

 

collection-op( Expression ){ 

      forAll(Expression) | exists(Expression) |    

      select(Expression) | allInstances(Expression) |  

      include(Expression) | ….  

     } 

Rule 5.6.1: Returns a collection expression 

SBVR specification of a business rules shown in the example of section 2 is mapped to an OCL 

constraints to show the working of the defined transformation rules. First of all to derive the 

context of the OCL constraint, transformation Rule 5.1.1 was used as we want to create OCL 

invariant. For pre/post conditions transformation Rule 5.1.2 will be used.   

Context customer 

Figure 5.6: Generating a context 
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As the input SBVR rule is based on a ‘if-condition’, transformation Rule 5.3.4 will be used to 

derive an equivalent structure in OCL syntax. For if condition the Rule 5.5.1 and Rule 5.5.2 are 

employed. Following is the obtained structure: 

if c.age >= 18 then  

c.bankAccount -> size()>=1  

endif 

Figure 5.7: Generating a if-expression 

The ‘then’ part of the above shown if-expression involves a set of persons and such expressions 

are handled by Rule 5.6.1. Here, size()OCL operation is used to specify the quantification of 

bank accounts for a customer.  Finally, to complete the OCL invariant expression, again the Rule 

5.6.1 is used to derive following expression. 

inv: self.allSubTypes()-> forAll(c|…) 

Figure 5.8: Generating an invariant 

To construct a complete expression of an OCL constraint, all the generated constituents are 

concatenated into a single expression as following: 

context customer 

inv: self.allSubTypes()-> forAll(c| if c.age >= 18 then   

     c.bankAccount -> size()>=1 endif) 

Figure 5.9: Generating an invariant 

All the model transformation rules were implemented using SiTra library. For example in Rule 

5.5.1, the SBVR elements of a Boolean expression (represented as BoolExpin Figure 5.5.6) are 

mapped to equivalent OCL binary expression. For the sake of implementation, we pass three 

elements (operand1, operator, and operand2) to BoolExpImpl(). 

BoolExp bexpl = new 

BoolExpImpl(source.getOperand1(),source.getOperator(),source.getOper

and2()); 

Figure 5.10: Implementation of Rule 5.5.1 



 

 

C
h

ap
te

r 
5

 
M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L 

92 

 

The implementation of Rule 5.5.1 shown in Figure 5.10 involves two classes BoolExpImpl that 

implements interface BoolExpand BinaryExpressionImpl that implements interface 

BinaryExpression. 

class BoolExpImpl implements BoolExp 

class BinaryExpressionImpl implements BinaryExpression 

Figure 5.11: Involved classes in implementation of Rule 5.5.1 

Figure 5.11 shows that the implementation of Rule 5.5.1 is added into a vector bexp like other 

transformation rules in OclBinExp()method. The OclBinExp()method returns the OCL 

representation of the input SBVR elements. 

private String OclBinExp(String operand1, String operator, String operand2){ 

 Vector<BinaryExpression> bexp = new Vector<BinaryExpression>(); 

 bexp.add(binaryExpression(operand1, operator, operand2)); 

 List<? extends BoolExp> binexp =  

trans.transformAll(BinExpression2BoolExp.class,bexp); 

 return  binexp.toString().substring(1, binexp.toString().length()-1); 

} 

Figure 5.12: Interface of Rule 5.5.1 

All other transformation rules are implemented in the same manner as it is shown in above 

discussed example. 

5.4   Limitations of Transformation 

The researcher has mapped only those items of SBVR’s meanings metamodel that had 

equivalent elements in OCL metamodel. For example, in SBVR’s meanings metamodel. The 

Representation and its sub-elements Designation and Text are not mapped to OCL as in 

OCL metamodel, there is no equivalent of them. The reason is that Representation and its 

sub-elements deal with the placement of various SBVR vocabulary items in a SBVR business 

rules and it also provides structural representation to a SBVR rule. Similarly, there are five 

logical formulations given in SBVR 1.0 document and the researcher has mapped only those 

formulations that are involved in OCL invariants syntax such as Logical Formulation, and 

Quantification. The other three formulations such as atomic formulation, instantiation 
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formulation, and modal formulation are not mapped as these formulations are related to the 

structure of a SBVR business rule, but do not carry any information that can be used in process 

of generating OCL invariants. 

5.5   Summary 

In this chapter, the framework used for transformation of SBVR to OCL is explained. The 

researcher explained the used templates for generating OCL invariants, OCL pre-conditions, and 

OCL post-conditions. The SiTra based implementation of the SBVR to OCL transformation rules 

were explained. The use of transformation rules is also explained with the help of couple of 

examples. The presented SBVR to OCL is fully automated. 
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CHAPTER 6 

TOOL SUPPORT 
 

The NL2OCLviaSBVR tool is the implementation of NL2OCL approach used to transform NL 

constraints to OCL via SBVR. In this chapter, the researcher presents the architectural and 

implementation details of the NL2OCLviaSBVR tool. He also provides an overview of the used 

off-the-shelf components used in the implementation. 

6.1   Architecture of the NL2OCLviaSBVR 

The NL2OCLviaSBVR is a Java based implementation of the NL2OCL approach. The tool is 

available as an Eclipse plugin implemented using Eclipse Modelling Framework (EMF) 

[Steinberg, 2008]. In the previous chapters, the researcher has explained that the NL2OCL 

approach takes two inputs: a NL constraint and a UML class model as shown in Figure 6.1. A 

phase called NL processing was involved to analyse NL constraints syntactically and 

semantically and to extract SBVR vocabulary. Output of the NL processing phase is a SBVR 

vocabulary based logical representation that can be mapped to other formal languages. Such 

SBVR based logical representation is further processed to generate the SBVR rules. Finally, the 

SBVR rules are model transformed to OCL constraints using SiTra [Akehurst, 2006] 

transformation engine.  

Figure 6.2 illustrates the implementation of the NL2OCL approach. It is depicted in Figure 6.1 

that there are two inputs: a NL constraint and a UML class model. The researcher has developed 

parsers for both inputs: a NL parser that parses NL constraint and an Ecore parser that parses the 

Ecore representation of the UML class model. 
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Figure 6.1: Overview of NL2OCL Approach 

It is shown in Figure 6.2 that if there is ambiguity in NL text, an error message is given to the 

user to handle the situation manually, if not handled by the tool. Once the outputs of both parsers 

are received, both the output is mapped to each other to ensure that the information represented 

in the NL constraint is also the part of the UML class model. If the NL to UML mapping is 

successful, SBVR vocabulary is generated. In this process, if there is some inconsistency in NL 

constraint with respect to the UML class model, user is prompted about it. Once the SBVR 

vocabulary is available, a module SBVR Generator generates a SBVR rule by using the SBVR 

metamodel. Finally, a SBVR2OCL module generates OCL constraints by using OCL 

metamodel. Similarly, during OCL is generation, if NL constraints is incomplete or there is 

discrepancy, user is again given a message so that he may revise the NL statement to handle the 

case.  

 

 

 

  

 

Figure 6.2: Overview of NL2OCLviaSBVRImplementation 

For implementation of the SBVR to OCL transformation, a set of transformation rules are 

defined (explained in Section 5.3). The Simple Transformer (SiTra) transformation engine is 

used in SBVR to OCL transformation, as the researcher found it simple to use and implement 

with his approach. The SBVR and OCL metamodels are implemented in the Java programming 

language. Figure 6.3 shows a high level view of all the major components involved in the 
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NL2OCLviaSBVR tool. There are eight major components involved in NL to OCL 

transformation. Out of eight components, there are two metamodels: OCL metamodel and SBVR 

metamodel. Then, there are four components which process NL constraints: Java Tokenizer, Java 

Sentence splitter, the Stanford POS Tagger, and the Stanford parser. One component involved is 

the Ecore parser that is typically involved in parsing the EMF Ecore format of a UML class 

model. Various Eclipse packages such as org.eclipse.emf.ecore are used in Ecore 

parser. Finally, the eighth component is the SiTra transformation engine [Akehurst, et al, 2012] 

that maps the SBVR to OCL transformation rules. All these eight components work in 

combination to support NL to OCL transformation. 

 

Figure 6.3: Libraries used by NL2OCLviaSBVR 

The rest of the chapter describes the implementation of the NL2OCL approach in more detail. 

The researcher has divided the implementation details into two phases for the sake of simplicity: 

implementation of NL2SBVR phase and implementation of SBVR2OCL phase. Detailed 

explanation of each phase is given below: 

6.2   Implementing NL2SBVR 

The NL2SBVR phase implements processing of NL constraints and generation of SBVR rules. 

The theory of this approach is given in chapter 4 and also published in [Bajwa, et al., 2011a]. As 

it is depicted in Figure 6.4, the implementation of the NL2SBVR approach consists of five sub-

modules: pre-processor, syntax analyser, semantic analyser, semantic analyser, NL to UML 

mapping, and SBVR rule generator. An overview of these five modules is given below:  
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Figure 6.4: Overview of NL2OCLviaSBVRImplementation 

6.2.1   Pre-Processor 

The Pre-processor is the primary module of the NL2SBVR phase. The pre-processor performs 

three basic steps: sentence splitting, tokenization and lemmatization. For sentence splitting, the 

researcher has used Java sentence splitter library to identify boundaries of each sentences in the 

given NL specification of constraints. Afterwards, Java tokenizer is used to identify tokens in 

each sentence. For lemmatization of each token, he has written a small rule based module to 

extract lemma of each token. Here, a pre-processor preserves both copies of a token (such as 

before lemmatization and after lemmatization) for detailed processing in later stages. 

6.2.2   Syntax Analyser 

The syntax analyser involves four sub modules: POS tagger, parse tree and dependencies 

generator, voice classifier, and logical operator handler. For POS tagging, the Stanford POS 

tagger is used. Similarly, to generate a parse tree and syntactic dependencies for the input NL 

constraint, the Stanford parser is used. The jar files of the Stanford POS tagger and the Stanford 

parser are integrated with the researcher’s syntax analyser. However, a piece of code verifies that 

the output of the Stanford POS tagger and the Stanford parser are consistent with the input UML 

class model. This process helps in addressing lexical and attachment ambiguity in NL 

constraints. The detail of resolution of various types of syntactic ambiguities is given in Section 

4.2.4 and Section 4.2.5 of this thesis and also discussed in [Bajwa, et al., 2012a].  

To identify the voice of each sentence the researcher has written a rule-based classifier that 

classifies each sentence into active-voice or passive-voice category. Once the voice of sentence 

is identified, it is processed accordingly. The fourth and final sub-module of syntax analyser 
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processes the logical operators (conjunction and disjunction) in the NL constraint. This module 

identifies right-hand side and let-hand side of a logical operator. 

6.2.3   Semantic Analyser 

The semantic analyser contains three sub-modules: semantic role labeller, quantification handler 

and logical representation generator. Here, each sub-module is implemented in a separate Java 

file. The semantic role labeller is a rule based module implemented in Java and identifies the 

SBVR based semantic roles (explained in Chapter 4, Section 4.3) for various parts of a NL 

constraint. The second module processes used NL quantifiers in the NL constraint and also 

resolves the quantifier scope. Here, the NL information is sent to the UML module to verify NL 

quantifications. The third module is also a rule-based component that generates the SBVR based 

logical representation. The third module uses the template for a logical representation (explained 

in Chapter 4), fills it, and generates a logical representation.   

All these three modules are implemented as Java classes and are sequentially connected to each 

other as the output of one module is input of the next module. 

6.2.4   NL to UML Mapping 

This module is a standalone component but it works in parallel with the other two modules: 

syntax analyser and semantic analyser. This module is based on an Ecore parser that can read an 

EMF Ecore file. The Ecore parser is a Java implementation that extracts metadata of a UML 

class model. We use the metadata of a UML class model to validate the output of the syntactic 

and semantic analyser. However, the output of the semantic analyser is mapped to the UML class 

model to validate that all information given in the NL constraint should also be part of the UML 

class model. Any piece of information that does not map with the target UML class model is 

omitted and does not become part of the SBVR rule representation generated by the next module. 

Moreover, the user is also a given an error message (see Figure 6.7 and Figure 6.8) so that he 

may revise NL statement. Figure 6.5 shows the error message for Constraint 7.2.13 and Figure 

6.6 shows an error message for Constraint 7.2.15. 
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Figure 6.5: Error message shown to user in case of inconsistency 

 

Figure 6.6:Error message shown to user in case of extra vocabulary 

6.2.5   SBVR Rule Generator 

The fifth and final module generates a SBVR rules for each NL constraint. The SBVR rule 

generator module consists of two Java classes. First Java class takes the SBVR based logical 

representation and applies various semantic formulations such as quantification, modal 

formulation and logical formulations. A rule based algorithm identifies that what type of 

particular formulations should be applied on the basis of the nature of the sentence. Second Java 

class applies the structured English notation. The second Java class consists of a set of rule that 

applies particular formatting on the basis of the type of the SBVR vocabulary item. 

6.3   Extending SiTra for SBVR to OCL Transformation 

With the intention of implementation of SBVR to OCL transformation, a set of transformation 

rules were defined. SBVR to OCL transformation rules are implemented by extending the SiTra 

transformation engine. The Simple Transformer (SiTra) has been developed by Akehurst et al. 

[2008] and is a simple and lightweight implementation of an extensible transformation engine. 

TheSiTra framework involves two interfaces typically used in SiTra transformation framework: 

the Transformer interface and the Rule interface (explained in Chapter 2, Section 2.1.4). 
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The Transformer interface provides the skeleton of the methods to achieve the 

transformation. The Transformer interface consists of two key methods: the 

transform()method and the transformAll()method. On the other hand, the Rule interface 

is a set of mapping rules which the researcher has implemented according to the SBVR to OCL 

transformation rules. We have defined such transformation rules in Chapter 5, Section 5.3. 

However, the use of the SiTra library is very simple as modeller needs to implement the Rule 

interface by using defined set of transformation rules. The Rule interface consists of three 

methods as explained Section 2.1.3. The first method is check()that is involved in the rule 

interface. The second method build()method is executed to generate the target model element. 

The third method setProperties()is involved in setting the attributes and links of the newly 

created target element. 

6.4   Off-the-shelf components used in NL2OCLviaSBVR 

The NL2OCLviaSBVR is composed of fifteen small modules as shown in Table 6.1. Each 

module performs a distinct functionality. To perform a few functionalities the researcher has 

used off-the-shelf components which help to generate accurate OCL constraints from NL specification. 

Table 6.1: Overview of the components used in the NL2OCLviaSBVR 

 Component Functionality  Component Type 

1 Text Tokenization → Java Tokenizer 

2 Sentence Splitting → Java Sentence Splitter 

3 Part-Of-Speech (POS) Tagging → Stanford POS Tagger 

4 Resolving Lexical Ambiguity → Self-Developed 

5 Generating Parse Tree & Dependencies → Stanford Parser 

6 Resolving Attachment Ambiguity → Self-Developed 

7 Voice Classification → Self-Developed 

8 Processing Logical operators → Self-Developed 

9 Parsing UML Class model → Self-Developed 

10 SBVR based Semantic Role Labeling → Self-Developed 

11 Quantifier Scope Resolution → Self-Developed 
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12 Generating Logical Representation → Self-Developed 

13 Generating SBVR Rules → Self-Developed 

14 Applying Structured English notation → Self-Developed 

15 SBVR to OCL Transformation → Extended version of SiTra Library 

 

Table 6.1, all fifteen modules are represented including text tokenization, sentence splitting, Part-

Of-Speech (POS) tagging, generation of parse tree, the (typed) dependencies, and transformation 

of SBVR to OCL. In the first four modules, off-the-shelf components are involved. However, the 

last module that performs the SBVR to OCL transformation uses the extended version of SiTra 

framework. The Stanford POS Tagger and the Stanford Parser are explained in Section 2.1.3 and 

the SiTra framework is explained in Section 2.1.4 of this thesis. Hence, out of fifteen modules, 

five modules are based on the off-the-shelf components. We have developed the remaining ten 

modules by ourselves and integrated these ten modules with the five off-the-shore based 

modules. 

6.5   Architecture of the NL2OCLviaSBVR 

The researcher has discussed the list of all the components involved in the NL2OCLviaSBVR 

tool. A sequence of functionalities is performed here and to perform each function, one or more 

than one components are involved. Figure 6.8 shows architecture of the NL2OCLviaSBVR tool. 

In Figure 6.8, mainly, the researcher has used three types of boxes: dotted-line arrow boxes, 

dotted-line boxes, and solid-line boxes. Here, dotted-line arrow boxes represent inputs or outputs 

with the help of various colours while the dotted-line boxes represent off-the-shelf components 

involved in the transformation. Similarly, the solid-line boxes represent the components, the 

researcher has developed himself. 

It is shown in Figure 6.8, that there is GUI layer, which helps a user to communicate with the 

system and receive errors/problems/inconsistencies messages. A user can give two inputs to the 

systems (such as NL constraint and UML class model) and can get output from the system using 

GUI. Once a user gives both the inputs, NL constraint is processed by NL components with the 

help of Java libraries and the Stanford parser while the UML parser extracts metadata from the 

UML class model. Afterwards, the SBVR generator and the OCL generator modules process 

input with the help of SBVR and OCL metamodel respectively. In this processing output of 
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UML parser and EMF platform also plays key role.  Once the processing is complete, two 

outputs are returned back to the user. 

