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Imposing Mixed Dirichlet-Neumann-Robin Boundary

Conditions in a Level-Set Framework

Ásd́ıs Helgadóttir ∗ Yen Ting Ng † Chohong Min ‡ Frédéric Gibou∗†

March 17, 2014

Abstract

We consider the Poisson equation with mixed Dirichlet, Neumann and Robin boundary con-

ditions on irregular domains. We describe a straightforward and efficient approach for imposing

the mixed boundary conditions using an hybrid finite-volume/finite-difference approach, lever-

aging on the work of [14, 29, 32]. We utilize three different level set functions to represent the

irregular boundary at which each of the three different boundary conditions must be imposed;

as a consequence, this approach can be applied to moving boundaries. The method is straight-

forward to implement, produces a symmetric positive definite linear system and second-order

accurate solutions in the L∞-norm in two and three spatial dimensions. Numerical examples

illustrate the second-order accuracy and the robustness of the method.

1 Introduction

The Poisson equation is one of the building blocks in partial-differential-equation based modeling of

physical phenomena and has countless applications in fluid dynamics, heat transfer, electrostatics,

wave phenomena and a range of other important engineering problems. Many different approaches
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have been proposed for solving the Poisson problem subjected to different boundary conditions. The

main methods used to solve the Poisson equation are finite element (e.g. [1, 4, 23, 9, 17, 16, 40, 8, 5,

15, 33] and the references therein) or finite difference methods (e.g. [25, 42, 2, 43, 26, 14, 12, 21, 6, 44]

and the references therein).

The advantage of a finite element approach is that symmetric positive definite linear systems

are always constructed and a posteriori error estimates can be used to construct mesh refinement

criteria that minimize the overall error. Analysis of finite element schemes and order of accuracy

of the methods are also possible using norms induced by the solution space. The main drawback

of finite element methods in arbitrary geometry is the difficulty associated with the computational

complexity of the mesh generation. This comes from the fact that the elements must conform to

the irregular domains’ boundary and skewed elements can corrupt the accuracy of the method.

This leads to a significant computational burden, especially in the case where frequent refinement

is necessary, as is the case in free boundary problems.

Various methods have been used to enforce the correct boundary conditions at an irregular

interface. The immerse boundary method smears out the interface using the δ function formula-

tion, leading to a simple numerical scheme that is only first-order accurate and often experiences

nonphysical fluxes across the interface (see [34, 35, 36, 37, 41]). The immerse interface method

(IIM) [24] is second-order accurate method but difficult to implement especially in three spatial

dimensions. IIM produces sparse but neither symmetric nor positive definite matrix that is more

costly to solve than symmetric positive definite versions. The immerse interface method seeks to

minimize the truncation error of static two dimensional problems and is not a robust second-order

accurate method [26, 19]. Liu et al. presented a method for discretizing the variable coefficient

Poisson equation where the solution and its derivatives may have jumps across the interface in [26].

This discretization is particularly important in applications such as two-phase incompressible flow

and flame simulations (see e.g. [22, 30, 11]). This method is straightforward to implement since

only the right-hand-side of the linear system is modified, hence preserving the standard symmetric

definite positive (SPD) discretization of the Poisson equation on regular domains. The solutions

are first-order accurate in the L∞-norm. Second order accurate solutions to the Poisson equation

with jumps across interfaces have for example been developed in [31, 20]. There the stencil of the
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matrix is however much greater and the matrix generally not symmetric. Gibou et al. proposed a

method for Dirichlet boundary conditions instead of jump conditions in [14], with applications to

free surface flows and diffusion dominated moving boundary problems (see e.g. [27, 10, 13]). This

method is straightforward to implement, produces an SPD linear system and second-order accu-

rate solutions in the L∞-norm. In addition, it has been extended to fourth-order accuracy, albeit

non-symmetric, in [12]. Finite volume approaches allow Neumann and Robin boundary conditions

to be treated in a straight forward manner leading to the development of hybrid finite volume /

level set methods in [29, 32, 18]. In particular, Ng et al. presented a second-order accurate SPD

method for imposing Neumann boundary conditions on irregular domains in the context of fluid

flows in arbitrary shaped solid objects [29]. Papac et al. [32] describes a simple method for the

case of Robin boundary conditions that produces second-order accurate solutions in the L∞-norm

and a SPD linear system. This is an advantage over the more complicated method of Jomaa et al.

[21], for which non-symmetric linear systems are obtained, although the accuracy of the gradients

may drop to first-order. Bedrossian et al. presented an approach for imposing jump conditions

in the solution and solution’s gradients on irregular domains in [3] and applied this framework to

the case of Dirichlet and Neumann boundary conditions as well so this method can be applied

to mixed boundary conditions. The linear systems are SPD and the solutions are second-order

accurate but the method is not straightforward to implement. In [7] Coco et al. present a finite

difference ghost-cell multigrid approach for the Poisson equation with mixed Neumann and Dirich-

let boundary conditions on arbitrary domains. There the Neumann boundary condition is always a

smooth extension of the Dirichlet boundary conditions and vise versa (i.e. there is never a kink in

the irregular interface where the two boundary conditions meet). None of the previously mentioned

solvers can, therefore, handle mixture of all three types of boundary conditions on the irregular

interface where kinks can occur where the boundary conditions meet.

In this paper, we focus on the Poisson problem with mixed Dirichlet-Neumann-Robin boundary

conditions. Such boundary conditions can be encountered for example in the simulation of free

surface flows on an arbitrarily shaped topography (Dirichlet-Neumann) or the simulation of heat

diffusion under convection cooling on part of the computational domain (Robin-Dirichlet or Robin-

Neumann). We describe an approach for imposing mixed Dirichlet and/or Neumann and/or Robin
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boundary conditions in a straightforward and robust fashion, based on combining and extending

some of our prior work into a unified framework. This method is unconditionally stable, produces

a SPD linear system and second-order accurate solutions in the L∞-norm.

