

A NATURAL LANGUAGE PROCESSING

APPROACH TO GENERATE

SBVR AND OCL

By

Imran Sarwar Bajwa

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

The University of Birmingham

June 2012

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ii

iii

ABSTRACT

The Object Constraint Language (OCL) is a declarative language. It is used to make well-

defined models of the Unified Modeling Language (UML) through defining a set of

constraints. However, it is a common knowledge that OCL is the least used language

among the 13 UML languages. The main cause of less use of OCL is attributed to

complex syntax of the language, overly expressive nature of OCL, and difficult

interpretation of large OCL expressions. Since, a single OCL expression can be written in

multiple possible ways, the expressive nature of OCL confuses OCL writers. The

complexity of its syntax makes the writing of OCL code difficult. Complex syntax and

descriptive nature of OCL result in very lengthy and complicated OCL expressions which

are too complex to interpret for a user. Such issues make it difficult for one to write OCL

constraints especially for the novice users.

A natural language based interface can be useful in making the process of writing OCL

expressions easy and simple. However, the translation of natural language (NL) text to

object constraint language (OCL) code is a challenging task on account of the informal

nature of natural languages as various syntactic and semantic ambiguities make the

process of NL translation to formal languages more complex. SBVR is the OMG’s recent

standard introduced to overcome the inherent ambiguity of natural languages. SBVR not

only provides natural languages a formal abstract syntax representation but it is also close

to OCL syntax as both languages (SBVR & OCL) are based on formal logic.

In this research, the major contribution is a novel approach that aims at presenting a

method based on natural language processing and model transformation technology to

improve OCL usability. The aim of the method is to produce a framework so that the user

of UML tools can write constraints and pre/post conditions in English. The framework is

useful in translating such English expressions to the equivalent OCL statements. The

proposed approach is implemented in Java as an Eclipse plugin named the

NL2OCLviaSBVR. The tool generates OCL from NL constraints via SBVR and is a

iv

proof of this concept. The NL2OCLviaSBVR allows software modelers and developers

to generate well-formed OCL expressions that result in valid and precise UML models.

An evaluation of the OCL constraints is also performed to test the performance of the

tool. For this purpose, three famous case studies have been done using the

NL2OCLviaSBVR tool. The results of the case studies manifest that a natural language

based approach to generate OCL constraints can not only help in significantly improving

usability of OCL but also outperforms the most closely related techniques in terms of

effectiveness and effort required in generating OCL.

The designed system NL2OCLviaSBVR is always capable of producing the wrong

analysis but that in such circumstances the produced formal representation is correct for a

particular, valid and potentially correct interpretation and can be corrected by manual

intervention.

KEYWORDS

Object Constraint Language, Semantics of Business Vocabulary and Rules, Natural

Language Processing

v

ACKNOWLEDGMENTS

First, I am extremely thankful to Allah Almighty for giving me the strength and fortitude

to achieve this milestone.

I owe my deepest gratitude to my supervisors Dr. Mark Lee and Dr. Behzad Bordbar, for

their enthusiasm, their encouragement, and their resolute dedication to the strangeness of

my research. Where, I cannot forget the support of Dr. Mark Lee in understanding the

field of Natural Language Processing (NLP), at the same time, I want to express my

gratitude to Dr. Behzad for introducing me to Semantics of Business Vocabulary and

Rules (SBVR) standard, Model Driven Architecture (MDA) standard and role of Object

Constraint Language (OCL) in Unified Modeling Language (UML) based software

modeling. I would also like to thank Dr. Peter Hancox and Dr. Rami Bahsoon for

providing criticisms on the progress of the work during the thesis group meetings. I also

thank to my father for proof reading my thesis and improving its English.

This work would not have been possible without the financial support of The Islamia

University of Bahawalpur (IUB) and Higher Education Commission (HEC), Pakistan. I

would also like to thank the School of Computer Science, University of Birmingham for

providing me financial support during my research.

Last but not the least I would not have been standing at the finish line had it not been for

the selfless love and prayers of my parents and wife. Especially, I would like to express

gratitude to my father for proofreading and polishing English of my PhD thesis. I

dedicate this thesis to my kids Muhammad Rafay Imran and Enaya Imran.

vi

ACRONYMS

EMF Eclipse Modelling Framework

MDA Model Driven Architecture

MDD Model Driven Development

MDE Model Driven Engineering

MOF Meta Object Facility

NLP Natural Language Processing

OCL Object Constraint Language

OMG Object Management Group

POS Parts-of-Speech Tag

QUDV Quantities, Units, Dimensions and Values

QVT Query/View/Transformation

SBVR Semantics and Business Vocabulary & Rules

SRL Semantic Role Labeling

SiTra Simple Transformer

UML Unified Modeling Language

USE UML-based Specification Environment Tool

XMI XML Metadata Interchange

XML eXtensible Markup Language

vii

PUBLISHED WORK

1. Imran Sarwar Bajwa, Behzad Bordbar, Mark Lee. (2010). "OCL Constraints Generation

from Natural Language Specification", in IEEE/ACM 14
th
 International EDOC

Conference 2010, Vitoria, Brazil, October 2010, pp:204-213

2. Imran Sarwar Bajwa, Mark Lee, Behzad Bordbar. (2011)."SBVR Business Rules

Generation from Natural Language Specification", in AAAI Spring Symposium 2011 –

Artificial Intelligence for Business Agility (AI4BA), San Francisco, USA, March 2011,

pp:2-8.

3. Imran Sarwar Bajwa, Mark Lee. (2011). "Transformation Rules for Translating Business

Rules to OCL Constraints", in ECMFA 2011 - 7
th
 European Conference on Modelling

Foundations and Applications, Birmingham, UK, June 2011, pp:132-143

4. Imran Sarwar Bajwa, Behzad Bordbar, Mark G. Lee (2011), “SBVR vs OCL: A

Comparative Analysis of Standards”, in 14
th
IEEE International Multi-topic Conference

(INMIC 2011), Dec 2011, Karachi, Pakistan, pp:261-266

5. Imran Sarwar Bajwa, Mark G. Lee, Behzad Bordbar. (2012). "Resolving Syntactic

Ambiguities in NL Specification of Constraints using UML Class Model" in

13
th
International Conference on Computational Linguistics and Intelligent Text

Processing (CICLing 2012), Delhi, India, , March 2012, pp:178-187

6. Imran Sarwar Bajwa, Mark Lee, Behzad Bordbar, (2012). “Semantic Analysis of

Software Constraints”, The 25
th
 International FLAIRS Conference, Florida, USA, May

2012, pp:8-13

7. Imran Sarwar Bajwa, Mark Lee, Behzad Bordbar, Ahsan Ali (2012). “Addressing

Semantic Ambiguities in Natural Constraints”, The 25
th
 International FLAIRS

Conference, Florida, USA, May 2012, pp:262-267

viii

8. Imran Sarwar Bajwa, Mark Lee, Behzad Bordbar. (2012). “Translating Natural Language

Constraints to OCL”, Journal of King Saud University - Computer and Information

Sciences, June 2012, 24(2): Elsevier

9. Imran Sarwar Bajwa, Behzad Bordbar, Kyriakos Anastasakis, Mark Lee (2012). “On a

Chain of Transformations for Generating Alloy from NL Constraints”, 7
th
IEEE

International Conference on Digital Information Management (ICDIM 2012), Macau,

August 2012, pp:93-98

10. Imran Sarwar Bajwa, Behzad Bordbar, Mark Lee, Kyriakos Anastasakis (2012).

“NL2Alloy: A Tool to Generate Alloy from NL Constraints”, JDIM, Dec 2012, (10)6: ,

pp:365-372

ix

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 Research Problem ... 1

1.2 Scope of the Research ... 3

1.3 Research Motivation ... 3

1.4 Published Work ... 5

1.5 Thesis Contribution ... 6

1.6 Thesis Organization ... 7

CHAPTER 2 BACKGROUND AND RELATED WORK .. 9

2.1 Preliminaries ... 9

2.1.1 Object Constraint Language (OCL) ... 10

2.1.2 Semantic Business Vocabulary and Rules (SBVR) ... 16

2.1.3 Natural Language Processing (NLP) ... 24

2.1.4 Model Driven Architecture .. 30

2.2 Related Work .. 34

2.2.1 NLP for Automated Software Engineering .. 34

2.2.2 Automated Generation of OCL .. 36

2.2.3 OCL Transformations .. 37

2.2.4 OCL Tool Support ... 38

2.2.5 SBVR Transformations .. 39

2.2.6 SBVR Tool Support ... 40

2.3 Summary ... 40

CHAPTER 3 PROPOSED SOLUTION ... 42

3.1 Thesis Statement ... 42

3.2 Hypothesis and Assumptions .. 44

3.3 Used Approach .. 45

3.4 Summary ... 48

x

CHAPTER 4 TRANSLATING NATURAL LANGUAGE TO SBVR ... 49

4.1 Pre-processing ... 51

4.1.1 Sentence Splitting .. 51

4.1.2 Tokenization .. 51

4.1.3 Lemmatization ... 52

4.2 Syntax Analysis .. 52

4.2.1 Part-of-Speech (POS) Tagging .. 53

4.2.2 Generating Syntax Tree and Dependencies ... 56

4.2.3 Voice Classification ... 61

4.2.4 Processing Conjunction and Disjunction ... 62

4.2.5 Generating an Intermediate Logical Representation .. 63

4.3 Semantic Analysis ... 63

4.3.1 Shallow Semantic Parsing .. 64

4.3.2 Deep Semantic Analysis .. 70

4.3.3 Semantic Interpretation .. 74

4.4 Generating SBVR Rule Representation .. 75

4.4.1 Constructing SBVR Rules ... 75

4.4.2 Applying Semantic Formulation .. 76

4.4.3 Applying Structured English Notation ... 77

4.5 Summary ... 77

CHAPTER 5 MODEL TRANSFORMATION FROM SBVR TO OCL .. 79

5.1 OCL Templates ... 79

5.2 Mapping SBVR based Logical Form to OCL ... 82

5.2.1 Logical Expression ... 83

5.2.2 Relational Expressions ... 83

5.2.3 Postfix Expressions .. 83

5.2.4 Navigation .. 84

5.2.5 Conditional Expression .. 84

5.3 SBVR to OCL Transformation Rules ... 85

5.3.1 Generating OCL Context ... 86

5.3.2 Generating OCL Constraints .. 87

5.3.3 Generating OCL Invariants .. 88

5.3.4 Generating OCL Pre/Post Conditions .. 89

xi

5.3.5 Generating OCL Expressions ... 89

5.3.6 Generating OCL Operations .. 90

5.4 Limitations of Transformation .. 92

5.5 Summary ... 93

CHAPTER 6 TOOL SUPPORT ... 94

6.1 Architecture of the NL2OCLviaSBVR ... 94

6.2 Implementing NL2SBVR ... 96

6.2.1 Pre-Processor ... 97

6.2.2 Syntax Analyser ... 97

6.2.3 Semantic Analyser ... 98

6.2.4 NL to UML Mapping ... 98

6.2.5 SBVR Rule Generator .. 99

6.3 Extending SiTra for SBVR to OCL Transformation .. 99

6.4 Off-the-shelf components used in NL2OCLviaSBVR ... 100

6.5 Architecture of the NL2OCLviaSBVR ... 101

6.6 User Interface Screenshots .. 102

6.7 Tool in Use .. 103

6.8 Summary ... 106

CHAPTER 7 EVALUATION .. 107

7.1 Evaluation Criteria .. 107

7.1.1 Quantitative Criteria ... 108

7.1.2 Qualitative Criteria ... 108

7.1.3 Selection of Case Studies ... 109

7.2 Case Study: Royal & Loyal .. 109

7.2.1 The Royal & Loyal Model ... 110

7.2.2 Constraints for the Royal & Loyal Model.. 111

7.2.3 Quantitative Evaluation. ... 129

7.3 Case Study: QUDV ... 133

7.3.1 QUDV Library Model .. 134

7.3.2 QUDV Constraints ... 135

7.3.3 Quantitative Evaluation .. 139

7.4 Case Study: WebSphere Business Modeler .. 140

7.4.1 The WBM Process Model .. 141

xii

7.4.2 Constraints for the WBM Process Model .. 143

7.4.3 Quantitative Evaluation .. 146

7.5 Qualitative Evaluation .. 147

7.6 Summary ... 153

CHAPTER 8 DISCUSSION .. 154

8.1 Contribution to Knowledge ... 154

8.1.1 Specifying Constraints using Natural Language .. 154

8.1.2 Resolving Syntactic Ambiguities ... 155

8.1.3 Semantic Analysis of NL Constraints .. 155

8.1.4 Resolving Semantic Ambiguities ... 156

8.1.5 Identifying Logical Contradictions in Constraints ... 156

8.1.6 SBVR based Logical Representation ... 156

8.1.7 Specifying SBVR Rules using NL Approach .. 157

8.1.8 SBVR to OCL Transformation Rules .. 157

8.1.9 The NL2OCLviaSBVR Tool and Evaluation .. 158

8.1.10 Case Studies and their Results ... 158

8.2 Future Enhancements .. 158

8.2.1 Multiple Sentence based NL constraints .. 158

8.2.2 Improving Semantic Analysis .. 159

CHAPTER 9 CONCLUSION .. 160

REFERENCES .. 162

APPENDIX A SUMMARIES OF THE PUBLISHED WORK .. 170

APPENDIX B TESTING RULES OF THE RULE SET .. 185

xiii

LIST OF FIGURES

Figure 2.1: Generic view of OCL metamodel ... 11

Figure 2.2: Elements of selected OCL Expression metamodel ... 11

Figure 2.3: An OCL constraint with a context .. 12

Figure 2.4: OCL examples with properties ... 12

Figure 2.5: OCL example with an operation ... 12

Figure 2.6: An example of OCL Invariant .. 13

Figure 2.7: An example of OCL Precondition .. 13

Figure 2.8: OCL Postcondition ... 14

Figure 2.9: A complex OCL constraint ... 15

Figure 2.10: A more complex OCL constraint ... 15

Figure 2.11: SBVR meaning metamodel [OMG, 2008] ... 16

Figure 2.12: Elements of selected SBVR metamodel ... 19

Figure 2.13: An overview of MDD ... 31

Figure 2.14: Explanation of SiTra Model ... 33

Figure 3.1: The NL2OCL Approach ... 46

Figure 4.1: A framework for analysis of natural language constraints ... 50

Figure 4.2: Tokenized text using Stanford Parser ... 51

Figure 4.3: Tokenized text using Stanford Parser ... 52

Figure 4.4: Parts-of-Speech tagged text ... 53

Figure 4.5: Wrong POS tagging by the Stanford POS tagger ... 54

Figure 4.6: A UML Class model involving scenario of Customer booking an item 56

Figure 4.7: Corrected Parts-of-Speech tag, parse tree and dependencies ... 56

Figure 4.8: Syntactic Tree generated using the Stanford Parser .. 57

Figure 4.9: Typed dependency (collapsed) generated using the Stanford Parser 58

Figure 4.10: A UML class model involving employee, pay, and bonus ... 59

Figure 4.11: Corrected typed dependencies (collapsed) ... 60

Figure 4.12: Identifying passive voice sentences .. 61

xiv

Figure 4.13: Identifying passive voice sentences with ‘by’ preposition ... 61

Figure 4.14: Identifying Verb phrases .. 65

Figure 4.15: English sentence with a prepositional phrase as a post modifier .. 66

Figure 4.16: English sentence with an adjective phrase and a relative finite clause 66

Figure 4.17: English sentence with a relative infinite clause as a post modifier .. 66

Figure 4.18: English sentence mapped with a UML class model ... 68

Figure 4.19: English sentence mapped with a UML class model ... 68

Figure 4.20: A UML class model involving a customer and an order class. .. 69

Figure 4.21: English sentence mapped with a UML class model ... 70

Figure 4.22: Semantic roles assigned to input English sentence. ... 72

Figure 4.23: Semantic roles assigned to input English sentence. ... 73

Figure 4.24: Logical Representation of a NL constraint ... 74

Figure 4.25: Logical Representation of a NL constraint ... 75

Figure 4.26: SBVR Fact Type generated from NL constraint. ... 76

Figure 4.27: Applying modal formulation to core SBVR rule. ... 76

Figure 4.28: Applying quantification to complement SBVR rule. ... 77

Figure 4.29: Semantic roles assigned to input English sentence. ... 77

Figure 5.1: Template for OCL invariant ... 80

Figure 5.2: Template for OCL pre-condition .. 80

Figure 5.3: Template for OCL post-condition .. 81

Figure 5.4: SBVR to OCL Transformation Framework ... 82

Figure 5.5: Applying quantification to complement SBVR rule .. 85

Figure 5.6: Generating a context ... 90

Figure 5.7: Generating a if-expression .. 91

Figure 5.8: Generating an invariant .. 91

Figure 5.9: Generating an invariant .. 91

Figure 5.10: Implementation of Rule 5.5.1 ... 91

Figure 5.11: Involved classes in implementation of Rule 5.5.1 .. 92

Figure 5.12: Interface of Rule 5.5.1 .. 92

Figure 6.1: Overview of NL2OCL Approach ... 95

Figure 6.2: Overview of NL2OCLviaSBVR Implementation .. 95

Figure 6.3: Libraries used by NL2OCLviaSBVR ... 96

Figure 6.4: Overview of NL2OCLviaSBVR Implementation .. 97

Figure 6.8: The NL2OCLviaSBVR architecture .. 102

xv

Figure 6.9: Windows look & feel for the tool ... 102

Figure 6.10: Screen shot of NL2OCLviaSBVR .. 103

Figure 6.11: Input dialogue of the NL2OCLviaSBVR ... 104

Figure 6.12: Input dialogue of the NL2OCLviaSBVR ... 104

Figure 7.1: The Royal & Loyal model .. 110

Figure 7.2: A subset of the Royal & Loyal model. ... 115

Figure 7.3: A subset of the Royal & Loyal model. ... 116

Figure 7.4: A subset of the Royal & Loyal model .. 117

Figure 7.5: A subset of the Royal & Loyal model .. 119

Figure 7.6: A subset of the Royal & Loyal model .. 120

Figure 7.7: A subset of the Royal & Loyal model .. 121

Figure 7.8: Windows look & feel for the tool ... Error! Bookmark not defined.

Figure 7.9: A subset of the Royal & Loyal model .. 126

Figure 7.10: Specification Coverage: NL Approach vs. Pattern Approach .. 130

Figure 7.11: Ease to generate constraints: Manual vs. By Tool .. 132

Figure 7.12: Time saving in constraints generation: Manual vs. By Tool .. 133

Figure 7.13: Throughput Measure: Manual vs. By Tool .. 133

Figure 7.14: QUDV Unit diagram .. 134

Figure 7.15: QUDV Concepts Diagram .. 135

Figure 7.16: Screenshot of the process-merging prototype in WBM [Wahler, 2008]. 140

Figure 7.17: Process model: activity nodes (A) .. 141

Figure 7.18: Process model: connectable nodes (B) ... 142

Figure 7.19: Process model: control actions (C) ... 142

Figure 7.20: OCL syntax checking ... 147

Figure 7.21: OCL syntax checking ... 148

Figure 7.22: USE Evaluation Browser showing input invariant is True ... 149

Figure 7.23: OCL verification using Object diagram in USE ... 150

Figure 7.25: OCL verification using Object diagram in USE ... 151

xvi

LIST OF TABLES

Table 4.1: Mapping of English elements to UML class model elements .. 55

Table 4.2: An intermediary logical representation of a NL constraint.. 63

Table 4.3: SBVR based semantic role labels used in SRL .. 64

Table 4.4: SBVR based semantic role labels used in SRL .. 69

Table 5.1: Mapping logical expressions .. 83

Table 5.2: Mapping relational expressions .. 83

Table 5.3: Mapping postfix expressions .. 84

Table 5.4: Mapping navigation expressions .. 84

Table 5.5: Mapping conditional expressions ... 85

Table 6.1: Overview of the components used in the NL2OCLviaSBVR ... 100

Table 7.1: Overview of Royal & Loyal Model ... 111

Table 7.2: OCL elements covered by the NL2OCL approach .. 129

Table 7.3: OCL Generation: NL2OCLviaSBVR vs. Copacabana .. 129

Table 7.4: Specification Coverage: NL Approach vs. Pattern Approach .. 131

Table 7.5: Usability Survey Results ... 132

Table 7.6: Overview of QUDV Model ... 135

Table 7.7: OCL Generation: NL Approach vs. Pattern Approach .. 139

Table 7.8: Overview of WBM Process Model .. 143

Table 7.9: OCL Generation: NL Approach vs. Pattern Approach .. 146

xvii

CHAPTER 1

INTRODUCTION

This chapter presents the overview of the research area addressed in this thesis. The research

problem has also been described in detail along with the research motivations, the major research

objectives and the published work.

1.1 Research Problem

In object-oriented software engineering, the Unified Modelling Language (UML) is used to

visually represent software models. UML has been adopted as the de-facto standard for the

design, modelling and documentation of software systems [Gogolla, 2007]. There are lots of

tools which allow not only modelling and design but also support creation of code, reverse

engineering, versioning [Engles, 2001]and much more. However, it is a well-known fact that the

least used of all UML languages is OCL. This is often attributed to complex syntax of the

language [Wahler, 2008].

 The developer’s ability to use OCL is very important. Faultless OCL constraints and pre/post

conditions quite significantly improve the clarity of software models and make models more

precise [Wahler, 2008]. Users have to translate manually the NL representations of the

constraints to OCL syntax. The manual effort to create an OCL constraint usually results in

inaccurate and inconsistent constraints specification [Gogolla, 2007] for many reasons. First of

all, the OCL syntax is very hard to code [Wahler, 2009]. Secondly, OCL is a highly expressive

language that results in multiple possible OCL expressions from a single NL representation. This

multiplicity of OCL expressions confuses the user during manual creation [Cabot, 2009].

C
h

ap
te

r
1

In

tr
o

d
u

ct
io

n

2

Thirdly, there are no means available for semantic verification of the OCL constraints so that it is

not easy to decide if they mean exactly what they were written for.

Besides, constraints specification, OCL can be used for specifying models for analysis purposes

as shown in the UML2Alloy project [Shah, 2008]. Improving the usability of OCL will also

assist developers who are not experts in formal methods for producing specifications in

automatic analysis.

The OCL usability issue becomes more critical on account of the absence of a tool that is capable

of automatically creating OCL constraints from NL specification. This is critical because the

existing OCL tools, e.g., Dresden OCL Toolkit [Demuth, 2009], IBM OCL Parser [IBM, 2009],

USE [Gogolla, 2007], ArgoUML [Rompaey, 2007], Cybernetic OCL Compiler [Emine, 2008]

are just limited to syntax verification and type checking.

There is need of an approach that allows development of tools and techniques that provide

assistance in writing OCL. Wahler has tried to tackle this problem using a template based

approach [Wahler, 2008]. However, this thesis is adopting a radically new approach by bringing

together two main domains of computer science: model transformation and Natural Language

Processing (NLP). Using natural languages and transformation to OCL seems like an intuitive

approach. However, we adopt a systematic way to use SBVR to restrict the domain of NL text

and generate OCL code from the SBVR representation. The OCL usability can be increased

through automatically generating accurate and consistent code for OCL constraints.

Modelling Software is a process in software engineering, in which information or knowledge is

represented in a structure. Since the emergence of object-oriented software engineering, visual

models are very common to represents software schemas.In the context of the above described

scenario, the proposed research addresses the following four key scientific questions:

 How can the natural language text be analysed to understand meaning and extract the

required knowledge from the text?

 How can SBVR be useful in making natural language syntactically restricted and

semantically formulated?

 How can the informal representation i.e. natural language text be transformed into formal

representation i.e. Object Constraint Language.

C
h

ap
te

r
1

In

tr
o

d
u

ct
io

n

3

 What is the effect of Natural Language based software modeling in the software design

process?

1.2 Scope of the Research

The contributions expected from this work are mainly centered in two areas: (1) NLP and (2)

model-driven Software Engineering. The conversion of natural language text into OCL constraints

requires syntactic and semantic knowledge. Here, a translation process is required that is robustly

capable of dealing with natural language ambiguity and vagueness. The development of new

methods for syntactic and semantic analysis is one of the main contributions of this research.

Methodologies like Model Transformation and Markov Logics have been proposed to develop

these new NLP methods. There are also other contributions in the NLP area, which is the study and

modelization of language pragmatics and ambiguity resolution of NL.

The researcher is aware of the fact that a NLP based solution cannot be 100% accurate due to

informal nature of NL. The researcher has made pair usage of NL and automated generated

SBVR. These can help in resolving ambiguities and clarifying vagueness by pointing them out.

However, this will not be a 100% solution either and the researcher is aware of it. The designed

system NL2OCLviaSBVR always tends to produce the wrong analysis but in such circumstances

the produced formal representation is correct for a particular, valid and potentially correct

interpretation and can be corrected by manual intervention.

The other main contribution of this research is the development of new ways of helping software

engineers to develop software models, making their work more productive and efficient. The

most familiar language for humans is natural language. So a tool that could help translating what

the software engineer wants into what the machine understands is a valuable tool for software

companies.

1.3 Research Motivation

The use of natural langauge processing in software enigneering and specifically the translation of

natural languages to formal specifications is not a brand new proposal. Automated translation of

natural language (e.g. English) specifications to formal specification (e.g., E-R models, object

oriented analysis, UML models, high-level languages code, database queries) have already been

C
h

ap
te

r
1

In

tr
o

d
u

ct
io

n

4

achieved. Overmyer [2001] has presented conceptual modeling of natural language (NL)

requirement specification and generation of Entity-Relationship models. Further, Osborne

[1996], Mich [1996], Delisle [1999] have presented automated processing of NL based

requirement specifications. Natural language processing was incorporated to automate object

oriented analysis and modeling of NL based software requirement specifications is presented by

Juristo [2000], Brown [2002], Perez-Gonzalez [2002], Cockburn [2002], Li [2005]. Natural

language based requirement engineering and generation of UML models has also been presented

by a few researchers. Rolland [1992] used a linguistic approach to process natural languages

statements and generation of conceptual specification.

A few Natural language based tools have also been introduced to generate formal specifications,

e.g., NL-OOPS [Mich, 1996], LIDA [Overmyer, 2001], GOOAL [Perez, 2002], CM-Builder

[Hermain, 2003], Rebuilder [Gomes, 2006], UML-Generator [Bajwa, 2008], R-TOOL [Vinay,

2009], etc. None of these tools provides support for translating NL specification to OCL

constraints. The aim of the proposed research is to extend this work by automating the process of

annotating UML models with OCL constraints. An English based user-interface to create OCL

constraints for UML models can make not only the OCL more adaptable but also assist in

automatic analysis of object-oriented models.

The main idea of the research is to propose the idea of writing constraints specification for a

UML model in English and then transforming the English specification to OCL syntax. The

automatic transformation of English specification to OCL syntax involves semantic analysis of

English specification and its mapping with OCL constraints. The direct transformation of

English specification to OCL constraints is difficult due to the informal syntax and inconsistent

semantics of English. The researcher proposes the use of the Semantics of Business Vocabulary

and Rules (SBVR) [OMG, 2008] to reduce complexity involved in the processing of natural

languages as SBVR has already been used to represent Business designs [Raj, 2009]. SBVR is

used as an intermediate language for English to OCL transformation as SBVR is a formal

representation of English and close to OCL syntax. A methodology is designed for the automatic

transformation of English to SBVR and SBVR to OCL constraints that will be based on a set of

transformation rules. During English to SBVR transformation, SBVR specification is also

mapped with the given UML model to semantically verify the defined constraints before it is

finally transformed to OCL syntax. The proposed automated transformation will not only soften

C
h

ap
te

r
1

In

tr
o

d
u

ct
io

n

5

the process of creating OCL but also enhance the adoptability of OCL by providing automatic

mechanism of semantic verification with a UML model and semantic validation with user input.

The researcher also aims at addressing OCL usability problem in this thesis.

1.4Published Work

During three years of PhD research, the major contributions by the researcher were published in

reputed conferences and journals. An overview of the work published during PhD research is

given below.

The first paper was published in EDOC 2010, held in Brazil. The paper was based on the main

idea of research that NL constraints can be automatically translated to OCL constraints [Bajwa,

2010]. In this paper, the researcher presented how SBVR can play a useful role in translation of

NL specification of constraints to OCL invariants and OCL pre/post conditions.

In 2011, a paper was published in AAAI spring symposium, held in USA that was addressing the

SBVR rules aspect of this research [Bajwa, 2011a]. In this research, the researcher is generating

SBVR rules from NL constraints and then mapping such SBVR rules to OCL. In this paper, the

researcher presented an automated approach that can process NL constraints to extract SBVR

vocabulary and generate a complete SBVR rule. Another paper was published in ECMFA 2011

conference, held in UK. This paper presented the set of transformation rules used to transform a

SBVR rule to an OCL constraint [Bajwa, 2011b]. In 2011, another paper by the researcher was

published in 14th IEEE INMIC, held in Pakistan. This paper presented the key findings during a

study of SBVR and OCL standards. A comparison of both standards is also presented in this

paper to highlight various similarities and differences in both standards [Bajwa, 2011c]. This

study helped the researcher in SBVR to OCL transformation.

A few more papers were published in 2012. A paper was published in CICLing 2012 (held in

India) to present a set of identified syntactic ambiguities in NL specification of constraints and

an approach to resolve such syntactic ambiguities [Bajwa, 2012a]. The presented approach was

using metadata of UML Class Model to resolve identified syntactic ambiguities. Two more

papers were published in 25th edition of FLAIRS, held in USA: the focus of one paper was the

semantic Analysis of Software Constraints [Bajwa, 2012b] while the other paper highlights the

identified set of semantic ambiguities in NL constraints. An approach is also presented in the

C
h

ap
te

r
1

In

tr
o

d
u

ct
io

n

6

paper to address the identified set of semantic ambiguities in NL constraints [Bajwa, 2012c]. The

present approach helps in improving semantic role labeling and quantifier scope resolution in

terms of accuracy. Another paper presenting the results of Royal and Loyal modal case study

was presented in Journal of King Saud University (JKSU) - Computer and Information Sciences

[Bajwa, 2012d]. This paper highlights that the researcher’s NL-based approach is more accurate

than the pattern based approach [Wahler, 2008]. An extension of this work is accepted in IEEE

ICDIM 2012 (held in Macau), that focuses on generation of Alloy code from NL constraints

[Bajwa, 2011e]. This work is also used in qualitative analysis of our approach presented in

Chapter 7, Section 7.4 as the researcher generates Alloy of OCL (generated by our NL approach)

and if Alloy is generated correctly, it means that OCL is also correct. The details of this

evaluation are given in Section 7.4 of this thesis.

1.5 Thesis Contribution

In Section 1.1, a set of questions are raised that are core of this research thesis. To answer these

questions various investigations were performed and new results were achieved. We have

provided the details of each answer in various chapters of this thesis.

1.5.1How the informal representation by natural language text can be transformed

into a formal representation using the Object Constraint Language.

To transform natural language representation of constraints to formal constraints, the NL2OCL

approach is presented in this thesis. The NL2OCL approach is a fundament thrust of the

presented research and is explained in Chapter 3, Section 3.3. The NL2OCL approach works in

two phases: the NL to SBVR translation, explained in Chapter 4 and SBVR to OCL

transformation, explained in Chapter 5.

1.5.2 How a natural language text can be analysed to understand its meaning and

extract the required knowledge from the text?

To extract meaningof NL constraints, we had to deal with various syntactic and semantic

ambiguities. The approach used to deal with syntactic ambiguity is explained in Chapter 4,

Section 4.2,and while as the approach used to address the semantic ambiguity is explained in

Chapter 4, Section 4.3.

C
h

ap
te

r
1

In
tr

o
d

u
ct

io
n

7

1.5.3 How SBVR can be useful in making natural languages syntactically restricted

and semantically formulated.

In the NL2OCL approach, SBVR plays a key role as the researcher uses SBVR based

intermediate representation in NL to OCL transformation.A detail of such intermediate

representation is given in Chapter 4, Section 4.3. A set of model transformation rules to

transform a SBVR rule to an OCL expression are explained in Chapter 5, Section 5.3.

1.5.4How well the NL approach works for generating formal representation such as

OCL?

To evaluate the performance in terms of correctness of NL2OCL approach, three case studies are

done. The details of these case studies with results are discussed in Chapter 7.

1.6 Thesis Organization

The remaining thesis is structured into a set of chapters. Each chapter describes a distinct part of

research. Brief overview of each chapter is given below:

Chapter 2 presents the preliminaries of the presented research. In this chapter we provide an

overview of the fundamental concepts, such as OCL, SBVR, NLP, MDA and model

transformations. The work related to the field of NL-based automated software modelling and

automated transformations for SBVR and OCL is presented in the second part of the chapter to

highlight the significance of the presented research.

Chapter 3 presents the thesis statement of this research. A set of hypotheses are also highlighted

in the chapter which the researcher has tried to prove in the rest of the thesis. Moreover, a sketch

of the NL2OCL approach has also been provided.

Chapter 4 presents the first part of the NL2OCL approach that deals with the processing of

natural language constraints and generate a SBVR based logical representation. The core of this

chapter is syntax and semantic analysis of NL constraints. The researcher also presents major

innovations and contributions of the research in the same chapter.

Chapter 5 presents the approach used to transform SBVR business rules to OCL constraints. This

chapter provides the details of SiTra based model transformation and the transformation rules

involved in SBVR to OCL transformation.

C
h

ap
te

r
1

In

tr
o

d
u

ct
io

n

8

Chapter 6 highlights the key features and implementation details of the NL2OCLviaSBVR tool.

Moreover, the architecture of the tool as well as the used libraries in transformation of NL to

OCL has also been discussed.

Chapter 7 presents evaluation criteria and also provides the details of three case studies solved to

validate the performance of the tool discussed in Chapter 6. The results of all three cases studies

have also been discussed under the headings of quantitative and qualitative evaluation. The

chapter also presents a set of limitations of the presented approach.

Chapter 8 discusses the key contribution in thesis. In addition, we conclude the presented work

by highlighting the overall contributions of the research presented in this thesis. The chapter ends

with pointed out areas for future research.

Chapter 9 presents the concluding remarks of the thesis.

9

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents background of the research and a brief introduction to preliminary concepts

which have been used later on in this thesis. The second half of the chapter presents the work

related to translation of a Natural Language (NL) to formal and software engineering languages.

Automated transformation and tools for OCL and SBVR are also discussed at the end of the

chapter.

2.1 Preliminaries

The standards like UML, OCL and SBVR are involved in modern information systems to ensure

quality and correctness. UML is a de-facto standard. UML provides a graphical notation to

represent software conceptual schema or models. Here, OCL based textual constraints are used

to restrict UML based conceptual schemas. Similarly, SBVR provides a formal representation for

software and business requirements. On the other hand, SBVR based requirements are not only

easy to read for users but also simple for machine-process.

In this section, an introduction is presented of various concepts that are involved in the present

research and have been used throughout the thesis. First, an introduction of the Object Constraint

Language (OCL) along with its role in UML-based modelling is presented. Then the basics of

SBVR and role of SBVR in modern software Engineering are discussed. Afterwards, the

researcher describes fundamentals of Natural Language Processing (NLP) and elaborates typical

phases involved in NLP. Finally, the concept of Model Driven Architecture (MDA) is elaborated

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

10

to highlight the basics of model transformation with Simple Transformers (SiTra) [Akehust,

2007] that plays a key role in this research.

Before going into details of OCL and SBVR, it is pertinent to define meta-models. A metamodel

[OMG, 2010] is a key part of standards such as OCL and SBVR and metamodel is a simplified

descriptive model (blueprint) of another descriptive model.

2.1.1 Object Constraint Language (OCL)

The Object Constraint Language (OCL) is an adopted standard of the Object Management Group

(OMG) and typically used to annotate UML models with constraints. Constraints specified in

OCL help to restrict UML models [Cabot, 2009] but they also increase maturity level of a UML

model [Wahler, 2008]. OCL is a declarative language that can also be used with the Meta-Object

Facility (MOF) standard. Recently, OMG proposed the role of OCL in the

Queries/Views/Transformations (QVT) specification to be used for model transformations

[OMG, 2010]. OCL is a side-effect free language. That means OCL does not introduce any new

object in a UML model but completes the meanings of the existing objects. In addition, an OCL

constraint always conforms to the OCL meta-model. In the UML standards, OCL is also used

for expressing constraints to satisfy the well-definedness criteria.

In this thesis, we target the ability of OCL to write invariants for a UML class model. The

following sections bring out a brief overview of OCL syntax with examples and highlight

various features of OCL.

A. OCL Syntax

To define the basic structure of an OCL expression, OCL syntax is given in OCL 2.0 [OMG,

2006] document. A simplistic view of OCL meta-model is shown in Figure 2.1. Abstract syntax

typically deals with the grammar and structure of the OCL statements. OCL abstract syntax is

further defined into OCL types and OCL expressions. Common OCL types are data types,

collection types, message types, etc. While, OCL expressions can be call expression, if

expression, literal expression, variable expression [OMG, 2006], etc. We have used a selected set

of OCL abstract syntax for implementation that does not include OCL types.

http://en.wikipedia.org/wiki/QVT

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

11

Figure 2.1:Generic view of OCL metamodel

The focus of the present research is the OCL expressions. Figure 2.2 shows the abstract syntax

meta-model [OMG, 2006] of OCL expressions. It is shown that there are four possible types of

an OCL expression such as CallExpression, IfExpression, LiteralExpression and

VariableExpression. Here, a CallExpression can be a LoopExpression, and

OperationCallExpresion. However, IteratorExpression can be a type of

LoopExpression. Moreover, in the OCL expression meta-model, there is a

VariableDeclaration object for aVariableExpression.

Figure 2.2: Elements of selected OCL Expression metamodel

IfExpression LiteralExpression CallExpression VariableExpression

OCLExpression

LoopExpression OperationCallExpression

VariableDeclaration

varName : string

IteratorExpression

+ body

0…1

0…1

+ source

1

0…1
- applied Property 0…1

0 … 1

+ init Expression

0…n

1 + Declared Variable

+ Initialized Variable

0…1

+ Loop

Expression

0…1

+ result

+ Iterators + Base Expression

1

1…n

Operation
0…1

operation

exp 1

ModelElement

name : string

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

12

The syntax of a typical OCL expression is composed of the four components as explained below:

i. Context: A context [OMG, 2006] in OCL constraint specifies the scope of that constraint as

shown in Figure 2.3. The OCL context limits a world of an expression in which it is valid.

Context can be different for an invariant and pre/post condition such as for an invariant, a

context is a name of a class whereas for a pre/post condition a context is combination of a class

and targeted operation of that particular class. Typical context is a class name which it belongs

to. Keyword “self” is used to refer to a context in an OCL constraint.

- context Person -- for invariant

- context Person::setAge(newAge:int) -- for pre/post condition

Figure 2.3: An OCL constraint with a context

ii. Property: An OCL property [OMG, 2006] represents an attributes or operation of a class. The

“.” operator is used to specify such properties. A possible OCL property can be an attribute of a

class, a method of a class or an association between two classes. An example of OCL property is

shown in Figure 2.4.

- person.age or self.age-- an attribute as OCL property

- person.isAdult() or self.isAdult()-- a method as OCL property

Figure 2.4: OCL examples with properties

iii. Operation: An OCL operation [OMG, 2006] manipulates or qualifies a property on an

attribute or set of attributes related to a class (see Figure 2.5). Collection types are also a part of

OCL typically used to handle set of attributes. To perform various functions, various operations

are available such as to return number of elements operation size() is used. Similarly,

operation exists() returns that an object exists in a domain or not. Examples of OCL

operations are shown in Figure 2.5.

- self.items->size() -- operation returns number of items

- self.order->exists() -- operation returns True if objects exists

Figure 2.5: OCL example with an operation

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

13

iv. Keyword: The OCL keywords [OMG, 2006] are also important parts of any OCL constraint.

Typically, used OCL keywords are if, then, else, and, or, not, implies, etc. Some

keywords like and, or, not, etc. are used to represent the conditional expressions in a

constraint, while some other keywords like inv, result, pre, post, def, etc. are used to

represent various sections of an OCL constraint.