 

 

 

 

 

 

 

  

 

Figure 6.8: The NL2OCLviaSBVR architecture 

6.6User Interface Screenshots 

The tool provides a graphical user interface, so that a user may easily provide inputs to the tool 

and get the output from tool. Tool’s GUI is implemented using Java GUI libraries and is based 

on Windows look and feel by using call shown in Figure 6.9. 

UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFee

l");  

Figure6.9: Windows look & feel for the tool 
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Figure 6.10: Screen shot of NL2OCLviaSBVR 

Figure 6.10 shows a screenshot of the NL2OCLviaSBVR tool. The interface of the tool has three 

main sections. The section on the left shows the list of input files involved in the transformation. 

The section at the upper-right shows the metadata of the UML class model. The section at the 

lower-right shows multiple tabs. The third section consists of five tabs: NL specification tab, 

SBVR vocabulary tab, SBVR rule tab, OCL constraints tab, and Alloy code tab (see Figure 

6.10). The NL specification tab is further divided into sub-tabs; those represent input text, output 

of lexical analysis, syntax analysis and semantic analysis. An extension of this work is 

generation of Alloy code from NL constraints [Bajwa, 2011e] via SBVR/OCL. This work shows 

that even there are limitations of the tool; still the tool has been used successfully for generating 

SBVR, OCL and Alloy for bench-mark case studies.  

6.7   Tool in Use 

Following are the steps performed to generate OCL from NL constraints. Figure 6.11 shows an 

input dialogue that gets two inputs: (1) Text file containing NL constraint (2) Ecore file 

containing UML class model. Figure 6.12 shows the UML Model Tree window that shows 

details of the input UML class model. 
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Figure 6.11: Input dialogue of the NL2OCLviaSBVR 

 

Figure 6.12: Input dialogue of the NL2OCLviaSBVR 

Figure 6.13shows an example of the message given for Constraint 7.2.14, where context is 

missing and user is indicated to provide at least one class in the UML constraint that can be used 

as a context. 

 

Figure 6.13:Error message shown to user in case of missing context 

 



 

 

C
h

ap
te

r 
6

 
To

o
l S

u
p

p
o

rt
 

105 

 

 

Figure 6.14:Input Text dialogue showing NL constraint 

Once the user corrects the Constraint 7.2.14 by introducing class LoyaltyProgram in the NL 

constraint as a context, the tool generates the output. Figure 6.15 shows the output of the UML 

module that generates the SBVR vocabulary from the input UML class model.  

 

Figure 6.15:SBVR Vocabulary dialogue showing output SBVR vocabulary 

Figure 6.16 shows the output of the SBVR module that generates the SBVR rule. Figure 6.17 

shows the output of the OCL module that generates the OCL invariant. 

 

Figure 6.16:SBVR Rules Dialogue showing output SBVR rule 

 

Figure 6.17:OCL Constraint showing output OCL invariant 
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6.8   Summary 

In this chapter, the implementation framework of the NL2OCLviaSBVR tool has been presented. 

The implementation uses a set of Java libraries and a few readymade components such as the 

Stanford parser, SiTra library, etc. However, to perform the rest of the functionalities no 

appropriate components were available. Hence, the researcher had to implement the rest of the 

components at his own. He has implemented all the components in Java. A few components are 

interconnected sequentially, while some others work in parallel with other related components. A 

windows look & feel based GUI was also presented. By using the tool the researcher has done 

three case studies, presented in the next chapter. 
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CHAPTER 7 

EVALUATION 
 

As the researcher has asserted in the previous chapters that the NL2OCL approach can generate 

OCL constraints from natural language (NL) specifications of constraints, in this chapter he 

presents three case studies to validate the NL2OCL approach and their results. He also presents 

evaluation criteria used to evaluate the performance of the presented approach. A similar 

criterion is used by Wahler [2008] in his PhD thesis to validate the performance of pattern based 

approach in automatic generation of OCL constraints. Since the researcher aims at comparing the 

NL approach with the pattern based approach for automated generation of OCL constraints, he 

has developed similar evaluation criteria with a few changes. He has not used ‘analysis 

performance’ and ‘elicitation coverage’ because in this thesis the analysis of models and 

requirements elicitation is not discussed. However, the researcher introduced a few additional 

criteria such as ‘throughput measure’, ‘syntactic correctness’, and ‘transformation correctness’ 

because in this thesis, aim of the research is to improve usability and ease adaption of OCL. 

In the following section, the researcher presents parameters of quantitative and qualitative 

evaluation criteria used in this thesis to validate his claims. 

7.1   Evaluation Criteria 

The researcher has used the following criteria for evaluation of the NL2OCL approach. The 

evaluation criteria are divided into two categories: quantitative and qualitative.  
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7.1.1  Quantitative Criteria 

There are two aspects of quantitative criteria used in this thesis, as below. 

A.    Specification Coverage  

To know the effectiveness of the NL2OCL approach, the researcher needed to find out what 

proportion of NL and OCL specifications can be covered by the NL2OCL approach. There are 

two aspects of this criterion: coverage of OCL syntax and coverage of NL specification. Hence, 

it is measured what portion of OCL syntax can be covered by the NL2OCL approach. Similarly, 

the researcher also needed to find out that what percentage of a given set of NL constraints can 

be mapped to OCL constraints using the NL2OCL approach. This criterion will help the 

researcher to measure the completeness of the presented approach. 

B.   Throughput Measure 

As the key focus of the presented research is to improve the usability of OCL, the researcher 

needed to measure up to what extent the NL2OCL approach has made it easier and time saving 

to generate OCL. To find out the role of the NL2OCL approach in the improvement of OCL 

usability, a throughput measure is calculated to measure the time and effort involved in 

generation of a set of OCL constraints from NL specification of constraints. Here, he has also 

compared this amount of time and effort that involved in manual generation of OCL. 

7.1.2   Qualitative Criteria 

There are three aspects of qualitative criteria used in this thesis, as below. 

A.   Syntactic Correctness 

It is pertinent to find out if the OCL produced by the NL2OCL approach is syntactically correct. 

The measurement of syntactic correctness helps in establishing to what extent the NL2OCL 

approach can be involved in real time software modelling. The syntactic correctness is measured 

by compiling the OCL constraints with an OCL compiler, such as USE [Gogolla, et al., 2007]. 

B.   Transformation Correctness 

To find out if the OCL generated from the NL specification of constraint is equivalent to the 

original, this criterion will measured by generating component diagrams for both OCL constraint 

generated by NL2OCLviaSBVR tool and OCL constraints generated by human expert. If the 
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component diagrams generated by both OCL are same, then we can say that a NL specification is 

correctly transformed to an OCL specification. 

C.   Limitations 

There are a few limitations of the NL2OCL approach. We need to discuss such limitations that 

help us to find out that what type of NL statements can be transformed to OCL. We also need to 

find out the way we can deal with such limitations in future. 

7.1.3   Selection of Case Studies 

By considering the nature of the approach and tool, the researcher looked for the case studies that 

had both NL and expert-written OCL. There were some case studies that had only NL constraints 

and no OCL constraints, e.g., legal-text case studies. On the other hand, some case studies had 

only OCL but no NL constraints, e.g., Mondex scenario [Kuhlmann, 2008]. It is not possible to 

come up with large number of case studies. However, we have done the available case studies 

and these case studies are bench mark in their respective domains. For example, the Royal and 

Loyal model is a part of book [Warmer J. & Kleppe A., 2003] and a PhD thesis [Wahler, 2008]. 

Similarly, the QUDV model has been worked by NASA and ESA and is also an ISO standard. 

The WBM case study is from IBM and its OCL is also written by IBM. In this PhD thesis, my 

method outperforms these case studies. 

In the rest of the chapter, we present three Case studies with their results evaluated using the 

above criteria. 

7.2   Case Study: Royal & Loyal 

The first case study we have solved using the NL2OCLviaSBVR tool is based on the “Royal & 

Loyal” model. The Royal & Loyal model was originally presented by Warmer and Kleppe 

[2003] in their book. The Royal & Loyal case study was used in various publications such as by 

Tedjasukmana [2006] to evaluate translation of OCL to SQL and by Wahler [2008] to evaluate 

the automated generation of OCL using the pattern based approach. The following section 

presents the overview of the case study and provides the details of constraints given in the Royal 

& Loyal model and their automated generation of OCL using the NL2OCLviaSBVR tool. 
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7.2.1   The Royal & Loyal Model 

The Royal & Loyal model is a good example of typical MDE approaches. The model is a 

computer system of a company that handles loyalty programs for its various customers. In this 

model, the central class isLoyaltyProgram(see Figure 7.1). Other classes such as class 

Customer and classProgramPartnerare connected through the central 

classLoyaltyProgram.  

There is another class Membershipthat connects Customer with available Services in the 

loyalty program and also to each customer’s respective account represented using 

classLoyaltyAccount. Each customer has aCustomerCardfor each membership in a loyalty 

program. Each customer can perform various types of Transactions using his card. In the 

Royal & Loyal model, the ProgramPartnersuse various services and each membership is 

associated with exactly one ServiceLevel. 

 

Figure 7.1: The Royal & Loyal model 



 

 

C
h

ap
te

r 
7

 
Ev

al
u

at
io

n
 

111 

 

There are two enumerations, Date andColor, in the model as well. However, the current 

implementation of NL2OCL approach does not support the enumerations and implementation of 

enumerations is a future work. Therefore, we have not represented enumerations in the used model 

shown in Figure 7.1. An overview of the components of the Royal & Loyal model is shown in 

Table 7.1. 

Table 7.1: Overview of Royal & Loyal Model 

 Type of Components  Number of Components 

1 Classes → 9 

2 Attributes → 24 

3 Methods → 7 

4 Associations → 25 

7.2.2   Constraints for the Royal & Loyal Model 

In the following text, we present the constraints given in [Kleppe and Warmer, 2003].We also 

present the SBVR and the OCL for each constraint generated by our tool the NL2OCLviaSBVR. 

The OCL of each constraint given in [ibid] is also represented under title ‘OtherOCL’. 

Constraint   7.2.1 

English: Every customer who enters a loyalty program must be of legal age. 

SBVR: It is necessary that every customer who enters a loyalty Program must be of legal age. 

OCL: package royal_and_loyal 

 context Customer 
 invself.age >=  

      Endpackage 

 

In the Constraint 7.2.1, SBVR was simple to generate as there are two Object Types ‘customer’ 

and ‘loyalty Program’. However, there is another possible candidate of Object Type ‘legal’ but it 

is not available in the UML class model (see Figure 7.1).That is why it is not represented as 

Object Type. In generation of OCL, the term legal causes a similar problem as it is not part of 

the Royal and Loyal class model. The NL2OCLviaSBVR tool is not able to recognize the items 

those are not part of the target UML class model. Therefore, the NL statement is transformed to 
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“self.age >= ”, that is incomplete. Here, the user is given a message that legal is neither part 

of the input UML class model nor it is a valid integer value and the user should reconsider the 

NL constraint. 

OCL: package royal_and_loyal 

 context Customer 

 invself.age >= 18 

          Endpackage 

OtherOCL:  contextCustomer 

invlegalAge: age >= 18 

However, if the user changes NL constraint from “must be of legal age” to “must be of minimum 

age 18” or “minimum age must be 18”, the NL constraint is mapped to OCL invariant 

“self.age >= 18”. 

Constraint   7.2.2 

English:Male customers must be approached using the title Mr.. 

SBVR: It is necessary that male customers must be approached using the title 'Mr.'. 

OCL: package royal_and_loyal 
context Customer 

 invself.isMaleimpliesself.title= Mr. 

          Endpackage 

OtherOCL: contextCustomer 

 invmaleTitle: isMale implies title = ’Mr.’ 

In the Constraint 7.2.2, SBVR was easy to generate as there is one Object Type ‘customer’ and 

there are two Characteristics ‘male’ and ‘title’. However, the ‘male’ Characteristic was difficult to 

identify as Customer class has ‘isMale’ attribute instead of ‘male’. The NL2OCL approach 

handles such cases by checking the data-type of such Characteristics as if the data-type is 

Boolean, a prefix ‘is’ is concatenated with such Characteristics. For example, the attribute in 

class model is “isMale” while in NL constraint only “Male” has been mentioned. However, rest 

of the OCL mapping was straightforward. 

Constraint   7.2.3 

English: The number of valid cards for every customer must be equal to the number of programs in which the 

customer participates. 
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SBVR: It is obligatory that each the number of valid cards for each customer must be equal to the 

number of programs in which the customer participates. 

OCL: package royal_and_loyal 

 contextCustomer 

 invself.cards->select(valid=true)->size()=self.programs->size() 
          endpackage 

OtherOCL:    contextCustomer 

 invsizesAgree:programs->size()=cards->select(valid=true)->size() 

In Constraint 7.2.3, it can be seen that a longer English sentence involving four Object Types 

‘cards’, ‘customer’, ‘programs’, and ‘customer’ and one Characteristic ‘valid’ is transformed to 

SBVR and OCL automatically. In this constraint, the term ‘number of ’ is mapped to OCL 

function size(). 

Constraint   7.2.4 

English: The validFrom date of customer cards should be earlier than goodThru. 

SBVR: It is obligatory that the 'validfrom' date of customercard should be earlier than 'goodthru'. 

OCL:  package royal_and_loyal 

 context CustomerCard 

 invself.validFrom <self.goodThru 

          Endpackage 

Other OCL: contextCustomerCard 

 invcheckDates: validFrom.isBefore(goodThru) 

In the Constraint 7.2.4, the term ‘earlier’ is used and this term is mapped to parameterized 

function ‘isBefore()’ in OtherOCL. However, the current version of the NL2OCLviaSBVR 

does not support the parameterized function calls, the ‘earlier’ keyword is mapped to simple 

relational operator ‘<’ as an alternate. Here, the user is given a message about this mapping. The 

support of the parameterized function calls is a future piece of work. 

Constraint   7.2.5   

English: The birth date of the owner of a customer card must not be in the future. 

SBVR: It is necessary that the 'dateofbirth' of the owner of a customercard must not be in the 

future. 
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OCL:  package royal_and_loyal 

 contextCustomerCard 

          invself.owner.dateOfBirth <> future 

      endpackage 

OtherOCL: contextCustomerCard 

 invbirthDate: self.owner.dateOfBirth.isBefore(Date::now) 

 

The Constraint 7.2.5 involves two Object Types ‘customercard’,‘owner’ and a Characteristic 

‘dateofbirth’. However, identification of ‘dateofbirth’ Characteristic was complex as in NL 

specification the used term is ‘birth date’ while CustomerCard class has an attribute 

dateOfBirth. To process such attributes we have provided support to map various 

combinations of date of birth to dateOfBirth. In OCL generation, similar to Constraint 7.2.4, 

the term ‘not be in future’ is used and this term is mapped to parameterized function 

‘isBefore()’ in OtherOCL. Here, we have again mapped the term ‘not in future’ to the 

relational operator ‘<>’ due to the non-support of parameterized function calls in current 

implementation of the NL2OCL approach. 

Constraint   7.2.6 

English: The owner of a customer card must participate in at least one loyalty program. 

SBVR: It is necessary that the owner of a customercard must participate in at least one 

loyaltyprogram. 

OCL:  package royal_and_loyal 

 contextCustomerCard 

       invself.owner.programs -> Size()>= 1 

      endpackage 

OtherOCL: contextCustomerCard 

 invprogramParticipation: self.owner.programs ->size() > 0 

In the Constraint 7.2.6, the transformation from NL to SBVR and OCL is fully automated. In this 

constraint the term ‘at least’ is mapped to Boolean operator ‘>=’ to represent the meanings 

“greater than or equal to”. Similarly, if the term ‘at most’ is used in NL specification that is 

mapped to Boolean operator ‘<=’ to represent the meanings “less than or equal to”.  

Moreover, in the Constraint 7.2.6, to reach from CustomerCard to LoyaltyProgram, we need 

to navigate through two associations ‘owner’ and ‘programs’ to reach LoyaltyProgram (see 

Figure 7.2). Current implementation of the NL2OCL approach is able to handle such navigations 
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that involve up to four classes and three associations. Actually, we have used Array-list to 

implement this module and for higher number of associations, strong data structure is required.  

This is sufficient to handle the Royal and Loyal case study. However, we aim to enhance the 

capability of the tool so that it may handle any number of associations in future. 

 

Figure 7.2: A subset of the Royal & Loyal model. 

Constraint   7.2.7  

English: There must be at least one transaction for a customer card with at least 100 points. 

SBVR: It is necessary that there must be at least one transaction for a customercard with at 

least 100points. 

