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Abstract
Novel algorithms to analyze rna secondary structure evolution and

folding kinetics

by Amir Hossein Bayegan

Advisor: Dr. Peter Clote

RNA molecules play important roles in living organisms, such as protein translation, gene
regulation, and RNA processing. It is known that RNA secondary structure is a sca�old for
tertiary structure leading to extensive amount of interest in RNA secondary structure. This
thesis is primarily focused on the development of novel algorithms for the analysis of RNA
secondary structure evolution and folding kinetics. We describe a software RNAsampleCDS
to generate mRNA sequences coding user-speci�ed peptides overlapping in up to six open
reading frames. Sampled mRNAs are then analyzed with other tools to provide an estimate of
their secondary structure properties. We investigate homology of RNAs with respect to both
sequence and secondary structure information as well. RNAmountAlign an e�cient software
package for multiple global, local, and semiglobal alignment of RNAs using a weighted combi-
nation of sequence and structural similarity with statistical support is presented. Furthermore,
we approach RNA folding kinetics from a novel network perspective, presenting algorithms
for the shortest path and expected degree of nodes in the network of all secondary structures
of an RNA. In these algorithms we consider move set MS2, allowing addition, removal and
shift of base pairs used by several widely-used RNA secondary structure folding kinetics soft-
ware that implement Gillespie’s algorithm. We describe MS2distance software to compute the
shortest MS2 folding trajectory between any two given RNA secondary structures. Moreover,
RNAdegree software implements the �rst algorithm to e�ciently compute the expected de-
gree of an RNA MS2 network of secondary structures. The source code for all the software
and webservers for RNAmountAlign, MS2distance, and RNAdegree are publicly available at
http://bioinformatics.bc.edu/clotelab/.

http://bioinformatics.bc.edu/clotelab/
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Chapter 1

Introduction

Ribonucleic acid (RNA) together with deoxyribonucleic acid (DNA) and proteins are three key

molecules found in all domains of life. Francis Crick in 1958 �rst stated the central dogma of

molecular biology explaining the �ow of sequential information within a biological system.

Later it was indicated that RNA has roles beyond just an intermediary between DNA and pro-

tein. The �rst non-coding RNA (ncRNA), alanine transfer RNA (tRNA) was discovered in 1965

by Holley et al. [8]. Since then many other non-coding RNAs such as ribosomal RNAs(rRNAs),

siRNAs, piRNAs, snoRNAs, long ncRNAs, microRNAs, riboswitches, etc with various house-

keeping or regulatory roles have been discovered. The breakthrough �nding of the RNA in-

terference (RNAi) mechanism associated with microRNAs by Fire and Mello [9] was awarded

a Nobel Prize in 2006. The concepts of the prevailing RNA world theory were �rst introduced

by Alexander Rich in 1962 and Nobel laureate Walter Gilbert proposed the term in 1986 [10].

The theory states that RNA stored the genetic information and catalytic functions in primitive

cells and life later evolved to use DNA and proteins [11]. In the current century, there have

been unprecedented �ndings in the RNA biochemistry. It is now clear that RNA plays variety

2



Introduction 3

of key regulatory roles in all levels of the �ow of genetic information including gene silencing

[12, 13, 14], transcriptional and translational regulation [15, 16, 17], RNA splicing [18, 19, 20], and

many more. With the ongoing discovery of novel roles for RNA molecules there is an increas-

ing need for structural information on RNA. In this thesis, various algorithms developed for

the analysis of RNA secondary structures are described.

RNA is a single-stranded molecule and similar to protein, proper functionality of RNA often

requires a speci�c tertiary structure and it is known that tertiary structure is largely deter-

mined by the secondary structure. RNAs are composed of linear strings of 4 distinct nucleo-

tide builidng blocks: gianosine (G), adenosine (A), Uracil (U), and cytidine (C). RNAs built from

these building blocks can form a wide range of structures enabling them to perform a wide

variety of roles in the cell. The major force keeping RNA structure together is hydrogen bond

interactions between nucleotides G and C (G-C) as well as A and U (A-U) called Watson-Crick

base pairs. In contrast to DNA, a slightly weaker interaction between G and U, G-U wobble

base pair, can occur in RNA which adds interesting chemical, structural and ligand/metal-ion

binding features to RNA [21]. The formal de�nition of a secondary structure for a given RNA

nucleotide sequence is as follows:

A secondary structure for a given RNA nucleotide sequence a1, . . . ,an is a set s of base pairs

(i,j), where 1 ≤ i < j ≤ n, such that:

1. if (i,j) ∈ s then ai ,aj form either a Watson-Crick (AU,UA,CG,GC) or wobble (GU,UG)

base pair,

2. if (i,j) ∈ s then j − i > θ = 3 (a steric constraint requiring that there be at least θ = 3

unpaired bases between any two positions that are paired),
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3. if (i,j) ∈ s then for all i ′ , i and j ′ , j, (i ′,j) < s and (i,j ′) < s (nonexistence of base

triples),

4. if (i,j) ∈ s and (k,`) ∈ s , then it is not the case that i < k < j < ` (nonexistence of

crossing interaction leading to pseudoknots).

Formation of RNA structure is guided by minimization of free energy. Given a thermodynamic

model and an RNA sequence one might be interested in the minimum free energy (MFE) struc-

ture or the most stable structure. The MFE structure is often only a single structure within a

huge ensemble of all structures. An RNA of length n has around 1.8n number of possible struc-

tures [22] and hence the MFE structure may have a tiny probability of occurrence. Therefore,

one might also be interested in a collection of suboptimal structures which may be thermody-

namically less stable with higher (less negative) free energy. Most computational predictions

of RNA structure use nearest neighbor energy model where the free energy of a structure is

the sum of the free energy of all its structural elements [23] including stacking base pairs as

well as hairpin, bulge, internal, external and mutibranch loops indicated in Figure 1.1. Forma-

tion of stacking base pairs is favorable (decrease free energy) while loops are often unfavorable

(increase free energy). In some models, �anking positions, known as dangling ends, are also

considered in the total free energy computation of a structure. The energy of various elements

for RNA folding in nearest neighbor model are compiled by the D. Turner group using optical

melting experiments [23]. Free energy and enthalpy changes have been experimentally com-

puted at °37C, allowing structure predictions at arbitrary temperatures using Gibbs free energy

thermodynamic equations.

Secondary structures can be depicted in several equivalent manners. For instance, 5 di�erent

representations for the MFE secondary structure of a glycine riboswitch from B. subtilis, Rfam
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stem(helix) hairpin loop bulge

internal loop multiloop external loop

Figure 1.1: Elements of RNA secondary structure

family RF00504 are indicated in Figure 1.2. More technical background on RNA secondary

structure is provided in each chapter.

In this thesis, we provide novel computational tools for the analysis of RNA secondary struc-

tures in two contexts: molecular evolution and folding kinetics. In the �rst part, the tools that

we developed for the comparison of RNA secondary structures are discussed. In chapter 2

we describe our software, RNAsampleCDS for generating coding sequences in overlapping ge-

nomic regions. The sequences can be used as a control to analyze formation and evolution of

secondary structures in overlapping regions. This software can also be applied to �nd bias in

codon usage occurred due to selective pressure. In chapter 3 we describe an e�cient software,

RNAmountAlign, for computing sequence/structure alignment of RNA sequences. Since func-

tion is often determined by molecular structure, RNA alignment programs should take into

account both sequence and base-pairing information for structural homology identi�cation.

Our software computes statistical signi�cance of the alignments as well.

The second part of the thesis is dedicated to study of folding kinetics through analysis of RNA
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Figure 1.2: Di�erent representations of MFE secondary structure of a glycine ri-
boswitch selected from B. subtilis, Rfam family RF00504. In this �gure from [24],
base pairs in di�erent loop branches are indicated with distinct colors. From left to
right in the top panel: Feynman circular where base pairs are indicated by arcs and
the representation is planar i.e. there are no crossings. Conventional diagram where
the stems and loops are easily identi�ed. Mountain height plot illustrating the height
at each position. Starting from 0, the height of each position is increased [decreased]
by 1 for opening [resp. closing] base pairs and remains unchanged for unpaired posi-
tion. Dot plot visualizing base paring probabilities matrix in the upper right half and
the MFE structure in the lower left half. The size of squares at each position are pro-
portional to probability values. The bottom diagram indicates the dot bracket notation

which is convenient for programming purposes.

structural networks. RNA folding kinetics plays an important role in various biological pro-

cesses and there have been numerous algorithms studying it. These computational methods

can be divided into three groups: (1) algorithms to determine optimal or near-optimal folding

pathways (2) explicit solutions of the master equation (3) repeated folding simulations. In this

thesis we shed light on RNA kinetics from a di�erent perspective through investigating net-

work properties of RNA secondary structures. Consider the set of all secondary structures of

an RNA sequence as a network, or graph, where two structures are connected by an edge if one

can be obtained from another by a base pair addition, removal or shift possibly weighted by the

Boltzmann probability of structures. Computational kinetics algorithms indeed are looking for

an “optimal” pathway on this network, where optimality might have di�erent meanings such
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as minimum barrier energy, minimum mean �rst passage time, minimum number of base-pair

operations. Therefore, understanding the network properties of RNA can provide better in-

sights about RNA folding kinetics. The challenge is the exponential size of the network with

respect to the length of RNA. In chapter 4 we present algorithms for computing the shortest

path between any two arbitrary secondary structures in the network, yielding a direct fold-

ing pathway between the given structures. Continuing to chapter 5 we describe algorithms to

compute the expected degree of the network for an RNA sequence and indicate it is correlated

with other folding properties of RNAs. This provides a fast method for computing a measure

that is correlated with folding rate of RNAs. In the analysis of structural networks we con-

sider two move sets: move set 1 (MS1) where base pairs can only be added or removed and

move set 2, MS2, where shift moves are considered along with additions and removal of base

pairs. Shift moves can model defect di�usion, which is several orders of magnitude faster than

helix zippering, according to experimental data [25] and consideration of them substantially

complicates the algorithms.



Part I

Molecular Evolution of RNA

8



Chapter 2

New tools to analyze overlapping coding regions

Introduction

Retroviruses transcribe messenger RNA for the overlapping Gag and Gag-Pol polyproteins,

by using a programmed −1 ribosomal frameshift which requires a slippery sequence and an

immediate downstream stem-loop secondary structure, together called frameshift stimulat-

ing signal (FSS). It follows that the molecular evolution of this genomic region of HIV-1 is

highly constrained, since the retroviral genome must contain a slippery sequence (sequence

constraint), code appropriate peptides in reading frames 0 and 1 (coding requirements), and

form a thermodynamically stable stem-loop secondary structure (structure requirement).