B. Types of OCL Constraints

An OCL constraint defines a restriction on state or behaviour of an entity in a UML model. A

restriction on the state of an entity is represented using an OCL invariant, while behaviour of an

entity is expressed using OCL pre/post condition. The OCL constraint defines a Boolean

expression that always results in True or False. If the constraint results true, the system is in valid

state. There are three types of OCL constraints:

i. Invariants: An OCL invariant [OMG, 2006] is a constraint that must always be convened by

all instancesof the class. An invariant is a condition that has to be TRUE always. Invariants

typically represent structural information and used to restrict an entity in a model. An example of

an invariant is shown in Figure 2.6.

context Person

inv: self.age<18 implies self.car -> forAll(v | not v.oclIsKindOf(Car))

Figure 2.6: An example of OCL Invariant

ii. Precondition:A precondition [OMG, 2006] is a restriction on a method of a class. A

precondition is a constraint that should be TRUE always before the execution of a method starts.

Preconditions typically represent behavioural information. An example of a precondition is

shown in Figure 2.7.

context Person::setAge(newAge:int)

pre: newAge >= 0

Figure 2.7: An example of OCL Precondition

iii. Postcondition:An OCL postcondition [OMG, 2006] is a constraint that should be TRUE

always after the execution of a method has finished. Similar to OCL precondition, an OCL

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

14

postcondition also represents behavioural information. An example of a postcondition is shown

in Figure 2.8.

context Person::setAge(newAge:int)

post: self.age=newAge

Figure 2.8: OCL Postcondition

C. Why Writing OCL is Difficult?

During the literature review, the researcher found various reasons which make it difficult to write

OCL, especially for the novice users. The researcher has compiled the reasons identified by

various scientists into following three dimensions:

i. OCL Syntax is Complex: In a typical software modelling scenario, a modeller has to manually

process natural language constraints by extracting various OCL elements from NL constraints

and then writing those elements in OCL syntax. However, writing OCL code manually is a

difficult and cumbersome job due to many reasons. One of the reasons is complex nature of OCL

syntax [Gogolla, 2007] that ultimately results in very lengthy and complex OCL expressions

which are difficult to write manually [Wahler, 2008]. Moreover, various issues have been

identified that are source of ambiguity in OCL postconditions [Cabot, 2006]. Such issues

confuse a user in writing OCL postconditions. Another feature of OCL, that makes it difficult to

write OCL, is expressive nature of OCL. Owing to expressive nature of OCL, there can be

multiple possible ways to write an expression in an OCL constraint [Cabot, 2007] and this

feature of OCL also confuses a user and makes it difficult to write an OCL constraint. On the

basis of these facts, we can conclude that writing OCL is difficult especially for the novice users.

ii. OCL is too Implementation Oriented: Natural Rule Language (NRL) is another initiative for

providing a user-friendly alternative to languages like OCL, XSLT, etc. [Nentwich and James,

2010]. It is identified by NRL community that OCL is too implementation-oriented and not well-

suited to conceptual modelling [Vaziri, 1999]. NRL community also presents an English-like

syntax based language CLiX to specify constraints for XML. Later on, CLiX was extended in

2006 to replace OCL in an environment as OCL was found inappropriate and difficult to write

specifically for novice users [NRL Community, 2005].

http://www.clixml.org/

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

15

iii. Declarative Nature of OCL:OCL is a declarative language. OCL constraints describe what it

wants to accomplish. While writing OCL a user’s focuses is to write declarative statements to

show a relationship between various parts of an OCL constraint [Correa, 2007]. The declarative

nature of OCL makes it difficult to understand the use and application of various OCL

expressions such as navigation expression. Actually, it is difficult to decide that when to use

navigation and when not to do. Moreover, it is also complex to identify a left hand side for a right hand

side of a navigation expression. Typically, ‘→’ is used in a OCL navigation expression to express a

relationship between two elements.

A complex example of OCL constraint for the following NL specification is shown in Figure 2.9.

This constraint exhibits most of the issues which make OCL difficult to write. First of all, there

are three possible OCL representations for the NL constraint discussed in [Cabot, 2007].

Secondly, this constraint involves three navigation expressions, as well. The NL representation

of this constraint is also given in [ibid] that is “The maximum salary of a junior employee those

with an age lower than 25 cannot earn more than the maximum junior salary value defined for

their department” [Cabot, 2007].

context Department

inv: MaxSalary: Department.allInstances() -> forAll(d|not d.employee ->

 select (e|e.age < 25) -> exists (e|a.salary > d.maxJuniorSal))

Figure 2.9:A complex OCL constraint

Similarly, a more complex example of an OCL constraint is given in [Kleppe and Warmer, 2003]

that is shown in Figure 2.10: “In the enroll()operation of LoyaltyProgram, the

postcondition specifies that there is now one more customer than before and that the new

customer’s loyalty account has no points and no transactions.”

context LoyaltyProgram::enroll(int c:Customer)

pre: not customer -> includes(c)

post: customer = customer @ pre -> including(c)

post: membership -> select(customer=c) -> forAll(

 loyaltyAccount -> notEmpty() and

 loyaltyAccount.points = 0 and

 loyaltyAccount.transations -> isEmpty)

Figure 2.10: A more complex OCL constraint

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

16

2.1.2Semantic Business Vocabulary and Rules (SBVR)

Semantic Business Vocabulary and Rules (SBVR) [OMG, 2008] is a recently introduced

standard by OMG. The latest version SBVR v1.0 was introduced in January 2008. SBVR can be

used to capture specifications in English and represent them in formal logic so that they can be

machine-processed. SBVR can be effective in formal representation of information in multiple

dimensions [Linehan, 2008], i.e. the production of the business vocabulary and rules,

development for multilingual support, support for format interchange capabilities, formalizing

syntactic and semantic structures, etc. An example of SBVR rule is “It is obligatory that

nationality of a customer should be British”.

SBVR has two major elements: SBVR business vocabulary and SBVR business rules. A brief

description of both elements of SBVR is given below.

A. SBVR Vocabulary

SBVR business vocabulary, also called SBVR vocabulary, consists of the specialized terms and

concepts typically incorporated in the definition of a business domain in a particular organization

[OMG, 2008]. There are various types of SBVR concepts. However, we are interested in three

basic types of SBVR business vocabulary: Object Type, Individual Concept, and Fact Types.

Figure 2.11 shows the SBVR meaning meta-model that highlights various types of SBVR

concepts.

 Figure 2.11: SBVR meaning metamodel [OMG, 2008]

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

17

Following is the overview of the used three types of SBVR concepts:

i. Object Type: In SBVR 1.0, an Object Type is a Noun Concept that is also called a General

Concept. An Object Type is a Noun Concept that categorizes things on the basis of their

common properties [OMG, 2008: Section 8.1.1]. Typically, in natural languages, the common

nouns can be represented as Object Types. In the example discussed above, ‘customer’ is an

Object Type. In UML class models, an Object Type can be mapped to a UML class. Simple

examples of an Object Type can be ‘account’, ‘customer’, ‘student’, ‘book’, etc.

ii. Individual Concept: In SBVR 1.0, an Individual Concept corresponds to only one object

[OMG, 2008: Section 8.1.1]. In the example discussed above, ‘British’ is an Individual Concept.

However, an Individual Concept cannot be an Object Type or Fact Type role. In English, proper

nouns or quantified nouns are classified as Individual Concepts for example ‘Silver Account’,

‘London’, ‘Commercial Bank’ etc. In UML class models, an Individual Concept can be mapped

to an object.

iii. Fact Type: In SBVR, a Fact Type is based on a verb phrase that involves one or more Noun

Concepts and whose instances are all actualities [OMG, 2008: Section 8.1.1]. In SBVR 1.0, a

Fact Type is also called a Verb Concept. In the example discussed above, ‘customer should be

British’ is a Fact Type. A role of the Fact Type is one point of involvement of something in that

instance for each instance of a Fact Type. A Fact Type can be of many various types. We have

used following types of Fact Types in our research:

a. Characteristic: A Characteristic is a type of Fact Type. A Characteristic always has exactly

one role, but it can be defined using Fact Types having multiple roles. Basically, a Characteristic

is is-property-of Fact Type. In the example discussed above, nationality is a Characteristic. In

this example, nationality is property of Object Type customer. In English, a Characteristic can

be an adjective or an associative noun. In UML class models, a Characteristic can be mapped to

an attribute of a class.

b. Binary Fact Type: A Binary Fact Type consists of exactly two roles those can be General

Concept or Individual Concept. Typically, in a Binary Fact Type there is also a verb phrase that

relates two roles. In example, “A customer opens an account”, customer and account are two

roles and opens is a verb phrase that relates both roles with each other. In English, combination

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

18

of subject, verb and object form a Binary Fact Type. In UML class models, a Binary Fact Type

can be mapped to an association in two classes. In SBVR 1.0, associative Fact Type [OMG,

2008: section 11.1.5.1] is a concept very close to binary fact type.

c. Partitive Fact Type: A Partitive Fact Type [OMG, 2008: Section 11.1.5.1] is a type of Fact

Type that represents a composition of a given whole. In English, constructs such as “is-part-

of”, “included-in” or “belong-to” are used to represent a Partitive Fact Type. For example,

“Edgbaston is included in Birmingham”. Here ‘Birmingham’ is composed of many areas where

“Edgbaston” is one of them. In UML class models, a Partitive Fact Type can be mapped to a

UML aggregation.

d. Categorization Fact Type: A categorization Fact Type [OMG, 2008: Section 11.1.5.2]

represents a particular concept that is a type or category of another concept. Here, each

instance of the fact type is an actuality. In English, a categorization fact type is identified by

various constructs such as “is-category-of” or “is-type-of”, “is-kind-of”. An example of a

categorization fact type can be “Gold account is a special account”. Here ‘Gold account’ is

category of ‘special account’. In UML class models, a categorization fact type can be mapped

to UML generalizations.

B. SBVR Business Rules

SBVR business rules or SBVR rules are used to represent the text logic. A SBVR rule can be

formally defined as “an element of guidance that introduces an obligation or necessity” [OMG,

2008]. A SBVR rule is typically based on various SBVR vocabulary items and represents

relationship among these SBVR vocabulary items used in the SBVR rule. A typical SBVR rule

can represent a piece of structural or behavioural information. On the basis of information

represented in a SBVR rule, the SBVR rules can be classified into two types; definitional rule

and behavioral rule:

i. Definitional Rule: A definitional rule is used to define an organization’s setup and it represents

the structure of the organization. A definitional rule is also called structural rule and typically a

definitional rule is a claim of necessity [OMG, 2008: Section 12.1.2]. An example of a

definitional rule is “It is necessary that each customer has at least one bank account”, and it

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

19

explains that a customer should have at least one account, though she can have more than one

account.

ii. Behavioural Rule: A behavioural rule expresses the conduct or behaviour of an entity. A

behavioural rule is also called an operative rule. Formally, a behavioural rule is a claim of

obligation [OMG, 2008: Section 12.1.2]. For example, in a behavioural rule “It is obligatory

that each customer can withdraw at most GBP200 per day”, the behaviour of a customer’s

account is explained by saying that a customer cannot withdraw more than GBP200 from his

account.

C. Semantic Formulation

In SBVR 1.0, logical formulations are used to semantically formulate the SBVR rules. A

semantic formulation that shapes a proposition is called a logical formulation [OMG, 2008:

Section 9.2]. There are five semantic formulations given in SBVR 1.0. A selective subset of

SBVR meta-model including various semantic formulations is shown in Figure 2.12.

Figure 2.12: Elements of selected SBVR metamodel

The researcher is interested in three semantic formulations (such as Modal Formulation, Logical

Formulation and Quantification) considering the scope of this research. Following is the brief

description of these three SBVR semantic formulations:

Proposition

1

Concept

NounConcept FactType

1 … * 0 … *

*

1

1

DataType

String

ObjectType

Role FactTypeRole

ClosedSemanticFormulation

LogicalFormulation

AtomicFormulation
1

is based

on

RoleBinding
is of

1

1 … *

Quantification

variable

NecessityFormulation

1 scopes

over

1

Ranges

over

SemanticFormulation

formulates

Representation

Meaning

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

20

i. Modal Formulation: Modal formulations [OMG, 2008: Section 9.2.4] are logical formulations

that are used to specify meanings of the other logical formulations. There are four basic types of

modal formulations.

a. Necessity Formulation: If a Logical Formulation is true in all possible worlds, it is represented

as necessity formulation. In English, a sentence having words like ‘need’, ‘may’ and ‘might’

can be mapped to necessity formulation. In SBVR 1.0, a necessity formulation is represented

using phrase “It is necessary that” [ibid].

b. Obligation Formulation: If a Logical Formulation is true in all acceptable worlds, it is

represented as obligation formulation. In English, a sentence having words like ‘should’,

‘must’, ‘ought’, and ‘have to’ can be mapped to obligation formulation. In SBVR 1.0, an

obligation formulation is represented using phrase “It is obligatory that” [ibid].

c. Permissibility Formulation: If a Logical Formulation is true in some acceptable worlds, it is

represented as permissibility formulation. In English, a sentence having words like ‘is’ can be

mapped to permissibility formulation. In SBVR 1.0, a permissibility formulation is represented

using phrase “It is permitted that” [ibid].

d. Possibility Formulation: If a Logical Formulation is true in some possible worlds, it is

represented as possibility formulation. In English, a sentence having words like ‘would’, ‘can’

and ‘could’ can be mapped to possibility formulation. In SBVR 1.0, a possibility formulation is

represented using phrase “It is possibility that” [ibid].

ii. Logical Operations: Logical operations are used to combine one or more expressions, known

as logical operand to produce complex Boolean expressions [OMG, 2008: Section 9.2.5]. We

have incorporated these logical operations to map NL phrases to more complex logical

expression. We are currently supporting the following six types of the logical expressions which

are defined in SBVR v1.0 document [ibid]:

a. Conjunction: In SBVR, a conjunction is a binary logical operation and it is used to formulate

the meaning of a logical decision of two operands that each operand is true [ibid]. A

conjunction can be represented, i.e., p AND q.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

21

b. Disjunction: In SBVR, a disjunction is a binary logical operation and it helps to formulate the

meaning of a logical decision of two operands that at least one operand between two operands

is true [ibid]. A conjunction can be represented, i.e., p OR q.

c. Equivalence: Equivalence in SBVR is another binary logical operation and it comprehends a

logical decision that among two operands, the first operand is equal to the second operand

[ibid]. An equivalence can be represented, i.e., p is equal to q or p is q.

d. Implication: In SBVR, an implication is a binary logical operation that is used to formulate the

meaning of a logical decision of two operands that second operand is true if first operand is

true [ibid]. An equivalence can be represented, i.e., if p then q.

e. Negation: In SBVR, negation is a unary operation for logical decision of one operand that

formulates the meaning that the operand is false, i.e., NOT p [ibid].

iii. Quantification: Quantification is a logical formulation that uses a variable to specify the

scope of a concept [OMG, 2008: Section 9.2.5]. Six basic types of quantifications have been

defined in SBVR 1.0. Quantification types are briefly described below:

a. Universal Quantification: A universal quantification in SBVR 1.0 document is defined as a

reference for each element in a domain [ibid], e.g., “each item”.

b. Existential Quantification: In SBVR 1.0, an existential quantification represents minimum

cardinality one represented by a thing [ibid], e.g., “at least one item”.

c. At most-n-Quantification: At most-n-quantification shows maximum cardinality represented

by number n represented by a thing [ibid], e.g., “at most 5 items”.

d. At least-n-Quantification: At least-n-quantification shows a minimum cardinality represented

by number n represented by a thing [ibid], e.g., “at least 3 items”.

e. Numeric Range Quantification: A numeric range quantification in SBVR exhibits both

minimum and maximum cardinality represented by a thing [ibid], e.g., “3 to 5 items”.

f. Exactly n Quantification: This quantification shows the exact cardinality is represented as

exactly as n quantification represented by a thing [ibid], e.g., “4 items”.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

22

Here two quantifications “exactly one Quantification” and “at most one quantification” are not

mentioned as we deal them under “exactly-n Quantification” and “at most-n quantification”,

respectively. In the researcher’s approach, all these logical formulations are employed to

transform English text to a SBVR rule. For further details of SBVR the reader is referred to

[OMG, 2008].

D. SBVR Notation

In SBVR 1.0 document [OMG, 2008], the Structured English is proposed, in Annex C, as a

possible notation for the SBVR rules. The Structured English provides a standardized

representation for formalizing the syntax of natural language representation [Kliener, 2009]. In

this thesis, the researcher has used the following Structured English specification:

 Object Type is underlined e.g. customer

 Verb phrase is italicized e.g. should be

 Keyword is given in bold frame i.e. SBVR keywords e.g. each, at least, at most, etc.

 Individuals Concept is underlined and italicized e.g. London.

E. SBVR Rules vs. OCL Constraints

In business modeling, a business rule defines or constrains one aspect of business that aims to

emphasize on the structure or behavior of the business [Ambler, 2003]. A comparison of SBVR

rule and OCL constraints is presented in [Bajwa, 2011c]. Here, the researcher presents a few

commonalities in a SBVR rule and OCL constraint. The different features of SBVR an OCL are

not discussed here. For detail, we recommend the reader [Bajwa, 2011c].

i. Rules vs. Expression: The Rules [OMG, 2008: Section 12.1.2] in SBVR represent the

specifications or the meanings of business constraints. Similar to Rules in SBVR, there are

Expressions [OMG, 2010: Section 7.3] in OCL that make up a basic OCL constraint. Similarly,

SBVR rules can be of two types: structural rules and behavioural rules. Similarly, OCL

expressions are also of two types: structural constraints (such as invariant) and behavioural

constraints (such as precondition or postcondition). Relation of a SBVR rules with OCL

expressions can be explained as per two dimensions given below:

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

23

ii. Structural Rule vs. Invariant: The SBVR structural rules [OMG, 2008: Section 12.1.2]

represent the structure of a business models and their underlying entities. The SBVR structural

rules supplement definitions by using conditions and restrictions. Similar to SBVR structural

rules, in OCL invariants [OMG, 2010: Section 7.3.3] are used to represent a structural constraint.

OCL invariants typically specify structural information of UML models.

iii. Behavioural Rule vs. Pre/Post Condition: The SBVR behavioural rules [OMG, 2008: Section

12.1.2] govern the behaviour of business activities and operations. The behavioural or operative

rules are ones that direct the activities involved in the business affairs. Akin to behavioural rules

in SBVR, OCL’s behavioural constraints such as pre/post conditions [OMG, 2010: Section 7.3.4]

are particularly specified to handle behaviour of respective methods of classes and objects. The

OCL pre/post conditions also specify state change.

F. Why SBVR is Suitable for Intermediate Representation?

Recently, in many approaches, SBVR is used as an intermediate representation [Cabot, 2010;

Pau, 2008]. The following Characteristics of SBVR make it a suitable option for intermediate

representation in translation of one language to another language, especially if one language in

the translation is a natural language and the other is a formal language. Following is an overview

of such Characteristics of SBVR [OMG, 2010;Chapin, 2008]:

 SBVR vocabulary is concept centric, not word centric. That makes SBVR shareable in

various communities.

 SBVR can be used to produce business vocabularies and rules which can be shared by more

than one domain.

 SBVR supports precise Fact-oriented Modeling [OMG, 2008] in Formal Logic.

 SBVR is portable due to the use of OMG's Meta-Object Facility [OMG, 2008] (MOF) and

it’s supports of XML schema. With XML support, the business vocabularies and business

rules can be interchanged among organizations and between software tools.

 SBVR supports multilingual development as it keeps symbols separate from their meanings.

 SBVR has support of textual notations such as Structured English and RuleSpeak [OMG,

2008]. Such notation can also be mapped to the SBVR metamodel.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

24

 SBVR is based on Formal Logic with natural language interface.

 Since, SBVR has a meta-model, SBVR can be model transformed to other standards using

model transformation technology.

 SBVR supports rule-based Application Software Development and Configuration [Chapin,

2008]. SBVR rules in combination with system design decisions are typically used to

produce set of execution rules for software components.

On the basis of these Characteristics of SBVR, we are interested in SBVR to use it as an

intermediate representation in the presented translation.

2.1.3 Natural Language Processing (NLP)

Processing of a Natural Language (NL) has been an area of interest for researchers for many

decades. In the late nineteen sixties and seventies, researchers like Noam Chomsky [Chomsky,

1965], Chow and Liu [Chow, 1968] contributed in the areas of analysis and understanding of

natural languages. However, automated processing of natural languages (such as English) is still

a challenging task for NL community. Many contributions have been presented in the area of

NLP but still there are many open questions to answer. Automated processing of NL is difficult

due to reasons such as

 English is vast and has no domain boundaries.

 English sentence structure is ambiguous.

 Most English words have multiple meanings.

 A single meaning can be represented in multiple ways.

Typically processing a natural language involves a series of actions such as text segmentation,

morphological analysis, Parts-of-Speech (POS) tagging, syntactic analysis, semantic analysis,

and pragmatic analysis [Jurafsky and Martin, 2000]. In this research, the researcher will focus on

a few of these, as pragmatic analysis is not involved in this research. Owing to the scope of our

research, handling of discourse using pragmatic analysis is part of the future work. Currently, we

are interested in lexical, syntax and semantic analysis of a natural language. In the following

section, these phases are introduced as they are core of the presented research and will be

discussed in forthcoming chapters.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

25

A. Text Segmentation

Text segmentation is a primary phase in processing of a natural language. Text segmentation is a

concept of linguistics typically used in computer science to break a stream of text up into

meaningful elements. These meaningful elements are called tokens, lexicons or symbols. In

computer science, the process of text segmentation is a part of lexical analysis in NLP.

For text segmentation, first of all a piece of text is segmented into sentences and this process is

called sentence splitting. Afterwards, each sentence is further segmented into tokens and this

process is called tokenization. The researcher is interested in text segmentation as a NL

constraint can be composed of a multiple sentences and to apply syntax and semantic analysis to

each sentence, the researcher needs tokenized form of the input NL constraint. Here, a Java

sentence splitter has been used for splitting sentences and Java Tokenizer for text segmentation.

B. Morphological Analysis

Once the text is tokenized, next phase is morphological analysis and it is also a part of lexical

analysis in NLP. Morphological analysis typically deals with the study of words (tokens)

formation from smaller meaningful units called morphemes. Morphemes have two major types

called: stems and affixes. The ‘Stem’ is the main morpheme of the word, which supplies the

main meaning, and ‘Affixes’ add some additional meanings of various kinds. Affixes are further

divided into prefixes, suffixes, infixes and circum-fixes. Prefixes precede the stem, suffixes

follow the stem, circum-fixes do both and infixes are inserted inside the stem.

Lemmatization is a key phase of typical morphological analysis. In lemmatization, the lemma or

stem of each token is identified. In this research, the researcher is interested in lemmatization as

he needs core part of each token to compare with UML class model. Lemmatization as mapping

of un-lemmatized text with UML class model can result in mismatch and can affect accuracy of

the translation. In our research, a token ‘customer’ is treated differently than a token ‘customers’.

To consider both the tokens same, the researcher has to trim affix‘s’ of the second token.

Actually, during lemmatization, the affixes which are trimmed from lemma are used for

grammatical purpose and in mapping with UML class model, grammatical information is not

required.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

26

The simplest methodology used for the morphological analysis is Stemming. The stemmers are

based on stemming algorithms presented by Lovins [1968] and afterwards enhanced by Porter

[1978] for suffix stripping. Another simple approach is to use lexical databases that associate

lemmas and word-forms with inflectional information i.e. MULTEXT [Bel, 1996] system

provides lexical list of lemmas. CELEX [Baayen, 1991] is another large multilingual database

with extensive lexicons of English, Dutch and German languages. However, only MULTEX is

available for downloading but it was not able to integrate with our implementation in Eclipse.

Moreover, a root of an inflected form of word returned by a stemmer is not in a 'proper'

dictionary word, while the researcher is interested in a word with 'proper' dictionary form.

In this research, the researcher aims to develop his own rule-based module for lemmatization.

C. Part- of-Speech (POS) Tagging

The Part-of-Speech (POS) tagging is a process of assigning a grammatical category (such as a

noun, verb, determiner, etc.) to each token in a sentence. Each POS category is represented using

a set of POS tags like NN (common noun), NNS (plural noun), NNP (proper noun), CD (cardinal

number), VB (verb base form), VBZ (verb present, 3d person), VBD (verb past), MD (modal),

RB (adverb), JJ (adjective), DT (determiner), IN (preposition), POS (possessive ending),

CC(coordinating conjunction)[Toutanova, 2000], etc.

We are interested in generation of POS tags as syntax analysis uses POS tags in forming a parse

tree and generating dependencies. In this research, POS tags can be involved in identification of

various SBVR vocabulary items. As, the identified SBVR vocabulary items ultimately become

the part of logical representation in semantic analysis, POS tagging is a key part of this research.

There are many examples of automatic POS taggers those can be used in building automatic

word-sense disambiguation algorithms. The ENGTOWL tagger [Karlsson, 1995] is based on rule

based architecture. Illieva [2005] introduced a methodology that can perform POS tagging using

a tabular representation to identify subject, verb an object. Similarly, Li [2005] developed a

methodology that does POS tagging using predefined rules. An additional support for POS

tagging is WordNet [Fellbaum, 1998] that is a database of lexical relations that helps in

extracting the lexical relations. Another example of POS tagger is the Stanford POS tagger was

originally written by Kristina Toutanova [2000]. The Stanford POS tagger is an entropy-based

POS tagger that uses of cyclic dependency network [Toutanova, 2003]. The Stanford POS tagger

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

27

is 97% accurate in POS tagging [Manning, 2011]. Owing to its high accuracy, the researcher has

used the Stanford POS tagger in his approach.

An issue, in typical POS tagging, is assignment of wrong tags to a token due to ambiguous

tokens as there are many tokens in English which can be assigned multiple POS tags at a time

e.g. a token ‘books’ can be identified as a noun as well as a verb in English. However, wrong

POS tagging can be very dangerous as the accuracy of syntax and semantic analysis totally relies

on accuracy of POS tagging. In this thesis, the researcher aims at dealing with such issues in

POS tagging.

D. Syntax Analysis

In syntax analysis, syntactic or grammatical relationship is identified in various parts of a

sentence. A parse tree is a typical way of graphically representing the grammatical relationships

in a sentence. Traditionally, there are two types of parsers; top-down (goal-directed) parser and

bottom-up (data-directed) parser. A top-down parser searches for a parse tree by trying to build

from the root node S down to the leaves. On the other hand, a bottom-up parser starts with the

leaves (words of the input) and tries to build a tree by applying rules from grammar one at a

time. A typical parse tree involves various phrasal categories such as Noun Phrase (NP), Verb

Phrase (VP), Preposition Phrase (PP), and Quantificational Phrase (QP). A parse tree is also the

base of dependencies [Marneffe, 2006] that is the target of our syntax analysis. The syntactic

dependencies help the researcher to identify possible relationships among various syntactic

constituents of a NL constraint.

The researcher is interested in syntax analysis of NL text due to multiple reasons: (1) syntax

analysis can provide the researcher with a parse tree and a set of dependencies. Such

dependencies are actually relationships in various syntactic structures of a NL constraint. In this

research, the researcher aims at mapping such relationship into equivalent relationship in SBVR

and OCL; (1) during syntax analysis, the researcher can sort out voice of a sentence as in this

research an active-voice sentence is treated differently than a passive-voice sentence; (3) with the

help of syntax analysis, the researcher can deal with the logical operators in English as such

logical operators play key role in our research.

A common way of parsing is bydependency grammar [Tesniere, 1959; Johansson, 2008]. In

dependency grammar based parsing, structures are determined by the relations between a word

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

28

and its dependents. Another way of syntactic parsing is phrase structure grammar proposed by

Noam Chomsky [1968]. It was introduced by Gawron [1982] that phrase structure rules can be

used in phrase structure grammar based parsing. Another type of parsers is probabilistic parsers

(such as the Stanford parser). The Stanford parser is a lexically driven probabilistic parser. The

Stanford parser is a Java implementation of a probabilistic natural language parser based on

Probabilistic Context-Free Grammars (PCFG). The Stanford parser provides two outputs: (1) a

phrase structure tree; and (2) a Stanford dependencies output. The researcher aims at using the

Stanford parser in our approach for syntax analysis. To best of the researcher’s knowledge the

Stanford parser provides higher accuracy than do the other available parsers. The Stanford parser

can be up to 84.1% [Cer, 2010] accurate. An additional benefit of the Stanford parser is that it

also provides the typed dependencies. Here, typed dependencies are compact form of typical

dependencies.

E. Semantic Analysis

Semantic analysis is used to identify different constituents of a sentence and analyse the input

text to extract its explicit meanings, i.e., direct or apparent meanings of a sentence. During

semantic analysis, the apparent meanings of a sentence are represented using a logical form.

The researcher is interested in semantic analysis for a number of reasons. First, semantic analysis

can help us to identify SBVR based semantic roles. Secondly, quantifications, implication and

negation can be processed with the help of syntactic analysis. Thirdly, a logical representation

can also be generated as an end-product of semantic analysis. Such logical representation can be

mapped to other formal representations such as SBVR, OCL, Alloy, etc.

There are different ways of analyzing semantics of NL text. Typically, semantic analysis is

performed into two phases: shallow semantic parsing and deep semantic parsing. A brief

description of both phases is given below:

In semantic analysis, a key phase is shallow semantic parsing in which the semantic or

thematic roles are typically assigned to easy syntactic structure in a NL sentence. This

process is also called Semantic Role Labelling. Typically used semantic roles are agent,

action, patient, beneficiary, etc. However, in this research, the researcher has used SBVR

based semantic roles as the researcher aims at generating SBVR based logical

representation from NL constraint. Frame nets are commonly used for semantic role

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

29

labelling [Fillmore, 2003]. The actual purpose of semantic role labelling is identifying

relationship of participants (semantic arguments) with the main verb (semantic predicate)

in a clause. SRL is a most common way of representing lexical semantics of NL text.

Semantic labelling on a substring (semantic predicate or a semantic argument) in a

constraint (NL sentence) ‘C’ can be applied. Every substring ‘s’ can be represented by a

set of indices as following:

S ⊆ {1, 2, 3, …., n}

Formally, the process of semantic role labelling is mapping from a set of substrings from

‘C’ to the label set ‘L’. Where ‘L’ is a set of all argument semantic labels,

L = {a1, a2, a3,…., m}

The semantic roles can act as an intermediate representation in NL to SBVR translation. Croft

(1991) explained that exact number of roles cannot be specified. Various scientists have defined

various semantic roles. Similarly, it was investigated that it is difficult to define boundaries in

various role types [Dowty, 1999].

The typical resources required for the automatic role-semantic analysis can be lexicons and

corpora. Common examples of a corpora is FrameNet that is a English lexical database [Baker,

1998] and it consists of a list of lexicons and a frame ontology that helps in identifying the

semantic roles for each frame and frame-to-frame relations. Similarly, SALSA [Burchardt, 2006]

is another corpus of German. SALSA is efficient for statistical systems. Another example is

VerbNet [Kipper, 2000] that identifies semantic roles for lexicon in hierarchal categories.

VerbNet uses set of semantic roles for syntactic transformations. PropBank [Palmer, 2005] is

another support for semantic role annotation. However, in this research, the researcher aims at

using UML class model as a lexical knowledge base due to the fact that a UML class model is

context of its constraints.

Deep semantic analysis typically involves actions like word sense disambiguation, handling

quantifications, quantifier scope resolution, anaphora (i.e. pronouns) resolution, and generating a

logical representation. In our research we are interested in all of them except anaphora resolution

as typically pronouns are not part of NL constraints and resolution of pronouns is not part of

current scope of this research. Word sense disambiguation has a very wide scope. In word sense

disambiguation, various issues such as polysemy, coherence, inference and discourse analysis are

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

30

addressed. In this research, the researcher has employed word sense disambiguation at a very

limited level as during labeling of semantic roles, there is possibility that a token may be

assigned more than one semantic roles at a time. The researcher aims at resolving such issues in

this thesis. Similarly, the researcher also aims working on quantifications and quantifier scope

resolution as quantifications are always an important part of NL constraints. Final aim of deep

semantic analysis is to generate a logical representation from NL text. This research aims at

exploring the role of SBVR in a logical representation.

In semantic analysis another important field is handling of discourse and dealing with a donkey

sentence. A donkey sentence is a classical NLP problem, e.g., “Every farmer who owns a donkey

beats it”. Donkey sentences cannot be solved using first-order logic as one has to deal with a

certain kind of anaphora (statements about other statements). One approach to deal with such

issues is Discourse Representation Theory (DRT) [Kamp,1981]. DRT is typically based on

dynamical databases called Discourse Representation Structures (DRS). The DRS's are

associated with a particular sense. Another approach associated with the dynamic semantics is

Dynamic Predicate Logic (DPL) presented by Mus [1991]. DPL helps in specifying meanings of

an action that modifies the receiver’s information state. Semantic Frame [Fillmore, 1992] is a

concept used to share the same set of roles using a set of predicates. The concept of semantic

frame also assists in sorting out the definitional problems of semantic roles in universal sets.

Frame semantics are helpful in machine translation [Boas, 2005] due to their ability of having

similar frame-to-frame relations in the source and target languages. Pinkal [1991] proposed a

revised semantic binding condition to address this issue by permitting the binding of indefinite

NP in accordance with intuitions. However, Pinkal proved that in donkey sentences, the

anaphoric relations are not solely specified by syntactic components. The work, discussed above

proposes a solution for donkey sentences. However, processing of the donkey sentences is not

part of scope of this research.

2.1.4 Model Driven Architecture

Model Driven Architecture (MDA) [OMG, 2010] is a flavor of model-driven development

(MDD) proposed by the OMG. MDA is a software design approach and its typical application is

development of software systems. Using MDA, platform independent models can be mapped to

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

e
la

te
d

 W
o

rk

31

domain specific code. However, in this thesis, the researcher complements that functionality by

using model transformations to generate formal language’s code from NL specifications.

Figure 2.13: An overview of MDD

Model transformation is the core process in MDD and MDA that involves automated creation of

new models, depicted in Figure 2.13, can be described briefly as follows:

Model Transformations rely on the “instanceof” relationship between models and meta-

models to convert models [Dang, 2009]. Model Transformations define the mappings

rules between two modeling languages meta-models. Rules typically define the

conversion of element(s) of the source meta-model to equivalent element(s) of the

destination meta-model. The Model Transformation frameworks execute the Model

Transformation implementations on models. Upon execution with a given model, the

necessary rules are applied by the transformation framework applying rules to generate

an equivalent model in the destination modeling language.

There are different types of model transformations such as model-to-model, model-to-text and

text-to-model transformations [Cabot, 2007]. The Model-to-Model Transformation is used to

transform a model into another model e.g. transforming UML/OCL to Alloy [Anastasakis, 2007],

SBVR to UML [Raj, 2008], [Hina, 2011] UML/OCL to SBVR [Cabot, 2009], Alloy to

UML/OCL [Shah, 2009], SBVR to SQL [Moschoyiannis, 2010], SBVR to BPMN [Steen, 2010],

etc. The Model-to-Text Transformation is used to translate a model to a natural language

representation e.g. transforming OCL/UML to NL [Raquel, 2008]. The Text-to-Model

Mapping

Rules

SiTra Transformation

Engine

SBVR Metamodel OCL Metamodel

SBVR Modal
(SourceModel)

OCL Modal(Target

Model)

<<instance of>> <<instance of>>

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

32

Transformation talks over interpreting the natural language text and creates a model from the

interpretation.

In this research, the researcher aims at using model-to-model transformation for automated

transformation of SBVR to OCL. A Typical Model Transformation can be employed by creating

abstract syntax of source model and then converting it into the target model representation using

the model transformation rules. To achieve this goal, the researcher aims at using a set of

transformation rules to perform the proposed transformation of SBVR to OCL.

Basic approaches used to perform a model transformation are Graph Transformation and

Relational Model Transformation [Kuster, 2004]. Graph Transformation is employed by creating

abstract syntax of source model using typed attributed graphs [ibid] and then finally converting

them into the target model representation using graph transformation rules. On the other hand

Relation Model Transformation approach proposes the use of QVT

(Query/View/Transformation) [ibid] approach.

A. Transformation Rules

A typical model transformation is carried out by using a rule based approach to translate source

text or a model conforming to its meta-model into a target text or model conforming to its meta-

model. Rule based model transformations employ set of transformation rules to map source

model to a target model. A transformation rule r maps one component of the source model using

a source transformation rule rs with one component of target model using a target transformation

rules rt. It can be represented as r: S → T.

Transformation rules were individually defined for SBVR to OCL transformation. Defined

transformation rules were based on If-then-Else structure. Each rule consists of a component

from the source model (such as SBVR) and one component from the target model (such as OCL)

inspects source input and the mapping.

The researcher has defined a number of states
1
 for the source model, e.g. Y = {y1, y2,….., yn} is

a set of states for source model. Similarly, a number of states for the target model have been

defined, e.g. Z = {z1, z2, ….., zn} is a set of states for target model. For mapping, the states of

1
 State is an element of the metamodel

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

33

input source model are matched with possible states of the target model. An occurrence of X

from the source model is looked within the all occurrences of Z from the source model and if the

match is found, the matched state of source model is given concrete syntax of the target model.

B. Simple Transformer (SiTra)

Simple Transformer (SiTra) has been developed by Akehurst et al. [2008]. It is a simple and

lightweight implementation of an extensible transformation engine. A conceptual outline of the

SiTra framework is shown in Figure 2.14. There are two interfaces in theSiTra transformation

framework: the Transformer interface and the Rule interface. The Transformer interface

provides the skeleton of the methods to achieve the transformation. The Transformer

interface consists of two key methods: the transform()method and the

transformAll()method. On the other hand, the Rule interface is a set of mapping rules

(defined by the user), which need to be implemented by the modeller according to the

transformation rules.

Figure 2.14: Explanation of SiTra Model

We have defined such transformation rules in Section 5.3. However, the use of SiTra is very

simple as modeller needs to implement the Rule interface by using defined set of

transformation rules. The Rule interface consists of three methods as depicted in Figure 2.14.

First method is check()that is involved in the rule interface. The second method build()

method is executed to generate the target model element. The third method

setProperties()is involved in setting the attributes and links of the newly created target

element.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

34

2.2 Related Work

In this section, related work in the area of NLP application in software engineering is presented.

Moreover, an account of related work in the area of model transformations and tool support for

OCL and SBVR is given in this section. The related work discussed in this section not only

emphasizes the significance of the research but also highlights the motivations of the research.

2.2.1 NLP for Automated Software Engineering

Applications of NLP in the field of software engineering are significant especially to improve

accuracy, productivity, flexibility, multilinguality and robustness [Leidner, 2003]. An example of

an application of NLP is automated software modeling (such as automated object-oriented

analysis and automated generation of UML models) from NL software requirements

specifications. Similarly, NLP has been applied to provide NL interfaces for automatically

generating E-R models and SQL queries as well. Automated generation of OCL constraints for

software (UML) models is also related to this area of research. An account of the work related to

above mentioned fields is given below:

A. NLP for Automated Object Oriented Analysis

The role of NLP in the field of object oriented software modeling has been very important. One

of the various contributions for automated object oriented analysis of natural language software

requirements specifications and extraction of object oriented information from the NL

specification was presented by Mich [1996] and the presented approach was implemented in a

tool LOLITA [ibid]. Delisle [1999] and Perez-Gonzalez [2002] also presented NL based tools

which could be used for object oriented analysis of NL specifications of software requirements.

Similarly, linguistic information was used to analyse syntactically and semantically informal

specifications and employ a semiformal procedure to extract object-oriented information [Juristo,

2000] that could be used to construct a model. Similarly, Li presented his work in which he

addressed various issues in NL based automated object oriented analysis [Li, 2003]. MOVA

[Clavel, 2007] is another tool that models, measures and validates UML class diagrams. Such

techniques consume less time and require less human effort and expertise in analysis of NL

software requirements. A similar approach can save time and resources when we analyse NL

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

35

constraints to extract the SBVR vocabulary that will be used to construct a SBVR rule or an

OCL constraint.