2 Equations and Numerical Method

We considered the Poisson problem on a domain Ω separated into two disjoint subsets Ω− and Ω+

such that Ω = Ω− ∪ Ω+, and Γ is the interface between Ω− and Ω+. We employ three implicit

functions, φD, φN and φR to describe the different regions where the solution u is computed as

well as where the different boundary conditions are imposed (see figure 1). In particular, we are

interested in solving the Poisson equation only inside Ω− = {φD < 0} ∩ {φN < 0} ∩ {φR < 0}.

Dirichlet, Neumann and Robin boundary conditions are applied on Γ = {φD = 0∧ φN < 0∧ φR <

0} ∩ {φN = 0 ∧ φD < 0 ∧ φR < 0} ∩ {φR = 0 ∧ φD < 0 ∧ φN < 0}, respectively. Mathematically,

the problem is described as solving for the solution u at a location x satisfying:

∆u = F x ∈ Ω−, (1)

u = G on φD = 0,

∂u

∂n
= K on φN = 0,

∂u

∂n
+ αu = M on φR = 0,

where α > 0.

We consider a finite volume discretization for imposing the Neumann and Robin boundary

conditions, as in [29, 32, 38]: Consider a cell Cij =
[
i− 1

2 , i+ 1
2

]
×
[
j − 1

2 , j + 1
2

]
partially covered

by the irregular domain Ω−. Taking a finite volume approach, i.e. integrating the left hand side of

equation (1) over Cij and evoking the divergence theorem, we obtain:∫
Cij∩Ω−

∇ · ∇u dΩ =

∫
∂(Cij∩Ω−)

n · ∇u dΓ,

where dΩ and dΓ refer to the area and length differentials respectively, in two spatial dimensions.

Since the boundary ∂ (Cij ∩ Ω−) has two components, the faces of the grid cell ∂Cij ∩Ω− and the

interface with the irregular external boundary Cij ∩ Γ, we consider separately the contribution of
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(a) A computational domain in 2D. (b) Surface plot (red) and 0-level set (black) of φD.

(c) Surface plot (blue) and 0-level set (black) of φN . (d) Surface plot (green) and 0-level set (black) of φR.

Figure 1: A two-dimensional computational domain and its representation. The solution is com-

puted in Ω− and the Dirichlet, Neumann and Robin boundary conditions are applied on ΓD, ΓN

and ΓR, respectively. The level-set functions φD, φN and φR have been set arbitrarily to 1 in Ω+

for visualization purposes; in practice these functions are Lipschitz continuous.
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the two components:∫
∂(Cij∩Ω−)

n · ∇u dΓ =

∫
∂Cij∩Ω−

n · ∇u dΓ +

∫
Cij∩ΓN

K dΓ +

∫
Cij∩ΓR

M dΓ− αui,j
∫
Cij∩ΓR

dΓ.

By approximating the boundary integral on the grid faces as the product of the length and the

sampled value at the center, we obtain:∫
∂(Cij∩Ω−)

n · ∇u dΓ ' Li+ 1
2 ,j

ui+1,j − ui,j
∆x

− Li− 1
2 ,j

ui,j − ui−1,j

∆x

+ Li,j+ 1
2

ui,j+1 − ui,j
∆y

− Li,j− 1
2

ui,j − ui,j−1

∆y

− αui,j
∫
Cij∩ΓR

dΓ +

∫
Cij∩ΓN

K dΓ +

∫
Cij∩ΓR

M dΓ,

where on a face
(
i− 1

2

)
× [j− 1

2 , j+ 1
2 ], the length fraction Li− 1

2 ,j
of the face covered by the irregular

domain {x|φ(x) ≤ 0} is linearly approximated as:

Li− 1
2 ,j

=



∆y
φ
i− 1

2
,j− 1

2

φ
i− 1

2
,j− 1

2
−φ

i− 1
2
,j+1

2

if φi− 1
2 ,j− 1

2
< 0 and φi− 1

2 ,j+
1
2
> 0,

∆y
φ
i− 1

2
,j+1

2

φ
i− 1

2
,j+1

2
−φ

i− 1
2
,j− 1

2

if φi− 1
2 ,j− 1

2
> 0 and φi− 1

2 ,j+
1
2
< 0,

∆y if φi− 1
2 ,j− 1

2
< 0 and φi− 1

2 ,j+
1
2
< 0,

0 if φi− 1
2 ,j− 1

2
> 0 and φi− 1

2 ,j+
1
2
> 0.

(2)

We, therefore, obtain a linear system for which each row represents the following equation:

Li+ 1
2 ,j

ui+1,j − ui,j
∆x

− Li− 1
2 ,j

ui,j − ui−1,j

∆x

+ Li,j+ 1
2

ui,j+1 − ui,j
∆y

− Li,j− 1
2

ui,j − ui,j−1

∆y
− αui,j

∫
Cij∩ΓR

dΓ

=

∫
Cij∩Ω−

F dΩ−
∫
Cij∩ΓN

K dΓ−
∫
Cij∩ΓR

M dΓ. (3)

The integrals are found by geometric integration and will be detailed in section 2.1. In particular,

in the case where mixed Neumann and Robin boundary conditions are present, a subcell integration

of each of the interfaces is crucial for convergence as detailed in section 2.1.
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We impose Dirichlet boundary conditions by modifying equation (3) at grid nodes adjacent to

the interface ΓD = {φD = 0} using the approach introduced by Gibou et al. [14]: Consider a case

where the interface defined by φD = 0 crosses in between grid nodes xi and xi+1 (see figure 2), then

equation (3) is modified to incorporate the value of GΓ at the interface, i.e. the expression:

Li+ 1
2 ,j

ui+1,j − ui,j
∆x

− Li− 1
2 ,j

ui,j − ui−1,j

∆x
,

is replaced by

Li+ 1
2 ,j

GΓ − ui,j
∆xΓ

− Li− 1
2 ,j

ui,j − ui−1,j

∆x
, (4)

where

GΓ =
Gi+1|φDi |+Gi|φDi+1|
|φDi |+ |φDi+1|

,

∆xΓ = ∆x
φDi

|φDi |+ |φDi+1|
.