We describe a unique computational tool, RNAsampleCDS, designed to compute the number of

RNA sequences that code two (or more) peptides p,q in overlapping reading frames, that are

identical (or have BLOSUM/PAM similarity that exceeds a user-speci�ed value) to the input

peptides p,q. RNAsampleCDS then samples a user-speci�ed number of messenger RNAs that

code such peptides; alternatively, RNAsampleCDS can exactly compute the position-speci�c

9
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scoring matrix and codon usage bias for all such RNA sequences. Our software allows the user

to stipulate overlapping coding requirements for all 6 possible reading frames simultaneously,

even allowing IUPAC constraints on RNA sequences and �xing GC-content. We generalize

the notion of codon preference index (CPI) to overlapping reading frames, and use RNAsam-

pleCDS to generate control sequences required in the computation of CPI. Moreover, by ap-

plying RNAsampleCDS, we are able to quantify the extent to which the overlapping coding

requirement in HIV-1 [resp. HCV] contribute to the formation of the stem-loop [resp. dou-

ble stem-loop] secondary structure known as the frameshift stimulating signal. Using our

software, we con�rm that certain experimentally determined deleterious HCV mutations oc-

cur in positions for which our software RNAsampleCDS and RNAiFold both indicate a single

possible nucleotide. We generalize the notion of codon preference index (CPI) to overlap-

ping coding regions, and use RNAsampleCDS to generate control sequences required in the

computation of CPI for the Gag-Pol overlapping coding region of HIV-1. These applications

show that RNAsampleCDS constitutes a unique tool in the software arsenal now available to

evolutionary biologists. Source code for the programs and additional data are available at

http://bioinformatics.bc.edu/clotelab/RNAsampleCDS/.

Background

In HIV-1, Pol is obtained from a fused Gag-Pol polyprotein via a programmed −1 ribosomal

frameshift, which naturally occurs with a frequency of 5-10%; moreover, an increase of ri-

bosomal frameshift frequency is associated with a decrease in viral infectivity [26]. The −1

ribosomal frameshift is caused by two cis-acting RNA elements, together known as frameshift

http://bioinformatics.bc.edu/clotelab/RNAsampleCDS/
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stimulating signal (FSS): (1) a heptameric slippery sequence (U UUU UUA), where the Gag read-

ing frame is indicated, and (2) a downstream stem-loop secondary structure, often with either

internal loop or right bulge. The FSS from HIV-1 genome (AF033819.3/1631 − 1682) is shown

in Figure 2.1a, where the minimum free energy (MFE) secondary structure was determined by

RNAfold from Vienna RNA Package 2.1.9 [27]. The Pol reading frame is −1 with respect to the

Gag reading frame, or equivalently, the Gag reading frame is +1 with respect to the Pol read-

ing frame (convention adopted throughout this chapter) – Figure 2.1b depicts the six reading

frames considered in this chapter. While the entire Gag-Pol overlap region in HIV-1AF033819.3

is from position 1631 to 1838 (Pr55 Gag polyprotein is coded at AF033819.3/336−1838), the 17-

mer Pol [resp. Gag] peptide coded in the 52 nt FSS region 1631−1682 is FFREDLAFLQGKAREFS

[resp. FLGKIWPSYKGRPGNFL]. Moreover, we found the secondary structure from Figure 2.1a

to be the most common MFE structure for 52 nt segments of the Pol coding region, which

begin by UUUUUUA, taken from the HIV Sequence Database in Los Alamos National Labora-

tory (LANL) available at www.hiv.lanl.gov. Due to its importance, a collection of 145 HIV-1

ribosomal frameshift elements is given in the family RF00480 in Rfam 12.0 [28]. Figure 2.1c

displays the sequence logo obtained from the 145 sequences in the seed alignment of RF00480,

while 2.1d and 2.1e respectively display the sequence logos for the 17-mer Pol and Gag peptides

coded in RF00480.

For decades, research in evolutionary biology has focused mostly on protein-coding regions,

leading to the development of sophisticated computational tools, such as PAML [30] and HYPHY

[31], to compute the ratio dN /dS of non-synonomous mutation rate dN to the synonomous

mutation rate dS [32, 33, 34]. Pedersen and Jenson [35] extended the codon substitution model

www.hiv.lanl.gov
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Figure 2.1: (a) Minimum free energy (MFE) structure of the initial 52-nt Gag-Pol overlapping
reading frame in positions 1631-1682 of the HIV-1 complete genome (GenBank AF033819.3).
This frameshift stimulating signal (FSS) contains the initial slippery sequence heptamer, given
by U UUU UUA in the Gag reading frame, as well as the displayed stem-loop secondary struc-
ture, which together promote a programmed -1 frameshift UUU UUU A in the Pol reading
frame. (b)Depiction of all 6 possible reading frames – RNAsampleCDS samples RNA sequences
that code in all possible reading frames, allowing IUPAC sequence constraints (c) Sequence
logo for 145 RNA HIV-1 frameshift signal sequences from the RF00480 seed alignment from
Rfam 12.0 [28]. (d) Sequence logo for the Pol peptide coded by 138 RNA HIV-1 frameshift sig-
nal sequences from the RF00480 seed alignment from Rfam 12.0; Pol peptide translated from
nucleotide positions 1-51. (e) Sequence logo for the Gag peptide coded by 138 RNA HIV-1
frameshift signal sequences from the RF00480 seed alignment from Rfam 12.0; Gag peptide
translated from nucleotide positions 2-52. Since some sequences from RF00480 contained IU-
PAC codes for uncertain data, the data were disambiguated–for instance, the code B (not A)
was disambiguated by randomly assigning either C,G or U with probability 1/3. Seven se-
quences were removed from the seed alignment of 145 RNAs due to gaps in the alignment,
and another �ve sequences were removed since either the Pol or Gag peptide contained a stop
codon–resulting in 133 sequences for nucleotide analysis. Peptide sequence logos for the 138

Pol and Gag peptides were created using WebLogo [29].



New tools to analyze overlapping coding regions 13

of Goldman and Yang [33] to overlapping genes in a site-speci�c manner, where evolution-

ary constraints of both genes are taken into account. However, estimation of evolutionary

parameters in this model required computationally expensive Markov chain Monte Carlo sim-

ulations. By dropping the condition of site speci�city, Sabath et al. [36] were able to apply a

maximum likelihood method to estimate parameters in a more e�cient manner. The resulting

tool has been used to predict functionality of overlapping reading frames [37]. An evolutionary

model has been developed for coding regions with conserved RNA secondary structures [38]

as well. This approach was used to determine the e�ects of structural elements on nucleotide

substitution in hepatitis C virus.

Several methods have been developed to sample sequences using an evolutionary model de-

rived from a given phylogeny [39, 40, 41]. To the best of our knowledge, however, there is no

previously published method for sampling sequences in overlapping coding regions. The pro-

gram SISSI [41] incorporates a user-de�ned system of dependencies between the nucleotides;

however, it is not possible using SISSI to sample sequences that code in overlapping reading

frames, since SISSI requires that any position in an RNA sequence must belong to a single

codon. Moreover, SISSI does not allow sequence and structural dependencies to be speci�ed

simultaneously. Our work in this section is orthogonal to the foregoing computational mod-

els and tools of mathematical evolution theory and does not rely on phylogeny information.

In full generality, the new software RNAsampleCDS supports the following. For each reading

frame r ∈ {+0, + 1, − 0, − 1, − 2} illustrated in Figure 2.1b, let pr be a length n sequence in the

22-letter alphabet consisting of IUPAC codes for each amino acid, together with symbolX (any

residue) andO (any residue or STOP). RNAsampleCDS computes the number of RNA sequences

a0, . . . ,a3n+2 which simultaneously code protein p ′r in reading frame r , such that either p ′r is
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identical to pr , or (optionally) whose BLOSUM/PAM similarity to pr exceeds a user-speci�ed

value. (Throughout the chapter, we say that the peptidep is BLOSUM[PAM] θ similar to another

peptide p ′, if each amino acid of p has BLOSUM[PAM resp.] similarity of at least θ with the

corresponding amino acid of p ′.) RNAsampleCDS can then compute the PSSM and codon us-

age frequency for such proteins, as well as sample a user-speci�ed number of such sequences.

RNAsampleCDS runs in linear time and space, although if GC-content is optionally controlled,

then time and space requirements are quadratic. For expository reasons, we describe the al-

gorithms for only two proteins p,q respectively in reading frame 0 and 1; however, our code

is general as just described. Using RNAsampleCDS, we undertake a preliminary analysis of the

Gag-Pol overlapping reading frame in human immunode�ciency virus (HIV-1) and of the triple

overlapping reading frame of hepatitis C virus (HCV).

Description of algorithms

Let p = p1, . . . ,pn and q = q1, . . . ,qn be two peptides of equal length. In this section, we are

interested in the following questions.

1. Which sequences a0, . . . ,a3n of messenger RNA translate the peptide p in reading frame

0 and also translate the peptide q in reading frame +1?

2. Which sequencesa0, . . . ,a3n of messenger RNA translate peptidesp ′ = p ′1, . . . ,p
′
n in read-

ing frame 0 and peptide q′ = q′1, . . . ,q
′
n in reading frame +1, where the BLOSUM/PAM

similarity of p with p ′ and q with q′ is greater than or equal to a user-speci�ed threshold

θ?

3. What is the pro�le, or PSSM, for the collection of mRNAs from (1) and (2)?
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4. What is the total number of sequences satisfying (1) and (2), and how can we sample

sequences a0, . . . ,a3n of messenger RNA in an unbiased manner, in order to satisfy either

(1) or (2)?

By developing software to sample mRNA sequences that code user-speci�ed proteins in di�er-

ent reading frames, we can then analyze the samples with other tools to provide an estimate of

the probability of satisfying a given property of interest, hence give approximate answers for

questions like the following: What is the expected stem size in the minimum free energy (MFE)

structure of RNAs that translate peptides p ′,q′ in reading frames 0,1, where the BLOSUM/PAM

similarity of p,p ′ and of q,q′ is at least a user-speci�ed threshold value of θ? As we show, it

is not di�cult to see that questions (1,2) are easily answered using breadth �rst search (BFS);

however, for large values of n, it can happen that BFS in not practical, since the number of

messenger RNAs can be of size exponential in n. For that reason, we describe a novel dynamic

programming (DP) algorithm to answer questions (3) and (4).

We �rst need a few de�nitions. If xyz is a trinucleotide, then let tr (xyz) denote the amino

acid whose codon is xyz in the genetic code; i.e. tr (xyz) is the amino acid translated from

codon xyz, unless xyz is a stop codon. If xyzu is a tetranucleotide, then let tr0(xyzu) [resp.

tr1(xyzu)] denote the amino acid whose codon is xyz [resp. yzu]; i.e. tr0(xyzu) = tr (xyz) and

tr1(xyzu) = tr (yzu). For each k = 1, . . . ,n, de�ne the collection Lk of 4-tuples s = s0,s1,s2,s3

such that tr0(s) = tr (s0,s1,s2) = pk and tr1(s) = tr (s1,s2,s3) = qk . De�ne two 4-tuples s = s0s1s2s3

and t = t0t1t2t3 to be compatible if s3 = t0 – i.e. the tail of s equals the head of t . Note that if

4-tuples s,t are compatible, then the merge s0,s1,s2,t0,t1,t2,t3 of s,t has the property that amino

acids are translated by each of the four codons s0s1s2, s1s2s3, t0t1t2, and t1t2t3.
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ALGORITHM 1: (BFS computation of sequences that code in reading frames 0 and 1)

De�ne the tree T by induction on depth as follows.

