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Utenje besedilnega razclenjevanja diskurzov

POVZETEK

Razumevanje smisla diskurznih relacij, ki nastopajo med segmenti besedila, je kljuénega
pomena za razumevanje kateregakoli besedila v naravnem jeziku. Stevilni avtomatizira-
ni pristopi so ze bili predlagani, vendar so vsi odvisni od zunanjih virov, roéno-idelanih
znadilk in njihovi cevovodi za procesiranje so izdelani iz bistveno razli¢nih modelov. Na-
mesto izdelave sistema specializiranega za dani jezik in nalogo, mi stremimo k jezikovno-
neodvisnemu pristopu za klasifikacijo smisla v plitkih diskurznih relacijah.

V pricujoci disertaciji najprej predstavimo nase osredotocene rekurentne nevronske
mreze (focused RNNs), ki predstavljajo prvi ve¢-dimenzionalni RNN-pozornostni me-
hanizem za izdelavo vlozitev stavkov/argumentov. Sestavljen je iz filtrirnega RNN z me-
hanizmom za filtriranje/usmerjanje, ki omogoca slede¢im RNN-jem, da se osredotodijo
na razli¢ne vidike vsakega argumenta diskuzne relacije in ga projecirajo v ve¢ vloZitvenih
podprostorov. Omenjeni mehanizem uporabimo v naem sistemu FR system, ki pred-
stavlja novo metodo za klasifikacijo smisla v plitkih diskurznih relacijah. V nasprotju z
obstoje¢imi sistemi je FR system sestavljen iz enega modela, ki ga je mogoce celostno uciti
od zadetka-do-kraja, obravnava vse vrste in specifi¢ne situacije v diskurznih relacijah, ne
potrebuje roéno-izdelanih znacilk ali zunanjih virov, se lahko skorajda brez sprememb
uporabi na kateremkoli jeziku ali oznakah smisla, in se lahko uporablja tako na ravni
besed kot na ravni znakov.

Predlagani FR system smo ovrednotili na uradnih podatkovnih zbirkah in po meto-
dologiji izziva CONLL 2016 Shared Task. Ne zaostaja veliko za najuspesnejsimi sistemi
na angleskem jeziku, vendar presega ostale sisteme brez focused RNNs plasti za 8% na

kitajski podatkovni zbirki. Nato smo izvedli natanénejso analizo na obeh jezikih.

Kljucne besede  procesiranje naravnega jezika, plitke diskurzne relacije, rekurentne ne-

vronske mreze, mehanizmi pozornosti, jezikovna neodvisnost, brez zunanjih virov
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ABSTRACT

Understanding the sense of discourse relations that appear between segments of text is
essential to truly comprehend any natural language text. Several automated approaches
have been suggested, but all rely on external resources, linguistic feature engineering,
and their processing pipelines are built from substandially different models. Instead
of designing a system specifically for a given language and task, we pursue a language-
independent approach for sense classification of shallow discourse relations.

In this dissertation we first present our focused recurrent neural networks (focused
RNN:ss) layer, the first multi-dimensional RNN-attention mechanism for constructing
sentence/argument embeddings. It consists of a filtering RNN with a filtering/gating
mechanism that enables downstream RNNs to focus on different aspects of each argu-
ment of a discourse relation and project it into several embedding subspaces. On top
of the proposed mechanism we build our FR system, a novel method for sense classi-
fication of shallow discourse relations. In contrast to existing systems, the FR system
consists of a single end-to-end trainable model for handling all types and specific situ-
ations of discourse relations, requires no feature engineering or external resources, can
be used almost out-of-the-box on any language or set of sense labels, and can be applied
at the word and character level representation.

We evaluate the proposed FR system using the official datasets and methodology of
CoNLL 2016 Shared Task. It does not fall a lot behind state-of-the-art performance on
English, but it outperforms other systems without a focused RNNs layer by 8% on the

Chinese dataset. Afterwards we perform a detailed analysis on both languages.

Keywords  natural language processing, shallow discourse relations, recurrent neural

networks, attention mechanisms, language-independent, no external resources
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.1 Motivation

One could say that our capacity for symbolic thought and communication makes us hu-
man. It allows us to use sounds, drawings, or letters to discuss things, abstract ideas,
and relations between them, even if they are not right in front of us. Any healthy hu-
man child effortlessly learns a language without explicit teaching, on the basis of positive
evidence or samples, and in a langnage-independent way [1]. This happens in absence of
explicitly given structure of a sentence, rules of grammar, lexicons of words, descriptions
of their meaning, and relations between them. They are also not given a set of bhand-
engineered features or patterns to pay attention to, or a complex pipeline of processing
steps adapted for each type of conversation or task. It all just happens naturally. On the
contrary, computational approaches for many natural language processing (NLP) tasks
rely on all these and are designed for a specific language and task. They process inform-
ation in complex pipelines consisting of substantially different NLP components and
using external resources. Such systems can not be trained in an end-to-end manner or
easily adapt to new samples. These limitations are even more apparent for non-English
languages, where progress in NLP is still lacking. We argue that there must be a better
way, that even computational methods could learn complex NLP tasks in a language-
independent way from samples alone, just like children do.

Any natural language text means more than the sum of its pieces and sentences [2].
Consequently, in order to truly comprehend a text, we need to identify its pieces and
infer additional semantic relations between them, known as discourse relations or coher-
ence relations. Although discourse relations are an important part of each language, we
still do not understand this phenomena perfectly. Discourse relations have long been
recognized as important for many structure-enabled NLP applications [3], such as text
summarization [ 4], information extraction [5], statistical machine translation [6], sen-
timent analysis [7], question generation [8], coherence modelling [9], and text-level dis-
course parsing [10].

Over the last three decades, linguists proposed a number of theoretical text-level dis-
course frameworks to describe the language at the sentence level and at the text level [2,
11]. In this dissertation we have chosen the text-level discourse framework of shallow dis-
course relations, also called PDTB-style, because it strives to maintain a theory-neutral
approach and offers the largest annotated corpora [12]. It defines a discourse argument

(argi, arg2) as a piece of text meant to communicate specific information (abstract
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objects, events, states, facts, or propositions). And a discourse relation as a semantic rela-
tion that describes how a pair of discourse arguments are related to each other and which
meaning or sense label we infer from it. Sometimes discourse relations are explicitly for-

mulated by using connectives (conn, e.g. while, but, unless) or indicated by punctuation

(punc), but often identified by the reader who tries to make sense of the text. See Sec-

tion 2.1 for more details about this. Let us examine a few illustrative examples:

L. [Jane fell over],,,,, while [Tarzan helped ber],

rg2*

2. [Twant to go to China],,,,, but [I prefer clean air],

rg2°

30 BRAE [KTE B ], BN /3R RAE LR BB R 7, o

(Unless [the train is late],,,, , (otherwise) [l will be there at nine o’clock],,,.)

In the above examples each discourse relation contains an explicit discourse connect-
ive, hence they are called Explicit relations. For humans it is easy to identify the dis-
course connective and the meaning or sense of the discourse relation it signals. In ex-

ample 1. while signals a temporal synchrony of two events, in 2. but signals a contrast,

and in 3. unless signals an alternative outcome. From a computational perspective, it is

relatively straightforward to predict these senses by carefully designing production rules

to only disambiguate the function of discourse connectives [13].

1. [Jane fell over],.,,. [Tarzan belped ber],,,.
2. [Twant to go to Chinal,,,,. [I prefer clean air],, ;.
o (KR ], o [RSTENS B IR ],

([The train is late], ., . [Twill be there at nine oclock],,,.)

Consider how drastically the above discourse relations and their meaning changed,
when we dropped the underlined discourse connectives. With some effort we can infer
a new missing connective and with it a new meaning or sense of each non-Explicit
relation. Examples 1. and 3. now represent a cause and its result (as if so is present), while
example 2. lists personal preferences in a conjunction (as if and is present). In a natural
language text it is quite common that discourse relations are not signalled by a discourse
connective. Such situations can be difficult even for humans, because the sense needs

to be inferred through the semantic context, coherence of arguments, knowledge about
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the world, or other means [14]. From a computational perspective, such situations are
much more challenging and represent a bottleneck of entire systems.

Discourse parsing is the task of extracting discourse relations. Itinvolveslocating conn
and punc, extracting ar g1 and arg2, and sense classification, i.e. determine which mean-
ing or sense label can be inferred. It turns out that constructing automated discourse
parsers is notoriously difficult. Especially because distinctions between sense labels re-
quire subtle semantic judgements, but these can not be easily captured using traditional
NLP features. To improve on this, two conferences CONLL 2015 and 2016 organized
a Shared Task [15, 16] that focused on discourse parsing and sense classification of shal-
low discourse relations on English and Chinese languages, which have sufficiently large
datasets available. In both years sense classification was implemented in 40 competing
systems for English and 10 for Chinese. Around half of the methods used conventional
machine learning techniques such as SVM, MaxEnt and CRF models that rely on thou-
sands to millions of hand-engineered features constructed from word categories and po-
sitions [13], production and dependency rules [17], neighbouring words, syntactic parse
trees and part-of-speech (POS) tags [18], and cross-argument similarity features based
on word pairs [19]. These generally make weak predictors of sense labels and increase
the complexity of the solutions, but nevertheless work pretty well for Explicit rela-
tions. The other half of the methods used various neural network models and relied on
pre-trained word embeddings combined with previously mentioned hand-engineered
features. On word embeddings of each argument they separately apply either a vari-
ant of summation pooling [20], a convolutional neural network (CNN) [19, 21], or
a recurrent neural network (RNN) [22], followed by a feed-forward neural network
(FFNN). Although these black-box solutions perform better for sense classification of
non-Explicit relations, they still achieve pretty poor performance in F;-scores.

In general it turns out that non-Explicit sense classification is still the most chal-
lenging problem of various applications. Existing systems for sense classification use a
complex pipeline of substantially different models to handle specific types and situations
of discourse relations. These models require preprocessing, hand-engineered features,
external resources, and extensive fine-tuning for each language and set of sense labels.

Motivated by the way how children acquire a language we move away from the weak-
nesses and complexity of existing systems for sense classification. We attempt to design
a language-independent method for the task of sense classification of shallow discourse

relations.
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.z Problem definition

In this dissertation we focus on the task of sense classification of shallow discourse rela-
tions as described in the CONLL 2016 Shared Task [16] and attempt to approach itin a

langnage-independent manner.

Definition 1.1: Sense classification of shallow discourse relations:

A sense label or semantic class describes the meaning as which a discourse rela-
tion can be interpreted (e.g. contrast, causation, conjunction). Due to differences
between languages a set of 10 sense labels is defined for Chinese (for a complete list
see Tab. 2.2) and 21 sense labels for English (for a complete list see Tab. 2.3).

Given two discourse arguments (argl, arg2), an optional connective (conn), and
optional punctuation (punc), our task is to predict the sense label of the discourse

relation these I‘CpI‘CSCl’lt.

To better illustrate the whole process let us imagine an automated discourse parser
that scans an English newspaper article and attempts to locate discourse relations within
sentences and across multiple sentences. Ata given moment it is processing the text seen
below. First it locates the discourse connectives (conn), then extracts the two discourse
arguments (argl, arg2) bound to it, and skips punctuation (punc), because this is ig-
nores in English. Systems typically also determine thatitisan Explicit relation within
the same sentence where arg1 is before arg2. All extracted text spans and information
is passed to one or more components of the discourse parser that perform sense classific-

ation.

text: "/But],,, if [there are more buyers], ..., then [it may be important],,,.”
= argl: there are more buyers

= arg2: Butit may be important

conn: if then

information: English, Explicit, within same sentence, arg1 is before arg2

The goal of sense classification is to determine which one of the 21 sense labels for

English best describes the meaning we infer from this information. In the above example
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conn signals that it is a conditional relation which corresponds with the interpretation
that more buyers might influence some important decisions. The sense classification
component therefore concludes that the sense label is CONTINGENCY.CONDITION.

More details on shallow discourse relations can be found in Section 2..1.

Definition 1.2: Language-independent approach to NLD tasks:

We consider an approach to be independent of a language, if it was not designed
specifically for a given language and does not require any preprocessing, hand-
engineered features, external resources, or extensive fine-tuning for each language.
With other words, it is language-independent with respect to its inputs and archi-

tecture, and applicable as such to very different languages.

Motivated by the way how children acquire a language we move away from the weak-
nesses and complexity of existing systems for sense classification. We approach it from a
drastically different and language-independent perspective (for comparison see Tab. 2..5).
In our opinion such a method for sense classification needs to consist of a single model
to handle all types and specific situations of discourse relations (no differences between
Explicitand other relation types, within-sentence and multi-sentence situations, the
order of arguments). It should not perform any preprocessing of its input text spans, nor
require any hand-engineered features or external resources, not even pre-trained word
embeddings.

In Chapter 4 we present how we accomplished all this in our FR system, a novel
method for sense classification of shallow discourse relations based on focused RNNs
layer. We successfully applied it with almost the same model hyper-parameters on two
substantially different languages, English and Chinese (without having any knowledge
of Chinese).
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.3 Scientific contributions

In the light of our motivation and the importance of sense classification for different

applications, we present in this dissertation the following scientific contributions (see

corresponding chapters for terminology):

1. Multi-dimensional RNN-attention mechanism (focused RINNs).

We present focused recurrent neural networks (focused RNNs), a novel neural
network layer with an attention mechanism for constructing sentence/argument
embeddings. Its purpose is to transform arguments of discourse relations into sev-
eral vector subspaces that encode different aspects of the input text spans. At the
time when the focused RNNs layer was first conceived (early 2016), only single-
attention mechanisms that aggregate with a weighted average existed. Up to our
knowledge, our approach is the first to present two new concepts and still dif-
fers greatly from other attention mechanisms found in related work. First, it is
the first attention mechanism using multi-head or multi-dimensional attention
weights, instead of attending to only a single aspect at a time. Second, it s the first
attention mechanism using RNNs for production of attention weights, instead
of computing them as the inner product with a query vector. Third, by comput-
ing all attention weights in one pass, instead of recomputing them for different
query vectors when focusing on different aspects. Fourth, by using RNNs for ag-
gregation of argument embeddings, instead of a sum of the weighted vectors. Our
focused RNNs layer consists of a filtering RNN followed by a multiplicative fil-
tering/gating mechanism that enables downstream RNNs to focus on different
aspects of the input sequence and project it into several embedding subspaces.
These argument embeddings can later be used for different NLP tasks, such as

sense classification.
‘This contribution is covered in Chapter 3. Its concept was introduced in Weiss &
Bajec [22] and more details published in Weiss & Bajec [23].

2. Language-independent method for sense classification (FR system).

We present a novel method for sense classification of shallow discourse relations
based on focused RNNs layer, hence the name FR system. Up to our knowledge,

our method presents a unique approach to sense classification that differs from
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existing methods in many ways. First, it is the first using only a single end-to-end
trainable model, instead of a complex pipeline of substantially different mod-
els to handle specific types and situations of discourse relations (no differences
between Explicit and other relation types, within-sentence and multi-sentence
relations, the order of arguments). Second, it is the first language-independent
approach that requires no hand-engineered features or external resources, not
even pre-trained word embeddings. It requires only a training dataset to work,
which makes it usable almost out-of-the-box on any language and set of sense
labels. Third, it is the first method that can be applied at the word and charac-
ter level inputs without any preprocessing. Forth, it provides a simple data aug-
mentation technique to produce more samples, instead of training only on given
samples. We evaluate our method using the official datasets and methodology
of CoNLL 2016 Shared Task. It does not fall a lot behind state-of-the-art per-
formance on English, the most researched and supported language, but it outper-
forms other systems without a focused RNNs layer by 8% on the Chinese dataset.
We first analyse its overall performance in terms of F-score and Brier-score, then
in more detail with per-sense results and confusion matrices for Explicit and
non-Explicit relations, and perform a case study of errors on English. We also
analyse its training and classification time complexity. To qualitatively assess the

contribution of some design choices we also perform an ablation study.

‘This contribution is covered in Chapter 4 and evaluated in Chapter 5. Our older
more complex two-model system [22] received the first award by a large margin
on Chinese datasets at CONLL 2016 Shared Task. We generalized upon it and
published the FR system in Weiss & Bajec [23].

1.4  Dissertation overview

In this dissertation we approach the sense classification task from the perspective of how
children acquire a language. Instead of depending on external NLP resources, incor-
porating hand-engineered features, complex processing pipelines, and linguistic expert
knowledge, we approach it in a language-independent manner. Although the perform-
ance of our method is affected by huge differences between languages, it is still remark-

able thatit can be used almost out-of-the-box on any language, set of sense labels, or level
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of input representation. We feel that such an approach is not only beneficial for sense
classification of shallow discourse relations, but will inspire researchers to also adapt it
for even more complex natural language understanding tasks.

We organize the rest of this dissertation in five main chapters. Chapter 2 describes shal-
low discourse relations, surveys existing systems, and deep neural networks. Chapter 3
introduces our focused RINNs layer for constructing sentence/argument embeddings.
Chapter 4 describes our FR. system, a novel method for sense classification, its neural
network layers, and implementation details. Chapter 5 continues with the evaluation
and detailed analysis of its performance on Chinese and English languages. Chapter 6

makes a brief overview of achieved contributions and draws future research directions.
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In this chapter we provide an overview of shallow discourse relations and datasets used in
CoNLL 2016 Shared Task. We continue with a comparison of existing systems for sense
classification and typical modelling approaches. We finish with a brief introduction to

deep neural networks on which our approach is based upon.

2.1 Shallow discourse relations

The goal of text-level discourse parsing is to discover the latent relational structure of
a given well-written text or monologue, such as newspaper articles. Despite many dec-
ades of research, linguists were unable to discover clean theories of discourse grammars
that can fully explain or describe how sentences are pieced together to form a coher-
ent body of text, the same way we do in syntax. There are a few theoretical discourse
frameworks along with annotated corpora [2, 11] that illustrate the theories and allow for
computational investigation of discourse. Unfortunately, differences in theories, data
set creation, features used, sets of sense labels, and experimental methodologies make it
difficult to compare early works fairly and adequately. Nevertheless, it turned out that
constructing text-level discourse parsers is notoriously difficult.

Different discourse frameworks differ in many ways, but they all more of less distin-

guish two problems that need to be solved by an automated discourse parser:

= argument extraction: determine the location and extent of text spans (e.g. clauses,

phrases, sentences) that form a discourse relation

= sense classification: determine the meaning or sense label as which a discourse re-

lation can be interpreted (e.g. contrast, causation, conjunction)

In this dissertation we have chosen the text-level discourse framework of shallow dis-
course relations, also called PDTB-style, because it strives to maintain a theory-neutral
approach and offers the largest annotated corpora [12]. Each discourse relation is lexic-
ally anchored to a discourse connective (conn), even when it is not explicitly expressed,
and takes two discourse arguments (arg1, arg2) as predicates. conn can be any of co-

ordinating conjunctions (e.g. and, or), subordinating conjunctions (e.g. because, when,
g conyj g ana, or g conj g. vecause, wnen.

since), and discourse adverbials (e.g. however, previously, nevertheless). argi and arg2

may be clauses, noun phrases, sentences, and other non-contiguous text spans determ-

ined by the minimality principle that selects all and only the material needed to interpret
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the discourse relation. Punctuation (punc) helps to determine the discourse relation in
Chinese, but is otherwise ignored in English. Discourse relations are treated locally and
independently, i.e. they are not connected to one another to form a global data struc-
ture, like a tree, and thus often overlap. They occur both across sentences and within
sentences, the order of arg1 and arg2 is determined by the location of conn, and there
are no restrictions on how many clauses and gaps they may contain. A sense label or
semantic class describes the meaning as which a discourse relation can be interpreted
(e.g. contrast, causation, conjunction). Due to differences between languages a set of 10
sense labels is defined for Chinese (for a complete list see Tab. 2.2) and 21 sense labels for
English (for a complete list see Tab. 2..3).

‘The literature concerning shallow discourse relations further distinguishes the follow-
ing four relation types, but focuses mostly on Explicit and Implicit relations that

occur most often (see Tab. 2.1):

= Explicitrelations use discourse connectives or markers as linguistic expressions

that explicitly signal the presence of a discourse relation [24].

7[Most oil companies ], ,,, when [they set exploration and production budgets for

this year],,,,, [forecast revenue of $i5 for each barrel of crude produced],, ,,.”

rgz’
— Explicit, sense TEMPORAL.SYNCHRONY

= For Implicitrelations the discourse connective can be intuitively expressed, but

is not lexically realized [r2].

"[Some have raised their cash positions to record levels],.,. [High cash positions
help buffer a fund when the market falls],,,,.”

— Implicit, sense CONTINGENCY.CAUSE.REASON

= Less frequent AltLex relations are realized by some alternative non-connective

expressions and inserting a connective would lead to redundancy.

