
Citation: Thai, Huu-Tai, Vo, Thuc, Nguyen, Trung-Kien and Lee, Jaehong (2014) A nonlocal 

sinusoidal  plate  model  for  micro/nanoscale  plates.  Proceedings  of  the  Institution  of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228 (14). pp. 

2652-2660. ISSN 0954-4062 

Published by: SAGE Publications

URL:  http://dx.doi.org/10.1177/0954406214521391 

<http://dx.doi.org/10.1177/0954406214521391>

This  version  was  downloaded  from  Northumbria  Research  Link: 

http://nrl.northumbria.ac.uk/15851/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to 

access the University’s research output. Copyright © and moral rights for items on NRL are 

retained by the individual author(s) and/or other copyright owners.  Single copies of full items 

can be reproduced,  displayed or  performed,  and given to  third parties in  any format  or 

medium for personal research or study, educational, or not-for-profit purposes without prior 

permission or charge, provided the authors, title and full bibliographic details are given, as 

well  as a hyperlink and/or URL to the original metadata page. The content must  not  be 

changed in any way. Full items must not be sold commercially in any format or medium 

without  formal  permission  of  the  copyright  holder.   The  full  policy  is  available  online: 

http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been 

made available online in accordance with publisher policies. To read and/or cite from the 

published version of the research, please visit the publisher’s website (a subscription may be 

required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/19948865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


 1 

A nonlocal sinusoidal plate model for micro/nanoscale plates 

Huu-Tai Thai a,, Thuc P. Vo b, Trung-Kien Nguyenc, Jaehong Leed 

a School of Civil and Environmental Engineering, The University of New South Wales, Sydney, 
NSW 2052, Australia  

b Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne,    

NE1 8ST, UK. 
c Faculty of Civil Engineering and Applied Mechanics, University of Technical Education Ho 

Chi Minh City, 1 Vo Van Ngan Street, Thu Duc District, Ho Chi Minh City, Vietnam. 
d Department of Architectural Engineering, Sejong University, 98 Kunja Dong, Kwangjin Ku,  

Seoul 143-747, Korea 
 

Abstract 

A nonlocal sinusoidal plate model for micro/nanoscale plates is developed based on 

Eringen’s nonlocal elasticity theory and sinusoidal shear deformation plate theory. The 

small scale effect is considered in the former theory while the transverse shear 

deformation effect is included in the latter theory. The proposed model accounts for 

sinusoidal variations of transverse shear strains through the thickness of the plate, and 

satisfies the stress-free boundary conditions on the plate surfaces, thus a shear 

correction factor is not required. Equations of motion and boundary conditions are 

derived from Hamilton’s principle. Analytical solutions for bending, buckling, and 

vibration of simply supported plates are presented, and the obtained results are 

compared with the existing solutions. The effects of small scale and shear deformation 

on the responses of the micro/nanoscale plates are investigated. 
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1. Introduction 

Nanostructures are being increasingly used in micro/nanoscale devices and systems 

such as biosensor, atomic force microscope, micro-electro-mechanical systems (MEMS), 

and nano-electro-mechanical systems (NEMS) due to their superior mechanical and 

electronic properties 1. In such applications, small scale effects are experimentally 

observed 2-4. It was found that when the thickness of these structures is close to the 

internal material length scale parameter, such effects are significant and have to be taken 

into account when studying their behavior. Conventional plate models based on classical 

continuum theories are not capable of describing such effects due to the lack of material 

length scale parameters. This motivated many researchers to develop plate models based 

on size-dependent continuum theories which account for the small scale effects. The 

nonlocal elasticity theory initiated by Eringen 5-7 is one of the promising size-dependent 

continuum theories. Unlike the classical continuum theories which assume that the 

stress at a point is a function of strain at that point, the nonlocal elasticity theory 

assumes that the stress at a point is a function of strains at all points in the continuum. In 

this way, the small scale effects are included through the use of constitutive equations. 