OCL: package royal_and_loyal 

 contextCustomerCard 

 invself.transaction->select(point >= 100)->Size()>= 1 

     endpackage 

OtherOCL: contextCustomerCard 

   invtransactionPoints : self.transactions-> 

        select(points>100) ->notEmpty() 

In the Constraint 7.2.7, the term ‘at least’ has been used twice. Moreover, in this constraint, two 

Object Types such as ‘transaction’ and ‘customercard’ and one Characteristic ‘points’ are 

involved. Since, “at least one” is particularly mentioned in NL constraint, in OCL we map it to 

“size() >= 1”. Rest of the transformation of Constraint 7.2.7 to SBVR and OCL is performed 

simply.  
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Constraint   7.2.8  

English: The service level of each membership must be a service level known to the loyalty program. 

SBVR: It is necessary that servicelevel of each membership must be a servicelevel known to 

loyaltyprogram. 

OCL:  package royal_and_loyal 

 contextMembership 

 invself.currentLevel ->includes(self.program.levels) 

               endpackage 

OtherOCL:  contextMembership 

     invknownServiceLevel: programs.levels->includes(currentLevel) 

The Constraint 7.2.8 involves three classes Membership, LoyaltyProgram and 

ServiceLevel. The transformation to SBVR is simple for this constraint but to generate OCL 

we need to navigate multiple associations such as to navigate from Membership to 

ServiceLevel via LoyaltyProgram.In this constraint, two associations are involved such as 

programs and levels(see Figure 7.3). 

 

Figure 7.3: A subset of the Royal & Loyal model. 

As the current version of the implementation can handle up to multiple associations, the NL 

specification was also transformed to OCL successfully. In this constraint, another OCL 

operation ‘includes()’ is involved. Our tool uses maps the input NL to the ‘includes()’ 

operations if there are is a cycle in the used associations. 

Constraint   7.2.9  

English: The participants of a membership must have the correct card belonging to this membership. 
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SBVR: It is obligatory that each participants of a membership must have the correct card 

belonging to this membership. 

OCL:  package royal_and_loyal 

 contextMembership 

 invself.participants.cards ->includes(self.card) 

               endpackage 

OtherOCL: contextMembership 

   invcorrectCard: participants.cards->includes(self.card) 

The Constraint 7.2.9 is similar to the Constraint 7.2.8 as this constraint also involves three 

classes Membership, Customer and CustomerCard and two associations; cards and 

participants as shown in Figure 7.4. The mapping to OCL was also forthright. 

 

Figure 7.4: A subset of the Royal & Loyal model 

Constraint   7.2.10  

English: The color of a membership’s card must match the service level of the membership. 

SBVR: It is obligatory thatthe color of a membership’scardmustmatch the service level of the 

membership. 

OCL:  package royal_and_loyal 

 contextMembership 

 invself.card.color = self.currentLevel.name 

               endpackage 
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OtherOCL: contextMembership 

 invlevelAndColor: 

      currentLevel.name = ’Silver’ implies card.color = Color:: silver 

      and 

      currentLevel.name = ’Gold’ implies card.color = Color::gold 

In the Constraint 7.2.10, the OtherOCL involves two enumeration values ‘Silver’ and ‘Gold’.  

Since, these terms are not specifically mentioned in the NL constraint and moreover, the current 

implementation of the NL2OCL approach does not support enumeration values, the NL2OCL 

approach generates a simplified version of OCL. However, the generated OCL is syntactically 

different from the OtherOCL. Support for enumerations is a future work and to support 

enumerations, an extra module is required to be added that is sufficiently intelligent in choosing 

among the available enumeration values. After providing the support for enumeration values, 

such cases will be easy to translate. 

Constraint 7.2.11 

English: Memberships must not have associated accounts. 

SBVR: It is obligatory that each memberships must not have associated accounts. 

OCL:  package royal_and_loyal 

 contextMembership 

 invself.account -> isEmpty() 

               endpackage 

OtherOCL: context Membership 

 invnoAccount: account->isEmpty() 

The Constraint 7.2.11 is simple to transform to SBVR and OCL as it involves only two Object 

Types: ‘memberships’ and ‘accounts’. However, to generate OCL for this constraint, support 

for ‘isEmpty()’ operation was required. We provide this support by mapping the NL term ‘no’ 

to OCL operation ‘isEmpty()’ as it is used with an Object Type account(or a class), 

otherwise the term ‘no’ is mapped to  the logical operator ‘Not’, if it is used with a Characteristic 

(or a class attribute). 

Constraint   7.2.12  

English:  Loyalty programs must offer at least one service to their customers. 
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SBVR: It is necessary that Loyaltyprogram must offer at least one service to customer. 

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 invself.partners.deliveredServices->size() >= 1 

      endpackage 

OtherOCL: contextMembership 

    invminServices: partners.deliveredServices->size() >= 1 

 

The OtherOCL for the Constraint7.2.12 involves two associations such as deliveredSrvices 

and partners, while Membership is used as a context. However the Constraint7.2.12 cannot 

be transformed to OCL due to a logical contradiction in the NL constraint. Here the logical 

contradiction is that the OtherOCL is semantically different from the NL constraint because 1) 

the relationship mentioned by the NL constraint is not available in the UML class model 2) class 

customer is not involved in the OtherOCL but it is part of the NL constraint, 3) for the given 

OtheOCL, Membership cannot be the context(see in Figure 7.5), due to the fact that customer 

is not directly involved in deliveredServices. However, the partners are involved in the 

deliveredServices. Hence the correct context should be LoyaltyProgram. Our tool 

automatically analyses the correct context. 

 

Figure 7.5: A subset of the Royal & Loyal model 

Our tool is able to identify such logical contradictions due to the fact that each NL statement is 

mapped to a UML class model before it is transformed to OCL.  
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Figure 7.6: A subset of the Royal & Loyal model 

To solve the Constraint7.2.12, the logical contradiction can be removed by either correcting the 

NL constraint or correcting the OCL constraint. However, to solve this constraint, we have 

changed the NL constraint by replacing customers with partners, to make NL statement is 

consistent with the class model. Here, partners become the logical replacement (see Figure 

7.6). After removing the logical contradiction, the NL constraint was successfully transformed to 

OCL by our tool. 

Constraint   7.2.13  

English:  If none of the services offered in a loyalty program credits or debits the loyalty accounts, then 

these instances are useless and should not be present. 

SBVR: If none of the services offered in a loyalty program credits or debits the loyalty 

accounts, then it is permitted that these instances are useless and should not be present. 

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 inv 

      endpackage 

OtherOCL: contextLoyaltyProgram 

 invnoAccounts: partners.deliveredServices->forAll( 

                pointsEarned = 0 and pointsBurned = 0 ) 

                implies Membership.account->isEmpty() 
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The Constraint7.2.13 is a larger NL constraint involving three Object Types and five Verb 

Concepts.  

 

Figure 7.7: A subset of the Royal & Loyal model 

The constraint was successfully mapped to SBVR. However, this constraint cannot be 

transformed to OCL due to the use of terms like ‘credit’ and ‘debit’ which are not part of the 

UML class model (see Figure 7.7).  Moreover, there is a discrepancy between the English 

constraint and the OtherOCL that is in the NL constraint, the LoyalAccountclass is associated 

with the LoyaltyProgramclass, while in OCL the LoyaltyProgram class is mapped to the 

Service class by using its attributes, such as ‘pointsEarned’ and ‘pointsBurned’. Here, 

the user is given a message that NL constraint is not consistent and the user should re-consider 

the NL constraint. 

Constraint  7.2.14  

English: The name of the first level must be Silver. 

SBVR: It is obligatory that the name of the first level must be Silver. 

OCL: packageroyal&loyal 

contextLoyaltyProgram 

invself.levels->first().name = Silver 

          Endpackage 

OtherOCL:  contextLoyaltyProgram 

    invfirstLevel : levels->first (). name = ’Silver’ 
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The Constraint7.2.14 is transformed to SBVR but cannot be transformed to OCL, as it is a 

limitation of the approach that at least one class should be mentioned in the NL constraint that 

will become the context of the OCL. Here, the tool gives an error message to the user that there 

should be at least one class mentioned in the constraint. To generate the OCL similar to the 

OtherOCL, we need to introduce a class name such as theLoyaltyProgram class in the NL 

constraint. After the change the NL constraint will look like this: “The name of the first level of the 

LoyaltyProgram must be Silver”. Afterwards, the transformation of Constraint 7.2.14 is simple.  

Constraint   7.2.15 

English:  There must exist at least one service level with the name basic. 

SBVR: It is necessary that there must exist at least one ServiceLevel with the 'name' basic. 

OCL: package royal_and_loyal 

contextServiceLevel 

invself.name = basic->exists( ()  

        endpackage 

Our tools correctly generate SBVR for the Constraint7.2.15 but the wrong OCL is generated. 

The wrong OCL is generated due to the fact the NL constraint for the Constraint7.2.15 is 

logically incomplete as “service level” mentioned in the NL constraint points to the “level” 

association and there is no class that will be the possible context of the OCL constraints. Here, 

the user is given a message that to generate a correct OCL, the user needs to introduce at least 

one class as a possible context. For the Constraint 7.2.15, the LoyaltgProgramclass should be 

introduced in the NL constraints to provide a complete relationship. After the NL constraint is 

changed, it will look like this: “There must exist at least one service level for a Loyalty Program with the 

name basic.” After this change, the Constraint 7.2.15is correctly transformed to OCL.  

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 invself.level->exists(name = basic)  

         endpackage 

OtherOCL: contextLoyaltyProgram 

 invbasicLevel: self.levels->exists(name = ’basic’) 
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Constraint   7.2.16  

English: The number of participants in a loyalty program must be less than 10,000. 

SBVR: It is necessary that the number of participants in a loyaltyprogram must be at most 

10,000. 

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 inv:self.participants->size()<10000 

        endpackage 

OtherOCL: contextLoyaltyProgram 

 invmaxParticipants: self . participants ->size() < 10,000 

The Constraint 7.2.16is very simple to process as it involves only one Object Type 

‘loyaltyprogram’ and one association ‘participants’. The transformation of Constraint 7.2.16to 

SBVR and OCL is very simple and straightforward.  

Constraint   7.2.17 

English: The number of the loyalty account must be unique within a loyalty program. 

SBVR: It is necessary that the 'number' of the loyaltyaccount must be unique within a 

loyaltyprogram. 

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 invself.Membership.account->isUnique(acc|acc.numbers) 

      endpackage 

OtherOCL: contextLoyaltyProgram 

 invuniqueAccount: self.Membership.account-> 

      isUnique(acc | acc.number) 

In the Constraint 7.2.17, twoObject Types ‘loyaltyprogram’and ‘loyaltyaccount’is used with a 

Characteristic ‘numbers’. However a new OCL operation ‘isUnique()’ is involved in this 

constraint. The use of term ‘unique’ in NL statement hints the use of ‘isUnique()’ operation. 

The transformation of Constraint 7.2.16to SBVR and OCL is successfully performed.  

Constraint   7.2.18  

English: The names of all customers of a loyalty program must be different. 
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SBVR: It is necessary that the ’name’ of all customers of a loyalty programmustbe different. 

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 invself.participants.name->forAll(c1,c2|c1.name<>c2.name) 

         endpackage 

OtherOCL: contextLoyaltyProgram 

    invuniqueNames: self.participants-> 

                          forAll(c1,c2| c1<>c2 implies c1.name <> c2.name) 

The Constraint 7.2.18involves two Object Types ‘loyaltyprogram’ and ‘customers’. To 

transform this constraint to OCL, we need to cope with two new things: the term ‘all’ and the 

term ‘different’. The functionality to map ‘all’ to OCL operation ‘forAll’ is already presented. 

However, the term ‘different’ is mapped to comparison of two terms with ‘<>’ operator in OCL. 

The tool also provide functionality to compare two values, e.g., ‘c1.name<>c2.name’.  

Constraint   7.2.19 

English: The maximum age of participants in loyalty programs is 70. 

SBVR: It is necessary that the at most ’age’ of participants in loyaltyprogram is 70. 

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 inv:self.participants -> forAll( age<= 70) 

         endpackage 

OtherOCL: contextLoyaltyProgram 

    invmaxAge: participants->forAll(age()<= 70) 

The Constraint 7.2.19, involves one Object Type ‘loyaltyprogram’ and one Characteristic 

‘participants’. The Constraint 7.2.16was also correctly transformed to OCL. However, the 

function forAll used in OtherOCL was not mentioned by our tool.  If a user wants to introduce 

forAll operation in OCL, he/she will have to mention the term ‘all’ in the NL constraint. 

Constraint   7.2.20 

English: There may be only one loyalty account that has a number lower than 10,000. 
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SBVR: It is possibility thattheremaybe only oneloyaltyaccount thathas a'number' lower than 10,000. 

OCL:  package royal_and_loyal 

 contextLoyaltyProgram 

 invself.Membership.account->one(number < 10,000) 

               endpackage 

OtherOCL:  contextLoyaltyProgram 

    invoneAccount: self.Membership.account->one(number < 10,000) 

In the Constraint 7.2.20, only Object Type ‘loyaltyprogram’ is used. Constraint 7.2.20was also 

correctly transformed to OCL. In this constraint, another OCL operation ‘one()’ is also 

incorporated. 

Constraint 7.2.21 

English: The attribute numberOfCustomers of class ProgramPartner must be equal to the number of 

customers who participate in one or more loyalty programs offered by this program partner. 

SBVR: It is obligatory that the attribute numberOfCustomers of class ProgramPartner must be 

equal to the number of customers who participate in at least one loyaltyPrograms offered 

by this programPartner. 

OCL:  contextProgramPartner 

 invself.numberOfCustomers=programs.participants->asSet()->size() 

               endpackage 

OtherOCL: contextProgramPartner 

 invnrOfParticipants: numberOfCustomers =  

      programs.participants->asSet()->size() 

The Constraint 7.2.21is the lengthiest constraint of the Royal and Loyal model and it involves 

three classes ‘ProgramPartner’, ‘customers’, and ‘loyaltyprograms’ and one attribute 

‘numberOfCustomers’. In this constraint, another OCL operation ‘asSet()’ is also involved. 

Constraint 7.2.21 is correctly transformed to OCL. 

Constraint   7.2.22  

English: A maximum of 10,000 points may be earned using services of one partner. 

SBVR: It is possibility that a maximum of 10,000 points may be earned using services of one partner. 
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OCL:  package royal_and_loyal 

 contextProgramPartner 

 invself.deliveredServices.pointsEarned<=10,000 

            endpackage 

OtherOCL:  context ProgramPartner 

 inv totalPoints : 

      DeliveredServices.transactions-> 

      select(oclIsTypeOf(Earning)).points->sum() < 10,000 

In the Constraint 7.2.22, there are two Object Types such as ‘Partner’ and ‘Service’. However 

the use of Object Type ‘Partner’ is quite ambiguous as partner is an association in the Royal 

and Loyal model (see Figure 7.9) and if we handle partner as an association, no OCL can be 

generated because 1) partner association is directed from the Service class to the 

ProgramPartner class and it is not mentioned in the NL constraint 2) we can’t reach from an 

association to a class’s attribute pointsEarned because of opposite direction of the association. 

 

Figure 7.9: A subset of the Royal & Loyal model 

Here, we need a class such as ProgramPartner to reach to reach pointsEarned of the class 

Service. Here, the user is given a message that ‘partner’ is not a valid context and the user 

needs to introduce at least one class that is a valid context for the given NL constraint. To 

process this constraint, the user needs to replace the term ‘partner’ with the term 

ProgramPartner.  After this change, the NL constraint will look like “A maximum of 10,000 

points may be earned using services of one program partner.” and it is simply transformed to OCL. 
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Constraint   7.2.23 

English: All cards that generate transactions on the loyalty account must have the same owner. 

SBVR: It is necessary that each all card that generate transaction on the loyaltyaccount must have 

the same owner. 

OCL:  package: royal_and_loyal 

 contextLoyaltyAccount 

 invself.transactions.cards.owner->asSet()->size() = 1 

      endpackage 

OtherOCL: contextLoyaltyAccount 

 invself.transactions.card.owner->asSet()->size() = 1 

The Constraint 7.2.23is another complex constraint of the Royal and Loyal model. It involves 

two classes ‘transaction’ and ‘loyaltyaccount’ two associations ‘card’ and ‘owner’. Here, two 

other classes ‘CustomerCard’ and ‘Customer’ are indirectly involved as we need to access 

owner of the card. In this constraint, another OCL operation ‘asSet()’ is also used. The 

Constraint 7.2.23is correctly transformed to OCL. 

Constraint  7.2.24 

English: If the points earned in a loyalty account is greater than zero, there exists a transaction with more 

than zero points. 

SBVR: If the points earned in a loyalty account is at least zero, it is necessary that there exists a 

transaction with at least zero points. 

OCL:  package royal_and_loyal 

 contextLoyaltyAccount 

 invif (self.points > 0) then  

                 transaction -> exists( t| t.points>0)   

      endif  

            endpackage 

OtherOCL:  contextLoyaltyAccount 

 invpositivePoints : points > 0 implies transactions-> 

      exists(t | t .points > 0) 

In the Constraint 7.2.24an if statement is involved. This constraint was simple to generate as the 

current version of the tool has an ability to generate if-else expressions. To generate if 

expression in this constraints we need to extract two parts: (1) if part with condition (2)then 

part with the body. However, there is no else part as it is not mentioned in the NL constraint. 
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Constraint   7.2.25  

English: There must be one transaction with exactly 500 points. 