B. NLP for Automated UML Modelling

Various approaches and tools have been presented to automatically generate software models

from NL specifications. An example of such work is the semi-natural language (4WL) presented

to automatically generate object models from natural language text [Hector, 2002]. Its prototype

tool GOOAL [Perez-Gonzalez, 2002] produces object oriented static and dynamic model views

of the problem. Much research has been done on analysis of NL requirement specification

[Bryant, 2008] and their translation to object oriented models [Seco, 2004], and programming

languages [Bajwa, 2006]. A significant contribution by Harmain and Gaizauskas was their NL

based CASE tool named CM-Builder [Harmain, 2003]. This CASE tool was restricted to create a

primary class model. Such tools are real motivation for automated software modeling. NOESIS

(Natural Language Oriented Engineering System for Interactive Specifications) is a WordNet

based NL text analysis module [Nuno, 2003]. A tool REBUILDER based on NOISES is

introduced by Gomes [2004] to generate class diagrams from NL specification. To generate the

class diagrams, NOESIS first performs basics steps of NLP such as morphology, syntax and

semantics analysis. Then a CBR (Case Based Reasoning) engine is used to retrieve cases from

the case library based on the similarity with the target problem.

The work discussed above addresses only generation of UML models from NL specification of

software requirements. However, no work is presented for automated generation of OCL from

NL specification. Since OCL is an important part of UML models, there is a gap in research that

demands an automated approach and a tool that can generate OCL constraints for the UML

models. However, the presented techniques are a motivation for a NL based approach that can

facilitate generation of OCL constraints.

C. NLP for Automated E-R Modelling

In addition to automated translation of NL requirements specifications to UML models is

translation of NL specification to ER models [Omar, 2006]. Semantic heuristics were used to

extract the relevant ER elements such as entities, attributes, and relationships from the

specifications. The used approach is an extension of syntactic heuristic based tool ER-Converter.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

36

ER-Converter provides 85% precision and to improve its accuracy the concept of semantic

heuristics were employed. E-R Generator [Gomez, 1999] is another rule-based designed tool that

performs semi-automatic generation of E-R Models from NL specifications. A heuristic based

parsing algorithm was used to parse NL statements and then the linguistic structures were

transformed into ER concepts.

The work we have discussed above is a real encouragement for the development of a NL

approach that can simplify the generation of OCL.

D. NLP for Automated SQL Query Generation

Another application of NLP are natural language interfaces for databases. A model is presented

for auto analysis of user requirement using NLP and custom model database generation [Al-

safadi, 2009]. A CASE tool DBDT (Database designer in the Database development) is also

presented. Similarly, Popescu [2003] and Nihalani [2011] presented a natural language interface

for databases. In the same way natural language interfaces are also presented to communicate

with data warehouses [Kuchmann-Beauger, 2011;Naeem, 2012].

The researcher’s approach to generate OCL constraints automatically from NL specification of

constraints is really motivated by such work as discussed above.

2.2.2 Automated Generation of OCL

Though usability of OCL is a long standing challenge for research community, not very much

work has been presented so far to facilitate the writing of OCL. One effort has been done by

Wahler [2008] to generate OCL using a pattern based approach. However, there are two issues

with Wahler’s approach. The first issue relates to the applications of Wahler’s approach as it is

semi-automatic [ibid] and the user has to extract manually the required information from NL

constraints and then he/she has to select manually one or more patterns required to generate a

specific OCL constraint. The second issue is that Wahler’s approach is 69% accurate [ibid]. Here

accuracy means failed vs. successful generations of constraints. Hence, it can be deduced that

Wahler’s approach cannot process almost one third of given number of constraints in a scenario.

However, there are plenty of margins for improvement in accuracy.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

37

In light of above mentioned facts, we can conclude that there is need of an approach that is not

only fully autonomic but also more accurate in generating OCL expressions.

2.2.3 OCL Transformations

Various automated transformations have been presented from OCL to other formal languages.

Examples of such transformation are OCL to JML [Hamie, 2004], OCL to Alloy [Anastasakis,

2007], OCL to NL [Burke, 2007], [Raquel, 2008], OCL to SQL [Heidenreich, 2008], OCL to

SBVR [Cabot, 2009], etc. A brief description of these transformations is given below:

OCL is transformed to Java Modeling Language (JML) by Hamie [2004], where JML is a

specification language to state Java classes and interfaces. It was further presented that

OCL to JML transformation can assist in automated mapping of object-oriented models

expressed in UML and OCL to Java classes and interfaces.

OCL has also been transformed to natural language (English) by Burke [2007]. The

presented work is the part of the Key Project and the major emphasis of the presented

work was to integrate the formal software specification and verification into the industrial

software engineering process. A Grammatical Framework (GF) is used that is based on a

grammar formalism and toolkit. GF grammars separate abstract from concrete syntaxes.

A similar contribution was presented by Raquel [2008].

OCL to Alloy transformation is presented by Anastasakis [2007]. The presented

transformation was used for automated analysis of UML models. The reverse of this

transformation Alloy to OCL is presented by Shah [2009]. The presented work uses SiTra

[Akehurst, 2007] library to transform OCL/UML to Ally and back.

A transformation from OCL to SQL was presented by Heidenreich [2008]. The focus of

research was to provide an automated way of generating SQL queries from integrity

constraints specified in OCL. The presented transformation not only decreases

development costs but also increases software quality.

OCL was transformed to SBVR by Cabot [2010]. In OCL to SBVR transformation, all

possible textual objects in constraint language (OCL) that complement the UML

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

38

graphical elements were mapped to SBVR. Such a transformation presents several

benefits and applications and opens the door to representing the initial UML/OCL

specification in a variety of different languages and notations for which a predefined

mapping from SBVR has been already proposed. This work can help in generating

business vocabularies from the already designed software models.

The work the researcher has discussed above highlights various transformation for OCL or

transformation to OCL. However, presently, there is no approach that can transform NL or

SBVR to OCL. The gap in current research really motivates for research and development of an

approach automated transformation of NL and SBVR to OCL.

2.2.4 OCL Tool Support

A continuous research is in practice for designing tools to automate the process of OCL type

checking. One of such tools is IBM OCL Parser [IBM, 2009] that is the first OCL tool written in

Java by IBM. A model or OCL expression was given as input in a special file format. OCL

parser was able to perform syntax checking and partial type checking. Dresden OCL Toolkit

[Demuth, 2009] is another OCL compiler. This OCL toolkit was using a compiler that parses and

semantically analyses the OCL expression to validate logic or meanings of an expression.

Another famous tool is USE (UML-based Specification Environment) [Gogolla, 2007] used for

the validation of UML models and OCL constraints. USE validation tool is comprised of two

main components: a UML model simulator and an OCL parser and interpreter for constraint

checking. OCL interpreter supports validation of OCL expression syntax and performs strong

type-checking. ArgoUML [Rompaey, 2007] is an open source CASE tool which provides typical

OCL syntax and type checking. This tool is based on Dresden OCL compiler. ModelRun

[Akehurst, 2001] is one of the tools that not only provide support for direct execution of OCL

expression but also are endowed with OCL based query execution shore up. ModelRun is

product of Boldsoft and it has integrated support for the creation of model prototypes.

Cybernetic OCL Parser [Emine, 2008] is a complete OCL compiler that provides syntactic and

type checking of the OCL expressions was introduced by Cybernetic Inc. Cybernetic is a

software company that is working on logical consistency checks in OCL expressions.

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

39

None of the tools, discussed above, provide support for automated generation of OCL

constraints. However, a semi-automated tool Copacabana is presented [Wahler,2008] to enhance

maturity level of UML class models. However, the tool is not available for download and it is

not possible to decide up to what extent the tool can solve OCL usability problem.

Most of the tools the researcher has mentioned above are related to syntax checking, semantic

checking, dynamic validation, test automation, code verification and synthesis. However, there is

none of the tools available that can automatically generate OCL from NL constraints. Absence of

any tool for automated generation of OCL from NL constraints is another motivation factor for

the presented research.

2.2.5 SBVR Transformations

SBVR can be used for capturing natural language software requirements specifications. Since,

SBVR is easy to machine process, software requirement specifications represented using SBVR

can be automatically translated to other formal specifications. Example of such transformation is

model transformation of SBVR to UML [Raj, 2008], [Hina, 2011], SBVR to R2ML [Nicolae &

Wagner, 2008], SBVR to SQL [Moschoyiannis, 2010], SBVR to BPMN [Steen, 2010], SBVR to

Ontologies [Karpovic, 2010], etc. A brief description of such transformation is given below:

SBVR was introduced by OMG to provide a formal representation to capture software and

business requirements. The business models represented in SBVR are mapped to UML models

by Raj [2008]. Similarly, the software requirements represent using SBVR rules are model

transformed to UML class models by Hina [2011]. The focus of both transformations was to

facilitate the generation of UML models from business and software requirements specifications

represented in SBVR. A transformation from SBVR to R2ML is presented by Nicolae and

Wagner [2008]. The purpose of this transformation was to generate R2ML language for existing

SBVR rules to get higher semantic representation that can improve the level of business logic

abstraction. Moreover, SBVR is transformed to Structured Query Language (SQL) by

Moschoyiannis [2010]to generate automatically SQL queries from existing SBVR rules in a

business domain. Another example of SBVR transformation is automated transformation of

UML and OCL to SBVR [Cabot, 2009], explained in previous sections. To facilitate the

automated generation of ontologies from SBVR business rules a transformation was presented by

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

40

Karpovic [2010]. One more contribution was by Friedrich [2011] to generate Business Processes

(expressed in Business Process Modelling Notation) from SBVR business rules.

The present work draws attention to the gap in research on transformation of NL to SBVR and

SBVR to OCL. To fill the gap in the existing research an approach is required for NL to SBVR

and SBVR to OCL transformation.

2.2.6SBVR Tool Support

The SBeaVeR is a business model editor developed as an Eclipse plugin [Tommasi, 2006]. The

SBeaVeR assists business modellers and analysts to create SBVR based business models and

rules. The SBeaVeR uses a SBVR linguistic engine to validate the sentences representing fact

types and business rules. The SBeaVeR also provides support to formalize the semantics of

business knowledge in the form of business rules represented using the Structured English

notation [ibid]. Another SBVR editor that provides syntax highlighting and auto-completing

facility is presented by Marinos [2011].

The work discussed above highlights that currently there is no tool available that can generate

SBVR rule representation from NL specification of constraints. This gap in research motivates

for developing a tool that provides facility of automatic generation of SBVR rules from NL

specifications.

2.3 Summary

In this chapter the researcher has presented an overview of the basic concepts such as OCL,

SBVR, NLP and model transformations. These concepts have been used throughout the thesis. In

the second section of the chapter, related work in the area of automated transformations has been

presented. It is found that various researches have been conducted to translate NL specifications

to UML diagrams, E-R models, SQL queries, etc. However, no work has been presented to

translate NL specifications to OCL constraints. Similarly, OCL is mapped to Alloy, SBVR and

other standard using model transformation technology. On the other hand, SBVR is mapped to

UML, BPMN, SQL, and other formal languages. However, no research has been presented to

model transform SBVR to OCL.

http://dl.acm.org/author_page.cfm?id=81488659278&coll=DL&dl=ACM&trk=0&cfid=86802208&cftoken=81858077

C
h

ap
te

r
2

B

ac
kg

ro
u

n
d

 a
n

d
 R

el
at

ed
 W

o
rk

41

The presented related work identifies not only a gap in research for automated generation of

OCL from NL specification but also highlights the need and want for an automated approach to

generate OCL from NL specifications so that the software/business modelers may be assisted in

the modeling of software/business models. The presented work related to model transformation

highlights that such automated transformation can facilitate the writing of OCL and can improve

the usability of OCL.

42

CHAPTER 3

PROPOSED SOLUTION

This chapter presents the thesis statement that reflects on the challenges undertaken in this

research and sketches the solution provided. Moreover, a set of hypotheses are also stated that

the researcher aimed at addressing in the rest of the thesis.

3.1 Thesis Statement

Two major factors can be identified contributing to low adaption of OCL: (1) usability of OCL

and (2) absence of tool support to facilitate OCL writing. On the basis of the research discussed

in the previous chapter, the researcher could identify various aspects that play a role in usability

of OCL and make writing OCL difficult. A primary aspect is the complex syntax of OCL

[Gogolla, 2007] because OCL is a declarative language and focuses on establishing relationships

among various elements. Wahler [2008] presented a template based approach to contribute to

OCL adaption by providing a simple interface for automated generation of OCL constraints.

Wahler’s approach allows the user to choose a required template from a wide range of OCL

templates, assign the parameters and use them. Such approach can help an expert user. However,

the key challenge for a novice user is the selection of a correct template and if a constraint

involves more than one template, the scenario becomes more complex. The second aspect of

OCL’s usability problem is the ambiguous nature of OCL constraints as several equivalent

implementations for a constraint are possible in OCL [Cabot, 2008]. Cabot proposed an approach

for automatic disambiguation of the constraints by means of providing a default interpretation for

C
h

ap
te

r
3

P

ro
p

o
se

d
 S

o
lu

ti
o

n

43

each kind of ambiguous expression. But a designer has to be aware of all the possible states

while writing an OCL constraint to avoid the identified ambiguities. The third aspect of OCL’s

usability problem is understandability of overly complex OCL expressions commonly used in

large software models [Correa, 2007]. The refactoring techniques are used to improve the

understandability of OCL specifications but the employment of refactoring technique can be an

overhead in the process of software modeling.

In parallel to difficult syntax of OCL, absence of a tool (that facilitates writing OCL) also

contributes to least adoptability of OCL. None of the currently available tools is capable of

assisting users in writing OCL constraints. The available OCL tools do not provide any

assistance in writing OCL expressions syntactically correct and simple enough to interpret

semantically. Examples of such tools are Dresden OCL Toolkit [Demuth, 2009], IBM OCL

Parser [IBM, 2009], USE [Gogolla, 2007], ArgoUML [Rompaey, 2007], Cybernetic OCL

Compiler [Emine, 2008], etc. All these tools are limited to syntax verification and type checking

of the already written OCL constraints. As discussed in Chapter 2, Section 2.2.2, Wahler’s

approach is semi-automatic and less accurate as well. To the best of this researcher’s knowledge,

there is currently no tool that can automatically generate OCL from NL.

In the context of the above described scenario, the proposed research will address the problem of

easing adaption of OCL by providing a NL based user interface to write OCL. The following are

the key scientific issues involved in the proposed solution:

 The syntactic and semantic analysis of the NL constraint to understand the meaning of

the given text and extract the OCL constraints related knowledge from that text.

 How the informal representation (such as NL constraint) can be transformed into formal

representation (i.e. SBVR and OCL).The generated SBVR is checked and verified by the

SBeaVeR tool and generated OCL is checked by the USE tool.

 Investigating how SBVR can be incorporated in making natural languages syntactically

and semantically restricted and also exploring how SBVR can be used as an intermediate

representation for NL to OCL transformation to generate OCL constraints.

The facts presented above highlight the need of an approach that allows development of tools

and techniques to provide assistance in writing OCL. In this thesis, the researcher presents a

radically new approach by bringing together two main domains of computer science: (1) natural

C
h

ap
te

r
3

P

ro
p

o
se

d
 S

o
lu

ti
o

n

44

language processing and (2) model transformation. Using natural language processing for

transformation of NL constraints to OCL is a novel work. But the researcher adopted a

systematic way that transforms NL constraints to OCL by using SBVR as an intermediate

representation. Here, use of SBVR not only helped in dealing with ambiguities of NL constraints

but also assisted in transformation to OCL due to its basis on formal logic.

3.2 Hypothesis and Assumptions

This thesis aims at extending the existing work in the field of NLP by defining a model for

understanding and analyzing natural language constraints and translating them into a formal

specification such as OCL. This work aims at using NLP to translate NL constraint to SBVR

rules and then using model transformation technology to transform the SBVR representation of

constraints to OCL. The hypotheses for the presented work are stated below:

1. That it is possible to build a tool using a model transformation-based approach in the NLP

domain that can translate informal specification (i.e., English constraints) into a formal

specification (i.e., OCL invariants, preconditions and post-conditions). The presented tool

can also be used with the existing Eclipse platform as an Eclipse plugin and the generated

OCL constraints can be directly used in major CASE tools.

2. That by using the presented approach and tool, it is also possible to assist the software

designers in generating syntactically accurate, semantically precise and consistent OCL

constraints that can be incorporated to annotate UML models. This will allow the software

designers to solely concentrate on the software quality issues rather than designing details.

3. Having two versions of text (i.e., NL constraint and SBVR rule); NLP and the SBVR

standard can help in validating a part of the transformation to ensure correct interpretation of

the NL constraint.

4. We assume that the UML model is a suitable representation of the domain and the statements

are made about this model and not the actual world. This is to say we assume models are

reasonable representation of the domain. All models are wrong whereas some are useful.

5. There are sufficient consistencies in the language used in this approach that are amenable to

automated NLP. For example, we assume most inherently ambiguous NL statements have a

C
h

ap
te

r
3

P

ro
p

o
se

d
 S

o
lu

ti
o

n

45

default specific interpretation and truly ambiguous sentence for which there are several

competing likely interpretations are rare.

6. The ability to map to OCL gives us sufficient assurance that we can map to other formalisms.

Because, OCL is rather complex has three value logic with classic login embedded.

Additionally, this work aims at evaluating the effectiveness of such systems by seeing how well

it meets the needs of software designers. Moreover, various case studies will also be used to

evaluate the performance of the presented approach.

It is pertinent to mention here that the researcher is aware of the fact that the presented solution

to generate OCL from NL constraints cannot be 100% accurate due to the informal nature of NL

and infinite size of NL (such as English) vocabulary. Since, the researcher has used NL and

automated generated SBVR in pair to resolve NL ambiguities and to clarify vagueness by

pointing them out, this will not be a 100% solution either and the researcher is aware of it.

3.3 Used Approach

The NL2OCL is a NL-based approach that generates OCL from NL specification of constraints

with respect to a target UML class model, where SBVR plays a role of an intermediate

representation. The NL2OCL approach takes two inputs: (1) a NL statement (that is a

specification of a constraint) and (2) a UML class model (that is the target of the NL constraint).

Figure 3.1 depicts various phases of the NL2OCL approach.

The NL constraint is transformed to OCL in multiple phases. First of all, the NL constraint is

linguistically analysed by the NL module. Linguistic analysis of the NL constraint involves

syntactic analysis and semantic analysis and the output of the NL module. Then, another UML

module parses the UML class model and extracts the SBVR vocabulary, e.g., Object Types,

Characteristics, Fact Types, etc. The SBVR module maps the output of the NL module and the

UML module to ensure that the output of the NL module should comply with the output of the

UML module. Here, if any part of NL module’s output does not comply with the UML module’s

output, the unmatched part does not become the part of the SBVR rule and user is given a message

about the inconsistency. Finally, the OCL module maps the SBVR rule to an OCL constraint

C
h

ap
te

r
3

P

ro
p

o
se

d
 S

o
lu

ti
o

n

46

Figure 3.1: The NL2OCL Approach

All the steps involved in the NL2OCL approach (shown in Figure 3.1) for translating NL

constraints to OCL are expressed in the form of an algorithm. The algorithm on which the

NL2OCL approach is based is given below:

1. Give as input a text document that contains the NL description of a constraint

2. Give as input a UML class model that is the target of the NL constraint.

3. Parse the UML class model to extracts SBVR vocabulary, e.g., Noun Concepts, Object

Types, Individual Concepts, Verb Concept, Characteristics, etc.

4. Pre-process the NL constraint to get rid of un-necessary text and prepare text for detailed

syntax and semantic analysis

5. Perform syntax analysis to identify structural relationship among various syntactic parts

of the NL constraint. If there is error/inconsistency with the SBVR vocabulary, give

message to the user.

SBVR

 Vocabulary

SBVRM

odule

OCL

Constraint

 Constraint

SBVR

Rule

OCL

Module

Logical

Form

UML Class

 Model

UML

Module

NL

Constraint

NL

Module

Input

Output

Processing

NL2OCL Approach

Message

Error/inconsistency

messages to user

C
h

ap
te

r
3

P

ro
p

o
se

d
 S

o
lu

ti
o

n

47

6. Use the identified structural relationship for SBVR based semantic role labeling of each

part of the NL constraint. If there is error/inconsistency with the SBVR vocabulary, give

message to the user.

7. Map the SBVR vocabulary with the output of the semantic analysis of the NL constraint.

If there is error/inconsistency with the SBVR vocabulary, give message to the user

8. If the mapping is successful, generate the SBVR rule by applying semantic formulations

or else notify the user to correct the NL constraint by removing the extra contextual
2

information from the NL constraint.

9. Identify the type of the SBVR rule, e.g., a structural rule or a behavioural rule.

10. If the type of a SBVR rule is a structural rule then it is translated to an OCL invariant.

11. If the type of a SBVR rule is a behavioural rule then it is mapped to an OCL pre-

condition or post-condition.

12. Generate OCL context. If context is not given in NL constraint, give error message to the

user and restart processing.

13. Generate body of OCL constraints involving expression and navigations. If there is

error/inconsistency with the UML model or some information is missing, give message to

the user.

14. Integrate output of step 12 and 13 to generate a complete OCL constraint.

Algorithm 3.1: Algorithm to Translate NL constraints to OCL

The steps of Algorithm 3.1 represent a generalized form of the actions performed in the

NL2OCL approach. However, a single step in the algorithm can have sub-steps, as well.

Theoretical detail of all these steps is explained in Chapter 4 and Chapter 5 with examples, while

the implementation details are provide in Chapter 6.

The proposed solution to automatically generate OCL from NL specificationis always capable of

producing the wrong analysis but that in such circumstances the produced formal representation

is correct for a particular, valid and potentially correct interpretation and can be corrected by

manual intervention.

2
Any piece of information that is not part of the target UML class model

C
h

ap
te

r
3

P

ro
p

o
se

d
 S

o
lu

ti
o

n

48

3.4 Summary

In this chapter, thesis statement has been discussed in a detail. Moreover, the solution to address

the problem of OCL usability has also been presented in this chapter with a set of hypothesis.

Additionally, the NL2OCL approach has been presented based on an algorithm discussed in

Section 3.3. The details of the NL2OCL approach are given in following chapters.

49

CHAPTER 4

TRANSLATING NATURAL LANGUAGE TO SBVR

As the researcher said in the previous chapter, the Semantics of Business Vocabulary and Rules

(SBVR) standard is used as a pivotal representation in Natural Language (NL) to Object

Constraint Language (OCL) transformation. SBVR is chosen as a pivotal representation due to

its peculiar features that is SBVR is not only easy to understand for the natural language readers

but also is simple to transform to other formal languages such as OCL. Moreover, a SBVR based

representation is easy to interchange among multiple platforms and tools due to the support of

XMI (XML Metadata Interchange) and MOF (Meta-Object Facility) [OMG, 2008]. Since, SBVR

has already been used as an intermediate representation [Cabot, 2010], [Pau, 2008], we aim to

exploit the strength of SBVR in NL2OCL translation. There are many features (discussed in

Chapter 2, Section 2.2.3) of SBVR that make it a suitable option for intermediate representation

in translation of one language to another language, especially if one language in the translation is

a natural language and the other is a formal language.Though, the approach uses automated

generated SBVR in pair with NL representation to resolve NL ambiguities and clarify NL

vagueness by pointing them out; even then the NL2OCL approach cannot be 100% correct. In

this chapter, the first half of the NL2OCL approach is presented that deals with NL to SBVR

translation.

To generate SBVR representation from NL constraints, two things are required: (1) SBVR

vocabulary (such as Object Types, Individual Concepts, Fact Types, etc.) and (2) relationships

among various SBVR vocabulary items. We use NL to SBVR translation to extract both these

types of elements from NL constraints. In NL to SBVR translation, the researcher applied typical

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

50

NLP techniques such as syntax and semantic analysis to extract the required information. The

syntax analysis provides the researcher with a parse tree and set of dependencies while semantic

analysis uses these dependencies to generate a SBVR vocabulary based logical representation

that contains both SBVR vocabulary and relations among various SBVR vocabulary items.

NL to SBVR translation is an automated approach based on NLP. In NL to SBVR translation,

there are two key challenges: (1) analyzing NL constraints to generate a SBVR vocabulary based

logical representation and (2) mapping the logical representation to SBVR rule representation. In

the researcher’s approach, analysis of NL constraints involves three sub-phases such as pre-

processing, syntax analysis, and semantic analysis. The used framework for analysis of NL

constraints is shown in Figure 4.1, where the researcher has shown two layers: (1) logical layer

and (2) user interface layer. Here, the user interface layer provides both the inputs and receives

the output, while the logical layer handles actions like pre-processing, syntax and semantic

analysis.

Figure 4.1: A framework for analysis of natural language constraints

The NL2OCL approach is always capable of producing the wrong analysis but that in such

circumstances the produced formal representation is correct for a particular, valid and potentially

correct interpretation and can be corrected by manual intervention.

Sentence Splitting, Tokenizing,

Lemmatizing

POS tagging, Syntax Tree, Voice

Classification, etc

Semantic Labeling, handling

Quantifications, Logical Form

Preprocessing

Syntactic Analyser

Analyzer

Semantic Analyser

Analyzer

Logical Layer User Interface Layer

Input English Text

InputUMLClass Model

Logical Representation

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

51

In the remaining part of the chapter, Section 4.1, 4.2, and 4.3 provide the details of the three

steps involved in processing of NL constraints and Section 4.4 highlights the details of

generation of SBVR rule representation.

4.1 Pre-processing

In the pre-processing phase, the input NL text is prepared for the detailed processing such as

syntactic and semantic analysis. The input text contains a natural language specification of a

constraint that is specifically defined for a UML class model. Major steps involved in pre-

processing phase are splitting the sentences, tokenizing the words, and lemmatization. Following

are the brief description of these three sub-phases of pre-processing.

4.1.1 Sentence Splitting

If the input text contains multiple sentences, each sentence is considered as a separate entity.

During sentence splitting, the margins of a sentence are identified and each sentence is separately

stored and is treated as a separate constraint. The Stanford POS tagger is used for the sake of

sentence splitting.

4.1.2 Tokenization

After sentence splitting, each sentence is further processed to identify tokens. The purpose of the

tokenization phase is to identify tokens in a given piece of text for the detailed syntactic analysis.

A simple example of the tokenized text is shown in Figure 4.2:

English: An increase is awarded to all workers with injury.

Tokens: [An] [increase] [is] [awarded] [to] [all] [workers] [with] [injury] [.]

Figure 4.2: Tokenized text using Stanford Parser

Here, Figure 4.3 shows a complex example of tokenization as it involves ‘s that should be treated

as a separate token. The researcher has used the Stanford POS tagger that can handle such

difficult cases.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

52

English: A customer’s age cannot be more than 18 years.

Tokens: [A] [customer] [’s] [age] [can] [not] [be] [less] [than] [18] [years] [.]

Figure 4.3: Tokenized text using Stanford Parser

4.1.3 Lemmatization

In lemmatization, the morphological analysis of words is partially performed to remove the

inflectional endings and it returns the base form or dictionary form of a word. The base form of a

word is typically represented as ‘lemma’. We identify lemma (base form) in the tokens by

removing various affixes attached to the tokens. Here we store two copies of each sentence: one

copy with the original tokens and the second copy contain the lemmatized tokens. The copy of

NL constraints with original list of tokens is important to save as the removed parts are used to

identify POS tags in the syntactic analysis phase. An example of lemmatization is representation

of a token “awarded” as “award+ed”. Similarly, in Figure 4.3, another token “workers” is

processed as “worker + s”.

4.2 Syntax Analysis

In syntax analysis phase, the pre-processed text is processed to extract grammatical structure and

possible dependencies between particular grammatical structures. Grammatical structure of a

sentence is pertinent to identify as sentences with different grammatical structures are treated

differently. For example, the algorithms used to process the active-voice sentences cannot be

used to process a passive-voice sentence.

The output of a typical syntax analysis phase is a parse tree. A parse tree can be represented

using a textual representation or a graphical representation. The example parse trees discussed in

this chapter are represented using the textual representation generated by the Stanford parser.

Besides parse tree generation, the researcher also performs some additional steps for robust

extraction of detailed information required in the semantic analysis, such as classification of

active-voice and passive-voice analysis of logical operators, etc. It is a fact that the accuracy of

syntax analysis affects the semantic analysis and rest of the processing phases as the output of

the syntax analysis is input of semantic analysis phase. Hence, any mistake or misinterpretation

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

53

during syntax analysis phase propagates in rest of the processing such as semantic analysis,

SBVR rule generation, and OCL generation. Considering the importance of syntax analysis,

following steps are performed to syntactically analyse a NL constraint:

1. POS Tagging

2. Generating Parse Tree and Dependencies

3. Voice Classification

4. Processing Conjunctions an Disjunctions

5. Generating an Intermediate Representation

The description of all the five steps involved in the syntax analysis of NL constraints is given

below.

4.2.1 Part-of-Speech (POS) Tagging

POS-tagging is the first phase of syntax analysis. In POS tagging, each token is assigned a part-

of-speech such as noun, verb, preposition, etc. A set of name abbreviations such as NN, NNS,

CD, VB, VBZ, etc., are the output of POS-tagging. The researcher has used the Stanford POS

tagger for the sake of POS tagging due to its accuracy that is 97% [Manning, 2011]. The

Stanford POS tagger was originally written by Kristina Toutanova [2000]. The Stanford POS

tagger is an entropy-based POS tagger that laterally involved the use of cyclic dependency

network [Toutanova, 2003].

The researcher has used the Stanford POS tagger version 3.0.3 that can identify 44 various POS

tags. An example of POS tagging of a simple NL constraint is shown in Figure 4.4 that involves

one determiner ‘a’, two singular nouns ‘customer’ and ‘age’, one possession ‘’s’, one Modal

verb ‘can’, one negation ‘not’, one verb ‘be’, one comparative adjective ‘less’, one subordinating

conjunction ‘than’, one cardinal number ‘18’ and one plural noun ‘years’:

English: A customer’s age cannot be more than 18 years.

Tokens: [A/DT] [customer/NN] [‘s/POS] [age/NN] [can/MD] [not/RB] [be/VB] [less/JJR]

[than/IN] [18/CD] [years/NNS] [./.]

Figure 4.4: Parts-of-Speech tagged text

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

54

Despite the high accuracy of the Stanford POS tagger, the researcher has identified a few cases

where the Stanford POS tagger identifies wrong tags for a token. Identification of wrong tags is

due to lexical ambiguity [Uejima, 2003]. In linguistics, a lexical ambiguity occurs when a word

in a phrase or a sentence exhibits different syntactic representations in different cases. The wrong

POS tagging by the Stanford POS tagger becomes more serious as the Stanford parser generates

wrong parse trees and wrong dependencies.

A complex example of such cases is shown in Figure 4.5 where a token ‘books’ is wrongly

tagged as ‘NNS’ by the Stanford POS tagger while, the token ‘books’ is a verb and should be

tagged as ‘VBZ’. The effect of wrong POS tagging is also shown in Figure 4.5 where the

Stanford parser generates a wrong parse tree as there is no verb phrase in the tree. Similarly, the

typed dependencies (collapsed) generated by the Stanford parser are also wrong as det(books-

3, A-1)should be det(customer-2, A-1), nn(books-3, customer-2) should

bensubj(books-3, customer-2),and dep(books-3, items-5) should benobj(books-

3, item-5). As these dependencies are directly translated to a logical representation in

semantic analysis, it is very important to handle such issues.

English: A customer books two items.

POS Tagging:[A/DT] [customer /NN] [books/NNS] [two/CD] [items/NNS] [./.]

Parse Tree:(ROOT

 (NP

 (NP (DT A) (NN customer) (NNS books))

 (NP (CD two) (NNS items))

 (. .)))

Typed Dependencies:det(books-3, A-1)

nn(books-3, customer-2)

num(items-5, two-4)

dep(books-3, items-5)

Figure 4.5: Wrong POS tagging by the Stanford POS tagger

The researcher explained some other examples of lexical ambiguity in NL constraints in [Bajwa,

2012a]. One more example of lexical ambiguity is “A customer can bank on manager”. In this

example, word ‘bank’ is wrongly POS tagged ‘NN’ but the correct POS tag is ‘VB’. A similar

example is “The manager made him type on typewriter.” In this example word ‘type’ is wrongly

tagged as ‘NN’, while the correct tag is ‘VB’. Cases of lexical ambiguity are quite common in

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

55

the natural language sentences. Moreover, the incorrect POS tagging of such cases result in

incorrect parse trees generated by the Stanford parser.

The researcher has used the Stanford parser for parsing the NL constraint and his semantic

analyser totally relies on the performance of the Stanford parser, if POS tags go wrong, the parse

tree is wrong and eventually the semantic analysis goes wrong resulting in wrong SBVR and

OCL. To address cases of incorrect POS tagging due to ambiguity, contextual information is

needed. As UML class model is target of NL constraints, the information of UML class models

is used to decide the correct tags. As a solution, the POS tags identified by the Stanford POS

tagger are also confirmed by mapping all POS tags with the UML class model. For NL to UML

mapping, the researcher has used the set of mapping rules in Table 4.1.Here, a user is expected to

use the vocabulary that is part of the target UML class model.

Table 4.1: Mapping of English elements to UML class model elements

UML class model elements English language elements

Class names → Common Nouns

Object names → Proper Nouns

Attribute names → Generative Nouns, Adjectives

Method names → Action Verbs

Associations → Action Verbs

The mappings shown in Table 4.1 work as follows: if a token matches an operation or a

relationship name, then that token should be classified as a verb. A token matches to a classor an

attribute, then the token is classified as a common noun or proper noun.

Figure 4.6 shows a UML class model, in which it is shown that ‘books’ is an association in two

classes ‘Customer’ and ‘Item’. By using the set of mappings given in Table 4.1, it can be

identified that the token ‘books’ cannot be a noun in the context of UML class model. However,

the token ‘books’ should be classified as a verb and the correct POS tag of token ‘books’ should

be ‘VBZ’ as the token ‘books’ comes after a model verb (MD) ‘can’ in the NL constraint. We

have written a small rule-based module that corrects output of the Stanford POS tagger and the

Stanford parser.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

56

Figure 4.6: A UML Class model involving scenario of Customer booking an item

Once the POS tags of a NL constraint are corrected by using the mappings (given in Table 4.1)

and the information given in the UML class model (shown in Figure 4.6), the parse tree and set

of dependencies for the example (given in Figure 4.5) can be corrected. The corrected parse tree

and the dependencies for the above discussed example are as shown in the Figure 4.7.There is a

possible case that the UML model has multiple representations of ‘books’. In that case, the user

is given a message that he should manually select the correct meanings.

English: A customer books two items.

Tagging: [A/DT] [customer /NN] [books/VBZ] [two/CD] [items/NNS] [./.]

Parse:(ROOT

 (S

 (NP (DT A) (NN customer))

 (VP (VBZ books)

 (NP (CD two) (NNS items)))

 (. .)))

Typed Dependencies: det(customer-2, A-1)

nsubj(books-3, customer-2)

num(items-5, two-4)

dobj(books-3, items-5)

Figure 4.7: Corrected Parts-of-Speech tag, parse tree and dependencies

4.2.2 Generating Syntax Tree and Dependencies

A parse tree represents the syntactic structure of a NL constraint. Phrase structure rules are a

common way to describe a given language’s syntax. Such rules help in breaking down a NL

sentence into chunks (phrasal categories) such as Noun Phrase (NP), Verb phrase (VP),

Preposition Phrase (PP), and Quantificational Phrase (QP). A parse tree is also the basis of

dependencies [Marneffe, 2006].Among various syntactic structures, the dependencies are the

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

57

target of our syntax analysis. The syntactic dependencies help us in identifyingthe possible

relationships among various syntactic structures of a NL constraint.

English: An increase is awarded to any worker with injury.

Parse Tree:(ROOT

 (S

 (NP (DT An) (NN increase))

 (VP (VBZ is)

 (VP (VBN awarded)

 (PP (TO to)

 (NP

 (NP (DT any) (NN worker))

 (PP (IN with)

 (NP (NN injury)))))))

 (. .)))

Typed Dependencies:det(increase-2, An-1)

nsubjpass(awarded-4, increase-2)

auxpass(awarded-4, is-3)

root(ROOT-0, awarded-4)

det(worker-7, any-6)

prep_to(awarded-4, worker-7)

prep_with(worker-7, injury-9)

Figure 4.8: Syntactic Tree generated using the Stanford Parser

The researcher has used the Stanford parser for generating a parse tree and the dependencies. The

Stanford parser is 84.1% [Cer, 2010] accurate in generation and its dependencies. The Stanford

parser provides two outputs: a parse tree and a set of dependencies. The Stanford parser

generates two sets of dependencies: (1) dependencies and (2) typed dependencies. Here, typed

dependencies are a compact version of simple dependencies. In the researcher’s approach, typed

dependencies are involved in representing the grammatical relations in a NL constraint. An

example of a parse tree, for the above discussed example of NL constraint, generated by the

Stanford parser is shown in Figure 4.8.

English: The pay is given to all employees with bonus.

Tagging:[The/DT] [pay/NN] [is/VBZ] [given/VBN] [to/TO] [all/DT] [employees/NNS] [with/IN]

[bonus/NN] [./.]

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

58

Parse Tree:(ROOT

 (S

 (NP (DT The) (NN pay))

 (VP (VBZ is)

 (VP (VBN given)

 (PP (TO to)

 (NP

 (NP (DT all) (NNS employees))

 (PP (IN with)

 (NP (NN bonus)))))))

 (. .)))

 Typed Dependency:det(pay-2, The-1)

nsubjpass(given-4, pay-2)

auxpass(given-4, is-3)

det(employees-7, all-6)

prep_to(given-4, employees-7)

prep_with(employees-7, bonus-9)

Figure 4.9: Typed dependency (collapsed) generated using the Stanford Parser

The typed dependencies generated by the Stanford parser are quite helpful in establishing

relationships in various parts of a sentence. The Stanford parser is fairly efficient in processing

complex sentences. However, the researcher has identified a few cases where the Stanford parser

generates a correct parse tree, but wrong dependencies on account of attachment ambiguity.

Attachment ambiguity is a type of syntactic ambiguity where a prepositional phrase or a relative

clause in sentence can be lawfully attached to one of two parts of that sentence [Kiyavitskaya,

2008]. An example of such cases is shown in Figure 4.9. In this example, it is shown that the

typed dependencies generated by the Stanford parser are wrong such as

prep_with(employees-7, bonus-9). However, the correct typed dependency for this

example should be prep_with(pay-2, bonus-9)to represent the actual meaning of the

example, i.e., the pay with bonus is given to all the employees. As the researcher explained

earlier, the output of the Stanford parser is input of our semantic analyser, the wrong typed

decencies lead to wrong semantic role labelling and wrong logical representation. For correct NL

to SBVR an OCL transformation, we need to resolve such cases.

It is a common knowledge that involvement of context is the major reason of attachment

ambiguity. Contextual information, such as a UML class model, can be used to resolve such

issues. Figure 4.10 shows a UML class model that can help us to identify the correct

dependencies of the example discussed in Figure 4.9.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

59

Figure 4.10: A UML class model involving employee, pay, and bonus

The relationships in UML class model, such as associations (directed and un-directed),

aggregations and generalizations, can help us to deal with such cases of attachment ambiguities

in English. To correctly identify the attachment of the noun ‘pay’ with other nouns ‘bonus’

instead of noun ‘employee’, the researcher maps the (three) candidate English elements in the

NL constraint (such as nouns) to the classes in the UML class model.

The used mapping for attachment ambiguity resolution is slightly different from the mapping

used in Section 4.2.1 to resolve lexical ambiguity. To resolve such cases, the researcher has

written a simple algorithm as below:

1. Each noun is mapped to a class name in the input UML class model.

2. If all nouns are mapped to respective classes in the UML class model, the associations

between those classes are analysed.

3. If there is a direct association between two candidate classes, they are attached to each other.

Otherwise they are not attached to each other.