• Base case: The root of T is ∅; the children of the root are those 4-tuples s , such that

tr0(s) = p1, tr1(s) = q1. The depth of the root is 0, and the depth of each child of the root

is 1.

• Inductive case: If s is a 4-tuple in T of depth k , then the children of s are those 4-tuples

t , such that s3 = t0 (compatibility requirement) and tr0(t) = pk+1, tr1(t) = qk+1 (coding

requirement). The depth of each child of s is k + 1.

Suppose that σ1,σ2, . . . ,σk is a path from root to level k ; i.e. σ1,σ2, . . . ,σk is a sequence of 4-

tuples belonging to T , where for each i = 1, . . . ,k , the level of σi is equal to i , and for each

i = 1, . . . ,k − 1, σi+1 is a child of σi . De�ne the merge of σ1,σ2, . . . ,σk to be the RNA se-

quence a0,a1, . . . ,a3k , where σ1 = a0a1a2a3, σ2 = a3a4a5a6, σ3 = a6a7a8a9, . . . , σk =

a3(k−1)a3k−2a3k−1a3k . By induction, it is easy to establish that in this case tr0(σi ) = pi , tr1(σi ) =

qi for each i = 1, . . . ,k . An easy application of breadth �rst search then allows one to generate

the collection of level n nodes ofT . It follows that the answer to question (1) is the set of RNAs

obtained by merging the paths from root to level n nodes of T . �

Using our implementation of the BFS approach in Algorithm 1, we can easily determine that

there are exactly 32 52-nt RNAs that translate the 17-residue Pol peptide FFREDLAFLQGKAREFS

in reading frame 0, and the 17-residue Gag peptide FLGKIWPSYKGRPGNFL in reading frame

+1. These 17-mer peptides are those which constitute the beginning of the Gag-Pol overlap in

the HIV-1 genome (nucleotides 1631-1682 in GenBank AF033819.3). The entire Gag-Pol over-

lap region is from 1631-1835, whereby the 68-mer Pol [resp. Gag] peptide is coded in the region
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(a) Centroid (b) Consensus (c) Mountain plot

Figure 2.2: (A) The centroid secondary structure,(B) RNAalifold consensus structure, and
(C) the corresponding mountain plot for the alignment of all 256 205-nt RNA sequences that
code the Pol and Gag 68-mer peptides from HIV-1 (Pol 1631-1835, Gag 1632-1836 in GenBank

AF033819.3).

1631-1834 [resp. 1632-1835 with a Gag STOP codon at 1836-1838]. Our implementation of the

BFS method returns exactly 256 208-nt RNAs that code the Pol [resp. Gag] 68-mers from HIV-1

(GenBank AF033819.3). Figure 2.2 displays the centroid secondary structure, RNAalifold [42]

consensus structure, and the corresponding mountain plot for the alignment of all 256 205-nt

RNA sequences that code the Pol and Gag 68-mer peptides from HIV-1 (Pol 1631-1835, Gag

1632-1836 in GenBank AF033819.3), not necessarily containing the slippery sequence UUUU-

UUA.

Further analysis (data not shown) indicates that there is considerable variation in the low en-

ergy structures of RNAs that exactly code the same 68-mer Pol and Gag peptides as those coded

by AF033819.3/1631-1836. Question (2) is an obvious generalization of (1), and is easy to answer

by generalizing the collection Lk of 4-tuples s = s0,s1,s2,s3 such that tr0(s) = tr (s0,s1,s2) = p ′k

and tr1(s) = tr (s1,s2,s3) = q′k , where the BLOSUM/PAM similarity of pk ,p ′k and of qk ,q′k is at

least a user-speci�ed threshold θ .

It is more interesting to turn to question (3), which requires a di�erent strategy, since the
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number of RNAs returned by BFS may be exponentially large. Indeed, if RNA sequences

are required to code peptides p [resp. q] whose amino acids have BLOSUM62 similarity of

at least θ to those of the Pol [resp. Gag] 17-mer peptide coded in reading frame 0 [resp.

1] in AF033819.3/1631-1682, then the number of solution sequences is 256 (θ = 4), 34,560

(θ = 3), 90,596,966,400 (θ = 2), 2.14285987145e+32 (θ = 1), 3.61150917928e+56 (θ = 0),

1.20555937201e+81 (θ = −1), 1.17643153215e+106 (θ = −2)! To address question (3), de�ne

the forward and backwards partition function ZF , ZB as follows.

• Forward partition function: For integer k = 1, . . . ,n and nucleotide ch ∈ {A,C,G,U },

de�ne ZF (k,ch) to be the number of RNAs a = a0, . . . ,a3k such that a3k is the nucleotide

ch, and a translates the peptide p1, . . . ,pk resp. q1, . . . ,qk in reading frame 0 resp. 1; i.e.

tr0(a) = p1, . . . ,pk and tr1(a) = q1, . . . ,qk .

• Backward partition function: For integer k = 1, . . . ,n and nucleotide ch ∈ {A,C,G,U },

de�ne ZB(k,ch) to be the number of RNAs a = a3k ,a3k+1, . . . ,a3n such that a3k is the

nucleotide ch, and a translates the peptide pk , . . . ,pn resp. qk , . . . ,qn in reading frame 0

resp. 1; i.e. tr0(a) = pk , . . . ,pn and tr1(a) = qk , . . . ,qn .

By dynamic programming, it is straightforward to compute the forward and backward partition

functions in linear time and space.

ALGORITHM 2: (DP partition function for sequences that code in reading frames 0 and 1)

Given n-mer peptides p0,q0, for k = 1, . . . ,n and ch ∈ {A,C,G,U } de�ne the forward partition

function ZF (k,ch) inductively as follows:
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• Case 1: k = 1

ZF (k,ch) = ∑
s0s1s2s3∈Lk

I [s3 = ch]

• Case 2: k = 2, . . . ,n

ZF (k,ch) = ∑
s0s1s2s3∈Lk

I [s3 = ch] · ZF (k − 1,s0)

For k = n, . . . ,1 and ch ∈ {A,C,G,U }, de�ne the backward partition function ZB inductively as

follows:

• Case 1: k = n

ZB(k,ch) = ∑
s0s1s2s3∈Lk

I [s0 = ch]

• Case 2: k = n − 1, . . . ,1

ZB(k,ch) = ∑
s0s1s2s3∈Lk

I [s0 = ch] · ZB(k + 1,s3)

Note the use of the boolean valued indicator function I [. . .], which has the value 1 if the ex-

pression within the brackets is true, and otherwise has the value 0. It follows that

Z =
∑

ch∈{A,C,G,U }
ZF (n,ch) =

∑
ch∈{A,C,G,U }

ZB(1,ch)

is the total number of RNA sequences that translatep in reading frame 0 and q in reading frame

+1. �

By appropriately rede�ning Lk , the recursions of Algorithm 2 can easily be modi�ed to instead

count the number of sequences coding p ′1, . . . ,p
′
n in reading frame 0 and q′1, . . . ,q

′
n in reading

frame +1, such that for each i , the BLOSUM/PAM similarity of pi ,p ′i and of qi ,q′i exceeds a
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user-speci�ed threshold θ , or for which the Kyte-Doolittle hydrobicity of pi ,p ′i and qi ,q
′
i dif-

fer by at most a user-speci�ed upper bound, etc. The same remark applies to all algorithms

of this section, although for reasons of space, we do not explicitly mention such extensions.

Nevertheless, such extensions are supported by the software RNAsampleCDS.

By re�ning the de�nition of forward and backward partition function, Algorithms 1 and 2 can

be modi�ed to keep track of the GC-content, albeit at an overhead for the space required. For

an arbitrary RNA sequence a, let дccount(a) denote the number of Gs or Cs occurring in a.

• Forward partition function accounting for GC-content: For integer k = 1, . . . ,n and

nucleotide ch ∈ {A,C,G,U }, de�neZFGC (k,x ,ch) to be the number of RNAs a = a0, . . . ,a3k

such that a3k is the nucleotide ch, дccount(a) = x , and a translates the peptide p1, . . . ,pk

resp. q1, . . . ,qk in reading frame 0 resp. 1; i.e. tr0(a) = p1, . . . ,pk and tr1(a) = q1, . . . ,qk .

• Backward partition function accounting for GC-content: For integer k = 1, . . . ,n

and nucleotide ch ∈ {A,C,G,U }, de�ne ZBGC (k,x ,ch) to be the number of RNAs a =

a3k ,a3k+1, . . . ,a3n such that a3k is the nucleotide ch, дccount(a) = x , and a translates the

peptide pk , . . . ,pn resp. qk , . . . ,qn in reading frame 0 resp. 1; i.e. tr0(a) = pk , . . . ,pn and

tr1(a) = qk , . . . ,qn .

Though not explicitly described, all the following algorithms (PSSM computation and sam-

pling) can be modi�ed to account for GC-content. Our program, RNAsampleCDS, implements

all the algorithms described in this section, including versions that account for GC-content.

Moreover, our program supports any two or more overlapping coding regions in any of the 6

reading frames – i.e. reading frame 0,1,2 on the plus-strand and 0,1,2 on the minus-strand, as

shown in Figure 2.1b.
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Note that an easy modi�cation of the above algorithm allows one to compute the total number

of RNAs of length 3n + 1, which code n-mer peptides p [resp. q] in reading frames 0 [resp. 1],

i.e. for which neither reading frame contains a stop codon. This modi�cation is later used to

compute the probability that a random RNA of length 3n + 1 will code in both reading frames

0 and 1. The following algorithm applies Algorithm 2 in order to compute the exact value of

the position speci�c scoring matrix (PSSM).

ALGORITHM 3: (PSSM computation of sequences that code in reading frames 0 and 1)

Given n-mer peptides p0,q0, for i = 0, . . . ,3n and ch ∈ {A,C,G,U }, de�ne the pro�le or PSSM of

nucleotides at positions 0, . . . ,3n as follows:

• Case 1: i = 0. Then PSSM(i,ch) equals∑
s ∈L1 I [s0 = ch] · ZB(1,ch)/Z

• Case 2: i ≡ 0 mod 3. Then PSSM(i,ch) equals

ZF (i/3,ch) · ZB(i/3,ch)/Z

• Case 3: i ≡ 1 mod 3. Then PSSM(i,ch) equals∑
s ∈Lbi/3c

I [s1 = ch] · ZF (bi/3c,s0) · ZB(di/3e,s3)/Z

• Case 4: i ≡ 2 mod 3. Then PSSM(i,ch) equals∑
s ∈Lbi/3c

I [s2 = ch] · ZF (bi/3c,s0) · ZB(di/3e,s3)/Z

The recursions can be easily modi�ed, if the RNA sequence is instead required to codep ′1, . . . ,p
′
n

in reading frame 0 and q′1, . . . ,q
′
n in reading frame +1, such that for each i , the BLOSUM/PAM

similarity of pi ,p ′i and of qi ,q′i exceeds a user-speci�ed threshold θ . This answers question (3).