SBVR: It is necessary that there must be one transaction with exactly 500 'point'. 

OCL:  package: royal_and_loyal 

 contextTransaction 

 invself.transaction->select(point = 500)->Size()=1 

      endpackage 

OtherOCL:  contextLoyaltyAccount 

    inv500points: transaction.points->exists(p : Integer| p = 500) 

The Constraint 7.2.25 involves one Object Type ‘transaction’ and one Characteristic ‘point’.  In 

this constraint, the ‘select()’ operation is also involved. 

Constraint   7.2.26  

English: The available services for a service level must be offered by a partner of the loyalty program to 

which the service level belongs. 

SBVR: It is obligatory that the available services for a service levelmustbe offered by a partner of 

the loyalty program to which the service level belongs. 

OCL:  package: royal_and_loyal 

 contextServiceLevel 

 invself.program.partners-> 

            includesAll(self.availableServices.partner) 

            endpackage 

OtherOCL:  contextServiceLevel 

  invservicePartner: program.partners->includesAll 

       (self.availableServices.partner) 

The Constraint 7.2.26 is one of the complex constraints of the Royal and Loyal model as it 

involves two Object Type ‘service level’ and  ‘loyalty program’ and two associations ‘available 

services’ and ‘partner’. This constraint incorporates the ‘includesAll()’ operation. However, 

the Constraint 7.2.26 is also successfully transformed to SBVR and OCL by our tool. 
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7.2.3   Quantitative Evaluation. 

In this subsection, we perform a quantitative evaluation of the NL2OCL approach for the Royal 

& Loyal model. We use the criteria for quantitative evaluation as defined in Section 7.1.1: 

specification coverage and throughput measure. 

A.   Specification Coverage 

The NL2OCL approach was designed to automatically extract various OCL syntactic elements 

so that they can be integrated to generate a complete OCL expression. The part of OCL syntax 

covered by the NL2OCL approach is shown in Table 7.2. 

Table 7.2: OCL elements covered by the NL2OCL approach 

OCL Elements Supported by the NL2OCLviaSBVR 

Context Yes 

Logical Expressions Yes 

Relational Expressions Yes 

Navigation Yes 

if-then-else Yes 

Collections Selected ones are supported 

 

Table 7.2 shows that most of the OCL syntax was covered in the implementation to translate 

English constraints of the Royal & Loyal model as it was required. Table 7.3 shows the details of 

the OCL elements implemented in the NL2OCLviaSBVRtool in comparison with the OCL 

elements implemented in the Copacabana tool [Wahler, 2008].  

Table 7.3: OCL Generation: NL2OCLviaSBVR vs. Copacabana 

OCL Elements NL2OCLviaSBVR Copacabana Occurrences 

Context Yes Yes 26 

Navigation via association classes Yes No 19 

Logical Expressions Yes Yes 1 

Relational Expressions Yes Yes 20 

Cardinality of Sets Yes No 2 
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Parameterized Function Calls No No 2 

if-then-else Yes Yes 2 

Enumerations No Yes 2 

size() Yes Yes 9 

isEmpty() Yes Yes 2 

forAll() Yes Yes 3 

exists() Yes Yes 2 

includesAll() Yes No 1 

select() Yes No 3 

asSet() Yes Yes 2 

isUnique() Yes No 1 

oclIsTypeOf() No No 1 

 

Our approach can generate 22 OCL constraints from total 26 English constraints of the Royal & 

Loyal model that is approximately 85% (see Table 7.4). The remaining 4 constraints cannot be 

translated due to the violation of one of the limitations of the NL approach discussed in section 

7.4. However, if we slightly tune the inputs with respect to the given limitations of the 

NL2OCLviaSBVR, further 3 constraints can be translated. This improves the ratio of results to 

96.15%. Only the Constraint 7.2.13 cannot be translated to OCL due to logical contradiction in 

the statement and this constraint needs complete revision.  

 

Figure 7.10: Specification Coverage: NL Approach vs. Pattern Approach 
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In comparison to NL based approach, the pattern based approach can generate 18 constraints 

before tuning and 20 constraints after tuning. A comparison of both approaches is shown in 

Figure 7.10. It is important to indicate here that the researcher is conscious of the fact that the 

NL2OCL approach used to generate OCL from NL constraints cannot be 100% correct. 

Furthermore, the researcher has used NL and automated generated SBVR in pair to resolve NL 

ambiguities and to clarify vagueness by pointing them out, this will not be a 100% solution either 

and the researcher is aware of it. 

Table 7.4: Specification Coverage: NL Approach vs. Pattern Approach 

OCL Elements Total Constraints Translated Before Tuning Translated After Tuning 

Copacabana 26 18 20 

NL2OCLviaSBVR  26 22 25 

 

Table 7.4 shows that the NL2OCLviaSBVR tool can translate 22 constraints without tuning. 

Here tuning means improving the NL input statement. The ratio of translation before tuning is 

84.61% that outperforms the other approaches. Since the effectiveness of un-tuned tool is good 

enough to be useful but the researcher has also demonstrated that further tuning can produce 

better accuracy that can be up to 96.15% as after tuning the tool can translate 25 constraints out 

of 26 constraints. 

B.   Throughput Measure 

Throughput was measured to validate the effectiveness of the presented approach in real-time 

scenario, where people with various levels of knowledge and expertise need to write OCL. A 

small survey was conducted to measure the throughput of the NL2OCL approach.For the survey 

three groups were chosen as below: 

 Novel  : A user who is quite new to OCL 

 Medium :A user who knows basics of OCL 

 Expert : A user who is expert of OCL 
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Table 7.5:  Usability Survey Results 

User 
Easy to Use Time-Saving 

Manual By Tool Manual By Tool 

Novel 30% 90% 25% 85% 

Medium 55% 85% 40% 80% 

Expert 70% 85% 60% 70% 

Average 51.66% 86.66% 41.66% 78.33% 

 

Each group was containing 10 users. Each user was given a set of 10 English constraints and 

then they were asked to manually write OCL for each constraint. Users of all groups were given 

five minutes for writing each constraint. Afterwards, all the users were asked to generate OCL 

for the same constraints using our tool the NL2OCLviaSBVR. Once all the users finished their 

work they were given a questionnaire to fill. In the questionnaire, questions were asked regarding 

various aspects: simple to use, time-saving, etc. Each user was asked to give 1 to 10 score for 

each category. The average values calculated for different parameters are clearly showing in 

Table 7.12that the used approach was making an impact. The statistic in Figure 7.11 and Figure 

7.12 manifest that users specifically in novel and medium category find it easy to generate OCL 

constraints using our tool. Figure 7.13 presents overall statistics of user’s feedback.  

 

Figure 7.11: Ease to generate constraints: Manual vs. By Tool 
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Figure 7.12: Time saving in constraints generation: Manual vs. By Tool 

 

Figure 7.13: Throughput Measure: Manual vs. By Tool 

7.3Case Study: QUDV 

SysML is an OMG standard that is typically used for system engineering and modeling of 

measurement systems [OMG, 2010]. SysML is simple and smaller than UML in terms of 

diagram types and total constructs.  
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Figure 7.14: QUDV Unit diagram 

7.3.1   QUDV Library Model 

The presented case study is based on the well-known problem of checking the coherence of a 

system of units & quantities. The precise specification of this problem is given in ISO 80000. 

However, Koning extracted the relevant parts of this problem is given in SysML 1.2, Annex C.5, 

“Model Library for Quantities, Units, Dimensions, and Values (QUDV)” [Koning, 2005]. Both 

NASA and ESA have also worked at the problem of modeling the measurement units as a part of 

the system. Figure 7.14 shows the unit diagram of the QUDV model. 

There are three parts of QUDV model. However, we have used only two of them: the QUDV 

Unit Model (see Figure 7.14) and the QUDV Concept Model (see Figure 7.15). There are four 

main classes in the model: SystemOfUnits, SystemOfQuantities, Units and 

QuantityKind. 
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Figure 7.15: QUDV Concepts Diagram 

From the QUDV concept diagram (see Figure 7.15), the English specification of a constraint on 

Quantity class is given in [ibid], Section C.5.2.11. An overview of the components of the 

QUDV unit and concept model is shown in Table 7.6. 

Table 7.6: Overview of QUDV Model 

 Type of Components  QUDV Unit Diagram QUDV Concepts Diagram Total 

1 Classes → 13 7 20 

2 Attributes → 22 21 43 

3 Methods → 0 0 0 

4 Associations → 17 7 24 

7.3.2   QUDV Constraints 

In this subsection, we present the five constraints of QUDV model library given in [OMG, 

2010], Section C.5.2.10. We have generated SBVR and OCL of the QUDV English constraints 

using our tool NL2OCLviaSBVR. English specification of the constraints on PrefixedUnit 

class is given in [OMG, 2010], Section C.5.2.10.  
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Constraint   7.3.1 

This constraint specifies that it is not allowed to prefix an already prefixed measurement unit. In 

general the referenceUnit should be a SimpleUnit. The output of the input English 

specification is below: 

English: The referenceUnit shall not be a PrefixedUnit. 

SBVR:   It is obligatory that each referenceUnitshall notbe aPrefixedUnit. 

OCL:  package QUDV 

 contextPrefixedUnit 

 invnot referenceUnit->oclIsTypeOf(PrefixedUnit) 

            endpackage 

OtherOCL:  package QUDV 

 contextPrefixedUnit 

 invnot referenceUnit->oclIsTypeOf(PrefixedUnit) 

       endpackage 

 
 

Two more constraint are defined on SystemOfUnits class and their English specification is 

given in [ibid], Section C.5.2.21, where SystemOfUnitsis defined as “set of base units and 

derived units”. 

Constraint   7.3.2 

This constraint specifies that only one base unit should be specified for a base quantity. A “base 

unit” is a preferred unit in which base quantities of the associated systemOfQuantities are 

expressed. A base unit is a measurement unit that is adopted by convention for a base quantity. 

The output of the Constraint 7.3.2 is below: 

 

English: In a coherent system of units, there is only one base unit for each base quantity. 

SBVR:   In a coherent system of units, it is obligatory that there is exactly one base unit for each 

base Quantity. 

OCL:  package QUDV 

 contextSystemOfUnits 

 invself.systemOfQuantities.baseQuantityKind.size()= 

            self.baseUnit->size() =  1   

            endpackage 
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OtherOCL:  package QUDV 

 contextSystemOfUnit 

 def: isCoherent() : QUDV::Blocks::Boolean = baseUnit->size() =  

       systemOfQuantities.baseQuantityKind->size() and baseUnit-> 

       forAll(bU| systemOfQuantities.baseQuantityKind->one(bQK|bU. 

       quantityKind=bQK)) and systemOfQuantities.baseQuantityKind-> 

       forAll(bQK| baseUnit->one(bU|bQK=bU.quantityKind))  

       endpackage 

The OCL generated for Constraint 7.3.3 is syntactically different. However, semantically it is 

equivalent to the OtherOCL.  

Constraint   7.3.3 

The other constraint defined on the SystemOfUnits class is a definition of a coherent derived 

unit. A derived unit is a factor of a unit and the exponent of a factor is also 1. Our tool generates 

incomplete OCL as this constraint consists of out of domain information such as “with no other 

proportionality factor than one” and we have explained in section 7.4.3 that our current 

implementation cannot handle the extra domain information.  

English:  A coherent derived unit is a derived unit that, for a given system of quantities and for a chosen 

set of base units, is a product of powers of base units with no other proportionality factor than 

one. 

SBVR:    A coherent derived unit is a derived unit, it is obligatory that for a given system of 

quantities and for a chosen set of base units, is a product of powers of base units with no 

other proportionality factor than one. 

OCL:  package QUDV 

 contextSystemOfUnits 

 invself.baseUnit->includesAll() -> 

            endpackage 

OtherOCL:  package QUDV 

 contextSystemOfUnit 

 def: isCoherent(du : DerivedUnit) : QUDV::Blocks::Boolean =  

       baseUnit->includesAll(du.factor.unit) and du.factor.exponent-> 

       forAll(numerator=1 and denominator=1) 

       Endpackage 
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Constraint   7.3.4 

The constraint specifies that from three properties (value, unit, and quantityKind) of 

Quantity, one should be specified. The output of the input English specification is below: 

English: At least one of the three properties of Quantity shall be specified. 

SBVR: It is obligatory that at least one of the three properties of Quantityshall be specified. 

OCL:  package QUDV 

 contextQuantity 

 inv self.value->isNotEmpty() orself.unit->isNotEmpty() or 

            self.quantityKind->isNotEmpty() 

            endpackage 

OtherOCL:  package QUDV 

 contextSystemOfUnit 

 inv: quantityKind->isNotEmpty()  

       or unit->isNotEmpty()  

       or value->isNotEmpty()            

       endpackage 

Constraint   7.3.5 

The NL specification of the Constraint 7.3.5 is related to the Scale class and is given in [OMG, 

2010] Section C.5.2.15. The constraint specifies that it is not allowed to prefix an already 

prefixed measurement unit. In general the referenceUnit should be a SimpleUnit.  

English: If a unit is specified on Scale, then it shall be the same as the unit of the associating 

QuantityKind. 

SBVR: If a unit is specified on Scale, then it is obligatory that unit shall be the same as the unit of 

the associating QuantityKind. 

OCL:  package QUDV 

 contextScale 

 invif (notself.unit->isEmpty()) then 

      self.unit.quantityKind = self.quantityKind    

      endif 

            endpackage 

OtherOCL:  package QUDV 

 contextScale 

 inv: unit->isEmpty() or unit.quantityKind = self.quantityKind 

       endpackage 
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In Constraint 7.3.5,if keyword is mentioned in the NL constraint that leads to an ifexpression 

in the OCL constraint. As the NL constraint says that a Scale unit should be equivalent to the 

quantityKind unit, the generated OCL is syntactically different from the OtheOCL however 

both are semantically equivalent. 

7.3.3   Quantitative Evaluation 

In this subsection, we perform a quantitative evaluation of the NL2OCL approach for the QUDV 

library model. For the QUDV Model case study, only specification coverage is discussed here. 

The combined results of throughput measure for all three case studies have been represented in 

Table 7.5. 

A.   Specification Coverage 

The NL approach was designed to automatically extract various OCL syntactic elements so that 

they can be mapped to a complete OCL expression. To translate English constraints of the 

QUDV model, most of the OCL syntax was covered in the implementation. Table 7.7 shows the 

details of the OCL elements implemented in our NL2OCL approach.  

Table 7.7: OCL Generation: NL Approach vs. Pattern Approach 

OCL Elements NL2OCLviaSBVR Occurrences 

Context Yes 05 

Navigation via association classes Yes 19 

Logical Expressions Yes 4 

Relational Expressions Yes 3 

Cardinality of Sets Yes 1 

Parameterized Function Calls No 0 

if-then-else Yes 1 

Enumerations No 0 

size() Yes 2 

isEmpty() Yes 1 

isNotEmpty() Yes 3 

forAll() Yes 0 
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exists() Yes 0 

includesAll() Yes 1 

select() Yes 0 

asSet() Yes 0 

isUnique() Yes 0 

oclIsTypeOf() No 1 

Our approach can generate 4 OCL constraints from the 5 English constraints of the QUDV 

model that is 80%. The remaining constraint (Constraint 7.3.3) cannot be translated due to the 

violation of one of the limitations of the NL approach discussed in Section 7.4.  

7.4   Case Study: WebSphere Business Modeler 

We have selected the third case study from the domain of business processes: 

WebSphereBusinessModeler (WBM) [IBM, 2007]. WBM is internally used by IBM and we aim 

to translate NL constraints of WBM using our tool. The NL constraints and their OCL is 

generated by a research team in the IBM Zurich Research Laboratory for the purpose of process 

merging. The basic purpose of defining these constrains was to restrict the input models those 

were initially described in NL and Java. 

 

Figure 7.16: Screenshot of the process-merging prototype in WBM [Wahler, 2008]. 
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7.4.1   The WBM Process Model 

This section presents the WBM process model typically employed for specifying the business 

processes. The WBM process model is based on a set of UML class diagrams. There are four 

parts of the model. However, we have used three of them (see Figure 7.16, Figure 7.17, and 

Figure 7.18) with regards to the scope of constraints. Here, Figure 7.17and Figure 7.18explain 

the class diagrams of the metamodel of the process model. Figure 7.19provides the descriptionof 

various types of activity nodes in the process model.  

It is shown in Figure 7.17 that activity nodes can be of two types such as ExecutableNode and 

ControlNode. Moreover, an executable node can be of two further types: an Actionor a 

StructuredActivityNode.Similarly, aControlNode can be either an InitialNode or a 

FinalNode. TheFinalNodeis further classified into two specialized types 

FlowFinalNodethat ends the execution of a single branch and aTerminationNodethat ends 

the whole business process. 