Algorithm 4.1: An algorithm to handle attachment ambiguity

The case of attachment ambiguity given in Figure 4.9 involves three nouns ‘pay’, ‘employees’,

and ‘bonus’. All these three nouns are mapped to classes (such as ‘Pay’, ‘Employee’, and

‘Bonus’) in the UML class model shown in Figure 4.10. After this mapping, the associations in

all three classes are analysed. The Stanford parser wrongly identifies that noun ‘bonus’ is

attached to the noun ‘employees’. However, the UML class model shows that there is no direct

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

60

relationship in classes ‘Bonus’ and ‘Employee’. While, there is a direct relationship in class

‘Pay’ and class ‘Bonus’. By using this information, we can correct the wrong dependencies by

associating ‘Bonus’ to ‘Pay’ instead of ‘Employee’. The corrected parse tree and dependencies

are shown in Figure 4.11.

English: The pay is given to all employees with bonus.

Tagging: [The/DT] [pay/NN] [is/VBZ] [given/VBN] [to/TO] [all/DT] [employees/NNS]

[with/IN] [bonus/NN] [./.]

Parse Tree:(ROOT
(S

 (NP

 (NP (DT The) (NN pay))

 (PP (IN with)

 (NP (NN bonus))))

 (VP (VBZ is)

 (VP (VBN given)

 (PP (TO to)

 (NP

 (NP (DT all) (NNS employees))))))

 (. .)))

Typed Dependency: det(pay-2, The-1)

nsubjpass(given-4, pay-2)

auxpass(given-4, is-3)

det(employees-7, all-6)

prep_to(given-4, employees-7)

prep_with(pay-2, bonus-9)

Figure 4.11: Corrected typed dependencies (collapsed)

As we cannot change code of the Stanford parser, we correct the output of the Stanford parser to

reflect the correct relationships in dependencies. The researcher has written a rule-based module

that can perform the steps given in Algorithm 4.1that is used to correct the dependencies, if they

are wrong. After correction the corrected dependencies are shown to the user for his approval. If

the user is satisfied, rest of the processing is performed. Otherwise, the user is allowed to correct

the dependencies. Here the output is shown to the user by a message and the user can manually

classify if it is not correctly classified.

The researcher has generalized the used approach so that all the variations of the discussed type

of attachment ambiguity can be handled. For this purpose, the analysis of the relationships in

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

61

classes of a UML class model such as associations (directed and un-directed), aggregations and

generalizations can play a key role.

4.2.3 Voice Classification

In voice classification phase, a sentence is classified into the active or passive voice category. It

is important to classify voice in NL constraints, as passive-voice sentences are treated differently

as compared to active-voice sentences in the NL2OCL approach, due to different grammatical

structure of both types of sentences. Typically, the passive voice implies focus on the

grammatical patient (thematic object or beneficiary of the action) in place of the agent (actor of

the action) of the sentences. Various grammatical features manifest passive-voice representation

such as the use of past participle tense with main verbs can be used for the identification of a

passive-voice sentence (see Figure 4.12).

[The] [order][was] [Past_participle_Tenseplaced][.]

Figure 4.12: Identifying passive voice sentences

The use of ‘by’ preposition in the object part is also another sign of a passive-voice sentence.

However, the use of by is optional in passive-voice sentences (see Figure 4.13). Using this

information, a set of rules was defined to classify the voice of a sentence. The examples in

Figure 4.13 show the use of past participle tense and ‘by’ preposition in passive voice sentences.

[The] [order][was] [Past_participle_Tenseplaced] [by_prepositionby] [the] [customer][.]

Figure 4.13: Identifying passive voice sentences with ‘by’ preposition

After voice classification, various parts of a sentence are classified into a subject, verb or object.

In case of a NP relation, there can be more than one subject or object relating to a verb.

Similarly, in a VP relation, more than one verb can relate to a subject. This process is also called

shallow syntactic parsing in which a sentence is analysed to identify various constituents such as

subject, verb, object, etc. A set of heuristic rules were used to read the parse tree and classify the

text into subject, object or nothing. Each sentence is divided into three sections: first section

called subject starts from the first word of the sentences and ends before the start of the helping

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

62

verb or main verb. Second section is verb that is combination of auxiliary verb and/or main verb.

The third section object starts from the first word after verb section and ends at the last word of

the sentence. To handle passive-voice sentences, we swap subject with the object.

4.2.4 Processing Conjunction and Disjunction

In the NL2OCL approach, the processing of logical operators is an important phase in analysis of

NL constraints. Logical operators such as conjunction and disjunction can be analysed using

syntactic information. It is important to identify the role of conjunctions and disjunctions in a NL

constraint, as the conjunctions and disjunctions are reflected in logical representation and

ultimately become part of the SBVR and OCL representation.

The following sub-sections explain the way conjunctions and disjunction are handled.

A. Resolving Conjunction

The researcher has used the parse tree information to identify conjunction (p ˄ q) in English

sentences. Typically, conjunction is represented using a few words such as “and”, “but”, “yet”,

“so” “moreover”, “however”, “although”, “even though”, etc. Conjunction can be used to join

two nouns or two verbs. The ‘and’ conjunction used with two nouns is easy to interpret e.g. “A

student and teacher can borrow a book”. However, the use of “and” conjunction with two verbs

can be ambiguous e.g. “John opened the door and went out”. In this example, ‘and’ is exposing a

sequence. We aim to handle such implicatures in the pragmatic analysis that is the part of the

future work.

B. Resolving Disjunction

In natural language text, disjunction can be inclusive or exclusive. Typically, inclusive

disjunction (p ∨ q) means either p is true or q is true or both. In English, inclusive disjunction

represented using “or” word. Similar to “and”, the use of “or” is also ambiguous in English as

sometimes it disjoins nouns/adjectives and sometimes disjoins two propositions. The researcher

has identified this difference and defined simple rules to classify the different use of “or” in all

three possible situations. For example “A student can borrow a book or a CD.” Other possible

representation of inclusive disjunctions in English can be the use of “unless”, “and/or”.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

63

Exclusive disjunction (p ⊕q) (XOR) is also used in English, e.g., "Do you want milk or sugar in

your coffee?" doesn't give a constraint "milk" XOR "sugar". In another context, the example, "do

you want milk and sugar in your coffee?" suggests "milk" AND "sugar". Both are examples of

inclusive OR. The researcher is aware of such subtle aspects. However, we have not handled this

type of relations until mentioned explicitly. In natural languages, there are very few cases with

XOR relations. Hence, the exclusive disjunction does not seriously affect our approach.

However, the researcher aims to address the possible cases of exclusive disjunction in future.

4.2.5 Generating an Intermediate Logical Representation

In this phase, an intermediate logical representation is generated for the further semantic analysis

performed in the next phase. At this stage, a tabular representation is generated containing the

various syntactic chunks and their associated representations such as syntax type (e.g. subject,

verb or object), various quantifications, logical operator if used in the NL constraint, and

preposition associated to various nouns.

An example of an intermediate logical representation for a natural language constraint is shown

in Table 4.2.

Table 4.2: An intermediary logical representation of a NL constraint

Chunk Syntax Quantification Logical Operator Preposition EOS

1 customer Subject 1

2 can H.Verb

Not

3 place M.Verb

4 order Object more than 1

True

A major feature of this intermediary representation is that the active-voice and passive-voice are

mapped to same representation such as subject of a passive-voice sentence is represented as

object and object of a passive-voice sentence is represented as subject.

4.3 Semantic Analysis

A typical semantic analysis yields a logical form of a sentence. The logical form is used to

capture semantic meaning and depict this meaning independent of a particular context. The goal

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

64

of semantic analysis is to understand the exact meaning of the input text and identify various

chunks of a sentence, such as Object Types, Verb Concepts, etc. For a complete semantic

analysis of domain specific text, we have to analyse the text in respect of a particular domain

such as a UML class model. Domain specific text analysis demands knowledge from the

application domain to be mapped with the input English. In this research, UML class model is an

application domain of the input NL specification of constraints.

The researcher’s semantic analyser performs the following three steps to identify semantic

relations in various parts of a NL constraint:

1. Shallow Semantic Parsing

2. Deep Semantic Parsing

3. Semantic Interpretation

All these steps of semantic analysis are explained below.

4.3.1 Shallow Semantic Parsing

In shallow semantic parsing the semantic or thematic roles are typically assigned to easy

syntactic structure in a NL sentence. This process is also called Semantic Role Labeling.

Typically used semantic roles are agent, patient, beneficiary, etc., whereas the researcher

introduces SBVR vocabulary base semantic roles such as Object_Type, Fact_Type, etc. The

researcher proposes the use of SBVR vocabulary based semantic roles in NL2OCL approach as

the researcher aims at generating SBVR rule representation from NL constraint. If the researcher

had used the typical semantic roles in this approach, he had to map the typical roles to SBVR

vocabulary that was an overhead and could complicate the process semantic roles labelling.

The used SBVR based semantic roles in shallow semantic parsing are shown in Table 4.3:

Table 4.3: SBVR based semantic role labels used in SRL

English language elements SBVR based role labels

Common nouns → Object_Type/ Characteristic

Proper nouns → Individual_Concept

Main verb → Verb_Phrase/ Fact_Type

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

65

Generative Phrases, Adjectives → Characteristic

A sequence of steps was performed for labelling SBVR based semantic roles to respective

semantic predicates and their arguments given in a NL constraint. Following are the three main

steps involved in the phase of semantic role labelling.

A. Identifying Predicates

In semantic role labelling, the primary step is the identification of the terms in a sentence that can

be semantic predicates or predicate arguments. The semantic predicates and their respective

predicate arguments are the basis of a logical representation as output of the semantic analysis in

the NL2OCL approach. Once the semantic predicates and their respective predicate arguments

are identified, each semantic predicate and predicate argument is annotated with a suitable

semantic role. In the identification of predicates, the information extracted in the syntactic

analysis phase plays a key role. Besides the syntactic information the researcher further needs to

extract semantic features which can be helpful in the identification of a semantic predicate, a

predicate argument and relations between predicate and arguments.

Following are the description of the approach used to extract predicates and their arguments.

i. Extracting Semantic Predicates: In this phase, we extract the possible semantic predicates.

This module relies mainly on external resources, thus the elements in the target UML Class

models (class names, attribute names, method names) are likely to be semantic predicates and

predicate arguments. The chunks not matching the elements of the target UML Class model are

not considered as semantic predicates or predicate arguments. For extracting semantic predicates

we check for a simple verb, a phrasal verb or a verbal collocation and tag the verb phrase as a

Verb Concept. A Verb Concept is a SBVR vocabulary and we map SBVRVerb Concepts to

semantic predicates. An example of the extraction of a Verb Concept is shown in Figure 4.14.

[A] [customer] [cannot][Verb_Conceptplace] [more][than][one][order][.]

Figure 4.14: Identifying Verb phrases

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

66

In English sentences, Verb Concepts are typically represented in a combination of auxiliary verb

and main verb (possibly following participle). However sometimes, there are only auxiliary

verbs and no main verbs.

ii. Extracting Predicate Arguments: A few statistical methods (based on FrameNet and

PropBank) are available for the extraction of predicate argument [Giuglea, 2006]. However,

statistical methods are typically less accurate in the extraction of predicate-argument structures

on account of the data sparsity problem. However, the researcher proposes the use of decision

tree as theyachieve high accuracy [Surdeanu, 2003] as compared to statistical methods. The

researcher has used a simple decision tree that identifies predicate arguments on the basis of the

use of pre-modifiers and post-modifiers in a sentence. Additionally the type of phrases also helps

in identification of predicate arguments.

The use of pre-modifiers and post-modifiers is very common in English sentences. In a typical

English sentence, the noun concepts are represented with a pre-modifier and/or a post-modifier.

An example of such cases is shown in Figure 4.15:

[Pre-ModifierThe] [customer] [Post_Modifieron the Chair]…….[.]

Figure 4.15: English sentence with a prepositional phrase as a post modifier

In Figure 4.15 it is shown that an article (a determiner) can be a possible pre-modifier. A post-

modifier such as prepositional phrases (see Figure 4.15), relative (finite and non-finite) clauses

(see Figure 4.16 and Figure 4.17), and adjective phrases (see Figure 4.17) can also be used in a

English sentence. Another example of noun concepts can have a pre-modifier such as adjective

phrase and a post modifier such as relative finite clause as shown in the Figure 4.16.

 [The] [Pre-Modifiergold] [customer] [Post_Modifierwho applied for the account]…….[.]

Figure 4.16: English sentence with an adjective phrase and a relative finite clause

[Pre-ModifierThe] [customer] [Post_Modifierapplying for an account]…….[.]

Figure 4.17: English sentence with a relative infinite clause as a post modifier

http://dl.acm.org/author_page.cfm?id=81100357992&coll=DL&dl=ACM&trk=0&cfid=75887008&cftoken=41299454

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

67

By excluding the pre-modifiers and post modifiers, we can extract the noun concepts. For further

classification of Object Types and Individual Concepts the POS type of the noun concept is

checked. If the POS type is common noun, it is categorized as an Object Type and if the POS

type is proper noun, it is categorized as an Individual Concept.

a. Processing Phrases: Once the noun concepts are extracted, the next phase is to process

phrases to generate a semantic representation. We have identified three types of phrases in

typical constraints as following:

Processing Phrases: Typical phrases are a combination of two or more words. In SBVR, both

Object Types and Individual Concepts are represented in the form of phrases. The following

two examples show how phrases are processed to a semantic representation:

English: credit customer

FOL: ∃x isa (x, customer) ʌ Object_Type(x, credit)

English: gold credit customer

FOL: ∃x isa (x, customer) ʌ Object_Type (x, credit) ʌ Object_Type(x, gold)

Generative Noun Phrases: The generative noun phrases are also very common in constraints.

Especially the SBVR Characteristics are described by using generative noun phrases e.g.

customer’s age, customer’s salary, etc. The following examples show the way the researcher

has processed generative noun phrases to a semantic representation.

English: customer’s account

FOL: ∃x isa (x, account) ʌ Object_type(x, customer)

English: account of customer

FOL: ∃x isa (x, account) ʌ Object_Type(x, customer)

Adjective Phrases: Adjective phrases are not common in constraints but the researcher has

processed the adjective phrases as they can be a possible case. Following are the examples

showing the processing of adjective phrases:

English: The customer is happy.

FOL: ∃x isa (x, customer) ʌ Characteristic(x, happy)

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

68

English: This is a gold customer.

FOL: ∃x isa (x, customer) ʌ Characteristic(x, happy)

B. Sense Recognition

The researcher has identified various cases where a predicate or a predicate argument can be

associated with more than one semantic role. In Table 4.3, the researcher has shown that a

common noun can be mapped to an Object Type or as well as a Characteristic. For example, in

Figure 4.18, it is shown that there are two common nouns (or predicate arguments): customer

and name. However, one noun ‘customer’ is an Object Type and other noun ‘name’ is a

Characteristic. By using the mappings given in Table 4.3, it is not possible to correctly identify

the semantic roles for all common nouns.

[A] [NNcustomer][enters] [his][NNname] [.]

Figure 4.18: English sentence mapped with a UML class model

Similarly, it is also shown in Table 4.3 that a verb (predicate) can be mapped to a Verb Concept

or a Fact Type, as in English a verb can be in the form of a simple verb, a phrasal verb or a

verbal collocation. This case is very important to resolve, because if a verb is labelled as a Verb

Concept then it will be mapped to navigation expression in OCL or else it is ignored. For

example, in Figure 4.19, the token ‘place’ can be a Verb Concept or part of a Fact Type.

[A] [Class_namecustomer][cannot] [Association_nameplace][more than one][Class_nameorder] [.]

Figure 4.19: English sentence mapped with a UML class model

These multiple mappings are due to semantic ambiguity. Typically, semantic ambiguities are due

to the absence of context. Hence, to resolve the above discussed semantic ambiguities, the exact

sense of the predicates and predicate arguments needs to be recognized so that accurate semantic

roles may be assigned. The researcher proposes the use of information given in the target UML

class model to identify the actual sense of a predicate or a predicate argument.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

69

Table 4.4: SBVR based semantic role labels used in SRL

English Elements UML Elements SBVR based Semantic Roles

Common Noun
Class Object Type

Attribute Characteristic

Proper Noun Class Individual Concept

Generative Noun, Adjective Attribute Characteristic

Verb
Method Verb Concept

Association Fact Type

In Table 4.4, it is shows that each common noun is mapped to the target UML class model and if

a common noun maps to a class, then it is represented as an Object Type or if a common noun

maps to an attribute of a class, it is represented as a Characteristic. To solve the ambiguity of the

NL constraint given in Figure 4.18, we use the UML class model given in Figure 4.20 where it is

given that ‘customer’ is a class hence, ‘customer’ is tagged as Object_Type and name is an

attribute if class Customer hence name is tagged as a Characteristic.

Figure 4.20: A UML class model involving a customer and an order class.

Table 4.4 also represents that if a verb maps to a method in the target UML class model, the verb

should be tagged as Verb_phrase, else if a verb maps to an association in the target UML class

model, the verb should be tagged as a Fact_Type. Similarly, there are two additional benefits of

mapping a verb with an association as below:

i. A unary association or a binary association in a UML class model helps to

identify that a fact type is a unary fact type or a binary fact type.

ii. Direction of the association helps in identifying the active and passive elements in

a fact type.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

70

For example, after mapping the NL constraint in Figure 4.19, we find that predicate arguments

‘Customer’ and ‘Order’ are mapped to classes customer and order respectively and there is

a directed association between these two classes. The directed association shows that the

‘Customer’ is an agent or an actor and ‘Order’ is a patient or a thematic object. In the light of this

information it is simple to identify that the predicate arguments should be like

place(customer, order). Another benefit of such mapping is that if English sentence in

passive voice the same predicate will be generated e.g. place(customer, order).

C. Role Classification

After sense recognition, the exact semantic label or semantic role is assigned to each substring in

a sentence. The substrings are labelled with a semantic role. The used approach for semantic role

labelling works as the syntactic tree representation of a sentence is mapped into a set of syntactic

constituents. Finally, each syntactic constituent is classified into one of semantic roles. An

example of classification of semantic roles is shown in Figure 4.21.

[A] [Object_Typecustomer][cannot] [Fact_Typeplace][more than one][Object_Typeorder] [.]

Figure 4.21: English sentence mapped with a UML class model

The classification is performed on the basis of the sentence structural features or the linguistic

context of the target constituent. Role classification is performed as the syntactic information

(part of speech and syntactic dependencies) with predicate and predicate role set are given input

and the output of this phase is semantic predicates and predicate arguments (see Figure 4.21)

labelled with its corresponding roles.

4.3.2 Deep Semantic Analysis

In computational semantics, the key is understanding the complete meaning of a natural language

sentence instead of focusing on text portions only. For the sake of computational semantics, we

perform deep semantic analysis of the input text. Typically, deep semantic analysis involves

generation of a fine-grained semantic representation from the NL text. Traditionally, various

aspects are involved in deep semantics analysis. However, we are interested in a most commons

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

71

aspect such as identifying quantifications, quantification scope resolution, and processing

semantic logical operators. Following is the description of all these three steps.

A. Identifying Quantifications

Quantification is a very common part of a natural language sentence. In NL sentences,

quantifications are typically expressed with noun phrases (NPs). Similarly, in First-Order Logic

(FOL), the variables are quantified at the start of the logical expressions. Generally, the natural

language quantifiers are much more vague and varied. This vagueness makes translation of NL

to FOL complex. However, the researcher has done two things to handle quantifiers variable

scoping.

With respect to the researcher’s target representation (SBVR rules), he has identified the

following four types of quantifications that he needs to handle, as SBVR 1.0 also support these

four types of quantifications. The first two quantifications such as universal quantification and

existential quantification are commonly used. However, these two types do not cover all possible

types in detail. The researcher covers all possible types of quantifications in natural languages.

Besides, the researcher has used two other types such as uniqueness and solution quantification.

Hence, it will be simple to map these NL quantifications to SBVR quantifications.

i. Universal Quantification (∀X): The universal quantifier is represented using all sign “∀” and

means all the objects X in the universe. The universal quantification is mapped to Universal

Quantification in SBVR. The NL quantification structures ‘each’, ‘all’, and ‘every’ are mapped

to universal quantificational structures. Similarly, the determiners ‘a’ and ‘an’ used with the

subject part of the sentence can be treated as universal quantification due to the fact that the

researcher is processing constraints and generally constraints are mentioned for all the possible X

in a universe (see Figure 4.22). However, the researcher has addressed the role of determiners as

quantifiers in next section of quantifier scope resolution.

ii. Existential Quantification (∃X): The existential quantifier is represented using exists sign “∃”

and means at least one object X exists in the universe. The existential quantification is mapped to

Existential Quantification in SBVR. The keywords like many, little, bit, a bit, few, a few,

several, lot, many, much, more, some, etc. are mapped to existential quantification.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

72

iii. Uniqueness Quantification (∃=1 X): The uniqueness quantifier is represented using “∃=1” or

“∃!” means exactly one object X in the universe. The uniqueness quantification is mapped to

Exactly-One Quantification in SBVR. The determiners ‘a’ and ‘an’ used with object part of the

sentence are treated as uniqueness quantification. However, we have addressed the role of

determiners as quantifiers in next section of quantifier scope resolution.

iv. Solution Quantification (§X): The solution quantifier (Hehner, 2004) is represented using

section “§” sign and means n object in the universe. The solution quantification is mapped to

Exactly-n Quantification in SBVR. If the keywords like more than or greater than are used with n

then solution quantifier is mapped to At-most Quantification (see figure 8). Similarly, if the

keywords like less than or smaller than are used with n then solution quantifier is mapped to At-

least Quantification.

[Universal_QuantificationA] [Object_Typecustomer][cannot] [Fact_Typeplace]

[at_least_n_Quantificationmore than one][Object_Typeorder] [.]

Figure 4.22: Semantic roles assigned to input English sentence.

Two other types of quantifications are also available such as Plaucal quantification (∃manyX) and

mutal Quantification (∃fewX). However, we are not using these both quantifications as both of

them are not supported by SBVR and UML and ultimately can’t be translated to OCL.

B. Quantifier Scope Resolution

In quantification resolution, the second issue is quantifier scope resolution. For quantification

variable scoping, the researcher has treated syntactic structures as logical entities. However, in a

few cases quantifier scope resolution is difficult due to ambiguities. Context plays an important

role in resolution of such ambiguities in scope of quantifiers [Villalta, 2007]. As UML class

models are the scope of a constraint, the information given in a UML class model such as

multiplicity of associations is used. For this purpose, we have used the following algorithm

1. Each noun after a determiner is mapped to the class names in the input UML class model.

2. If a noun is found in the UML class model, the associations in this set of classes are

analysed and checked for the associated multiplicity with the noun.

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

73

3. If the multiplicity is found for the noun, map the cardinality to quantification as

a. If multiplicity is *, then quantification should be universal (∀X)

b. If multiplicity is 1, then quantification should be uniqueness (∃=1X)

c. If multiplicity is 1..n, then it should be existential quantification (∃X)

d. If multiplicity is 0..n or n, then it should be solution quantification (§X)

Algorithm 4.2: An algorithm to handle attachment ambiguity

To address the determiner ‘a’ used with noun ‘customer’ in above example (see Figure 4.21) can

be solved by using Algorithm 4.2 and the information available in the UML class model shown

in Figure 4.20. As the associated multiplicity with ‘customer’ class in the given UML class

model is ‘1’ and algorithm’s step 4.b says, it should be expressed as uniqueness (∃=1X)

quantification. In a case if UML model disagrees with NL, user is given a message that he should

recheck the given NL input.

[Solution_QuantificationA] [Object_Typecustomer][cannot] [Fact_Typeplace]

[at_least_n_Quantificationmore than one][Object_Typeorder] [.]

Figure 4.23: Semantic roles assigned to input English sentence.

Figure 4.23 shows the NL constraint after handling the scope of quantifier represented by a

determiner.

C. Processing Negation and Implication

We described the processing of conjunctions and disjunctions in Section 4.2.3. However, there

are some other important logical operators typically involved in natural language constraints are

negation and implication. These two types of logical operators cannot be processed just using the

syntactic information. For processing negation and implication, semantic information is also

required.

i. Negation: Negation is an important construct that is used to negate a structure by using

keywords no and not e.g. “A customer cannot apply for more than one account.” Here, negation

has been used to restrict customers to a single account. We have also worked out the double

negation as a positive sentence. Hence, ¬ (¬p) = p. Another possible way of representing a

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

74

negation in a natural language is negative adjective, e.g., unhappy, bad, etc. Since, adjectives are

not common part of constraints, currently, our approach does not support negative adjectives.

However, if the user exclusively mentioned no/not in a NL sentence, our approach is able deal

with such cases.

ii. Implication: In English, a few expression are used to represent implications such as “if p, then

q”, “if p, q”, “q if p”, “p only if q”, “p implies q”, “p entails q”, “p hence q”, “q provided p”, “q

follows from p”. For example “If a student is adult, he can get a pass.” The researcher has also

identified that some expressions such as “q since p”, “since p, q”, “because p, q”, “q because p”,

“p therefore q” are not true cases of implications. A set of rules were devised to handle possible

types of implications in NL constraints.

4.3.3 Semantic Interpretation

In lexical semantics, the frame is also considered a useful tool in text semantics and the

semantics of grammar. The interpreter of a text invokes a frame when assigning an interpretation

to a piece of text by placing its contents in a pattern known independently of the text. A text

evokes a frame when a linguistic form or pattern is conventionally associated with that particular

frame. A simplified template that is used to generate a logical representation for a NL constraint

is shown in Figure 4.24:

Template:(Predicate_Name

 (Semantic_Role = (Quantification ~(Predicate_Arg ? Var))) ...)

Figure 4.24: Logical Representation of a NL constraint

The semantic representation shown in Figure 4.25 is enriched from of first-order logic. Besides

Predicate name and variables, we have added some extra information such as predicate type

(such as Object Type or Individual Concept), extra quantification (such as Solution

quantification, Uniqueness quantification). By adding such extra information in typical first-

order logic, we can prepare the logical representation more useful. Figure 4.24 shows a template

used to create the logical representation. The template has 5 elements that constitute a complete

logical representation such as Predicate_Name (that is Verb Concept), Semantic_Role (that is

Object Type, Individual Concept or Characteristic),Quantification(Universal, Existential,

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

75

Solution or uniqueness quantification), Predicate_Arg (that is predicate argument), and var

(that is a variable name).

The researcher has written a rule based module that uses the generalized template shown in

Figure 4.24 that generates a logical representation based on SBVR vocabulary. The output of this

module is a SBVR based logical representation (is shown in Figure 4.25).

Semantic Interpretation:(place

 (Object_Type = (∃=1X ~ (customer ? X)))

 (Object_Type = (§Y ~ (order ? Y))))

Figure 4.25: Logical Representation of a NL constraint

4.4 Generating SBVR Rule Representation

Once the logical representation is extracted from a NL constraint, the next phase is to generate a

SBVR rule representation from the SBVR vocabulary and the logical representation extracted in

previous phases. Here, two types of SBVR rules can be generated: structural rule or behavioural

rule on the basis of type of information represented in the NL constraint. A typical SBVR rule is

generated in three phases as below.

4.4.1 Constructing SBVR Rules

To generate a SBVR rule from NL constraint, it is primarily analysed that it is a structural rule or

a behavioural rule. Following are two types of SBVR rules those can be classified on the basis of

the various features of a NL constraint:

A. Generating Structural Rules

The use of auxiliary verbs such as ‘is’, ‘has’, etc. is identified to classify a NL constraint as a

SBVR structural requirement. A sentence representing a state of being, e.g., “Robby is a robot”

or a state of possession, e.g., “robothastwo arms” can be categorized as structural requirement.

B. Generating Behavioural Rules

The use of auxiliary verbs such as ‘should’, ‘must’ are identified to classify requirement as a

behavioural rule. In case of “should have” or “must have”, our parser looks for “should” only,

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

76

additional “have” will have no impact. Moreover, the use of action verb can be categorized as a

behavioural rule, e.g., “robot picks up parts”. The example discussed in Figure 4.23 is mapped to

a SBVR Fact Type (see Figure 4.26) that becomes base of a SBVR rule generated in next phase.

customer cannot place order.

Figure 4.26: SBVR Fact Type generated from NL constraint.

4.4.2 Applying Semantic Formulation

Once a raw representation of a SBVR rules is generated, a set of semantic applications are

applied to comply with SBVR standard. A set of semantic formulations are applied to each fact

type to construct a SBVR rule:

A. Apply Modal Formulation

Modal formulation (OMG, 2008) specifies seriousness of a constraint. Modal verbs e.g. ‘can’

and ‘may’ are mapped to possibility formulation while the modal verbs ‘should’, ‘must’ or Verb

Concept “have to” are mapped to obligation formulation. Description of various types of modal

formulations is given in Chapter 2, Section 2.1.2-C. Figure 4.27 shows that a modal formulation

is applied on the SBVR rule generated in Figure 4.26 by adding a phrase ‘It is possibility’ and

this phrase is concatenated to SBVR rule using a word ‘that’.

It is possibility that customer cannot place order.

Figure 4.27: Applying modal formulation to core SBVR rule.

B. Apply Logical Formulation

A SBVR rule can have multiple fact types using logical operators [OMG, 2008] e.g. AND, OR,

NOT, implies, etc. In logical formulation, the tokens ‘not’ or ‘no’ are mapped to negation(⌐ a).

Similarly, the tokens ‘that’ and ‘and’ are mapped to conjunction (a ˄ b) and token ‘or’ is mapped

to disjunction (a ˅ b) and the tokens ‘imply’, ‘if, ‘infer’ are mapped to implication (a ⟹ b).

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

77

C. Apply Quantification

Quantification [OMG, 2008] is used to specify the scope of a concept. Quantifications are

applied by mapping tokes like “more than” or “greater than” to at least n quantification; token

“less than” is mapped to at most n quantification and token “equal to” or a positive statement is

mapped to exactly n quantification. Figure 4.28 shows that quantification is applied on the core

SBVR rule (generated in Figure 4.26) by adding two quantifications: quantification is added to

the ‘customer’ Object Type that is ‘exactly one’ and second quantification is added to the ‘order’

Object Type.

It is possibility that exactly one customer cannot place at most one order.

Figure 4.28: Applying quantification to complement SBVR rule.

4.4.3 Applying Structured English Notation

The last step in generation of a SBVR rule is application of the Structured English notation. To

apply Structured English notation, the Object Types are printed in bold frame and underlined e.g.

customer; the Verb Concepts are italicized e.g. cannot place; the SBVR keywords are printed in

bold frame e.g. at most; the Individual Concepts are underlined e.g. Patron. Similarly, the

Characteristics are also italicized and underlined with a different colour: e.g. name. An example

of a SBVR rule with Structured English notation is shown in Figure 4.29.

It is possibility that exactly one customer cannot place at most one order.

Figure 4.29: Semantic roles assigned to input English sentence.

4.5 Summary

In this chapter, the researcher has explained various steps involved in generation of SBVR rules

representation from NL constraints. To achieve this goal, the NL constraints were processed

using typical phases of NLP phases. However, the researcher came across various cases with NL

constructs involving syntax ambiguities(such as lexical ambiguity, and attachment, ambiguity)

and semantic ambiguities. The researcher also developed a novel approach to handle the

identified types of ambiguities in NL constraints. The used approach to address syntactic and

C
h

ap
te

r
4

Tr

an
sl

at
in

g
N

at
u

ra
l L

an
gu

ag
e

to
 S

B
V

R

78

semantic ambiguities involves the information from the target UML class model that is the

context of the information given in the NL constraints. An additional benefit of mapping

information (given in NL constraints) with UML class model is that the finally generated SBVR

and OCL will also be semantically consistent with UML class model. Here, semantic consistency

means that the generated SBVR rules or OCL constraints will not have any information that is

not the part of the target UML class model.

There are two contributions of this chapter: (1) Resolution of syntactic and semantic ambiguities

(2) SBVR Intermediate representation. The approach used to resolve syntactic ambiguities was

also presented in [Bajwa, 2011a]. Similarly, The approach used to resolve semantic ambiguities

was also presented in [Bajwa, 2011c]. By resolving syntactic and semantic ambiguities, more

accurate OCL constraints can be generated. Other major contribution is SBVR based

intermediate representation that can not only be simply transformed to OCL but also other

important formal languages such as Alloy, B, BPMN, BPML, etc.

79

CHAPTER 5

MODEL TRANSFORMATION FROM SBVR TO OCL

In the previous chapter, the researcher explained the generation of a logical representation and a

SBVR rule representation from NL constraints. In this chapter, the transformation from SBVR to

OCL is explained. The SBVR based logical representation and SBVR rule generated in the

previous chapters are mapped to OCL representations using model transformation technology.

For a model transformation of SBVR to OCL, the researcher needs to do two things to generate

OCL constraints, as explained below:

i. Choose an appropriate OCL template (such as invariant, pre/post conditions, collections, etc.)

from given set of templates.

ii. Map source elements of the logical form to the equivalent elements in the used OCL

templates.

In the remaining part of this chapter, the researcher explains the transformation from SBVR to

OCL using a set of transformation rules and templates.

5.1 OCL Templates

The researcher has designed generic templates to generate traditional OCL expressions: OCL

invariant, OCL pre-condition, and OCL post-condition. One of the given three templates is

chosen automatically on the basis of the type of SBVR rule. For a SBVR structured rule, the

template for OCL invariant is chosen, while templates for OCL pre/post conditions are chosen if

the SBVR rule is a behavioural rule. Once a template is chosen for one of the constraints, the

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

80

missing elements in the template are extracted from the logical representation of English

constraint. Figure 5.1 shows the template used to generate an OCL invariant:

package [UML-Package]

context [UML-Class]

inv: [Body]

Figure 5.1: Template for OCL invariant

To generate an OCL invariant, we need three things: a UML-Package that is a package of the

invariant, a UML-Class that is context of the invariant and the Body of the invariant.

Figure 5.2 shows the template we used for OCL pre-condition. To generate an OCL pre-

condition, first thing needed is UML-Package that is package of the pre-condition.

Additionally, a context is required that is composed of a UML-Class (a UML class), a Class-

Op (an operation or method of the UML class used) with Param (set of parameters of the related

class operation) and the Return-Type (return type of the used class operation). Finally, to

complete the pre-condition Body is also required.

package [UML-Package]

context [UML-Class::Class-Op(Param):Return-Type]

pre: [Body]

Figure 5.2: Template for OCL pre-condition

The template the researcher used to generate an OCL prost-condition is shown in Figure 5.3.

Similar to OCL pre-condition, to generate an OCL post-condition, the first thing needed is a

UML-Package that is package of the post-condition. Additionally, a context is also required

that is composed of a UML-Class (a UML class), a Class-Op (an operation or method of the

UML class used) with Param (set of parameters of the related class operation) and the Return-

Type (return type of the used class operation). To complete the post-condition Body is also

required. Finally, another element result is also involved. However, the result is optional

in post-conditions.

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

81

package [UML-Package]

context [UML-Class::Class-Op(Param):Return-Type]

post: [Body]

result: [Body] -- optional

Figure 5.3: Template for OCL post-condition

In the all shown templates, elements written in brackets ‘[]’ are required. The researcher gets

these elements from the logical representation of English sentence. The following mappings are

used to extract these elements:

i. UML-Package is the package name of the target UML class model.

ii. UML-Class is the name of the class in the target UML Class model and UML-Class should

also be an Object Type in the subject part of the English Constraint.

iii. Class-Op is one of the operations of the target class (such as context) in the UML Class

model and Class-Op should also be the Verb Concept in English constraint.

iv. Param is the list of input parameters of the Class-Op and they are retrieved from the UML

class model. These parameters should be of type Characteristics in English constraint.

v. Return-Type is the return data type of the Class-Op and they are retrieved from the UML

class model. The return type is the data-type of the used Characteristic in English constraint

and this data type is extracted from the UML class model.

vi. Body can be a single expression or combination of more than one expression. The details of

Body are given in the next section. Here, for each type of expression in the body, the

researcher designed a small template.

In contrast to Wahler’s approach [Wahler, 2008], where he used large templates to generate a

complete OCL constraint, the researcher has small templates those generate small expressions

and the researcher has integrated all those expression to form body of an OCL constraint. To

integrate the generated expressions, the researcher has used the relationships given in the SBVR

based logical form generated in Chapter 4, Section 4.3.3. Such small expressions are based on

the relations that the researcher has explained in the form of tables, explained in the next section.

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

82

5.2 Mapping SBVR based Logical Form to OCL

The Body of the invariants and the pre/post-conditions is generated from the logical form

generated in Section 4.3.3. A set of transformation rules [Bajwa, 2011b] were used to transform a

SBVR based logical representation to OCL constraints by mapping element(s) of the SBVR

metamodel to equivalent element(s) in the OCL metamodel. These rules are explained in Section

5.3.

For SBVR to OCL transformation, a model-to-model transformation is used for automated

transformation of SBVR rules to OCL invariants. A typical model transformation technology is

used by creating abstract syntax of source model and then converting it into the target model

representation using the transformation rules. Here, SBVR metamodel, OCL metamodel and a set

of transformation rules are used to perform the transformation of SBVR to OCL.The OCL

metamodel is explained in Section 2.1.2 and the SBVR metamodel is explained in Section 2.2.2.

For SBVR to OCL transformation, the SiTra library was used as shown in Figure 5.4:

Figure 5.4: SBVR to OCL Transformation Framework

Moreover a set of mappings were used to map logical elements to OCL elements. Following is

brief overview of the used mappings from logical representation to OCL:

SBVR Metamodel

SBVR Modal

(Source Model)

Mapping

Rules

SiTra Engine

OCL Metamodel

OCL Modal

 (Target Model)

<<instance of>>

<<instance of>>

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

83

5.2.1 Logical Expression

In OCL, two expressions are concatenated using a logical operator. Here, the SBVR

representation is mapped to the equivalent OCL representation Table 5.1 shows the possible cases

of logical expressions:

Table 5.1: Mapping logical expressions

SBVR Representation OCL Representation

p or q p or q

p and q, p but q, p yet q, p so q, p moreover q, p however q, p although q, p

even though q
p and q

p then q, if p q, q if p, q only if p, p implies q, p entails q, p hence q, q

provided p, q follows from p
p implies q

5.2.2 Relational Expressions

In OCL, two expressions can be concatenated using a relational operator. Table 5.2 shows the

possible cases of relational expressions:

Table 5.2: Mapping relational expressions

SBVR Representation OCL Representation

p is q, p is exactly q p = q

p is at least q p > q

p is at most q p < q

p is at least or exactly q p >= q

p is at most or exactly q p <= q

5.2.3 Postfix Expressions

In OCL, there can be a postfix expression such as self. A possible mapping of postfix expressions

is shown in Table 5.3. An example of such cases can be “name of a customer” is mapped to

self.name if customer is a context.

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

84

Table 5.3: Mapping postfix expressions

SBVR Representation OCL Representation

Characteristic of the Object Type self.[attribute]

5.2.4 Navigation

Navigation expressions are the most common expressions in OCL. A possible mapping of

navigation expressions is shown in Table 5.4. For example, “name of a customer” is mapped to

customer.name and if customer is a context then it is mapped as self.name. Some other

expressions of OCL operations are also shown in Table 5.4. We have implemented a selected set of

OCL operations those are commonly used. Implementation of the remaining OCL operations is future

work.

Table 5.4: Mapping navigation expressions

SBVR Representation OCL Representation

p’s q, q of P p.q

 p is q() p.q()

size of p, number of p p->size()

 number of p in q p->count(q)

p is empty, no p, zero p p->isEmpty()

sort p, arrange p p->sortBy()

q exists in p, there is q in p p->exists(q)

5.2.5 Conditional Expression

In OCL, there can be a conditional expression. The conditional expressions can be of two types:

if-then expressions, and if-then-else expressions. Table 5.5 shows a possible mapping of

conditional expressions. Here, Relational-Exp are conditions of the if structure and these

conditions are generated using the mappings given in Table 5.2.

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

85

Table 5.5: Mapping conditional expressions

SBVR Representation OCL Representation

if p then q if [Relational-Exp]
thenq
endif

if p then q else R if [Relational-Exp]
thenq

elseR
endif

5.3 SBVR to OCL Transformation Rules

The researcher presents an automated approach for the transformation of the SBVR based logical

representation to OCL constraints. This approach not only softens the process of creating the OCL

syntax but also verifies the formal semantics of the OCL expressions with respect to the target

UML class model. Here, verification of formal semantics mean that the generated OCL

constraints semantically complies with the target UML class model and the OCL expression will

not have any extra contextual (UML class model) information. As OCL should comply with its

context, it is necessary to verify an OCL expression against the target UML model. The SiTra

library [Akehurst, et al., 2007] based model transformation framework is shown in Figure 5.4 to

transform SBVR rules to OCL constraints using a set of transformation rules.