Equation (3), modified by equation (4) for grid nodes adjacent to a Dirichlet boundary interface,

produces a linear system that enforces mixed Dirichlet, Neumann and Robin boundary conditions

at irregular interfaces.

Remark: It is straightforward to implement such a scheme on arbitrary irregular domains in

two and three spatial dimensions and to see that the corresponding linear systems are symmetric

positive definite. We are using an incomplete Cholesky preconditioned conjugate gradient method

[39] to solve the linear system.

2.1 Geometric Integration

In order to compute the different integrals in equation (3), we use a modified version of the second-

order accurate geometric integration introduced in [28]: Integrations are performed by first split-

ting cells Ci,j (in two spatial dimensions and Ci,j,k in three spatial dimensions), into simplices, S

(i.e.triangles in two spatial dimensions and tetrahedrons in three spatial dimensions). If the sets

S
⋂

Γ or S
⋂

Ω are not simplices they are further split into simplices using a linear interpolation

of φ from the vertices of S as described in [28]. The interface’s length inside a simplex or the area
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Figure 2: Treatment of Dirichlet boundary conditions on irregular domains. The given interface

value GΓ is enforced at the interface Γ using the approach of [14].

of a simplex in two spatial dimensions can be easily found using basic formulas. It is also straight-

forward to compute the surface of interface inside a simplex or the volume of a simplex in three

spatial dimensions. Finally, the total integrals are found by adding each integral over all simplices,

i.e. ∫
Ci,j

⋂
Γ

f dΓ =
∑

S∈T (Ci,j)

∫
S
⋂

Γ

f dΓ,

and ∫
Ci,j

⋂
Ω−

f dΩ− =
∑

S∈T (Ci,j)

∫
S
⋂

Ω−
f dΩ−,

where T (Ci,j) represents the triangulation of the current cell and f the function to be integrated,

i.e. either K or M .

2.1.1 Subcell Integration

The integration method described in the previous section involves a single level set function [28].

When both Neumann and Robin boundary conditions are present, then subcell integration is needed

to avoid a drop in accuracy to first-order. The subcell integration method chosen in this paper is

described is this section:
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P2

P1 P3

P4

P ∗
P2

P1 P3

P4

Figure 3: The left schematic depicts the original integration scheme of [28] over both ΓN and ΓR.

In this case, the contribution of both Neumann and Robin boundary conditions are overestimated.

The schematic on the right depicts the subcell integration described in section 2.1.1. In this case

ΓN and ΓR are correctly only integrated to the cross section point P ∗.
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The case of the integrating over a domain is straightforward since we can simply follow the

procedure described above, except that Ω− is described by φ = max(φN , φR).

To describe the case of integration over the interface, let’s assume that a cell is cut by both φN

and φR, as illustrated in figure 3. The points P1 and P2 intersecting φN with the cell’s boundary are

found, defining a linear approximation of φN in that cell. Likewise, we find the points P3 and P4 on

the cell’s boundary defining a linear approximation of φR in that cell. Then, the intersection point

P ∗ between these two linear approximations is used to compute the contribution of
∫
Ci,j

⋂
ΓN K dΓ

and
∫
Ci,j

⋂
ΓR M dΓ in the cell. Specifically, we use:∫

Ci,j
⋂

ΓN

K dΓ ≈ K(P1) +K(P ∗)
2

P1P ∗ and

∫
Ci,j

⋂
ΓR

M dΓ ≈ M(P4) +M(P ∗)
2

P4P ∗,

where P1P ∗ and P4P ∗ are, respectively, the lengths of the interval between the points P1, P ∗ and

P4, P ∗.

Remarks:

• Special care is needed in the case where both φN and φR cut through a cell, but do not

intersect. In this case, the contribution of each integral is computed separately.

• In three spatial dimensions, the procedure is similar except that planes instead of lines are

used as linear approximations.

3 Numerical Experiments

We present numerical evidence that the proposed method is second-order accurate in both two and

three spatial dimensions.

3.1 Two Spatial Dimensions

3.1.1 Mixed Dirichlet and homogenous Neumann boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD = −x+ .1, φN = r− .5, φR = −1, and the exact solution G = (r− .5)3 for all x, y ∈ Ω. Figure 4

depicts the solution and highlights different parts of the interface where Dirichlet and homogenous
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Neumann boundary conditions are enforced. Table 1 demonstrates the second-order accuracy of

the method in the L∞-norm.

Resolution ||u− uh||∞ Order

322 1.36× 10−3 —

642 3.07× 10−4 2.15

1282 7.69× 10−5 2.00

2562 1.91× 10−5 2.01

5122 4.80× 10−6 1.99

10242 1.20× 10−6 2.00

20482 3.01× 10−7 2.00

Table 1: Maximum error and rate of maximum error for different resolution for Ex. 3.1.1: Mixed

Dirichlet and homogenous Neumann boundary conditions on smooth interfaces in two spatial di-

mensions.

3.1.2 Mixed Dirichlet and non-homogenous Neumann boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD = −x + .1, φN = r − .8, φR = −1, and the exact solution G = (r − .5)3 for all x, y ∈ Ω.

Figure 5 depicts the solution and highlights different parts of the interface where Dirichlet and non-

homogenous Neumann boundary conditions are enforced. Table 2 demonstrates the second-order

accuracy of the method in the L∞-norm.

3.1.3 Mixed Dirichlet and non-homogenous Robin boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD = −x + .1, φN = −1, φR = r − .75, and the exact solution G = exp (x · y) for all x, y ∈ Ω.

Figure 6 depicts the solution and highlights different parts of the interface where Dirichlet and

non-homogenous Robin boundary conditions are enforced. Table 3 demonstrates the second-order

accuracy of the method in the L∞-norm.
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Resolution ||u− uh||∞ Order

322 1.67× 10−3 —

642 4.24× 10−4 1.98

1282 1.18× 10−4 1.84

2562 2.89× 10−5 2.03

5122 7.23× 10−6 2.00

10242 1.80× 10−6 2.01

20482 4.59× 10−7 1.97

Table 2: Maximum error and rate of maximum error for different resolution for Ex. 3.1.2: Mixed

Dirichlet and non-homogenous Neumann boundary conditions on smooth interfaces in two spatial

dimensions.