Based on the nonlocal elasticity theory, a number of paper have been published in the 

last four years, attempting to develop nonlocal plate models and apply them to analyze 

the bending 8-12, buckling 13-21, and vibration 22-31 responses of nanoplates. All of these 

models were based on Kirchhoff plate theory 8, 12, 14-19, 22-27, Mindlin plate theory 9, 11, 20, 

28-30, and Reddy plate theory 10, 13, 31. It should be noted that the Kirchhoff plate theory 

(KPT) is only applicable for thin plates. However, it underestimates deflection and 

overestimates buckling load as well as natural frequency of moderately thick plates 

where the transverse shear deformation effects are significant. The Mindlin plate theory 
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(MPT) gives accurate results for thin to moderately thick plates, but it requires a shear 

correction factor to compensate for the difference between the actual stress state and the 

constant stress state due to a constant shear strain assumption through the thickness. The 

Reddy plate theory (RPT) provides a better prediction of response of thick plate and 

does not require a shear correction factor, but its equations of motion are more 

complicated than those of MPT. 

The sinusoidal shear deformation theory of Touratier 32 is based on the assumption 

that the transverse shear stress vanishes on the top and bottom surfaces of the beam and 

is nonzero elsewhere. Thus there is no need to use shear correction factors as in the case 

of MPT. This theory was successfully applied to laminate plates 33 and functionally 

graded sandwich plates 34-36. Therefore, it is useful to extend the application of this 

theory to the micro/nanoscale plates by accounting for the small scale effects. The aim 

of this paper is to extend the sinusoidal shear deformation theory of Touratier 32 to the 

micro/nanoscale plates. Equations of motion and boundary conditions are derived from 

Hamilton’s principle based on the nonlocal constitutive relations of Eringen. Analytical 

solutions for deflection, buckling load, and natural frequency are presented for simply 

supported plates, and the obtained results are compared with the existing solutions to 

verify the accuracy of the present model. 

2. Nonlocal plate model 

2.1. Kinematics 

The displacement field of the sinusoidal shear deformation theory is chosen based on 

the assumption that the transverse shear stress vanishes on the top and bottom surfaces 

of the beam and is nonzero elsewhere. The displacement field is given as 32 
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where ( , ,u v w) are the displacements at a point on the middle plane of the plate along 

the coordinates ( , ,x y z ); x  and y  are the rotation of the middle surface along the 

x  and y  directions, respectively; and h  is the plate thickness. 

The linear strain expressions associated with the displacement field in Eq. (1) are: 
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It can be observed from Eqs. (2d) and (2e) that the transverse shear strains ( xz , yz ) are 

zero at the top ( / 2z h ) and bottom ( / 2z h  ) surfaces of the plate, thus satisfying 

the traction free conditions for ( xz , yz ). 

2.2. Equations of motion 

Hamilton’s principle is used herein to derive the equations of motion. The principle 

can be stated in analytical form as 
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where U  is the variation of strain energy; and K  is the variation of kinetic energy. 

The variation of strain energy of the plate is calculated by 
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where N , M , P , and Q  are the stress resultants defined as 

  / 2

/ 2
, , ,

h

i ih
N dz i x y xy   (5a) 

  / 2

/ 2
, , ,

h

i ih
M z dz i x y xy   (5b) 

  / 2

/ 2
sin , , ,

h

i ih

h z
P dz i x y xy

h

 
      (5c) 

  / 2

/ 2
cos , ,

h

i ih

z
Q dz i xz yz

h

 
      (5d) 

The variation of kinetic energy of the plate can be written as 
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where dot-superscript convention indicates the differentiation with respect to the time 

variable t ;   is the mass density; and  0 2 2 2, , ,I I J K  are the mass inertias defined 

as 
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Substituting the expressions for U  and K  from Eqs. (4) and (6) into Eq. (3) and 

integrating by parts, and collecting the coefficients of u , v , w , x , and y , 

the following equations of motion are obtained: 
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The boundary conditions are of the forms 