7[Earnings fell to 8877 million, or $1.51 a share],, ;. [That compared with the year-
- which was inflated by the sale.”

earlier $1.25 billion, or $2.10 a share ]a,gz

— AltLex, sense COMPARISON.CONTRAST

= Less frequent EntRel entity-based coherence relations connect arguments only
by the fact that they are about the same entity.

3
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Table 2.1

Distribution by relation
type in Chinese and
English datasets. Each
relation type further
consists of sense
labels, see Tab. 2.2 and

Tab. 2.3.

G Weiss Learning of text-level discourse parsing

*[Hale Milgrim, 41 years old, was named president of Capitol Records Inc.],,,

[Myr. Milgrim succeeds David Berman, who resigned last month ],,o,.
— EntRel, sense ENTREL

= Cases when no discourse relation can be perceived are marked with NoRe.

Chinese datasets English datasets
Relation type | train valid test blind | train valid test blind
Explicit 2225 77 96 566 | 14722 680 923 556
Implicit 6706 251 281 139913156 522 769 425
AltLex 211 ) 7 49 524 19 30 28
EntRel 1098 50 71 87 | 4133 215 217 200
Total relations | 10240 383 455 2101 | 32535 1436 1939 1209

Conferences CONLL 2015 and 2016 organized a Shared Task [15, 16] that focused on
discourse parsing and sense classification of shallow discourse relations on English and
Chinese languages. Datasets are based on two corpora of newspaper articles, the Eng-
lish Penn Discourse TreeBank 2.0 (PDTB) [12] and the recently published Chinese Dis-
course Treebank o.5 (CDTB) [25]. All datasets from the CoNLL 2016 Shared Task
(hetp://www.cs.brandeis.edu/~clp/conlli6st/) can otherwise be obtained from the Lin-
guistic Data Consortium (LDC) repository (catalogue number LDCzo17T13, http://
catalog.ldc.upenn.edu/LDCaor7T13). To make the task more approachable some sense
labels with too subtle differences were collapsed, a dedicated sense label EntRel was
assigned to entity-based coherence relations, NoRel relations were excluded, and any
other supplementary information removed. Multiple sense labels are provided when
the annotators have identified more than one simultaneous interpretation. As can be
seen from Tab. 2.1, Implicit relations occur in English almost as often as Explicit
ones, but in Chinese almost three times as often. Fig. 2.1 represents the distribution for
the length of arg1 and arg2 measured as the number of words or number of charac-
ters. Length of both arguments is equally distributed and extremely long arguments
are rare. Due to practical reasons (memory consumption, large training times) we can
safely trucate arguments that are too long and know that less then 1% of samples are af-
fected. CoNLL 2016 Shared Task defines the F;-score as the most suitable measure for

comparing the methods of the competition (we define it in Section s.1).


http://www.cs.brandeis.edu/~clp/conll16st/
http://catalog.ldc.upenn.edu/LDC2017T13
http://catalog.ldc.upenn.edu/LDC2017T13

Background

In the competition it turned out that the most challenging problem is sense classifica-
tion of Implicitrelations. In our research we make a step back and focus on the whole
task of sense classification of shallow discourse relations as described in the CONLL 2016
Shared Task [16].

Fundamental differences between Chinese and English languages, such as the form-
alization of the concept of a sentence and the way arguments are labelled, also affect
discourse relations. There are 10 sense labels defined for Chinese and 21 for English (for
acomplete list see Tab. 2.2 and Tab. 2.3 or CONLL 2016 Shared Task [16]). These sense la-
bels are unevenly distributed, especially in Chinese where more than half of relations sig-
nal the sense CONJUNCTION or in English where almost a quarter of relations signal the
sense EXpANSION.CONJUNCTION. Because we are working on a language-independent
approach, we primarily focus on Chinese datasets where less linguistic research and re-

sources exists and benefits would be greater.

2.1.1  Chinese datasets

The Chinese datasets for the CONLL 2016 Shared Task were adapted from the Chinese
Discourse Treebank o.5 (CDTB) [25] and the Chinese Wikinews [16]. The CDTB uses
newswire articles from Xinhua News Agency and follows the general annotation strategy
of the PDTB, but adapts it to the Chinese language. The train dataset contains 10240
relations from CDTB, the valid or development dataset contains 383, and the test data-
set 455. The official ranking is based on the slightly out-of-domain blind test dataset to
evaluate robustness, which contains 2101 relations from 64 articles from the Chinese
Wikinews. The official datasets also provide additional layers of automatic linguistic an-
notation processed with state-of-the-art NLP tools (POS tags, syntactic parse trees, and
dependency parses), but in our approach we ignore this information.

Since the concept of a sentence is less formalized in Chinese and punctuation plays an
important role at disambiguating discourse relations, the discourse annotation scheme
had to be adopted for Chinese. With the generalized lexically grounded approach there
is no fundamental difference between Explicit and Implicit relations. Both argu-
ments and sense labels need to be defined semantically, meaning they are defined based
on how the arguments are interpreted. These allows the sense structure to be more gen-
eral and less dependent on discourse connectives.

Consequently, we predict a flat set of 10 sense labels. Tab. 2.2 shows the number

of occurrences of discourse relations according to sense labels and relation types. In
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Figure 2.1

Word count (a)(c) and
character count (b)(d)
distributions forargi1
(red) and arg2 (blue)
on Chinese and English

train datasets.
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(c) Word count distribution on English. Only 0.19% of ~ (d) Character count distribution on English. Only 0.48%

relations have any argument longer than 100. of relations have any argument longer than 400.

Chinese, Implicit relations occur almost three times as often as Exp1l1 ci t ones, while
other types are less common. There are huge differences between relation types in the
distribution of sense labels. Sense labels are much less evenly distributed in Chinese than
in English, with sense CONJUNCTION occurring 59% of the time. The ground truth
for official datasets was prepared by several expert human annotators. Their reported
inter-annotator agreement score for sense labels on the train dataset is 87.4% with higher
agreement for Explicit than for non-Explicit types of relations.

In the following Chinese example (also translated to English) we demonstrate how
a segment of text can contain two overlapping discourse relations, and how conn can

consist of multiple pieces:
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Sense label All | Explicit Implicit AltlLex EntRel Table 2.2
ALTERNATIVE 18 18 (1%) - (0%) - (0%) - Distribution by sense
CAUSATION 456| 190 (9%) 187 (3%) 79 (37%) - labels and relation
CONDITIONAL 134| 100 (4%) 26 (0%) 8 (4%) - types in the Chinese
CONJUNCTION | 6102 | 904 (41%) 5174 (77%) 24 (11%) - train dataset.
CONTRAST 340 | 266(12%) 66 (1%) 8 (4%) -

ENTREL 1098 - (0%) - (0%) - (0%) 1098

EXPANSION 1435 | 205 (9%) 1188 (18%) 42 (20%) -

PROGRESSION 751 61 (3%) 7 (0%) 7 (3%) -

PURPOSE 244 | 164 (7%) 56 (1%) 24 (11%) -

TEMPORAL 434 | 383 (17%) 26 (0%) 25(12%) -

Total sense labels | 10336 | 2291 6730 217 1098

Total relations 10240 | 2225 6706 211 1098

Sense labels that occur more than 15% of the time for each relation type are shown in bold. EntRel has a dedic-

ated sense label. Less than 1% of discourse relations have multiple sense labels.

C[ESUARIMEX ], [T R L R SRR SOpE
R BT A BT IR R ],

([Construction companies enter the area], ., , [relevant departments first send these

regulatory documents, and then a special team conducts supervision and inspec-
10N Jyrq-)
— Implicit, sense CONDITIONAL
2 B AR X, [AXRERNT St Kb X FEAME X L,
R [ B MG T R R L

(Construction companies enter the area, [relevant departments first send these regu-

latory documents], ., , and then [a special team conducts supervision and inspec-

1N [yrq5-)

— Explicit, sense TEMPORAL

2.1.2  English datasets

The English datasets for the CONLL 2016 Shared Task were adapted from the Penn Dis-
course TreeBank 2.0 (PDTB) [12] and the English Wikinews [15]. The PDTB annotates
discourse relations over the one million word corpus from Wall Street Journal. The train

dataset contains 32535 relations from Sections 2-21 of the PDTB, the valid or develop-
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ment dataset contains 1436 relations from Section 22, and the test dataset contains 1939
relations from Section 23. The official ranking is based on the slightly out-of-domain
blind test dataset to evaluate robustness, which contains 1209 relations from 71 articles
from the English Wikinews. The official datasets also provide additional layers of auto-
matic linguistic annotation processed with state-of-the-art NLP tools (POS tags, syn-
tactic parse trees, and dependency parses), but in our approach we ignore this informa-
tion.

Sense labels in all English datasets are organized in a three-level hierarchy adopted
from the PDTB. They even distinguish the semantic contribution or role of each argu-
ment. Discourse relations are always anchored to discourse connectives, even when they
are not lexically realized. To reduce some sparsity without losing too much of the se-
mantics, some sense labels from the original PDTB annotation have been merged and
the attribute annotation from PDTB was removed.

Asaresult there are only 21 different sense labels, 15 completely and 6 partially annot-
ated sense labels, that we need to predict. Tab. 2.3 shows the distribution of discourse
relations according to sense labels and relation types. In English, Implicit relations
occur in English almost as often as Explicit ones, while other types are far less com-
mon. There are huge differences between relation types in the distribution of sense la-
bels. Sense labels are unevenly distributed, such that three most frequent sense labels
(ExraNsION.CONJUNCTION, COMPARISON.CONTRAST, and ENTREL) occur 51% of
the time. The ground truth for official datasets was prepared by several expert human
annotators. Their reported inter-annotator agreement score for sense labels on the blind
dataset is 85.5% with higher agreement for Explicit than for non-Explicit types of
relations.

The following English example demonstrates how a segment of text can contain three

overlapping discourse relations, and how arg2 and conn can consist of multiple pieces:

1. *[Kemper is using program trading],,,,.” He added [that "having one such firm

doesn’t matter |, But if there are more, then it may be important.”

/’92'
— Implicit, sense COMPARISON.CONTRAST

2. "Kemper is using program trading.” He added [that "having one such firm doesn’t
matter],.,,. But [if there are more, then it may be important],,,.”

— Explicit, sense COMPARISON.CONCESSION
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Sense label A1l | Explicit Implicit AltLex EntRel Table 2.3
COMPARISON 496 | 351 (2%) 145 (1%) - (0%) - Distribution by sense
COMPARISON.CONCESSION 1293 | 1093 (7%) 196 (1%) 4 (1%) - labels and relation
CoMPARISON.CONTRAST 4714 | 3024 (21%) 1657 (13%) 33 (6%) - types in English train
CONTINGENCY 8 S (0%) 3 (0%) - (0%) - dataset.
CONTINGENCY.CAUSE 1 - (0%) 1 (0%) — (0%) -
CONTINGENCY.CAUSE.REASON | 3344 | 1168 (8%) 2098 (16%) 78 (15%) -
CONTINGENCY.CAUSE.RESULT 2137| 601 (4%) 1389 (11%) 147 (28%) -
CONTINGENCY.CONDITION 1197 1193 (8%) 2 (0%) 2 (0%) -

ENTREL 4133 — (0%) - (0%) - (0%) 4133

ExpANSION 105 26 (0%) 77 (1%) 2 (0%) -

EXPANSION.ALT 210 198 (1%) 12 (0%) — (0%) -
ExpaNSION.ALT.CHOSEN ALT. 241 99 (1%) 142 (1%) - (0%) -
ExPANSION.CONJUNCTION 7817 | 4414 (30%) 3308 (25%) 95 (18%) -
ExpANSION.EXCEPTION 15 13 (0%) 1 (0%) 1 (0%) -
EXPANSION.INSTANTIATION 1403 | 236 (2%) 1134 (9%) 33 (6%) -
EXPANSION.RESTATEMENT 2699| 126 (1%) 2514(19%) 59(11%) -

TEMPORAL 9 8 (0%) 1 (0%) — (0%) -

TEMPORAL.ASYNC 3 3 (0%) - (0%) - (0%) -
TEMPORAL.ASYNC.PRECEDENCE | 1277| 801 (5%) 433 (3%) 43 (8%) -
TEMPORAL.ASYNC.SUCCESSION | 1014| 870 (6%) 125 (1%) 19 (4%) -
TEMPORAL.SYNCHRONY 1499| 1271 (9%) 212 (2%) 16 (3%) -

Total sense labels 33615 | 15500 13450 532 4133

Total relations 32535 | 14722 13156 524 4133

Sense labels that occur more than 15% of the time for each relation type are shown in bold. EntRe has a dedic-

ated sense label. Around 3% of discourse relations have multiple sense labels.

3. "Kemper is using program trading.” He added thar "having one such firm doesn’t
matter. [But],, ., zf[tbere are more, ., then t/oen [it may be important],,,.”

— Explicit, sense CONTINGENCY.CONDITION
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Figure 2.2

Typical system archi-
tecture of a shallow
discourse parser with

sense classification.

G Weiss Learning of text-level discourse parsing

2.2 Existing systems

‘The first complete discourse parser for shallow discourse relations was developed by Lin
etal. [10] and it introduces a typical system architecture, like in Fig. 2.2, which was pur-
sued and upgraded by subsequent work. In this architecture the parser works in a com-
plex multi-step pipeline and consists of multiple components, such as discourse connect-
ive detector, argument extractor for Explicit relations, argument extractor for Impli-
cit relations, argument re-ordering, discourse connective classifier, and sense classifier
for Explicitand Implicitrelations. These components use a fixed connective list to
identify candidates, shallow features, POS tags, and parse trees to first extract and clas-
sify Explicit relations, followed by production and dependency rules and word-pair
features to extract and classify non-Explicit relations. The end output of a complete
system is precisely a list of discourse relations as they are annotated in datasets. Because

of the pipeline-like architecture errors propagate to later processing steps and affect the

performance.
type senses
e [ b \
/ U
| Explicit parser \ external resources
| SS Argl |
| — VerbNet classes
| : Explici L— MPQA Iexicon
! 1 i Classifer !
! complex I Extractor I +— Brown clusters
h pip cline :— word embeddings
l : i (word2vec)
| i 0 Non-Explicit I .
M — h Sense — lists of stopwords,
| L . valid characters, ...
X Non-Explicit parser X
: - 1 provided resources
X hand-engineered features L phrase structure parses
I
\ tokenization/stemming, lower case ,'— dependency parses
\ 7
I [ 1 [
argi arg2 conn punc

Best known systems for English adopt some variation of the typical pipeline archi-
tecture, usually adding even more hand-engineered features and production rules, heur-
istic argument extractors, ensemble of sense classifiers, and separately handling within-
sentence and cross-sentence situations [18, 26]. Best known systems for Chinese modify

the typical pipeline architecture similarly, but also use punctuation marks, a combina-
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tion of classifiers and rules to determine the argument labels, and a seed-expansion ap-
proach to extract them [21, 27]. The performance of best known systems is presented in

Tab. 2.4.

Chinese parser [21] English parser [26]
All Exp Non-E| All Exp Non-E
(A) Only locating conn - 0.6307 - - 09179 -

(B) Only argi/arg2 extr. (partial) | 0.6839 0.5102 0.6238 |0.8053 0.7174 0.8631
(C) Only argi/arg2 extraction 0.4199 0.3181 0.4236|0.4824 0.4395 0.5202
(D) Only sense classification 0.6473 0.7669 0.60520.5354 0.7681 0.3366
(E) Overall parser 0.2660 0.2888 0.2474|0.2777 0.3445 0.2189

In adiscourse parser these steps are usually interconnected and performed by components in a complex pipeline.
If we would formulate them as tasks: (A) We are given a segment of text and need to mark all discourse connectives
with conn. (B) We are given a segment of text and the marked conn and need to mark at least the first word of
each argument with arg1 or arg2. (C) We are given a segment of text and the marked conn and need to mark
the exact location and extent of each argument with ar g1 or arg2. (D) We are given the text spans marked with
argl, arg2, conn, and punc and need to predict the sense label. (E) We are given a segment of text and need

to extract all text spans and predict the sense label.

Sense classtfiers are either stand-alone systems or components of a discourse parser
that perform sense classification. Tab. 2.5 presents a comparison of best performing
methods for sense classification. All previous systems or components for sense classifica-
tion consist of substantially different models for English and Chinese languages, butalso
for handling Explicit, Implicit and other relations types. Most of them are highly
language-dependent and require many external resources. In our FR system, either at
the word level (FR-zh, FR-en) or at the character level (FR-zhch, FR-ench), we pursue

a language-independent approach that differs in many ways, as illustrated in Fig. 2.3.

2.2.1 Sense classifiers for Explicit relations

Explicit relations use discourse connectives (conn) or discourse markers as linguistic
expressions that explicitly signal the presence of a discourse relation between two dis-
course arguments (argl, arg2) [24]. It turns out, that using only a list of connectives
sets a reasonably high baseline for sense classification on English. Adding more syn-
tactic category features helps to mitigate most ambiguities between their discourse or
non-discourse usage [13]. Further improvements can be achieved by also extracting POS

tags and features from the context of connectives [18].
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Table 2.4

Performance in F -
scores of individual
steps of the best dis-
course parsers on
Chinese and English
blind dataset.
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Table 2.5

Comparison of best
systems or compon-
ents for sense classi-
fication for shallow

discourse relations.

Figure 2.3
Simplified system
architecture of a
language-independent
approach for sense

classification.
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[26] [19] [20] [21] [28]  FR system [23]
supported languages en en en,zh  en,zh  en,zh en, zh
supported relation types ALl ALl Non-E ALl ALl ALl
different sense models 6 2 1 5 3 1
external resources 3 2 I 3 2 o
hand-engineered features | yes yes no yes no no
end-to-end trainable no no yes no no yes
tokenized input required required required required required optional

[26] is the best discourse parser for English, [19] the overall best sense classifier for English, [20] the best non-
Explicit sense classifier for English, [21] the best discourse parser for Chinese (with sense classification res-
ults), [28] the second best Explicit sense classifier for Chinese, and our FR system [23] the overall best sense

classifier for Chinese.

senses

Sense Classifier

- only a single model
- for all types and senses
- end-to-end trainable

Best Explicit sense classifiers: For English, the best known Explicit sense classi-
fier [19] uses a logistic regression classifier with several cross-argument similarity features
based on pre-trained word embeddings. For Chinese, our FR-zhch system [23] (previ-
ously called FR-ca) with focused RNNs layer works best, while the second best uses a
SVM on the connectives themselves [28]. Other methods for Chinese Explicit rela-
tions also use a logistic regression classifier and features similar to English [21], but their

performance is slightly worse.
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2.2.2  Sense classifiers for Implicit relations

Implicit relations are missing an explicit discourse connective and their interpretation
needs to rely on the meaning and general knowledge about the world. Half of the ap-
proaches use conventional machine learning techniques and rely on hand-engineering.
Due to the lack of data, early work used patterns to extract Explicit relations from
unlabelled data, and generated examples of synthetic Implicit relations by just remov-
ing the connectives [29]. However, Rutherford & Xue [30] later showed that linguistic
dissimilarity between Explicit and Implicit relations has to be considered to de-
termine in which cases it is safe to do this. Early supervised approaches relied heavily on
lexicons and hand-engineered features derived from syntactic parse trees. Attempts at
using features based on cross-products of words between arguments helped, but they are
not the semantically-related pairs that researchers hoped for [14]. Another attempt that
somewhat helped was to produce millions of features from production rules, depend-
ency rules, and word pairs followed by a feature selection process [17, 31]. Employing
additional millions of binary features from Brown cluster pairs and coreference patterns
improves the results even further [18, 32]. The crucial role of feature selection and cut-
off thresholds indicates that most features are useless and contribute more noise than
signal.

Best Implicit sense classifiers with conventional machine learning: For English, Na-
ive Bayes classifier with millions of features and feature selection proved to be the most
efficient and consistently best-performing conventional machine learning technique for
Implicit relations [31, 32]. For Chinese, the best conventional methods are based on
production rules of arguments [27], however some managed to enhance them with pairs
of words and verbs at specific locations to achieve slightly better performance [21].

On the other hand, methods based on nexral networks seem to be particularly ap-
pealing for processing Implicit relations due to their power of capturing semantic in-
formation in high-dimensional dense vector representations. The general approach is to
first construct vector representations of both discourse arguments, called argument em-
bedding, and use them to perform sense classification. An early approach constructed
argument embeddings as an average of pre-trained word embeddings combined with
Brown clusters [33]. Another approach computed vector representations of discourse
arguments and coreferent entity mentions through a series of compositional operations

over the syntactic parse tree [34]. Braud & Denis [35] performed a comparison of one-
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hot representations, Brown clusters, and pre-trained vector representations on word
pairs from discourse arguments. It showed that pre-trained word embeddings seem to
provide most of the semantic and syntactic information relevant for the task.