3.1.4 Mixed homogenous Neumann and non-homogenous Robin boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD = −1, φN = r − .5, φR = −x − .01, and the exact solution G = (r2 − .25)3 for all x, y ∈ Ω.

Figure 7 depicts the solution and highlights different parts of the interface where homogenous

Neumann and non-homogenous Robin boundary conditions are enforced. Table 4 demonstrates the

second-order accuracy of the method in the L∞-norm.
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Resolution ||u− uh||∞ Order

162 4.87× 10−3 —

322 1.12× 10−3 2.11

642 3.15× 10−4 1.83

1282 8.05× 10−5 1.97

2562 2.14× 10−5 1.91

5122 5.39× 10−6 1.99

10242 1.38× 10−6 1.97

20482 3.45× 10−7 2.00

Table 3: Maximum error and rate of maximum error for different resolution for Ex. 3.1.3: Mixed

Dirichlet and non-homogenous Robin boundary conditions on smooth interfaces in two spatial

dimensions.

3.1.5 Mixed Dirichlet and non-homogenous Neumann boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define the following for

x, y ∈ Ω:

r =
√
x2 + y2

θ = tan−1(
y

x
)

φD =


−min(r − 0.1, 0.6 + 0.3 cos(6θ)− r) if x ≥ 0

−min(r − 0.1, 1.1−
√

(x+ 1.1
√

0.91)2 + y2 if x < 0

φN =


−
(

1.1−
√

(x− 1.1
√

0.91)2 + y2

)
if x ≥ 0

− (0.6 + 0.3 cos(6θ)− r)) if x < 0

φR = −1

G = (r2 − .25)3.
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Resolution ||u− uh||∞ Order

162 1.79× 10−3 —

322 5.13× 10−4 1.80

642 1.13× 10−4 1.94

1282 3.27× 10−5 2.04

2562 9.15× 10−6 1.83

5122 1.81× 10−6 2.34

10242 6.20× 10−7 1.55

20482 1.94× 10−7 1.68

Table 4: Maximum error and rate of maximum error for different resolution for Ex. 3.1.4: Mixed

homogenous Neumann and non-homogenous Robin boundary conditions on smooth interfaces in

two spatial dimensions.

Figure 8 depicts the solution and highlights different parts of the interface where Dirichlet and non-

homogenous Neumann boundary conditions are enforced. Table 5 demonstrates the second-order

accuracy of the method in the L∞-norm.
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Resolution ||u− uh||∞ Order

642 5.09× 10−3 —

1282 1.18× 10−3 2.11

2562 3.54× 10−4 1.74

5122 9.34× 10−5 1.92

10242 2.50× 10−5 1.90

Table 5: Maximum error and rate of maximum error for different resolution for Ex. 3.1.5: Mixed

Dirichlet and non-homogenous Neumann boundary conditions on irregular interfaces in two spatial

dimensions.

3.1.6 Mixed Dirichlet and non-homogenous Robin boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define the following for

x, y ∈ Ω:

r =
√
x2 + y2

θ = tan−1(
y

x
)

φD =


−min(r − 0.1, 0.6 + 0.3 cos(6θ)− r) if x ≥ 0

−min(r − 0.1, 1.1−
√

(x+ 1.1
√

0.91)2 + y2 if x < 0

φN = −1;

φR =


−
(

1.1−
√

(x− 1.1
√

0.91)2 + y2

)
if x ≥ 0

− (0.6 + 0.3 cos(6θ)− r)) if x < 0

G = (r2 − .25)3

Figure 9 depicts the solution and highlights different parts of the interface where Dirichlet and

non-homogenous Robin boundary conditions are enforced. Table 6 demonstrates the second-order

accuracy of the method in the L∞-norm.
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Resolution ||u− uh||∞ Order

1282 1.24× 10−3 —

2562 2.92× 10−4 2.09

5122 8.78× 10−5 1.73

10242 1.98× 10−5 2.15

Table 6: Maximum error and rate of maximum error for different resolution for Ex. 3.1.6: Mixed

Dirichlet and non-homogenous Robin boundary conditions on irregular interfaces in two spatial

dimensions.

3.1.7 Mixed non-homogenous Neumann and non-homogenous Robin boundary con-

ditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define the following for

x, y ∈ Ω:

r =

√
(x− 0.05)

2
+ (y + 0.09)

2
,

β =

(
(y + 0.09)

5
+ 5 · (x− 0.05)

4 · (y + 0.09)− 10 · (x− 0.05)
2 · (y + 0.09)

3
)

r5
,

φD = −1,

φN =

(
r − 0.5− β

3

)
,

φR = x− 0.1,

G = (
(
x2 + y2

)2 − .25)3.

Figure 10 depicts the solution and highlights different parts of the interface where non-homogenous

Neumann and non-homogenous Robin boundary conditions are enforced. Table 7 demonstrates the

second-order accuracy of the method in the L∞-norm.
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Resolution ||u− uh||∞ Order

642 6.32× 10−3 —

1282 1.63× 10−3 1.95

2562 4.44× 10−4 1.88

5122 1.09× 10−4 2.03

10242 3.13× 10−5 1.80

20482 7.35× 10−6 2.09

Table 7: Maximum error and rate of maximum error for different resolution for Ex. 3.1.7: Mixed

non-homogenous Neumann and non-homogenous Robin boundary conditions on irregular interfaces

in two spatial dimensions.

3.1.8 Mixed Dirichlet, Non-Homogenous Neumann and Non-Homogenous Robin Bound-

ary Conditions on Smooth Interfaces

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD = −x− .3, φN = r− .8, φR = −x+y√
2

+ .1, and the exact solution G =
(
r4 − .25

)3
for all x, y ∈ Ω.