 

 

Figure 7.17: Process model: activity nodes (A) 
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Figure 7.18: Process model: connectable nodes (B) 

 

Figure 7.19: Process model: control actions (C) 

Figure 7.19 shows that a ControlAction, is a special type of action that can be classified 

into object flow and control flow. However, a control action can be classified into four sub-

classes: Decision, Merge, Fork, and Join. Here, the Decision and Merge control actions 

are employed for modeling the optional branches in a process, while the Join and Merge 

control actions are involved in modeling of the parallel or analogous branches in a process model. 

An overview of the components of QUDV unit and concept model is shown in Table 7.8. 
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Table 7.8: Overview of WBM Process Model 

 Type of Components 
 

A B C Total 

1 Classes → 11 17 6 34 

2 Associations → 11 22 5 38 

7.4.2   Constraints for the WBM Process Model 

As we have described in Section 7.3.1 that a set of constrains were also provide by IBM to 

restrict the process models. In this section, we specify SBVR and OCL generated by using our 

tool the NL2OCLviaSBVR. Similar to previous two case studies, we also provide OtherOCL 

written for the NL constraints by IBM research team.  

Constraint 7.4.1  

English: Only connected models are supported, i.e., every element is reachable from the start node and an 

end node is reachable from every element. 

SBVR: It is obligatory only connected models are supported, i.e., it is obligatory every element is reachable 

from the start node and an end node is reachable from every element. 

OCL: packageWBM 

 contextStructuredActivityNode 
 invself.getPredecessors()->exists(oclIsTypeOf(InitialNode)) and 

       self.getSuccessors()->exists(oclIsTypeOf(FinalNode)) 

OtherOCL:  contextStructuredActivityNode  

inv connected models: 

self.getPredecessors()->exists(n j n.oclIsTypeOf(InitialNode)) 

andself.getSuccessors()->exists(n j n.oclIsTypeOf(FinalNode)) 
 

context Action 

def: getPredecessors() : Set(Action) = 

self.inputControlPin.incoming.source.action-

>union(self.inputControlPin.incoming.source.action.getPredecessors()) 

 

context Action 

def: getSuccessors() : Set(Action) = 

self.outputControlPin.outgoing.target.action-

>union(self.outputControlPin.outgoing.target.action.getSuccessors()) 

 

 

In Constraint 7.4.1, our tool cannot generate two definitions given in the OtherOCL. The reason 

is that NL or English constraint should explicitly provide all detail for the target OCL constraint, 

e.g., user should use the defined keyword in the NL constraint. 
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Constraint 7.4.2 

English: Models with object flow are not supported. 

SBVR: It is obligatory models with object flow are not supported. 

OCL: package: WBM 

 context: Action 
 inv 

OtherOCL:  context Action 

invself.inputObjectPin->isEmpty() and 

self.outputObjectPin->isEmpty() 

 

In Constraint 7.4.2, our tool cannot generate OCL as the NL description is very high level. 

Additionally, OCL involves the use of inputObjectPin and outputObjectPin but these 

two instances are not explicitly mentioned in NL constraint. Here, a message is given to the user 

that NL constraint is very high level and the provided information is incomplete. Moreover, the 

user should reconsider the NL constraint. 

Constraint 7.4.3 

English: Process models with Termination Nodes are not supported. Use FlowFinalNodes instead. 

SBVR: It is obligatoryProcess models with TerminationNodes are not supported. UseFlowFinalNodes 

instead. 

OCL: package royal_and_loyal 
 contextProcessModel 

 invTerminationNode::allInstances()->isEmpty() 

 Endpackage 

OtherOCL:  context ProcessModel  

inv no termination:TerminationNode::allInstances()->isEmpty() 

The syntax of NL description of Constraint 7.4.3 is bit similar to Constraint 7.4.2. However, in 

Constraint 7.4.2, required elements like inputObjectPin and inputObjectPin are not 

introduced but Constraint 7.4.3 includes elements like TerminationNode, etc. The correct 

OCL is generated for this NL constraint. 

Constraint 7.4.4 

English: Models with implicit forks/joins/decisions/merges are not supported. 
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SBVR: It is obligatory that models with implicit forks/joins/decisions/merges are not supported. 

OCL: package: WBM 

 context: StructuredActivityNode 
 invself.inputControlPin ->size() <= 1 andself.outputControlPin 

       ->size() <= 1 andself.inputObjectPin ->size() <= 1 and 

       self.outputObjectPin ->size() <= 1 

 endpackage 

OtherOCL:  contextStructuredActivityNode 

invexplicit control flow :self.inputControlPin ->size() <= 1 

andself.outputControlPin ->size() <= 1 andself.inputObjectPin -

>size() <= 1 andself.outputObjectPin ->size() <= 1 

 

Similar to Constraint 7.4.2 in Constraint 7.4.4, the terms like ‘forks’, ‘joins’, ‘decisions’ and 

‘merges’ are used. However the OCL involved instances like inputControlPin, 

inputControlPin, inputObjectPin and outputObjectPin respectively. As the NL 

does not provide specific information for this type of mapping such NL constraints cannot be 

translated to OCL. However, if we replace the terms like ‘fork’ with inputControlPin, our 

tool can easily generate OCL for it. 

Constraint 7.4.5  

English: Loop nodes are not processed properly and cannot be merged. Therefore, loop nodes are 

not supported. 

SBVR: It is obligatory that loop nodes are not processed properly and cannot be merged. Therefore, 

loop nodesare not supported. 

OCL: package: WBM 

 context: ProcessModel 
 invLoopNode::allInstances()->isEmpty() 

OtherOCL:  context ProcessModel  

inv no_loops:LoopNode::allInstances()->isEmpty() 

Similar to Constraint 7.4.2 and Constraint 7.4.3, again the similar structure “not supported” is 

introduced. However, similar to Constraint 7.4.3, the required element LoopNodeis part of the 

NL constraint. The OCL generation was also simple for this constraint. 
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7.4.3   Quantitative Evaluation 

In this subsection, we perform a quantitative evaluation of the NL2OCL approach for the WBM 

process model. For the WBM case study, only specification coverage is discussed here as the 

combined results of throughput measure for all three case studies have been shown in Table 7.5. 

A.   Specification Coverage 

The NL approach was designed to automatically extract various OCL syntactic elements so that 

they can be mapped to a complete OCL expression. To translate English constraints of the WBM 

process model, most of the OCL syntax was covered in the implementation. Table 7.9 shows the 

details of the OCL elements implemented in our NL2OCL approach.  

Table 7.9: OCL Generation: NL Approach vs. Pattern Approach 

OCL Elements NL2OCL Approach Occurrences 

Context Yes 05 

Navigation via association classes Yes 16 

Logical Expressions Yes 5 

Relational Expressions Yes 4 

Cardinality of Sets Yes 1 

Parameterized Function Calls No 0 

if-then-else Yes 0 

Enumerations No 0 

size() Yes 4 

isEmpty() Yes 4 

isNotEmpty() Yes 0 

forAll() Yes 0 

exists() Yes 2 

includesAll() Yes 2 

select() Yes 0 

asSet() Yes 0 

isUnique() Yes 0 

oclIsTypeOf() No 2 
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Our approach can generate three OCL constraints from the five English constraints of the WBM 

model that is 60%. The remaining 2 constraint, Constraint 7.4.2 andConstraint 7.4.4 cannot be 

translated due to the incomplete information and violation of one of the limitations of the NL 

approach discussed in section 7.4. The Constraint 7.4.2 is not possible to translate as it needs 

extra contextual information. However the Constraint 7.4.4 can be translated after tuning. Hence, 

after tuning we can translate four out of five constraints that results in 80% ratio. 

7.5   Qualitative Evaluation 

In this section, we apply the qualitative evaluation criteria defined in Section 7.1and summarize 

the validation of our approach. 

A.   Syntactic Accuracy 

To check the syntactic accuracy of the OCL constraints, the OCL constraints of all three case 

studies (such as Royal and Loyal model, QUDV and Web Sphere modeller) are compiled with 

OCL compilers, OCLarity [EmPowerTec, 2010]& USE. An example of syntax checking by 

using OCLarity version 2.4 is shown in Figure 7.20. 

 

Figure 7.20: OCL syntax checking 
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To check syntax of OCL invariants, we have given two inputs to the OCLarity tool: (1) XMI 

representation (.xmi) of the UML class model generated using Enterprise Architect. (2) A text 

file (.ocl) containing OCL invariant. If there are syntactical errors, the OCLarity tool highlights 

them, otherwise show 0 error(s) and 0 message(s). 

An example of syntax checking by using USE version 3.0.1 is shown in Figure 7.21. There are 

five windows. The window on upper-left corner is project window showing the both inputs UML 

model and OCL. There is a Class Diagram window on upper right-corner that shows graphical 

representation of input Royal and Loyal model. The Class Invariant window that shows that 

result of input OCL invariant is true (see Figure 7.21) that means OCL syntax is correct. There is 

a log window at the bottom of Figure 7.21 showing the details of processing. 

 

Figure 7.21: OCL syntax checking 
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Figure 7.22 show the Evaluation browser of the USE tool that also shows the status of the OCL 

invariant is true. 

 

Figure 7.22: USE Evaluation Browser showing input invariant is True 

B.   Transformation Accuracy 

Transformation correctness is measured by generating object diagrams in USE tool for both 

types of OCL: (1) OCL constraints generated by the NL2OCLviaSBVR tool (2) The OtherOCL 

constraints generated by human expert. The procedure of the simple syntax checking of an OCL 

invariant in the USE tool is shown in Figure 7.21. Now, we aim to measure correctness of an 

OCL invariant using the USE tool. 

The process of measuring correctness of transformation is very simple. A text file (.use) 

containing the details of input UMLclass model and OCL invariant is given to the USE tool. The 

USE tool reads the both inputs (class model and OCL invariant) from the (.use) file and checks 

OCL against the input UML class model. Here, we create an object diagram of the classes those 

are involved in the OCL invariant. As soon as, the objects are generated the Class Invariants 

window show that Result is “False” and status of OCL invariant is “1 constraint Failed” (see 

Figure 7.23). This status is because the values of attributes of the customer object and the 

loyaltyProgramobject are undefined. Moreover the association between the customer object 

and the loyaltyProgramobject is also not shown. Figure 7.24 shows that status of the 

constraint is false because it is shown that (self.participants.age <= 70) = 

Undefined. Figure 7.24 shows that the reason of failed status of the input OCL invariant is the 

undefined attributes of the customer object and the loyaltyProgram object. 



 

 

C
h

ap
te

r 
7

 
Ev

al
u

at
io

n
 

150 

 

 

Figure 7.23: OCL verification using Object diagram in USE 

 

Figure 7.24: USE Evaluation Browser showing input Invariant is True 

It is shown in Figure 7.25 that the attributes of the customer object are initialized with values 

such as name=‘Imran’, title= ‘Mr.’, isMale=t, age=45. Similarly, the attributes of the 

LoyaltyProgram object are initialized with values such as name=‘Gold’, particpants= 
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‘@customer’. Once the attributes of the customer object and the loyaltyProgram object 

are initialized, the status of the OCL Invariants window is changed to “Constraints OK” and now 

the Result is also again shown true. It is important to mention that the attribute age of the 

customer object is given value 45 that is less than 70. In case, the values is given more than 70 

the status of the OCL Invariants window is again “1 constraint Failed” and now the Result is also 

again shown False. 

 

Figure 7.25: OCL verification using Object diagram in USE 

 

 

Figure 7.26: USE Evaluation Browser showing input Invariant is True 
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C. Limitations of the Tool 

The designed system NL2OCLviaSBVR is always capable of producing the wrong analysis but 

that in such circumstances the produced formal representation is correct for a particular, valid 

and potentially correct interpretation and can be corrected by manual intervention. In particular, 

we have identified a few cases where the designed system has tendency to not generate the 

incorrect interpretation due to the following limitations. 

 The NL2OCL approach works for a restricted domain. i.e., UML Class Model. Hence, 

the NL constraints should not contain the vocabulary outside the UML class model. 

 The vocabulary names used in the NL constraints should be consistent with the 

vocabulary names used in the UML class model. 

 NL constraints should be complete such as a NL constraint should have at least one valid 

context. 

 Incomplete (if one side of the relation is missing) and invalid (wrong direction of the 

relation) relations such as associations, aggregations are not supported 

 NL constraints should not have discrepancies neither among the used elements nor 

between the UML class models. 

 NL constraints should not involve UML enumerations. 

 NL constraint should not involve parameterized function calls. 

 XOR relations in NL constraints are not supported. 

 The OCL operationsoclTypeof(), oclIsKindOf(T), oclIsTypeOf(T), 

oclAsType(T), oclInState(s), sortBy(), count(), collect(), 

reject(), and append()are not supported in the tool. 

 NL sentences should be declarative or imperative. The question based sentences are not 

processed. 

There are some limitations of the tool due to the use of the Stanford parser as a library. Major 

limitations of the Stanford parser in a role of NLP plugin are below: 

 A few times, the Stanford parser does not produce the right output after POS tagging due 

to lexical ambiguity in NL sentences. Since, the Stanford parser does handle lexical 

ambiguity by making a decision. However, this decision might be incorrect as it is not 

according to the interpretation the author intended.   
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 The NL2OCL approach is based on dependencies generated by the Stanford parser but 

the wrong typed dependencies are generated by the Stanford parser possibly due to 

semantic ambiguities. In such particular cases, due to wrong dependencies, wrong 

labeling of semantic roles can happen that result in irresolution of NL quantifiers, etc., in 

NL sentences. 

 Since, the Stanford parser is not typically designed for the task we need, it does not 

generate correct output in case of some other ambiguities in NL sentences such as 

homonymy. 

In this thesis, we have presented a novel approach to handle such ambiguities for which the 

Stanford parser does not produce the right output by using the information in the UML class 

model. However, there is a possibility that UML model does not contain the information to 

resolve a NL ambiguity and produce incorrect interpretation, and in such cases the user is 

involved to correct the output manually. 

7.6   Summary 

In this chapter, three case studies are presented from various dimensions such as software 

engineering, measuring systems, and business processes domain. The results of the case studies 

manifest that a natural language based approach to generate OCL constraints significantly cannot 

only help in improving usability of OCL but also outperforms the most closely related techniques 

in terms of effort and effectiveness required in generating OCL. Though, the researcher has used 

NL and automated generated SBVR in pair to resolve NL ambiguities and clarify vagueness by 

pointing them out, this will not be a 100% solution either and the researcher is aware of it. 
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CHAPTER 8  

DISCUSSION 

 

This chapter discusses the key contributions to knowledge by our presented approach for 

automated transformation of NL to OCL constraints in Section 8.1. Moreover, the researcher also 

presents an account of the possible future enhancements in the NL2OCL approach and its 

implementation in Section 8.2. 

8.1   Contribution to Knowledge 

In this section, the researcher discusses the contributions made in this thesis and he also explains 

the significance of the each contribution.  These contributions have been divided in ten distinct 

areas and aspects. 

8.1.1   Specifying Constraints using Natural Language 

The researcher has designed the NL2OCL approach that can process NL specification of 

constraints, extracts various parts of an OCL constraint and then finally integrates those parts to 

generate a complete OCL constraint using model transformation technology [Bajwa, 2010]. A 

novelty, in the NL to OCL transformation approach is the use of SBVR as the pivotal 

representation. The use of SBVR facilitates the transformation from a natural language to a 

formal language such as OCL on account of its foundation on formal logic. 

To the best of the researcher’s knowledge, this is the first approach to generate automatically 

OCL constraints from NL specification in compliance with the target UML class model. The 

presented approach not only simplifies the process of OCL constraints specification and assists 

modellers in process of software and business modelling but also can facilitate the novice users 
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who do not have enough expertise to write OCL constraints.  Moreover, the researcher is aware 

that such solution cannot be 100% correct, still it can be helpful for the software designers and 

developers by assisting them in writing OCL constraints. 

8.1.2   Resolving Syntactic Ambiguities 

The researcher has identified various cases of syntactic ambiguity in the NL constraints which 

are not addressed by used off-the-shelf components; the Stanford POS tagger and the Stanford 

parser. The identified cases of syntactic ambiguity are very common in NL statements. In the 

identified cases the wrong POS tags identified by the Stanford POS tagger due to homonymy in 

NL constraints cause generation of wrong parser tree and wrong set of dependencies which result 

in a wrong semantic analysis and finally lead to a wrong OCL constraint [Bajwa, 2012a]. 

Similarly, the researcher has also identified various cases where the typed dependencies are 

wrongly identified by the Stanford parser due to the attachment ambiguity in NL constraints 

[ibid]. Further, the researcher has developed a novel approach to deal with identified cases of 

homonymy and attachment ambiguity. As the identified cases are due to absence of context, the 

used approach to solve syntactic ambiguities involves the information (classes, attributes, 

methods, associations, etc.) given in a UML class model as a context and successfully addresses 

the ambiguities. 

8.1.3   Semantic Analysis of NL Constraints 

The researcher has developed a novel approach for detailed semantic analysis of the NL 

constraints [Bajwa, 2012b]. The used approach works into two phases: (1) shallow semantic 

parsing to assign SBVR vocabulary based semantic roles to various parts of a NL constraint; and 

(2) detailed semantic parsing involving quantifier scope resolution and generation of a logical 

representation based on SBVR vocabulary. Besides OCL, the SBVR based logical representation 

can be mapped to any formal language such as Alloy, B, etc. A modeller just need to write a set 

of transformation rules for the required transformation. 