 : 0 x x xy yu N n N n    (9a) 
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2.3. Constitutive relations 

The nonlocal theory assumes that the stress at a point depends not only on the strain 

at that point but also on strains at all other points of the body. According to Eringen 5-7, 

the nonlocal stress tensor   at a point is expressed as 

  21       or      (11) 

where 2  is the Laplacian operator in two-dimensional Cartesian coordinate system; 

  is the classical stress tensor at a point related to the strain by the Hooke’s law; 

21     is a linear differential operator; and 2
0( )e a   is the nonlocal parameter 

which incorporates the small scale effect, a  is the internal characteristic length and 0e  

is a constant appropriate to each material. The nonlocal parameter depends on the 

boundary conditions, chirality, mode shapes, number of walls, and type of motion 37. So 

far, there is no rigorous study made on estimating the value of the nonlocal parameter. It 

is suggested that the value of nonlocal parameter can be determined by experiment or by 

conducting a comparison of dispersion curves from the nonlocal continuum mechanics 
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and molecular dynamics simulation 38-40. For an isotropic micro/nanoscale plate, the 

nonlocal constitutive relation in Eq. (11) takes the following forms 29, 31, 41-42 
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where E  and   are the elastic modulus and Poisson’s ratio, respectively. Using Eqs. 

(2), (12) and (5), the stress resultants can be expressed in terms of displacements as 
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2.4. Equations of motion in terms of displacements 

The nonlocal equations of motion of the present theory can be expressed in terms of 

generalized displacements ( , , , ,x yu v w   ) by applying linear differential operator   
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on Eq. (8) 
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Clearly, when the nonlocal effect is neglected (i.e. 0  ), the present model recovers 

Touratier’s sinusoidal shear deformation theory 32. Also, the equations of motion of the 

nonlocal KPT can be obtained from Eq. (15) by setting the rotations ( ,x y  ) equal to 

zero. It is observed from Eq. (15) that the in-plane displacements ( ,u v ) are uncoupled 

from the transverse displacements ( , ,x yw   ). Thus, the equations of motion for the 

transverse response of the plate are reduced to Eqs. (15c)-(15e). 

3. Analytical solutions 

Consider a simply supported rectangular plate with length L  and width b  under 
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transverse load q and in-plane load in two directions ( 0 0 0
1 2, , 0x cr y cr xyN N N N N    ). 

Based on the Navier approach, the following expansions of displacements are chosen to 

automatically satisfy the simply supported boundary conditions of plate 
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where 1i   , /m L  , /n b  ,  , ,mn mn mnX Y W  are coefficients, and   is 

the natural frequency. The transverse load q  is also expanded in the double-Fourier 

sine series as 
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The coefficients mnQ  are given below for some typical loads: 
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Substituting the expansions of ( , ,x y w  ) and q  from Eqs. (16) and (17) into Eq. (15), 

the analytical solutions can be obtained from the following equations 
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where 
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The analytical solution of the nonlocal KPT can be obtained from Eq. (20) by setting 

coefficients ( mnX , mnY ) equal to zero. Thus, the deflection w , buckling load crN , and 

natural frequency   of the KPT are expressed as  
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4. Numerical results 

In this section, a simply supported nanoplate made of single-layered graphene sheet 

(SLGS) is considered. The geometric and mechanical properties of the SLGS are 43: 

1.02E  TPa, 0.16  , 2,250  kg/m3, 0.34h  nm. The fundamental frequency of 

simply-supported armchair and zigzag square SLGSs with different side lengths L  are 

presented in Table 1. The values of nonlocal parameter 0e a  of the simply-supported 

armchair and zigzag SLGSs are 1.16 nm and 1.19 nm, respectively. The obtained results 

are compared with those predicted by molecular dynamics (MD) simulation 38 which is 
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one of the most widely used numerical methods related to the interaction between the 

atoms or molecules in a system. A good agreement between the results is observed for 

various sizes of the plate. 