The resulting DP program is very fast, since the run time is linear in n, while the BFS program

has run time that is exponential in n.
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Given a gapless alignment S of mRNA sequences of length 3n+1, each of which codes a protein

in reading frame 0 and 1, de�ne the positional codon frequency PCF (w,k,r ) to be the number of

occurrences of w in the kth codon position in reading frame r ∈ {0,1} of a sequence in S . If S

is the collection of all mRNAs that code proteins p,q respectively in reading frame 0,1, which

are identical to (or alternatively have BLOSUM/PAM similarity that exceeds threshold θ ), then

the positional codon frequency can be de�ned from the partition functions ZF ,ZB as follows.

ALGORITHM 4: (Positional codon frequency) Given n-mer peptides p0,q0, integer k = 1, . . . ,n,

codon w = w0w1w2 ∈ ({A,C,G,U })3, and reading frame r ∈ {0,1}, the positional codon fre-

quency PCF (w,k,r ) for the set of all mRNAs that code p0,q0 respectively in reading frame 0,1

can be computed as follows.

• Case 1: r = 0. Then PCF (w,k,0) equals

ZF (k − 1,w0) ·∑ch∈{A,C,G,U } ZB(k,ch).

• Case 2: r = 1. Then PCF (w,k,1) equals∑
ch∈{A,C,G,U } ZF (k − 1,ch) · ZB(k,w2)

Next, in order to sample RNA sequences that code peptides p = p1, . . . ,pn resp. q = q1, . . . ,qn

in reading frames 0 resp. 1, we construct the sampled sequence from last to �rst character,

each time ensuring that ZF (k,ch) > 0 where ch is the leading character of the current sample

a3k−1,a3k , . . . ,a3n . This is described as follows, where we recall that Lk denotes the collection

of 4-tuples s = s0,s1,s2,s3 such that tr0(s) = tr (s0,s1,s2) = p ′k and tr1(s) = tr (s1,s2,s3) = q′k , and

the BLOSUM/PAM similarity of pk ,p ′k and of qk ,q′k is at least a user-speci�ed threshold θ .

ALGORITHM 5: (Uniform sampling of RNAs that code in reading frames 0 and 1)
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1. k = n //initialize to the common length of peptides p,q

2. rna = "" //initialize to empty sequence

3. ch = random nucleotide in { A,C,G,U } satisfying ZF (k,ch) > 0

4. while k>0

5. choose random 4-tuple s = s0,s1,s2,s3 such that s3 = ch

6. rna = s1,s2,s3 + rna

7. ch = s0

8. k = k-1

9. rna = ch + rna //prepend the remaining initial nucleotide

It is straightforward to modify the previous algorithm to sample in a weighted fashion. First,

recall that Lk denotes the collection of 4-tuples s = s0,s1,s2,s3 such that tr0(s) = tr (s0,s1,s2) = p ′k
and tr1(s) = tr (s1,s2,s3) = q′k , and the BLOSUM/PAM similarity of pk ,p ′k and of qk ,q′k is at least

a user-speci�ed threshold θ . Additionally, if ch ∈ {A,C,G,U } then let Lk,ch denote the set of

tuples t in Lk , whose last element t3 is ch.

ALGORITHM 6: (Weighted sampling of RNAs that code in reading frames 0 and 1)

1. k = n //initialize to the common length of peptides p,q

2. rna = "" //initialize to empty sequence

3. a = ZF(k,A); c = ZF(k,C); g = ZF(k,G); u = ZF(k,U);

4. z = a+c+g+u

5. a = a/z; c = c/z; g = g/z; u = u/z

6. select ch from A,C,G,U with prob a,c,g,u using roulette wheel

7. while k>0

8. sum = 0; r = random(0,1) · ZF(k-1,ch))
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9. for t in Lk−1,ch //note that t = t0t1t2t3 and t3 = ch

10. sum = sum + ZF (k − 1,t0)

11. if r < sum

12. rna = t + rna; ch = t0; k = k-1; break

13. return rna

Our implementation of the algorithms described in this section allows the user to stipulate

sequence constraints using any IUPAC nucleotide codes, for instance, designating the �rst 7

nucleotides to be the slippery sequence UUUUUUA, or to consist of an alternation of purines and

pyrimidines RYRYRYR, etc.

Finally, we note that all the previous algorithms in this section can be extended to handle

multiple overlapping reading frames in all six reading frames, i.e. reading frames +0,+1,+2 on

the plus strand and reading frames −0,−1,−2 on the minus strand, as illustrated in Figure 2.1b.

For instance, in order to compute the forward partition function for reading frames 0,1,2 we

de�ne ZF (k,ch1,ch2) to be the number of RNA sequences a of length 3k + 2 whose last two

nucleotides are ch1,ch2, such that tr0(a) = p1, . . . ,pk , tr1(a) = q1, . . . ,qk , tr2(a) = r1, . . . ,rk , for

user-speci�ed peptides p = p1, . . . ,pn , q = q1, . . . ,qn , r = r1, . . . ,rn . Now we de�ne Lk to be

the set of 5-tuples s = s0, . . . ,s4 such that s0s1s2 codes residue pk , s1s2s3 codes residue qk , and

s2s3s4 codes residue rk . The de�nition of the generalization of the forward partition function

ZF (k,ch1,ch2), analogous to that de�ned in Algorithm 2, is as follows:

• Case 1: k = 1. Then ZF (k,ch1,ch2) equals∑
s0s1s2s3s4∈Lk

I [s3 = ch1,s4 = ch2]
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• Case 2: k = 2, . . . ,n2, . . . ,n. Then ZF (k,ch1,ch2) equals∑
s0s1s2s3s4∈Lk

I [s3 = ch1,s4 = ch2] · ZF (k − 1,s0,s1)

Our publicly available code RNAsampleCDS supports all the above described variants of Algo-

rithms 1-6 with possible IUPAC sequence constraints, stipulation of GC-content, and where

the user may stipulate that particular peptides are coded in any or all of the six reading frames

displayed in Figure 2.1b. See section 2.5 for details of how we determine the run time estimate

of ≈ 0.58831373 ·L+0.00550239 ·N to generate compute the partition function and generate N

samples of RNA sequences of length L that code any peptide in each of the six possible reading

frames.

Applications of RNAsampleCDS

In this section, we use RNAsampleCDS to study novel aspects of human immunide�ciency virus

HIV-1 and hepatitis C virus HCV, that cannot be determined using methods other than those

described in this chapter.

HIV-1 programmed −1 frameshift

Analysis of HIV-1 overlap

Since HIV-1 and other retroviruses have a −1 ribosomal frameshift in the initial portion of the

Gag-Pol overlap, this can be detected by the software FRESCo [43], which predicts regions of

excess synonymous constraint in short, deep alignments. The phylogenetic tree expected as an
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input to FRESCo was built by RAxML v.8 [44]. Figure 2.3a displays the dN/dS ratio we obtained

for HIV-1 AF033819.3 with respect to the Gag reading frame, when aligned with other HIV-1

genomes from the Los Alamos HIV Database. This �gure indicates that there is positive selec-

tion in the Gag region before the Gag-Pol overlap. In contrast, starting with the beginning of

the Gag-Pol overlap (nucleotide 1631), there is purifying selection; i.e. Figure 2.3a suggests the

presence of an important signal starting around position 1631. As Figure 2.3b con�rms, in the

starting and ending regions of Pol where it has overlap with Gag and Vif genes, synonymous

substitution rate is low. Figure 2.3c also indicates a sudden drop in the the synonymous substi-

tution rate for 200 arti�cial Gag-Pol sequences in which an extra nucleotide ’U’ is inserted at

the end of Gag to coordinate the reading frames. Figure 2.3d displays the dN /dS ratio of the 52

nt Gag-Pol overlap region, for both the Gag and Pol reading frames, using the method of [36]

which computes a rate matrix for overlapping reading frames – an aspect ignored by PAML and

other software. Since Sabath’s program computes dN /dS from a pairwise alignment, which is

wholly inappropriate for the short 52 nt sequences considered here, we modi�ed the approach

by �rst producing multiple alignments of 52 nt Gag-Pol overlap regions, and then computed

the number of (observed) synonomous and nonsynonomous mutations within the Gag [resp.

Pol] reading frame, taking account for all codon pairs in the same column. We then modi�ed

Sabath’s Matlab program to compute dN /dS by maximum likelihood using counts obtained

from the multiple alignments. The multiple alignments considered in Figure 2.3d are from Rfam

family RF00480 and from 52 nt RNA sequences generated by the programs RNAsampleCDS and

RNAiFold 2.0. RNAsampleCDS generates 52 nt sequences, that translate peptides in the Gag

[resp. Pol] reading frame, each of whose amino acids has BLOSUM62 similarity of either 0 or

1 to the corresponding amino acids in the Gag [resp. Pol] reading frame of the peptides trans-

lated by the 52 nt HIV-1 overlap region of AF033819.3/1631-1682. RNAiFold 2.0 generates
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52 nt sequences, that not only satisfy the same coding requirements as RNAsampleCDS, but

which also fold into the minimum free energy secondary structure shown in Figure 2.1a. In

each case, RNAiFold 2.0 generates all sequences that satisfy both the coding and structure

requirements, their number being substantially less than the 100,000 sequences generated by

RNAsampleCDS. Note the presence of purifying selection for the Gag reading frame, as indi-

cated by dN /dS values less than 1.

Codon preference index

In this section, we generalize the notion of codon preference index (CPI) [45] to the context of

overlapping coding regions. For RNA sequence a = a0, . . . ,a3n which codes n-mer peptides in

reading frames 0,1, for codon w ∈ ({A,C,G,U })3 and reading frame r ∈ {0,1}, de�ne f(w,a,r ) to

be the number of occurrences of codonw in reading frame r of a, and for amino acidAA, de�ne

f(AA,a,r ) to be the number of occurrences of codons coding AA in reading frame r of a. De�ne

the observed codon preference in a by pobs (w,a) = ∑1
r=0 f(w,a,r )/

∑1
r=0 f(AA,a,r ). If S is a set of

mRNAs of length 3n + 1, each of which codes n-mer peptides in both reading frames 0,1, then

de�ne the observed codon preference in S by pobs (w,S) = ∑1
r=0

∑
a∈S f(w,a,r )/

∑1
r=0

∑
a∈S f(AA,a,r ).

Note that pobs (w,S) is the probability that codonw will be used for amino acidAA in the collec-

tion S of overlapping coding sequences. Finally, de�ne the codon preference index I (w) of codon

w in S by I (w) = pobs (w,S)/pobs (w,S ′), where S ′ is a control set of mRNAs of length 3n + 1.