The semantic analysis of NL constraints plays a key role in NL to OCL transformation as the 

semantic analysis helps to identify various SBVR constructs which are later on mapped to OCL. 

Moreover, during semantic analysis the researcher has also mapped the information of NL 

constraints with UML class model to ensure that the generated OCL constraints comply with the 
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target UML class model. Furthermore, in semantic analysis of NL constraints, it is decided that 

an NL constraint is mapped to which category of OCL constraints: invariant, pre-condition or a 

post-condition. 

8.1.4   Resolving Semantic Ambiguities 

In English to OCL translation, our contribution is a semantic analyser that uses the output of the 

Stanford parser for shallow and deep semantic parsing. Our analysis of the output of shallow 

semantic parsing showed that semantic roles were miss-identified for a few English constraints 

due to various semantic ambiguities [Bajwa, 2012c]. Similarly, in deep semantic parsing, it is 

difficult to resolve scope of quantifier operators due to scope ambiguity that is another sub-type 

of semantic ambiguity. To resolve, identified cases of semantic ambiguities, we have used the 

metadata (classes, attributes, methods, associations, etc.) of the target UML class model. The 

resolution of semantic ambiguities is explained in detail in Section 4.3. 

8.1.5   Identifying Logical Contradictions in Constraints 

OCL is a side-effect free language and it compliments UML class models. Owing to this feature 

of OCL, an OCL constraint should always comply with the target UML class model for which 

the OCL constraint has been written. Similarly, to generate an OCL constraint (that conforms to 

the target UML class model) from a NL constraint, the specification of NL constraint should also 

conform to the target UML class model. However, the researcher has identified a few cases 

where a NL constraint cannot be mapped to an OCL constraint due to some discrepancies or 

logical contradiction in a NL constraint and a UML class model. Examples of such cases are 

Constraints 7.2.12. In NL constraints, the logical contradictions can be of various types. A most 

common type that the researcher has identified is the relationship in entities given in a NL 

constraint does not exist in the UML class model. The NL2OCL can identify such cases and 

intimates a user to revise the NL constraint or revise the UML class model. 

8.1.6   SBVR based Logical Representation 

A logical representation based on SBVR vocabulary is introduced in the researcher’s approach. 

SBVR is a recent standard introduced by OMG to provide a formal notation to express business 

and software specifications. Using a standardized representation in a logical form is a novel idea. 
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Various automated transformation from SBVR to other standards and formal languages such as 

UML, BPMN have already been introduced. Hence, SBVR vocabulary based logical 

representation can really make it easy to transform NL specification business and software 

requirements to map to other standards such as UML, BPMN, Alloy, etc. In this thesis, the 

researcher has mapped SBVR based logical representation to SBVR rules and OCL constraints.  

The use of SBVR in a logical representation is also beneficial in a way that SBVR has a defined 

metamodel and SBVR based representation can simply be mapped to other formal languages 

using model transformation technology. 

8.1.7   Specifying SBVR Rules using NL Approach 

The researcher has explained in Section 8.1.6 that he has used SBVR as a pivotal representation 

in transformation of NL constraints to OCL. SBVR plays a key role in NL to OCL 

transformation. However, as a by-product this approach also generates SBVR business rules 

from NL specifications of Business/Software requirements. Automated generation of Business 

Rules is itself a challenging task and an open research question. To the researcher’s best of 

knowledge, nobody has presented any approach for automated generation of SBVR business 

rules from NL specification. The approach for automated generation of SBVR business rules can 

not only assist business modellers but also can simplify the processing of specifying business 

rules with a formal notation. However, even the NL representation and automated generated 

SBVR representation in pair can help in resolving ambiguities and clarifying vagueness by 

pointing them out. However, this will not be a 100% solution either. 

8.1.8   SBVR to OCL Transformation Rules 

From SBVR to OCL transformation, a challenging task was to map SBVR to OCL that has not 

been previously done. As the researcher has used model transformation technology to map 

SBVR to OCL, he needed to define a set of transformation rules to map each SBVR constructs to 

respective OCL construct [Bajwa, 2011b]. The defined set of model transformation rules play a 

key role in transformation a SBVR business rule to an OCL expressions and these transformation 

rules has been implemented using SiTra library. 
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8.1.9   The NL2OCLviaSBVR Tool and Evaluation 

The researcher has implemented the NL2OCL approach in Java. The Java based 

NL2OCLviaSBVR tool is an Eclipse plugin as a proof of concept and the tool can be used with 

other Eclipse based modelling tools. Evaluation criteria have been presented to evaluate the 

performance of NL2OCL approach in terms of qualitative and quantitative measures. 

8.1.10   Case Studies and their Results 

Three case studies were performed for the sake of evaluation. Besides, Royal & Loyal case 

study, another two case studies are performed. All three case studies from three different 

domains, and NL constraints each case study had different nature of NL constructs. The purpose 

to do three different case studies was to test the performance of the NL2OCL approach. The 

objective to select three different case studies was to test the performance of the approach for 

constraints from different domains. The selected cases studies are famous case studies in the 

respective domain and already under research by IBM, NASA, ESA, etc. The selected case 

studies have also been discussed in various PhD thesis and books and have been done with other 

comparable techniques. Hence, it is simple to compare the performance of our tool against some 

standard case studies. 

8.2   Future Enhancements 

To make the researcher’s tool more comprehensive so that it may model constraints, he proposes 

a few enhancements in future. Following is a brief overview of the possible enhancements in the 

NL2OCL approach. 

8.2.1   Multiple Sentence based NL constraints 

The current version of NL2OCL approach can process single sentence-based NL constraints. 

However, there can be a few constraints which may have multiple sentence-based NL 

specifications. To process multiple sentences is a NLP research question. In future, the 

researcher aims to provide this ability in current approach as well.  
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8.2.2   Improving Semantic Analysis 

The researcher has discussed in Section 8.3.2 and Section 8.3.3that there are a few NL 

constraints that involve contextual information which cannot be processed without involvement 

of its context. Moreover, there are a few terms and phrases that change its meanings with the 

change in domain. For example a word ‘sentence’ has different meanings in law domain but it is 

differently perceived in other domains. The researcher proposes the use of domain specific 

semantic dictionaries or ontologies. 
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CHAPTER 9 

CONCLUSION 
 

This chapter concludes the research work presented in the previous chapters. In this thesis, the 

researcher has addressed the problem of OCL usability as it is difficult to write OCL, typically 

for the novice users. In this thesis, the researcher also present a NLP based approach, called the 

NL2OCL approach, to address this problem and the researcher presents implementation of the 

approach, called the NL2OCLviaSBVR, as well.   

This research thesis presents a framework for dynamic generation of the OCL constraints from 

the NL specification provided by the user. Here, the user is supposed to write simple and 

grammatically correct English. The designed system can find out the noun concepts, Individual 

Concepts, verbs and adjectives from the NL text and generate a structural or behavioral rule 

according to the nature of the input text. This extracted information is further incorporated to 

constitute a complete SBVR rule. The SBVR rules are finally translated to OCL expressions. 

SBVR to OCL translation involves the extraction of OCL syntax related information, i.e., OCL 

context, OCL invariant, OCL collection, OCL types, etc. and then the extracted information is 

composed to generate a complete OCL constraint, or pre/post-condition. 

As this thesis aims to address a major challenge related to usability of OCL, the researcher has 

presented a method of applying model transformations to create OCL statement from Natural 

Language expressions. The presented transformation makes use of SBVR as an intermediate step 

to highlight the syntactic elements of natural languages and make NL controlled and domain 

Specific. The use of automated model transformations ensures seamless creation of OCL 

statements and deemed to be non-intrusive. The presented method is implemented as prototype 

tool which is being extended to be integrated into the existing tools. As a next step, the 
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researcher is hoping to investigate usability aspects of the tool directly via empirical methods 

involving teams of developers. 

The results of the experiments indicate that a NL based solution to generate OCL can soften the 

process of writing constraints for UML models. Even the NL2OCL approach is accurate up to 

96%, the researcher is aware of the fact that the NL2OCL approach used to generate OCL from 

NL constraints cannot be 100% correct. Furthermore, the researcher has used NL and automated 

generated SBVR in pair to resolve NL ambiguities and clarify vagueness by pointing them out, 

this will not be a 100% solution either and the researcher is aware of it. 
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APPENDIXA 

SUMMARIES OF THE PUBLISHED WORK 
 

Following are summaries of the papers published during PhD research. These papers address 

various parts of the research. 

A. 1 OCL Constraints Generation fromNatural Language Specification 

IEEE/ACM 14thInternational EDOC Conference 2010, Vitoria, Brazil, October 2010, pp:204-213 

The first paper was published in EDOC 2010, held in Brazil. The paper was based on the main 

idea of research that NL constraints can be automatically translated to OCL constraints [Bajwa, 

2010]. In this paper, the researcher presented how SBVR can play a useful role in translation of 

NL specification of constraints to OCL invariants and OCL pre/post conditions. 

This research paper presents a framework for dynamic generation of the OCL constraints from 

the NL specification provided by the user. Here, the user is supposed to write simple and 

grammatically correct English. The designed system can find out the noun concepts, Individual 

Concepts, verbs and adjectives from the NL text and generate a structural or behavioral rule 

according to the nature of the input text. This extracted information is further incorporated to 

constitute a complete SBVR rule. The SBVR rules are finally translated to OCL expressions. 

SBVR to OCL translation involves the extraction of OCL syntax related information i.e. OCL 

context, OCL invariant, OCL collection, OCL types, etc. and then the extracted information is 

composed to generate a complete OCL constraint, or pre/post-condition.  

A. 2 SBVR Business Rules Generation from Natural Language Specification 

AAAI Spring Symposium 2011 – AI4BA, San Francisco, USA, March 2011, pp:2-8 

In 2011, a paper was published in AAAI spring symposium, held in USA that was addressing the 

SBVR rules aspect of this research [Bajwa, 2011a]. In this research, the researcher is generating 

SBVR rules from NL constraints and then mapping such SBVR rules to OCL. The NL2SBVR is 

a modular NL-based approach that generates SBVR business rules from English text with respect 

to a target Business domain. It takes two inputs: a single English statement and a UML class 

model. Here English statement is English specification of a business rule and the UML class 
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model provides a business domain. To process the input English text first it is linguistically 

analyzed. In linguistic analysis of the English text, the English text is Parts-Of-Speech (POS) 

tagged. Then a rule based parser is used to further process the POS tagged information to extract 

basic SBVR elements e.g. noun concept, fact type, etc. Here, the SBVR vocabulary is mapped to 

a SBVR rule. Finally, to generate an SBVR business rules, the SBVR vocabulary is mapped to 

SBVR elements using the rule-based approach. These steps can be summarized as follows. 

A.2.1 The Input Documents 

The NL2SBVR approach takes two input documents: an English text document (.txt file) and a 

UML class model (.ecore file). The English text is taken as a plain text file containing only 

English constraint. Current version of the RuleGenerator handles only one English constraint at a 

time. The given English text should be grammatically correct. UML model is taken as ECORE 

or XMI format. We used Eclipse UML2 Ecore Editor to create a UML model and export it in 

XMI format. 

A.2.2 The NLP Module 

The core of NL2SBVR approach is a NLP module that consists of a number of processing units 

organized in a pipelined architecture. This NLP module is highly robust and is able to process 

complex English statements. The NLP system is used to lexically and syntactically process the 

English text and then perform semantic analysis to identify basic SBVR elements. The core 

system processes a text into three main processing stages:  

1. Lexical Processing: The lexical processor comprises for sub-modules: a tokenizer, a sentence 

splitter, POS tagger, and a morphological analyzer. The input to lexical analyzer is a plain text 

file containing English description of the target SBVR business rule. Basic NLP techniques such 

as sentence splitting, tokenization, POS tagging, and morphological analysis are performed and 

output of this phase is an array list that contains tokens with their associated lexical information. 

2. Syntactic Analysis: We have used an enhanced version of a rule-based parser for the syntactic 

analysis of the input text used in [11]. The text is syntactically analyzed and a parse tree is 

generated for further semantic analysis.  

3. Semantic Analysis: In this semantic analysis phase, role labeling [12] is performed. The 

desired role labels are actor, co-actor, action, thematic object, and a beneficiary if exists. These 

roles will assist in identifying different SBVR elements in the next phase and also be used in 

constructing fact types from the extracted SBVR elements. In semantic analysis phase, after role 

labeling, the order is identified in which subject, verb, object, and adverb appears in the input 

English text. The output of the NLP module is an xml file that contains the parsed English text 

with all the extracted information.Basic SBVR elements e.g. Noun concept, Individual Concept, 

Object Type, Verb Concepts, etc. are identified from the English input that is preprocessed by 

the NLP module. Following mapping rules are used to identify the SBVR elements: 

 All proper nouns are mapped to the Individual Concepts 

 All common nouns appearing in subject part are mapped to the noun concepts. 
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 All common nouns appearing in object part are mapped to Object Type. 

 All action verbs are mapped to Verb Concepts. 

 All auxiliary verbs and noun concepts are mapped to the fact types. 

 The adjectives and possessive nouns (i.e. ending at ’s or coming after ‘of’) are mapped to the 

attributes. 

All articles and cardinal numbers are mapped to quantification. All these rules are applied to the 

English text and the output is stored in an array list. Following example highlights the 

proposition of basic SBVR elements in a typical SBVR rule. 

A.2.3 The UML Module 

The UML module reads both ECORE and XMI format of a UML class model generated from 

Eclipse. The UML module extracts all classes, objects, and their respective attributes, operations 

and associations and finally maps them to SBVR vocabulary. Following section also describes 

how the SBVR vocabulary is mapped to the SBVR elements generated by NLP module. 

1. Generating SBVR Vocabulary: The SBVR vocabulary is generated from the input UML 

model. All the classes are mapped to noun concepts, attributes of the classes are named as the 

Individual Concepts, and all the class operations are named as Verb Concepts. The associations 

and the generalizations are mapped to the binary fact types. Binary fact types are typically 

composed of two noun concepts and a Verb Concept. All these SBVR elements with their 

associated types are stored and exported as an array list.  

2. Mapping with UML Model: Before translation of English text to SBVR rules, the input English 

text is mapped with the input UML model to ensure that generated SBVR rules will be 

semantically related to the target business domain. The mapping is carried out in SBVR elements 

and SBVR vocabulary. The noun concepts in SBVR rules are mapped to the UML classes. 

Individual nouns are mapped to the UML objects. Verb Concepts are mapped to methods. 

Adjectives and possession nouns (with of and ‘s) are tagged as attributes. A Fact Type is mapped 

to the associations and generalizations.  

A.2.4 The SBVR Module 

The SBVR module is based on a rule based parser that contains set of rules to map SBVR 

elements with SBVR vocabulary and generate complete SBVR rules. In this phase detailed 

semantic analysis of the English text is performed. Following section describes how the SBVR 

rules are generated. 

1. Generating SBVR Rule:SBVR rules are generated from the output of the NLP module. To 

generate SBVR rules, the first step is to create a fact type. A fact type is created by mapping the 

noun concepts and Verb Concepts to the fact types available in the SBVR vocabulary array list. 

Atomic formulization is used to map the input text to a suitable target fact type in SBVR 

vocabulary. The mapped fact type is used to generate a SBVR rule by applying a set of logical 

formulations. As For the different types of syntactic structures used in English language, 

respective types of logical formulations have been defined. Following are the details that how we 

have incorporated these logical formulations to map English language text into SBVR rule.  
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2. Applying SBVR Notation:The last step in SBVR rule generation is to apply a SBVR notation. 

RuleGenerator supports both SBVR notations: SBVR Structured English and RuleSpeak. To 

apply Structured English the noun concepts are underlined e.g. person; the Verb Concepts are 

italicized e.g. can have; the keywords are bolded i.e. SBVR keywords e.g. each, at least, at 

most, obligatory, etc; the Individual Concepts are double underlined e.g. black car. 

It is obligatory that a person’s ageshould be at least 18 years. 

The SBVR produces a SBVR rule in the form of text string that is further formatted using the 

SBVR notation i.e. Structured English. The output SBVR module is saved and exported in two 

separate files: an xml file contains the SBVR vocabulary; a text file contains the formatted 

SBVR rule. The presented approach not only assists the business rule analysts and architects by 

generating precise SBVR rules from NL specification in a simple and quick manner. As a next 

step, we are hoping to investigate usability aspects of the tool directly via empirical methods 

involving teams of developers. 