Best Implicit sense classifiers with neural networks: Best known approaches with
neural networks somehow construct argument embeddings and then apply a FENN
for classification. For English, the simplest approach computes only an average of pre-
trained word embeddings and achieves state-of-the-art performance [20]. Some apply
CNNs on each argument separately 19, 21], while others use them to produce shared vec-
tor representations of cross-argument word pairs in a multi-task environment with dif-
ferentannotation frameworks [36]. Another approach performs a series of summations
and multiplications of pre-trained word embeddings and embeddings from the parse
tree [28]. For Chinese, our FR-zh system [23] (previously called FR-wa) with focused
RINNs layer works best. The previous state-of-the-art performance was achieved by our
older and more complex two-model system with focused RNNs at word level [22]. It
differs from the FR system [23] by: using two separate models (one for processing Ex-
plicitand one for non-Explicit relations), requires tokenized/segmented input at
the word level, during training only random noise samples are introduced for each dis-
course relation sample, and it uses many fine-tuned parameters for each model and lan-
guage. We build upon this approach, because we want the FR system to be easily train-
able, handle different languages and sets of sense labels, and not depend on external

resources.

2.3 Deep neural networks

Artificial nenral nerworks can be viewed as machine learning technique or universal func-
tion approximator mapping input vectors of real numbers into output vectors that is
loosely modelled after biological brains. It is composed of simple elements called artifi-
cial neurons, which receive input as a weighted sum from other neurons and produce
their output using a non-linear activation function. By composing artificial neurons
into different neural network architectures, we influence how information is being pro-
cessed and which types of tasks they are suitable for. In the process of supervised learning
from labelled data, the backpropagation algorithm is used to find the right weights that
correctly transform the input into the labelled output.

Deep neural networks or deep learning is the name we use for stacked artificial neural
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networks with many layers (i.e. networks composed of four or more layers). Each layer
learns to perform feature extraction and transforms its input data into a slightly more
abstract and composite representation. In end-to-end training setup it is even possible
that the input to the first layer is just raw vectorized high-dimensional data and the out-
put of the last layer the complete low-dimensional solution of a given task. They per-
form automatic feature extraction without human intervention, unlike most conven-
tional machine learning techniques. The extra layers enable a hierarchical composition
of features from lower layers, potentially modelling complex data with fewer units than
a similarly performing shallow artificial neural network (i.e. network with three or less
layers).

Simplest and most common feed-forward neural networks (FFNN) are inappropriate
for most NLP tasks, because text represents a sequence of words with variable length.
Recurrent neural networks (RNNs) [37] or their generalization, recursive neural net-
works [38], solve this by applying the same set of weights over a sequence (temporal
dimension) or a structure (tree-based). A commonly used RNN is the Long short-term
memory (LSTM) layer [39] that is capable of storing information in a memory cell over
extended time intervals. Theoretically, this allows it to extract semantic information
from words, accumulate it, and produce a semantic representation of the whole sen-
tence on the end. A bidirectional LSTM layer [40] applies one LSTM in the forward
and one in the backward direction, and then combines both outputs. It can therefore in-
corporate information from preceding as well as following words in a sentence. Recent
success of deep neural networks in NLP tasks was made possible with breakthroughs
in new neural network architectures (like embeddings, GRU, tensor networks, encoder-
decoder frameworks, attention mechanisms, self-attention), training techniques (like
RMSProp or Adam optimization, dropout regularization, batch normalization), ini-
tialization using unsupervised pre-training on massive datasets (like Skip-gram from
Wordavec, GloVe, FastText), and faster computing resources (parallelization on GPUs).

Overall, deep neural networks seem like a suitable approach for accomplishing our
sense classification task in alanguage-independent manner without any hand-engineered

features or external resources, just like children do.
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In this chapter we first describe the related work on neural embeddings and attention
mechanisms. Then we present the details of our focused RNNss layer for constructing

sentence/argument embeddings.

3.1 Sentence/argument embeddings

An embedding is a mapping from discrete objects with no natural vector representation,
such as words or sentences, into dense vectors of real numbers. It is known that neural
networks train best on dense vectors, where individual dimensions typically have no
inherent meaning and all values as a whole contribute to define an object. Ideally, an
embedding captures some of the semantics of the input by placing semantically similar
inputs close together in the vector space. Embeddings are an important and effective
way for transforming the input for neural networks.

Over the last five years many possible ways of constructing word embeddings or word
representations in a vector space have been proposed. The most commonly used mod-
els are Skip-gram from Word2vec [41] and GloVe [42] which are both unsupervised ap-
proaches based on the distributional hypothesis (words that occur in the same contexts
tend to have similar meanings). Most NLP methods with neural networks depend on
these pre-trained word embeddings trained on huge datasets. Only a few, including our
FR system, train their own task-specific word embeddings.

For NLP classification tasks a typical approach with neural networks is to first map
words into word embeddings, then encode sentences or pieces of text into fixed-length
task-specific vector representations, also called sentence/argument embeddings, and then
apply a FENN for classification. A variation of this basic structure is also followed by all
neural network models for sense classification of Implicit relations, including our FR
system (see Chapter 4). The most distinguishing step is how sentence embeddings are
produced. In our case they are called argument embeddings and it is crucial how much of
the semantic similarity and coherence information related to discourse relations they cap-
ture. For many NLP tasks it has been shown that a simple approach of just computing
the average vector of all word embeddings in a sentence, called Bag-of-Words approach,
gives a strong baseline. The Bag-of-Words approach loses all information on words or-
dering and local features, but preserves a surprising amount of semantic and syntactic
content of discourse relations [20]. A more advanced approach is to use CNNs to ex-

tract local features and perform max-pooling over time. Such an approach still treats all
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features as equally important and loses information about their order [19, 21]. A typ-
ical alternative is to use one or more layers of bidirectional LSTMs that can theoretic-
ally learn a complex aggregation function and preserve all required local information in
a sentence embeddings (see simple LSTM:s baseline in Chapter 5). Unfortunately, be-
cause of the overwhelming complexity of natural language text such approaches require
a high-dimensional sentence embedding representation, huge datasets, and extremely
long training times.

Neural attention mechanisms explore the fact that all words do not equally contrib-
ute to the meaning of a sentence and different parts contain different knowledge. In
general, attention mechanisms allow a model to automatically search for the parts of
the input that are relevant for processing at each step and adjust its focal point over
time. They have become an integral part of models that must capture global depend-
encies or attend to different parts. In particular, given an sequence of word embed-
dings x = [, x@ . x(™ ] and the vector representation of a query vector g, the
attention mechanism computes an alignment score or weight between x and gbya
comparison function £} = F(x(), g), which measures how important x*) is to ¢
on a specific task. These attention weights are then used to scale the input sequence
a® = FWx(® thatis passed into an aggregation function & = B(), which produces
the sentence/argument embedding. Typically the output of an attention mechanism is
just a weighted average of of all word embeddings in x.

Initially attention mechanisms were applied in encoder-decoder frameworks, such as
image caption generation where a CNN encodes an image and the attention mechanism
helps the RNN decode better textual descriptions [43]. For machine translation, the
same concept, but with a bidirectional RNN for encoding, successfully learned to align
words and translate between English and French [44]. Adding the attention mechanism
to a three-layer LSTM model enabled it to successfully perform linearised syntactic con-
stituency parsing [ 45]. Attention mechanism was also found to be suitable for question
answering tasks [ 46], because it gives the model at each answer generating step a fuzzy ac-
cess to its internal memory as a weighted average representation of all memory locations.
End-to-end memory networks [ 47] present a different approach by stacking multiple at-
tention layers and updating the question representation at each step. Since traditional
attention computes a single attention weight for each word based on the word embed-
ding, it cannot distinguish the meanings of the same word in different contexts. This

is why after 2016 many approaches started using multi-head or multi-dimensional at-
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tention weights to attend to multiple query vectors or aspects at once, each one best
describing its meaning specific for a given aspect or context of a task. The concept of self-
attention mechanisms [48], also called intra-attention, calculate the attention weight
at a position in a sequence by attending to all positions within the same sequence. A
sequence-to-sequence (seqzseq) model, called the Transformer [49], used an encoder-
decoder structure that is only composed of stacked self-attention networks, without
using either recurrence or convolution, and achieved state-of-the-art performance on
the machine translation task. On the task of aspect-based sentiment analysis state-of-
the-art performance was achieved by considering the relevance of sentiment words with
respect to the given aspects [50]. They used a content attention mechanism to capture
the important information about given aspects from a global perspective, and a context
attention mechanism to take the order of the words into account.

Our concept of focused RNNs layer at word level was introduced by our older two-
model system [22]. Up to our knowledge, our approach is the first to present two new
concepts and still differs greatly from other attention mechanisms found in related work.
In contrast to previous mechanisms, all attention weights are computed in one pass by a
filtering RNN and not recomputed for individual query vectors when it needs to focus
on different aspects. Instead of computing a single attention weight for each word, the
multi-dimensional approach represents a natural progression of this idea by computing
multiple attention weights for each aspect of each word in parallel. Instead of using
a primitive weighted average to compute sentence/| argument embeddings it applies a
series of RNN, called focused downstream RNNGs, as an aggregation function to accu-
mulate information on different aspects into a series of argument embedding subspaces.
These vectors are concatenated into an argument embedding, so that it can be used for
different NLP tasks, such as sense classification. Our generalization of focused RNNs
layer [23] further improves upon this by: processing any sequence of input symbols
of arbitrary lengths (such as character level inputs), sharing weights between multiple
focused RNNs layers, using a bidirectional LSTM for filtering RNN, and LSTMs for

focused downstream RINNs.
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3.2 Focused RNNs layer

For creating better embeddings we constructed of a novel neural network layer called
focused recurrent neural networks (focused RNN5), the first multi-dimensional RNN-
attention mechanism for constructing sentence/argument embeddings. It is a general
concept that consists of a filtering RNN (RN. lm), a multiplicative filtering/gating
mechanism, and focused downstream RNNs (RNN;). We introduced it in Weiss & Bajec
[22] and published more details in Weiss & Bajec [23].

Fig. 3.1 presents the processing diagram of our focused RNNGs layer with 7 focused
downstream RNNs. Its input can be any sequence of dense vectors we would like to
transform into several vector subspaces. For sense classification, input is a sequence of
word embeddings x = [V, x@) .., x0")] that represents a sentence or argument
of a discourse relation of length 7 we want to encode into an argument embedding
9. First the filtering RNN (RN lm) acts as an multi-dimensional comparison func-
tion and produces for each word embedding a vector of attention weights f(’). The
filtering/gating mechanism multiplies each weight fi(t) with the same word embedding
to produce a weighted word embedding /,zl(-t) for one focused downstream RNN. The
weighted input sequence produced in this way makes it possible for focused downstream
RNNs (RNNj) to specialize or focus on different aspects. Each focused downstream
RINN acts as an aggregation function and accumulates in its internal state a fixed-size
vector representation b,. This represents a projection of the input sequence into an ar-
gument embedding subspace. Finally, all produced vectors &; are concatenated/stacked
into a longer vector y that represents the sentence/argument embedding and can be used
for various NLP tasks, like sense classification.

‘The intuition behind it is that different downstream RNNs can specialize or focus
on different aspects of each text span (e.g. discourse argument) in parallel and independ-
ently of one another. The filtering RNN directs their attention with a vector of atten-
tion weights (multi-dimensional attention mechanism) based on the input sequence it-
self (self-attention mechanism) and without explicit query vectors. In comparison to re-
lated work, the filtering RNN is also capable of learning a much more expressive compar-
ison function than a dot-product with a query vector. Unfortunately, due to the black-
box nature of neural networks it is unclear what these aspects represent. Note that the
concept of focused RINNs layer differs greatly from other neural attention mechanisms.

To the best of our knowledge, it represents the first multi-dimensional RNN-attention
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For each word embeddingx(’) the filtering RNN produces a vector of attention weightsf(’)‘ The filtering mech-
(2)

anism multiplies each weightf,-(t) with the same word embedding to produce a weighted word embedding ;.

Focused downstream RNNs project these into several argument embedding subspaces b, that are concatenated

into an argument embedding y.

mechanism. Differences are described in Section 3.1.

Chosen hyper-parameters of our FR system in Tab. 4.1 indicate that the optimal num-
ber of focused downstream RNNs 7 depends more on the language, than the number
of sense labels or their distribution. If the focused RNNs layer is used multiple times in
aneural network, the same focused RNNs layer with the same trainable matrices should
be applied to each text span. Specifically, the trainable weights of all filtering RNN
should be shared globally to ensure that the attention weights for each text span are
produced by the same mechanism. The same set of focused downstream RNNs (RNN)
should be applied to each text span. This sharing encourages the 7-th downstream RNN
to specialize or focus on a different aspect and project it into the same argument embed-
ding subspace, instead of overfitting on specifics of each text span. Experiments with
our FR system have shown that disabling the sharing of trainable parameters degrades

its performance.
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3.2.1  Filrering RNN
First, for each position (#) of the input sequence the filtering RNN (RNNﬁ Im) pro-

duces a vector of attention weights £(*), where fl-m € [0, 1]. An attention weight can
be interpreted as the relative importance of how important x() is for a specific aspect
or context of a task. Theoretically, any type of RNN can be used for the filtering RNN,
but a bidirectional LSTM layer [40] with the o activation function performs somewhat
better. The LSTM layer [39] is a commonly used RNN that can aggregate and store
information in the internal memory cell ¢*) over extended time intervals. When com-
bined in a bidirectional setting it can capture long-term dependencies from preceding
and succeeding input symbols. The manipulation and usage of the internal memory cell
¢(?) is controlled with an input ¢/, forget gf , and output g° gates. The LSTM layer is

computed as

gy) = o(Wl) + U,f("l))
g(F’) = o(Wpxl?) + Upf('_l))
g9 = o(Woxl®) + Uy f1) (3.1)

o0 = g(Ft) o 4 gﬁt) o U(ch(;) + UC]F(H) )
F = g6 00(c)
where © represents element-wise multiplication (Hadamard product). W, W, W,
We, Uy, Ug, Up, and U are trainable matrices, and (1) and f(-1) are the initial hidden
states. The bidirectional LSTM layer has two sets of formulas from Eq. 3.1 differing only
in the direction of processing the time dimension. The final vector of attention weights

f () is computed as an average of output vectors at matching positions as

A1) £(r)
f(t f f (3.2)
where f () and f ) represent output vectors from both directions. To give the LSTM

layer more flexibility, the attention weights do not have to sum up to 1.

3.2.2  Filtering/gating mechanism

Afterwards we apply a multiplicative filtering/gating mechanism to regulate how much
of the input signal should be passed to individual focused downstream RNNs. For each
position () of the input sequence we have an input vector x(*), usually a word embed-

ding, and a vector of attention weights £(*) from the filtering RNN. We multiply each
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input vector x() with the scalar value of each dimension of the attention weights vector

fi(’) forall 7 € [1, n]. The filtering/gating mechanism is computed as

£ = RNN"(x(0)|x)

alf) = flx0 63

where RN lm( -) is a function representing the filtering RNN, and at(-') the weighted
vector to be passed to the 7-th focused downstream RNN (RNN;). With other words,
one attention dimension scales the inputs of one downstream RNN to direct its atten-

tion to different aspects of the input sequence.

3.2.3  Focused downstream RINNs

The i-th focused downstream RNN (RNN;) receives a sequence of weighted vectors

1(-1), 452) sy @™ in order to project them into an argument embedding sub-

a; = |a
space b;, where 7 € [1,r]. Theoretically, any type of RNN can be used for focused
downstream RNN and we did not observe any substantial gains in using specific RNNs.
To avoid introducing new algorithms we also use an LSTM layer here with the same set
of formulas from Eq. 3.1, this time only in the forward direction of processing. Each
focused downstream RNN acts as an aggregation function and accumulates in its in-
ternal state a fixed-size vector representation of its aspect &,;. For usage in classification
tasks, such as sense classification, all produced vectors &; are concatenated/stacked into
a longer vector y that represents the final sentence/argument embedding. The final sen-

tence/argument embedding is computed as

b; = RNN,(a{"|a)

(3-4)
¥ ="b1lbsll 118,

where RNN;(+) is a function representing the 7-th focused downstream RNN, b, is
its last internal state when the whole sequence is processed, and operator | represents
concatenation of vectors.

These sentence/argument embeddings can be used for various NLD tasks, such as

sense classification.
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In this chapter we present our method for sense classification, called the FR system. We
first present our approach, describe the details for each of the neural network layers it

consists of, and finally describe the training procedure and implementation details.

4.1 Our approach

In this dissertation we focus on the two problems we defined in the Section r.2. Provid-
inga method for the task of sense classification of shallow discourse relations and attempt-
ing to approach it in a language-independent manner.

In Section 2.2, we review existing systems for sense classification. It turns out that all
are build on a complex pipeline of substantially different models. These models require
preprocessing, hand-engineered features, external resources, and extensive fine-tuning
for each language and set of sense labels, but still perform somewhat poorly. Motivated
by the way how children acquire a language we move away from the weaknesses and
complexity of existing systems for sense classification. We approach it from a drastic-
ally different and language-independent perspective. In our opinion such a method for
sense classification needs to consist of a single model to handle all types and specific situ-
ations of discourse relations (no differences between Exp 11 cit and other relation types,
within-sentence and multi-sentence situations, the order of arguments). It should not
perform any preprocessing of its input text spans, nor require any hand-engineered fea-
tures or external resources, not even pre-trained word embeddings.

We accomplished all this in a novel method for sense classification of shallow discourse
relations based on focused RNNs layer, hence the name FR system. It differs from ex-
isting systems in many ways as presented in Tab. 2..5. Because of its generic design it can
be easily adapted to other NLP classification tasks for which we need end-to-end train-
ing and multi-dimensional argument embeddings. We successfully applied almost the
same model hyper-parameters on two substantially different languages and two levels of

input representation. This results in four different settings:
» FR-zh system: FR system for Chinese using word level representations
= FR-zhch system: FR system for Chinese using character level representations
= FR-en system: FR system for English using word level representations

» FR-ench system: FR system for English using character level representations
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In Chapter s, we analyse its performance on Chinese and English in terms of F;-score
and Brier-score, in more detail with per-sense results and confusion matrices for Exp 11~
citand non-Explicit relations, perform a case study of errors on English, analyse its

training and classification time complexity, and perform an ablation study.

4.2 IR system

The FR system is our proposed method for sense classification of shallow discourse rela-
tions. It consists of a single end-to-end trainable neural network model, an input pre-
paration step, and the training procedure with a simple data augmentation technique.
Our model directly follows the sense classification task definition and handles all types
and specific situations of discourse relations. It also requires no feature engineering or
external resources, which makes it language-independent with respect to its inputs and
architecture. It is also the first system for sense classification that can be applied at the
word level (FR-zh, FR-en) and character level (FR-zhch, FR-ench) representation of in-
put text spans. To improve on generalizability and project all text spans into the same
argument embedding space, we apply the same set of layers to each text span, i.e. share
their trainable parameters. Since we are learning task-specific word embeddings from
scratch, we merely introduce a simple data augmentation technique during training.
Because the model is end-to-end differentiable, it can be trained with the backpropaga-
tion algorithm on labelled samples of discourse relations. We published the FR system
in Weiss & Bajec [23].

Fig. 4.1 presents the neural network architecture of our FR system for sense classifica-
tion based on the focused RNNs layer (described in Chapter 3). Our method is given a
discourse relation represented as raw input in the form of four text spans: for two argu-
ments (argi, arg2), an optional connective (conn), and optional punctuation (punc).
In the spirit of end-to-end training we perform no preprocessing and work directly with
the text spans represented as sequences of input symbols at either the word or character
level (w = [wM,w®, ..., w™). For consistency we process all text spans in exactly the
same way, i.e. following the same equations. When necessary, we distinguish variables
with apostrophes (e.g. w for arg1, w' for arg2, & for conn, and &/ for punc). Each
text span is processed independently from others from its beginning till the end, where
(#) is the current position in the time dimension (e.g. #-th word of a text span). First,

the word/char embedding layer learns to transform input symbols into task-specific vec-
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Each of the four text spans w is first mapped into word embeddings x, then independently processed by our fo-
cused RNNs layer to produce an argument embedding y. These are passed into a two-layer FFNN to predict the

probabilities p for sense classification.

tor representations, called word or character embeddings x(*). Second, each sequence of
word embeddings (x = [, x2), ..., x(")is then independently processed by our fo-
cused RNNs layer. The focused RNNs layer consists of a filtering RNN, a multiplicative
filtering/gating mechanism, and several focused downstream RNNs. These project each
sequence of word embeddings into a fixed-size vector representation, called argument
embedding y. Then we concatenate argument embeddings of all text spans (y for argi,
y' for arg2, y' for conn, and y” for punc) into a longer vector ¢ and pass it into a two-
layer feed-forward neural network (FFNN). Its purpose is to predict the probabilities p
of sense labels. Finally, FR system returns the sense label with the highest probability p
as the result of sense classification for the given discourse relation.