With these notations, Figure 2.4 depicts a heat map for the codon preference index I (w), com-

puted over 5,125 entire Gag-Pol overlap regions of average length 205 ± 10 (Gag and Pol pep-

tide size ≈ 68) extracted from LANL HIV-1 database, each starting with the slippery sequence
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(c) Arti�cial

dN/dS Pol dN/dS Gag branch len t transition/transversion num seq

Lanl-B0-CDS 1.03 0.24 2.93 1.54 100,000

Lanl-B0-ifold 0.66 0.38 1.23 2.78 42,534

Lanl-B1-CDS 0.18 0.13 1.13 0.97 100,000

Lanl-B1-ifold 0.16 0.17 0.63 4.73 1,196

Ofori-B0-CDS 1.13 0.33 2.45 1.94 100,000

Ofori-B0-ifold 0.66 0.44 1.08 3.09 26,640

Ofori-B1-CDS 0.25 0.16 0.89 1.48 100,000

Ofori-B1-ifold 0.25 0.19 0.45 15.15 276

(d) dN/dS

Figure 2.3: Output from the program FRESCo [43], when run on the Gag (a), Pol (b) and
modi�ed Gag-Pol (c) sequences of alignments of 200 sequences from the LANL HIV-1 data-
base using 50 nt windows. Gag-Pol sequences were modi�ed by inserting one additional
nucleotide at the beginning of the overlapping coding region, thus causing the Pol read-
ing frame to be in-frame, rather than −1. Codon positions in the lower panels are based
on HXB2 reference sequence. Mature peptides are shown in yellow. (d) Values of dN /dS ,
branch length, and transition/transversion rate (see [33] for de�nitions) for the 52 nt Gag-Pol
overlap regions within a multiple alignment from Rfam family RF00480 as well as from 52 nt
RNA sequences generated by the programs RNAsampleCDS and RNAiFold. These programs
generate sequences that code peptides, each of whose amino acids has BLOSUM62 similar-
ity of either 0 or 1 to the corresponding amino acids in the Gag [resp. Pol] reading frame
of the peptide translated by the 52 nt HIV-1 overlap region of [26] or by GenBank accession
code AF033819.3/1631-1681. The program RNAsampleCDS ensures only coding requirements,
while RNAiFold ensures both coding requirements and that the 52 nt RNAs fold into the min-
imum free energy structure of the Gag-Pol overlap region of HIV-1 from [26] and GenBank

accession code AF033819.3/1631 − 1682.
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UUUUUUA and terminating with the last Gag codon; additionally the heat map includes Gag-

only and Pol-only values for the same overlap region. For this �gure, the control set S ′ is

de�ned di�erently for each column 1 − 5, although in all cases, each sequence in S ′ contains

the initial slippery sequence UUUUUUA. For column 1 [resp. 2] S ′ is the set of all mRNAs

that code proteins in the Gag [resp. Pol] reading frame that are coded by some sequence of

S . For column 3, S ′ is the set of all mRNAs that code proteins p and q that are identical to

proteins coded in the Gag and Pol reading frames of some sequence a of S . For column 4,

S ′ is de�ned as in the case for column 3, except that ‘identical to’ is replaced by ‘BLOSUM62

+1 similar to’. For column 5, S ′ is the set of all mRNAs that code proteins p and q that are

BLOSUM62 +1 similar to proteins coded in the Gag and Pol reading frames of a sequence a

of S , and whose GC-content lies in the range of GC-content of a ± 5. The heat map of Fig-

ure 2.4 shows that for serine, I (AGU ,Gaд) < I (AGU ,Pol) < I (AGU ,Gaд/Pol) ≈ 1; for valine,

I (GUG,Gaд) < 1 < I (GUU ,Gaд) but I (GUG,Gaд/Pol) > 1 > I (GUU ,Gaд/Pol); for proline,

I (CAU ,Gaд) < I (CAU ,Pol) < I (CAU ,Gaд/Pol) ≈ 1, but when the control set is taken to be

BLOSUM62 +1 similar peptides to Gag and Pol, then I (CAU ,Gaд/Pol + 1) � 1. Figure 2.5

illustrates a comparison between the codon preference index of the entire gag and pol except

overlapping region with the overlapping region. In Figure 2.6, in all columns S is the set of

Gag-Pol overlapping sequences from the LANL HIV-1 database. The control set S ′ in columns

1 and 2 is the collection of sequences that code any protein of length 68 in a single reading

frame. However, in columns 3-5, S ′ is the collection of sequences that code any protein of

length 68 in both +0 and +1 reading frames. Mean peptide length in the overlapping region

of the dataset is 68. Note that the codon preference index (CPI) computed in Figure 2.6 is with

respect to all possible coding sequences regardless of amino acid coded, and so is natural gen-

eralization of the method of [45] to the case of overlapping reading frames. Figure 2.7 shows
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Codon Usage Heatmap for Gag-Pol Overlapping Region
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Figure 2.4: Heat map of the codon preference index (CPI) for a collection of 5125 entire Gag-
Pol overlap regions of average length 205 ± 10 extracted from LANL HIV-1 database. CPI

values shown at bottom right of each square.

the standard deviation of I (w) for the codons of each amino acid. Here, I (w) is computed as in

Figure 2.4. Arginine is the most varied and thus the most optimized amino acid in the Gag-Pol

overlapping region.

These results show that the codon usage bias observed at the Gag-Pol junction is not due to nat-

ural selection [46] or to the underlying mutational bias, but rather imposed by the overlapping

coding constraints.

Overlapping coding and stem-loop formation

Here we describe how to quantify the extent to which coding HIV-1 17-mer peptides in over-

lapping reading frames induces a stem-loop structure. In particular, we consider the following

questions.
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Figure 2.5: Heat map of the codon preference index (CPI) for a collection of 5,125Gag,
Pol and Gag-Pol overlapping sequences obtained from the LANL HIV-1 database.
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Figure 2.6: Heat map of the codon preference index (CPI) for a collection of 5,125
Gag-Pol overlapping sequences obtained from the LANL HIV-1 database where S ′ is
the collection of sequences coding any amino acid (i.e. not containing a stop codon)

in the corresponding reading frames.
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Figure 2.7: Standard deviation of CPI for synonymous codons computed from the
Gag-Pol overlapping sequence of 5,125 sequences from the LANL HIV-1 database.

1. What is the probability that random RNA forms a stem-loop structure?

2. What is the probability that RNA forms a stem-loop structure, if it is required to code

(any arbitrary) peptides in reading frames 0 and 1?

3. What is the probability that RNA forms a stem-loop structure, if it is required to code

peptides in reading frames 0 and 1, which are similar to peptides coded in the HIV-1

frameshift stimulating signal (FSS)?

4. To what extent do HIV-1 coding requirements in the Pol-Gag overlap region alone induce

stem-loop formation?

5. What is the (conditional) probability of coding peptides in reading frames 0 and 1 if the

RNA forms a secondary structure similar to the FSS stem-loop structure of HIV-1?

To answer question 1, we generated 200,000 52-nt RNAs, where the �rst seven nucleotides

constituted the slippery sequence UUUUUUA, and each nucleotide in position 8 through 52
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was randomly selected with probability 0.25 for each of A,C,G,U. Using RNAshapes, cf. [47],

we determined the Boltzmann probability that each RNA sequence has shape [ ] [48], i.e.

P( [ ] ) = ∑
s exp(−E(s)/RT ), where the sum is taken over all stem-loop secondary struc-

tures, which may contain internal loops and bulges, but no multiloops or multiple stem-loops.

Throughout the sequel of the chapter, the probability that a given RNA sequence will form a

stem-loop structure is identi�ed with P( [ ] ). A �ner analysis could consider type 1 shapes

of the form _ [ _ [ ] _ ] or _ [ [ ] _ ] , corresponding to a stem loop with internal loop or

right bulge, with left �anking unpaired region, but in this section we consider only the type 5

stem loop shape [ ] . By MFE stem-loop structure, we mean the stem-loop secondary structure

which has the minimum free energy, taken over all stem-loop structures. Similarly, stem-loop

MFE means the minimum free energy of all stem-loop structures. Note that the stem-loop MFE

is not necessarily equal to the MFE, since it is possible that a structure having two or more

external loops, or containing a multiloop, could have lower energy than that of any stem-loop

structure. By uniformly sampling 200,000 52 nt RNAs with no coding requirements, we esti-

mate an average probability of stem-loop formation of 60.7% with standard deviation of 36.2%,

and average stem-loop MFE was −7.65 kcal/mol with standard deviation 3.42 kcal/mol – again,

this is for 52 nt RNA with no constraints.

Before answering question 2, we �rst note that the conditional probability that a 52-nt RNA

codes in both reading frames 0,1 assuming that it begins by the slippery heptamer UUUUUUA

is 23.14%, and that the conditional probability that a 52-nt RNA codes in both reading frames

0,1 assuming that it begins by the slippery heptamer UUUUUUA and that it already codes in

reading frame 0 is 45.32%. In contrast, the conditional probability that a 52-nt RNA codes in

reading frame 0 assuming that it begins by the slippery heptamer UUUUUUA is 51.06%.
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Indeed, using RNAsampleCDS, we determine that the number x1 of 52-nt RNAs beginning by

UUUUUUA and which code in both reading frames 0,1 is 2.86451 ·1026. In contrast, the number

x2 of 52-nt RNAs beginning by UUUUUUA and which code in reading frame 0 is x2 = 16 ·6114 ·

4 = 6.32117 · 1026, since there are 16 codons that begin by A, a choice of 61 coding codons for

the remaining 14 residues (since the �rst two residues must be FF and the third residue have

a codon beginning by A), times 4 for the last nucleotide to ensure the RNA length is 52. The

number x3 of all 52-nt RNAs that begin by UUUUUUA is clearly 445 = 1.23794 · 1027. Finally,

the number x4 of 52-nt RNAs that begin by UUUUUUA is x4 = 42 · 6414 · 4. These computations

justify the previous probabilities, and suggest the potential utility of RNAsampleCDS when

speculating about molecular evolution.

To answer question 2, we used RNAsampleCDS to generate 200,000 52-nt RNA sequences, each

of which contains the slippery sequence UUUUUUA and codes 17-mer peptides in both reading

frames 0 and 1. Executing RNAshapes as previously described yielded an average probability

of stem-loop formation of 59.8% with standard deviation of 36.7%, and average stem-loop MFE

of −8.06 kcal/mol with standard deviation 3.58 kcal/mol.

To answer question 3, we extracted 145 52-nt Pol-Gag overlapping FSS sequences in family

RF00480 from the Rfam 12.0, of which 133 sequences remained after disambiguation and re-

moval of sequences containing gaps or stop codons. For each of the 133 sequences, we gener-

ated 100,000 sequences using RNAsampleCDS, each of which begins by the same initial 7 nu-

cleotides of the Rfam sequence constituting a slippery sequence (since most but not all RF00480

sequences begin with UUUUUUA), and which code peptides p [resp. q] having BLOSUM62

similarity of at least +1 with the corresponding amino acids of the 17-mer peptide coded by

the Rfam sequence in frame 0 [resp. 1]. Two additional outliers, AF442567.1/1455-1506 and
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L11798.1/1290-1341, were removed since their stem-loop formation probabilities were respec-

tively 53.1% and 55.5%. GenBank annotations indicate that AF442567.1 is highly G to A hyper-

mutated with very many, mostly in-frame, stop codons throughout the genome, and that the

Gag gene of L11798.1 has a premature termination at position residue 46.