A. 3 Transformation Rules for Translating Business Rules to OCL Constraint 

7thEuropean Conference on Modelling Foundations and Applications (ECMFA 2011), 

Birmingham, UK, June 2011, pp:132-143  

This paper was published in ECMFA 2011, held in Birmingham, UK. This paper was focusing 

on the set of transformation rules used to transform a SBVR rule to an OCL constraint [Bajwa, 

2011b].SBVR to OCL transformation is performed in two phases. In first phase, the SBVR 

constraints specification is mapped to the target UML model and in second phase the SBVR 

information is mapped to OCL constraints using a set of transformation rules. Detailed 

description of both phases is given here: 

A.3.1   Mapping SBVR Rules to UML Model 

In this phase, the SBVR rules are mapped to UML models for semantic verification before the 

SBVR rules are mapped to OCL constraints. Semantic verification is essential to validate that the 

target OCL constraints will be consistent with the target UML model. To illustrate the process of 

mapping SBVR rules to the UML model we have taken an example shown in Figure A.3.1 

 

 

 

 

 

 

FigureA.3.1.A UML class model 

1 1 .. * has Customer 

- name: String 

- birthDate: Date 

- age: String 

 
  - isAdult(): Boolean 

BankAccount 

- owner: String 

- balance: GBP=0 

 -deposit(amount:GBP) 

 -withdraw(amount:GBP)  

 SavingAccount 

- insertRate: Double 
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The mapping process starts with the syntax analysis of SBVR rules to extract various elements of 

the SBVR rule i.e. noun concepts, Verb Concepts, fact types, etc. Following section describes the 

process of mapping classes and their respective associations with a common SBVR rule. 

1. Mapping Classes:The general noun concepts in SBVR rules represent the UML classes. Verb 

Concepts specify methods of a class. Adjectives are tagged as attributes. For example, in a 

SBVR rule “It is obligatory that each customercanhave at least onebank account only if 

customeris 18 years old.”, both noun concepts ‘customer’ and ‘bank account’ are matched to all 

classes in the UML class model shown in the Figure A.3.1 and the noun concepts are replaced 

with the names of the classes, if matched.  

2. Mapping Class Associations:Associations in a UML class model express relationship of two 

entities in a particular scenario. A UML class model may consist of different types of 

associations, e.g., packages, associations, generalizations, and instances. Typically, these 

associations are involved in defining the context of an OCL constraint, so it is pertinent to map 

these associations in the target SBVR specification of business rules.  

3. Mapping Packages: A package in a UML class model organizes the model's classifiers into 

namespaces. In SBVR, there is no specific representation of a package. Hence user has to 

manually specify the package name for a set of classes. The package names are also defined in 

the OCL constraints, so the package information is also mapped to the SBVR rules.  

4. Mapping Associations: Associations in a UML model specify relationships between two 

classes. Simple associations can be unidirectional, bidirectional, and reflexive. Unidirectional 

associations in UML are mapped with unary (based on one noun concept) fact types in SBVR 

and the bidirectional associations in UML are mapped with binary (based on two noun concepts) 

fact types in SBVR. Direction of the association is determined by the position (subject or object) 

of the noun concepts and Object Types in SBVR. 

Mapping Generalizations: Generalization/inheritance,in two classes,specifies that one class 

inherits the functionalities of the other. In SBVR the relationship of general noun concept (super 

class in UML) and individual noun concept (sub class in UML) is used to identify the inheritance 

feature. If a class A inherits the class B then the class B will also be the part of OCL context of 

class A. 

Mapping Instances:The instances of the classes can also appear in a UML class model. The 

Individual Concepts in SBVR are mapped to the instances (objects). The defined instances also 

become part of the OCL contexts and OCL constraints. So, the instances are also mapped in 

SBVR rules. 

In SBVR to UML mapping, the classes that do not map to the given UML class model are 

ignored. 

A.3.2  Mapping SBVR Rules Into OCL Constraints 

We present an automated approach for the translation of the SBVR specification into the OCL 

constraints. Our approach not only softens the process of creating the OCL syntax but also 
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verifies the formal semantics of the OCL expressions with respect to the target UML class 

model. As OCL is a side-effect free language, hence it is important that each OCL expression 

should be semantically verified to the target UML model. A prototype tool “SBVR2OCL” is also 

presented that performs the target transformation. The SiTra library based model transformation 

framework is used for SBVR to OCL transformation using a set of mapping rules that map .  

Mapping of SBVR rules to OCL code is carried out by creating different fragments of OCL 

expression and then concatenating these fragments to compile a complete OCL expression. 

Typically, OCL expression can be of two types: OCL invariant and OCL query operation. In this 

paper, we will present only the creation of OCL invariants and the creation of OCL query 

operation is part of the future work. 

A. 4 SBVR vs OCL: A Comparative Analysis of Standards 

14thIEEE International Multi-topic Conference, Dec 2011, Karachi, Pakistan, pp:261-266 

In 2011, another paper by the researcher was published in 14th IEEE INMIC, held in Pakistan. 

This paper presented the key findings during a study of SBVR and OCL standards. A comparison 

of both standards is also presented in this paper to highlight various similarities and differences in 

both standards [Bajwa, 2011c]. This study helped the researcher in SBVR to OCL 

transformation.The part of the comparison related to SBVR to OCL transformation is summarized 

below: 

A.4.1 Syntactical Features 

1. Vocabulary vs Classifiers:SBVR vocabulary can be of two types: keywords and user defined 

elements. On the other hand, similar to SBVR vocabularies, OCL expressions can refer to 

Classifiers, e.g., types, classes, interfaces, associations (acting as types), and data types. Common 

keywords in OCL arecontext, inv, pre, post, etc. 

2. Noun Concept vs Context:In SBVR metamodel, a Noun Concept can be an Object Type or an 

Individual Concept. Typically common nouns in English are classified as Object Types and 

proper nouns are classified as Individual Concepts.In an OCL expression, Context is typically 

represented using a UML class.  SBVR Object Type and Individual Concept can be equivalent to 

a context in an OCL expression.  

3. Verb Concepts vs Classifier AnyType: In SBVR, the Verb Concepts (action verbs) typically 

represent operations performed by/for a business entity. Action verbs in English can be matched 

to the method and operation names without side-effect in OCL. The Verb Concepts (action verbs) 

in SBVR metamodel can be equivalent to classifier AnyType in OCL metamodel. Similarly, OCL 

attributes can be equivalent to SBVR’s Characteristics. 

4. Fact Types vs Associations: Associations’ ends are commonly used in OCL types. Similarly, in 

SBVR associations are supports by different types of Fact Types, e.g., associations in SBVR are 

represented using Associative Fact Types, aggregations are represented using the Categorization 

Fact Types, and generalizations are represented using the Partitive Fact Types.Similarly, OCL’s 



 

 

A
p

p
en

d
ix

A
 

Su
m

m
ar

ie
s 

o
f 

th
e 

P
u

b
lis

h
ed

 W
o

rk
 

176 

 

association multiplicity can be equal to SBVR’s quantification such as universal quantification 

and non-universal quantification. 

5. Projections vs Collections:A set of Projections are defined in SBVR to handle one or more than 

one variables. Similarly, OCL introduces Collections to provide support for managing multiple 

variables. The SBVR’s Set Projection is equivalent to OCL’s Set Collection and SBVR’s Bag 

Projection is equivalent to OCL’s Bag Collection. There are some types of collection such as 

Sequence andClosed Projectionthat are not supported in OCL. 

6. Structural Rule vs Invariant:The SBVR structural rules represent the structure of a business 

models and their underlying entities. Similar to SBVR structural rules, invariants are used in OCL 

to represent a structural constraint.  

7. Behavioural Rule vs Pre/Post Condition:The behavioural rules govern the behaviour of 

business activities and operations. Akin to behavioural rules in SBVR, OCL’s pre/post conditions 

are particularly specified to handle behaviour of respective methods of classes and objects.  

A. 4.2 Principal Features 

The principal features of SBVR & OCL are discussed below: 

1. Conceptual Modeling:The primary focus of bothlanguages (SBVR and OCL) is same i.e. 

conceptual modeling just their application domains are different such as SBVR is primarily used 

for business modeling (in combination with BPMN/BPEL), while OCL is used for software 

modeling (in combination with UML) and is employed for large scale object oriented models. 

2. Declarative Languages:SBVR and OCL are both declarative language. SBVR rules should be 

expressed declaratively in natural-language sentences for the business audience. Similarly, OCL 

support declaration of OCL constraints used for software models.  

3. Requirement Engineering:SBVR is typically used capture software/business requirements in 

natural languages (such as English). Contrary to SBVR, OCL is employed at later stages of 

software development such as in graphical modelling (UML / SysML / BPMN). Here, OCL’s 

duty is to ensure precise modeling and representation of non-functional requirements. 

4. Side-Effect Free:Both SBVR and OCL are side-effect free languages. SBVR based rules are 

side-effect free as all SBVR rules are distinct from any enforcement defined for it. Similarly, OCL 

is a pure expression language and OCL constraints are side-effect free. Hence, the side-effect free 

OCL expression cannot change anything in the model and the state of the system. 

5. Well-Formed Expression:The SBVR business rules should be expressed in such a way that they 

can be validated for correctness by business people. Business rules should be expressed in such a 

way that they can be verified against each other for consistency. Similarly, OCL expressions are 

strictly typed. All the OCL constraints are type-checked and syntactically parsed to check that 

they are well-formed expressions. 

A.4.3 Technical Features 

A set of technical features of both SBVR and OCL are compared in this section. 
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1. SBVR is based on Formal Logics: The formal semantics of SBVR is based on typed predicate 

logic, arithmetic, set and bag comprehension with some additional basic results from modal logic. 

Here, the logic is essentially classical logic, so mapping to various logic-based languages is 

simple. Similarly, OCL also has its roots in mathematical logic. OCL is based on set theory and 

predicate logic and has a formal mathematical semantics. 

2. Formal Semantics:A set of logical formulations have been defined in SBVR 1.0 document to 

provide a foundation for formal semantics. Typically, a business glossary or an enterprise 

vocabulary based information models are used by the business stakeholders for formal semantics. 

More formal semantics can be added through business facts and business rules. Similarly, OCL 

constraints are also semantically formal as OCL formal semantics are described using UML. The 

semantics of OCL expressions are consistent to a UML class model. 

3. Two-value Logic vs Three-value Logic: SBVR’s underlying logic is isomorphic (standard truth-

functional logic) rather than epistemic logic. The truth functional logic is two-valued, with 

negated existential formulae being used to avoid the use of null values.Contrary to SBVR, OCL is 

based on a three-valued logic. OCL’s Boolean expression can result in true, false or undefined. 

Here, the three-valued logic can result in unexpected results. 

4. Inherent Extensibility: An extended SBVR vocabulary is created by including the SBVR 

vocabulary into another business vocabulary that has other designations. The SBVR Vocabularies 

given by this specification are based on the English language, but can be used to define 

vocabularies in any language.Similarly, OCL inherits UML vocabulary (classes, associations, 

methods, etc) to complete basic OCL expressions.  

The comparison of SBVR with OCL (together with its commercially-available tool support) in 

terms of syntactical, principal and technical features has helped to explore SBVR and OCL’s 

commonalities and discords. The comparison shows a remarkable similarity between the two, 

such as both are based on formal reasoning. The identified commonalities can lead to a 

transformation from one standard to other. 

A. 5 Resolving Syntactic Ambiguities in NL Specification of Constraints using UML 
Class Model 

13th International Conference on Computational Linguistics and Intelligent Text 

Processing (CICLing 2012), Delhi, India, March 2012, pp:178-187 

A paper was published in CICLing 2012 (held in India) to present a set of identified syntactic 

ambiguities in NL specification of constraints and an approach to resolve such syntactic 

ambiguities [Bajwa, 2012a].To address lexical and attachment ambiguities a novel approach is 

presented in this paper. We have identified that the both ambiguities are due to the absence of the 

context and by suing the context of the English text the correct interpretation of the ambiguous 

words and phrases is possible. In NL2OCL project, to translate NL specification of constraints to 

OCL constraints, two inputs are required: English specification of a constraint and a UML class 
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model. We propose the use of the information (such as classes, methods, attributes, associations, 

etc.) available in the input UML class model for correct syntactic analysis.The used approach for 

addressing the both types of syntactic ambiguities is explained below: 

A.5.1   Solution for Resolving Attachment Ambiguity 

The attachment ambiguity can be resolved using the context. For generating correct 

dependencies of input English sentences, we again use the information on hand in the input UML 

class model. As, attachment ambiguity is due to the ambiguous role of noun with a preposition in 

a sentence. To resolve attachment ambiguity, three (can be four or more) nouns are mapped to 

the class names in the input UML class model. Once the three classes are identified, the 

associations in those three classes are analyzed. With the help of the associations in the candidate 

classes the relationships in nouns are correctly identified. For example, the case of attachment 

ambiguity shown in Figure A.5.1involves three nouns ‘pay’, ‘employees’, and ‘bonus’. All these 

three nouns are mapped to three classes (such as ‘Employee’, ‘Pay’, and ‘Bonus’) in the UML 

class model given in FigureA.5.2. After this mapping, the associations in all three classes are 

analyzed. The Stanford parser wrongly identifies that noun ‘bonus’ is attached to the noun 

‘employees’. However, the UML class model shows that there is no relationship in classes 

‘Bonus’ and ‘Employee’. While, there is a relationship in class ‘Pay’ and class ‘Bonus’. By using 

this information, we can correct the wrong dependencies.  

English:The pay is given to all employees with bonus. 

Typed Dependency (Collapsed): det(pay-2, The-1) 

nsubjpass(given-4, pay-2) 

auxpass(given-4, is-3) 

det(employees-7, all-6) 

prep_to(given-4, employees-7) 

prep_with(employees-7, bonus-9) 

Figure A.5.1. Incorrect typed dependencies (collapsed) generated by the Standord Parser 
 

 

Figure A.5.2.A UML class model 

We have generalized the used approach so that all variations of the discussed type of attachment 

ambiguity can be handled. For this purpose, the analysis of the relationships in classes of a UML 

class model such as associations (directed and un-directed), aggregations and generalizations can 

play a key role.  
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A.5.2   Solution for Resolving Lexical Ambiguity 

As, we have explained earlier that the absence of the context is the major reason of ambiguity. 

For correct POS tagging of all English sentences especially the case of lexical ambiguity 

(homonymy), we aim to use the available information in the target UML class model such as 

class names, attribute names, method names, associations, etc. In syntactic analysis, once we get 

the output of the Stanford POS tagger, we map all the words and their tags with the UML class 

model and confirm that all POS tags are correctly identified. 

The process of mapping of POS tagged text to the UML class model is very simple. The POS 

tags of all the words are mapped to the elements of the UML class model. A set of mappings 

were defined for this purpose as shown in Table A.5.1. If the token matches to an operation-

name or a relationship name then it is a verb or if the ambiguous token matches to a class-name 

or attribute-name then it is classified as a common noun or proper noun. 

Table A.5.1.  Mapping of English elements to UML class model elements 

UML class model elements English language elements 

Class names    → Common Nouns 

Object names    → Proper Nouns 

Attribute names    → Generative Nouns, Adjectives 

Method names    → Action Verbs 

A ssociations    → Action Verbs 

   

By using the information shown in Table I, we can correctly POS tag the example of homonymy 

discussed in Section 2.2. In Figure A.5.3, it is shown that ‘books’ is an association in two classes 

‘Customer’ and ‘Item’. By using such information, it is identified that ‘books’ cannot be a noun 

in the context of UML class model. However ‘books’ can be a verb and the correct POS tag of  

token ‘books’ should be ‘VBZ’ as the token ‘books’ is it is postfix of MD ‘can’. 

 

Fig A.5.3.A UML Class model 

After POS tag correction, the parse tree and dependencies are also corrected (See Figure A.5.4). 
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English:    A customer books two items. 

Tagging:  [A/DT]  [customer /NN]  [books/NN]  [two/CD]  [items/NNS]  [./.] 

Figure. A.5.4. Incorrect Parts-of-Speech tags, generated by the Stanford POS Tagger 

The primary objective of the paper was to address the challenge of resolving various cases of 

syntactic ambiguity such as attachment ambiguity and homonymy. By resolving the said cases of 

syntactic ambiguity the accuracy of machine processing can be improved. To address this 

challenge we have presented a NL based automated approach that uses a UML class model as a 

context of the input English (constraints) and by using the available information in the UML 

class model (such as classes, methods, associations, etc.) we can resolve attachment ambiguity 

and homonymy. The results show a significant improvement in the accuracy of the Stanford POS 

tagger and the Stanford parser. By improving the accuracy of the Stanford POS tagger and the 

Stanford parser, the accuracy of English to OCL translation is also improved to 92.85% that was 

earlier 84.7%.  

A. 6 Semantic Analysis of Software Constraints 

The 25th International FLAIRS Conference, Florida, USA, May 2012, pp:8-13 

The presented approach was using metadata of UML Class Model to resolve identified syntactic 

ambiguities. Two more papers were published in the 25th edition of FLAIRS, held in USA: the 

focus of one paper was the semantic Analysis of Software Constraints [Bajwa, 2012b]. For 

translating English specification of constraints to OCL constraints, the NL2OCL approach was 

used. In the NL2OCL approach, two inputs are given: a txt file containing English specification 

of a constraint, and a UML class model in EMF (Eclipse Modeling Framework) ECORE format. 

First English specification is syntactically and semantically analyzed to extract OCL elements 

and then finally an OCL expression is generated. 