We successfully applied the same neural network architecture on Chinese and English
datasets at both the word level (FR-zh, FR-en) and character levels (FR-zhch, FR-ench).
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We do not use any resources provided by the CONLL 2016 Shared Task [16], such as
POS tags, syntactic parse trees, dependency parses, Brown clusters, or pre-trained word
embeddings. Due to the differences between languages and different sense labels, a few
basic hyper-parameters had to be adjusted (see Tab. 4.1). All hyper-parameters and other
design choices for each setting were fit by using the train and valid datasets for both

languages. In Chapter 5 we present detailed evaluation results of each setting.

4.2.1  Word or character embedding layer

‘The first layer of our model transforms input symbols at either word or character level
(w'®)) into task-specific vector representations (x(*)) suitable for neural networks, called
word embeddings [s1] or character embeddings.

FR system at the word level (FR-zh, FR-en): If we process the raw input at the word
level, we use the fact that all datasets provide each discourse relation already in the form
of four text spans already tokenized/segmented into words. We represent them as four
sequences of words or tokens (w(*)), in case a text span is non-contiguous we join all
parts together. Due to practical reasons (i.e. memory consumption and large training
times), we crop/truncate arguments that are too long in such a way that less then 1% of
samples are affected (see the distribution of argument lengths in Fig. 2.1). In contrast
to a typical NLP approach, we perform no stemming or lemmatization, conversion to
lower case, accent stripping, Unicode normalization, removal of stopwords or invalid
chars, or similar. To build a vocabulary of known words, which is needed for this layer
to work, our method initially scans the training dataset. A special out-of-vocabulary
symbol ([00V]) is reserved for unseen words that may be encountered in other datasets.

ER system at the character level (FR-zhch, FR-ench): If we process input at the char-
acter level, we represent each discourse relation in the raw form of four text spans. We
represent them as four sequences of characters (w(*)), these include white-spaces, punc-
tuation, and other symbols. There are far fewer different characters than there are words
and each sentence contains more characters than words. Due to practical reasons (i.e.
memory consumption and large training times), we crop/truncate arguments that are
too long in such a way that less then 1% of samples are affected (see the distribution
of argument lengths in Fig. 2.1). To build a vocabulary of known characters, which is
needed for this layer to work, our method initially scans the training dataset. A special
out-of-vocabulary symbol ([00V]) is reserved for the very improbable event that unseen

characters are encountered in other datasets. There are several benefits of using character-
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level representations over word-level: do not require any tokenisation/segmentation, are
is tolerant to textual errors, do not suffer from out-of-vocabulary issues, work in open-
vocabulary situations, and are able to model different and rare morphological variants
of aword. To avoid unnecessary long sentences, we will use the name word embeddings
to also mean character embeddings when used in a general sense throughout this disser-
tation.

Both word and character embedding layers are computed in the same way. They can
be represented as a lookup table LTy, (+) that maps each input symbol w(®) from the

vocabulary into a fixed-size vector representation, called word or character embedding
t
0,

x() = LTWE(W(’))
K1) = LTwE(w'(’))
§'(8) = LTWE(w"(t))
K = LTWE(w'”(’))

(4.1)

where (¢) is the current position in a text span, w(*) the #-th word of a text span, and
Wy a trainable matrix for the lookup table.

To better illustrate this process, let us consider the example in Section 1.2:
w text: "[But],.., if [there are more buyers], ., then [it may be important],,,,.”

= arg2atword level (|o'| = 5):

nowen o "o,

w' = ["But”,"it", "may", "be", "important”]

= arg?2 at character level (|w'| = 23):

w/ _ [an L T T LY T T U U O A T T O T T T 0 TN O A T R P Y TN T T ]
- > >

t, , 1, ;msa:YS > > €5 :I;m:P>--~

We train these embeddings completely from scratch, but also performed experiments
with pre-trained word embeddings as fixed values or used for initialization. Pre-trained
word embedding lookup tables exist for different languages, such as Skip-gram from
Wordavec [41] or GloVe [42], but experiments did not show any substantial improve-
ments. On the other hand, there are no pre-trained character embeddings and they had
to learn task-specific character embeddings from scratch. These embeddings automat-
ically emerge when training the whole model in an end-to-end manner using the back-
propagation algorithm. Even though some experiments suggest that optimal word em-

beddings are dependent on discourse relations [35], the lack of large amounts of training
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data makes it unrealistic to learn separate word embeddings. We apply the same word or
character embedding layer to all four text spans, i.e. share the trainable matrix W, and

consequently all word embeddings x) are represented in the same vector space.

4.2.2 Focused RNN layer

The focused RNNs layer can analyse different aspects of a sequence of word embeddings
x() and project them into a fixed-size vector representation, called sentence or argument
embedding y. Details are described in Chapter 3 and Weiss & Bajec [23].

In this layer, each text span is represented as a sequence of word embeddings x =
[, 22, ., 0" ]is then independently processed by our focused RNNs layer. The
number of focused downstream RNNis 7 is an important hyper-parameter that depends
on the language. For each word embedding x(*) the filtering RNN (RN lm) first pro-
duces a vector of attention weights f (). The filtering/gating mechanism multiplies each

weight fi(’) with the same word embeddingx(’ ) to produce a weighted word embedding
(

way makes it possible for downstream RNNs (RNN;) to focus on different aspects and

4\, where i € [1,7]. The weighted sequence of word embeddings produced in this
project each one into a fixed-size vector representation in an argument embedding sub-
space b;. Afterwards, these vectors are concatenated into alonger vector y that represents
the final sentence/argument embedding for each text span. Final sentence/argument

embeddings are computed as

y = FR(x)

y = FR(x')

¥ = FR(¥") (+2)
' = FR(2"

where FR(-) is a function representing the focused RNNs layer, x is the sequence of
word embeddings for argi, x’ for arg2, x” for conn, x” for punc, y is the argument
embedding for arg1, y' for arg2, ' for conn, and y” for punc.

We apply the same focused RINNs layer to all four text spans, i.e. share their trainable
weights. This encourages that information on different aspects of text spans is aggregated
into argument embeddings y in the same vector space, instead of overfitting on specifics

of each text span.
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4.2.3  Feed-forward classification layer

All argument embeddings are concatenated into a longer vector ¢ and passed into a two-
layer feed-forward neural network (FFNN) to predict the probabilities p for sense classi-
fication.

First, all argument embeddings are processed by a feed-forward layer with the SReLU
activation function, afterwards another feed-forward layer with the Softmax activation

function is put on top to compute the classification probability distribution p as

m

¢ =l
d = SReLU(Wpe + bp) (43)

p = Softmax(Wpd + bp)

where operator | represents concatenation of vectors, SReLU(-) and Soffmax(-) repres-
ent the corresponding activation functions (details are described below), W, Wp, &5,
and b are trainable parameters of feed-forward layers, y is the argument embedding for
argl,y forarg2,y" for conn,and y” for punc.

The S-shaped rectified linear activation unit (SReLU) [52] consists of a piecewise lin-

ear function with three parts. Itis defined as

[11" + "Z;L(zi - tzL) Z; tzL

SReLU(z;) =< z;

z

IN

th <z, <R (4.4)

R R R R
[z' +a; (zi - tz' ) [z' <z

where #F and 4* are the trainable left threshold and slope, £ and 4¥ are the trainable
right threshold and slope, and the subscript 7 indicates that we allow SReLU to vary in
different dimensions of its input vectors. Due to its construction it is capable of learning
both convex and non-convex functions (see Fig. 4.2), but it is faster to compute than tra-
ditional trigonometric functions. ReLU, LReLU, PReLU, and similar activation func-
tions can be seen as special cases of SReLU. This makes the SReLU activation function
perform somewhat better for sense classification than the convex-only activation func-
tion or without it.

The Softmax activation function or transformation computes a probability vector

over its inputs, like a logistic regression. It is defined as

Softmax(z;) = —=——= (4-5)
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Finally, FR system returns the sense label with the highest probability p as the result

of sense classification for the given discourse relation.

4.3 Implementation of the FR system

The FR system for sense classification is publicly available on http://github.com/gwo/
conlli6st-v3s-focused-rnns/ under the AGPL-3.0+ license. Itis implemented in Python
2.7 using the Keras 1.2.2 library [53]. The Keras library provides a high-level API for devel-
oping neural networks, it is based on Theano and TensorFlow, and is capable of running
on either CPU or GPU. All models and their training procedures are implemented in
Keras.

Training can be performed in an end-to-end manner with backpropagation and any
gradient-based optimization algorithm, because all operations involved in are fully dif-
ferentiable. We chose to use the Adam optimizer [54] because it is well suited for prob-
lems thatincorporate many parameters. To parallelize and speed up the learning process,
training is done in mini-batches of 64 training samples. For efficiency reasons, we unroll
all LSTM layers to the maximal size of each text span and use a fixed mini-batch dimen-
sion. Because text spans have a variable length, we use the masking technique to prevent

unneeded computation. In addition to tracking the loss function on the train and valid
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datasets, we also periodically evaluate the performance of our model on the valid data-
set using the official evaluation methodology of CoONLL 2016 Shared Task. We stop the
training procedure when there is no more improvement on the valid dataset in the last
10 epochs, i.e. ten passes through all the training samples.

Sense classification is a supervised multi-class classification task where a probabilistic
interpretation of results is desired. A suitable training objective is therefore the categor-
ical cross-entropy loss function, also known as multi-class log loss. The goal of training
is to minimize the difference between the computed approximating distribution p and
the one-hot vector encoding of the actual sense label.

We analyse the training and classification time complexity of the FR system in Sec-

tion 5.4.

4.3.1  Data augmentation

During training we perform a simple data augmentation technique to make the model
more robust to noise and improve the learning of task-specific word or character embed-
dings from scratch. We transform each original discourse relation in the training dataset
into 2 positive and 2 negative samples.

For positive samples the sense label remains the same, because we introduce only so
lictle noise that it should not affect the overall meaning. This improves the robustness
of the classifier with respect to noise in data. For positive samples there is a 30% probab-
ility that 10% of symbols in arg1 and arg2 get mutated by each of the following three
functions. Let us illustrate their effects in brackets on an example at word level (it may

be dimportant)and at character level (then):

= duplicate a randomly chosen symbol (it may may be important)(theen)

= insertan out-of-vocabulary symbolatrandom (it may [00V] be important)
(the[00V]n)

= forget a randomly chosen symbol (it be <important) (thn)

For negative samples we use a special no-sense label, because at least a part of them
is always replaced with random symbols from the vocabulary, thus the text itself does
not make any sense and there is no discourse relation anymore. This also improves the

robustness of intermediate representations and counteracts the need to normalize word
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or character embeddings on the whole vocabulary. For negative samples conn and punc
are always replaced with random symbols of same length. Afterwards there is a 70%
probability that arg1 and arg2 get mutated by each of the following three functions
(and in the unlikely event that nothing changed, everything is replaced with random

symbols of maximal length):

= replace argl with random symbols of same length (crash $ Charles 20.9)
(nL3t)

= replace arg2 with random symbols of same length

= swap argland arg2

4.3.2 Hyper—pﬂmmez‘em

We use the same model hyper-parameters on all settings to make it usable almost out-
of-the-box on any language, set of sense labels, or level of input representation. In the
fine-tuning process we started with a reasonably-working setting and attempted to tune
each hyper-parameter with a local grid search individually. All hyper-parameters and
other design choices for each setting were fit by using the train and valid datasets for
both languages. It is interesting to note that attempts at fine-tuning the model hyper-
parameters for different settings did not substantially improve its performance in F,-
scores. Due to the differences in average sentence and token lengths, and number of
sense labels, a few basic hyper-parameters had to be adjusted as described in Tab. 4.1. Due
to practical reasons (memory consumption, large training times), we truncate arguments
that are too long (m, m', m", n") in such a way that less then 1% of samples are affected
(see the distribution of argument lengths in Fig. 2.1). The optimal number of focused
downstream RNN's depends on the language and not on whether it is applied at word or
character level. All other parameters should use the values described in this subsection.

As can be seen from Tab. 4.1 it is sufficient to have the dimensionality of the word
embedding layer only |x()| = 20, of the filtering RNN layer | f()| = 8 for English
and | £¥)| = 12 for Chinese (to match the number of focused downstream RNNs 7),
of individual downstream RNNs |4;| = 20, and of the FFNN hidden layer 80. Our
goal is to predict only sense labels, there are 11 for Chinese and 22 for English, including
partially annotated sense labels and a special no-sense label, which is used for negative

samples.
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Table 4.1

Adjusted basic model
hyper-parameters for
English and Chinese

languages.

G Weiss Learning of text-level discourse parsing

Chinese English

FR-zh  FR-zhch simple-zh | FR-en FR-ench simple-en
Parameter
-max argl length m 500 9200 500 100 400 100
- max arg?2 length m' 500 900 500 100 400 100
- max conn length m" 10 20 10 10 20 10
- max punc length m" 2 2 2 0 0 0
-num. focused RNNs 7 12 12 - 8 8 -
Dimensionality
- word emb. dim. @] 20 20 20 20 20 20
-filtering RNN dim. ~ [f©|| 12 12 - 8 8 -
-focused RNNsdim.  |4;] 20 20 - 20 20 -
- simple LSTMs dim. - - 240 - - 160
- FFNN input dim. ] 960 960 960 480 480 480
- sense labels 2] 11 11 11 22 22 22
Trainable weights
-word emb. layer 295,700 57,180 295,700 |878,360 1,740 878,360
- other layers 120,700 120,700 1,013,772| 68,759 68,759 358,583

FR-zh and FR-en represent FR system at the word level, FR-zhch and FR-ench represent FR system at the character

level, simple-zh and simple-en represents a strong baseline model with simple LSTMs.

Initial values of trainable weights are set according to best practices, as they do not
affect the training outcome substantially. The word embedding layer is therefore ini-
tialized with a uniform random distribution, input transformation of all LSTMs with
Glorot uniform random distribution [55], and transformations of their recurrent state
with an orthogonal matrix, and all FFNN layers and the slopes of the SReLU activation
function again with Glorot uniform random distribution.

Due to many trainable parameters and the lack of training samples, we improve the
generalizability of our model with dropout layers [56] and sharing of trainable paramet-
ers. Dropout is a well-known regularization technique that reduces overfitting in neural
networks by preventing complex co-adaptations in the training dataset. We introduce
dropout layers with 0.3 fraction of entries that will be randomly set to 0 at each update
during training time. We add them after each major layer of our model: after the word
embedding layer x() after the concatenated argument embeddings of focused RNNs
layer ¢, and after the FFNN hidden layer before classification 4. We also performed
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some experiments with dropout and zoneout regularization on recurrent connections
of RNNs, but there were no substantial improvements. Furthermore, we tried to intro-
duce curriculum learning by gradually increasing the length of arguments during train-
ing but again, with no substantial improvements. To improve on generalizability, our
model also performs sharing of trainable parameters for word embeddings layer, filter-
ing RNN, and focused downstream RNN, as described in previous subsections. Ex-
periments have shown that disabling the sharing of trainable parameters degrades the

performance of our model for sense classification.
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In this chapter we evaluate our FR system on Chinese and English. We first analyse its
overall performance in terms of F;-score and Brier-score, then in more detail with per-
sense results and confusion matrices for Explicit and non-Explicit relations, and
perform a case study of errors on English. We also analyse its training and classification
time complexity. To qualitatively assess the contribution of some design choices we also

perform an ablation study.

5.1 Methodology

The CoNLL 2016 Shared Task [16], organized within the CONLL conference, provides
an official task formulation, datasets, and evaluation methodology for sense classifica-
tion of shallow discourse relations. We presented the task definition in Section 1.2 and de-
scribed the Chinese and English datasets in Section 2.1.1and 2.1.2. Related work for sense
classification follows the official methodology and evaluates its performance in terms of
F;-score on these datasets. We also primarily follow the official methodology to be able
to compare the FR system with winning systems of the CoONLL 2016 Shared Task and
strong baselines. We then go a step further and also explore the model and its results
with other evaluation techniques.

Official datasets consist of four datasets for each language. The train dataset is the
largest and contains training samples for model fitting. The valid or development dataset
contains samples used for tuning model hyper-parameters and guiding design decisions.
The test dataset is used for evaluation on the same corpus as train dataset. The blind test
dataset is used for evaluation on a slightly out-of-domain corpus. The official ranking is
based on the blind dataset, because it evaluates the robustness of the model and its per-
formance in practical situations. The last dataset is called blind dataset, because it was
hidden from the participants of the competition. The participants had to deploy their
complete systems on a remote evaluation system that was disconnected from the internet
when computing the official ranking. The official datasets also provide additional layers
of automatic linguistic annotation processed with state-of-the-art NLP tools (POS tags,
syntactic parse trees, and dependency parses), but in our approach we ignore this inform-
ation.

In general, a statistical approach for comparing the performance of different meth-
ods is to evaluate them on a large set of datasets, compute the critical difference between

scores, and test the statistical significance of results. Unfortunately, for sense classifica-
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tion there are only two sufficiently large and complete datasets available and even those
are for two different languages, one for Chinese and one for English. Most other meth-
ods are also language-dependent, so we only have one performance measurement for
most methods. It is therefore impossible to talk about the significance of our results,
but we can still explore the method in the following ways.

F|-scoreis the primary metric for evaluating the performance of sense classifiers (higher
score is better). The official ranking for CONLL 2016 Shared Task is based upon the over-
all results on all relations (A11) on the blind dataset. F;-score is based on the number of
discourse relations where the predicted sense label and actual sense label match exactly.
In cases where the actual discourse relation is annotated with two or more sense labels
the predicted sense label must match one of these sense labels to be considered correct.
In cases where the actual sense label is only partially annotated, the predicted sense must
match the partially annotated sense (although the blind datasets do not contain partial
annotation). F;-score calculates the harmonic mean of precision-score P and recall-score

Ras

P-R
Fi=257x
- > True positives
"> True positives + Y, False positives (5-1)
R > True positives

=Y True positives + Y False negatives

First, we analyse the overall results in F-score on the valid, test, and blind datasets for
all (A11), Explicit (Exp), and non-Explicit (Non-E) relations. These are computed
as multi-class micro-averaged F;-score of all sense labels. Because we have a prediction
for each discourse relation and iterate through all sense labels, it can be shown that the
F,-score is the same as classification accuracy. Next, we analyse the per-sense resultsin F,-
score on the valid, test, and blind datasets for Explicit and non-Explicit relations.
These enable us to compare the performance for each sense label with other methods
and also how it changes for Explicit and non-Explicit relations.

With the Brier-score we perform an additional evaluation to determine the error of
probabilistic predictions p produced by our method (lower score is better). Namely, the
F,-score evaluates only the discrete outcomes (only one sense label is predicted and it is
either correct or not). On the other hand, our method internally assigns probabilities

to all sense labels and Brier-score is an appropriate measure to evaluate their correctness.

sI
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Because related work did not evaluate Brier-scores, we can only compare our method
with strong baselines. Brier-score calculates the mean squared error/difference between

the predicted probabilities p and actual outcomes o over all N sense labels as

;] X
Brier = -Z(pj -0;)? (5.2)
=

We use a confusion matrix to explore the results of our model in more detail. Itis a
matrix that counts the number of occurrences, where each row represents a predicted
sense label, and each column the actual sense label. The diagonal of a confusion matrix
counts the number of occurrences the predicted and actual sense label matched, while
off-diagonal elements count the errors. A confusion matrix is typically used to identify
the common types of mistakes a method makes. Because of the convenient location
we also add to the matrix the total number of occurrences, precision-score P, and recall-
score R. Because the distribution of sense labels is highly imbalanced, any normalization
attempts would skew the results and therefore we do not attempt to visualize it as a
heatmap.

We continue with a case study of particular errors on English. We provide a few ex-
amples of discourse relations with a particular sense label and display some probabilities
produced by our method. This way the reader can get an even better understanding of
the errors and evaluate by himself how difficult they really are.

In Section 5.4 we analyse the training and classification time complexiry of the FR sys-
tem. First we determine the theoretical time complexity, then we visualize the empirical
time complexity in different settings.

The most important and unique characteristic of our FR system is that it can be used
almost out-of-the-box on any language, set of sense labels, or level of input represent-
ation. To confirm its language-independence we apply almost the same model hyper-
parameters on two substantially different languages. On Chinese, as an example of a less
supported language, and on English, as the language with most research and advanced
language technologies. To qualitatively assess the contribution of some design choices

we also perform an ablation study.
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5.2 Results on Chinese

We compare our FR system for sense classification with the following winning systems
of the CONLL 2016 Shared Task [16] and strong baselines for Chinese:

= FR-zb: Our FR system for Chinese at the word level (previously FR-wa).
= FR-zbch: Our FR system for Chinese at the character level (previously FR-ca).