For the remaining 131 sequences from RF00480, we have the following statistics. Average

probability of stem-loop formation for RF00480 is 99.3 ± 2.2%, and average stem-loop MFE is

−24.43 ± 3.91 kcal/mol. For the collection of 100,000 sequences generated by RNAsampleCDS

for each sequence from Rfam family RF00480, coding BLOSUM62 +1 similar peptides to those

coded by the Rfam sequence, the average stem-loop formation probability is is 69 ± 12%, and

average stem-loop MFE is −13.43 ± 2.32 kcal/mol. Figures 2.8a and 2.8b depict respectively

the stem-loop formation probabilities and stem-loop minimum free energies. In contrast, a

similar computational experiment using RNAsampleCDS shows that the average probability of

stem-loop formation is 98.1% ± 8.1 if each sampled sequence is required to code exactly the

same peptides as those from HIV-1 in RF00480. This answers question 4.

Together, these results show that stem-loop formation is a consequence of the precise HIV-1

Gag and Pol 17-mer peptides, but not of BLOSUM62+1 similar peptides. As well, stem-loop for-

mation probability is not statistically di�erent (T-test) between random sequences, sequences

that have no stop codon in reading frame 0 or 1, and sequences that code peptides having

BLOSUM62 similarity of at least +1 to HIV-1 peptides. To determine particular nucleotide po-

sitions in the 52-nt FSS that appear to be critical in stem-loop formation, we computed the

position-dependent nucleotide frequency (PSSM), denoted by π1, for 200,000 sequences gener-

ated by RNAsampleCDS that begin by the slippery sequence UUUUUUA, and code peptides p

[resp. q], each of whose amino acids has BLOSUM62 similarity greater than or equal to 1 with
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Figure 2.8: For each of 131 52 nt frameshift stimulating signals (FSS) from family RF00480
from the Rfam 12.0, RNAsampleCDS generated 100,000 RNAs that have the same slippery
sequence as the Rfam sequence, and code 17-mer peptides p [resp. q] in reading frame 0
[resp. 1] each of whose amino acids has BLOSUM62 similarity of at least +1 with the corre-
sponding amino acid in the Pol [resp. Gag] peptide coded by the Rfam sequence. Stem-loop
formation probability, P( [ ] ), and stem-loop minimum free energy (MFE) were computed
by RNAshapes [47] with the command RNAshapes -q -m ‘[]’. (a) Average stem-loop for-
mation probability for 100,000 sequences sampled from RNAsampleCDS for each RF00480 se-
quence (red); stem-loop formation probability of HIV-1 frameshift stimulating Overall mean
RNAsampleCDS samples is 69% ± 12 (red), while that for the RF00480 sequences is 99.3 ± 2.2
(blue). (b) Average stem-loop MFE for 100,000 sequences sampled by RNAsampleCDS for each
RF00480 sequence (red); stem-loop minimum free energy for HIV-1 frameshift stimulating sig-
nals from RF00480 (blue). Overall mean for RNAsampleCDS samples is -13.43 ± 2.32 kcal/mol
(red), while that for RF00480 sequences is -24.43 ± 3.91 kcal/mol (blue). (c) Base pair distance
between the MFE structure of each RNA sampled by RNAsampleCDS and the FSS structure of

Figure 2.1a.

the corresponding amino acids of the Pol [resp. Gag] 17-mer peptides FFREDLAFPQGKAREFS

[resp. FLGKIWPSHKGRPGNFL] coded in AF033819.3/1631-1682. Using RNAiFold 2.0, we

also computed the PSSM, denoted by π2, for all possible sequences that begin by slippery hep-

tamer UUUUUUA, and fold into the MFE structure of AF033819.3/1629-1682 shown in Fig-

ure 2.1a, and which code peptides that are BLOSUM62 +1 similar to the peptides coded by
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AF033819.3/1631-1682. We then computed the position-dependent total variation distance be-

tween π1 and π2, de�ned by δ (π1,i ,π2,i ) = 1/2 ·
∑

x ∈{A,C,G,U } |π1,i (x)− π2,i (x)|, where π1,i resp.

π2,i denotes the mononucleotide frequency at position i of the PSSM for sequences generated

by RNAsampleCDS resp. RNAiFold 2.0. With the exception of speci�c regions, the total vari-

ation distance is close to zero, thus pinpointing critical nucleotides necessary for stem-loop

formation of the FSS. Figures 2.9a, 2.9b display the sequence logo for the PSSM π1 and π2, and

Figures 2.9c and 2.9d respectively depict the position-dependent entropy and total variation

distance.

To answer question 5, we used RNAiFold 2.0 with target structure as depicted in Figure 2.1a,

in order to generate 200,000 52-nt RNA sequences, each containing the slippery sequence UUU-

UUUA and each folding into the target structure. We determined that 61.91% of these sequences

have no stop codon in reading frames 0 or 1. The percentage of sequences that have no stop

codon in reading frame 0 [resp. 1] alone is somewhat higher, with value 78.7% [resp. 79.59%].

We additionally determined that the average base pair distance between the MFE structure of

the sampled sequences and the target FSS secondary structure is 2.04 and average ensemble

defect is 3.58.

The probability of stem-loop formation for frameshift stimulating signal (FSS) regions of HIV-1

is close to 1, with average value of 99% ± 2 for RF00480 as shown in Figure 2.8a. This value

is much larger than that of random 52-nt RNAs (≈ 61%), or 52-nt RNA having no stop codons

in reading frames 0 or 1 (≈ 60%), or even 52-nt RNA coding peptides in reading frames 0,1

with BLOSUM62 similarity of at least +1 to HIV-1 peptides (≈ 69%). It follows that coding

BLOSUM62+1 similar peptides to those of HIV-1 at most slightly induces stem-loop formation.

Yet the probability that stem-loop structures do not have a stop codon in either reading frame
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0 or 1 is only about 62%, without requiring that the peptides be similar to those of HIV-1. It

follows that BLOSUM62 +1 similarity to HIV-1 peptides cannot induce the required stem-loop

FSS structure, nor can the target FSS structure from Figure 2.1a induce BLOSUM62+1 similarity

to HIV-1 peptides. We speculate that starting from a genomic region that codes a polyprotein

similar to that of Gag, a series of pointwise mutations could slowly induce a stem-loop FSS

structure and at the same time slowly create a Pol-like reading frame. Although speculative,

it is possible to create an adaptive walk or Monte Carlo program to test the likelihood of this

hypothesis, using intermediate sequences generated by RNAsampleCDS and RNAiFold2.0.

HCV programmed -1 and +1 frameshifts

There is both in vitro and in vivo experimental evidence for a -2/+1 (hereafter designated as

+1) and -1/+2 (hereafter designated as +2) programmed ribosomal frameshift in the core pro-

tein of the hepatitis C virus (HCV) [49]. The +1 frameshift produces a 17 kDa protein called

protein F (Frameshift), also designated as ARFP (Alternative Reading Frame Protein). In ad-

dition, the +2 frameshift produces a 1.5 kDa protein. As measured by in vitro assays, the +1

ribosomal frameshift e�ciency is ∼ 12 − 15%, while the +2 ribosoma frameshift e�ciency is

∼ 30 − 45% [49]. Figure 2.10 depicts the organization of the overlapping coding region for the

HCV genome (GenBank M62321.1), including a double stem-loop RNA structure designated as

frameshift stimulating signal (FSS) depicted in Figure 2.11. According to [49], the frameshift is

caused by a poly-A slippery sequence (A AAA AAA AAC) in the triple coding region, although

a mutated slippery sequence (A AGA AAA ACC) has also been shown to cause a frameshift, but

with a lower e�ciency. Out of 6,589 sequence hits for the HCV1 frameshift signal for the LANL

HCV database (www.hcv.lanl.gov), we found that 94% of the sequences started with (A AGA

www.hcv.lanl.gov
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AAA ACC). Furthermore, downstream of the slippery sequence a double stem-loop structure

facilitates translational frameshifting (Figure 2.11). For this analysis, we took nucleotides 344-

500 from the 9401 nt HCV subtype 1a genome (GenBank M62321.1) [49], corresponding to the

region starting at the triple coding region and extending to the end of double-stem loop. Using

RNAsampleCDS we computed the logo plot for all sequences that code BLOSUM62 +1 similar

peptides to those coded by the reference genome (Figure 2.12a). Using RNAiFold 2.0 [50], we

generated more than 11 million sequences that fold into the double-stem loop structure indi-

cated in Figure 2.11 and which have BLOSUM62 similarity of at least +1 to the reference genome

peptides (Figure 2.12b). Although RNAiFold 2.0 does not support pseudoknot structures, by

providing structural compatibility constraints, we ensured that every sequence returned by

RNAiFold 2.0 has the property that the nucleotides, which participate in the “kissing hair-

pin” model of Figure 1A of [49], can indeed form a base pair together. Note that the set of all

sequences returned by RNAiFold 2.0, which satisfy both the coding and structural require-

ments, forms a proper subset of the set of all sequences returned by RNAsampleCDS, which

are required to satisfy only the coding requirements. Figure 2.12c depicts the total variation

distance between these sequence two pro�les. At positions where the total variation distance

is zero, the secondary structure is likely to be induced by the overlapping coding constraints.

Indeed, a mutation in such positions could lead to a disruption of the double stem-loop or to

a modi�cation of the amino acid in one of the overlapping reading frames. Our results from

Figure 2.12c agree with experimental evidence showing that modi�cations of nucleotides at

positions 64, 91, 130 and 137 lead to detrimental mutations for the hepatitis C virus [51]. Mu-

tations at these positions resulted in an attenuated HCV infection in chimpanzee. According

to our analysis, an introduction of mutations at positions whose variation distance is much

greater than zero, should allow the disruption of the double-stem loop with minimal e�ects on
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the protein function. This hypothesis could be tested experimentally.