To further validate the accuracy of the present solutions, the obtained results are 

compared with those predicted by MPT in Table 2 for simply supported square plates 

with various values of side lengths L  and nonlocal parameter 0e a = 0 to 2.0 nm. The 

reason for choosing these values is that 0e a  should be smaller than 2.0 nm for a single-

wall carbon nanotube as pointed out by Wang and Wang 44. Since the maximum value of 

0e a  has not been exactly known for graphene sheet, it is assumed to be equal to that of 

the single-wall carbon nanotube. The shear correction factor used in MPT is taken as 5/6. 

The nondimensional deflection is obtained for the plate subjected to uniform loads, 

while the nondimensional critical buckling load is calculated for the plate subjected to 

biaxial compression. The nondimensional deflection w , critical buckling load N , and 

fundamental frequency   are defined by 
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   (23) 

It can be seen that the present theory and MPT give almost identical results for all 

cases ranging from thin to thick plates confirming the accuracy of present solutions. It 

should be noted that the present theory does not require shear correction factors as in the 

case of MPT.  

To illustrate the small scale effects on the responses of nanoplates, Figs. 1-3 plot the 

deflection, buckling load, and frequency ratios with respect to the size of a simply-

supported plate. The value of nonlocal parameter 0e a  of a simply-supported armchair 

nanoplate is 1.16 nm 38. The deflection, buckling load, and frequency ratios are defined 
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as the ratios of those predicted by the nonlocal theory to the correspondences obtained 

by the local theory (i.e., 0e a =0). It can be seen that the deflection ratio is greater than 

unity, whereas the buckling load and frequency ratios are smaller than unity. It means 

that the local theory underestimates deflection (see Fig. 1) and overestimates buckling 

load (see Fig. 2) and natural frequency (see Fig. 3). This is due to the fact that the local 

theory ignores the small scale effect. In other words, the inclusion of the small scale 

effect leads to an increase in the deflection and a reduction of the buckling load and 

natural frequency. The small scale effect is significant for thick plates (i.e. the size of 

the plate is small) especially at the higher modes (see Figs. 2 and 3). However, it will 

diminish for very thin plates (i.e. the size of the plate is large). 

In addition to the small scale effect, the present nonlocal plate model also accounts 

for the shear deformation effect. The effect of shear deformation on the deflection, 

buckling load, and natural frequency of a simply-supported nanoplate is illustrated in 

Figs. 4-6, respectively. The nonlocal parameter 0e a  is taken as 1.16 nm 38. In these 

figures, the deflection, buckling load, and frequency ratios are defined as the ratios of 

those obtained by the present nonlocal theory to the correspondences predicted by the 

nonlocal KPT where the shear deformation effect is omitted. It can be seen that the 

effect of shear deformation leads to an increase in the deflection and a reduction of the 

buckling load and natural frequency, and this effect is significant for thick plates 

especially at the higher modes (see Figs. 5 and 6). It means that the shear deformation 

effect makes the plate more flexible. 

5. Conclusions 

A nonlocal plate model for bending, buckling, and free vibration of micro/nanoscale 

plates is developed based on the nonlocal differential constitutive relations of Eringen. 
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Equations of motion and boundary conditions are derived from Hamilton’s principle. 

Analytical solutions for bending, buckling, and free vibration of a simply supported 

plate are presented, and the obtained results are compared well with those generated by 

MD simulation and those predicted by the nonlocal MPT. As shown in this study, the 

effects of small scale and shear deformation are similar. The inclusion of small scale and 

shear deformation effects makes the plate more flexible, and consequently, leads to an 

increase in the deflection and a reduction of the buckling load and natural frequency. 