The Royal & Loyal case study has also been solved by Wahler [2008] in his PhD thesis. We aim 

to compare the results of our approach to Pattern based approach as Wahler’s approach is the 

only work that can generate OCL constraints from a natural language. There are 26 English 

constraints in the Royal & Loyal case study. Wahler solved 18 English constraints into OCL out 

of 26 using his (pattern-based) approach. In comparison to Wahler’s pattern based approach, our 

NL-based approach has successfully translated 25 constraints to OCL. 

A. 7 Addressing Semantic Ambiguities in Natural Constraints 

The 25th International FLAIRS Conference, Florida, USA, May 2012, pp:262-267 

This paper highlights the identified set of semantic ambiguities in NL constraints. An approach is 

also presented in the paper to address the identified set of semantic ambiguities in NL constraints 

[Bajwa, 2012c]. The present approach helps in improving semantic role labeling and quantifier 
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scope resolution in terms of accuracy. A set of ambiguities in shallow and deep semantic parsing 

are identified that are due to the absence of the context. However, these semantic ambiguities can 

be resolved by using the context of the English text. In the NL2OCL project, to translate English 

specification of constraints to OCL constraints, two inputs are required: English specification of 

a constraint and a UML class model. We propose the use of the information (such as classes, 

methods, associations, multiplicity, etc.) available in the input UML class model to handle 

semantic ambiguities.The used approach for addressing the both types of semantic ambiguities is 

explained in remaining part of the section. 

A.7.1 Addressing Semantic Ambiguities 

It is a fact that the semantic ambiguities in English constraints are due to absence of the context 

of the constraint. As, a UML model is a typical context of the OCL constraints, we use the UML 

class model shown in Figure A.7.2 to address the identified semantic ambiguities. 

English: A customer cannot place more than two orders. 

Figure A.7.1. Input English Constraint 

 

Figure A.7.2. A UML class model 

To identify correct semantic roles, we worked out a mapping in English constraints, UML class 

model and SBVR based semantic roles. 

English Elements UML Elements SBVR based Semantic Roles 

Common Nouns Classes Object Type 

Proper Nouns Objects Individual Concept 

Generative Noun, Adjective Attributes Characteristic 

Verbs Methods Verb Concepts 

Associations Fact Type 

 

Table A.7.1.Identifying Semantic Roles 

The first case of semantic ambiguity was related to assignment of semantic roles to a verb in 

English constraint. It is shown in Figure A.7.2 that ‘Customer’ and ‘Order’ are two classes while 

‘place’ is name of a method. Due to the fact that methods in a UML class model are action 

performed by the class, we classify verb ‘place’ as a Verb Concept (see Table A.7.1). If the verb 

‘place’ is an association among classes ‘Customer’ and ‘Order’, it is classified as a Fact Type.   

We can identify correct semantic role by mapping information to the UML class model by 
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checking that verb is an operation or an association. If a verb is operation it is mapped to ‘Verb 

Concept’ else it is mapped to a ‘Fact Type’. Moreover, for the sake of confirmation we also map 

the common nouns such as ‘Customer’ and ‘Order’ to the classes in the UML class model. After 

identifying the correct semantic roles, following output was generated (see Table A.7.2) for 

example “A customer cannot place more than two orders.” 

 

English Elements Assigned Semantic Roles 

A - 

Customer Object Type 

Cannot - 

Place Verb Concept 

more than two - 

Orders Object Type 

TableA.7.2. Semantic roles assigned to input English sentence 

The second case of semantic ambiguity was related to the order of predicate arguments extracted 

for a predicate. To resolve this type of ambiguities the information of English constraint given in 

Figure A.7.1 was again mapped to the information of the UML class model shown in Figure 

A.7.2. After mapping we found that ‘Customer’ and ‘Order’ are two classes and there is a 

directed association between these two classes. The directed association shows that the 

‘Customer’ is an agent or an actor and ‘Order’ is a patient or a thematic object. In the light of this 

information it is simple to identify that the predicate arguments should be like place(customer, 

order). Another benefit of such mapping is that if English sentence in passive voice the same 

predicate will be generated, e.g., place(customer, order). 

A.7.2 Addressing Semantic Ambiguity in Quantification 

To address the semantic ambiguity, first we identified the candidate quantifier operators in 

English constraints. Then the identified quantifiers are mapped to the multiplicities of classes in 

a UML class model to confirm the quantifications. We have figured out following four types of 

the quantifications in English constraints.Output of quantification handling for the example 

discussed in the Figure 4 is shown in the Figure 5. 

 

English Elements Assigned Semantic Roles 

A Universal Quantification 

customer Object Type 

cannot - 

place Verb Concept 

more than two At-least n Quantification 

orders Object Type 

Table A.7.3. Semantic roles assigned to input English sentence 
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After shallow and deep semantic parsing, a final semantic interpretation is generated. A simple 

interpreter was written that uses the extracted semantic information and assigns an interpretation 

to a piece of text by placing its contents in a pattern known independently of the text. Figure 6 

shows an example of the semantic interpretation we have used in the NL2OCL approach: 

English:   A customer cannot place more than two orders. 

Semantic Interpretation:  

         ( place 

 (object_type = (∀X ~ (customer ? X))) 

  (object_type = §Y ~ (order ? Y)))) 

Figure A.7.3. Semantic Interpretation of English constraint 

Much work has been done in the field of natural language ambiguity identification and 

resolution. Some of the researchers have presented approaches to identify the various types of 

ambiguities in a natural language text especially the natural language software requirements. 

Hence, the resolution of semantic ambiguities in natural language specifications of software 

requirements and software constraints become more critical 

A. 8 Translating Natural Language Constraints to OCL 

JKSU - Computer and Information Sciences, June 2012, 24(2): Elsevier 

Another paper presenting the results of Royal and Loyal modal case study was presented in 

Journal of King Saud University - Computer and Information Sciences [Bajwa, 2012d]. This 

paper highlights that the researcher’s NL-based approach is more accurate than the pattern based 

approach [Wahler, 2008]. The Royal and Loyal case study is presented in this paper. The average 

F-value of results is calculated 84.15% that is encouraging for initial experiments. The results 

show that that other language processing technology such as information extraction systems, and 

machine translation systems, have found commercial applications with precision and recall 

figure well below this level. Thus, the results of this initial performance evaluation are very 

encouraging and support both the NL2OCL approach and the potential of this technology in 

general. 

A. 9 On a Chain of Transformations for Generating Alloy from NL Constraints 

7th IEEE International Conference on Digital Information Management (ICDIM 2012), 

Macau, August 2012, pp:93-98 

An extension of this work is accepted in IEEE ICDIM 2012 (held in Macau), that focuses on 

generation of Alloy code from NL constraints [Bajwa, 2011e]. This work is also used in 

qualitative analysis of our approach presented in Chapter 7, Section 7.4 as the researcher 

generates Alloy of OCL (generated by our NL approach) and if Alloy is generated correctly, it 

means that OCL is also correct. The details of this evaluation are given in Section 7.4 of this 
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thesis. The contribution of this paper is generation of Alloy from NL and then using this Alloy 

for analysis of the models. The analysis of the model can be carried out from within the 

NL2OCL, using the UML2Alloy and the Alloy Analyzer APIs. More specifically, the UML class 

diagram and the automatically generated OCL constraints were automatically transformed to 

Alloy using the API of the UML2Alloy.  

Once the Alloy model is automatically generated, we can analyse it with the help of the Alloy 

Analyzer API. This means that the Alloy Analyzer will attempt to find instances, which conform 

to the model and its constraints using combinations of up to four File and Directory instances. 

After producing a number of acceptable instances, the Alloy Analyzer returned the instance 

depicted in Figure 7. This was automatically transformed from the Alloy Analyzer analysis 

notation to UML Object Diagrams by UML2Alloy. The instance shows a directory (Directory0), 

which is not part of the directories hierarchy. Moreover we see that Directory1 is indirectly a 

parent of itself (through Directory2).  

 

Figure A.9.1. Instance provided by the Alloy Analyzer 

This is clearly an instance that is not desirable. Inspecting our initial model, we can assume that 

Constraint 2 needs to be augmented to express that a directory may not be directly or indirectly 

a parent of itself (i.e. we need to express that the parent association is acyclic). In order to do that 

we would need to express transitive closure using natural language in the NL2Alloy tool. 

However, we cannot do that since the OCL itself is missing a transitive closure operation. 

Instead of transitive closure the UML standard uses recursion to express transitive closure. More 

precisely, in recursion is used to express the allParents() operation to express that a 

Generalization relation between UML Classes is acyclic and directed.  

This research paper presents a framework for dynamic generation of the Alloy code from the NL 

specification provided by the user. Here, the user is supposed to write simple and grammatically 

correct English. The designed system can find out the required information to generate a SBVR 

representation and then transform to a complete SBVR rule, after mapping with the input UML 

model. The SBVR rules are transformed to OCL expressions and finally translated to Alloy code. 
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APPENDIXB 

TESTING RULES OF THE RULE SET 
 

In this Appendix, the researcher demonstrates the manually crated examples to test rules in the used rule 

set in the NL2OCL tool.Following are the statistics of the number of the methods, transformation 

rules, classes and others test by the researcher.  

Name of Constructs to be tested Number of Constructs Number of Tested Constructs 

Transformation Rules 20 20 

Classes 61 61 

Method 83 83 

Table B.1 –Statistics of the tested constructs 

The examples are explained below: 

B. 1 Test At Most Quantification 

Following is the example demonstrating that the use of ‘less than’ quantification and it is mapped to ‘at 

most’ in SBVR and in OCL, it is mapped to age < 30. 

English: A person's age should be less than 30 years. 

SBVR: It is obligatory that aperson'sageshouldbeat most30years. 

OCL: package: ecoreuml 
context Person 
inv: self.age <30 

endpackage 
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B. 2 Test At Most Quantification with Negation 

It is demonstrated in the following example that the use of ‘not less than’ quantification and it is mapped 

to ‘at least or exactly’ in SBVR and it is mapped to age >= 30in OCL. 

English: A person's age should not be less than 30 years. 

SBVR: It is obligatory that aperson'sageshouldbeat least or exactly30years. 

OCL: package: ecoreuml 
context Person 

inv: self.age >=30 
endpackage 

B. 3 Test At Least Quantification 

The following example demonstrates the use of ‘more than’ quantification in NL constraint and it is 

mapped to ‘at least’ in SBVR and it is mapped to age > 30in OCL. 

English: A person's age must be more than to 30. 

SBVR: It is obligatory that aperson'sagemustbeat least30. 

OCL: package: ecoreuml 
context Person 

inv: self.age >30 
endpackage 

B. 4 Test At Least Quantification with Negation 

It is demonstrated in the following example that the use of ‘not more than’ quantification in NL constraint 

and it is mapped to ‘at most or exactly’ in SBVR and in OCL, it is mapped to age <= 30. 

English: A person's age must not be more than to 30 years. 

SBVR: It is obligatory that aperson'sagemustbeat most or exactly30years. 

OCL: package: ecoreuml 
context Person 

inv: self.age <=30 
endpackage 

B. 5 Test Exactly Quantification 

The following example demonstrates the use of ‘equal to’ quantification in NL constraint and it is mapped 

to ‘exactly’ quantification in SBVR and it is mapped to age = 30in OCL. 

English: A person's age must be equal to 30. 

SBVR: It is obligatory that aperson'sagemustbeexactly30. 
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OCL: package: ecoreuml 
context Person 
inv: self.age =30 

endpackage 

There is another possible way of representing ‘equal to’ quantification in NL constraint. If a tool has a 

positive sense and no particular quantifier is mentioned, our tool considers it ‘equal to’ quantification. 

English: A person's name can be Ahmad. 

SBVR: It is obligatory that aperson'snamecan beAhmad. 

OCL: package: ecoreuml 

context Person 
inv: self.name =Ahmad 

endpackage 

B. 6 Test Exactly Quantification with Negation 

It is demonstrated in the following example that the use of ‘not equal to’ quantification in NL constraint 

and it is mapped to ‘not exactly’ in SBVR and in OCL, it is mapped to age <> 30. 

English: A person’s age must not be equal to 30. 

SBVR: It is obligatory that aperson'sagemust notbeexactly30. 

OCL: package: ecoreuml 

context Person 
inv: self.age <>30 

endpackage 

There is another possible way of representing ‘not equal to’ quantification in NL constraint. If a tool has a 

negative sense and no particular quantifier is mentioned, our tool considers it ‘not equal to’ quantification. 

English: A person's name cannot be Ahmad. 

SBVR: It is obligatory that aperson'snamecannot beAhmad. 

OCL: package: ecoreuml 

context Person 
inv: self.name<>Ahmad 
endpackage 

B. 7 Test Multiple Quantification 

There is a possibility that user can represent two quantification in single NL constraints, e.g., 

“less than and more than”. Example of such case is given below. 

English: A person's salary should be less than 8000 and more than 4000. 

SBVR: It is obligatory that aperson'ssalaryshould beat most8000andat least4000. 
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OCL: package: ecoreuml 
context Person 
inv: self.salary< 8000 and self.salary > 4000 

endpackage 

B. 8 Test Self 

Following is the test case that involves self in an invariant. 

English: A male person’s gendershould be male. 

SBVR: It is obligatory thatperson'sgendershould bemale. 

OCL: package: ecoreuml 
contextCustomer 

inv: self.gender = male 
Endpackage 

B. 9 Test size() 

The following example demonstrates the translation of size().  

English: A person must participate in at least one loyalty program. 

SBVR: It is obligatory that a personmustparticipate in at least one loyaltyprogram. 

OCL: package: ecoreuml 

context Person 
inv: self.program ->size() >= 1 

Endpackage 

B. 10 Test includes() 

In the following example, the translation of includes()is tested.  

English: A member must have a membership card. 

SBVR: It is obligatory that a membermusthaveat least one membershipcard. 

OCL: package: ecoreuml 
contextMember 

inv: self.cards -> includes(membership.card) 
Endpackage 

B. 11 Test excludes() 

The translation of excludes()is tested in the following example.  

English: A member must not have a membership card. 
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SBVR: It is obligatory that a membermust nothaveamembershipcard. 

OCL: package: ecoreuml 

contextMember 
inv: self.cards -> excludes(membership.card) 
Endpackage 

B. 12 Test isEmpty() 

The following example illustrates the translation of isEmpty().  

English: A member must not have saving account. 

SBVR: It is obligatory that a membermust nothavesaving_account. 

OCL: package: ecoreuml 

contextMember 
inv: self.saving_Account ->isEmpty() 

Endpackage 

B. 13 Test includes() 

In the following example, the translation of includes()is tested.  

English: The name of first account of a member should be Current. 

SBVR: It is obligatory that the first account of a membershould beCurrent. 

OCL: package: ecoreuml 
contextMember 

inv: self.account -> first().name = Current 
Endpackage 

B. 14 Test exist() 

The translation of exist()is tested in the following example.  

English: There must be at least one account name Saving for a member. 

SBVR: It is obligatory thatthere must beat least one accountname Saving for a member. 

OCL: package: ecoreuml 

contextMember 
inv: self.account ->exist(name=Saving) 
Endpackage 

B. 15 Test isUnique() 

In the following example, isUnique()is tested.  
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English: The account number of a member must be unique. 

SBVR: It is obligatory that the accountnumber of a membermust be unique. 

OCL: package: ecoreuml 

contextMember 
inv: self.account -> isUnique(acc|acc.number) 
Endpackage 

B. 16 Test forAll() 

The following example illustrates the translation of forAll().  

English: The account number of all members must be different. 

SBVR: It is obligatory that the accountnumber of a membermust be unique. 

OCL: package: ecoreuml 

contextMember 
inv: self.account ->forAll(m1,m2 | m1.number<> m2.number) 

Endpackage 

B. 17 Test select() 

The translation of select()is tested in the following example.  

English: There must be one card with at least 100 points.  

SBVR: It is obligatory that the accountnumber of a membermust be unique. 

OCL: package: ecoreuml 
contextMember 

inv: self.card -> select(point = 100)->size()=1 
Endpackage 

B. 18 Test Implication 

Following is the test case that involves implication in an invariant. 

English: A male person’s title should be ‘Mr.’. 

SBVR: It is obligatory thatmaleperson'stitleShould be‘Mr.’  

OCL: package: ecoreuml 

contextperson 
inv: self.isMaleimplies self.title=’Mr.’ 

Endpackage 

B. 19 Test If 

Following is the test case that involves if expression in an invariant. 
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English: If person’s gender is male then person’s title should be ‘Mr.’. 

SBVR: If person’s gender is male then it is obligatory thatperson'stitleShould be‘Mr.’  

OCL: package: ecoreuml 
contextperson 

inv: ifself.gender = male then 

self.title=’Mr.’ 

endif 
Endpackage 

B. 20 Test If-Else 

In the following test case, an invariant with if-else expression is tested. 

English: If person’s gender is male then person’s title should be ‘Mr.’ else person’s title should be 

‘Ms.’. 

SBVR: If person’s gender is male then it is obligatory thatperson'stitleShould be‘Mr.’ else 
person'stitleShould be‘Ms.’ 

OCL: package: ecoreuml 
contextperson 

inv: ifself.gender = male then 

    self.title=’Mr.’ 

     else 

        self.title= ’Ms.’ 

endif 
Endpackage 

 

 