To further investigate whether the overlapping coding requirement of HCV possibly induces

the FSS double stem-loop structure, we proceeded in a manner analogous to that for our HIV-1

analysis. We sampled 100,000 RNA sequences using RNAsampleCDSwith BLOSUM62 similar-

ity of +1 and 0 to the reference peptides in each reading frame. Using RNAshapes, we computed

the average Boltzmann probability of formation of a double-stem loop with shape [ ] [ ] , in

the sampled RNA sequences as well as 6,589 sequences from LANL database (2.13). Average

Boltzmann probability of the double stem-loop shape [ ] [ ] is 19% [resp. 9%] for BLOSUM62

similarity of +1 [resp. 0], compared with 98% probability for the sequences from LANL HCV

database. In contrast, dinucleotide shu�es of sequences generated by RNAsampleCDS having

BLOSUM62 +1 similarity to the reference peptides have average probability of 5% of double

stem-loop formation, while the probability double stem-loop formation is 6% for random RNA

sequences generated with probability of 1
4 for each nucleotide. Figure 2.13 displays average

double stem-loop probability and free energy results for the HCV overlapping coding region,

which are analogous to results for HIV-1 presented in Figure 2.8.
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Figure 2.9: (a) Sequence logo from RNAsampleCDS for one million sequences that code
peptides p [resp. q], each of amino acids has BLOSUM62 similarity greater than or equal
to +1 with the corresponding amino acids of the Pol [resp. Gag] 17-mer peptides FFRED-
LAFPQGKAREFS [resp. FLGKIWPSHKGRPGNFL] in AF033819.3/1631 − 1682. (b) Sequence
logo for all 1196 sequences determined by RNAiFold 2.0 to fold into the frameshift stimu-
lating signal (FSS) given by the MFE structure from AF033819.3/1629 − 1682 and code pep-
tides P,Q, each of whose BLOSUM62 similarity with the Gag,Pol peptides in the overlap re-
gion is greater than or equal to +1. (c) The position-dependent entropy is de�ned by Hi =

−pA lnpA −pC lnpC −pG lnpG −pU lnpU for each nucleotide position i = 1, . . . ,52. Sub�gure
(c) shows the position-dependent di�erenceHa

i −H
b
i in entropies of (a) minus (b). (d) Position-

dependent total variation distance δ (π1,i ,π2,i ) = 1/2·
∑

x ∈{A,C,G,U } |π1,i (x)−π2,i (x)| in the 52 nt
region of the Gag-Pol overlap in the HIV-1 genome (GenBank AF033819.3/1631 − 1682) that
contains the frameshift stimulating signal (FSS). Here π1,i resp. π2,i is the mononucleotide
frequency at position i of the PSSM in the left resp. right panel. If total variation distance is
zero, then it is suggestive that the coding constraint automatically may already entail the FSS

secondary structure constraint.
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Figure 2.10: Organization of the initially triple, then double overlapping reading
frame region of hepatitis C virus (HCV) (GenBank M62321.1). The top gene orga-
nization map is adapted from Figure 1A of [49]. All coding regions mentioned in the
following include a terminal stop codon. The second line depicts the core in-frame
protein, coded in nucleotides 342–915. Next, a 1.5 kDa protein is coded in nucleo-
tides 344–383, while protein F is coded in nucleotides 346–829. The double stem-loop
frameshift stimulating signal (FSS) is found at nucleotides 365-501; the FSS structure

is depicted in Figure 2.11.

(a) Double stem-loop FSS from [49] (b) MFE structure from RNAfold

Figure 2.11: HCV ribosomal frameshift stimulating signal (FSS). (a) Proposed pseudoknotted
structure from [49]. (b) Minimum free eneergy (MFE) structure computed by RNAfold 2.1.9
(green, red), with added pseudoknot (blue). Green arcs indicate common base pairs; red arcs
indicate base pairs predicted by RNAfold but not present in the structure from [49]; blue arcs
indicate pseudoknot base pairs from the model proposed by [49] that are absent from the

RNAfoldMFE structure. Figures produced using jViz [52].



New tools to analyze overlapping coding regions 43

(a) RNAsampleCDS (b) RNAiFold

(c) Total variation distance

Figure 2.12: (A) Exact sequence logo determined by RNAsampleCDS for all 2.55 × 1017 se-
quences, whose initial 39 nucleotides code amino acids having BLOSUM62 +1 similarity to
the corresponding amino acids from each of the three reading frames in the triple overlapping
coding region 344-383 of the reference HCV genome, and whose remaining nucleotides code
amino acids having BLOSUM62 +1 similarity to the corresponding amino acids from each
of teh two reading frames in the double overlapping coding region 383-501 of the reference
HCV genome. (B) Sequence logo determined by RNAiFold 2.0 for the more than 11 million
sequences that fold into the HCV FSS structure depicted in Figure 2.11, whose initial 39 nucleo-
tides code BLOSUM62 +1 amino acids having BLOSUM62 +1 similarity to the corresponding
amino acids from each of the three reading frames in the triple overlapping coding region
344-383 of the reference HCV genome, and whose remaining nucleotides code amino acids
having BLOSUM62 +1 similarity to the corresponding amino acids from each of teh two read-
ing frames in the double overlapping coding region 383-501 of the reference HCV genome.
(C) Total variation distance shown for each nucleotide position, determined by computing the

total variation distance between the position-speci�c pro�les of (A) and (B).
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(a) BLOSUM62 +1 vs LANL HCV (b) BLOSUM62 +1 vs BLOSUM62 0

(c) BLOSUM62 +1 vs LANL HCV (d) BLOSUM62 +1 vs BLOSUM62 0

Figure 2.13: Using RNAsampleCDS, we sampled 100,000 sequences coding peptides having
BLOSUM62 +1/0 similarity to the peptides in each overlapping reading frame of the reference
HCV1a genome (GenBank M62321.1). Using RNAshapes [47], we determined the Boltzmann
probability of having a double stem-loop shape [ ] [ ] . We also determined the Boltzmann
probability of double stem-loop shape [ ] [ ] in 6,589 sequences from the LANL HCV data-
base. (A) Average double stem-loop probability of BLOSUM62 +1 sequences compared with
that of the LANL HCV sequences. (B) Average double stem-loop probability of BLOSUM62
+1 sequences compared with Blosum 0 sequences. (C) Average double stem-loop free energy
of BLOSUM62 +1 sequences compared with that of the LANL HCV sequences. (D) Average
double stem-loop free energy of BLOSUM62 +1 sequences compared with that of BLOSUM62

0 similar sequences.
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Performance analysis

The run time for RNAsampleCDS is ostensibly linear in RNA sequence length and number of

samples to be generated. Using least squares �tting, we can compute the run time as follows.

For each sample size N equal to 104, 2 × 104, 3 × 104, we generated N samples using RNAsam-

pleCDS, which code peptides having RNAsampleCDS generated N samples that code peptides

having A = 20, 30, 40, . . . , 160 many amino acids. It follows that sequence length L = 3 · A + 2

takes values 62,92,122, . . . ,482 thus providing 45 data points. Now de�ne M to be the 45 × 2

matrix, for which Mi,1 is the sequence length L ∈ {62,92, . . . ,482} and Mi,2 is the number of

samples N ∈ {104, 2×104, 3×104} for the ith data point. De�ne B to be the 45×1 column vector,

where Bi is the run time for RNAsampleCDS to compute the partition function and generate N

samples for the ith data point. Using the Python function numpy.linalg.lstsq, we solved

MX = B by least squares to determine that RNAsampleCDS computes the partition function in

time ≈ 0.58831373 ·L, and samples N RNA sequences of length L in time ≈ 0.00550239 ·N . See

Figure 2.14 for a plot of the run time of RNAsampleCDS for this data.
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Figure 2.14: Run time for RNAsampleCDS to generate RNA sequences of length L that code
peptides in all six reading frames – i.e. a stop codon does not appear in any of the six reading
frames. For each sample size N equal to 104, 2 × 104, 3 × 104, RNAsampleCDS generated N

samples that code peptides having A = 20, 30, 40, . . . , 160 many amino acids. Thus sequence
length L = 3 · A + 2 takes values 62,92,122, . . . ,482 thus providing 45 data points. Using least
squares �tting, we determine that RNAsampleCDS computes the partition function in time
≈ 0.58831373 · L, and samples N sequences each of length L in time ≈ 0.00550239 · N .



Chapter 3

RNA sequence/structure alignment

Introduction

Alignment of structural RNAs is an important problem with a wide range of applications. Since

function is often determined by molecular structure, RNA alignment programs should take into

account both sequence and base-pairing information for structural homology identi�cation. A

number of successful alignment programs are heuristic versions of Sanko�’s optimal algo-

rithm. Most of them require O(n4) run time. This chapter describes C++ software, RNAmoun-

tAlign, for RNA sequence/structure alignment that runs inO(n3) time andO(n2) space; more-

over, our software returns a p-value (transformable to expect value E) based on Karlin-Altschul

statistics for local alignment, as well as parameter �tting for local and global alignment. Using

incremental mountain height, a representation of structural information computable in cubic

time, RNAmountAlign implements quadratic time pairwise local, global and global/semiglobal

47
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(query search) alignment using a weighted combination of sequence and structural similar-

ity. RNAmountAlign is capable of performing progressive multiple alignment as well. Bench-

marking of RNAmountAlign against LocARNA, LARA, FOLDALIGN, DYNALIGN and STRAL shows

that RNAmountAlign has reasonably good accuracy and much faster run time supporting all

alignment types. The source code and webserver for RNAmountAlign is publicly available at

http://bioinformatics.bc.edu/clotelab/RNAmountAlign.

Background

A number of di�erent metrics exist for comparison of RNA secondary structures, including

base pair distance (BP), string edit distance (SE) [53], mountain distance (MD) [54], tree edit

distance (TE) [55], coarse tree edit distance (HTE) [27], morphological distance [56] and a few

other metrics. In what appears to be the most comprehensive published comparison of var-

ious secondary structure metrics [57], it was shown that all of these distance measures are

highly correlated when computing distances between structures taken from the Boltzmann

low-energy ensemble of secondary structures [58] for the same RNA sequence – so-called

intra-ensemble correlation. In contrast, these distance measures have low correlation when

computing distances between structures taken from Boltzmann ensembles of di�erent RNA

sequences of the same length – so-called inter-ensemble correlation. For instance, the intra-

ensemble correlation between base pair distance (BP) and mountain distance (MD) is 0.822,

while the corresponding inter-ensemble correlation drops to 0.210. Intra-ensemble correlation

between string edit distance (SE) and the computationally more expensive tree edit distance

(TE) is 0.975, while the corresponding intra-ensemble correlation drops to 0.590 – see Table 3.1.

http://bioinformatics.bc.edu/clotelab/RNAmountAlign
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BP MD SE TE HTE
BP 0.210 0.134 0.133 0.230
MD 0.822 0.519 0.607 0.515
SE 0.960 0.853 0.590 0.310
TE 0.943 0.879 0.975 0.597

HTE 0.852 0.844 0.879 0.913

Table 3.1: Correlation between various secondary structure metrics, as computed in
[57]: base pair distance (BP), string edit distance (SE) [53], mountain distance (MD)
[54], tree edit distance (TE) [55] and coarse tree edit distance (HTE) [27]. Lower tri-
angular values indicate intra-ensemble correlations; upper triangular values indicate

inter-ensemble correlations. Table values are taken from [57].