Figure 11 depicts the solution and highlights the different parts of the interface where Dirichlet,

non-homegeneous Neumann and non-homogeneous Robin boundary conditions are enforced. Table

8 demonstrates the second-order accuracy of the method in the L∞-norm.
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Resolution ||u− uh||∞ Order

1282 4.14× 10−6 —

2562 9.34× 10−7 2.10

5122 2.50× 10−7 1.95

10242 6.03× 10−8 2.05

20482 1.74× 10−8 1.79

Table 8: Maximum error and rate of maximum error for different resolution for Ex. 3.1.8: Mixed

Dirichlet, non-homogenous Neumann and non-homogenous Robin boundary conditions on smooth

interfaces in two spatial dimensions.

3.1.9 Mixed Dirichlet, Non-Homogenous Neumann and Non-Homogenous Robin Bound-

ary Conditions on Non-Smooth Interfaces

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define the following for

x, y ∈ Ω:

r =

√
(x− 0.05)

2
+ (y + 0.09)

2
,

β =

(
(y + 0.09)

5
+ 5 · (x− 0.05)

4 · (y + 0.09)− 10 · (x− 0.05)
2 · (y + 0.09)

3
)

r5
,

φD =
x+ y√

2.
− .1,

φN =

(
r − 0.5− β

3

)
,

φR = x− 0.1,

G = (
(
x2 + y2

)2 − .25)3.

Figure 12 depicts the solution and highlights the different parts of the interface where Dirichlet,

non-homegeneous Neumann and non-homogeneous Robin boundary conditions are enforced. Table

9 demonstrates the second-order accuracy of the method in the L∞-norm.
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Figure 4: Plot of the solution, u, and interfaces for example 3.1.1. The left figure shows a top view

where the two interfaces are easily detected. The red line represent ΓD and the blue circle represent

ΓN . The right figure shows the solution inside Ω−.
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Figure 5: Plot of the solution, u, and interfaces for example 3.1.2. The left figure shows a top view

where the two interfaces are easily detected. The red line represent ΓD and the blue circle represent

ΓN . The right figure shows the solution inside Ω−.
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Figure 6: Plot of the solution, u, and interfaces for example 3.1.3. The left figure shows a top

view where the two interfaces are easily detected. The red line represent ΓD and the green circle

represent ΓR. The right figure shows the solution inside Ω−.
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Figure 7: Plot of the solution, u, and interfaces for example 3.1.4. The left figure shows a top

view where the two interfaces are easily detected. The blue line represent ΓN and the green circle

represent ΓR. The right figure shows the solution inside Ω−.
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Figure 8: Plot of the solution, u, and interfaces for example 3.1.5. The left figure shows a top

view where the two interfaces are easily detected. The red curve represents ΓD and the blue curve

represents ΓN . The right figure shows the solution inside Ω−.
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Figure 9: Plot of the solution, u, and interfaces for example 3.1.6. The left figure shows a top

view where the two interfaces are easily detected. The red curve represents ΓD and the green curve

represents ΓR. The right figure shows the solution inside Ω−.
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Figure 10: Plot of the solution, u, and interfaces for example 3.1.7. The left figure shows a top

view where the two interfaces are easily detected. The blue curve represent ΓN and the green line

represent ΓR. The right figure shows the solution inside Ω−.
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Figure 11: Plot of the solution, u, and interfaces for example 3.1.8. The left figure shows a top view

where the three interfaces are easily detected. The red line represents ΓD, the blue line represent

ΓN and the green circle represent ΓR. The right figure shows the solution inside Ω−.
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Resolution ||u− uh||∞ Order

642 8.10× 10−3 —

1282 2.13× 10−3 1.92

2562 5.86× 10−4 1.86

5122 1.44× 10−4 2.02

10242 4.27× 10−5 1.75

20482 1.04× 10−5 2.04

Table 9: Maximum error and rate of maximum error for different resolution for Ex. 3.1.9: Mixed

Dirichlet, non-homogenous Neumann and non-homogenous Robin boundary conditions on non-

smooth interfaces in two spatial dimensions.
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Figure 12: Plot of the solution, u, and interfaces for example 3.1.9. The left figure shows a top

view where the three interfaces are easily detected. The red line represents ΓD, the blue curves

represent ΓN and the green line represent ΓR. The right figure shows the solution inside Ω−.
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3.2 Three Spatial Dimensions

3.2.1 Mixed Dirichlet and homogenous Neumann boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −x+ .1, φN = r− .5, φR = −1, and the exact solution G = (r2− .25)3 for all

x, y, z ∈ Ω. Figure 13 depicts the different parts of the interface where Dirichlet and homogeneous

Neumann boundary conditions are enforced. Table 10 shows the second-order accuracy of the

method in the L∞.

Resolution ||u− uh||∞ Order

163 3.77× 10−4 —

323 9.09× 10−5 2.05

643 2.28× 10−5 2.00

1283 5.68× 10−6 2.00

Table 10: Maximum error and rate of maximum error for different resolution for Ex. 3.2.1: Mixed

Dirichlet and homogenous Robin boundary conditions on smooth interfaces in three spatial dimen-

sions.

3.2.2 Mixed Dirichlet and non-homogenous Neumann boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −x + .1, φN = r − .8, φR = −1, and the exact solution G = (r2 − .25)3

for all x, y, z ∈ Ω. Figure 14 depicts the different parts of the interface where Dirichlet and non-

homogeneous Neumann boundary conditions are enforced. Table 11 shows the second-order accu-

racy of the method in the L∞.

3.2.3 Mixed Dirichlet and non-homogenous Robin boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −x + .1, φN = −1, φR = r − .5, and the exact solution G = (r2 − .25)3
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Resolution ||u− uh||∞ Order

163 2.55× 10−2 —

323 5.15× 10−3 2.31

643 1.43× 10−3 1.85

1283 4.54× 10−4 1.66

Table 11: Maximum error and rate of maximum error for different resolution for Ex. 3.2.2: Mixed

Dirichlet and non-homogenous Neumann boundary conditions on smooth interfaces in three spatial

dimensions.

for all x, y, z ∈ Ω. Figure 15 depicts the different parts of the interface where Dirichlet and non-

homogeneous Robin boundary conditions are enforced. Table 12 shows the second-order accuracy

of the method in the L∞.