= Weiss € Bajec [22 ] The previous overall best sense classifier for Chinese. This is
our older two-model system that received the first award by a large margin on the
CoNLL 2016 Shared Task. It uses two separate models with focused RNNs at
word level, many fine-tuned parameters, and trains with random noise samples,

but uses no external resources.

Wang € Lan [21] The best discourse parser for Chinese (with sense classification
results). For Explicit relations it uses a logistic regression classifier on many
hand-engineered features based on connectives and their context, and for non-
Explicit relations production rules and features with word and verb pairs at

specific locations. It uses POS tags, parse trees, and word categories.

Schenk et al. [28 ] The second best Explicit sense classifier for Chinese. For
Explicit relations it uses a SVM classifier only on the connectives, and for non-
Explicitrelationsa series of summations and multiplications of word and parse

tree embeddings. It uses pre-trained word embeddings and parse trees.

random-zb: A minimal baseline model for Chinese that returns sense labels uni-

formly at random.

majority-zh: A minimal baseline model for Chinese that returns only the most

common sense label (i.e. CONJUNCTION).

simple-zh: A strong baseline model for Chinese similar to our FR system, but with
a single 240-dimensional LSTM layer for each text span instead of the focused
RNNSs layer. Due to it having more than three times as many trainable weights
than our model (see Tab. 4.1), it should be far more powerful. It trains with our

data augmentation, but uses no external resources.
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valid test blind
Models All Exp Non-E| All Exp Non-E| All Exp  Non-E
FR system
- word level (FR-zh) 0.7520 0.9351 0.70590.7363 0.9375 0.6825| 0.7396 0.7597 0.7322
- char level (FR-zhch) 0.7415 0.9351 0.6928|0.7253 0.9271 0.6713|0.7477 0.8463 0.7114
Prior work
- Weiss & Bajec [22] (older) | 0.7206 0.9351 0.6667|0.7011 0.9271 0.6407 | 0.7292 0.7898 0.7068
- Wang & Lan [21] 0.7807 0.9610 0.73530.7701 0.9424 0.7242| 0.6473 0.7669 0.6052
- Schenk et al. [28] 0.7572 0.9610 0.70590.7701 0.9634 0.7187| 0.6373 0.8039 0.5759
Baseline models
- random-zh 0.0992 0.0909 0.1013|0.1121 0.0729 0.1226| 0.0995 0.0883 0.1036
- majority-zh 0.5770 0.4156 0.61760.6110 0.5208 0.6351| 0.5788 0.2880 0.6860
- simple-zh 0.7363 0.9221 0.68950.7231 0.8854 0.6797| 0.6921 0.7968 0.6534
Ablation study
- word level & wordavec 0.7493 0.9481 0.6993|0.7297 0.9479 0.6713| 0.7373 0.7827 0.7205
- word level & -1 augm. 0.7285 0.9481 0.67320.7429 0.9271 0.6936| 0.7120 0.7951 0.6814
- word level & =1 shared 0.7389 0.9610 0.6830(0.7297 0.9583 0.6685| 0.7301 0.7915 0.7075
- word level & = dropout | 0.7076 0.9221 0.6536(0.7319 0.9271 0.6797 | 0.6782 0.7792 0.6410
- word level & GRU 0.7076 0.9221 0.65360.7121 0.9167 0.6574| 0.7211 0.7138 0.7238
- word level & dim.x2 0.7337 0.9610 0.6765|0.7473 0.9583 0.6908 | 0.7192 0.7809 0.6964
- word level & dim.+2 0.7232 0.9481 0.6667|0.7121 0.9479 0.6490| 0.7368 0.7739 0.7231
\nrmn_nﬁ_wml_mcma. 0.7180 0.8961 0.67320.7253 0.9271 0.6713| 0.7454 0.7862 0.7303
- char level & = shared 0.7363 0.9481 0.68300.6923 0.9167 0.6323| 0.6787 0.8357 0.6208
2 m 2 . 9 =
5553823
LEeLis2gE
X TS 8 eg sl
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K 38528528

We first evaluate the performance of all systems in terms of the overall results in F-

score in Tab. s.1and in Brier-score in Tab. 5.2 on Chinese datasets. F;-score is the primary

metric for evaluating the performance of sense classifiers (higher score is better), so we

can compare it with reported results of prior work and strong baselines. Brier-score is

used to evaluate the error of probabilistic predictions (lower is better) that was not used

by prior work, so we can only compare our method with strong baselines.
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The official ranking for CONLL 2016 Shared Task is based upon the overall results in

Fy-score for all relations (A11) on the blind dataset, which is presented in Tab. s.1. Both

our systems (FR-zh, FR-zhch) outperform all other systems on the blind dataset. The

FR-zhch system even outperforms our older two-model system [22] by 2.5% for all rela-

tions. In comparison to other systems not using the focused RNNs layer, it improves by

even more than 8%. One would expect that more complex and fine-tuned systems for a

language outperform systems with only a single end-to-end trainable model. For the FR-
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zhch system the performance increase comes from the much higher results for Expli-
cit relations (Exp). It even outperforms the previous best system by Schenk et al. [28],
which uses a simpler model for Explicit relations. Having a simpler model might be
beneficial in Chinese, because there are far fewer Explicit training samples available.
For non-Explicit relations, it is interesting to note that the performance of most ap-
proaches on the blind dataset is far below the majority-zh baseline. This clearly suggests
that Schenk et al. [28] and Wang & Lan [21] overfit the training domain and style of
the CDTB corpus. On the other hand, both our systems (FR-zh, FR-zhch) capture the
target concepts better. The FR-zh system even outperforms our older two-model sys-
tem [22] by 3.6% for non-Explicitrelations.

Analog to the official ranking, it makes sense to analyse the overall results in Brier-score
for all relations (A11) also on the blind dataset, which is presented in Tab. 5.2. Both our
systems (FR-zh, FR-zhch) again outperform all strong baselines on the blind dataset.
However, the ranking does not stay the same, because we are now evaluating the error
of probabilistic predictions. Now the FR-zh system performs slightly better than FR-
zhch for all relations, mainly because of its performance for non-Explicit relations
that occur far more often.

We also perform an ablation study to qualitatively assess the contribution of some
design choices (results are in bottom of Tab. 5.1 and Tab. 5.2). First one, combines the
FR-zh system with pre-trained word embeddings (& wordzvec). We initialize the word
embeddings layer with 300-dimensional embeddings produced by the Skip-gram model
from Wordavec [41] on the Gigaword simplified Chinese dataset. Second, uses the FR-
zh system without our simple data augmentation technique (& augm.) and performs
training only on positive samples. Third, uses the FR-zh system without sharing of train-
able parameters (& - shared). Forth, uses the FR-zh system without dropout regular-
ization technique (& = dropout). Fifth, replaces in the FR-zh system all LSTMs with
Gated-recurrent units (GRUs) [57] in the focused RNNs layer (& GRU). Sixth, uses
the FR-zh system with all dimensions multiplied by 2 (& dim.x2). Seventh, uses the
FR-zh system with all dimensions divided by 2 (& dim.+2). Eight, uses the FR-zhch
system without our simple data augmentation technique (& — augm.). Ninth, uses
the FR-zhch system without sharing of trainable parameters (& - shared). The results
indicate that the design choices for both of our systems (FR-zh, FR-zhch) are near a
local optimum. Contrary to expectations, introducing pre-trained word embeddings (&

wordavec) does not seem to substantially improve the performance. This suggests that
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the same semantic and syntactic information relevant for sense classification on Chinese
can also be learned from scratch. Disabling either sharing of trainable parameters (& =
shared) or dropout regularization technique (& = dropout) notable degrades the per-
formance on non-Explicit relations. Disabling data augmentation technique (&=
augm.) only degrades the performance when used at word level.

Previous studies [30] suggest that there is a substantial difference between Expli-
cit and non-Explicit relations, thus we continue with a detailed analysis of both
situations on Chinese datasets. In Tab. 2.2 we see that Chinese datasets are small, have
a highly imbalanced distribution of sense labels, and many sense labels only have a few
training samples. These probably act more as noise than contribute to the learning. Mer-
ging them into one target class for sense classification would reformulate the task, buton
the other hand probably improve the overall performance. We reject the idea of manu-
ally manipulating with target classes, because it is in conflict with our ambition of not

using any hand-engineering.

5.2.1 Analysis of Explicit relations

We continue with an analysis of per-sense results in F;-score in Tab. 5.3 and confusion
matrix in Tab. 5.4 for Explicit relations on Chinese datasets. Per-sense results enable
us to compare the performance for each sense label with other methods. Confusion
matrix allows us to explore the results and identify the common types of mistakes made.

We analyse the per-sense results in F-score for Explicit relations primarily on the
blind dataset, which is presented in Tab. 5.3. As expected, the results on the valid and
test datasets are better because they originate from the same CDTB corpus as the train
dataset. On the other hand, on the slightly out-of-domain blind dataset we see a de-
gradation of more than 10% for all methods for two most common sense labels (Con-
JUNCTION and ExPANSION). This suggests that they are realized differently in the blind
dataset, and manual feature engineering to disambiguate their meaning could substan-
tially improve the results. Nevertheless, we see that the FR-zhch system achieves the best
results with a large margin for more common sense labels in the train dataset, especially
CoNJUNCTION, CONTRAST and PURPOSE. The FR-zh system still achieves competit-
ive overall performance. Our strong baselines model simple-zh performs surprisingly
well for CoNpITIONAL. The strength of incorporating linguistic knowledge and hand-
engineered features into a system, as in Wang & Lan [21], is reflected in better perform-

ance for sense labels with only a few samples, such as ALTERNATIVE and PROGRESSION.
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valid test blind

Sense label FR-zh FR-zhch | FR-zh FR-zhch|FR-zh FR-zhch [22] [21] [28] simple-zh
ALTERNATIVE | — - - - 0. 0. 0. 0.1000 0.0952 0.
CAUSATION 1.0000 1.0000 |1.0000 1.0000 |[0.8850 0.9524 0.9434 0.9216 0.9524 0.9434
CoNDITIONAL | 1.0000 0.9091 |0.8000 0.8000 |0.7294 0.8077 0.8454 0.8791 0.8866 0.9231
CoNJUNCTION | 0.9275 0.9412 |0.9615 0.9495 |0.7930 0.8515 0.7726 0.7324 0.7711 0.7673
CONTRAST 0.8750 0.8750 |1.0000 0.8571 |0.7482 0.8452 0.7564 0.7245 0.7571 0.7639
ENTREL - - - - - - - - - -
EXPANSION 1.0000 1.0000 |[0.8000 0.9333 |[0.5714 0.7500 0.7727 0.7556 0.7907 0.7273
PrROGRESsION | 0. 0. 0. 0. 0. 0.3333 0. 0.3333 0.2857 0.3333
PURPOSE 1.0000 1.0000 |[1.0000 1.0000 |[0.6667 0.9474 0.8182 0.9000 0.9000 0.8571
TEMPORAL 0.9412 0.9412 |0.9091 0.9143 |0.8143 0.9259 0.8659 0.8591 0.9299 0.8774
Overall 0.9351 0.9351 |0.9375 0.9271 |0.7597 0.8463 0.7898 0.7669 0.8039 0.7968

Sy
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We also explore the confusion matrix for Explicit relations from the FR-zh system

on the blind dataset, which is presented in Tab. 5.4. Because the confusion matrices for

both our systems (FR-zh, FR-zhch) look similar, we present only one of them. Two

sense labels (ENTREL and PROGRESSION) occur less than 5 times, so we merged their

corresponding rows and columns to make the confusion matrix clearer. The highest
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Table 5.4

Confusion matrix for
Explicitrelations
from the FR-zh system
on Chinese blind
dataset. Bold indicates
counts that occur at
least one-fourth of the

time.
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recall-score is achieved by CONJUNCTION, because our method has a bias to classify
most samples with this sense label. This is probably an artifact of CONJUNCTION be-
ing the most common sense label in the train dataset (see Tab. 2.2). Unfortunately, it
also means that its precision-score is lower. It is interesting to note, that CONTRAST
and TEMPORAL are confused with CONJUNCTION more than one-fifth of the time. The
highest precision-score is achieved for CONTRAST, probably because discourse connect-

ives for CONTRAST have only one meaning.

5.2.2  Analysis of non-Explicit relations

We continue with an analysis of per-sense results in F;-score in Tab. 5.5 and confusion
matrix in Tab. 5.6 for non-Explicit relations on Chinese datasets. Non-Explicit
relation types are Implicit, AltLex, and EntRel (described in Section 2.1).

We analyse the per-sense results in ¥\ -score for non-Explicit relations primarily on
the blind dataset, which is presented in Tab. 5s.5. The distribution of sense labels for
Chinese non-Explicit relations is highly imbalanced. The most common sense, CON-
JUNCTION, occurs approximately 5-times more frequently than the second and the third
sense label. Therefore, the overall results are highly correlated with the performance on
ConyuncTIoN. All systems based on focused RNNS layer perform much better on
the sense CONJUNCTION and therefore substantially outperform other systems. In ad-
dition to that, the FR-zh system performs slightly better on CONTRAST and ExpAN-
SION, which makes it the overall best performing system. Although the train dataset
contains many samples of EntRe relations, our method seems incapable of automatic-
ally learning the related concept of coreferent entity mentions. On the other hand, the
hand-engineered system by Wang & Lan [21] outperforms on two very low-frequent
sense labels, ALTERNATIVE and PROGRESSION, but fails on most more-frequent ones,
especially CausaTION and CONJUNCTION. Overall, the performance of our systems
improves on state-of-the-art, despite using only a single end-to-end trainable model, no
hand-engineered features or external resources.

We also explore the confusion matrix for non-Explicit relations from the FR-zh sys-
tem on the blind dataset, which is presented in Tab. 5.6. Because the confusion matrices
for both our systems (FR-zh, FR-zhch) look similar, we present only one of them. Two
sense labels (ALTERNATIVE and PROGRESSION) occur less than 5 times, so we merged
their corresponding rows and columns to make the confusion matrix clearer. The highest

recall-score is achieved by CONJUNCTION, because our method has a bias to classify most
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samples with this sense label. This is probably an artifact of CONJUNCTION being by far

the most common sense label in the train dataset (see Tab. 2.2). Unfortunately, it also

means that its precision-score is lower. It is interesting to note, that all sense labels are

almost always confused with CONJUNCTION when discourse connectives are not expli-

citly expressed.
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Results on English

We compare our FR system for sense classification with the following winning systems
of the CONLL 2016 Shared Task [16] and strong baselines for English:

FR-en: Our FR system for English at the word level (previously FR-wa).
FR-ench: Our FR system for English at the character level (previously FR-ca).

Mibaylov € Frank [19]- The best overall sense classifier for English. For Expli-
cit relations it uses a predefined list of connectives, and for non-Explicit rela-
tions two logistic regression classifiers on argument embeddings and several cross-

argument similarity features. It uses pre-trained word embeddings and POS tags.

Oepen et al. [26] The best discourse parser for English. It uses a complex pipeline

of fine-tuned models with hand-engineered features and production rules.

Rutherford € Xue [20 ] The best non-Explicit sense classifier for English. It
uses a pooling function on pre-trained word embeddings of each argument fol-

lowed by a three-layer FFNN. It is specialized only for non-Explicit relations.

random-en: A minimal baseline model for English that returns sense labels uni-

formly at random.

majority-en: A minimal baseline model for English that returns the most com-

mon sense label (i.e. ExpANSION.CONJUNCTION).

simple-en: A strong baseline model for English similar to our FR system, but with
a single 160-dimensional LSTM layer for each text span instead of the focused
RNNSs layer. Due to it having more than three times as many trainable weights
than our model (see Tab. 4.1), it should be far more powerful. It trains with our

data augmentation, but uses no external resources.

We first evaluate the performance of all systems in terms of the overall results in F,-

score in Tab. 5.7 and in Brier-score in Tab. 5.8 on English datasets. F,-score is the primary

metric for evaluating the performance of sense classifiers (higher score is better), so we

can compare it with reported results of prior work and strong baselines. Brier-score is

]
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valid test blind

Models All Exp Non-E| All Exp Non-E| All Exp  Non-E
FR system
- word level (FR-en) 0.6072 0.9059 0.3445|0.5819 0.8959 0.2962| 0.5211 0.7680 0.3109
- char level (FR-ench) 0.6016 0.9014 0.3378]0.5550 0.8753 0.2636| 0.5062 0.7230 0.3216
Prior work
- Mihaylov & Frank [19] |0.6413 0.9120 0.4032|0.6331 0.8980 0.3919|0.5460 0.7820 0.3451
- Oepen etal. [26] 0.6570 0.9135 0.43120.6062 0.9013 0.3376| 0.5356 0.7717 0.3384
- Rutherford & Xue [20] - - 04032 - - 03613 - - 0.3767
Baseline models
-random-en 0.0717 0.0653 0.0774|0.0724 0.0857 0.0602 | 0.0736 0.0683 0.0781
- majority-en 0.2202 0.2807 0.1669|0.2088 0.2701 0.1530| 0.2738 0.3903 0.1746
- simple-en 0.6229 0.9120 0.3685|0.5643 0.8796 0.2774| 0.5012 0.7752 0.2680
Ablation study
- word level & wordavec |0.6009 0.9029 0.33510.5886 0.8970 0.3080| 0.5178 0.7662 0.3063
-word level & —raugm. | 0.5788 0.8816 0.3124|0.5618 0.8764 0.2754| 0.5062 0.7554 0.2940
- word level & —1shared | 0.5746 0.8983 0.2897|0.5401 0.8839 0.2270| 0.4673 0.7482 0.2282
- word level & = dropout | 0.5938 0.8938 0.3298|0.5747 0.8894 0.2883 | 0.4773 0.7518 0.2435
- word level & GRU 0.5859 0.8832 0.3244|0.5566 0.8677 0.2734| 0.5079 0.7482 0.3032
- word level & dim.x2 0.6051 0.9105 0.33640.5659 0.8774 0.2823 | 0.4806 0.7338 0.2649
- word level & dim.+2 0.5952 0.8907 0.33510.5711 0.8753 0.2942 | 0.5029 0.7428 0.2986
- char level & = augm. 0.5845 0.8968 0.3097|0.5385 0.8753 0.2320| 0.5070 0.7230 0.3231
- char level & - shared 0.5881 0.8892 0.3231|0.5421 0.8590 0.2537| 0.5021 0.7194 0.3170

g
X F S % ew & e
~ T P O s L £ g X
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used to evaluate the error of probabilistic predictions (lower is better) that was not used

by prior work, so we can only compare our method with strong baselines.

The official ranking for CONLL 2016 Shared Task is based upon the overall results in

F,-score for all relations (A11) on the blind dataset, which is presented in Tab. 5.7. Both

our systems (FR-en, FR-ench) do not fall a lot behind state-of-the-art performance on

blind dataset by 4.6%, despite not using any linguistic knowledge or external resources.

Asexpected, Explicitrelations are classified better by Mihaylov & Frank [19], who use
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a carefully defined list of discourse connectives and features connected with them. The

FR-en system performs much better than FR-ench system for Explicit relations and

consequently achieves higher scores. Because it works at the word level, it can easily learn

more meaningful word embeddings for representing connectives. For non-Explicit

relations, we see that that features used by Mihaylov & Frank [19], which are based

on pre-trained word embeddings and cross-argument similarity, overfit the training do-

main and style of PDTB corpus. This method does not perform much better as ours on
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the blind dataset. On the other hand, the specialized system by Rutherford & Xue [20]
achieves better results. It uses a Bag-of-Words approach based on pre-trained word em-
beddings and the results suggest that the target concepts for the top six most common
sense labels for English can be captured in word embeddings. However, substantially
lower F-scores of all competing systems for English than for Chinese indicate that sense
classification on English is much more difficult than on Chinese. Differences in the size
of datasets, grammar, sense labels, and especially their distribution highly affect the per-
formance.

Analog to the official ranking, it makes sense to analyse the overall results in Brier-
score for all relations (A11) also on the blind dataset, which is presented in Tab. 5.8. It
is surprising that our strong baseline model simple-en performs in terms of Brier-score
much better on Explicit relations and consequently for all relations. This means that
itis capable of predicting the probabilities more correctly than both our systems (FR-en,
FR-ench), but it often assigns the highest probability to the wrong sense label.