The mapping of SBVR rules to OCL code is carried out by creating different fragments of OCL

expressions and then concatenating these fragments to compile a complete OCL expression.

Typically, OCL expressions can be of two types: OCL invariant and OCL query operation. In this

thesis, the researcher has presented only the creation of OCL invariants. The creation of OCL

query operation is part of the future work.

It is possibility that exactly one customer can place exactly one order.

It is possibility that exactly one p can function_1()exactly one q.

Figure 5.5: Applying quantification to complement SBVR rule

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

86

The SBVR rule and logical representation, created in the previous chapter, is further analysed to

extract the business information as shown in Figure 5.5. Where, p is Object Type “customer”.

Similarly, q is also an Object Type “order”. However p and q can also be Individual Concepts

in some other examples. Additionally function_1()is verb phrases “place”. The analysed

SBVR rule is further transformed to the logical representation after omitting the SBVR keywords

as following

p q if p.function_1()→ q.size() = 1

This generalized representation is finally transformed to the OCL constraint by using the defined

transformation rules. A typical transformation rule comprises of the variables, predicates, queries

[Akehurst, et al., 2007], etc. A typical transformation rule consists of two parts: a left-hand side

(LHS) and a right-hand side (RHS). The LHS is used to access the source model element

whereas the RHS expands it to an element in the target model.

In this Chapter, the transformation rules for each part of the OCL constraints are based on the

abstract syntax of SBVR and OCL that are given in the following section. Here, all the

transformation rules are represented in the form of functions.

5.3.1 Generating OCL Context

The context of an OCL expression defines the scope of the given invariant or pre/post condition.

To specify the context of an OCL invariant, the major Object_Type or

Individual_Concept in the SBVR rule is extracted to specify the context. To specify the

context of an OCL pre/post condition, the action performed by the actor in a SBVR rule is

considered as the context. If the context is missing in the NL constraint, the user is given a

message to include at-least one class in NL constraint that can work as a context. Rule 5.1.1

shows the OCL context for invariant expressions and Rule 5.1.2 shows the context of for the

pre/post condition of an operation:

context-inv(Object_Type){

 context-name= Object_Type

 return context-name

 }

Rule 5.1.1: Returns the context for an invariant

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

87

context-cond(Object_Type, Verb_Phrase){

 context-name = Object_Type

 operation-name = Verb_Phrase

 return context-name + “::” + operation-name

 }

Rule 5.1.2: Returns context for a pre/post condition

Precondition and post-condition can co-exist in a single OCL expression. However, the both

precondition and post-condition can share the same context.

5.3.2 Generating OCL Constraints

Transformation rules for mapping of the SBVR specification to OCL constraints are defined in

this section. As, we explained above that OCL constraints can be of three types: invariants

precondition and postcondition, we have defined three templates separately for each type OCL

constraints. Rule 5.2.1 shows the template used for OCL invariant. Similarly, rules for OCL

precondition and postcondition are described in Rule 5.2.2 and Rule 5.2.3, respectively. Each of

the rules for these constraints consists of two elements: context of the constraint and body of the

constraint.

invariant(context-inv, inv-body){

 return “context” + context-inv + “\n inv:” + inv-body

 }

Rule 5.2.1: Returns an invariant

pre-cond(context-cond, pre-cond-body){

 return “context” + context-cond + “\n pre:” + pre-cond-body

 }

Rule 5.2.2: Returns a precondition

pre-cond(context-cond, post-cond-body){

 return “context” + context-cond +

 “\n post:” + post-cond-body

 }

Rule 5.2.3: Returns a postcondition

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

88

5.3.3 Generating OCL Invariants

The OCL invariant specifies a condition on a class’s attribute or association. Typically, an

invariant is a predicate that should be TRUE in all possible worlds in UML class model’s

domain. The OCL context is specified in the invariants by using the self keyword in place of

the local variables.

inv-body(ocl-exp){

 return “inv:” + ocl-exp

 }

Rule 5.3.1: Returns body of an invariant

An invariant can be expressed in a single attribute or set of attributes from a class. There can be

three type of expressions in a typical OCL invariant; a general expression, a collection

expression or if expression (see Rule 5.3.2). A collection expression is based on a single or set

of collection operations those are used to perform basic operations on the set of attributes (see

Rule 5.3.3). Other possible expressions are if expression (see Rule 5.3.4).

ocl-exp(){

 Return “self.” + (Expression |collection-exp | if-exp)

 }

Rule 5.3.2: Returns body of an invariant with self-keyword

collection-exp(Expression){

 Return Expression → collection-op |

 Expression → collection-op → collection-exp | “”

 }

Rule 5.3.3: Returns collection expression

if-exp(Condition, Expression-1, Expression-2){

 Return “If” + Condition + “then” + Expression-1 +

 “else” + Expression-2 + “endif”

 }

Rule 5.3.4: Returns if expression

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

89

5.3.4 Generating OCL Pre/Post Conditions

Similar to the OCL invariant, the OCL preconditions and the OCL post-conditions are used

specify conditions on operations of a class. Typically, a precondition is a predicate that should be

TRUE before an operation starts its execution, while a post-condition is a predicate that should

be TRUE after an operation completes its execution.

pre-cond-body (ocl-exp){

 return “pre:” + ocl-exp}

Rule 5.4.1: Returns body of a pre-condition

post-cond-body(ocl-exp, value){

 Return “post:” + ocl-exp | “post:” + result = value}

Rule 5.4.2: Returns body of a pre-condition

value(thematic-object){

 Return Integer-value | Double-value |

 String-value | Boolean-value

 }

Rule 5.4.3: Returns body of a pre-condition

A pre/post condition can be expressed in a single attribute or set of attributes from a class. Rule

5.3.2 and Rule 5.3.3 are reused here to accompany Rule 5.4.1 and Rule 5.4.2. In Rule 5.4.3 the

attribute value is verified that the provided value is of accurate type e.g. integer, double, or

String, etc. Here, SBVR Structural rules can be mapped to invariants and SBVR behavioural

rules can be mapped to pre/post-conditions

5.3.5 Generating OCL Expressions

The OCL expressions express basic operations that can be performed on available attributes of a

class. An OCL expression in the OCL invariant can be used to represent arithmetic, and logical

operations. OCL arithmetic expressions are based on arithmetic operators e.g. ‘+’, ‘–’, ‘/’, etc,

while, logical expressions use relational operators e.g. ‘<’, ‘>’, ‘=’, ‘<>’, etc and logical

operators e.g. ‘AND’, ‘implies’, etc.

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

90

Expression(Expression){

 Return prefix-oper + Expression | Expression +

 infix-oper + Expression | Expression

 }

Rule 5.5.1: Returns an expression

infix-oper(Quantification){

 Return + | - | * | / | = | > | < | >= | <= |

<> | OR | AND |implies

 }

Rule 5.5.2: Returns an in-fix expression

prefix-oper(Quantification){

 Return -|NOT

 }

Rule 5.5.3: Returns a pre-fix expression

5.3.6 Generating OCL Operations

The OCL collections represent a set of attributes of a class. A number of operations can be

performed on the OCL collections e.g. sum(), size(), count(), isEmpty(), etc.

collection-op(Expression){

 forAll(Expression) | exists(Expression) |

 select(Expression) | allInstances(Expression) |

 include(Expression) | ….

 }

Rule 5.6.1: Returns a collection expression

SBVR specification of a business rules shown in the example of section 2 is mapped to an OCL

constraints to show the working of the defined transformation rules. First of all to derive the

context of the OCL constraint, transformation Rule 5.1.1 was used as we want to create OCL

invariant. For pre/post conditions transformation Rule 5.1.2 will be used.

Context customer

Figure 5.6: Generating a context

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

91

As the input SBVR rule is based on a ‘if-condition’, transformation Rule 5.3.4 will be used to

derive an equivalent structure in OCL syntax. For if condition the Rule 5.5.1 and Rule 5.5.2 are

employed. Following is the obtained structure:

if c.age >= 18 then

c.bankAccount -> size()>=1

endif

Figure 5.7: Generating a if-expression

The ‘then’ part of the above shown if-expression involves a set of persons and such expressions

are handled by Rule 5.6.1. Here, size()OCL operation is used to specify the quantification of

bank accounts for a customer. Finally, to complete the OCL invariant expression, again the Rule

5.6.1 is used to derive following expression.

inv: self.allSubTypes()-> forAll(c|…)

Figure 5.8: Generating an invariant

To construct a complete expression of an OCL constraint, all the generated constituents are

concatenated into a single expression as following:

context customer

inv: self.allSubTypes()-> forAll(c| if c.age >= 18 then

 c.bankAccount -> size()>=1 endif)

Figure 5.9: Generating an invariant

All the model transformation rules were implemented using SiTra library. For example in Rule

5.5.1, the SBVR elements of a Boolean expression (represented as BoolExpin Figure 5.5.6) are

mapped to equivalent OCL binary expression. For the sake of implementation, we pass three

elements (operand1, operator, and operand2) to BoolExpImpl().

BoolExp bexpl = new

BoolExpImpl(source.getOperand1(),source.getOperator(),source.getOper

and2());

Figure 5.10: Implementation of Rule 5.5.1

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

92

The implementation of Rule 5.5.1 shown in Figure 5.10 involves two classes BoolExpImpl that

implements interface BoolExpand BinaryExpressionImpl that implements interface

BinaryExpression.

class BoolExpImpl implements BoolExp

class BinaryExpressionImpl implements BinaryExpression

Figure 5.11: Involved classes in implementation of Rule 5.5.1

Figure 5.11 shows that the implementation of Rule 5.5.1 is added into a vector bexp like other

transformation rules in OclBinExp()method. The OclBinExp()method returns the OCL

representation of the input SBVR elements.

private String OclBinExp(String operand1, String operator, String operand2){

 Vector<BinaryExpression> bexp = new Vector<BinaryExpression>();

 bexp.add(binaryExpression(operand1, operator, operand2));

 List<? extends BoolExp> binexp =

trans.transformAll(BinExpression2BoolExp.class,bexp);

 return binexp.toString().substring(1, binexp.toString().length()-1);

}

Figure 5.12: Interface of Rule 5.5.1

All other transformation rules are implemented in the same manner as it is shown in above

discussed example.

5.4 Limitations of Transformation

The researcher has mapped only those items of SBVR’s meanings metamodel that had

equivalent elements in OCL metamodel. For example, in SBVR’s meanings metamodel. The

Representation and its sub-elements Designation and Text are not mapped to OCL as in

OCL metamodel, there is no equivalent of them. The reason is that Representation and its

sub-elements deal with the placement of various SBVR vocabulary items in a SBVR business

rules and it also provides structural representation to a SBVR rule. Similarly, there are five

logical formulations given in SBVR 1.0 document and the researcher has mapped only those

formulations that are involved in OCL invariants syntax such as Logical Formulation, and

Quantification. The other three formulations such as atomic formulation, instantiation

C
h

ap
te

r
5

M

o
d

el
 T

ra
n

sf
o

rm
at

io
n

 f
ro

m
 S

B
V

R
 t

o
 O

C
L

93

formulation, and modal formulation are not mapped as these formulations are related to the

structure of a SBVR business rule, but do not carry any information that can be used in process

of generating OCL invariants.

5.5 Summary

In this chapter, the framework used for transformation of SBVR to OCL is explained. The

researcher explained the used templates for generating OCL invariants, OCL pre-conditions, and

OCL post-conditions. The SiTra based implementation of the SBVR to OCL transformation rules

were explained. The use of transformation rules is also explained with the help of couple of

examples. The presented SBVR to OCL is fully automated.

94

CHAPTER 6

TOOL SUPPORT

The NL2OCLviaSBVR tool is the implementation of NL2OCL approach used to transform NL

constraints to OCL via SBVR. In this chapter, the researcher presents the architectural and

implementation details of the NL2OCLviaSBVR tool. He also provides an overview of the used

off-the-shelf components used in the implementation.

6.1 Architecture of the NL2OCLviaSBVR

The NL2OCLviaSBVR is a Java based implementation of the NL2OCL approach. The tool is

available as an Eclipse plugin implemented using Eclipse Modelling Framework (EMF)

[Steinberg, 2008]. In the previous chapters, the researcher has explained that the NL2OCL

approach takes two inputs: a NL constraint and a UML class model as shown in Figure 6.1. A

phase called NL processing was involved to analyse NL constraints syntactically and

semantically and to extract SBVR vocabulary. Output of the NL processing phase is a SBVR

vocabulary based logical representation that can be mapped to other formal languages. Such

SBVR based logical representation is further processed to generate the SBVR rules. Finally, the

SBVR rules are model transformed to OCL constraints using SiTra [Akehurst, 2006]

transformation engine.

Figure 6.2 illustrates the implementation of the NL2OCL approach. It is depicted in Figure 6.1

that there are two inputs: a NL constraint and a UML class model. The researcher has developed

parsers for both inputs: a NL parser that parses NL constraint and an Ecore parser that parses the

Ecore representation of the UML class model.

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

95

Figure 6.1: Overview of NL2OCL Approach

It is shown in Figure 6.2 that if there is ambiguity in NL text, an error message is given to the

user to handle the situation manually, if not handled by the tool. Once the outputs of both parsers

are received, both the output is mapped to each other to ensure that the information represented

in the NL constraint is also the part of the UML class model. If the NL to UML mapping is

successful, SBVR vocabulary is generated. In this process, if there is some inconsistency in NL

constraint with respect to the UML class model, user is prompted about it. Once the SBVR

vocabulary is available, a module SBVR Generator generates a SBVR rule by using the SBVR

metamodel. Finally, a SBVR2OCL module generates OCL constraints by using OCL

metamodel. Similarly, during OCL is generation, if NL constraints is incomplete or there is

discrepancy, user is again given a message so that he may revise the NL statement to handle the

case.

Figure 6.2: Overview of NL2OCLviaSBVRImplementation

For implementation of the SBVR to OCL transformation, a set of transformation rules are

defined (explained in Section 5.3). The Simple Transformer (SiTra) transformation engine is

used in SBVR to OCL transformation, as the researcher found it simple to use and implement

with his approach. The SBVR and OCL metamodels are implemented in the Java programming

language. Figure 6.3 shows a high level view of all the major components involved in the

NL

Constraint

UML Class

Model

 NL Processing SBVR2OCL
OCL

Constraints

SBVR

Rules

OCL

Constraints

NL

Parser

Ecore

Parser UML to SBVR

SiTra
SBVR

Rule
 SBVR Generator

SBVR

Vocabulary SBVR

Metamodel

OCL

Metamodel

 Parse NL Text
Logical

Representation

Message to user about

errors/inconsistency

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

96

NL2OCLviaSBVR tool. There are eight major components involved in NL to OCL

transformation. Out of eight components, there are two metamodels: OCL metamodel and SBVR

metamodel. Then, there are four components which process NL constraints: Java Tokenizer, Java

Sentence splitter, the Stanford POS Tagger, and the Stanford parser. One component involved is

the Ecore parser that is typically involved in parsing the EMF Ecore format of a UML class

model. Various Eclipse packages such as org.eclipse.emf.ecore are used in Ecore

parser. Finally, the eighth component is the SiTra transformation engine [Akehurst, et al, 2012]

that maps the SBVR to OCL transformation rules. All these eight components work in

combination to support NL to OCL transformation.

Figure 6.3: Libraries used by NL2OCLviaSBVR

The rest of the chapter describes the implementation of the NL2OCL approach in more detail.

The researcher has divided the implementation details into two phases for the sake of simplicity:

implementation of NL2SBVR phase and implementation of SBVR2OCL phase. Detailed

explanation of each phase is given below:

6.2 Implementing NL2SBVR

The NL2SBVR phase implements processing of NL constraints and generation of SBVR rules.

The theory of this approach is given in chapter 4 and also published in [Bajwa, et al., 2011a]. As

it is depicted in Figure 6.4, the implementation of the NL2SBVR approach consists of five sub-

modules: pre-processor, syntax analyser, semantic analyser, semantic analyser, NL to UML

mapping, and SBVR rule generator. An overview of these five modules is given below:

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

97

Figure 6.4: Overview of NL2OCLviaSBVRImplementation

6.2.1 Pre-Processor

The Pre-processor is the primary module of the NL2SBVR phase. The pre-processor performs

three basic steps: sentence splitting, tokenization and lemmatization. For sentence splitting, the

researcher has used Java sentence splitter library to identify boundaries of each sentences in the

given NL specification of constraints. Afterwards, Java tokenizer is used to identify tokens in

each sentence. For lemmatization of each token, he has written a small rule based module to

extract lemma of each token. Here, a pre-processor preserves both copies of a token (such as

before lemmatization and after lemmatization) for detailed processing in later stages.

6.2.2 Syntax Analyser

The syntax analyser involves four sub modules: POS tagger, parse tree and dependencies

generator, voice classifier, and logical operator handler. For POS tagging, the Stanford POS

tagger is used. Similarly, to generate a parse tree and syntactic dependencies for the input NL

constraint, the Stanford parser is used. The jar files of the Stanford POS tagger and the Stanford

parser are integrated with the researcher’s syntax analyser. However, a piece of code verifies that

the output of the Stanford POS tagger and the Stanford parser are consistent with the input UML

class model. This process helps in addressing lexical and attachment ambiguity in NL

constraints. The detail of resolution of various types of syntactic ambiguities is given in Section

4.2.4 and Section 4.2.5 of this thesis and also discussed in [Bajwa, et al., 2012a].

To identify the voice of each sentence the researcher has written a rule-based classifier that

classifies each sentence into active-voice or passive-voice category. Once the voice of sentence

is identified, it is processed accordingly. The fourth and final sub-module of syntax analyser

Pre-

Processor

SBVR Rule

Generator

Stanford

POS Tagger

Stanford

Parser

UML

Metamodel

SBVR

Metamodel

NL to UML

Mapping

Syntax

Analyser

Semantic

Analyser

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

98

processes the logical operators (conjunction and disjunction) in the NL constraint. This module

identifies right-hand side and let-hand side of a logical operator.

6.2.3 Semantic Analyser

The semantic analyser contains three sub-modules: semantic role labeller, quantification handler

and logical representation generator. Here, each sub-module is implemented in a separate Java

file. The semantic role labeller is a rule based module implemented in Java and identifies the

SBVR based semantic roles (explained in Chapter 4, Section 4.3) for various parts of a NL

constraint. The second module processes used NL quantifiers in the NL constraint and also

resolves the quantifier scope. Here, the NL information is sent to the UML module to verify NL

quantifications. The third module is also a rule-based component that generates the SBVR based

logical representation. The third module uses the template for a logical representation (explained

in Chapter 4), fills it, and generates a logical representation.

All these three modules are implemented as Java classes and are sequentially connected to each

other as the output of one module is input of the next module.

6.2.4 NL to UML Mapping

This module is a standalone component but it works in parallel with the other two modules:

syntax analyser and semantic analyser. This module is based on an Ecore parser that can read an

EMF Ecore file. The Ecore parser is a Java implementation that extracts metadata of a UML

class model. We use the metadata of a UML class model to validate the output of the syntactic

and semantic analyser. However, the output of the semantic analyser is mapped to the UML class

model to validate that all information given in the NL constraint should also be part of the UML

class model. Any piece of information that does not map with the target UML class model is

omitted and does not become part of the SBVR rule representation generated by the next module.

Moreover, the user is also a given an error message (see Figure 6.7 and Figure 6.8) so that he

may revise NL statement. Figure 6.5 shows the error message for Constraint 7.2.13 and Figure

6.6 shows an error message for Constraint 7.2.15.

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

99

Figure 6.5: Error message shown to user in case of inconsistency

Figure 6.6:Error message shown to user in case of extra vocabulary

6.2.5 SBVR Rule Generator

The fifth and final module generates a SBVR rules for each NL constraint. The SBVR rule

generator module consists of two Java classes. First Java class takes the SBVR based logical

representation and applies various semantic formulations such as quantification, modal

formulation and logical formulations. A rule based algorithm identifies that what type of

particular formulations should be applied on the basis of the nature of the sentence. Second Java

class applies the structured English notation. The second Java class consists of a set of rule that

applies particular formatting on the basis of the type of the SBVR vocabulary item.

6.3 Extending SiTra for SBVR to OCL Transformation

With the intention of implementation of SBVR to OCL transformation, a set of transformation

rules were defined. SBVR to OCL transformation rules are implemented by extending the SiTra

transformation engine. The Simple Transformer (SiTra) has been developed by Akehurst et al.

[2008] and is a simple and lightweight implementation of an extensible transformation engine.

TheSiTra framework involves two interfaces typically used in SiTra transformation framework:

the Transformer interface and the Rule interface (explained in Chapter 2, Section 2.1.4).

C
h

ap
te

r
6

To
o

l S
u

p
p

o
rt

100

The Transformer interface provides the skeleton of the methods to achieve the

transformation. The Transformer interface consists of two key methods: the

transform()method and the transformAll()method. On the other hand, the Rule interface

is a set of mapping rules which the researcher has implemented according to the SBVR to OCL

transformation rules. We have defined such transformation rules in Chapter 5, Section 5.3.

However, the use of the SiTra library is very simple as modeller needs to implement the Rule

interface by using defined set of transformation rules. The Rule interface consists of three

methods as explained Section 2.1.3. The first method is check()that is involved in the rule

interface. The second method build()method is executed to generate the target model element.

The third method setProperties()is involved in setting the attributes and links of the newly

created target element.

6.4 Off-the-shelf components used in NL2OCLviaSBVR

The NL2OCLviaSBVR is composed of fifteen small modules as shown in Table 6.1. Each

module performs a distinct functionality. To perform a few functionalities the researcher has

used off-the-shelf components which help to generate accurate OCL constraints from NL specification.

Table 6.1: Overview of the components used in the NL2OCLviaSBVR

 Component Functionality Component Type

1 Text Tokenization → Java Tokenizer

2 Sentence Splitting → Java Sentence Splitter

3 Part-Of-Speech (POS) Tagging → Stanford POS Tagger

4 Resolving Lexical Ambiguity → Self-Developed

5 Generating Parse Tree & Dependencies → Stanford Parser

6 Resolving Attachment Ambiguity → Self-Developed

7 Voice Classification → Self-Developed

8 Processing Logical operators → Self-Developed

9 Parsing UML Class model → Self-Developed

10 SBVR based Semantic Role Labeling → Self-Developed

11 Quantifier Scope Resolution → Self-Developed

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

101

12 Generating Logical Representation → Self-Developed

13 Generating SBVR Rules → Self-Developed

14 Applying Structured English notation → Self-Developed

15 SBVR to OCL Transformation → Extended version of SiTra Library

Table 6.1, all fifteen modules are represented including text tokenization, sentence splitting, Part-

Of-Speech (POS) tagging, generation of parse tree, the (typed) dependencies, and transformation

of SBVR to OCL. In the first four modules, off-the-shelf components are involved. However, the

last module that performs the SBVR to OCL transformation uses the extended version of SiTra

framework. The Stanford POS Tagger and the Stanford Parser are explained in Section 2.1.3 and

the SiTra framework is explained in Section 2.1.4 of this thesis. Hence, out of fifteen modules,

five modules are based on the off-the-shelf components. We have developed the remaining ten

modules by ourselves and integrated these ten modules with the five off-the-shore based

modules.

6.5 Architecture of the NL2OCLviaSBVR

The researcher has discussed the list of all the components involved in the NL2OCLviaSBVR

tool. A sequence of functionalities is performed here and to perform each function, one or more

than one components are involved. Figure 6.8 shows architecture of the NL2OCLviaSBVR tool.

In Figure 6.8, mainly, the researcher has used three types of boxes: dotted-line arrow boxes,

dotted-line boxes, and solid-line boxes. Here, dotted-line arrow boxes represent inputs or outputs

with the help of various colours while the dotted-line boxes represent off-the-shelf components

involved in the transformation. Similarly, the solid-line boxes represent the components, the

researcher has developed himself.

It is shown in Figure 6.8, that there is GUI layer, which helps a user to communicate with the

system and receive errors/problems/inconsistencies messages. A user can give two inputs to the

systems (such as NL constraint and UML class model) and can get output from the system using

GUI. Once a user gives both the inputs, NL constraint is processed by NL components with the

help of Java libraries and the Stanford parser while the UML parser extracts metadata from the

UML class model. Afterwards, the SBVR generator and the OCL generator modules process

input with the help of SBVR and OCL metamodel respectively. In this processing output of

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

102

UML parser and EMF platform also plays key role. Once the processing is complete, two

outputs are returned back to the user.

Figure 6.8: The NL2OCLviaSBVR architecture

6.6User Interface Screenshots

The tool provides a graphical user interface, so that a user may easily provide inputs to the tool

and get the output from tool. Tool’s GUI is implemented using Java GUI libraries and is based

on Windows look and feel by using call shown in Figure 6.9.

UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFee

l");

Figure6.9: Windows look & feel for the tool

G
U

I

U
 I

NL

Constraint

UML Class

Model

Pre-

processor

Syntax

Analyser

Semantic

Analyser

UML

Parser

SBVR

Generator

OCL

Generator

SBVR

Rule

SBVR

Metamodel

OCL

Metamodel

SiTra

Library

Stanford

Parser

OCL

Constraint

EMF

Platform

Message to

user about

the NL

ambiguity

Message to

user about

errors and

inconsistency

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

103

Figure 6.10: Screen shot of NL2OCLviaSBVR

Figure 6.10 shows a screenshot of the NL2OCLviaSBVR tool. The interface of the tool has three

main sections. The section on the left shows the list of input files involved in the transformation.

The section at the upper-right shows the metadata of the UML class model. The section at the

lower-right shows multiple tabs. The third section consists of five tabs: NL specification tab,

SBVR vocabulary tab, SBVR rule tab, OCL constraints tab, and Alloy code tab (see Figure

6.10). The NL specification tab is further divided into sub-tabs; those represent input text, output

of lexical analysis, syntax analysis and semantic analysis. An extension of this work is

generation of Alloy code from NL constraints [Bajwa, 2011e] via SBVR/OCL. This work shows

that even there are limitations of the tool; still the tool has been used successfully for generating

SBVR, OCL and Alloy for bench-mark case studies.

6.7 Tool in Use

Following are the steps performed to generate OCL from NL constraints. Figure 6.11 shows an

input dialogue that gets two inputs: (1) Text file containing NL constraint (2) Ecore file

containing UML class model. Figure 6.12 shows the UML Model Tree window that shows

details of the input UML class model.

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

104

Figure 6.11: Input dialogue of the NL2OCLviaSBVR

Figure 6.12: Input dialogue of the NL2OCLviaSBVR

Figure 6.13shows an example of the message given for Constraint 7.2.14, where context is

missing and user is indicated to provide at least one class in the UML constraint that can be used

as a context.

Figure 6.13:Error message shown to user in case of missing context

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

105

Figure 6.14:Input Text dialogue showing NL constraint

Once the user corrects the Constraint 7.2.14 by introducing class LoyaltyProgram in the NL

constraint as a context, the tool generates the output. Figure 6.15 shows the output of the UML

module that generates the SBVR vocabulary from the input UML class model.

Figure 6.15:SBVR Vocabulary dialogue showing output SBVR vocabulary

Figure 6.16 shows the output of the SBVR module that generates the SBVR rule. Figure 6.17

shows the output of the OCL module that generates the OCL invariant.

Figure 6.16:SBVR Rules Dialogue showing output SBVR rule

Figure 6.17:OCL Constraint showing output OCL invariant

C
h

ap
te

r
6

To

o
l S

u
p

p
o

rt

106

6.8 Summary

In this chapter, the implementation framework of the NL2OCLviaSBVR tool has been presented.

The implementation uses a set of Java libraries and a few readymade components such as the

Stanford parser, SiTra library, etc. However, to perform the rest of the functionalities no

appropriate components were available. Hence, the researcher had to implement the rest of the

components at his own. He has implemented all the components in Java. A few components are

interconnected sequentially, while some others work in parallel with other related components. A

windows look & feel based GUI was also presented. By using the tool the researcher has done

three case studies, presented in the next chapter.

107

CHAPTER 7

EVALUATION

As the researcher has asserted in the previous chapters that the NL2OCL approach can generate

OCL constraints from natural language (NL) specifications of constraints, in this chapter he

presents three case studies to validate the NL2OCL approach and their results. He also presents

evaluation criteria used to evaluate the performance of the presented approach. A similar

criterion is used by Wahler [2008] in his PhD thesis to validate the performance of pattern based

approach in automatic generation of OCL constraints. Since the researcher aims at comparing the

NL approach with the pattern based approach for automated generation of OCL constraints, he

has developed similar evaluation criteria with a few changes. He has not used ‘analysis

performance’ and ‘elicitation coverage’ because in this thesis the analysis of models and

requirements elicitation is not discussed. However, the researcher introduced a few additional

criteria such as ‘throughput measure’, ‘syntactic correctness’, and ‘transformation correctness’

because in this thesis, aim of the research is to improve usability and ease adaption of OCL.

In the following section, the researcher presents parameters of quantitative and qualitative

evaluation criteria used in this thesis to validate his claims.

7.1 Evaluation Criteria

The researcher has used the following criteria for evaluation of the NL2OCL approach. The

evaluation criteria are divided into two categories: quantitative and qualitative.

C
h

ap
te

r
7

Ev

al
u

at
io

n

108

7.1.1 Quantitative Criteria

There are two aspects of quantitative criteria used in this thesis, as below.

A. Specification Coverage

To know the effectiveness of the NL2OCL approach, the researcher needed to find out what

proportion of NL and OCL specifications can be covered by the NL2OCL approach. There are

two aspects of this criterion: coverage of OCL syntax and coverage of NL specification. Hence,

it is measured what portion of OCL syntax can be covered by the NL2OCL approach. Similarly,

the researcher also needed to find out that what percentage of a given set of NL constraints can

be mapped to OCL constraints using the NL2OCL approach. This criterion will help the

researcher to measure the completeness of the presented approach.

B. Throughput Measure

As the key focus of the presented research is to improve the usability of OCL, the researcher

needed to measure up to what extent the NL2OCL approach has made it easier and time saving

to generate OCL. To find out the role of the NL2OCL approach in the improvement of OCL

usability, a throughput measure is calculated to measure the time and effort involved in

generation of a set of OCL constraints from NL specification of constraints. Here, he has also

compared this amount of time and effort that involved in manual generation of OCL.

7.1.2 Qualitative Criteria

There are three aspects of qualitative criteria used in this thesis, as below.

A. Syntactic Correctness

It is pertinent to find out if the OCL produced by the NL2OCL approach is syntactically correct.

The measurement of syntactic correctness helps in establishing to what extent the NL2OCL

approach can be involved in real time software modelling. The syntactic correctness is measured

by compiling the OCL constraints with an OCL compiler, such as USE [Gogolla, et al., 2007].

B. Transformation Correctness

To find out if the OCL generated from the NL specification of constraint is equivalent to the

original, this criterion will measured by generating component diagrams for both OCL constraint

generated by NL2OCLviaSBVR tool and OCL constraints generated by human expert. If the

C
h

ap
te

r
7

Ev

al
u

at
io

n

109

component diagrams generated by both OCL are same, then we can say that a NL specification is

correctly transformed to an OCL specification.

C. Limitations

There are a few limitations of the NL2OCL approach. We need to discuss such limitations that

help us to find out that what type of NL statements can be transformed to OCL. We also need to

find out the way we can deal with such limitations in future.

7.1.3 Selection of Case Studies

By considering the nature of the approach and tool, the researcher looked for the case studies that

had both NL and expert-written OCL. There were some case studies that had only NL constraints

and no OCL constraints, e.g., legal-text case studies. On the other hand, some case studies had

only OCL but no NL constraints, e.g., Mondex scenario [Kuhlmann, 2008]. It is not possible to

come up with large number of case studies. However, we have done the available case studies

and these case studies are bench mark in their respective domains. For example, the Royal and

Loyal model is a part of book [Warmer J. & Kleppe A., 2003] and a PhD thesis [Wahler, 2008].

Similarly, the QUDV model has been worked by NASA and ESA and is also an ISO standard.

The WBM case study is from IBM and its OCL is also written by IBM. In this PhD thesis, my

method outperforms these case studies.

In the rest of the chapter, we present three Case studies with their results evaluated using the

above criteria.

7.2 Case Study: Royal & Loyal

The first case study we have solved using the NL2OCLviaSBVR tool is based on the “Royal &

Loyal” model. The Royal & Loyal model was originally presented by Warmer and Kleppe

[2003] in their book. The Royal & Loyal case study was used in various publications such as by

Tedjasukmana [2006] to evaluate translation of OCL to SQL and by Wahler [2008] to evaluate

the automated generation of OCL using the pattern based approach. The following section

presents the overview of the case study and provides the details of constraints given in the Royal

& Loyal model and their automated generation of OCL using the NL2OCLviaSBVR tool.

C
h

ap
te

r
7

Ev

al
u

at
io

n

110

7.2.1 The Royal & Loyal Model

The Royal & Loyal model is a good example of typical MDE approaches. The model is a

computer system of a company that handles loyalty programs for its various customers. In this

model, the central class isLoyaltyProgram(see Figure 7.1). Other classes such as class

Customer and classProgramPartnerare connected through the central

classLoyaltyProgram.

There is another class Membershipthat connects Customer with available Services in the

loyalty program and also to each customer’s respective account represented using

classLoyaltyAccount. Each customer has aCustomerCardfor each membership in a loyalty

program. Each customer can perform various types of Transactions using his card. In the

Royal & Loyal model, the ProgramPartnersuse various services and each membership is

associated with exactly one ServiceLevel.

Figure 7.1: The Royal & Loyal model

C
h

ap
te

r
7

Ev

al
u

at
io

n

111

There are two enumerations, Date andColor, in the model as well. However, the current

implementation of NL2OCL approach does not support the enumerations and implementation of

enumerations is a future work. Therefore, we have not represented enumerations in the used model

shown in Figure 7.1. An overview of the components of the Royal & Loyal model is shown in

Table 7.1.

Table 7.1: Overview of Royal & Loyal Model

 Type of Components Number of Components

1 Classes → 9

2 Attributes → 24

3 Methods → 7

4 Associations → 25

7.2.2 Constraints for the Royal & Loyal Model

In the following text, we present the constraints given in [Kleppe and Warmer, 2003].We also

present the SBVR and the OCL for each constraint generated by our tool the NL2OCLviaSBVR.

The OCL of each constraint given in [ibid] is also represented under title ‘OtherOCL’.

Constraint 7.2.1

English: Every customer who enters a loyalty program must be of legal age.

SBVR: It is necessary that every customer who enters a loyalty Program must be of legal age.

OCL: package royal_and_loyal

 context Customer
 invself.age >=

 Endpackage

In the Constraint 7.2.1, SBVR was simple to generate as there are two Object Types ‘customer’

and ‘loyalty Program’. However, there is another possible candidate of Object Type ‘legal’ but it

is not available in the UML class model (see Figure 7.1).That is why it is not represented as

Object Type. In generation of OCL, the term legal causes a similar problem as it is not part of

the Royal and Loyal class model. The NL2OCLviaSBVR tool is not able to recognize the items

those are not part of the target UML class model. Therefore, the NL statement is transformed to

C
h

ap
te

r
7

Ev

al
u

at
io

n

112

“self.age >= ”, that is incomplete. Here, the user is given a message that legal is neither part

of the input UML class model nor it is a valid integer value and the user should reconsider the

NL constraint.

OCL: package royal_and_loyal

 context Customer

 invself.age >= 18

 Endpackage

OtherOCL: contextCustomer

invlegalAge: age >= 18

However, if the user changes NL constraint from “must be of legal age” to “must be of minimum

age 18” or “minimum age must be 18”, the NL constraint is mapped to OCL invariant

“self.age >= 18”.

Constraint 7.2.2

English:Male customers must be approached using the title Mr..

SBVR: It is necessary that male customers must be approached using the title 'Mr.'.

OCL: package royal_and_loyal
context Customer

 invself.isMaleimpliesself.title= Mr.

 Endpackage

OtherOCL: contextCustomer

 invmaleTitle: isMale implies title = ’Mr.’

In the Constraint 7.2.2, SBVR was easy to generate as there is one Object Type ‘customer’ and

there are two Characteristics ‘male’ and ‘title’. However, the ‘male’ Characteristic was difficult to

identify as Customer class has ‘isMale’ attribute instead of ‘male’. The NL2OCL approach

handles such cases by checking the data-type of such Characteristics as if the data-type is

Boolean, a prefix ‘is’ is concatenated with such Characteristics. For example, the attribute in

class model is “isMale” while in NL constraint only “Male” has been mentioned. However, rest

of the OCL mapping was straightforward.

Constraint 7.2.3

English: The number of valid cards for every customer must be equal to the number of programs in which the

customer participates.

C
h

ap
te

r
7

Ev

al
u

at
io

n

113

SBVR: It is obligatory that each the number of valid cards for each customer must be equal to the

number of programs in which the customer participates.

OCL: package royal_and_loyal

 contextCustomer

 invself.cards->select(valid=true)->size()=self.programs->size()
 endpackage

OtherOCL: contextCustomer

 invsizesAgree:programs->size()=cards->select(valid=true)->size()

In Constraint 7.2.3, it can be seen that a longer English sentence involving four Object Types

‘cards’, ‘customer’, ‘programs’, and ‘customer’ and one Characteristic ‘valid’ is transformed to

SBVR and OCL automatically. In this constraint, the term ‘number of ’ is mapped to OCL

function size().

Constraint 7.2.4

English: The validFrom date of customer cards should be earlier than goodThru.

SBVR: It is obligatory that the 'validfrom' date of customercard should be earlier than 'goodthru'.

OCL: package royal_and_loyal

 context CustomerCard

 invself.validFrom <self.goodThru

 Endpackage

Other OCL: contextCustomerCard

 invcheckDates: validFrom.isBefore(goodThru)

In the Constraint 7.2.4, the term ‘earlier’ is used and this term is mapped to parameterized

function ‘isBefore()’ in OtherOCL. However, the current version of the NL2OCLviaSBVR

does not support the parameterized function calls, the ‘earlier’ keyword is mapped to simple

relational operator ‘<’ as an alternate. Here, the user is given a message about this mapping. The

support of the parameterized function calls is a future piece of work.

Constraint 7.2.5

English: The birth date of the owner of a customer card must not be in the future.

SBVR: It is necessary that the 'dateofbirth' of the owner of a customercard must not be in the

future.

C
h

ap
te

r
7

Ev

al
u

at
io

n

114

OCL: package royal_and_loyal

 contextCustomerCard

 invself.owner.dateOfBirth <> future

 endpackage

OtherOCL: contextCustomerCard

 invbirthDate: self.owner.dateOfBirth.isBefore(Date::now)

The Constraint 7.2.5 involves two Object Types ‘customercard’,‘owner’ and a Characteristic

‘dateofbirth’. However, identification of ‘dateofbirth’ Characteristic was complex as in NL

specification the used term is ‘birth date’ while CustomerCard class has an attribute

dateOfBirth. To process such attributes we have provided support to map various

combinations of date of birth to dateOfBirth. In OCL generation, similar to Constraint 7.2.4,

the term ‘not be in future’ is used and this term is mapped to parameterized function

‘isBefore()’ in OtherOCL. Here, we have again mapped the term ‘not in future’ to the

relational operator ‘<>’ due to the non-support of parameterized function calls in current

implementation of the NL2OCL approach.

Constraint 7.2.6

English: The owner of a customer card must participate in at least one loyalty program.

SBVR: It is necessary that the owner of a customercard must participate in at least one

loyaltyprogram.

OCL: package royal_and_loyal

 contextCustomerCard

 invself.owner.programs -> Size()>= 1

 endpackage

OtherOCL: contextCustomerCard

 invprogramParticipation: self.owner.programs ->size() > 0

In the Constraint 7.2.6, the transformation from NL to SBVR and OCL is fully automated. In this

constraint the term ‘at least’ is mapped to Boolean operator ‘>=’ to represent the meanings

“greater than or equal to”. Similarly, if the term ‘at most’ is used in NL specification that is

mapped to Boolean operator ‘<=’ to represent the meanings “less than or equal to”.