Resolution ||u− uh||∞ Order

163 2.52× 10−4 —

323 6.83× 10−5 1.88

643 1.78× 10−5 1.84

1283 4.53× 10−6 1.98

Table 12: Maximum error and rate of maximum error for different resolution for Ex. 3.2.3: Mixed

Dirichlet and non-homogenous Robin boundary conditions on smooth interfaces in three spatial

dimensions.

3.2.4 Mixed homogenous Neumann and non-homogenous Robin boundary conditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −1, φN = r − .5, φR = −x + .1, and the exact solution G = (r2 − .25)3 for

all x, y, z ∈ Ω. Figure 16 depicts the different parts of the interface where homegeneous Neumann

and non-homogeneous Robin boundary conditions are enforced. Table 13 shows the second-order

accuracy of the method in the L∞.
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Resolution ||u− uh||∞ Order

163 9.17× 10−4 —

323 2.06× 10−4 2.15

643 6.47× 10−5 1.67

1283 1.99× 10−5 1.71

Table 13: Maximum error and rate of maximum error for different resolution for Ex. 3.2.4: Mixed

homogenous Neumann and non-homogenous Robin boundary conditions on smooth interfaces in

three spatial dimensions.

3.2.5 Mixed non-homogenous Neumann and non-homogenous Robin boundary con-

ditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −1., φN = −x+ .1, φR = r− .8, and the exact solution G = (r2− .25)3 for all

x, y, z ∈ Ω. Figure 17 depicts the different parts of the interface where non-homegeneous Neumann

and non-homogeneous Robin boundary conditions are enforced. Table 14 shows the second-order

accuracy of the method in the L∞.

Resolution ||u− uh||∞ Order

163 3.12× 10−2 —

323 1.04× 10−2 1.58

643 2.97× 10−3 1.81

1283 8.39× 10−4 1.83

Table 14: Maximum error and rate of maximum error for different resolution for Ex. 3.2.5: Mixed

non-homogenous Neumann and non-homogenous Robin boundary conditions on smooth interfaces

in three spatial dimensions.
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3.2.6 Mixed non-homogenous Neumann and non-homogenous Robin boundary con-

ditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −1., φN = r− .8, φR = −x+ .1, and the exact solution G = (r2− .25)3 for all

x, y, z ∈ Ω. Figure 18 depicts the different parts of the interface where non-homegeneous Neumann

and non-homogeneous Robin boundary conditions are enforced. Table 15 shows the second-order

accuracy of the method in the L∞.

Resolution ||u− uh||∞ Order

163 2.71× 10−2 —

323 9.55× 10−3 1.51

643 2.75× 10−3 1.80

1283 7.89× 10−4 1.80

Table 15: Maximum error and rate of maximum error for different resolution for Ex. 3.2.6: Mixed

non-homogenous Neumann and non-homogenous Robin boundary conditions on smooth interfaces

in three spatial dimensions.

3.2.7 Mixed non-homogenous Neumann and non-homogenous Robin boundary con-

ditions

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −1., φN = −x+ .1, φR = r− .5, and the exact solution G = (r2− .25)3 for all

x, y, z ∈ Ω. Figure 19 depicts the different parts of the interface where non-homegeneous Neumann

and non-homogeneous Robin boundary conditions are enforced. Table 16 shows the second-order

accuracy of the method in the L∞.
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Resolution ||u− uh||∞ Order

163 8.62× 10−4 —

323 2.10× 10−4 2.04

643 6.04× 10−5 1.80

1283 1.43× 10−5 2.08

Table 16: Maximum error and rate of maximum error for different resolution for Ex. 3.2.7: Mixed

non-homogenous Neumann and non-homogenous Robin boundary conditions on smooth interfaces

in three spatial dimensions.

3.2.8 Mixed Dirichlet, Non-Homogenous Neumann And Non-Homogenous Robin

Boundary Conditions on Smooth Interfaces

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1] × [−1, 1]. We define r =√
x2 + y2 + z2, φD = −x+y√

2
+.1, φN = r−.8, φR = −x+.1, and the exact solutionG = (r2−.25)4 for

all x, y ∈ Ω. Figure 20 depicts the different parts of the interface where Dirichlet, non-homegeneous

Neumann and non-homogeneous Robin boundary conditions are enforced. Table 17 shows the

second-order accuracy of the method in the L∞.

Resolution ||u− uh||∞ Order

163 5.74× 10−2 —

323 1.66× 10−2 1.79

643 4.42× 10−3 1.91

1283 1.06× 10−3 2.06

Table 17: Maximum error and rate of maximum error for different resolution for Ex. 3.2.8: Mixed

Dirichlet, non-homogenous Neumann and non-homogenous Robin boundary conditions on smooth

interfaces in three spatial dimensions.
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3.2.9 Mixed Dirichlet, Non-Homogenous Neumann And Non-Homogenous Robin

Boundary Conditions on Non-Smooth Interfaces

Consider a domain Ω = [−1, 1]× [−1, 1]× [−1, 1]. We define the following for x, y, z ∈ Ω:

φD = −x+ y + z√
3

− 0.1,

φN = x− 0.4,

a =
√

0.4−
√

(x+ 0.05)
2

+ (y + 0.1)
2

+ (z + 0.05)
2
,

b =
√

0.12−

√
(x+ 0.05)

2
+

(y + 0.1)
2

5
+ (z + 0.1)

2
,

c =
√

0.12−

√
(x+ 0.05)

2

5
+ (y + 0.1)

2
+ (z + 0.1)

2
,

d =

√√
2 · 0.24−

√
2x2 + 2y2 +

z2

2
,

φR = −max (a,max (b,max (c, d))),

G = (r2 − .25)4.