These effects are significant for thick plates especially at the higher modes, but they will 

diminish for very thin plates. 
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Fig. 1. Effect of small scale on deflection ratio of simply supported plates under 

sinusoidal load 

 

 

 

Fig. 2. Effect of small scale on buckling load ratio of simply supported plates under 

biaxial compression 
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Fig. 3. Effect of small scale on frequency ratio of simply supported plates 

 

 

 

 

Fig. 4. Effect of shear deformation on deflection ratio of simply supported plates under 

sinusoidal load 
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Fig. 5. Effect of shear deformation on buckling load ratio of simply supported plates 

under biaxial compression 

 

 

 

Fig. 6. Effect of shear deformation on frequency ratio of simply supported plates 
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Table 1. Fundamental frequency (THz) of simply support square SLGSs 

L (nm) 
Armchair SLGS, 1.16oe a  (nm) Zigzag SLGS, 1.19oe a  (nm) 

MD 38 Present Diff. (%) MD 38 Present Diff. (%) 
10 0.05950  0.05893  -0.96  0.05877  0.05861  -0.28  
15 0.02779  0.02792  0.44  0.02739  0.02784  1.65  
20 0.01581  0.01609  1.74  0.01575  0.01606  1.97  
25 0.01000  0.01042  4.20  0.00998  0.01041  4.23  
30 0.00707  0.00728  2.96  0.00707  0.00728  2.97  
35 0.00530  0.00537  1.32  0.00530  0.00537  1.30  
40 0.00410  0.00412  0.49  0.00410  0.00412  0.53  
45 0.00326  0.00326  0.04  0.00326  0.00326  0.02  
50 0.00262  0.00265  1.00  0.00262  0.00265  0.99  
 

Table 2. Nondimensional deflection w , critical buckling load N , and fundamental 

frequency   of simply supported square plates 

L/h oe a (nm) 
Deflection w  Buckling load N  Frequency   

MPT Present MPT Present MPT Present 

5 0 0.0557  0.0557  1.4210  1.4220  5.1759  5.1774  
 0.5 0.1397  0.1398  0.5248  0.5252  3.1456  3.1465  
 1.0 0.3918  0.3922  0.1815  0.1816  1.8497  1.8502  
 1.5 0.8120  0.8128  0.0868  0.0869  1.2794  1.2797  
 2.0 1.4002  1.4017  0.0502  0.0502  0.9726  0.9729  

10 0 0.0496  0.0495  1.6124  1.6125  5.5997  5.5999  
 0.5 0.0688  0.0688  1.1300  1.1301  4.6878  4.6880  
 1.0 0.1264  0.1265  0.5955  0.5956  3.4031  3.4032  
 1.5 0.2226  0.2226  0.3330  0.3330  2.5448  2.5449  
 2.0 0.3571  0.3572  0.2059  0.2059  2.0011  2.0012  

20 0 0.0480  0.0480  1.6685  1.6686  5.7275  5.7275  
 0.5 0.0527  0.0527  1.5076  1.5077  5.4443  5.4444  
 1.0 0.0668  0.0668  1.1694  1.1694  4.7948  4.7948  
 1.5 0.0903  0.0903  0.8511  0.8511  4.0905  4.0906  
 2.0 0.1231  0.1231  0.6163  0.6163  3.4808  3.4808  

50 0 0.0476  0.0476  1.6850  1.6850  5.7653  5.7653  
 0.5 0.0483  0.0483  1.6567  1.6567  5.7167  5.7167  
 1.0 0.0506  0.0506  1.5773  1.5773  5.5779  5.5779  
 1.5 0.0543  0.0543  1.4605  1.4605  5.3676  5.3676  
 2.0 0.0595  0.0595  1.3234  1.3234  5.1094  5.1094  

100 0 0.0475  0.0475  1.6874  1.6874  5.7708  5.7708  
 0.5 0.0477  0.0477  1.6802  1.6802  5.7585  5.7585  
 1.0 0.0483  0.0483  1.6590  1.6590  5.7221  5.7221  
 1.5 0.0492  0.0492  1.6249  1.6249  5.6630  5.6630  
 2.0 0.0505  0.0505  1.5795  1.5795  5.5832  5.5832  
 