Moreover, in the Constraint 7.2.6, to reach from CustomerCard to LoyaltyProgram, we need

to navigate through two associations ‘owner’ and ‘programs’ to reach LoyaltyProgram (see

Figure 7.2). Current implementation of the NL2OCL approach is able to handle such navigations

C
h

ap
te

r
7

Ev

al
u

at
io

n

115

that involve up to four classes and three associations. Actually, we have used Array-list to

implement this module and for higher number of associations, strong data structure is required.

This is sufficient to handle the Royal and Loyal case study. However, we aim to enhance the

capability of the tool so that it may handle any number of associations in future.

Figure 7.2: A subset of the Royal & Loyal model.

Constraint 7.2.7

English: There must be at least one transaction for a customer card with at least 100 points.

SBVR: It is necessary that there must be at least one transaction for a customercard with at

least 100points.

OCL: package royal_and_loyal

 contextCustomerCard

 invself.transaction->select(point >= 100)->Size()>= 1

 endpackage

OtherOCL: contextCustomerCard

 invtransactionPoints : self.transactions->

 select(points>100) ->notEmpty()

In the Constraint 7.2.7, the term ‘at least’ has been used twice. Moreover, in this constraint, two

Object Types such as ‘transaction’ and ‘customercard’ and one Characteristic ‘points’ are

involved. Since, “at least one” is particularly mentioned in NL constraint, in OCL we map it to

“size() >= 1”. Rest of the transformation of Constraint 7.2.7 to SBVR and OCL is performed

simply.

C
h

ap
te

r
7

Ev

al
u

at
io

n

116

Constraint 7.2.8

English: The service level of each membership must be a service level known to the loyalty program.

SBVR: It is necessary that servicelevel of each membership must be a servicelevel known to

loyaltyprogram.

OCL: package royal_and_loyal

 contextMembership

 invself.currentLevel ->includes(self.program.levels)

 endpackage

OtherOCL: contextMembership

 invknownServiceLevel: programs.levels->includes(currentLevel)

The Constraint 7.2.8 involves three classes Membership, LoyaltyProgram and

ServiceLevel. The transformation to SBVR is simple for this constraint but to generate OCL

we need to navigate multiple associations such as to navigate from Membership to

ServiceLevel via LoyaltyProgram.In this constraint, two associations are involved such as

programs and levels(see Figure 7.3).

Figure 7.3: A subset of the Royal & Loyal model.

As the current version of the implementation can handle up to multiple associations, the NL

specification was also transformed to OCL successfully. In this constraint, another OCL

operation ‘includes()’ is involved. Our tool uses maps the input NL to the ‘includes()’

operations if there are is a cycle in the used associations.

Constraint 7.2.9

English: The participants of a membership must have the correct card belonging to this membership.

C
h

ap
te

r
7

Ev

al
u

at
io

n

117

SBVR: It is obligatory that each participants of a membership must have the correct card

belonging to this membership.

OCL: package royal_and_loyal

 contextMembership

 invself.participants.cards ->includes(self.card)

 endpackage

OtherOCL: contextMembership

 invcorrectCard: participants.cards->includes(self.card)

The Constraint 7.2.9 is similar to the Constraint 7.2.8 as this constraint also involves three

classes Membership, Customer and CustomerCard and two associations; cards and

participants as shown in Figure 7.4. The mapping to OCL was also forthright.

Figure 7.4: A subset of the Royal & Loyal model

Constraint 7.2.10

English: The color of a membership’s card must match the service level of the membership.

SBVR: It is obligatory thatthe color of a membership’scardmustmatch the service level of the

membership.

OCL: package royal_and_loyal

 contextMembership

 invself.card.color = self.currentLevel.name

 endpackage

C
h

ap
te

r
7

Ev

al
u

at
io

n

118

OtherOCL: contextMembership

 invlevelAndColor:

 currentLevel.name = ’Silver’ implies card.color = Color:: silver

 and

 currentLevel.name = ’Gold’ implies card.color = Color::gold

In the Constraint 7.2.10, the OtherOCL involves two enumeration values ‘Silver’ and ‘Gold’.

Since, these terms are not specifically mentioned in the NL constraint and moreover, the current

implementation of the NL2OCL approach does not support enumeration values, the NL2OCL

approach generates a simplified version of OCL. However, the generated OCL is syntactically

different from the OtherOCL. Support for enumerations is a future work and to support

enumerations, an extra module is required to be added that is sufficiently intelligent in choosing

among the available enumeration values. After providing the support for enumeration values,

such cases will be easy to translate.

Constraint 7.2.11

English: Memberships must not have associated accounts.

SBVR: It is obligatory that each memberships must not have associated accounts.

OCL: package royal_and_loyal

 contextMembership

 invself.account -> isEmpty()

 endpackage

OtherOCL: context Membership

 invnoAccount: account->isEmpty()

The Constraint 7.2.11 is simple to transform to SBVR and OCL as it involves only two Object

Types: ‘memberships’ and ‘accounts’. However, to generate OCL for this constraint, support

for ‘isEmpty()’ operation was required. We provide this support by mapping the NL term ‘no’

to OCL operation ‘isEmpty()’ as it is used with an Object Type account(or a class),

otherwise the term ‘no’ is mapped to the logical operator ‘Not’, if it is used with a Characteristic

(or a class attribute).

Constraint 7.2.12

English: Loyalty programs must offer at least one service to their customers.

C
h

ap
te

r
7

Ev

al
u

at
io

n

119

SBVR: It is necessary that Loyaltyprogram must offer at least one service to customer.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 invself.partners.deliveredServices->size() >= 1

 endpackage

OtherOCL: contextMembership

 invminServices: partners.deliveredServices->size() >= 1

The OtherOCL for the Constraint7.2.12 involves two associations such as deliveredSrvices

and partners, while Membership is used as a context. However the Constraint7.2.12 cannot

be transformed to OCL due to a logical contradiction in the NL constraint. Here the logical

contradiction is that the OtherOCL is semantically different from the NL constraint because 1)

the relationship mentioned by the NL constraint is not available in the UML class model 2) class

customer is not involved in the OtherOCL but it is part of the NL constraint, 3) for the given

OtheOCL, Membership cannot be the context(see in Figure 7.5), due to the fact that customer

is not directly involved in deliveredServices. However, the partners are involved in the

deliveredServices. Hence the correct context should be LoyaltyProgram. Our tool

automatically analyses the correct context.

Figure 7.5: A subset of the Royal & Loyal model

Our tool is able to identify such logical contradictions due to the fact that each NL statement is

mapped to a UML class model before it is transformed to OCL.

C
h

ap
te

r
7

Ev

al
u

at
io

n

120

Figure 7.6: A subset of the Royal & Loyal model

To solve the Constraint7.2.12, the logical contradiction can be removed by either correcting the

NL constraint or correcting the OCL constraint. However, to solve this constraint, we have

changed the NL constraint by replacing customers with partners, to make NL statement is

consistent with the class model. Here, partners become the logical replacement (see Figure

7.6). After removing the logical contradiction, the NL constraint was successfully transformed to

OCL by our tool.

Constraint 7.2.13

English: If none of the services offered in a loyalty program credits or debits the loyalty accounts, then

these instances are useless and should not be present.

SBVR: If none of the services offered in a loyalty program credits or debits the loyalty

accounts, then it is permitted that these instances are useless and should not be present.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 inv

 endpackage

OtherOCL: contextLoyaltyProgram

 invnoAccounts: partners.deliveredServices->forAll(

 pointsEarned = 0 and pointsBurned = 0)

 implies Membership.account->isEmpty()

C
h

ap
te

r
7

Ev

al
u

at
io

n

121

The Constraint7.2.13 is a larger NL constraint involving three Object Types and five Verb

Concepts.

Figure 7.7: A subset of the Royal & Loyal model

The constraint was successfully mapped to SBVR. However, this constraint cannot be

transformed to OCL due to the use of terms like ‘credit’ and ‘debit’ which are not part of the

UML class model (see Figure 7.7). Moreover, there is a discrepancy between the English

constraint and the OtherOCL that is in the NL constraint, the LoyalAccountclass is associated

with the LoyaltyProgramclass, while in OCL the LoyaltyProgram class is mapped to the

Service class by using its attributes, such as ‘pointsEarned’ and ‘pointsBurned’. Here,

the user is given a message that NL constraint is not consistent and the user should re-consider

the NL constraint.

Constraint 7.2.14

English: The name of the first level must be Silver.

SBVR: It is obligatory that the name of the first level must be Silver.

OCL: packageroyal&loyal

contextLoyaltyProgram

invself.levels->first().name = Silver

 Endpackage

OtherOCL: contextLoyaltyProgram

 invfirstLevel : levels->first (). name = ’Silver’

C
h

ap
te

r
7

Ev

al
u

at
io

n

122

The Constraint7.2.14 is transformed to SBVR but cannot be transformed to OCL, as it is a

limitation of the approach that at least one class should be mentioned in the NL constraint that

will become the context of the OCL. Here, the tool gives an error message to the user that there

should be at least one class mentioned in the constraint. To generate the OCL similar to the

OtherOCL, we need to introduce a class name such as theLoyaltyProgram class in the NL

constraint. After the change the NL constraint will look like this: “The name of the first level of the

LoyaltyProgram must be Silver”. Afterwards, the transformation of Constraint 7.2.14 is simple.

Constraint 7.2.15

English: There must exist at least one service level with the name basic.

SBVR: It is necessary that there must exist at least one ServiceLevel with the 'name' basic.

OCL: package royal_and_loyal

contextServiceLevel

invself.name = basic->exists(()

 endpackage

Our tools correctly generate SBVR for the Constraint7.2.15 but the wrong OCL is generated.

The wrong OCL is generated due to the fact the NL constraint for the Constraint7.2.15 is

logically incomplete as “service level” mentioned in the NL constraint points to the “level”

association and there is no class that will be the possible context of the OCL constraints. Here,

the user is given a message that to generate a correct OCL, the user needs to introduce at least

one class as a possible context. For the Constraint 7.2.15, the LoyaltgProgramclass should be

introduced in the NL constraints to provide a complete relationship. After the NL constraint is

changed, it will look like this: “There must exist at least one service level for a Loyalty Program with the

name basic.” After this change, the Constraint 7.2.15is correctly transformed to OCL.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 invself.level->exists(name = basic)

 endpackage

OtherOCL: contextLoyaltyProgram

 invbasicLevel: self.levels->exists(name = ’basic’)

C
h

ap
te

r
7

Ev

al
u

at
io

n

123

Constraint 7.2.16

English: The number of participants in a loyalty program must be less than 10,000.

SBVR: It is necessary that the number of participants in a loyaltyprogram must be at most

10,000.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 inv:self.participants->size()<10000

 endpackage

OtherOCL: contextLoyaltyProgram

 invmaxParticipants: self . participants ->size() < 10,000

The Constraint 7.2.16is very simple to process as it involves only one Object Type

‘loyaltyprogram’ and one association ‘participants’. The transformation of Constraint 7.2.16to

SBVR and OCL is very simple and straightforward.

Constraint 7.2.17

English: The number of the loyalty account must be unique within a loyalty program.

SBVR: It is necessary that the 'number' of the loyaltyaccount must be unique within a

loyaltyprogram.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 invself.Membership.account->isUnique(acc|acc.numbers)

 endpackage

OtherOCL: contextLoyaltyProgram

 invuniqueAccount: self.Membership.account->

 isUnique(acc | acc.number)

In the Constraint 7.2.17, twoObject Types ‘loyaltyprogram’and ‘loyaltyaccount’is used with a

Characteristic ‘numbers’. However a new OCL operation ‘isUnique()’ is involved in this

constraint. The use of term ‘unique’ in NL statement hints the use of ‘isUnique()’ operation.

The transformation of Constraint 7.2.16to SBVR and OCL is successfully performed.

Constraint 7.2.18

English: The names of all customers of a loyalty program must be different.

C
h

ap
te

r
7

Ev

al
u

at
io

n

124

SBVR: It is necessary that the ’name’ of all customers of a loyalty programmustbe different.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 invself.participants.name->forAll(c1,c2|c1.name<>c2.name)

 endpackage

OtherOCL: contextLoyaltyProgram

 invuniqueNames: self.participants->

 forAll(c1,c2| c1<>c2 implies c1.name <> c2.name)

The Constraint 7.2.18involves two Object Types ‘loyaltyprogram’ and ‘customers’. To

transform this constraint to OCL, we need to cope with two new things: the term ‘all’ and the

term ‘different’. The functionality to map ‘all’ to OCL operation ‘forAll’ is already presented.

However, the term ‘different’ is mapped to comparison of two terms with ‘<>’ operator in OCL.

The tool also provide functionality to compare two values, e.g., ‘c1.name<>c2.name’.

Constraint 7.2.19

English: The maximum age of participants in loyalty programs is 70.

SBVR: It is necessary that the at most ’age’ of participants in loyaltyprogram is 70.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 inv:self.participants -> forAll(age<= 70)

 endpackage

OtherOCL: contextLoyaltyProgram

 invmaxAge: participants->forAll(age()<= 70)

The Constraint 7.2.19, involves one Object Type ‘loyaltyprogram’ and one Characteristic

‘participants’. The Constraint 7.2.16was also correctly transformed to OCL. However, the

function forAll used in OtherOCL was not mentioned by our tool. If a user wants to introduce

forAll operation in OCL, he/she will have to mention the term ‘all’ in the NL constraint.

Constraint 7.2.20

English: There may be only one loyalty account that has a number lower than 10,000.

C
h

ap
te

r
7

Ev

al
u

at
io

n

125

SBVR: It is possibility thattheremaybe only oneloyaltyaccount thathas a'number' lower than 10,000.

OCL: package royal_and_loyal

 contextLoyaltyProgram

 invself.Membership.account->one(number < 10,000)

 endpackage

OtherOCL: contextLoyaltyProgram

 invoneAccount: self.Membership.account->one(number < 10,000)

In the Constraint 7.2.20, only Object Type ‘loyaltyprogram’ is used. Constraint 7.2.20was also

correctly transformed to OCL. In this constraint, another OCL operation ‘one()’ is also

incorporated.

Constraint 7.2.21

English: The attribute numberOfCustomers of class ProgramPartner must be equal to the number of

customers who participate in one or more loyalty programs offered by this program partner.

SBVR: It is obligatory that the attribute numberOfCustomers of class ProgramPartner must be

equal to the number of customers who participate in at least one loyaltyPrograms offered

by this programPartner.

OCL: contextProgramPartner

 invself.numberOfCustomers=programs.participants->asSet()->size()

 endpackage

OtherOCL: contextProgramPartner

 invnrOfParticipants: numberOfCustomers =

 programs.participants->asSet()->size()

The Constraint 7.2.21is the lengthiest constraint of the Royal and Loyal model and it involves

three classes ‘ProgramPartner’, ‘customers’, and ‘loyaltyprograms’ and one attribute

‘numberOfCustomers’. In this constraint, another OCL operation ‘asSet()’ is also involved.

Constraint 7.2.21 is correctly transformed to OCL.

Constraint 7.2.22

English: A maximum of 10,000 points may be earned using services of one partner.

SBVR: It is possibility that a maximum of 10,000 points may be earned using services of one partner.

C
h

ap
te

r
7

Ev

al
u

at
io

n

126

OCL: package royal_and_loyal

 contextProgramPartner

 invself.deliveredServices.pointsEarned<=10,000

 endpackage

OtherOCL: context ProgramPartner

 inv totalPoints :

 DeliveredServices.transactions->

 select(oclIsTypeOf(Earning)).points->sum() < 10,000

In the Constraint 7.2.22, there are two Object Types such as ‘Partner’ and ‘Service’. However

the use of Object Type ‘Partner’ is quite ambiguous as partner is an association in the Royal

and Loyal model (see Figure 7.9) and if we handle partner as an association, no OCL can be

generated because 1) partner association is directed from the Service class to the

ProgramPartner class and it is not mentioned in the NL constraint 2) we can’t reach from an

association to a class’s attribute pointsEarned because of opposite direction of the association.

Figure 7.9: A subset of the Royal & Loyal model

Here, we need a class such as ProgramPartner to reach to reach pointsEarned of the class

Service. Here, the user is given a message that ‘partner’ is not a valid context and the user

needs to introduce at least one class that is a valid context for the given NL constraint. To

process this constraint, the user needs to replace the term ‘partner’ with the term

ProgramPartner. After this change, the NL constraint will look like “A maximum of 10,000

points may be earned using services of one program partner.” and it is simply transformed to OCL.

C
h

ap
te

r
7

Ev

al
u

at
io

n

127

Constraint 7.2.23

English: All cards that generate transactions on the loyalty account must have the same owner.

SBVR: It is necessary that each all card that generate transaction on the loyaltyaccount must have

the same owner.

OCL: package: royal_and_loyal

 contextLoyaltyAccount

 invself.transactions.cards.owner->asSet()->size() = 1

 endpackage

OtherOCL: contextLoyaltyAccount

 invself.transactions.card.owner->asSet()->size() = 1

The Constraint 7.2.23is another complex constraint of the Royal and Loyal model. It involves

two classes ‘transaction’ and ‘loyaltyaccount’ two associations ‘card’ and ‘owner’. Here, two

other classes ‘CustomerCard’ and ‘Customer’ are indirectly involved as we need to access

owner of the card. In this constraint, another OCL operation ‘asSet()’ is also used. The

Constraint 7.2.23is correctly transformed to OCL.

Constraint 7.2.24

English: If the points earned in a loyalty account is greater than zero, there exists a transaction with more

than zero points.

SBVR: If the points earned in a loyalty account is at least zero, it is necessary that there exists a

transaction with at least zero points.

OCL: package royal_and_loyal

 contextLoyaltyAccount

 invif (self.points > 0) then

 transaction -> exists(t| t.points>0)

 endif

 endpackage

OtherOCL: contextLoyaltyAccount

 invpositivePoints : points > 0 implies transactions->

 exists(t | t .points > 0)

In the Constraint 7.2.24an if statement is involved. This constraint was simple to generate as the

current version of the tool has an ability to generate if-else expressions. To generate if

expression in this constraints we need to extract two parts: (1) if part with condition (2)then

part with the body. However, there is no else part as it is not mentioned in the NL constraint.

C
h

ap
te

r
7

Ev

al
u

at
io

n

128

Constraint 7.2.25

English: There must be one transaction with exactly 500 points.

SBVR: It is necessary that there must be one transaction with exactly 500 'point'.

OCL: package: royal_and_loyal

 contextTransaction

 invself.transaction->select(point = 500)->Size()=1

 endpackage

OtherOCL: contextLoyaltyAccount

 inv500points: transaction.points->exists(p : Integer| p = 500)

The Constraint 7.2.25 involves one Object Type ‘transaction’ and one Characteristic ‘point’. In

this constraint, the ‘select()’ operation is also involved.

Constraint 7.2.26

English: The available services for a service level must be offered by a partner of the loyalty program to

which the service level belongs.

SBVR: It is obligatory that the available services for a service levelmustbe offered by a partner of

the loyalty program to which the service level belongs.

OCL: package: royal_and_loyal

 contextServiceLevel

 invself.program.partners->

 includesAll(self.availableServices.partner)

 endpackage

OtherOCL: contextServiceLevel

 invservicePartner: program.partners->includesAll

 (self.availableServices.partner)

The Constraint 7.2.26 is one of the complex constraints of the Royal and Loyal model as it

involves two Object Type ‘service level’ and ‘loyalty program’ and two associations ‘available

services’ and ‘partner’. This constraint incorporates the ‘includesAll()’ operation. However,

the Constraint 7.2.26 is also successfully transformed to SBVR and OCL by our tool.

C
h

ap
te

r
7

Ev

al
u

at
io

n

129

7.2.3 Quantitative Evaluation.

In this subsection, we perform a quantitative evaluation of the NL2OCL approach for the Royal

& Loyal model. We use the criteria for quantitative evaluation as defined in Section 7.1.1:

specification coverage and throughput measure.

A. Specification Coverage

The NL2OCL approach was designed to automatically extract various OCL syntactic elements

so that they can be integrated to generate a complete OCL expression. The part of OCL syntax

covered by the NL2OCL approach is shown in Table 7.2.

Table 7.2: OCL elements covered by the NL2OCL approach

OCL Elements Supported by the NL2OCLviaSBVR

Context Yes

Logical Expressions Yes

Relational Expressions Yes

Navigation Yes

if-then-else Yes

Collections Selected ones are supported

Table 7.2 shows that most of the OCL syntax was covered in the implementation to translate

English constraints of the Royal & Loyal model as it was required. Table 7.3 shows the details of

the OCL elements implemented in the NL2OCLviaSBVRtool in comparison with the OCL

elements implemented in the Copacabana tool [Wahler, 2008].

Table 7.3: OCL Generation: NL2OCLviaSBVR vs. Copacabana

OCL Elements NL2OCLviaSBVR Copacabana Occurrences

Context Yes Yes 26

Navigation via association classes Yes No 19

Logical Expressions Yes Yes 1

Relational Expressions Yes Yes 20

Cardinality of Sets Yes No 2

C
h

ap
te

r
7

Ev

al
u

at
io

n

130

Parameterized Function Calls No No 2

if-then-else Yes Yes 2

Enumerations No Yes 2

size() Yes Yes 9

isEmpty() Yes Yes 2

forAll() Yes Yes 3

exists() Yes Yes 2

includesAll() Yes No 1

select() Yes No 3

asSet() Yes Yes 2

isUnique() Yes No 1

oclIsTypeOf() No No 1

Our approach can generate 22 OCL constraints from total 26 English constraints of the Royal &

Loyal model that is approximately 85% (see Table 7.4). The remaining 4 constraints cannot be

translated due to the violation of one of the limitations of the NL approach discussed in section

7.4. However, if we slightly tune the inputs with respect to the given limitations of the

NL2OCLviaSBVR, further 3 constraints can be translated. This improves the ratio of results to

96.15%. Only the Constraint 7.2.13 cannot be translated to OCL due to logical contradiction in

the statement and this constraint needs complete revision.

Figure 7.10: Specification Coverage: NL Approach vs. Pattern Approach

0

20

40

60

80

100

Translated Before
Tuning

Translated After
Tuning

69.23
76.92

84.61

96.15

Copacabana

NL2OCLviaSBVR

C
h

ap
te

r
7

Ev

al
u

at
io

n

131

In comparison to NL based approach, the pattern based approach can generate 18 constraints

before tuning and 20 constraints after tuning. A comparison of both approaches is shown in

Figure 7.10. It is important to indicate here that the researcher is conscious of the fact that the

NL2OCL approach used to generate OCL from NL constraints cannot be 100% correct.

Furthermore, the researcher has used NL and automated generated SBVR in pair to resolve NL

ambiguities and to clarify vagueness by pointing them out, this will not be a 100% solution either

and the researcher is aware of it.

Table 7.4: Specification Coverage: NL Approach vs. Pattern Approach

OCL Elements Total Constraints Translated Before Tuning Translated After Tuning

Copacabana 26 18 20

NL2OCLviaSBVR 26 22 25

Table 7.4 shows that the NL2OCLviaSBVR tool can translate 22 constraints without tuning.

Here tuning means improving the NL input statement. The ratio of translation before tuning is

84.61% that outperforms the other approaches. Since the effectiveness of un-tuned tool is good

enough to be useful but the researcher has also demonstrated that further tuning can produce

better accuracy that can be up to 96.15% as after tuning the tool can translate 25 constraints out

of 26 constraints.

B. Throughput Measure

Throughput was measured to validate the effectiveness of the presented approach in real-time

scenario, where people with various levels of knowledge and expertise need to write OCL. A

small survey was conducted to measure the throughput of the NL2OCL approach.For the survey

three groups were chosen as below:

 Novel : A user who is quite new to OCL

 Medium :A user who knows basics of OCL

 Expert : A user who is expert of OCL

C
h

ap
te

r
7

Ev

al
u

at
io

n

132

Table 7.5: Usability Survey Results

User
Easy to Use Time-Saving

Manual By Tool Manual By Tool

Novel 30% 90% 25% 85%

Medium 55% 85% 40% 80%

Expert 70% 85% 60% 70%

Average 51.66% 86.66% 41.66% 78.33%

Each group was containing 10 users. Each user was given a set of 10 English constraints and

then they were asked to manually write OCL for each constraint. Users of all groups were given

five minutes for writing each constraint. Afterwards, all the users were asked to generate OCL

for the same constraints using our tool the NL2OCLviaSBVR. Once all the users finished their

work they were given a questionnaire to fill. In the questionnaire, questions were asked regarding

various aspects: simple to use, time-saving, etc. Each user was asked to give 1 to 10 score for

each category. The average values calculated for different parameters are clearly showing in

Table 7.12that the used approach was making an impact. The statistic in Figure 7.11 and Figure

7.12 manifest that users specifically in novel and medium category find it easy to generate OCL

constraints using our tool. Figure 7.13 presents overall statistics of user’s feedback.

Figure 7.11: Ease to generate constraints: Manual vs. By Tool

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Novel Medium Expert

30%

55%

70%

90%
85% 85%

Easy to Use Manual

Easy to Use By Tool

C
h

ap
te

r
7

Ev

al
u

at
io

n

133

Figure 7.12: Time saving in constraints generation: Manual vs. By Tool

Figure 7.13: Throughput Measure: Manual vs. By Tool

7.3Case Study: QUDV

SysML is an OMG standard that is typically used for system engineering and modeling of

measurement systems [OMG, 2010]. SysML is simple and smaller than UML in terms of

diagram types and total constructs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Novel Medium Expert

25%

40%

60%

85%
80%

70%

Time-Saving Manual

Time-Saving By Tool

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Manual By Tool Manual By Tool

Easy to Use Time Saving

51.66%

86.66%

41.66%

78.33%

C
h

ap
te

r
7

Ev

al
u

at
io

n

134

Figure 7.14: QUDV Unit diagram

7.3.1 QUDV Library Model

The presented case study is based on the well-known problem of checking the coherence of a

system of units & quantities. The precise specification of this problem is given in ISO 80000.

However, Koning extracted the relevant parts of this problem is given in SysML 1.2, Annex C.5,

“Model Library for Quantities, Units, Dimensions, and Values (QUDV)” [Koning, 2005]. Both

NASA and ESA have also worked at the problem of modeling the measurement units as a part of

the system. Figure 7.14 shows the unit diagram of the QUDV model.

There are three parts of QUDV model. However, we have used only two of them: the QUDV

Unit Model (see Figure 7.14) and the QUDV Concept Model (see Figure 7.15). There are four

main classes in the model: SystemOfUnits, SystemOfQuantities, Units and

QuantityKind.

C
h

ap
te

r
7

Ev

al
u

at
io

n

135

Figure 7.15: QUDV Concepts Diagram

From the QUDV concept diagram (see Figure 7.15), the English specification of a constraint on

Quantity class is given in [ibid], Section C.5.2.11. An overview of the components of the

QUDV unit and concept model is shown in Table 7.6.

Table 7.6: Overview of QUDV Model

 Type of Components QUDV Unit Diagram QUDV Concepts Diagram Total

1 Classes → 13 7 20

2 Attributes → 22 21 43

3 Methods → 0 0 0

4 Associations → 17 7 24

7.3.2 QUDV Constraints

In this subsection, we present the five constraints of QUDV model library given in [OMG,

2010], Section C.5.2.10. We have generated SBVR and OCL of the QUDV English constraints

using our tool NL2OCLviaSBVR. English specification of the constraints on PrefixedUnit

class is given in [OMG, 2010], Section C.5.2.10.

C
h

ap
te

r
7

Ev

al
u

at
io

n

136

Constraint 7.3.1

This constraint specifies that it is not allowed to prefix an already prefixed measurement unit. In

general the referenceUnit should be a SimpleUnit. The output of the input English

specification is below:

English: The referenceUnit shall not be a PrefixedUnit.

SBVR: It is obligatory that each referenceUnitshall notbe aPrefixedUnit.

OCL: package QUDV

 contextPrefixedUnit

 invnot referenceUnit->oclIsTypeOf(PrefixedUnit)

 endpackage

OtherOCL: package QUDV

 contextPrefixedUnit

 invnot referenceUnit->oclIsTypeOf(PrefixedUnit)

 endpackage

Two more constraint are defined on SystemOfUnits class and their English specification is

given in [ibid], Section C.5.2.21, where SystemOfUnitsis defined as “set of base units and

derived units”.

Constraint 7.3.2

This constraint specifies that only one base unit should be specified for a base quantity. A “base

unit” is a preferred unit in which base quantities of the associated systemOfQuantities are

expressed. A base unit is a measurement unit that is adopted by convention for a base quantity.

The output of the Constraint 7.3.2 is below:

English: In a coherent system of units, there is only one base unit for each base quantity.

SBVR: In a coherent system of units, it is obligatory that there is exactly one base unit for each

base Quantity.

OCL: package QUDV

 contextSystemOfUnits

 invself.systemOfQuantities.baseQuantityKind.size()=

 self.baseUnit->size() = 1

 endpackage

C
h

ap
te

r
7

Ev

al
u

at
io

n

137

OtherOCL: package QUDV

 contextSystemOfUnit

 def: isCoherent() : QUDV::Blocks::Boolean = baseUnit->size() =

 systemOfQuantities.baseQuantityKind->size() and baseUnit->

 forAll(bU| systemOfQuantities.baseQuantityKind->one(bQK|bU.

 quantityKind=bQK)) and systemOfQuantities.baseQuantityKind->

 forAll(bQK| baseUnit->one(bU|bQK=bU.quantityKind))

 endpackage

The OCL generated for Constraint 7.3.3 is syntactically different. However, semantically it is

equivalent to the OtherOCL.

Constraint 7.3.3

The other constraint defined on the SystemOfUnits class is a definition of a coherent derived

unit. A derived unit is a factor of a unit and the exponent of a factor is also 1. Our tool generates

incomplete OCL as this constraint consists of out of domain information such as “with no other

proportionality factor than one” and we have explained in section 7.4.3 that our current

implementation cannot handle the extra domain information.

English: A coherent derived unit is a derived unit that, for a given system of quantities and for a chosen

set of base units, is a product of powers of base units with no other proportionality factor than

one.

SBVR: A coherent derived unit is a derived unit, it is obligatory that for a given system of

quantities and for a chosen set of base units, is a product of powers of base units with no

other proportionality factor than one.

OCL: package QUDV

 contextSystemOfUnits

 invself.baseUnit->includesAll() ->

 endpackage

OtherOCL: package QUDV

 contextSystemOfUnit

 def: isCoherent(du : DerivedUnit) : QUDV::Blocks::Boolean =

 baseUnit->includesAll(du.factor.unit) and du.factor.exponent->

 forAll(numerator=1 and denominator=1)

 Endpackage

C
h

ap
te

r
7

Ev

al
u

at
io

n

138

Constraint 7.3.4

The constraint specifies that from three properties (value, unit, and quantityKind) of

Quantity, one should be specified. The output of the input English specification is below:

English: At least one of the three properties of Quantity shall be specified.

SBVR: It is obligatory that at least one of the three properties of Quantityshall be specified.

OCL: package QUDV

 contextQuantity

 inv self.value->isNotEmpty() orself.unit->isNotEmpty() or

 self.quantityKind->isNotEmpty()

 endpackage

OtherOCL: package QUDV

 contextSystemOfUnit

 inv: quantityKind->isNotEmpty()

 or unit->isNotEmpty()

 or value->isNotEmpty()

 endpackage

Constraint 7.3.5

The NL specification of the Constraint 7.3.5 is related to the Scale class and is given in [OMG,

2010] Section C.5.2.15. The constraint specifies that it is not allowed to prefix an already

prefixed measurement unit. In general the referenceUnit should be a SimpleUnit.

English: If a unit is specified on Scale, then it shall be the same as the unit of the associating

QuantityKind.

SBVR: If a unit is specified on Scale, then it is obligatory that unit shall be the same as the unit of

the associating QuantityKind.

OCL: package QUDV

 contextScale

 invif (notself.unit->isEmpty()) then

 self.unit.quantityKind = self.quantityKind

 endif

 endpackage

OtherOCL: package QUDV

 contextScale

 inv: unit->isEmpty() or unit.quantityKind = self.quantityKind

 endpackage

C
h

ap
te

r
7

Ev

al
u

at
io

n

139

In Constraint 7.3.5,if keyword is mentioned in the NL constraint that leads to an ifexpression

in the OCL constraint. As the NL constraint says that a Scale unit should be equivalent to the

quantityKind unit, the generated OCL is syntactically different from the OtheOCL however

both are semantically equivalent.

7.3.3 Quantitative Evaluation

In this subsection, we perform a quantitative evaluation of the NL2OCL approach for the QUDV

library model. For the QUDV Model case study, only specification coverage is discussed here.

The combined results of throughput measure for all three case studies have been represented in

Table 7.5.

A. Specification Coverage

The NL approach was designed to automatically extract various OCL syntactic elements so that

they can be mapped to a complete OCL expression. To translate English constraints of the

QUDV model, most of the OCL syntax was covered in the implementation. Table 7.7 shows the

details of the OCL elements implemented in our NL2OCL approach.

Table 7.7: OCL Generation: NL Approach vs. Pattern Approach

OCL Elements NL2OCLviaSBVR Occurrences

Context Yes 05

Navigation via association classes Yes 19

Logical Expressions Yes 4

Relational Expressions Yes 3

Cardinality of Sets Yes 1

Parameterized Function Calls No 0

if-then-else Yes 1

Enumerations No 0

size() Yes 2

isEmpty() Yes 1

isNotEmpty() Yes 3

forAll() Yes 0

C
h

ap
te

r
7

Ev

al
u

at
io

n

140

exists() Yes 0

includesAll() Yes 1

select() Yes 0

asSet() Yes 0

isUnique() Yes 0

oclIsTypeOf() No 1

Our approach can generate 4 OCL constraints from the 5 English constraints of the QUDV

model that is 80%. The remaining constraint (Constraint 7.3.3) cannot be translated due to the

violation of one of the limitations of the NL approach discussed in Section 7.4.

7.4 Case Study: WebSphere Business Modeler

We have selected the third case study from the domain of business processes:

WebSphereBusinessModeler (WBM) [IBM, 2007]. WBM is internally used by IBM and we aim

to translate NL constraints of WBM using our tool. The NL constraints and their OCL is

generated by a research team in the IBM Zurich Research Laboratory for the purpose of process

merging. The basic purpose of defining these constrains was to restrict the input models those

were initially described in NL and Java.

Figure 7.16: Screenshot of the process-merging prototype in WBM [Wahler, 2008].

C
h

ap
te

r
7

Ev

al
u

at
io

n

141

7.4.1 The WBM Process Model

This section presents the WBM process model typically employed for specifying the business

processes. The WBM process model is based on a set of UML class diagrams. There are four

parts of the model. However, we have used three of them (see Figure 7.16, Figure 7.17, and

Figure 7.18) with regards to the scope of constraints. Here, Figure 7.17and Figure 7.18explain

the class diagrams of the metamodel of the process model. Figure 7.19provides the descriptionof

various types of activity nodes in the process model.

It is shown in Figure 7.17 that activity nodes can be of two types such as ExecutableNode and

ControlNode. Moreover, an executable node can be of two further types: an Actionor a

StructuredActivityNode.Similarly, aControlNode can be either an InitialNode or a

FinalNode. TheFinalNodeis further classified into two specialized types

FlowFinalNodethat ends the execution of a single branch and aTerminationNodethat ends

the whole business process.

Figure 7.17: Process model: activity nodes (A)

C
h

ap
te

r
7

Ev

al
u

at
io

n

142

Figure 7.18: Process model: connectable nodes (B)

Figure 7.19: Process model: control actions (C)

Figure 7.19 shows that a ControlAction, is a special type of action that can be classified

into object flow and control flow. However, a control action can be classified into four sub-

classes: Decision, Merge, Fork, and Join. Here, the Decision and Merge control actions

are employed for modeling the optional branches in a process, while the Join and Merge

control actions are involved in modeling of the parallel or analogous branches in a process model.

An overview of the components of QUDV unit and concept model is shown in Table 7.8.

C
h

ap
te

r
7

Ev

al
u

at
io

n

143

Table 7.8: Overview of WBM Process Model

 Type of Components

A B C Total

1 Classes → 11 17 6 34

2 Associations → 11 22 5 38

7.4.2 Constraints for the WBM Process Model

As we have described in Section 7.3.1 that a set of constrains were also provide by IBM to

restrict the process models. In this section, we specify SBVR and OCL generated by using our

tool the NL2OCLviaSBVR. Similar to previous two case studies, we also provide OtherOCL

written for the NL constraints by IBM research team.

Constraint 7.4.1

English: Only connected models are supported, i.e., every element is reachable from the start node and an

end node is reachable from every element.

SBVR: It is obligatory only connected models are supported, i.e., it is obligatory every element is reachable

from the start node and an end node is reachable from every element.

OCL: packageWBM

 contextStructuredActivityNode
 invself.getPredecessors()->exists(oclIsTypeOf(InitialNode)) and

 self.getSuccessors()->exists(oclIsTypeOf(FinalNode))

OtherOCL: contextStructuredActivityNode

inv connected models:

self.getPredecessors()->exists(n j n.oclIsTypeOf(InitialNode))

andself.getSuccessors()->exists(n j n.oclIsTypeOf(FinalNode))

context Action

def: getPredecessors() : Set(Action) =

self.inputControlPin.incoming.source.action-

>union(self.inputControlPin.incoming.source.action.getPredecessors())

context Action

def: getSuccessors() : Set(Action) =

self.outputControlPin.outgoing.target.action-

>union(self.outputControlPin.outgoing.target.action.getSuccessors())

In Constraint 7.4.1, our tool cannot generate two definitions given in the OtherOCL. The reason

is that NL or English constraint should explicitly provide all detail for the target OCL constraint,

e.g., user should use the defined keyword in the NL constraint.

C
h

ap
te

r
7

Ev

al
u

at
io

n

144

Constraint 7.4.2

English: Models with object flow are not supported.

SBVR: It is obligatory models with object flow are not supported.

OCL: package: WBM

 context: Action
 inv

OtherOCL: context Action

invself.inputObjectPin->isEmpty() and

self.outputObjectPin->isEmpty()

In Constraint 7.4.2, our tool cannot generate OCL as the NL description is very high level.

Additionally, OCL involves the use of inputObjectPin and outputObjectPin but these

two instances are not explicitly mentioned in NL constraint. Here, a message is given to the user

that NL constraint is very high level and the provided information is incomplete. Moreover, the

user should reconsider the NL constraint.

Constraint 7.4.3

English: Process models with Termination Nodes are not supported. Use FlowFinalNodes instead.

SBVR: It is obligatoryProcess models with TerminationNodes are not supported. UseFlowFinalNodes

instead.

OCL: package royal_and_loyal
 contextProcessModel

 invTerminationNode::allInstances()->isEmpty()

 Endpackage

OtherOCL: context ProcessModel

inv no termination:TerminationNode::allInstances()->isEmpty()

The syntax of NL description of Constraint 7.4.3 is bit similar to Constraint 7.4.2. However, in

Constraint 7.4.2, required elements like inputObjectPin and inputObjectPin are not

introduced but Constraint 7.4.3 includes elements like TerminationNode, etc. The correct

OCL is generated for this NL constraint.

Constraint 7.4.4

English: Models with implicit forks/joins/decisions/merges are not supported.

C
h

ap
te

r
7

Ev

al
u

at
io

n

145

SBVR: It is obligatory that models with implicit forks/joins/decisions/merges are not supported.

OCL: package: WBM

 context: StructuredActivityNode
 invself.inputControlPin ->size() <= 1 andself.outputControlPin

 ->size() <= 1 andself.inputObjectPin ->size() <= 1 and

 self.outputObjectPin ->size() <= 1

 endpackage

OtherOCL: contextStructuredActivityNode

invexplicit control flow :self.inputControlPin ->size() <= 1

andself.outputControlPin ->size() <= 1 andself.inputObjectPin -

>size() <= 1 andself.outputObjectPin ->size() <= 1

Similar to Constraint 7.4.2 in Constraint 7.4.4, the terms like ‘forks’, ‘joins’, ‘decisions’ and

‘merges’ are used. However the OCL involved instances like inputControlPin,

inputControlPin, inputObjectPin and outputObjectPin respectively. As the NL

does not provide specific information for this type of mapping such NL constraints cannot be

translated to OCL. However, if we replace the terms like ‘fork’ with inputControlPin, our

tool can easily generate OCL for it.