Figure 21 depicts the interfaces where the boundary conditions are imposed. Table 18 shows the

second-order accuracy of the method in the L∞-norm.

Resolution ||u− uh||∞ Order

163 1.10× 10−2 —

323 2.75× 10−3 2.00

643 5.71× 10−4 2.27

1283 1.87× 10−4 1.61

Table 18: Maximum error and rate of maximum error for different resolution for Ex. 3.2.9: Mixed

Dirichlet, non-homogenous Neumann and non-homogenous Robin boundary conditions on non-

smooth interfaces in three spatial dimensions.
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Figure 13: Plot of the two interfaces for example 3.2.1. The red plane represents ΓD and the

blue sphere represents ΓN . The top part of the blue sphere and the darkened red circle mark the

boundary of Ω−.
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Figure 14: Plot of the two interfaces for example 3.2.2. The red plane represents ΓD and the

blue sphere represents ΓN . The top part of the blue sphere and the darkened red circle mark the

boundary of Ω−.
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Figure 15: Plot of the two interfaces for example 3.2.3. The red plane represents ΓD and the

green sphere represents ΓR. The top part of the green sphere and the darkened red circle mark the

boundary of Ω−.
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Figure 16: Plot of the two interfaces for example 3.2.4. The blue sphere represents ΓN and the

green plane represents ΓR. The top part of the blue sphere and the darkened green circle mark the

boundary of Ω−.
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Figure 17: Plot of the two interfaces for example 3.2.5. The blue plane represents ΓN and the green

sphere represents ΓR. The top part of the green sphere, and the darkened blue circle mark the

boundary of Ω−.
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Figure 18: Plot of the two interfaces for example 3.2.6. The blue sphere represents ΓN and the

green plane represents ΓR. The top part of the blue sphere and the darkened green circle mark the

boundary of Ω−.
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Figure 19: Plot of the two interfaces for example 3.2.7. The blue plane represents ΓN and the

green sphere represents ΓR. The top part of the green sphere and the darkened blue circle mark

the boundary of Ω−.
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Figure 20: Plot of the three interfaces for example 3.2.8. The red plane represents ΓD, the blue

sphere represents ΓN and the green plane represents ΓR. The top part of the blue sphere, the

darkened red and the darkened green interfaces mark the boundary of Ω−.
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Figure 21: Plot of the three interfaces for example 3.2.9. The red plane represents ΓD, the blue

plane represents ΓN and the green curved surface represents ΓR. The top left part of the green

curved plane, the darkened red and the darkened blue interfaces mark the boundary of Ω−.
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4 Remark on robustness of the method

For clarification purposes we want to point out that two of the boundary conditions always meet

at some point, in two dimensions, or at some surface, in three dimensions, in the domain and the

method is designed to handle the boundary conditions correctly at those points/surfaces. If all three

boundary conditions are present in the same cell that does not pose a problem, since the level set

function with the highest value is always used to determine what boundary conditions are enforced

in that direction. If two level set functions are very close to each other over a long stretch that

does not pose a problem either since the level set function with the higher value is always chosen

as the boundary. In order to emphasize this we show a few two dimensional examples where two

boundary conditions are close to one another for a long stretch (see Examples 4.1, 4.2 and 4.3) and

a two dimensional example where all three boundary conditions are very close (see Example 4.4).

If there are two level set functions with the same level set value (or the difference in their value is

less than machine precision) at a certain point we would potentially run into problems (it is not

clear which boundary condition would be chosen at this specific point), but physically that would

equal enforcing two types of boundary conditions at the same boundary which is unphysical so the

problem would be illposed. Here below are examples showing the robustness of the method in tough

situations. Convergence rate of the conjugate gradient solver is the similar to the convergence rate

for the problems tested previously in this paper.

4.1 Mixed Dirichlet, Non-Homogenous Neumann Level set functions’

zeroth level close for long stretches

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD =

√
(x− 0.0035)

2
+ (y − 0.0045)

2 − 0.8, φN = r − .8, φR = −1., and the exact solution

G =
(
x3

3 −
x2

2

)
·
(
y3

3 −
y2

2

)
. The two points that have the zeroth level set furthest away from each

other are about 0.0057 away from each other (which is considerably lower than the cell size until

the 5122 resolution is reached), all other points have an even shorter distance between the two

interfaces. Figure 22 depicts the solution and highlights the different parts of the interface where

Dirichlet and non-homegeneous Neumann boundary conditions are enforced. Table 19 demonstrates
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the second-order accuracy of the method in the L∞-norm. The method maintains second order

accuracy despite the zeroth level of the two level set functions being very close over long stretches.

Resolution dx ||u− uh||∞ Order

162 0.125 1.72× 10−3 —

322 0.0625 3.10× 10−4 2.47

642 0.03125 1.13× 10−4 1.49

1282 0.015625 2.15× 10−5 2.39

2562 0.0078125 5.47× 10−6 1.98

5122 0.00390625 1.32× 10−6 2.05

10242 0.001953125 3.29× 10−7 2.00

Table 19: Maximum error and rate of maximum error for different resolution for Ex. 4.1: Mixed

Dirichlet and non-homogenous Neumann boundary conditions on interfaces in two spatial dimen-

sions that are very close to each other over long stretches.