We also perform an ablation study to qualitatively assess the contribution of some
design choices (results are in bottom of Tab. 5.7 and Tab. 5.8). First one, combines the
FR-en system with pre-trained word embeddings (& wordavec). We initialize the word
embeddings layer with 300-dimensional pre-trained word embeddings produced by the
Skip-gram model from Wordavec [41] on the Google News English dataset. Second,
uses the FR-en system without our simple data augmentation technique (& augm.)
and performs training only on positive samples. Third, uses the FR-en system without
sharing of trainable parameters (& - shared). Forth, uses the FR-en system without
dropout regularization technique (& = dropout). Fifth, replaces in the FR-en system all
LSTMs with Gated-recurrent units (GRUs) [57] in the focused RNNs layer (& GRU).
Sixth, uses the FR-en system with all dimensions multiplied by 2 (& dim.x2). Seventh,
uses the FR-en system with all dimensions divided by 2 (& dim.+2). Eight, uses the
FR-ench system without our simple data augmentation technique (& = augm.). Ninth,
uses the FR-ench system without sharing of trainable parameters (& = shared). The res-
ults indicate that the design choices for both of our systems (FR-en, FR-ench) are near a
local optimum. Contrary to expectations, introducing pre-trained word embeddings (&
wordavec) does not seem to substantially improve the performance. This suggests that
the same semantic and syntactic information relevant for sense classification on English
can also be learned from scratch. Disabling either sharing of trainable parameters (& =

shared) or dropout regularization technique (& = dropout) degrades the performance,
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especially for non-Explicit relations at word level. Disabling data augmentation tech-
nique (&= augm.) only degrades the performance when used at word level.

Previous studies [30] suggest that there is a substantial difference between Expli-
cit and non-Explicit relations, thus we continue with a detailed analysis of both
situations on English datasets. In Tab. 2.3 we see that the sense labels on English are
unevenly distributed. Some sense labels, like EXPANSION.EXCEPTION, are only present
in the train dataset and no other dataset, while 6 others contain merely a few training
samples and are not even present in the blind dataset. These probably act more as noise
than contribute to the learning. Merging them into one target class for sense classifica-
tion would reformulate the task, but on the other hand probably improve the overall
performance. We reject the idea of manually manipulating with target classes, because

itis in conflict with our ambition of not using any hand-engineering.

5.3.0  Analysis of Explicit relations

We continue with an analysis of per-sense results in F;-score in Tab. 5.9 and confusion
matrix in Tab. 5.10 for Explicit relations on English datasets. Per-sense results enable
us to compare the performance for each sense label with other methods. Confusion mat-
rix allows us to explore the results and identify the common types of mistakes a method
makes.

We analyse the per-sense results in F-score for Explicit relations primarily on the
blind dataset, which is presented in Tab. 5.9. As expected, the results on the valid and
test datasets are better, because they are from the same PDTB corpus as the train dataset.
Although the train dataset contains many samples for sense labels CompaRISON.CON-
TRAST, EXPANSION.INSTANTIATION and TEMPORAL.SYNCHRONY, we see a degrada-
tion of more than 15% in F;-score for all systems on the slightly out-of-domain blind
dataset. This suggests that they are realized differently in the blind dataset, and manual
feature engineering to disambiguate their meaning could substantially improve the res-
ults. The FR-en system seems to learn the concept of sense label CONTINGENCY.CAU-
SE.REASON and TEMPORAL.SYNCHRONY slightly better than most other methods. Itis
competitive for COMPARISON.CONTRAST and ExPANSION.CONJUNCTION, but falls
behind in performance for other sense labels.

We also explore the confusion matrix for Explicit relations from the FR-en system
on the blind dataset, which is presented in Tab. 5.10. Because the confusion matrices for

both our systems (FR-en, FR-ench) look similar, we present only one of them. Six sense
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valid test blind

Sense label FR-en FR-ench|FR-en FR-ench |[FR-en FR-ench [19] [26] simple-en
CoMPARISON.CONCESSION 0.1250 0.2857 |0.3810 0.2500 |0.1000 0.0260 0.2529 0.1687 0.1463
CoMPARISON.CONTRAST 0.9412 0.9532 |0.9345 0.9250 [0.3680 0.3662 0.3934 0.3680 0.3559
CONTINGENCY.CAUSE.REAsON [0.8354 0.7500 |0.9449 0.9194 |0.8000 0.7200 0.7037 0.7719 0.8438
CoNTINGENCY.CAUSE.REsULT [0.9143 0.8108 |0.9589 0.8462 |0.8462 0.5556 0.9167 0.9167 0.8462
CONTINGENCY.CONDITION 0.9333 0.9451 |0.8793 0.8926 |0.9455 0.9455 0.9455 0.9630 0.9811
ENTREL - - - - - - - - -
EXPANSION.ALT 0.8571 0.6667 |0.8000 0.3810 |0.6250 0.5263 0.6667 0.6667 0.6667
ExPANSION.ALT.CHOSEN ALT. 0.9091 0.9091 |1.0000 0.8000 |- - - - -
ExpaNSION.CONJUNCTION 0.9651 0.9704 |0.9503 0.9474 |0.9628 0.9598 0.9650 0.9652 0.9585
ExraNsioN.EXCEPTION - - - - - - - - -
EXPANSION.INSTANTIATION 1.0000 0.9474 |1.0000 1.0000 |0.8000 0.8000 0.8000 0.8000 0.8000
EXPANSION.RESTATEMENT 0.2500 0.5000 |0.2222 0.6000 |[0.2857 O. 0.5000 0.4444 0.5000
TEMPORAL.ASYNC.PRECEDENCE | 0.9592 0.9375 |0.9211 0.9600 |0.9351 0.8205 0.9620 0.9487 0.9487
TEMPORAL.ASYNC.SUCCESSION |0.8539 0.7816 |0.8148 0.6863 |0.8571 0.8288 0.8522 0.8319 0.8739
TEMPORAL.SYNCHRONY 0.8171 0.8250 |0.7473 0.7066 |0.6885 0.6055 0.6838 0.6545 0.6296
Overall 0.9059 0.9014 |0.8959 0.8753 |0.7680 0.7230 0.7820 0.7717 0.7766
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Table s.10

Confusion matrix for
Explicitrelations
from the FR-en sys-
tem on English blind
dataset. Bold indicates
counts that occur at
least one-fourth of the

time.
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labels (ENTREL, ExPANSION.ALT, EXPANSION.ALT.CHOSEN ALT., EXPANSION.EX-
CEPTION, EXPANSION.INSTANTIATION, EXPANSION.RESTATEMENT) occur less than
S times, so we merged their corresponding rows and columns to make the confusion
matrix clearer. A perfect recall-score and high precision-score is achieved by CONTIN-
GENCY.CONDITION. Second highest recall-score and high precision-score is achieved by
ExpANS1ON.CONJUNCTION, which is the most common sense label in the train data-
set (see Tab. 2.3) and contributes a lot to the overall performance. It is interesting to
note, that CoMPARISON.CONCESSION is most of the time confused with COMPAR-
1SON.CONTRAST. A highest two precision-scores with a noticable amount of samples
are achieved for TEMPORAL.ASYNC.PRECEDENCE and TEMPORAL.ASYNC.SUCCESS-
ION, probably because discourse connectives for the temporal ordering of events have

only one meaning.

5.3.2  Analysis of non-Explicit relations

We continue with an analysis of per-sense results in F;-score in Tab. 5.11 and confusion
matrix in Tab. 5.12 for non-Explicit relations on English datasets. Non-Explicit
relation types are Implicit, AltLex, and EntRel (described in Section 2.1).

We analyse the per-sense results in ¥\ -score for non-Explicit relations primarily on
the blind dataset, which is presented in Tab. s.11. Predicting non-Explicit relations
seems to be a substantially more difficult problem. All systems completely fail to re-
cognize 6 sense labels, even on the valid and test datasets. This is not unusual for sense
labels with only a few samples, but there should be enough training samples for sense
labels ComPARISON.CONTRAST and TEMPORAL.ASYNC.PRECEDENCE. This suggests
that the target concept for these sense labels is unsuitable for current methods, and thus
much more research and a completely new approach is needed. The system by Mihaylov
& Frank [19] substantially outperforms our models at ExPANSION.CONJUNCTION and
ExPANSION.INSTANTIATION. The FR-en system achieves competitive performance on
CoNTINGENCY.CAUSE.REASON and CONTINGENCY.CAUSE.RESULT.

We also explore the confusion matrix for non-Explicit relations from the FR-en sys-
tem on the blind dataset, which is presented in Tab. 5.12. Because the confusion matrices
for both our systems (FR-en, FR-ench) look similar, we present only one of them. Seven
sense labels (CONTINGENCY.CONDITION, ExPANSION.ALT, ExpANSION.ALT.CHO-
SEN ALT.,, EXPANSION.EXCEPTION, TEMPORAL.ASYNC.PRECEDENCE, TEMPORAL.-

AsyYNC.SUCCESsION, and TEMPORAL.SYNCHRONY) occur less than S times, therefore
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we merged their corresponding rows and columns to make the confusion matrix clearer.
‘The highest recall-score is achieved by ENTREL, which is the most common sense label
and represents 23% of non-Explicit relations from the train dataset (see Tab. 2.3). The
second most common is EXPANSION.CONJUNCTION with 18%, but it performs much
worse in terms of precision-score and recall-score. The high frequency of these two sense
labels would explain why our method has a bias to confuse all sense labels with ENTREL
or Expans1oN.CoNJUNCTION. The off-diagonal counts for these two sense labels indic-
ate that our method also has trouble distinguishing between them. This is not so surpris-
ing, because the main distinction between them is that in one case there is a coreferent
entity mention and in the other mentioned entities are non-related. More interesting
are the situations that EXPANSION.RESTATEMENT is almost half of the time confused
with ENTREL, and that CONTINGENCY.CAUSE.RESULT is almost one-third of the time
confused with ExpANsSION.CONJUNCTION. We analyse this two particular cases in the

case study in Section 5.3.3.

5.3.3  Case study of particular errors

We continue with a case study of two particular cases of errors for non-Explicit rela-
tions in Tab. 5.13 and Tab. 5.14 on English. To improve our understanding of the con-
fused sense labels show a few examples of a sense label and the predicted probabilities
by the FR-en system.

Although the sense label EXPANSION.RESTATEMENT represents 14.4% of the Eng-
lish train dataset, the recall-score for the FR-en system is very low (only 0.2123). The
confusion matrix on the English blind dataset (see Tab. 5.12) indicates that it is correctly
classified only 21% of the time, but 41% of the time it is confused with ENTREL. In
Tab. 5.13 we analyse this type of error by presenting a few examples of EXPANSION.RE-
STATEMENT with probabilities predicted by the FR-en system. Although all examples
represent situations where arg2 isa restatement or rephrasing of ar g1, even non-expert
human readers have difficulties in determining most cases. Let us examine the first ex-
ample in Tab. 5.13 (marked with bold). To interpret it as EXPANSION.RESTATEMENT
we must know that "woof” is a sound related to "dog” and "pendant” is hanging from
a chain worn around the neck like as it was attached to a "collar”. If we lack this prior
knowledge about dogs and chains, we can only notice that both arguments are talking
about the "pedometer”, therefore they are connected by this entity, and should be la-

belled as ENTREL. Because the FR-en system predicts ENTREL with a much higher
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argl arg2 conn | RESTA. ENTREL

The pedometer is called "Wandant”, from Japanese "Wan”, The latter refers to the pedometer, because it is attached to a 0.0551 0.5756

equivalent to "woof”, and the ”dant” of "pendant dog collar

Taal said in court that he knew Mam Sait Ceesay T used to work at the Daily Observer as Managing Director 0.0612 0.7855
up to November 2007. I know the accused,” he said

Only the 1972 Dolphins finished the season with perfection They played a 14-game schedule with three playoff games 0.1425 0.2773

You’ve never seen a Columbine done by a black child Never 0.1505 0.2700

U.S. military commanders have decided to step up their They will add more troops and work toward reconstruction 0.1658 0.1625

counterinsurgency efforts in the city

he would request Prime Minister Rudd stay true to his prom- I think the state Government should be our white knight 0.1672 0.1678

ise that ”no one would go without compensation”

Whatever change that may take place in the world, our He described this friendship as ’unbreakable 0.1766 0.1230

friendship with the African people will not change

we will provide that We will obviously give special thought to how we are going 0.1924 0.1126
to do that and we will take into account the families’ wishes

that his council would host a fitting tribute to Mr Brock ~ The council will make plans for a fitting tribute in honour 0.2153  0.2268
of Peter’s life and career in the coming days

Nigel Farage, leader of the UK Independence Party, ques- At best, he said, there is uncertainty 0.2385 0.1898

tions the assertions that there is scientific consensus on

global warming

that ”our suspects here are the lawless MILF group because The IEDs contained mortar rounds which are their signa- 0.2575 0.1658

of the types of improvised explosive device that wereused ~ ture

although 2004 saw sharp increases in young voter participa- That year, 47 percent of 18 to 24-year-olds voted, compared 0.2799 0.0615

tion with 36 percent in the 2000 election

As soon as I saw it, there was no question about it I looked at 2ir fantastic sites all over Europe, but here it is - 0.2859 0.1504

the dune size and the ocean front

Examples of EXPAN-
SION.RESTATEMENT with
probabilities predicted
by the FR-en system.

Table .13

All examples represent non-Exp1iciit relations with sense label EXPANSION.RESTATEMENT (column RESTA.), but

are sometimes misclassified as ENTREL. EXPANSION.RESTATEMENT is used when ar g2 is a restatement or rephras-

ing of argl. ENTREL is used when both arguments are connected only by the fact that they are about the same

entity or person.
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All examples represent non-Explicit relations with sense label CONTINGENCY.CAUSE.RESULT (column

CONTINGENCY.-

CAUSE.RES.), but are sometimes misclassified as EXPANSION.CONJUNCTION (column CONJ.).

CAUSE.RESULT is used when ar g2 is a causal result or consequence of arg1. EXPANSION.CONJUNCTION is used for

coordinating conjunctions joining phrases of equal rank or simultaneously occuring events.
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probability, we conclude that it lacks this specific prior knowledge.

Similarly, the sense label CONTINGENCY.CAUSE.RESULT represents 8.6% of the Eng-
lish train dataset, the recall-score for the FR-en system is even lower (only 0.1351). The
confusion matrix on the English blind dataset (Tab. 5.12) indicates that it is correctly
classified only 14% of the time, but 30% of the time it is confused with EXPANSION.-
CoNyUNCTION. In Tab. 5.14 we analyse this type of error by presenting a few examples
of CONTINGENCY.CAUSE.RESULT with probabilities predicted by the FR-en system.
Although all examples represent situations where ar g2 is a causal result or consequence
of argi, non-expert human readers also have difficulties in determining misclassified
cases. Let us examine the second example in Tab. 5.14 (marked with bold). To interpret
it as CONTINGENCY.CAUSE.RESULT we must know that the "Managing Director” is
being “accused” and that you know someone if you work with him. If we lack this in-
formation about the director and prior experience on human relations, we conclude that
both arguments describe facts of equal rank and should therefore be labelled as ExpaN-
s10N.CONJUNCTION. Because the FR-en system predicts EXPANSION.CONJUNCTION
with a much higher probability, we conclude that it again lacks this specific prior know-

ledge.
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5.4 Time complexity

The proposed FR system is basically a system built around a machine learning algorithm
for classification. An important characteristic of any machine learning algorithm is its
training and classification time complexity.

In our case we use a neural network model described in Chapter 4 which is imple-
mented by unrolling all LSTM layers to the maximal length of each text span. Con-
sequently, the theoretical time complexity of our model is the same as for any FENN
with the equivalent number of connections. Because the number of computations ne-
cessary to train on or to classify any discourse relation stays the same, the time complexity
in big-O asymptotic notation to process a single discourse relation is O(1) and to pro-
cess N discourse relations is O(N). Due to this obviously linear nature, we will skip the
empirical evaluation with respect to the number of discourse relations. On the other
hand, the parameters that describe the maximal length of each text span and the num-
ber of focused downstream RINNs have a linear effect on the number of connections in
the focused RNNs layer. The time complexity to process a single discourse relation with
respect to the maximal length of text spans (M) is therefore O(M). Similarly, the time
complexity to process a single discourse relation with respect to the number of focused

downstream RNNs (%) is O(7).
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(a) Training time per epoch. (b) Classification time per sample.

We performed an empirical time complexity analysis to confirm the theoretical res-
ults. In Fig. 5.1 we show the measured times by changing the maximal length of arg1
(m = M)and arg2 (m' = M). Up to an acceptable measuring error, the measurements

confirm the theoretical time complexity of O(M) for both training and classification. As

77

Figure 5.1
Measurement of train-
ing (a) and classifica-
tion (b) time of the FR
system with respect to
the maximal length of
arglandarg2 (M)
on Chinese and Eng-
lish datasets at word
level (FR-zh, FR-en)
and character level
(FR-zhch, FR-ench).
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Figure 5.2
Measurement of train-
ing (a) and classifica-
tion (b) time of the FR
system with respect to
the number of focused
downstream RNNSs (72)
on Chinese and Eng-
lish datasets at word
level (FR-zh, FR-en)
and character level
(FR-zhch, FR-ench).
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expected, for a fixed M the times do not depend on the level of input representation, but
only on the chosen language, which defines the number of focused downstream RNN s
(). In Fig. 5.2 we show the measured times by changing the number of focused down-
stream RNNGs (7). Up to an acceptable measuring error, the measurements confirm the
theoretical time complexity of O(#) for both training and classification.

We ran the experiments on a single PC with a middle-range GPU from 2016 (Intel
Core i7 3.20GHz with GeForce GTX 980 Ti). In all settings the total training time was
extremely slow, but classification time incredibly fast. For the FR-en system, the training
time per epoch was around 35 minutes, the total training time 9 hours, and the classifica-
tion time per sample 0.030 seconds. For the FR-ench system, the training time per epoch
was around 83 minutes, the total training time 105 hours, and the classification time per
sample 0.042 seconds. For the FR-zh system, the training time per epoch was around 53
minutes, the total training time 17 hours, and the classification time per sample 0.045
seconds. For the FR-zhch system, the training time per epoch was around 96 minutes,
the total training time 47 hours, and the classification time per sample 0.06 seconds.
Due the sequential nature of performing empirical time complexity measurements on
a single machine, unpredictable number of epochs, and some issues, performing these
experiments took more than a month.

Note that it is impossible to compare our processing times with other systems, be-
cause their papers do not report this information. But from submissions of the CONLL

2016 Shared Task, we can determine that our classification times are among the fastest.
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In this chapter we briefly summarize the principal scientific contributions, present open

challenges for future research, and where it leads to.

6.1 Scientific contributions

Our work described in this dissertation was presented at international conferences and
published in renowned scientific journals. It was therefore internationally reviewed and
discussed. Let us briefly summarize our contributions to science and their main features

(also described in Section 1.3).

1. Multi-dimensional RNN-attention mechanism (focused RNNs).

To outline the features of this contribution in comparison to related work at the

time when the idea was first conceived:

= anovel neural network layer with an attention mechanism for constructing

sentence/argument embeddings

= the first using multi-head or multi-dimensional attention weights, instead

of attending to only a single aspect at a time

= the first using RNNs for production of attention weights, instead of com-

puting them as the inner product with a query vector

= computes all attention weights in one pass, instead of recomputing them

for different query vectors when focusing on different aspects

= uses RNNs for aggregation of argument embeddings, instead of a sum of

the weighted vectors
g

‘This contribution is covered in Chapter 3. Its concept was introduced in Weiss &

Bajec [22] and more details published in Weiss & Bajec [23].

2. Langunage-independent method for sense classification (FR system).

To outline the features of this contribution in comparison to related work:

= a novel method for sense classification of shallow discourse relations based
on focused RNNS layer



Conclusion

= the first using a single end-to-end trainable model, instead of a complex
pipeline of substantially different models to handle specific types and situ-

ations of discourse relations

= the first language-independent approach that requires no hand-engineered

features or external resources, not even pre-trained word embeddings

= the first that can be applied at the word and character level inputs without

any preprocessing

= provides a simple data augmentation technique to produce more samples,

instead of training only on given samples

‘This contribution is covered in Chapter 4. Its predecessor, a more complex two-
model system [22], received the first award for Chinese at CONLL 2016 Shared
Task by a large margin. We generalized upon it and published the FR system in
Weiss & Bajec [23]. It achieves a new state-of-the-art performance on Chinese

datasets.