Constraint 7.4.5

English: Loop nodes are not processed properly and cannot be merged. Therefore, loop nodes are

not supported.

SBVR: It is obligatory that loop nodes are not processed properly and cannot be merged. Therefore,

loop nodesare not supported.

OCL: package: WBM

 context: ProcessModel
 invLoopNode::allInstances()->isEmpty()

OtherOCL: context ProcessModel

inv no_loops:LoopNode::allInstances()->isEmpty()

Similar to Constraint 7.4.2 and Constraint 7.4.3, again the similar structure “not supported” is

introduced. However, similar to Constraint 7.4.3, the required element LoopNodeis part of the

NL constraint. The OCL generation was also simple for this constraint.

C
h

ap
te

r
7

Ev

al
u

at
io

n

146

7.4.3 Quantitative Evaluation

In this subsection, we perform a quantitative evaluation of the NL2OCL approach for the WBM

process model. For the WBM case study, only specification coverage is discussed here as the

combined results of throughput measure for all three case studies have been shown in Table 7.5.

A. Specification Coverage

The NL approach was designed to automatically extract various OCL syntactic elements so that

they can be mapped to a complete OCL expression. To translate English constraints of the WBM

process model, most of the OCL syntax was covered in the implementation. Table 7.9 shows the

details of the OCL elements implemented in our NL2OCL approach.

Table 7.9: OCL Generation: NL Approach vs. Pattern Approach

OCL Elements NL2OCL Approach Occurrences

Context Yes 05

Navigation via association classes Yes 16

Logical Expressions Yes 5

Relational Expressions Yes 4

Cardinality of Sets Yes 1

Parameterized Function Calls No 0

if-then-else Yes 0

Enumerations No 0

size() Yes 4

isEmpty() Yes 4

isNotEmpty() Yes 0

forAll() Yes 0

exists() Yes 2

includesAll() Yes 2

select() Yes 0

asSet() Yes 0

isUnique() Yes 0

oclIsTypeOf() No 2

C
h

ap
te

r
7

Ev

al
u

at
io

n

147

Our approach can generate three OCL constraints from the five English constraints of the WBM

model that is 60%. The remaining 2 constraint, Constraint 7.4.2 andConstraint 7.4.4 cannot be

translated due to the incomplete information and violation of one of the limitations of the NL

approach discussed in section 7.4. The Constraint 7.4.2 is not possible to translate as it needs

extra contextual information. However the Constraint 7.4.4 can be translated after tuning. Hence,

after tuning we can translate four out of five constraints that results in 80% ratio.

7.5 Qualitative Evaluation

In this section, we apply the qualitative evaluation criteria defined in Section 7.1and summarize

the validation of our approach.

A. Syntactic Accuracy

To check the syntactic accuracy of the OCL constraints, the OCL constraints of all three case

studies (such as Royal and Loyal model, QUDV and Web Sphere modeller) are compiled with

OCL compilers, OCLarity [EmPowerTec, 2010]& USE. An example of syntax checking by

using OCLarity version 2.4 is shown in Figure 7.20.

Figure 7.20: OCL syntax checking

C
h

ap
te

r
7

Ev

al
u

at
io

n

148

To check syntax of OCL invariants, we have given two inputs to the OCLarity tool: (1) XMI

representation (.xmi) of the UML class model generated using Enterprise Architect. (2) A text

file (.ocl) containing OCL invariant. If there are syntactical errors, the OCLarity tool highlights

them, otherwise show 0 error(s) and 0 message(s).

An example of syntax checking by using USE version 3.0.1 is shown in Figure 7.21. There are

five windows. The window on upper-left corner is project window showing the both inputs UML

model and OCL. There is a Class Diagram window on upper right-corner that shows graphical

representation of input Royal and Loyal model. The Class Invariant window that shows that

result of input OCL invariant is true (see Figure 7.21) that means OCL syntax is correct. There is

a log window at the bottom of Figure 7.21 showing the details of processing.

Figure 7.21: OCL syntax checking

C
h

ap
te

r
7

Ev

al
u

at
io

n

149

Figure 7.22 show the Evaluation browser of the USE tool that also shows the status of the OCL

invariant is true.

Figure 7.22: USE Evaluation Browser showing input invariant is True

B. Transformation Accuracy

Transformation correctness is measured by generating object diagrams in USE tool for both

types of OCL: (1) OCL constraints generated by the NL2OCLviaSBVR tool (2) The OtherOCL

constraints generated by human expert. The procedure of the simple syntax checking of an OCL

invariant in the USE tool is shown in Figure 7.21. Now, we aim to measure correctness of an

OCL invariant using the USE tool.

The process of measuring correctness of transformation is very simple. A text file (.use)

containing the details of input UMLclass model and OCL invariant is given to the USE tool. The

USE tool reads the both inputs (class model and OCL invariant) from the (.use) file and checks

OCL against the input UML class model. Here, we create an object diagram of the classes those

are involved in the OCL invariant. As soon as, the objects are generated the Class Invariants

window show that Result is “False” and status of OCL invariant is “1 constraint Failed” (see

Figure 7.23). This status is because the values of attributes of the customer object and the

loyaltyProgramobject are undefined. Moreover the association between the customer object

and the loyaltyProgramobject is also not shown. Figure 7.24 shows that status of the

constraint is false because it is shown that (self.participants.age <= 70) =

Undefined. Figure 7.24 shows that the reason of failed status of the input OCL invariant is the

undefined attributes of the customer object and the loyaltyProgram object.

C
h

ap
te

r
7

Ev

al
u

at
io

n

150

Figure 7.23: OCL verification using Object diagram in USE

Figure 7.24: USE Evaluation Browser showing input Invariant is True

It is shown in Figure 7.25 that the attributes of the customer object are initialized with values

such as name=‘Imran’, title= ‘Mr.’, isMale=t, age=45. Similarly, the attributes of the

LoyaltyProgram object are initialized with values such as name=‘Gold’, particpants=

C
h

ap
te

r
7

Ev

al
u

at
io

n

151

‘@customer’. Once the attributes of the customer object and the loyaltyProgram object

are initialized, the status of the OCL Invariants window is changed to “Constraints OK” and now

the Result is also again shown true. It is important to mention that the attribute age of the

customer object is given value 45 that is less than 70. In case, the values is given more than 70

the status of the OCL Invariants window is again “1 constraint Failed” and now the Result is also

again shown False.

Figure 7.25: OCL verification using Object diagram in USE

Figure 7.26: USE Evaluation Browser showing input Invariant is True

C
h

ap
te

r
7

Ev

al
u

at
io

n

152

C. Limitations of the Tool

The designed system NL2OCLviaSBVR is always capable of producing the wrong analysis but

that in such circumstances the produced formal representation is correct for a particular, valid

and potentially correct interpretation and can be corrected by manual intervention. In particular,

we have identified a few cases where the designed system has tendency to not generate the

incorrect interpretation due to the following limitations.

 The NL2OCL approach works for a restricted domain. i.e., UML Class Model. Hence,

the NL constraints should not contain the vocabulary outside the UML class model.

 The vocabulary names used in the NL constraints should be consistent with the

vocabulary names used in the UML class model.

 NL constraints should be complete such as a NL constraint should have at least one valid

context.

 Incomplete (if one side of the relation is missing) and invalid (wrong direction of the

relation) relations such as associations, aggregations are not supported

 NL constraints should not have discrepancies neither among the used elements nor

between the UML class models.

 NL constraints should not involve UML enumerations.

 NL constraint should not involve parameterized function calls.

 XOR relations in NL constraints are not supported.

 The OCL operationsoclTypeof(), oclIsKindOf(T), oclIsTypeOf(T),

oclAsType(T), oclInState(s), sortBy(), count(), collect(),

reject(), and append()are not supported in the tool.

 NL sentences should be declarative or imperative. The question based sentences are not

processed.

There are some limitations of the tool due to the use of the Stanford parser as a library. Major

limitations of the Stanford parser in a role of NLP plugin are below:

 A few times, the Stanford parser does not produce the right output after POS tagging due

to lexical ambiguity in NL sentences. Since, the Stanford parser does handle lexical

ambiguity by making a decision. However, this decision might be incorrect as it is not

according to the interpretation the author intended.

153

 The NL2OCL approach is based on dependencies generated by the Stanford parser but

the wrong typed dependencies are generated by the Stanford parser possibly due to

semantic ambiguities. In such particular cases, due to wrong dependencies, wrong

labeling of semantic roles can happen that result in irresolution of NL quantifiers, etc., in

NL sentences.

 Since, the Stanford parser is not typically designed for the task we need, it does not

generate correct output in case of some other ambiguities in NL sentences such as

homonymy.

In this thesis, we have presented a novel approach to handle such ambiguities for which the

Stanford parser does not produce the right output by using the information in the UML class

model. However, there is a possibility that UML model does not contain the information to

resolve a NL ambiguity and produce incorrect interpretation, and in such cases the user is

involved to correct the output manually.

7.6 Summary

In this chapter, three case studies are presented from various dimensions such as software

engineering, measuring systems, and business processes domain. The results of the case studies

manifest that a natural language based approach to generate OCL constraints significantly cannot

only help in improving usability of OCL but also outperforms the most closely related techniques

in terms of effort and effectiveness required in generating OCL. Though, the researcher has used

NL and automated generated SBVR in pair to resolve NL ambiguities and clarify vagueness by

pointing them out, this will not be a 100% solution either and the researcher is aware of it.

154

CHAPTER 8

DISCUSSION

This chapter discusses the key contributions to knowledge by our presented approach for

automated transformation of NL to OCL constraints in Section 8.1. Moreover, the researcher also

presents an account of the possible future enhancements in the NL2OCL approach and its

implementation in Section 8.2.

8.1 Contribution to Knowledge

In this section, the researcher discusses the contributions made in this thesis and he also explains

the significance of the each contribution. These contributions have been divided in ten distinct

areas and aspects.

8.1.1 Specifying Constraints using Natural Language

The researcher has designed the NL2OCL approach that can process NL specification of

constraints, extracts various parts of an OCL constraint and then finally integrates those parts to

generate a complete OCL constraint using model transformation technology [Bajwa, 2010]. A

novelty, in the NL to OCL transformation approach is the use of SBVR as the pivotal

representation. The use of SBVR facilitates the transformation from a natural language to a

formal language such as OCL on account of its foundation on formal logic.

To the best of the researcher’s knowledge, this is the first approach to generate automatically

OCL constraints from NL specification in compliance with the target UML class model. The

presented approach not only simplifies the process of OCL constraints specification and assists

modellers in process of software and business modelling but also can facilitate the novice users

C
h

ap
te

r
8

D

is
cu

ss
io

n

155

who do not have enough expertise to write OCL constraints. Moreover, the researcher is aware

that such solution cannot be 100% correct, still it can be helpful for the software designers and

developers by assisting them in writing OCL constraints.

8.1.2 Resolving Syntactic Ambiguities

The researcher has identified various cases of syntactic ambiguity in the NL constraints which

are not addressed by used off-the-shelf components; the Stanford POS tagger and the Stanford

parser. The identified cases of syntactic ambiguity are very common in NL statements. In the

identified cases the wrong POS tags identified by the Stanford POS tagger due to homonymy in

NL constraints cause generation of wrong parser tree and wrong set of dependencies which result

in a wrong semantic analysis and finally lead to a wrong OCL constraint [Bajwa, 2012a].

Similarly, the researcher has also identified various cases where the typed dependencies are

wrongly identified by the Stanford parser due to the attachment ambiguity in NL constraints

[ibid]. Further, the researcher has developed a novel approach to deal with identified cases of

homonymy and attachment ambiguity. As the identified cases are due to absence of context, the

used approach to solve syntactic ambiguities involves the information (classes, attributes,

methods, associations, etc.) given in a UML class model as a context and successfully addresses

the ambiguities.

8.1.3 Semantic Analysis of NL Constraints

The researcher has developed a novel approach for detailed semantic analysis of the NL

constraints [Bajwa, 2012b]. The used approach works into two phases: (1) shallow semantic

parsing to assign SBVR vocabulary based semantic roles to various parts of a NL constraint; and

(2) detailed semantic parsing involving quantifier scope resolution and generation of a logical

representation based on SBVR vocabulary. Besides OCL, the SBVR based logical representation

can be mapped to any formal language such as Alloy, B, etc. A modeller just need to write a set

of transformation rules for the required transformation.

The semantic analysis of NL constraints plays a key role in NL to OCL transformation as the

semantic analysis helps to identify various SBVR constructs which are later on mapped to OCL.

Moreover, during semantic analysis the researcher has also mapped the information of NL

constraints with UML class model to ensure that the generated OCL constraints comply with the

C
h

ap
te

r
8

D

is
cu

ss
io

n

156

target UML class model. Furthermore, in semantic analysis of NL constraints, it is decided that

an NL constraint is mapped to which category of OCL constraints: invariant, pre-condition or a

post-condition.

8.1.4 Resolving Semantic Ambiguities

In English to OCL translation, our contribution is a semantic analyser that uses the output of the

Stanford parser for shallow and deep semantic parsing. Our analysis of the output of shallow

semantic parsing showed that semantic roles were miss-identified for a few English constraints

due to various semantic ambiguities [Bajwa, 2012c]. Similarly, in deep semantic parsing, it is

difficult to resolve scope of quantifier operators due to scope ambiguity that is another sub-type

of semantic ambiguity. To resolve, identified cases of semantic ambiguities, we have used the

metadata (classes, attributes, methods, associations, etc.) of the target UML class model. The

resolution of semantic ambiguities is explained in detail in Section 4.3.

8.1.5 Identifying Logical Contradictions in Constraints

OCL is a side-effect free language and it compliments UML class models. Owing to this feature

of OCL, an OCL constraint should always comply with the target UML class model for which

the OCL constraint has been written. Similarly, to generate an OCL constraint (that conforms to

the target UML class model) from a NL constraint, the specification of NL constraint should also

conform to the target UML class model. However, the researcher has identified a few cases

where a NL constraint cannot be mapped to an OCL constraint due to some discrepancies or

logical contradiction in a NL constraint and a UML class model. Examples of such cases are

Constraints 7.2.12. In NL constraints, the logical contradictions can be of various types. A most

common type that the researcher has identified is the relationship in entities given in a NL

constraint does not exist in the UML class model. The NL2OCL can identify such cases and

intimates a user to revise the NL constraint or revise the UML class model.

8.1.6 SBVR based Logical Representation

A logical representation based on SBVR vocabulary is introduced in the researcher’s approach.

SBVR is a recent standard introduced by OMG to provide a formal notation to express business

and software specifications. Using a standardized representation in a logical form is a novel idea.

C
h

ap
te

r
8

D

is
cu

ss
io

n

157

Various automated transformation from SBVR to other standards and formal languages such as

UML, BPMN have already been introduced. Hence, SBVR vocabulary based logical

representation can really make it easy to transform NL specification business and software

requirements to map to other standards such as UML, BPMN, Alloy, etc. In this thesis, the

researcher has mapped SBVR based logical representation to SBVR rules and OCL constraints.

The use of SBVR in a logical representation is also beneficial in a way that SBVR has a defined

metamodel and SBVR based representation can simply be mapped to other formal languages

using model transformation technology.

8.1.7 Specifying SBVR Rules using NL Approach

The researcher has explained in Section 8.1.6 that he has used SBVR as a pivotal representation

in transformation of NL constraints to OCL. SBVR plays a key role in NL to OCL

transformation. However, as a by-product this approach also generates SBVR business rules

from NL specifications of Business/Software requirements. Automated generation of Business

Rules is itself a challenging task and an open research question. To the researcher’s best of

knowledge, nobody has presented any approach for automated generation of SBVR business

rules from NL specification. The approach for automated generation of SBVR business rules can

not only assist business modellers but also can simplify the processing of specifying business

rules with a formal notation. However, even the NL representation and automated generated

SBVR representation in pair can help in resolving ambiguities and clarifying vagueness by

pointing them out. However, this will not be a 100% solution either.

8.1.8 SBVR to OCL Transformation Rules

From SBVR to OCL transformation, a challenging task was to map SBVR to OCL that has not

been previously done. As the researcher has used model transformation technology to map

SBVR to OCL, he needed to define a set of transformation rules to map each SBVR constructs to

respective OCL construct [Bajwa, 2011b]. The defined set of model transformation rules play a

key role in transformation a SBVR business rule to an OCL expressions and these transformation

rules has been implemented using SiTra library.

C
h

ap
te

r
8

D

is
cu

ss
io

n

158

8.1.9 The NL2OCLviaSBVR Tool and Evaluation

The researcher has implemented the NL2OCL approach in Java. The Java based

NL2OCLviaSBVR tool is an Eclipse plugin as a proof of concept and the tool can be used with

other Eclipse based modelling tools. Evaluation criteria have been presented to evaluate the

performance of NL2OCL approach in terms of qualitative and quantitative measures.

8.1.10 Case Studies and their Results

Three case studies were performed for the sake of evaluation. Besides, Royal & Loyal case

study, another two case studies are performed. All three case studies from three different

domains, and NL constraints each case study had different nature of NL constructs. The purpose

to do three different case studies was to test the performance of the NL2OCL approach. The

objective to select three different case studies was to test the performance of the approach for

constraints from different domains. The selected cases studies are famous case studies in the

respective domain and already under research by IBM, NASA, ESA, etc. The selected case

studies have also been discussed in various PhD thesis and books and have been done with other

comparable techniques. Hence, it is simple to compare the performance of our tool against some

standard case studies.

8.2 Future Enhancements

To make the researcher’s tool more comprehensive so that it may model constraints, he proposes

a few enhancements in future. Following is a brief overview of the possible enhancements in the

NL2OCL approach.

8.2.1 Multiple Sentence based NL constraints

The current version of NL2OCL approach can process single sentence-based NL constraints.

However, there can be a few constraints which may have multiple sentence-based NL

specifications. To process multiple sentences is a NLP research question. In future, the

researcher aims to provide this ability in current approach as well.

C
h

ap
te

r
8

D

is
cu

ss
io

n

159

8.2.2 Improving Semantic Analysis

The researcher has discussed in Section 8.3.2 and Section 8.3.3that there are a few NL

constraints that involve contextual information which cannot be processed without involvement

of its context. Moreover, there are a few terms and phrases that change its meanings with the

change in domain. For example a word ‘sentence’ has different meanings in law domain but it is

differently perceived in other domains. The researcher proposes the use of domain specific

semantic dictionaries or ontologies.

160

CHAPTER 9

CONCLUSION

This chapter concludes the research work presented in the previous chapters. In this thesis, the

researcher has addressed the problem of OCL usability as it is difficult to write OCL, typically

for the novice users. In this thesis, the researcher also present a NLP based approach, called the

NL2OCL approach, to address this problem and the researcher presents implementation of the

approach, called the NL2OCLviaSBVR, as well.

This research thesis presents a framework for dynamic generation of the OCL constraints from

the NL specification provided by the user. Here, the user is supposed to write simple and

grammatically correct English. The designed system can find out the noun concepts, Individual

Concepts, verbs and adjectives from the NL text and generate a structural or behavioral rule

according to the nature of the input text. This extracted information is further incorporated to

constitute a complete SBVR rule. The SBVR rules are finally translated to OCL expressions.

SBVR to OCL translation involves the extraction of OCL syntax related information, i.e., OCL

context, OCL invariant, OCL collection, OCL types, etc. and then the extracted information is

composed to generate a complete OCL constraint, or pre/post-condition.

As this thesis aims to address a major challenge related to usability of OCL, the researcher has

presented a method of applying model transformations to create OCL statement from Natural

Language expressions. The presented transformation makes use of SBVR as an intermediate step

to highlight the syntactic elements of natural languages and make NL controlled and domain

Specific. The use of automated model transformations ensures seamless creation of OCL

statements and deemed to be non-intrusive. The presented method is implemented as prototype

tool which is being extended to be integrated into the existing tools. As a next step, the

C
h

ap
te

r
9

C

o
n

cl
u

si
o

n

161

researcher is hoping to investigate usability aspects of the tool directly via empirical methods

involving teams of developers.

The results of the experiments indicate that a NL based solution to generate OCL can soften the

process of writing constraints for UML models. Even the NL2OCL approach is accurate up to

96%, the researcher is aware of the fact that the NL2OCL approach used to generate OCL from

NL constraints cannot be 100% correct. Furthermore, the researcher has used NL and automated

generated SBVR in pair to resolve NL ambiguities and clarify vagueness by pointing them out,

this will not be a 100% solution either and the researcher is aware of it.

162

REFERENCES

Akehurst, D.H., Boardbar, B., Evans, M., Howells, W.G.J., McDonald-Maier, K.D. (2006). SiTra: Simple

Transformations in Java, in ACM/IEEE 9TH International Conference on Model Driven

Engineering Languages and Systems, LNCS, Vol. 4199, pages 351-364, 2006

Anastasakis, K., Bordbar, B., Georg, G. and Ray, I. (2007). UML2Alloy: A Challenging Model

Transformation, ACM/IEEE 10TH International Conference on Model Driven Engineering

Languages and Systems, LNCS, Vol. 4735, pages 436-450, 2007

Ambler, S.W (2003). Business Rules, Available at: http://www.agilemodeling.com/artifacts/

businessRule.htm, Accessed on Dec, 2010.

Aydal E. G., Paige R. F., Woodcock J. (2008). Evaluation of OCL for Large-Scale Modelling: A

Different View of the Mondex Purse. LNCS - Models in Software Engineering. 5002/2008, 194-

205.

Baar T., Chiorean D., etal.. (2006). LNCS - Tool Support for OCL and Related Formalisms – Needs and

Trends. Satellite Events at the MoDELS 2005 Conference. 3844/2006, 1-9.

Baayen, R.H. (1991), 'De CELEX Lexicale Databank'. Forum der Letteren 32, 221-231.

Bajwa, I.S., Bordbar. B., Lee, M. (2010). OCL Constraints Generation from Natural Language

Specification. in IEEE/ACM 14th International EDOC Conference 2010, Vitoria, Brazil, October

2010, pp:204-213

Bajwa, I.S., Lee, M., Bordbar. B. (2011)."SBVR Business Rules Generation from Natural Language

Specification", in proceedings of AAAI Spring Symposium 2011 – Artificial Intelligence for

Business Agility (AI4BA), San Francisco, USA, March 2011, pp:2-8.

http://www.agilemodeling.com/artifacts/%20businessRule.htm
http://www.agilemodeling.com/artifacts/%20businessRule.htm

R
ef

e
re

n
ce

s

163

Bajwa, I.S., Lee, M. (2011). "Transformation Rules for Translating Business Rules to OCL Constraints",

in ECMFA 2011 - 7th European Conference on Modelling Foundations and Applications,

Birmingham, UK, June 2011, pp:132-143

Bajwa, I.S., Bordbar. B., Lee, M. (2011), “SBVR vs OCL: A Comparative Analysis of Standards”, in

14th IEEE International Multi-topic Conference (INMIC 2011), Dec 2011, Karachi, Pakistan,

pp:261-266

Bajwa, I.S., Lee, M., Bordbar. B. (2012). "Resolving Syntactic Ambiguities in NL Specification of

Constraints using UML Class Model" in CICLING 2012 - 13th International Conference on

Computational Linguistics and Intelligent Text Processing, March 2012, Delhi, India, pp:178-187

Bajwa, I.S., Lee, M., Bordbar. B.(2012). “Semantic Analysis of Software Constraints”, The 25th

International FLAIRS Conference, May 2012, pp:13-18, Florida, USA

Bajwa, I.S., Lee, M., Bordbar. B.(2012). “Addressing Semantic Ambiguities in English Constraints”, The

25th International FLAIRS Conference, May 2012, Florida, USA

Bajwa, I.S., Lee, M., Bordbar. B.(2012). Translating Natural Language Constraints to OCL”, Journal of

King Saud University - Computer and Information Sciences, June 2012, 24(2): Elsevier

Bajwa, I.S., Bordbar. B., Lee, M. (2012).On a Chain of Transformations for Generating Alloy from NL

Constraints”, 7th IEEE ICDIM 2012, Macau [Submitted]

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Language, 29, 47-58.

Bel N., Marimon M., Porta, J. (1996), Etiquetado morfosintáctico de corpus en el proyecto

Burke D. A., Johannisson K. (2005). Translating Formal Software Specifications to Natural

Language. LNCS - Logical Aspects of Computational Linguistics. 3492/2005, 51-66.

Cabot J., Teniente E. (2007). Transformation techniques for OCL constraints. Science of Computer

Programming. 68 (3), 152-168.

Cabot J., Teniente E. (2009). Incremental Integrity Checking of UML/OCL Conceptual

Schemas. Systems and Software. 82 (9), 1459-1478.

Cate B. T., Kolaitis P. G. (2009). Structural characterizations of schema-mapping languages. 12th

International Conference on Database Theory. 361, 63-72.

R
ef

e
re

n
ce

s

164

Ceponiene L., Nemuraite L., Vedrickas G. (2009). Separation of Event and Constraint Rules in

UML&OCL Models of Service Oriented Information Systems. Information Technology and

Control. 38 (1), 29-37.

Cer, D., Marneffe, M.C., Jurafsky, D. and Manning, C.D. (2010). Parsing to Stanford Dependencies:

Trade-offs between speed and accuracy." In Proceedings of LREC-10.

Chapin, D. (2008). SBVR: What is now Possible and Why? Business Rules Journal, Vol. 9, No. 3 (Mar.

2008), URL: http://www.brcommunity.com/a2007/b407.html

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, Mass, 1965.

Chow, C., & Liu, C. (1968) Approximating discrete probability distributions with dependence trees. IEEE

Transactions on Information Theory, 1968, IT-14(3), 462–467.

Clavel M., Egea M., and da Silva V. T. (2007). MOVA: A Tool for Modeling, Measuring and Validating

UML Class Diagrams. 12th Conference on Software Engineering and Databases., 393-394.

Correa, A., Werner, C., and Barros, M. (2007). An Empirical Study of the Impact of OCL Smells and

Refactorings on the Understandability of OCL Specifications. Model Driven Engineering

Languages and Systems, LNCS 2007, Volume 4735/2007, pp:76-90

Delisle, S., Barker, K., Biskri, I.(1999). Object-Oriented Analysis: Getting Help from Robust

Computational Linguistic Tools. The Fourth International Conference on Applications of Natural

Language to Information Systems.

Demuth B., Wilke C. (2009). Model and Object Verification by Using Dresden OCL. Russian-German

Workshop Innovation Information Technologies: Theory and Practice. 81-89.

EmPowerTec AG (2010), OCLarity: An OCL Authoring Environment, Version 2.4. Availableat

http://www.empowertec.de/products/oclarity/. Accessed on 18 April, 2012

Engels G., Heckel R., Küster J. M. (2001). Rule-Based Specification of Behavioral Consistency Based on

the UML Meta-model. LNCS - «UML» 2001 — The Unified Modeling Language. Modeling

Languages, Concepts, and Tools. 2185/2001 (1), 272-286.

Fillmore, C.J., Johnson, C.R. and Petruck, M.R.L. (2003). Background to FrameNet. International Journal

of Lexicography, 16(3).

http://www.empowertec.de/products/oclarity/

R
ef

e
re

n
ce

s

165

Fellbaum, C. (1998) “WordNet: An Electronic Lexical Database” MIT Press, Cambridge, MA.

Giuglea, A., Moschitti, A. (2006). Shallow Semantic Parsing Based on FrameNet, VerbNet and

PropBank. Proceedings of the 2006 conference on ECAI 2006: 17th European Conference on

Artificial Intelligence August 29 -- September 1, 2006, Riva del Garda, Italy

Gogolla M., Büttnera F., Richtersb M. (2007). USE: A UML-based specification environment for

validating UML and OCL. Science of Computer Programming. 69 (1-3), 27-34.

Guthrie D., Allison B., Liu W., Guthrie L., Wilks Y. (2006). A Closer Look at Skip-gram Modelling.

Fifth International Conference on Language Resources and Evaluation (LREC--2006), Genoa,

Italy, 1222-1225

Harmain H. M., Gaizauskas R. (2003). CM-Builder: A Natural Language-Based CASE Tool for Object-

Oriented Analysis. Automated Software Engineering. 10 (2), 157-181.

Hart G., Johnson M., Dolbear C. (2008). Rabbit: Developing a Control Natural Language for Authoring

Ontologies. 5th European Semantic Web Conference (ESWC'08). 348-360.

Hamie, A. (2004). Mapping OCL-constrained models to JML specifications. 7th world conference on

integrated design and process technology (IDPT 2003), Austin, Texas

Heidenreich, F., Wende, C., Demuth, B., (2008). A Framework for Generating Query Language Code

from OCL Invariants, Electronic Communications of the EASST9, 2008

IBM. (2009). Software Development. Available: http://www-

01.ibm.com/software/awdtools/library/standards/. Last accessed 20 Nov 2009.

Ilieva, M.G., O. Ormandjieva. (2005). Automatic Transition of Natural Language Software Requirements

Specification into Formal Presentation. LNCS - Natural Language Processing and Information

Systems. 3513/2005, 392-397

Jelinek, F. and Lafferty J.D. (1991). Computation of the probability of initial sub-string generation by

stochastic context-free grammars. Computational linguistics.17 (3), 315-323

Johannisson K. (2004). Disambiguating Implicit Constructions in OCL. Conference on OCL and Model

Driven Engineering 2004. 30-44.

Jurafsky, D., Martin J. (2000). Speech and Language Processing. New York: Prentice Hall.

http://eprints.brighton.ac.uk/2874/
http://www-01.ibm.com/software/awdtools/library
http://www-01.ibm.com/software/awdtools/library

R
ef

e
re

n
ce

s

166

Juristo, N., Moreno,A.M. and López, M. (2000) How to use linguistic instruments for object-oriented

analysis, IEEE Software June, June 200, pp:80-89

Karlsson, F. (1995). Constraint Grammar: A language Independent system for parsing Unrestricted Text.

13th International Conference of Computational Linguistics, 3. 168-173.

Karttunen, L. (1983). KIMMO: A General Morphological Processor. Texas Linguistic Forum 22, 165-186

Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D. (2008). Requirements for tools for ambiguity

identification and measurement in natural language requirements specifications, Requirements

Engineering, Vol. 13, No. 3. (2008), pp. 207-239.

Koning, H.P. Rouquette, N., Burkhart, R., Espinoza, H., (2005). Library for Quantity Kinds and Units:

schema, based on QUDV model OMG SysML(TM), Version 1.2. Available at:

http://www.w3.org/2005/ Incubator/ssn/ssnx/qu/qu. Accessed on: 12 Nov, 2011.

Kleiner M., Albert P., Bézivin J. (2009). Parsing SBVR-Based Controlled Languages. LNCS - Model

Driven Engineering Languages and Systems. 5795/2009 , 122-136.

Kuchmann-Beauger, N., Aufaure, M. (2011) A natural language interface for data warehouse question

answering, NLDB'11 Proceedings of the 16th international conference on Natural language

processing and information systems, Alicante, Spain

Kuhlmann, M. and Gogolla, M. (2008). Modeling and Validating Mondex Scenarios Described in UML

and OCL with USE. Formal Aspects of Computing, 20(1):79-100, 2008.

Li K., Dewar R. G., Pooley R. J. (2004). Object-Oriented Analysis Using Natural Language

Processing. Heriot-WattUniversity Technical Reports. www.macs.hw.ac.uk:8080/ techreps/ docs/

files/HW MACS-TR-0033.pdf

Lovins, J. B. (1968). Development of a Stemming Algorithm. Mechanical Translation and Computational

Linguistics. 11(1), 22-31.

Manning, C.D. (2011). Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Linguistics? In

proceedings of CICLing (1) 2011. pp.171~189

Marinos, A., Gazzard, P., Krause, P. (2011). An SBVR Editor with Highlighting and Auto-completion.

RuleML 2011

http://www.w3.org/2005/%20Incubator/ssn/ssnx/qu/qu
http://dl.acm.org/citation.cfm?id=2026034
http://www.macs.hw.ac.uk:8080/

R
ef

e
re

n
ce

s

167

Marneffe, M.C., MacCartney Bill and Manning, C.D. (2006). Generating Typed Dependency Parses from

Phrase Structure Parses. In LREC 2006.

Mich L. (1996). NL-OOPS: from natural language to object oriented requirements using the natural

language processing system LOLITA. Natural Language Engineering. 2 (2), 167-181.

Moschoyiannis, S., Marinos, A. and Krause, P. (2010). Generating SQL Queries from SBVR Rules. 2010

international conference on Semantic web (RuleML'10). LNCS, Vol. 6403/2010, pp:128-143

MULTEXT'. Actas del 28th Simposio de la Sociedad Española de Lingüística, Madrid

Nentwich, C., James, R. (2010) Natural Rule Language (NRL). Version 1.4.0, Specification 7 April 2010.

Available at: http://nrl.sourceforge.net/spec/

Nihalani, N., Silakari, S., Motwani, Mahesh (2011). Natural language Interface for Database: A Brief

review, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011

NRL Community (2005): The Natural Rule Language (NRL): Basic User Guide, Avaialble at:

http://nrl.sourceforge.net/OMG. (2006). Object Constraint Language. (OCL) Standard v. 2.0,

Object Management Group, Available: http://www.omg.org/spec/OCL/2.0/

OMG. (2007). Unified Modelling Language. (UML) Superstructure v. 2.1, Object Management Group.

Available: http://www.omg.org/technology/documents/formal/uml.htm

OMG. (2008). Semantics of Business vocabulary and Rules. (SBVR) Standard v.1.0. Object Management

Group, Available: http://www.omg.org/spec/SBVR/1.0/

OMG. (2010). SysML (System Modelling Language) v. 1.2, Available at: http://www.omgsysml.org/

Pau R., Cabot J. (2008). Paraphrasing OCL Expressions with SBVR. 13th international conference on

Natural Language and Information Systems: Applications of Natural Language to Information

Systems. (NLDB'08), LNCS 5039, pp. 311-316

Perez-Gonzalez, H. G., Kalita J. K. (2002). Automatically Generating Object Models from Natural

Language Analysis.17th annual ACM SIGPLAN conference, OOP, Systems, languages &

applications, 86-87.

Porter, M. F. (1997). An Algorithm for Suffix Stripping. Morgan Kaufmann Multimedia Information And

Systems Series, Morgan Kaufmann Publishers, San Francisco, CA, 313-316.

http://nlp.stanford.edu/pubs/LREC06_dependencies.pdf
http://nlp.stanford.edu/pubs/LREC06_dependencies.pdf
http://nrl.sourceforge.net/spec/
http://nrl.sourceforge.net/
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/spec/SBVR/1.0/
http://www.omgsysml.org/

R
ef

e
re

n
ce

s

168

Popescu, A., Etzioni, O, Kautz, H. (2003). Towards a theory of natural language interfaces to databases,

Proceedings of the 8th international conference on Intelligent user interfaces, January 12-15, 2003,

Miami, Florida, USA

Rompaey B. V., Bois B. V., Demeyer S., Rieger M. (2000). On the Detection of Test Smells: A Metrics-

Based Approach for General Fixture and Eager Test. EEE Transactions on Software Engineering.

33 (12), 800-817.

Seco N., Gomes P., Pereira F.C. (2004). Using CBR for Semantic Analysis of Software

Specifications. LNCS - Advances in Case-Based Reasoning. 3155/2004, 41-43.

Shah, S.M.A., Anastasakis, K., Bordbar, B. (2009). From UML to Alloy and Back, 6th Workshop on

Model Design, Verification and Validation (MODEVVA 09) published in ACM International

Conference Proceeding Series; Vol. 413, pages 1-10, 2009

Sleator, D. and Temperley, D. (1993). Parsing English with a Link Grammar”, In proceedings, Third

International Workshop on Parsing technologies, Tilburg, The Natherland-Durbuy Belgium.

Spreeuwenburg S., Healy K. A. (2009). SBVR’s Approach to Controlled Natural Language. Workshop on

Controlled Natural Language 2009, Marettimo Island, Italy Available:

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-448/paper26.pdf

Steen, B., Pires, L.F. and Iacob, M. [2010] Automatic generation of optimal business processes from

business rules. 14th IEEE International Enterprise Distributed Object Computing Conference

Workshops, EDOCW 2010, 25-29 Oct 2010, Vitoria, Brazil.

Steinberg, D., et al. (2008). EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley

Professional, 2 edn.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that computes pre-fix

probabilities. Computational Linguistics. 21(2), 165-202

Surdeanu, M., Harabagiu,S., Williams, J., Aarseth, P. (2003). Using Predicate-Argument Structures for

Information Extraction. In Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics (ACL’03) - Volume 1

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-448/paper26.pdf

R
ef

e
re

n
ce

s

169

Tommasi, M.D. and Corallo, A. (2006). SBEAVER: A Tool for Modeling Business Vocabularies and

Business Rules. in 10th International Conference on Knowledge-Based Intelligent Information And

Engineering Systems. LNCS, 2006, Vol. 4253/2006, pp:1083-1091

Toutanova, K. and Manning, C.D. (2000). Enriching the Knowledge Sources Used in a Maximum

Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000), pp. 63-

70.

Toutanova, K., Klein, D., Manning, C.D. and Singer, Y. (2003). Feature-Rich Part-of-Speech Tagging

with a Cyclic Dependency Network. In Proceedings of HLT-NAACL 2003, pp. 252-259.

Uejima, H. , Miura, T., Shioya, I. (2003). Improving text categorization by resolving semantic

ambiguity Communications, Computers and signal Processing, 2003 pp. 796-799

Vaziri, M., Vaziri, A., Jackson, D. (1999). Some Shortcomings of OCL, the Object Constraint Language

of UML. Technology of Object-Oriented Languages and Systems (TOOLS '00), pp:555

Villalta, E. (2007). Restoring Indefinites to Normalcy: An Experimental Study on the Scope of Spanish

algunosJ Semantics. 24(1): 1-25

Wahler M. (2008). Using Patterns to Develop Consistent Design Constraints, PhD Thesis, ETH Zurich,

Switzerland Available: http://e-collection.ethbib.ethz.ch/view/eth:30499

Warmer J., Kleppe A. (2003). The Object Constraint Language – Getting Your Models Ready for MDA.

Second Edition, Addison Wesley, Boston, MA, USA

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8743
http://e-collection.ethbib.ethz.ch/view/eth:30499

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

170

APPENDIXA

SUMMARIES OF THE PUBLISHED WORK

Following are summaries of the papers published during PhD research. These papers address

various parts of the research.

A. 1 OCL Constraints Generation fromNatural Language Specification

IEEE/ACM 14thInternational EDOC Conference 2010, Vitoria, Brazil, October 2010, pp:204-213

The first paper was published in EDOC 2010, held in Brazil. The paper was based on the main

idea of research that NL constraints can be automatically translated to OCL constraints [Bajwa,

2010]. In this paper, the researcher presented how SBVR can play a useful role in translation of

NL specification of constraints to OCL invariants and OCL pre/post conditions.

This research paper presents a framework for dynamic generation of the OCL constraints from

the NL specification provided by the user. Here, the user is supposed to write simple and

grammatically correct English. The designed system can find out the noun concepts, Individual

Concepts, verbs and adjectives from the NL text and generate a structural or behavioral rule

according to the nature of the input text. This extracted information is further incorporated to

constitute a complete SBVR rule. The SBVR rules are finally translated to OCL expressions.

SBVR to OCL translation involves the extraction of OCL syntax related information i.e. OCL

context, OCL invariant, OCL collection, OCL types, etc. and then the extracted information is

composed to generate a complete OCL constraint, or pre/post-condition.