4.2 Mixed Dirichlet, Non-Homogenous Robin Level set functions’ zeroth

level close for long stretches

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD =

√
(x− 0.0035)

2
+ (y − 0.0045)

2 − 0.8, φN = −1., φR = r − .8, and the exact solution

G =
(
x3

3 −
x2

2

)
·
(
y3

3 −
y2

2

)
. The two points that have the zeroth level set furthest away from each

other are about 0.0057 away from each other (which is considerably lower than the cell size until

the 5122 resolution is reached), all other points have an even shorter distance between the two

interfaces. Figure 23 depicts the solution and highlights the different parts of the interface where

Dirichlet and non-homegeneous Robin boundary conditions are enforced. Table 20 demonstrates

the second-order accuracy of the method in the L∞-norm. The method maintains second order

accuracy despite the zeroth level of the two level set functions being very close over long stretches.
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Resolution dx ||u− uh||∞ Order

162 0.125 1.93× 10−3 —

322 0.0625 3.51× 10−4 2.46

642 0.03125 1.18× 10−4 1.58

1282 0.015625 2.23× 10−5 2.40

2562 0.0078125 5.21× 10−6 2.10

5122 0.00390625 1.26× 10−6 2.05

10242 0.001953125 3.27× 10−7 1.95

Table 20: Maximum error and rate of maximum error for different resolution for Ex. 4.2: Mixed

Dirichlet and non-homogenous Robin boundary conditions on interfaces in two spatial dimensions

that are very close to each other over long stretches.

4.3 Mixed Non-Homogenous Neumann and Non-Homogenous Robin Level

set functions’ zeroth level close for long stretches

Consider the Poisson equation on the domain Ω = [−1, 1] × [−1, 1]. We define r =
√
x2 + y2,

φD = −1., φN =

√
(x− 0.0035)

2
+ (y − 0.0045)

2 − 0.8, φR = r − .8, and the exact solution

G =
(
x3

3 −
x2

2

)
·
(
y3

3 −
y2

2

)
. The two points that have the zeroth level set furthest away from each

other are about 0.0057 away from each other (which is considerably lower than the cell size until

the 5122 resolution is reached), all other points have an even shorter distance between the two

interfaces. Figure 24 depicts the solution and highlights the different parts of the interface where

non-homegeneous Neumann and non-homegeneous Robin boundary conditions are enforced. Table

21 demonstrates the second-order accuracy of the method in the L∞-norm. The method maintains

second order accuracy despite the zeroth level of the two level set functions being very close over

long stretches.
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Resolution dx ||u− uh||∞ Order

322 0.0625 5.57× 10−4 —

642 0.03125 1.54× 10−4 1.85

1282 0.015625 5.96× 10−5 1.37

2562 0.0078125 1.11× 10−5 2.42

5122 0.00390625 3.02× 10−6 1.88

10242 0.001953125 7.76× 10−7 1.96

Table 21: Maximum error and rate of maximum error for different resolution for Ex. 4.3: Mixed

non-homogenous Neumann and non-homogenous Robin boundary conditions on interfaces in two

spatial dimensions that are very close to each other over long stretches.

4.4 Mixed Dirichlet Non-Homogenous Neumann and Non-Homogenous

Robin where all three boundaries are very close

Consider the Poisson equation on the domain Ω = [−1, 1]× [−1, 1]. We define r =
√
x2 + y2, φD =√

x2 + (y − 0.1)
2− .395, φN =

√
(x− 0.3)

2
+ (y − 0.1)

2−0.5, φR =

√
(x+ 0.3)

2
+ (y − 0.1)

2−0.5,

and the exact solution G =
(
x3

3 −
x2

2

)
·
(
y3

3 −
y2

2

)
. All three boundary conditions cross within a

very small region. The distance between the Dirichlet/Neumann crossings and Dirichlet/Robin

crossings is 0.006625 which is significantly lower than the cell resolution until 5122 is reached.

Where as the distance between the Neumann/Robin crossings and each of the other crossings is

approx. 0.008334 which is significantly lower than the cell resolution until 2562 is reached. Figure

25 depicts the solution and highlights the different parts of the interface where Dirichlet, non-

homegeneous Neumann and non-homegeneous Robin boundary conditions are enforced. Table 22

demonstrates the second-order accuracy of the method in the L∞-norm. The method maintains

second order accuracy despite the fact that all three level set functions cross very close to each

other at two regions in the domain.
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Figure 22: Plot of the solution, u, and interfaces for example 4.1. The left figure shows a top

view where the two interfaces are easily detected. The red circle represents ΓD and the blue circle

represents ΓN . The figure in the middle shows a zoom in to one of the two points that are furthest

away from each other. The right figure shows the solution inside Ω−.
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Figure 23: Plot of the solution, u, and interfaces for example 4.2. The left figure shows a top view

where the two interfaces are easily detected. The red circle represents ΓD and the green circle

represents ΓR. The figure in the middle shows a zoom in to one of the two points that are furthest

away from each other. The right figure shows the solution inside Ω−.
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Figure 24: Plot of the solution, u, and interfaces for example 4.3. The left figure shows a top view

where the two interfaces are easily detected. The blue circle represents ΓN and the green circle

represents ΓR. The figure in the middle shows a zoom in to one of the two points that are furthest

away from each other. The right figure shows the solution inside Ω−.
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Figure 25: Plot of the solution, u, and interfaces for example 4.4. The left figure shows a top

view where the three interfaces are easily detected. The red circle represents ΓD, the blue circle

represents ΓN and the green circle represents ΓR. The figure in the middle shows a zoom in to one

of the the two points where all level set functions are closest. The right figure shows the solution

inside Ω−.
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Resolution dx ||u− uh||∞ Order

322 0.0625 3.25× 10−5 —

642 0.03125 6.85× 10−6 2.25

1282 0.015625 2.08× 10−6 1.72

2562 0.0078125 7.90× 10−7 1.40

5122 0.00390625 1.17× 10−7 2.75

10242 0.001953125 3.01× 10−8 1.96

20482 0.0009765625 1.02× 10−8 1.56

Table 22: Maximum error and rate of maximum error for different resolution for Ex. 4.4: Mixed

Dirichlet, non-homogenous Neumann and non-homogenous Robin boundary conditions on interfaces

in two spatial dimensions where all three boundaries are close.

5 Conclusion

We have presented a simple and efficient discretization of the Poisson equation on irregular domains

with mixed Dirichlet, Neumann and Robin boundary conditions. This method is straightforward

to implement, produces second-order accurate solutions in the L∞-norm and a symmetric positive

definite linear system in both two and three spatial dimensions. The method is found to be robust

in challenging configurations.
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