6.2 Future directions

We managed to build a language-independent method for sense classification that re-
quires only a training dataset to work. Because it learns only from labelled samples, a
straightforward way of improving its performance would be to add more samples and
increase the dataset size. One way is by only adding hand-picked informative samples for
poorly-performing sense labels. Especially for many less-frequent sense labels that are the
result of a highly imbalanced class distribution in all datasets (see Tab. 2.2 and Tab. 2.3).
In order to also preserve the naturally-occurring class distribution in current datasets we
would need to acquire a corpus of newspaper articles with a similar content and writing
style as CDTB and PDTB. Multiple linguists would need to manually annotate it by fol-
lowing the same annotation scheme and rules. This is a highly time-consuming process,
because a reasonable degree of inter-annotator agreement also needs to be achieved.
Instead of improving the performance, we could additionally confirm the language-
independence of the FR system. It would make sense to apply it as such on even more
languages, not just Chinese and English. Although annotated corpora exists for a few

languages, such as Arabic, German, Italian, Czech, Hindi, or Turkish, most of them
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only cover discourse connectives and Explicit relations, whereas Implicit relations
are not yet part of the annotation. Most of them are much smaller then CDTB or PDTB
and even the biggest one has less than 5700 discourse relations. As our method learns
only from labelled samples, it is improbable that it would work in such situations. On
the other hand, nothing in our method is limited to the scope of written newspaper
articles or monologue, and we believe that it can be applied to shallow discourse relations
on different kinds of text. The FR system could even be applied to different discourse
structures, labels, and as part of more complex tasks, such as parsing of a dialogue or
multi-party conversation.

We performed many experiments and tried to improve the FR system in different
ways, but there are still some unexplored directions related to the inputs of our method.
One could add new input representations that are between the currently supported
word and character levels. English datasets contain only 87 different input characters
(upper and lower letters, numbers, punctuation) that individually do not convey any
meaning. One needs to read on average 4.96 characters to retrieve one of 43918 words
and the meaning it carries. Subword units of different lengths, such as N-grams [58]
which are N-character slices of longer strings, could be used to bring the input symbols
closer to the meaning. A different approach is to combine a word level representation
constructed from characters embeddings with pre-trained word embeddings [59]. In
theory such embeddings of input symbols bring together the best of both worlds. Un-
fortunately, it is unclear how to technically implement embeddings at several levels sim-
ultaneously in the FR system. Furthermore, because we are learning everything from
scratch only from labelled samples, any data augmentation or generation technique cap-
able of producing valid labelled samples would improve its performance. To make the
model more robust to noise and improve the learning of task-specific word or character
embeddings, we already introduced a simple data augmentation technique which does
not require external resources. A richer data augmentation can be performed with the
help of a language-dependent thesaurus, like the WordNet lexical database. Because dis-
course relations do not change as long as the general meaning of the arguments stays the
same, we could generate new samples by replacing words with words with nearly the
same meaning (synonyms) or with a broader meaning (hypernyms). A more advanced
approach for generating labelled samples would be to adapt a Generative Adversarial
Network (GAN) [60]. A GAN is a system of two neural networks, called a generator

and a discriminator, that contest with each other in an adversarial zero-sum game frame-
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work. Theoretically we could set up the generator network to synthesize the text and
sense label for fake shallow discourse relations, and the discriminator network to distin-
guish between real and fake samples. In an ideal scenario the generator network would
learn to synthesize valid shallow discourse relations indistinguishable from real samples.
However, convergence issues and difficulties when dealing with discrete data hinder the
direct application of GAN to NLP tasks. Modified objectives, like TextGAN, address
these issues, but large training times still present an open issue for more complex NLP
tasks.

A different direction for improvements is connected with modifying the model in
the FR system. We already attempted to fine-tune the model hyper-parameters for each
setting as described in Section 4.3.2. It is interesting to note that most hyper-parameters
did not substantially impact the performance and the same model hyper-parameters can
be used almost out-of-the-box on all settings. This suggests that changes to the neural
network architecture might be necessary to further improve its performance. Unfortu-
nately, large training times and far too many ways how it can be changed make this in-
feasible even with genetic algorithms and advancements in the field of automated neural
architecture search. On the other hand, we believe that adding hand-engineered features
and external resources to our method would improve its performance. This is the exact
opposite of what we try to accomplish in this dissertation, because it leads towards com-
plex pipelines, dependence on language-specific resources, and designing specifically for
a given language and task.

‘The whole task of text-level discourse parsing is still a difficult problem and far from
being solved. We have demonstrated that sense classification of shallow discourse re-
lations can be learned in an end-to-end manner. A challenging direction for future re-
search would be to also build an end-to-end trainable model for the argument extraction
task and combine it with the FR system into a complete system for shallow discourse
parsing. The main problem is that it is not obvious how to model the overlapping dis-
course relations in a manner suitable for neural networks. In argument extraction we
need to extract the related pieces of text (argi, arg2, conn, punc), that not necessarily
represent a contiguous piece of text and often overlap with other discourse relations.
One would need to construct an end-to-end trainable model capable of expressing mul-
tiple overlapping sets in an unordered fashion. This can not be accomplished with simple
approaches, like word tagging tasks, because individual words are often a part of mul-

tiple discourse relations.
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Even in its current state it would be interesting to integrate the FR system as a com-
ponent or additional source of features into a structure-enabled NLP application, such
as statistical machine translation, text summarization, sentiment analysis, question gen-
eration, coherence modelling, and discourse parsing. Nevertheless, future linguistic re-
search on different applications is still needed to improve our cognitive model of the

discourse phenomena and discourse comprehension.

6.3 Concluding remarks

In this dissertation, we approach the most challenging part of text-level discourse pars-
ing from the perspective of how a child learns through samples without explicit teaching.
Instead of depending on hand-engineered features, external resources, and designing a
system specifically for a given language and task, we pursue a language-independent ap-
proach for sense classification of shallow discourse relations. In Chapter 3 we first present
our focused RNNs layer, a novel neural network layer with an attention mechanism for
constructing sentence/argument embeddings. In Chapter 4 we use it in our FR system,
a novel method for sense classification of shallow discourse relations based on focused
RNNss layer.

The mostimportant and unique characteristic of the FR system is thatit can be used al-
most out-of-the-box on any language, set of sense labels, or level of input representation.
‘This is possible, because it consists of only a single end-to-end trainable model, instead
of a complex pipeline of substantially different models. We have confirmed its language-
independence by successfully applying almost the same model hyper-parameters on two
substantially different languages, but also by providing its input at the word and even
character levels. It is true that the model still needs to be trained on labelled samples for
each language, but it does not require any preprocessing, hand-engineered features or
external resources, not even pre-trained word embeddings.

We compared the FR system with winning systems and strong baselines on Chinese
and English using the official datasets and methodology of the CONLL 2016 Shared
Task [16]. It improved 8% (with 0.7477 F-score) over best overall results of other sys-
tems on the Chinese blind dataset, but did not fall (with 0.5170 F;-score) a lot behind
state-of-the-art on English blind dataset. Given that English is the most explored lan-
guage with most advanced language technologies, we expected that systems carefully de-

signed for it will substantially outperform our language-independent approach. How-
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ever, we can not compare F;-scores between languages due to huge differences in the
size of datasets, grammar, encoding of words, structure of sentences, sense labels, and
especially their distribution. All known systems for English have substantially lower
performance scores than systems for Chinese. This indicates that automated sense clas-
sification on English is much more difficult than on Chinese. This difference is clearly
observed for the FR system that can be applied on both languages. Because its perform-
ance depends on the language, we can not claim it is completely language-independent,
but it is independent with respect to its inputs and architecture. This drop in perform-
ance when switching to another language could be mitigated by extending the datasets,
adding language-specific features, external resources, or additional information. We first
analysed its overall performance in terms of F;-score and Brier-score, then in more de-
tail with per-sense results and confusion matrices for Explicit and non-Explicit
relations, and performed a case study of errors on English. We also analysed its train-
ing and classification time complexity. To qualitatively assess the contribution of some
design choices we also performed an ablation study.

To conclude, we believe that automated discourse parsing and analysis, especially
sense classification of Implicit relations, is a crucial next step in natural language un-
derstanding. Even though the theoretical grounds for this linguistic phenomena are
not fully understood, our single neural network model is capable of learning the neces-
sary concepts for sense classification without manual feature engineering and external
resources. Furthermore, it is likely that larger amounts of training data or advanced data
augmentation techniques would bring the performance of the FR system closer to a
human level. We feel that such an approach is not only beneficial for automated sense
classification of shallow discourse relations, but will inspire researchers to adapt it for

more complex NLP tasks.
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Motivacija  Lahko bi rekli, da je nasa sposobnost simboli¢nega razmisljanja in komuni-
kacije ena glavnih ¢loveskih lastnosti. Vsak zdrav ¢loveski otrok se brez tezav naudi jezik
brez eksplicitnega uenja, na podlagi pozitivnih primerov in na jezikovno-neodvisni na-
¢in [1]. To se zgodi v odsotnosti eksplicitno podane strukture stavkov, slovni¢nih pravil
in leksikonov besed, opisov njihovega pomena ter relacij med njimi. Pri tem ne potre-
bujejo skupka rocno-izdelanib znacilk ali vzorcev, na katere naj bodo pozorni, e manj
pa korakov cevovodnega procesiranja, prirejenih za vsak tip pogovora ali nalogo. Vse po-
trebno se naucijo iz primerov. Po drugi strani pa so ra¢unski pristopi za ve¢ino nalog
procesiranja naravnega jezika (NLP) odvisni od vsega nastetega in so narejeni za specifi-
¢en jezik in nalogo. Taks$nih sistemov ni mogoce celostno uditi od zacetka-do-kraja ali
enostavno prilagoditi novim primerom. Te omejitve so $e bolj opazne pri ne-angleskih
jezikih, kjer napredek v NLP e zaostaja. Trdimo, da mora obstajati druga pot, da se lah-
ko tudi ratunske metode naucijo kompleksnih NLP nalog v poljubnem jeziku samo na
podlagi primerkov, podobno kot otroci.

Poljubno besedilo v naravnem jeziku pomeni ve¢ kot le vsota njegovih delov ali stav-
kov [2]. Da lahko resni¢no razumemo besedilo, moramo identificirati njegove dele in
izlus¢iti dodatne semanti¢ne relacije, imenovane diskurzne relacije (angl. discourse rela-
tions) ali koherentne relacije. Ceprav so diskurzne relacije pomemben del vsakega jezika
in pomembne za vedje Stevilo aplikacij za NLP [3], $e vedno ne razumemo tega pojava
popolnoma.

Tekom zadnjih treh desetletij so lingvisti predlagali $tevilne teorije diskurza za analizo
jezika ne samo v notranjosti povedi, temve¢ tudi na nivoju stavkov in besedil [2, 11]. V
pricujoci disertaciji smo izbrali teorijo plitkih diskurznib relacij (angl. shallow discour-
se relations), tudi imenovanih PDTB-stil, ker predstavljajo teoreti¢no-nevtralni pristop
in nudijo najvedji oznacen korpus [12]. Le-te definiriajo diskurzne argumente (argi,
arg2) kot dele besedila, ki predstavljajo specifi¢en pomen (abstraktni objekti, dogod-
ki, stanja, dejstva in predlogi). In diskurzno relacijo kot semanti¢no relacijo, ki opisuje
na kak$en nadin je par diskurznih argumentov povezan med seboj in kak$en pomen ali

oznako smisla lahko izlu$¢imo iz njega. Nekatere diskurzne relacije so eksplicitno izraze-

ne z uporabo veznikov (conn, e.g. while, but, unless) ali nakazane zlo¢ili (punc), vendar

jih najpogosteje identificira Sele bralec, ki Zeli razumeti besedilo. V poglavju 2.1 lahko

najdete ve¢ podrobnosti o tem. Za ilustracijo si oglejmo nekaj primerov:



Razsirjeni povzetek 95

1. [Jane fell over],.,,, while [Tarzan helped her],

rg2*

2. [T want ro go to Chinal,,,; @‘ [ prefer clean air],,,.

3. BRIE [KTEMRAL [, , BN /3SAE UL B R BRE ], o

(Unless [the train is late], (otherwise) [T will be there at nine o’clock],.,.)

rgr 2

V zgornjih primerih vsaka diskurzna relacijo vsebuje eksplicitno podan diskurzni ve-
znik, zato jih imenujemo Explicit-ne relacije. Ljudem je enostavno identificirati dis-
kurzni veznik in pomen ali oznako smisla diskurzne relacije, ki jo nakazuje. V primeru
1. while nakazuje ¢asovno sosledje dveh dogodkov, v primeru 2. but nakazuje kontrast
in nﬁmeru 3. unless nakazuje alternativni izzid. Iz raéunalniEkeg?ﬂdika je dokaj jasno
kako napovedo@l&ne oznake smisla s skrbno izdelavo produkcijskih pravil, ki znajo

razbrati funkcijo veznika [13].

1. [Jane fell over],.,,. [Tarzan belped her], ..

2. [Twant to go to Chinal,,,. [I prefer clean air],

rg2*

3. [KEWMR [y o [BREENRHEIIE ], o

([The train is late], ., . [Twill be there at nine oclock],,,.)

Razmislimo, kako drasti¢no se zgornje diskurzne relacije in njihov pomen spremeni,
¢e odstranimo podértane diskurzne veznike. Z nekaj truda lahko izlu$¢imo nove manj-
kajoce veznike in z njimi nov pomen ali oznako smisla vsake ne-Explicit-ne relacije.
Primera 1. in 3. sedaj predstavljata vzrok in njegov rezultat (kakor da bi bil so prisoten),
medtem ko primer 2. nateva osebne preference v konjunkeciji (kakor da bi bil and priso-
ten). V besedilih z naravnim jezikom je zelo pogosto, da diskurzne relacije niso nakazane
z diskurznimi vezniki. Tak$ni primeri so lahko tezavni tudi za ljudi, saj je o oznaki smisla
potrebno sklepati iz semanti¢nega konteksta, koherence argumentov, znanjem o svetu
ali z drugimi sredstvi [14]. Iz ratunalni$kega vidika so takine situacije veliko bolj zahtev-
ne in predstavljajo ozka grla celotnih sistemov.

Razclenjevanje diskurza je naloga ekstrakcije diskurznih relacij. Sestavljena je iz loci-
ranja conn in punc, ekstrakcije argl in arg2 in klasifikacije smisla, i.e. dolociti kateri
pomen ali oznako smisla lahko izlud¢imo. IzkaZe se, da je izdelava avtomatiziranega raz-

¢lenjevalnika diskurza na besedilnem nivoju izjemno tezavna. Se posebej, ker razlike med
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oznakami smisla zahtevajo precizno semanti¢no sklepanje, ki pa ga ni mozno enostav-
no opisati s tradicionalnimi znacilkami za NLP. Za izbolj$anje stanja sta dve konferenci
CoNLL 2015 in 2016 organizirali izziv [1s, 16], osredotocen na raz¢lenjevanje diskurza in
klasifikacijo smisla v plitkih diskurznih relacijah na angleskem in kitajskem jeziku. Te-
kom obeh let je bila klasifikacija smisla implementirana v 40 konkurenénih sistemih za
angles¢ino in 10 za kitaj$c¢ino.

V splodnem se je izkazalo, da ne-Exp 11 ¢i t-ne diskurzne relacije Se vedno predstavlja-
jo najzahtevnejsi problem za razne aplikacije. Obstojeci sistemi za klasifikacijo smisla upo-
rabljajo kompleksen cevovod sestavljen iz bistveno razliénih modelov za obravnavanje
specifiénih tipov in situacij v diskurznih relacijah. Ti modeli zahtevajo pred-procesiranje,
ro¢no-izdelane znacilke, zunanje vire in obsezno ro¢no nastavljanje za vsak jezik in mno-
Zico oznak smisla.

Motivirani z naéinom, kako se otroci naudijo jezik, smo se usmerili stran od slabo-
sti in kompleksnosti obstojecih sistemov za klasifikacijo smisla. Poskusali smo izdelati

jezikovno-neodvisno metodo za nalogo klasifikacije smisla v plitkih diskurznih relacijah.

Definicija problema — V pri¢ujodi disertaciji se osredotoamo na nalogo klasifikacije
smisla v plitkih diskurznih relacijah, tako kot je opisana v okviru CoNLL 2016 Shared

Task [16], in skusamo k njej pristopiti iz jezikovno-neodvisne smeri.

Definicija 1: Klasifikacija smislav plitkih diskurznih relacijah

Oznaka smisla (angl. sense label) ali semanti¢ni razred opisuje pomen, ki ga lahko
interpretiramo za diskurzno relacijo (e.g. contrast, causation, conjunction). Zaradi
razlik med jeziki imamo za kitaj$¢ino definirano mnozico 10 oznak smisla (za popol-
ni seznam glej tabelo 2.2) in za angles¢ino 21 oznak smisla (za popolni seznam glej
tabelo 2.3).

Na podlagi podanih dveh diskurznih argumentov (argi, arg2), neobveznega ve-
znika (conn) in neobveznih lo¢il (punc), je nasa naloga napovedati oznako smisla

diskurzne relacijo, ki jo le-ti predstavljajo.

Ve podrobnosti o plitkih diskurznih relacijah lahko najdete v poglavju 2.1.
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Definicija 2: Jezikovno-neodvisni pristop k problemom iz NLP:

Menimo, daje pristop neodvisen od jezika, ¢e ni bil zasnovan posebej za doloéen jezik
in ne zahteva nobenega pred-procesiranja, roéno-izdelanih znacilk, zunanjih virov
ali obseznega finega prilagajanja za vsak jezik. Z drugimi besedami povedano, da je
neodvisen od jezika glede na njegove vhode in arhitekturo ter ga lahko kot taksnega

uporabimo na zelo razli¢nih jezikih.

V poglavju 4 predstavljamo kako smo se lotili zastavljenega cilja v naem pristopu FR
system, novi metodi za klasifikacijo smisla v plitkih diskurznih relacijah, ki temelji na fo-
cused RNNs plasti. S skorajidentiénimi hiper-parametri smo metodo uspe$no uporabili

na dveh bistveno razli¢nih jezikih, angles¢ini in kitaj$¢ini (brez poznavanja kitajicine).

Prispevki k znanosti  V ludi na$e motivacije in pomembnosti klasifikacije smisla v raz-

liénih aplikacijah predstavljamo v pricujoci disertaciji sledece prispevke k znanosti:

1. Vet-dimenzionalni RNN-pogornostni mehanizem (focused RNNs).

Predstavljamo osredotocene rekurentne nevronske mreze (focused RNNs), nov
tip plasti za nevronske mreZe s pozornostnim-mehanizmom za izdelavo vlozitev
stavkov/argumentov. Njihov namen je preslikati argumente diskurznih relacij v
ve¢ vekrorskih prostorov, ki zakodirajo razli¢ne vidike vhodnih delov besedila. V
dasu, ko smo si prvi¢ zamislili focused RNN's plast (v zacetku 2016), so obstajali
samo eno-pozornostni mehanizmi, ki zdruZujejo z obtezenim povpredjem. Po na-
$em najboljSem poznavanju je nas pristop prvi predstavil dva nova koncepta in se
$e vedno bistveno razlikuje od ostalih pozornostnih mehanizmov. Prvi¢, je prvi
pozornostni mehanizem z veé—glavnimi oziroma veé-dimenzionalnimi utezmi za
pozornost, namesto da bi se osredotocal samo na en vidik naenkrat. Drugic, je pr-
vi pozornostni mehanizem, ki uporablja RNNje za pripravo utezi za pozornost,
namesto da bijih izra¢unal kot notranji produkts poizvedovalnim vektorjem. Tre-
tji¢, zizratunom vseh utezi za pozornost v enem obhodu, namesto bi jih ponovno
prerac¢unaval za razli¢ne poizvedovalne vektorje med osredoto¢anjem na razliéne
vidike. Cetrtié, z uporabo RNNjev za zdruzevanje argumentnih vloZitev, name-
sto da bi le sestel obtezene vektorje. Nasa focused RNNs plast je sestavljena iz
filerirnega RINN kateri sledi pomnozevalni filtrirni/usmerjevalni mehanizem, ki

omogo¢a slede¢im RNNjem, da se osredotocijo na razli¢ne vidike vhodnega zapo-
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redja in ga projecirajo v ve¢ vloZitvenih podprostorov. Te argumentne vlozitve se

lahko nato uporabijo za razlitne NLP naloge, kot je klasifikacija smisla.

Ta prispevek smo zajeli v poglavju 3. Koncept smo prvi¢ predstavili v Weiss &

Bajec [22] in objavili ve¢ podrobnosti v Weiss & Bajec [23].