A. 2 SBVR Business Rules Generation from Natural Language Specification

AAAI Spring Symposium 2011 – AI4BA, San Francisco, USA, March 2011, pp:2-8

In 2011, a paper was published in AAAI spring symposium, held in USA that was addressing the

SBVR rules aspect of this research [Bajwa, 2011a]. In this research, the researcher is generating

SBVR rules from NL constraints and then mapping such SBVR rules to OCL. The NL2SBVR is

a modular NL-based approach that generates SBVR business rules from English text with respect

to a target Business domain. It takes two inputs: a single English statement and a UML class

model. Here English statement is English specification of a business rule and the UML class

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

171

model provides a business domain. To process the input English text first it is linguistically

analyzed. In linguistic analysis of the English text, the English text is Parts-Of-Speech (POS)

tagged. Then a rule based parser is used to further process the POS tagged information to extract

basic SBVR elements e.g. noun concept, fact type, etc. Here, the SBVR vocabulary is mapped to

a SBVR rule. Finally, to generate an SBVR business rules, the SBVR vocabulary is mapped to

SBVR elements using the rule-based approach. These steps can be summarized as follows.

A.2.1 The Input Documents

The NL2SBVR approach takes two input documents: an English text document (.txt file) and a

UML class model (.ecore file). The English text is taken as a plain text file containing only

English constraint. Current version of the RuleGenerator handles only one English constraint at a

time. The given English text should be grammatically correct. UML model is taken as ECORE

or XMI format. We used Eclipse UML2 Ecore Editor to create a UML model and export it in

XMI format.

A.2.2 The NLP Module

The core of NL2SBVR approach is a NLP module that consists of a number of processing units

organized in a pipelined architecture. This NLP module is highly robust and is able to process

complex English statements. The NLP system is used to lexically and syntactically process the

English text and then perform semantic analysis to identify basic SBVR elements. The core

system processes a text into three main processing stages:

1. Lexical Processing: The lexical processor comprises for sub-modules: a tokenizer, a sentence

splitter, POS tagger, and a morphological analyzer. The input to lexical analyzer is a plain text

file containing English description of the target SBVR business rule. Basic NLP techniques such

as sentence splitting, tokenization, POS tagging, and morphological analysis are performed and

output of this phase is an array list that contains tokens with their associated lexical information.

2. Syntactic Analysis: We have used an enhanced version of a rule-based parser for the syntactic

analysis of the input text used in [11]. The text is syntactically analyzed and a parse tree is

generated for further semantic analysis.

3. Semantic Analysis: In this semantic analysis phase, role labeling [12] is performed. The

desired role labels are actor, co-actor, action, thematic object, and a beneficiary if exists. These

roles will assist in identifying different SBVR elements in the next phase and also be used in

constructing fact types from the extracted SBVR elements. In semantic analysis phase, after role

labeling, the order is identified in which subject, verb, object, and adverb appears in the input

English text. The output of the NLP module is an xml file that contains the parsed English text

with all the extracted information.Basic SBVR elements e.g. Noun concept, Individual Concept,

Object Type, Verb Concepts, etc. are identified from the English input that is preprocessed by

the NLP module. Following mapping rules are used to identify the SBVR elements:

 All proper nouns are mapped to the Individual Concepts

 All common nouns appearing in subject part are mapped to the noun concepts.

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

172

 All common nouns appearing in object part are mapped to Object Type.

 All action verbs are mapped to Verb Concepts.

 All auxiliary verbs and noun concepts are mapped to the fact types.

 The adjectives and possessive nouns (i.e. ending at ’s or coming after ‘of’) are mapped to the

attributes.

All articles and cardinal numbers are mapped to quantification. All these rules are applied to the

English text and the output is stored in an array list. Following example highlights the

proposition of basic SBVR elements in a typical SBVR rule.

A.2.3 The UML Module

The UML module reads both ECORE and XMI format of a UML class model generated from

Eclipse. The UML module extracts all classes, objects, and their respective attributes, operations

and associations and finally maps them to SBVR vocabulary. Following section also describes

how the SBVR vocabulary is mapped to the SBVR elements generated by NLP module.

1. Generating SBVR Vocabulary: The SBVR vocabulary is generated from the input UML

model. All the classes are mapped to noun concepts, attributes of the classes are named as the

Individual Concepts, and all the class operations are named as Verb Concepts. The associations

and the generalizations are mapped to the binary fact types. Binary fact types are typically

composed of two noun concepts and a Verb Concept. All these SBVR elements with their

associated types are stored and exported as an array list.

2. Mapping with UML Model: Before translation of English text to SBVR rules, the input English

text is mapped with the input UML model to ensure that generated SBVR rules will be

semantically related to the target business domain. The mapping is carried out in SBVR elements

and SBVR vocabulary. The noun concepts in SBVR rules are mapped to the UML classes.

Individual nouns are mapped to the UML objects. Verb Concepts are mapped to methods.

Adjectives and possession nouns (with of and ‘s) are tagged as attributes. A Fact Type is mapped

to the associations and generalizations.

A.2.4 The SBVR Module

The SBVR module is based on a rule based parser that contains set of rules to map SBVR

elements with SBVR vocabulary and generate complete SBVR rules. In this phase detailed

semantic analysis of the English text is performed. Following section describes how the SBVR

rules are generated.

1. Generating SBVR Rule:SBVR rules are generated from the output of the NLP module. To

generate SBVR rules, the first step is to create a fact type. A fact type is created by mapping the

noun concepts and Verb Concepts to the fact types available in the SBVR vocabulary array list.

Atomic formulization is used to map the input text to a suitable target fact type in SBVR

vocabulary. The mapped fact type is used to generate a SBVR rule by applying a set of logical

formulations. As For the different types of syntactic structures used in English language,

respective types of logical formulations have been defined. Following are the details that how we

have incorporated these logical formulations to map English language text into SBVR rule.

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

173

2. Applying SBVR Notation:The last step in SBVR rule generation is to apply a SBVR notation.

RuleGenerator supports both SBVR notations: SBVR Structured English and RuleSpeak. To

apply Structured English the noun concepts are underlined e.g. person; the Verb Concepts are

italicized e.g. can have; the keywords are bolded i.e. SBVR keywords e.g. each, at least, at

most, obligatory, etc; the Individual Concepts are double underlined e.g. black car.

It is obligatory that a person’s ageshould be at least 18 years.

The SBVR produces a SBVR rule in the form of text string that is further formatted using the

SBVR notation i.e. Structured English. The output SBVR module is saved and exported in two

separate files: an xml file contains the SBVR vocabulary; a text file contains the formatted

SBVR rule. The presented approach not only assists the business rule analysts and architects by

generating precise SBVR rules from NL specification in a simple and quick manner. As a next

step, we are hoping to investigate usability aspects of the tool directly via empirical methods

involving teams of developers.

A. 3 Transformation Rules for Translating Business Rules to OCL Constraint

7thEuropean Conference on Modelling Foundations and Applications (ECMFA 2011),

Birmingham, UK, June 2011, pp:132-143

This paper was published in ECMFA 2011, held in Birmingham, UK. This paper was focusing

on the set of transformation rules used to transform a SBVR rule to an OCL constraint [Bajwa,

2011b].SBVR to OCL transformation is performed in two phases. In first phase, the SBVR

constraints specification is mapped to the target UML model and in second phase the SBVR

information is mapped to OCL constraints using a set of transformation rules. Detailed

description of both phases is given here:

A.3.1 Mapping SBVR Rules to UML Model

In this phase, the SBVR rules are mapped to UML models for semantic verification before the

SBVR rules are mapped to OCL constraints. Semantic verification is essential to validate that the

target OCL constraints will be consistent with the target UML model. To illustrate the process of

mapping SBVR rules to the UML model we have taken an example shown in Figure A.3.1

FigureA.3.1.A UML class model

1 1 .. * has Customer

- name: String

- birthDate: Date

- age: String

 - isAdult(): Boolean

BankAccount

- owner: String

- balance: GBP=0

 -deposit(amount:GBP)

 -withdraw(amount:GBP)

 SavingAccount

- insertRate: Double

A
p

p
e

n
d

ix
A

Su

m
m

ar
ie

s
o

f
th

e
P

u
b

lis
h

ed
 W

o
rk

174

The mapping process starts with the syntax analysis of SBVR rules to extract various elements of

the SBVR rule i.e. noun concepts, Verb Concepts, fact types, etc. Following section describes the

process of mapping classes and their respective associations with a common SBVR rule.

1. Mapping Classes:The general noun concepts in SBVR rules represent the UML classes. Verb

Concepts specify methods of a class. Adjectives are tagged as attributes. For example, in a

SBVR rule “It is obligatory that each customercanhave at least onebank account only if

customeris 18 years old.”, both noun concepts ‘customer’ and ‘bank account’ are matched to all

classes in the UML class model shown in the Figure A.3.1 and the noun concepts are replaced

with the names of the classes, if matched.

2. Mapping Class Associations:Associations in a UML class model express relationship of two

entities in a particular scenario. A UML class model may consist of different types of

associations, e.g., packages, associations, generalizations, and instances. Typically, these

associations are involved in defining the context of an OCL constraint, so it is pertinent to map

these associations in the target SBVR specification of business rules.

3. Mapping Packages: A package in a UML class model organizes the model's classifiers into

namespaces. In SBVR, there is no specific representation of a package. Hence user has to

manually specify the package name for a set of classes. The package names are also defined in

the OCL constraints, so the package information is also mapped to the SBVR rules.

4. Mapping Associations: Associations in a UML model specify relationships between two

classes. Simple associations can be unidirectional, bidirectional, and reflexive. Unidirectional

associations in UML are mapped with unary (based on one noun concept) fact types in SBVR

and the bidirectional associations in UML are mapped with binary (based on two noun concepts)

fact types in SBVR. Direction of the association is determined by the position (subject or object)

of the noun concepts and Object Types in SBVR.

Mapping Generalizations: Generalization/inheritance,in two classes,specifies that one class

inherits the functionalities of the other. In SBVR the relationship of general noun concept (super

class in UML) and individual noun concept (sub class in UML) is used to identify the inheritance

feature. If a class A inherits the class B then the class B will also be the part of OCL context of

class A.

Mapping Instances:The instances of the classes can also appear in a UML class model. The

Individual Concepts in SBVR are mapped to the instances (objects). The defined instances also

become part of the OCL contexts and OCL constraints. So, the instances are also mapped in

SBVR rules.

In SBVR to UML mapping, the classes that do not map to the given UML class model are

ignored.

A.3.2 Mapping SBVR Rules Into OCL Constraints

We present an automated approach for the translation of the SBVR specification into the OCL

constraints. Our approach not only softens the process of creating the OCL syntax but also

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

175

verifies the formal semantics of the OCL expressions with respect to the target UML class

model. As OCL is a side-effect free language, hence it is important that each OCL expression

should be semantically verified to the target UML model. A prototype tool “SBVR2OCL” is also

presented that performs the target transformation. The SiTra library based model transformation

framework is used for SBVR to OCL transformation using a set of mapping rules that map .

Mapping of SBVR rules to OCL code is carried out by creating different fragments of OCL

expression and then concatenating these fragments to compile a complete OCL expression.

Typically, OCL expression can be of two types: OCL invariant and OCL query operation. In this

paper, we will present only the creation of OCL invariants and the creation of OCL query

operation is part of the future work.

A. 4 SBVR vs OCL: A Comparative Analysis of Standards

14thIEEE International Multi-topic Conference, Dec 2011, Karachi, Pakistan, pp:261-266

In 2011, another paper by the researcher was published in 14th IEEE INMIC, held in Pakistan.

This paper presented the key findings during a study of SBVR and OCL standards. A comparison

of both standards is also presented in this paper to highlight various similarities and differences in

both standards [Bajwa, 2011c]. This study helped the researcher in SBVR to OCL

transformation.The part of the comparison related to SBVR to OCL transformation is summarized

below:

A.4.1 Syntactical Features

1. Vocabulary vs Classifiers:SBVR vocabulary can be of two types: keywords and user defined

elements. On the other hand, similar to SBVR vocabularies, OCL expressions can refer to

Classifiers, e.g., types, classes, interfaces, associations (acting as types), and data types. Common

keywords in OCL arecontext, inv, pre, post, etc.

2. Noun Concept vs Context:In SBVR metamodel, a Noun Concept can be an Object Type or an

Individual Concept. Typically common nouns in English are classified as Object Types and

proper nouns are classified as Individual Concepts.In an OCL expression, Context is typically

represented using a UML class. SBVR Object Type and Individual Concept can be equivalent to

a context in an OCL expression.

3. Verb Concepts vs Classifier AnyType: In SBVR, the Verb Concepts (action verbs) typically

represent operations performed by/for a business entity. Action verbs in English can be matched

to the method and operation names without side-effect in OCL. The Verb Concepts (action verbs)

in SBVR metamodel can be equivalent to classifier AnyType in OCL metamodel. Similarly, OCL

attributes can be equivalent to SBVR’s Characteristics.

4. Fact Types vs Associations: Associations’ ends are commonly used in OCL types. Similarly, in

SBVR associations are supports by different types of Fact Types, e.g., associations in SBVR are

represented using Associative Fact Types, aggregations are represented using the Categorization

Fact Types, and generalizations are represented using the Partitive Fact Types.Similarly, OCL’s

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

176

association multiplicity can be equal to SBVR’s quantification such as universal quantification

and non-universal quantification.

5. Projections vs Collections:A set of Projections are defined in SBVR to handle one or more than

one variables. Similarly, OCL introduces Collections to provide support for managing multiple

variables. The SBVR’s Set Projection is equivalent to OCL’s Set Collection and SBVR’s Bag

Projection is equivalent to OCL’s Bag Collection. There are some types of collection such as

Sequence andClosed Projectionthat are not supported in OCL.

6. Structural Rule vs Invariant:The SBVR structural rules represent the structure of a business

models and their underlying entities. Similar to SBVR structural rules, invariants are used in OCL

to represent a structural constraint.

7. Behavioural Rule vs Pre/Post Condition:The behavioural rules govern the behaviour of

business activities and operations. Akin to behavioural rules in SBVR, OCL’s pre/post conditions

are particularly specified to handle behaviour of respective methods of classes and objects.

A. 4.2 Principal Features

The principal features of SBVR & OCL are discussed below:

1. Conceptual Modeling:The primary focus of bothlanguages (SBVR and OCL) is same i.e.

conceptual modeling just their application domains are different such as SBVR is primarily used

for business modeling (in combination with BPMN/BPEL), while OCL is used for software

modeling (in combination with UML) and is employed for large scale object oriented models.

2. Declarative Languages:SBVR and OCL are both declarative language. SBVR rules should be

expressed declaratively in natural-language sentences for the business audience. Similarly, OCL

support declaration of OCL constraints used for software models.

3. Requirement Engineering:SBVR is typically used capture software/business requirements in

natural languages (such as English). Contrary to SBVR, OCL is employed at later stages of

software development such as in graphical modelling (UML / SysML / BPMN). Here, OCL’s

duty is to ensure precise modeling and representation of non-functional requirements.

4. Side-Effect Free:Both SBVR and OCL are side-effect free languages. SBVR based rules are

side-effect free as all SBVR rules are distinct from any enforcement defined for it. Similarly, OCL

is a pure expression language and OCL constraints are side-effect free. Hence, the side-effect free

OCL expression cannot change anything in the model and the state of the system.

5. Well-Formed Expression:The SBVR business rules should be expressed in such a way that they

can be validated for correctness by business people. Business rules should be expressed in such a

way that they can be verified against each other for consistency. Similarly, OCL expressions are

strictly typed. All the OCL constraints are type-checked and syntactically parsed to check that

they are well-formed expressions.

A.4.3 Technical Features

A set of technical features of both SBVR and OCL are compared in this section.

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

177

1. SBVR is based on Formal Logics: The formal semantics of SBVR is based on typed predicate

logic, arithmetic, set and bag comprehension with some additional basic results from modal logic.

Here, the logic is essentially classical logic, so mapping to various logic-based languages is

simple. Similarly, OCL also has its roots in mathematical logic. OCL is based on set theory and

predicate logic and has a formal mathematical semantics.

2. Formal Semantics:A set of logical formulations have been defined in SBVR 1.0 document to

provide a foundation for formal semantics. Typically, a business glossary or an enterprise

vocabulary based information models are used by the business stakeholders for formal semantics.

More formal semantics can be added through business facts and business rules. Similarly, OCL

constraints are also semantically formal as OCL formal semantics are described using UML. The

semantics of OCL expressions are consistent to a UML class model.

3. Two-value Logic vs Three-value Logic: SBVR’s underlying logic is isomorphic (standard truth-

functional logic) rather than epistemic logic. The truth functional logic is two-valued, with

negated existential formulae being used to avoid the use of null values.Contrary to SBVR, OCL is

based on a three-valued logic. OCL’s Boolean expression can result in true, false or undefined.

Here, the three-valued logic can result in unexpected results.

4. Inherent Extensibility: An extended SBVR vocabulary is created by including the SBVR

vocabulary into another business vocabulary that has other designations. The SBVR Vocabularies

given by this specification are based on the English language, but can be used to define

vocabularies in any language.Similarly, OCL inherits UML vocabulary (classes, associations,

methods, etc) to complete basic OCL expressions.

The comparison of SBVR with OCL (together with its commercially-available tool support) in

terms of syntactical, principal and technical features has helped to explore SBVR and OCL’s

commonalities and discords. The comparison shows a remarkable similarity between the two,

such as both are based on formal reasoning. The identified commonalities can lead to a

transformation from one standard to other.

A. 5 Resolving Syntactic Ambiguities in NL Specification of Constraints using UML
Class Model

13th International Conference on Computational Linguistics and Intelligent Text

Processing (CICLing 2012), Delhi, India, March 2012, pp:178-187

A paper was published in CICLing 2012 (held in India) to present a set of identified syntactic

ambiguities in NL specification of constraints and an approach to resolve such syntactic

ambiguities [Bajwa, 2012a].To address lexical and attachment ambiguities a novel approach is

presented in this paper. We have identified that the both ambiguities are due to the absence of the

context and by suing the context of the English text the correct interpretation of the ambiguous

words and phrases is possible. In NL2OCL project, to translate NL specification of constraints to

OCL constraints, two inputs are required: English specification of a constraint and a UML class

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

178

model. We propose the use of the information (such as classes, methods, attributes, associations,

etc.) available in the input UML class model for correct syntactic analysis.The used approach for

addressing the both types of syntactic ambiguities is explained below:

A.5.1 Solution for Resolving Attachment Ambiguity

The attachment ambiguity can be resolved using the context. For generating correct

dependencies of input English sentences, we again use the information on hand in the input UML

class model. As, attachment ambiguity is due to the ambiguous role of noun with a preposition in

a sentence. To resolve attachment ambiguity, three (can be four or more) nouns are mapped to

the class names in the input UML class model. Once the three classes are identified, the

associations in those three classes are analyzed. With the help of the associations in the candidate

classes the relationships in nouns are correctly identified. For example, the case of attachment

ambiguity shown in Figure A.5.1involves three nouns ‘pay’, ‘employees’, and ‘bonus’. All these

three nouns are mapped to three classes (such as ‘Employee’, ‘Pay’, and ‘Bonus’) in the UML

class model given in FigureA.5.2. After this mapping, the associations in all three classes are

analyzed. The Stanford parser wrongly identifies that noun ‘bonus’ is attached to the noun

‘employees’. However, the UML class model shows that there is no relationship in classes

‘Bonus’ and ‘Employee’. While, there is a relationship in class ‘Pay’ and class ‘Bonus’. By using

this information, we can correct the wrong dependencies.

English:The pay is given to all employees with bonus.

Typed Dependency (Collapsed): det(pay-2, The-1)

nsubjpass(given-4, pay-2)

auxpass(given-4, is-3)

det(employees-7, all-6)

prep_to(given-4, employees-7)

prep_with(employees-7, bonus-9)

Figure A.5.1. Incorrect typed dependencies (collapsed) generated by the Standord Parser

Figure A.5.2.A UML class model

We have generalized the used approach so that all variations of the discussed type of attachment

ambiguity can be handled. For this purpose, the analysis of the relationships in classes of a UML

class model such as associations (directed and un-directed), aggregations and generalizations can

play a key role.

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

179

A.5.2 Solution for Resolving Lexical Ambiguity

As, we have explained earlier that the absence of the context is the major reason of ambiguity.

For correct POS tagging of all English sentences especially the case of lexical ambiguity

(homonymy), we aim to use the available information in the target UML class model such as

class names, attribute names, method names, associations, etc. In syntactic analysis, once we get

the output of the Stanford POS tagger, we map all the words and their tags with the UML class

model and confirm that all POS tags are correctly identified.

The process of mapping of POS tagged text to the UML class model is very simple. The POS

tags of all the words are mapped to the elements of the UML class model. A set of mappings

were defined for this purpose as shown in Table A.5.1. If the token matches to an operation-

name or a relationship name then it is a verb or if the ambiguous token matches to a class-name

or attribute-name then it is classified as a common noun or proper noun.

Table A.5.1. Mapping of English elements to UML class model elements

UML class model elements English language elements

Class names → Common Nouns

Object names → Proper Nouns

Attribute names → Generative Nouns, Adjectives

Method names → Action Verbs

A ssociations → Action Verbs

By using the information shown in Table I, we can correctly POS tag the example of homonymy

discussed in Section 2.2. In Figure A.5.3, it is shown that ‘books’ is an association in two classes

‘Customer’ and ‘Item’. By using such information, it is identified that ‘books’ cannot be a noun

in the context of UML class model. However ‘books’ can be a verb and the correct POS tag of

token ‘books’ should be ‘VBZ’ as the token ‘books’ is it is postfix of MD ‘can’.

Fig A.5.3.A UML Class model

After POS tag correction, the parse tree and dependencies are also corrected (See Figure A.5.4).

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

180

English: A customer books two items.

Tagging: [A/DT] [customer /NN] [books/NN] [two/CD] [items/NNS] [./.]

Figure. A.5.4. Incorrect Parts-of-Speech tags, generated by the Stanford POS Tagger

The primary objective of the paper was to address the challenge of resolving various cases of

syntactic ambiguity such as attachment ambiguity and homonymy. By resolving the said cases of

syntactic ambiguity the accuracy of machine processing can be improved. To address this

challenge we have presented a NL based automated approach that uses a UML class model as a

context of the input English (constraints) and by using the available information in the UML

class model (such as classes, methods, associations, etc.) we can resolve attachment ambiguity

and homonymy. The results show a significant improvement in the accuracy of the Stanford POS

tagger and the Stanford parser. By improving the accuracy of the Stanford POS tagger and the

Stanford parser, the accuracy of English to OCL translation is also improved to 92.85% that was

earlier 84.7%.

A. 6 Semantic Analysis of Software Constraints

The 25th International FLAIRS Conference, Florida, USA, May 2012, pp:8-13

The presented approach was using metadata of UML Class Model to resolve identified syntactic

ambiguities. Two more papers were published in the 25th edition of FLAIRS, held in USA: the

focus of one paper was the semantic Analysis of Software Constraints [Bajwa, 2012b]. For

translating English specification of constraints to OCL constraints, the NL2OCL approach was

used. In the NL2OCL approach, two inputs are given: a txt file containing English specification

of a constraint, and a UML class model in EMF (Eclipse Modeling Framework) ECORE format.

First English specification is syntactically and semantically analyzed to extract OCL elements

and then finally an OCL expression is generated.

The Royal & Loyal case study has also been solved by Wahler [2008] in his PhD thesis. We aim

to compare the results of our approach to Pattern based approach as Wahler’s approach is the

only work that can generate OCL constraints from a natural language. There are 26 English

constraints in the Royal & Loyal case study. Wahler solved 18 English constraints into OCL out

of 26 using his (pattern-based) approach. In comparison to Wahler’s pattern based approach, our

NL-based approach has successfully translated 25 constraints to OCL.

A. 7 Addressing Semantic Ambiguities in Natural Constraints

The 25th International FLAIRS Conference, Florida, USA, May 2012, pp:262-267

This paper highlights the identified set of semantic ambiguities in NL constraints. An approach is

also presented in the paper to address the identified set of semantic ambiguities in NL constraints

[Bajwa, 2012c]. The present approach helps in improving semantic role labeling and quantifier

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

181

scope resolution in terms of accuracy. A set of ambiguities in shallow and deep semantic parsing

are identified that are due to the absence of the context. However, these semantic ambiguities can

be resolved by using the context of the English text. In the NL2OCL project, to translate English

specification of constraints to OCL constraints, two inputs are required: English specification of

a constraint and a UML class model. We propose the use of the information (such as classes,

methods, associations, multiplicity, etc.) available in the input UML class model to handle

semantic ambiguities.The used approach for addressing the both types of semantic ambiguities is

explained in remaining part of the section.

A.7.1 Addressing Semantic Ambiguities

It is a fact that the semantic ambiguities in English constraints are due to absence of the context

of the constraint. As, a UML model is a typical context of the OCL constraints, we use the UML

class model shown in Figure A.7.2 to address the identified semantic ambiguities.

English: A customer cannot place more than two orders.

Figure A.7.1. Input English Constraint

Figure A.7.2. A UML class model

To identify correct semantic roles, we worked out a mapping in English constraints, UML class

model and SBVR based semantic roles.

English Elements UML Elements SBVR based Semantic Roles

Common Nouns Classes Object Type

Proper Nouns Objects Individual Concept

Generative Noun, Adjective Attributes Characteristic

Verbs Methods Verb Concepts

Associations Fact Type

Table A.7.1.Identifying Semantic Roles

The first case of semantic ambiguity was related to assignment of semantic roles to a verb in

English constraint. It is shown in Figure A.7.2 that ‘Customer’ and ‘Order’ are two classes while

‘place’ is name of a method. Due to the fact that methods in a UML class model are action

performed by the class, we classify verb ‘place’ as a Verb Concept (see Table A.7.1). If the verb

‘place’ is an association among classes ‘Customer’ and ‘Order’, it is classified as a Fact Type.

We can identify correct semantic role by mapping information to the UML class model by

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

182

checking that verb is an operation or an association. If a verb is operation it is mapped to ‘Verb

Concept’ else it is mapped to a ‘Fact Type’. Moreover, for the sake of confirmation we also map

the common nouns such as ‘Customer’ and ‘Order’ to the classes in the UML class model. After

identifying the correct semantic roles, following output was generated (see Table A.7.2) for

example “A customer cannot place more than two orders.”

English Elements Assigned Semantic Roles

A -

Customer Object Type

Cannot -

Place Verb Concept

more than two -

Orders Object Type

TableA.7.2. Semantic roles assigned to input English sentence

The second case of semantic ambiguity was related to the order of predicate arguments extracted

for a predicate. To resolve this type of ambiguities the information of English constraint given in

Figure A.7.1 was again mapped to the information of the UML class model shown in Figure

A.7.2. After mapping we found that ‘Customer’ and ‘Order’ are two classes and there is a

directed association between these two classes. The directed association shows that the

‘Customer’ is an agent or an actor and ‘Order’ is a patient or a thematic object. In the light of this

information it is simple to identify that the predicate arguments should be like place(customer,

order). Another benefit of such mapping is that if English sentence in passive voice the same

predicate will be generated, e.g., place(customer, order).

A.7.2 Addressing Semantic Ambiguity in Quantification

To address the semantic ambiguity, first we identified the candidate quantifier operators in

English constraints. Then the identified quantifiers are mapped to the multiplicities of classes in

a UML class model to confirm the quantifications. We have figured out following four types of

the quantifications in English constraints.Output of quantification handling for the example

discussed in the Figure 4 is shown in the Figure 5.

English Elements Assigned Semantic Roles

A Universal Quantification

customer Object Type

cannot -

place Verb Concept

more than two At-least n Quantification

orders Object Type

Table A.7.3. Semantic roles assigned to input English sentence

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

183

After shallow and deep semantic parsing, a final semantic interpretation is generated. A simple

interpreter was written that uses the extracted semantic information and assigns an interpretation

to a piece of text by placing its contents in a pattern known independently of the text. Figure 6

shows an example of the semantic interpretation we have used in the NL2OCL approach:

English: A customer cannot place more than two orders.

Semantic Interpretation:

 (place

 (object_type = (∀X ~ (customer ? X)))

 (object_type = §Y ~ (order ? Y))))

Figure A.7.3. Semantic Interpretation of English constraint

Much work has been done in the field of natural language ambiguity identification and

resolution. Some of the researchers have presented approaches to identify the various types of

ambiguities in a natural language text especially the natural language software requirements.

Hence, the resolution of semantic ambiguities in natural language specifications of software

requirements and software constraints become more critical

A. 8 Translating Natural Language Constraints to OCL

JKSU - Computer and Information Sciences, June 2012, 24(2): Elsevier

Another paper presenting the results of Royal and Loyal modal case study was presented in

Journal of King Saud University - Computer and Information Sciences [Bajwa, 2012d]. This

paper highlights that the researcher’s NL-based approach is more accurate than the pattern based

approach [Wahler, 2008]. The Royal and Loyal case study is presented in this paper. The average

F-value of results is calculated 84.15% that is encouraging for initial experiments. The results

show that that other language processing technology such as information extraction systems, and

machine translation systems, have found commercial applications with precision and recall

figure well below this level. Thus, the results of this initial performance evaluation are very

encouraging and support both the NL2OCL approach and the potential of this technology in

general.

A. 9 On a Chain of Transformations for Generating Alloy from NL Constraints

7th IEEE International Conference on Digital Information Management (ICDIM 2012),

Macau, August 2012, pp:93-98

An extension of this work is accepted in IEEE ICDIM 2012 (held in Macau), that focuses on

generation of Alloy code from NL constraints [Bajwa, 2011e]. This work is also used in

qualitative analysis of our approach presented in Chapter 7, Section 7.4 as the researcher

generates Alloy of OCL (generated by our NL approach) and if Alloy is generated correctly, it

means that OCL is also correct. The details of this evaluation are given in Section 7.4 of this

A
p

p
en

d
ix

A

Su
m

m
ar

ie
s

o
f

th
e

P
u

b
lis

h
ed

 W
o

rk

184

thesis. The contribution of this paper is generation of Alloy from NL and then using this Alloy

for analysis of the models. The analysis of the model can be carried out from within the

NL2OCL, using the UML2Alloy and the Alloy Analyzer APIs. More specifically, the UML class

diagram and the automatically generated OCL constraints were automatically transformed to

Alloy using the API of the UML2Alloy.

Once the Alloy model is automatically generated, we can analyse it with the help of the Alloy

Analyzer API. This means that the Alloy Analyzer will attempt to find instances, which conform

to the model and its constraints using combinations of up to four File and Directory instances.

After producing a number of acceptable instances, the Alloy Analyzer returned the instance

depicted in Figure 7. This was automatically transformed from the Alloy Analyzer analysis

notation to UML Object Diagrams by UML2Alloy. The instance shows a directory (Directory0),

which is not part of the directories hierarchy. Moreover we see that Directory1 is indirectly a

parent of itself (through Directory2).

Figure A.9.1. Instance provided by the Alloy Analyzer

This is clearly an instance that is not desirable. Inspecting our initial model, we can assume that

Constraint 2 needs to be augmented to express that a directory may not be directly or indirectly

a parent of itself (i.e. we need to express that the parent association is acyclic). In order to do that

we would need to express transitive closure using natural language in the NL2Alloy tool.

However, we cannot do that since the OCL itself is missing a transitive closure operation.

Instead of transitive closure the UML standard uses recursion to express transitive closure. More

precisely, in recursion is used to express the allParents() operation to express that a

Generalization relation between UML Classes is acyclic and directed.

This research paper presents a framework for dynamic generation of the Alloy code from the NL

specification provided by the user. Here, the user is supposed to write simple and grammatically

correct English. The designed system can find out the required information to generate a SBVR

representation and then transform to a complete SBVR rule, after mapping with the input UML

model. The SBVR rules are transformed to OCL expressions and finally translated to Alloy code.

185

APPENDIXB

TESTING RULES OF THE RULE SET

In this Appendix, the researcher demonstrates the manually crated examples to test rules in the used rule

set in the NL2OCL tool.Following are the statistics of the number of the methods, transformation

rules, classes and others test by the researcher.

Name of Constructs to be tested Number of Constructs Number of Tested Constructs

Transformation Rules 20 20

Classes 61 61

Method 83 83

Table B.1 –Statistics of the tested constructs

The examples are explained below:

B. 1 Test At Most Quantification

Following is the example demonstrating that the use of ‘less than’ quantification and it is mapped to ‘at

most’ in SBVR and in OCL, it is mapped to age < 30.

English: A person's age should be less than 30 years.

SBVR: It is obligatory that aperson'sageshouldbeat most30years.

OCL: package: ecoreuml
context Person
inv: self.age <30

endpackage

A
p

p
en

d
ix

B

Te
st

in
g

R
u

le
s

o
f

th
e

R
u

le
 S

et

186

B. 2 Test At Most Quantification with Negation

It is demonstrated in the following example that the use of ‘not less than’ quantification and it is mapped

to ‘at least or exactly’ in SBVR and it is mapped to age >= 30in OCL.

English: A person's age should not be less than 30 years.

SBVR: It is obligatory that aperson'sageshouldbeat least or exactly30years.

OCL: package: ecoreuml
context Person

inv: self.age >=30
endpackage

B. 3 Test At Least Quantification

The following example demonstrates the use of ‘more than’ quantification in NL constraint and it is

mapped to ‘at least’ in SBVR and it is mapped to age > 30in OCL.

English: A person's age must be more than to 30.

SBVR: It is obligatory that aperson'sagemustbeat least30.

OCL: package: ecoreuml
context Person

inv: self.age >30
endpackage

B. 4 Test At Least Quantification with Negation

It is demonstrated in the following example that the use of ‘not more than’ quantification in NL constraint

and it is mapped to ‘at most or exactly’ in SBVR and in OCL, it is mapped to age <= 30.

English: A person's age must not be more than to 30 years.

SBVR: It is obligatory that aperson'sagemustbeat most or exactly30years.

OCL: package: ecoreuml
context Person

inv: self.age <=30
endpackage

B. 5 Test Exactly Quantification

The following example demonstrates the use of ‘equal to’ quantification in NL constraint and it is mapped

to ‘exactly’ quantification in SBVR and it is mapped to age = 30in OCL.

English: A person's age must be equal to 30.

SBVR: It is obligatory that aperson'sagemustbeexactly30.

A
p

p
en

d
ix

B

Te
st

in
g

R
u

le
s

o
f

th
e

R
u

le
 S

et

187

OCL: package: ecoreuml
context Person
inv: self.age =30

endpackage

There is another possible way of representing ‘equal to’ quantification in NL constraint. If a tool has a

positive sense and no particular quantifier is mentioned, our tool considers it ‘equal to’ quantification.

English: A person's name can be Ahmad.

SBVR: It is obligatory that aperson'snamecan beAhmad.

OCL: package: ecoreuml

context Person
inv: self.name =Ahmad

endpackage

B. 6 Test Exactly Quantification with Negation

It is demonstrated in the following example that the use of ‘not equal to’ quantification in NL constraint

and it is mapped to ‘not exactly’ in SBVR and in OCL, it is mapped to age <> 30.

English: A person’s age must not be equal to 30.

SBVR: It is obligatory that aperson'sagemust notbeexactly30.

OCL: package: ecoreuml

context Person
inv: self.age <>30

endpackage

There is another possible way of representing ‘not equal to’ quantification in NL constraint. If a tool has a

negative sense and no particular quantifier is mentioned, our tool considers it ‘not equal to’ quantification.

English: A person's name cannot be Ahmad.

SBVR: It is obligatory that aperson'snamecannot beAhmad.

OCL: package: ecoreuml

context Person
inv: self.name<>Ahmad
endpackage

B. 7 Test Multiple Quantification

There is a possibility that user can represent two quantification in single NL constraints, e.g.,

“less than and more than”. Example of such case is given below.

English: A person's salary should be less than 8000 and more than 4000.

SBVR: It is obligatory that aperson'ssalaryshould beat most8000andat least4000.

A
p

p
en

d
ix

B

Te
st

in
g

R
u

le
s

o
f

th
e

R
u

le
 S

et

188

OCL: package: ecoreuml
context Person
inv: self.salary< 8000 and self.salary > 4000

endpackage

B. 8 Test Self

Following is the test case that involves self in an invariant.

English: A male person’s gendershould be male.

SBVR: It is obligatory thatperson'sgendershould bemale.

OCL: package: ecoreuml
contextCustomer

inv: self.gender = male
Endpackage

B. 9 Test size()

The following example demonstrates the translation of size().

English: A person must participate in at least one loyalty program.

SBVR: It is obligatory that a personmustparticipate in at least one loyaltyprogram.

OCL: package: ecoreuml

context Person
inv: self.program ->size() >= 1

Endpackage

B. 10 Test includes()

In the following example, the translation of includes()is tested.

English: A member must have a membership card.

SBVR: It is obligatory that a membermusthaveat least one membershipcard.

OCL: package: ecoreuml
contextMember

inv: self.cards -> includes(membership.card)
Endpackage

B. 11 Test excludes()

The translation of excludes()is tested in the following example.

English: A member must not have a membership card.

A
p

p
en

d
ix

B

Te
st

in
g

R
u

le
s

o
f

th
e

R
u

le
 S

et

189

SBVR: It is obligatory that a membermust nothaveamembershipcard.

OCL: package: ecoreuml

contextMember
inv: self.cards -> excludes(membership.card)
Endpackage

B. 12 Test isEmpty()

The following example illustrates the translation of isEmpty().

English: A member must not have saving account.

SBVR: It is obligatory that a membermust nothavesaving_account.

OCL: package: ecoreuml

contextMember
inv: self.saving_Account ->isEmpty()

Endpackage

B. 13 Test includes()

In the following example, the translation of includes()is tested.

English: The name of first account of a member should be Current.

SBVR: It is obligatory that the first account of a membershould beCurrent.

OCL: package: ecoreuml
contextMember

inv: self.account -> first().name = Current
Endpackage

B. 14 Test exist()

The translation of exist()is tested in the following example.

English: There must be at least one account name Saving for a member.

SBVR: It is obligatory thatthere must beat least one accountname Saving for a member.

OCL: package: ecoreuml

contextMember
inv: self.account ->exist(name=Saving)
Endpackage

B. 15 Test isUnique()

In the following example, isUnique()is tested.

A
p

p
en

d
ix

B

Te
st

in
g

R
u

le
s

o
f

th
e

R
u

le
 S

et

190

English: The account number of a member must be unique.

SBVR: It is obligatory that the accountnumber of a membermust be unique.

OCL: package: ecoreuml

contextMember
inv: self.account -> isUnique(acc|acc.number)
Endpackage

B. 16 Test forAll()

The following example illustrates the translation of forAll().

English: The account number of all members must be different.

SBVR: It is obligatory that the accountnumber of a membermust be unique.

OCL: package: ecoreuml

contextMember
inv: self.account ->forAll(m1,m2 | m1.number<> m2.number)

Endpackage

B. 17 Test select()

The translation of select()is tested in the following example.

English: There must be one card with at least 100 points.

SBVR: It is obligatory that the accountnumber of a membermust be unique.

OCL: package: ecoreuml
contextMember

inv: self.card -> select(point = 100)->size()=1
Endpackage

B. 18 Test Implication

Following is the test case that involves implication in an invariant.

English: A male person’s title should be ‘Mr.’.

SBVR: It is obligatory thatmaleperson'stitleShould be‘Mr.’

OCL: package: ecoreuml

contextperson
inv: self.isMaleimplies self.title=’Mr.’

Endpackage

B. 19 Test If

Following is the test case that involves if expression in an invariant.

A
p

p
en

d
ix

B

Te
st

in
g

R
u

le
s

o
f

th
e

R
u

le
 S

et

191

English: If person’s gender is male then person’s title should be ‘Mr.’.

SBVR: If person’s gender is male then it is obligatory thatperson'stitleShould be‘Mr.’

OCL: package: ecoreuml
contextperson

inv: ifself.gender = male then

self.title=’Mr.’

endif
Endpackage

B. 20 Test If-Else

In the following test case, an invariant with if-else expression is tested.

English: If person’s gender is male then person’s title should be ‘Mr.’ else person’s title should be

‘Ms.’.

SBVR: If person’s gender is male then it is obligatory thatperson'stitleShould be‘Mr.’ else
person'stitleShould be‘Ms.’

OCL: package: ecoreuml
contextperson

inv: ifself.gender = male then

 self.title=’Mr.’

 else

 self.title= ’Ms.’

endif
Endpackage