2. Jezikovno-neodvisna metoda za klasifikacijo smisla (FR system).

Predstavljamo novo metodo za klasifikacijo smisla v plitkih diskurznih relacijah, ki
temelji na focused RNNs plasti, zato jo imenujemo FR system. Po nasem najbolj-
$em poznavanju na$a metoda predstavlja unikaten pristop h klasifikaciji smisla,
ki se razlikuje od obstoje¢ih metod v mnogih pogledih. Prvi¢, je prva sestavljena
samo iz enega modela, ki ga je mozno uditi od zacetka-do-kraja, namesto komple-
ksnega cevovoda sestavljenega iz bistveno razliénih modelov za obravnavanje spe-
cifiénih tipov in situacij v diskurznih relacijah (brez razlik med Explicit-nimi
in ostalimi tipi relacij, relacij v notranjosti stavkov ali med stavki, vrstnega reda ar-
gumentov). Drugi¢, je prvi jezikovno-neodvisni pristop, ki ne potrebuje nobenih
ro¢no-izdelanih znadilk ali zunanjih virov, niti pred-naucenih besednih vloZitev.
Za delovanje potrebuje samo uéno mnozico, kar naredi metodo uporabno skoraj-
da brez sprememb na kateremkoli jeziku in oznakah smisla. Tretjic, je prva meto-
da, ki se lahko uporablja tako na ravni besed kot na ravni znakov brez vsakr$nega
pred-procesiranja. Cetrtié, predstavi preprost mehanizem bogatenja podatkov za
proizvodnjo primerkov, namesto da bi se uéila samo na podanih primerih. Naso
metodo smo ovrednotili na uradnih podatkovnih zbirkah in po metodologiji iz-
ziva CoNLL 2016 Shared Task. Ne zaostaja veliko za najuspesnej$imi sistemi na
angleskem jeziku, vendar presega ostale sisteme brez focused RNNs plasti za 8%
na kitajski podatkovni zbirki. Najprej smo analizirali njegovo splo$no uspesnost
z Fy-oceno in Brier-oceno, nato podrobnosti z rezultati po posameznih oznakah
smisla in matriko zamenjav za Explicit-ne in ne-Explicit-ne relacije ter iz-
vedli $tudijo primerov napak na angles¢ini. Analizirali smo tudi ¢asovno komple-
ksnost pri u¢enju in klasifikaciji. Izvedli smo tudiStudijo izkljucitev, da smo lahko
kvalitativno ocenili doprinos nekaterih naértovalskih odlocitev.

Ta prispevek smo zajeli v poglavju 4. Nas prejsnji bolj kompleksni dvo-modelni sis-
tem [22] je prejel prvo nagrado z visoko prednostjo na kitajski podatkovni zbirki
na CoNLL 2016 Shared Task. Nato smo koncept posplogili in objavili FR system
v Weiss & Bajec [23].
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VEC-DIMENZIONALNI RNN-POZORNOSTNI MEHANIZEM (FOCUSED RNNSs)

Viozitve (angl. embeddings) predstavljajo preslikavo diskretnih objektov, ki nimajo
naravne vektorske predstavitve (kot so besede ali stavki), v goste vektorje z realnimi vre-
dnostmi. Znano je, da se nevronske mreze najbolj$e ucijo nad gostimi vektorji, pri ka-
terih posamezne dimenzije obi¢ajno nimajo lo¢enega pomena in vse vrednosti kot celo-
ta opisujejo dani objekt. Za NLP klasifikacijske naloge in klasifikacijo smisla je pogost
pristop z nevronskimi mrezami, da se najprej preslika besede v pred-naudene besedne
vloZitve, nato zakodira stavke ali dele besedila v vektorske predstavitve fiksne dolzine
prilagojene nalogi, imenovane stavine/argumentne vlogitve (angl. sentence/argument
embeddings), in potem uporabi usmerjeno nevronsko mrezo (FFNN) za klasifikacijo.
Najvedje razlike med pristopi so obicajno v tem, kako se ustvarijo stavéne vloZitve. V
nasem primeru jih imenujemo argumentne vlozitve in pri njih je klju¢no, koliko seman-
tiéne podobnosti in koheren¢nih informacij, povezanih z diskurznimi relacijami, lahko
zajamejo. Na§ pristop spada med nevronske pozornostne mebanizme (angl. neural at-
tention mechanisms), ki omogocajo, da lahko model avtomatsko usmerja pozornost na
dele vhoda, ki so najbolj relevantni v vsakem koraku procesiranja, in prilagaja pozornost
skozi as.

Za izdelavo boljsih vlozitev smo si zamislili nov tip plasti za nevronske mreZe, ki ga
imenujemo osredotocene rekurentne nevronske mreze (focused RNNs). Le-ta pred-
stavlja prvi ve¢-dimenzionalni RNNpozornostni mehanizem za izdelavo vlozitev stav-

Iter

kov/argumentov. Sestavljen je iz filtrirnega RNN (RN. ), pomnozevalnega filtrir-
nega/usmerjevalnega mebanizma in sledecib osredotocenih RNNjev (RNN,).

V poglavju 3 slika 3.1 prikazuje diagram procesiranja v nasi focused RNNs plasti z 7
slede¢imi osredotoéenimi RNNji. Vhod je lahko katerokoli zaporedje gostih vektorjev,
ki jih Zelimo preslikati v ve¢ vektorskih podprostorov. Za klasifikacijo smisla je to obi-
¢ajno zaporedje besednih vloZitev x = [, x@ . xm ] ki predstavljajo stavek ali
argument diskurzne relacije dolzine 2, ki ga zelimo zakodirati v argumentno vloZitev y.
Najprej filtrirni RNN (RNNﬁ Im) deluje kot ve¢-dimenzionalna primerjalna funkcija, ki
za vsako besedno vlozZitev ustvari vektor utezi pozornosti f (1), Le-te se lahko interpretira
kot relativno pomembnost vsake besedne vloZitve pri zdruZevanju razli¢nih vidikov vho-
dnega zaporedja. Teoreti¢no se za filtrirni RNN lahko uporabi poljubna vrsta RNNjev, a
dvosmerna plast z dolgim-kratkoro¢nim spominom (LSTM) [40] s o aktivacijsko funk-
cijo (enacba 3.1) se je izkazala nekoliko bolj$a. Filtrirni/usmerjevalni mehanizem nato

Ve v t . v Ve . . v
pomnozi vsako utez f; ) 2 istolesno besedno vlozitvijo tako, da ustvari obtezeno be-
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(2)

;

¢in uravnava, koliko vhodnega signala se bo posredovalo posameznim RNNjem. Tako

sedno vlozitev 2;”’ namenjeno enemu slede¢emu osredotocenemu RNNju. Na ta na-
pripravljeno obteZeno vhodno zaporedje omogoca slede¢im osredotocenim RNNjem
(RNN;), da se specializirajo ali osredotodijo na razliéne vidike vhodnega zaporedja. Vsak
osredotocen RINN deluje kot agregacijska funkcija, ki v svojem notranjem stanju sestavlja
vektorsko predstavitev fiksne dolzine &,. Le-ta predstavlja projekcijo vhodnega zapored-
ja v podprostor argumentnih vlozitev. Na koncu vse pridelane vektorje 4, konkatenira-
mo/sestavimo v daljsi vektor y, ki predstavlja stavéno/argumentno vlozitev in se lahko
uporablja pri razliénih NLP nalogah, kot je klasifikacija smisla.

Omeniti bi bilo potrebno, da se koncept focused RNNss plasti bistveno razlikuje od
ostalih nevronskih pozornostnih mehanizmov. Po nasem najboljSem poznavanju pred-
stavlja nas pristop prvi ve¢-dimenzionalni RNNpozornostni mehanizem.

Ve¢ podrobnosti lahko najdete v poglavju 3. Sicer pa smo koncept prvi¢ predstavili v

Weiss & Bajec [22] in objavili ve¢ podrobnosti v Weiss & Bajec [23].

JEZIKOVNO-NEODVISNA METODA ZA KLASIFIKACIJO SMISLA (FR sYSTEM)

FR system je na$a predlagana reitev/metoda za klasifikacijo smisla ali pomena v plit-
kih diskurznih relacijah. Sestavljena je iz samo enega modela, ki ga je mogoce celostno
uditi od zadetka-do-kraja, iz koraka za pripravo vhodnih podatkov in postopka ucenja, ki
vkljucuje preprost mehanizem bogatenja podatkov med uéenjem. Nas model neposre-
dno sledi definiciji naloge klasifikacije smisla in obravnava vse vrste in smisle diskurznih
relacij. Tudi ne potrebuje nobenih roé¢no-izdelanih znadilk ali zunanjih virov, zaradi e-
sar je jezikovno-neodvisen glede na vhodne podatke in arhitekturo. Je tudi prvi sistem
za klasifikacijo smisla, ki se lahko uporablja tako na ravni besed kot na ravni znakov. Ker
se metoda uci besedne vlozitve prilagojene na nalogo od zadetka, mi zgolj uvedemo pre-
prost mehanizem bogatenja podatkov med u¢enjem. Prav tako je model odvedljiv od
zadetka-do-kraja, zato se ga lahko udi z vzvratnim razsirjanjem napake (angl. backpropa-
gation) na oznacenih primerih.

V poglavju 4 slika 4.1 prikazuje arhitekturo nevronske mreze nasega FR system za kla-
sifikacijo smisla, ki temelji na focused RNNs plasti. Vhod za vsako diskurzno relacijo
je podan v obliki $tirih odsekov besedila (angl. text span) v surovi obliki: za dva argu-
menta (argl, arg2), opcijski veznik (conn) in opcijska lo¢ila (punc). V duhu ucenja
od zaletka-do-kraja ne izvajamo nobenega pred-procesiranja in delamo neposredno z

odseki besedila predstavljenimi kot zaporedje vhodnih simbolov na nivoju besed ali na



Razsirjeni povzetek

nivoju znakov (w = [wD, w?), ..., w). Zaradi konsistentnosti procesiramo vse od-
seke besedila na popolnoma enak nacin, i.e. sledimo istim ena¢bam. Kjer je potrebno
lo¢imo spremenljivke z apostrofi (e.g. w za argl, w' za arg2, v za conn, and w/" za
punc). Vsak odsek besedila je procesiran neodvisno od ostalih od zacetka do konca,
kjer je (#) trenutna pozicija po ¢asovni dimenziji (e.g. #-ta beseda v odseku besedila).
Najprej se plast za besedne/znakovne vloZitve (angl. word/char embedding layer) nauci
preslikovati vhodne simbole v vektorske predstavitve prilagojene nalogi, imenovane be-
sedne ali znakovne vlozitve x(*). Pri tem ne uporablja pred-naudenih besednih vlozitev
in za¢ne z nakljuéno inicializiranimi vektorji. Nato je vsako zaporedje besednih vlozitev
(x = [xM, @) ., 20 neodvisno procesira nasa focused RNNGs plast. Plast focused
RINNs je sestavljena iz filtrirnega RNN, pomnozevalnega filtrirnega/usmerjevalnega me-
hanizma in ve¢ slede¢ih osredotoéenih RINNov. Le-ti projecirajo vsak odsek besedila v
vektorsko predstavitev fiksne dolZine, ki jih imenujemo argumentna vloZitev y. Nato
konkateniramo argumentne vloZitve vseh odsekov besedila (y za argi, y' za arg2, ¥’
za conn, and " za punc) v daljie vektorje ¢ in jih posredujemo dvo-plastni usmerjeni
nevronski mrezi (FFNN). Njen namen je napovedovanje verjetnosti p za oznake smisla.
Nakoncu FR system vrne oznako smisla z najvisjo verjetnostjo p kot rezultat klasifikacije
smisla za dano plitko diskurzno relacijo.

Z uporabo istih plasti (z istimi utezmi) na vseh stirih odsekih besedila, vzpodbujamo,
da so istolezne vlozitve predstavljene v istem vektorskem prostoru, in prepre¢ujemo pre-
komerno prileganje posebnostim posameznega odseka besedila.

Isto arhitekturo nevronske mreze smo uspesno uporabili na kitajski in angleski po-
datkovni zbirki, tako na nivoju besed (FR-zh, FR-en) kot na nivoju znakov (FR-zhch,
FR-ench). Zaradi razlik med jeziki in razlik v oznakah smisla je bilo potrebno prilagoditi
nekaj osnovnih parametrov (glej tabelo 4.1).

Ve¢ podrobnosti lahko najdete v poglavju 4. FR system smo v celoti objavili v Weiss
& Bajec [23].

Evaruacha

Evaluacijo naSega FR system smo izvedli na kitaj$¢ini v poglavju s.2 (s sistemi FR-zh,
FR-zhch) in na angles¢ini v poglavju s.3 (s sistemi FR-en, FR-ench).

Pri tem smo primarno sledili uradni formulaciji naloge, podatkovnim zbirkam in me-
todologiji izziva CONLL 2016 Shared Task [16], ki je bil organiziran v okviru konference

CoNLL. Uspesnost nasega FR. system smo primerjali z zmagovalnimi sistemi in mo¢ni-
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mi izhodi$¢nimi modeli. Najprej smo analizirali njegovo splo$no uspesnost z F;-oceno
in Brier-oceno, nato podrobnosti z rezultati po posameznih oznakah smisla in matriko
zamenjav za Explicit-ne in ne-Explicit-ne relacije ter izvedli $tudijo primerov na-
pak na angles¢ini. Analizirali smo tudi ¢asovno kompleksnost pri u¢enju in klasifikaciji.
Izvedli smo tudi Studijo izkljucitev, da smo lahko kvalitativno ocenili doprinos nekaterih
nadrtovalskih odloditev.

Na kitajski podatkovni zbirki v tabeli 5.1 oba nasa sistema (FR-zh, FR-zhch) presezeta
vse ostale sisteme na blind podatkovni zbirki. Sistem FR-zhch celo preseze na$ prejsnji
dvo-modelni sistem [22] za 2.5% na vseh relacijah. V primerjavi z ostalimi sistemi, ki
ne uporabljajo focused RNNs plasti, pa preseze celo za vec kot 8%. Pricakovali b, da se
bolj kompleksni in roéno nastavljeni sistemi odrezejo boljse od sistemov sestavljenih sa-
mo iz enega modela, ki ga je mozno uditi od zacetka-do-kraja. Sistem FR-zhch ima vi§jo
uspesnost zaradi boljsih rezultatov za Explicit-ne relacije (Exp). Pri tem celo presega
prej$nji najboljsi sistem od Schenk et al. [28], ki uporablja preprostej$i model za Expl1-
cit-ne relacije. Imeti preprostejsi model je lahko prednost na kitaji¢ini, saj je na voljo
bistveno manj Explicit-nih u¢nih primerov. Za ne-Explicit-ne relacije je zanimivo
omeniti, da je na kitajski blind podatkovni zbirki uspesnost vecine ostalih metod bistve-
no pod izhodi$¢nim modelom majority-zh. To namiguje, da sta sistema Schenk et al.
[28] in Wang & Lan [21] preve¢ prilagojena na uéno domeno in stil podatkovne zbir-
ke CDTB. Po drugi strani pa oba nasa sistema (FR-zh, FR-zhch) bolj$e ujameta ciljni
koncept. Sistem FR-zh celo preseze na$ prej$nji dvo-modelni sistem [22] za 3.6%.

Na angleski podatkovni zbirki v tabeli 5.7 oba nasa sistema (FR-en, FR-ench) ne za-
ostajata veliko za najuspesnejsimi sistemi na blind podatkovni zbirki s 4.6%, ¢eprav ne
uporabljata nobenega lingvisti¢nega znanja ali zunanjih virov. Po pri¢akovanjih Expli-
cit-ne relacije bolje klasificira Mihaylov & Frank [19], ki uporablja skrbno dolocen
seznam diskurznih veznikov in znacilk, povezanih z njimi. Sistem FR-en deluje mno-
go bolje od sistema FR-ench za Explicit-ne relacije in posledi¢no doseze vije ocene.
Zato ker deluje na nivoju besed, se lazje naudi bolj smiselne besedne vlozitve za predstavi-
tev veznikov. Iz rezultatov ne-Expli ¢ t-nih relacij pa vidimo, da znadilke od Mihaylov
& Frank [19], ki temeljijo na pred-naucenih besednih vlozitvah in med-argumentnimi
podobnostmi, dosezejo prekomerno prilagajanje na uéno domeno in stil podatkovne
zbirke PDTB. Ta metoda ne deluje bistveno bolj$e od nase na blind podatkovni zbirki.
Po drugi strani pa specializiran sistem od Rutherford & Xue [20] doseze mnogo bolj-

$e rezultate. Le-ta uporablja Bag-of-Words pristop z uporabo pred-naucenih besednih
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vlozitev in rezultati namigujejo, da lahko besedne vloZitve bolj$e ujamejo ciljne koncep-
te Sestih najpogostejsih oznak smisla v angles¢ini. Vsekakor pa bistveno nizje F;-ocene
vseh sistemov na angle$¢ini v primerjavi s kitaj$¢ino nakazujejo, da je klasifikacija smisla v
angles¢ini bistveno tezja kot v kitaji¢ini. Razlike v velikosti podatkovne zbirke, slovnici,
oznakah smisla in $e posebej njihovi porazdelitvi mo¢no vplivajo na uspesnosti.

Jezikovno-neodvisnost FR. system smo potrdili z uspe$no uporabo pretezno enakih
hiper-parametrov modela na dveh bistveno razli¢nih jezikih. Na kitaj§¢ini, kot primeru
manj podprtega jezika, in na angles¢ini, kot najbolj raziskanem jeziku z najnaprednejsimi
jezikovnimi tehnologijami.

Ve podrobnosti lahko najdete v poglavju s in v ¢lanku Weiss & Bajec [23].

ZAKLJUCEK

V disertaciji smo pristopili k najzahtevnejsemu delu besedilnega razclenjevanja dis-
kurza iz perspektive kako se otrok u¢i na podlagi primerov, brez eksplicitnega ucenja.
Namesto odvisnosti od roéno-izdelanih znacilk, zunanjih virov in naértovanjem sistema
specifiéno za dani jezik in nalogo, mi stremimo k jezikovno-neodvisnemu pristopu za
klasifikacijo smisla v plitkih diskurznih relacijah. V poglavju 3 najprej predstavimo naso
focused RNNs plast, ki predstavlja nov tip plasti s pozornostnim-mehanizmom za izde-
lavo vlozitev stavkov/argumentov. V poglavju 4 uporabimo te vlozitve argumentov v
nasem FR system, ki predstavlja novo metodo za klasifikacijo smisla v plitkih diskurznih
relacijah, ki temelji na focused RNNs plasti.

Najpomembnejsa in unikatna znadilnost FR system je, da se lahko skorajda brez spre-
memb uporabi na kateremkoli jeziku, oznakah smisla ter nivoju predstavitve vhodnih
podatkov. To je mozno, ker je sestavljen iz samo enega modela, ki ga je mozno celostno
uciti od zacetka-do-kraja, namesto iz kompleksnega cevovoda bistveno razli¢nih mode-
lov. Njegovo jezikovno-neodvisnost smo potrdili z uspe$no uporabo pretezno enakih
hiper-parametrov modela na dveh bistveno razli¢nih jezikih, a tudi s predstavitvijo vho-
da tako na ravni besed kot na ravni znakov. Res je, da je potrebno model u¢iti na ozna-
¢enih primerih za vsak jezik, vendar ne potrebuje nobenih za jezik specifi¢nih znacilk,
cevovodov ali zunanjih virov, niti pred-naucenih besednih vlozZitev.

FR system smo primerjali z zmagovalnimi sistemi in mo¢nimi izhodi$¢nimi modeli
na kitajskem in angleskem jeziku z uporabo uradnih podatkovnih zbirk in metodologije
iz CoONLL 2016 Shared Task [16]. Za 8% (z F-oceno 0.7477) presega ostale najbolje

sisteme na kitajski blind podatkovni zbirki in ne zaostaja veliko (z F;-oceno 0.5170) za
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najuspesnej$imi sistemi na angleski blind podatkovni zbirki. Glede na to, daje angles¢ina
najbolj raziskan jezik z najnaprednej§imi jezikovnimi tehnologijami, smo pri¢akovali, da
bodo sistemi skrbno izdelani zanj bistveno prekasali nas jezikovno-neodvisen pristop.
Zaklju¢imo z mislijo, da verjamemo, da je avtomatsko raz¢lenjevanje in analiza dis-
kurza, $e posebej klasifikacija smisla Impli cit-nih diskurznih relacij, klju¢en naslednji
korak pri razumevanju naravnega jezika. CGprav teoreti¢ne osnove tega lingvisti¢nega
pojava e niso popolnoma razjasnjene, se je na$ en model nevronske mreze sposoben
nauditi potrebnih konceptov za klasifikacijo smisla brez roéno-izdelanih znacilk in zu-
nanjih virov. Poleg tega je verjetno, da bi vedje koli¢ine uénih podatkov in naprednejsi
mehanizem bogatenja podatkov dvignili uspesnost FR system blizje ¢loveskemu nivoju.
Menimo, da tak$en pristop ni samo koristen za avtomatsko klasifikacijo smisla v plitkih
diskurznih relacijah, temve¢ bo navdihnil raziskovalce, da ga prilagodijo za kompleksnej-

$e naloge iz NLP.
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