Due to poor inter-ensemble correlation of RNA secondary structure metrics, and the fact that

most secondary structure pairwise alignment algorithms depend essentially on some form of

base pair distance, string edit distance, or free energy of common secondary structure, we

have developed the �rst RNA sequence/structure pairwise alignment algorithm that is based

on (incremental ensemble) mountain distance. Our software, RNAmountAlign, uses this dis-

tance measure, since the Boltzmann ensemble of all secondary structures of a given RNA of

length n can represented as a length n vector of real numbers, thus allowing an adaptation of

fast sequence alignment methods. Depending on the command-line �ag given, our software,

RNAmountAlign can perform pairwise alignment, (Needleman-Wunsch global [59], Smith-

Waterman local [60] or semiglobal [61] alignment) as well as progressive multiple alignment

(global and local), computed using a guide tree as in CLUSTAL [62]. Expect values E for local

alignments are computed using Karlin-Altschul extreme-value statistics [63, 64], suitably mod-

i�ed to account for our new sequence/structure similarity measure. Additionally, RNAmoun-

tAlign can determine p-values (hence E-values) by parameter �tting for the normal (ND),

extreme value (EVD) and gamma (GD) distributions.
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We benchmark the performance of RNAmountAlign on pairwise and multiple global sequence/struc-

ture alignment of RNAs against the widely used programs LARA, FOLDALIGN, DYNALIGN, Lo-

cARNA and STRAL. LARA (Lagrangian relaxed structural alignment) [65] formulates the prob-

lem of RNA (multiple) sequence/structure alignment as a problem in integer linear program-

ming (ILP), then computes optimal or near-optimal solutions to this problem. The software

FOLDALIGN [66, 67, 68], and DYNALIGN [69] are di�erent O(n4) approximate implementations

of Sanko�’s O(n6) optimal RNA sequence/structure alignment algorithm. FOLDALIGN sets

limits on the maximum length of the alignment as well as the maximum distance between

subsequences being aligned in order to reduce the time complexity of the Sanko� algorithm.

DYNALIGN [69] implements pairwise RNA secondary structural alignment by determining the

common structure to both sequences that has lowest free energy, using a positive (destabiliz-

ing) energy heuristic for gaps introduced, in addition to setting bounds on the distance between

subsequences being aligned. In particular, the only contribution from nucleotide information

in Dynalign is from the nucleotide-dependent free energy parameters for base stacking, dan-

gles, etc. LocARNA (local alignment of RNA) [70, 71] is a heuristic implementation of PMcomp

[72] which compares the base pairing probability matrices computed by McCaskill’s algorithm.

Although the software is not maintained, STRAL [73] which is similar to our approach, uses up-

and downstream base pairing probabilities as the structural information and combines them

with sequence similarity in a weighted fashion.

LARA, mLocARNA (extension of LocARNA), FOLDALIGNM [67, 74] (extension of FOLDALIGN), Mul-

tilign [75, 76] (extension of DYNALIGN) and STRAL support multiple alignment. LARA com-

putes all pairwise sequence alignments and subsequently uses the T-Coffee package [77] to
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Software Local Global Semiglobal E-value F1(Pairwise) SPS(Multiple)
RNAmountAlign X X X X 0.84 0.84
LocARNA X X — — 0.81 0.84
LARA — X — — 0.84 0.85
FOLDALIGN X X — X 0.80 0.77
DYNALIGN — X — — 0.68 0.67
STRAL — X — — 0.82 -

Table 3.2: Overview of features in software used in benchmarking tests, where X

[resp. —] indicates the presence [resp. absence] of said feature, to the best of our
knowledge. Average F1 [resp. SPS] scores for the pairwise [resp. multiple] global

alignment are given in the text.

construct multiple alignments. Both FOLDALIGNM and mLocARNA implement progressive align-

ment of consensus base pairing probability matrices using a guide tree similar to the approach

of PMmulti [72]. For a set of given sequences, Multilign uses DYNALIGN to compute the pair-

wise alignment of a single �xed index sequence to each other sequence in the set, and computes

a consensus structure. In each pairwise alignment, only the index sequence base pairs found

in previous computations are used. More iterations in the same manner with the same index

sequence are then used to improve the structure prediction of other sequences. The number of

pairwise alignments in Multilign is linear with respect to the number of sequences. STRAL

performs multiple alignment in a fashion similar to CLASTALW [78]. Table 3.2 provides an over-

view of various features, to the best of our knowledge, supported by the software benchmarked

in this chapter.

RNAmountAlign can perform semiglobal alignments in addition to global and local alignments.

As in the RNA tertiary structural alignment software DIAL [79], semiglobal alignment allows

the user to perform a query search, where the query is entirely matched to a local portion of

the target. Quadratic time alignment using a�ne gap cost is implemented in RNAmountAlign

using the Gotoh method [80] with the following pseudocode, shown for the case of semiglobal
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alignment. Let д(k) denote an a�ne cost for size k gap, de�ned by д(0) = 0 and д(k) = дi + (k −

1)·дe for positive gap initiation [resp. extension] costsдi [resp. дe ]. For query a = a1, . . . ,an and

target b = b1, . . . ,bm , de�ne (n + 1) × (m + 1) matrices M,P ,Q as follows: Mi,0 = д(i) for all 1 ≤

i ≤ n,M0, j = 0 for all 1 ≤ j ≤ m, while for positive i,j we haveMi, j =max (Mi−1, j−1+ sim (ai ,bj ),

Pi, j , Qi, j ). For 1 ≤ i ≤ n, 1 ≤ j ≤ m, let P0, j = 0 and Pi, j = max
�
Mi−1, j + дi , Pi−1, j + дe

�
, and

de�neQi,0 = 0 andQi, j = max
�
Mi, j−1 + дi ,Qi, j−1 + дe , 0

�
. Determine the maximum semiglobal

alignment score in row n, then perform backtracking to obtain an optimal semiglobal (or query

search) alignment.

In this chapter we provide a very fast, comprehensive software package capable of pairwise/-

multiple local/global/semiglobal alignment with p-values and E-values for statistical signi�-

cance. Moreover, due to its speed and relatively good accuracy, the software can be used for

whole-genome searches for homologues of a given orphan RNA as query. This is in contrast

to Infernal [81], which requires a multiple alignment to construct a covariance model for

whole-genome searches.
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Algorithm description

Incremental ensemble expected mountain height

Introduced in [82], the mountain height1 hs (k) of secondary structure s at position k is de�ned

as the number of base pairs in s that lie between an external loop and k , formally given by

hs (k) = |{(i,j) ∈ s : i ≤ k}| − |{(i,j) ∈ s : j ≤ k}| (3.1)

The ensemble mountain height 〈h(k)〉 [83] for RNA sequence a = a1, . . . ,an at position k is

de�ned as the average mountain height, where the average is taken over the Boltzmann en-

semble of all low-energy structures s of sequence a. If base pairing probabilities pi, j have been

computed, then it follows that

〈h(k)〉 =
∑
i≤k

pi, j −
∑
j≤k

pi, j (3.2)

and hence the incremental ensemble mountain height, which for values 1 < k ≤ n is de�ned by

ma(k) = 〈h(k)〉 − 〈h(k − 1)〉 can be readily computed by

ma(k) =



0 if k = 1∑
k<j

pk, j −
∑
i<k

pi,k else
(3.3)

1We follow [54, 82] in our de�nition of mountain height, and related notions of ensemble mountain height and
distance, while [83] and Vienna RNA package [27] di�er in an inessential manner by de�ning hs (k) = |{(i,j) ∈ s :
i < k}| − |{(i,j) ∈ s : j ≤ k}|.
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Figure 3.1: Ensemble mountain heights of 72 nt tRNA AL671879.2 and 69 nt tRNA
D16387.1, aligned together by RNAmountAlign. Since the BRAliBase 2.1 K2 refer-
ence (pairwise) alignment [84] has only 28% sequence identity, structural similarity
parameter γ was set to 1 in our software RNAmountAlign, which returned the cor-
rect alignment. See Methods section for explanation of γ and the algorithm used by

RNAmountAlign.

It is clear that −1 ≤ ma(k) ≤ 1, and that both ensemble mountain height and incremental

ensemble mountain height can be computed in time that is quadratic in sequence length n,

provided that base pairing probabilities pi, j have been computed. Except for the cubic time

taken by a function call of RNAfold from Vienna RNA package [27], the software RNAmoun-

tAlign has quadratic time and space requirements. Figure 3.1 depicts a global alignment of

two transfer RNAs, computed by RNAmountAlign, shown as superimposed ensemble moun-

tain height displays with gaps.
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Transforming distance into similarity

In [85], Seller’s (distance-based) global pairwise alignment algorithm [86] was rigorously shown

to be equivalent to Needleman and Wunsch’s (similarity-based) global pairwise alignment al-

gorithm [59]. Recalling that Seller’s alignment distance is de�ned as the minimum, taken over

all alignments of the sum of distances d(x ,y) between aligned nucleotides x ,y plus the sum

of (positive) weights w(k) for size k gaps, while Needleman-Wunsch alignment similarity is

de�ned as the maximum, taken over all alignments of the sum of similarities s(x ,y) between

aligned nucleotides x ,y plus the sum of (negative) gap weights д(k) for size k gaps, Smith and

Waterman [85] show that by de�ning

d(x ,y) = max
a,b ∈{A,C,G,U }

s(a,b) − s(x ,y) (3.4)

w(k) = k
2 · max

a,b ∈{A,C,G,U }
s(a,b) − д(k) (3.5)

and by taking the minimum distance, rather than maximum similarity, the Needleman-Wunsch

algorithm is transformed into Seller’s algorithm. Though formulated here for RNA nucleotides,

equivalence holds over arbitrary alphabets and similarity measures (e.g. BLOSUM62).

For x ,y ∈ { ( , • , ) } from Eq (3.3) we have
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m(x) =




1 if x = (

0 if x = •

−1 if x = )

(3.6)

De�ne the distance d0(x ,y) between characters x ,y in the dot-bracket representation of a sec-

ondary structure by

d0(x ,y) = |m(x) −m(y)| =




0 if x = y

1 if [x = •,y ∈ { ( , ) }] or [x ∈ { ( , ) },y = •]

2 if [x = ( ,y = ) ] or [x = ) ,y = ( ]

(3.7)

Let A =
*....
,

s∗1 · · · s
∗
N

t∗1 · · · t
∗
N

+////
-

denote an alignment between two arbitrary secondary structures s,t of

(possibly di�erent) lengths n,m, where s∗i ,t
∗
i ∈ { ( , • , ) ,−} and − denotes the gap symbol. We

de�ne the structural alignment distance forA by summingd0(s∗i ,t∗i ) over those positions i where

neither character s∗i ,t
∗
i is a gap symbol, then addingw(k) for all size k gaps inA. Using previous

de�nitions of incremental ensemble expected mountain height from Eq (3.3), we can generalize

structural alignment distance from the simple case of comparing two dot-bracket representa-

tions of secondary structures to the more representative case of comparing the low-energy

Boltzmann ensemble of secondary structures for RNA sequence a to that of RNA sequence b.

Given sequences a = a1, . . . ,an and b = b1, . . . ,bm , let A =
*....
,

ma(1)∗ · · ·ma(N )∗

mb(1)∗ · · ·mb(N )∗

+////
-

denote an

alignment between the incremental ensemble expected mountain height ma(1) · · ·ma(n) of a
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and and the ensemble incremental expected mountain heightmb(1) · · ·mb(m) of b. Generalize

structural distance d0 de�ned in Eq (3.7) to d1 de�ned by d1(ai ,bj ) = |ma(i) −mb (j)|, where

ma(i) and mb (j) are real numbers in the interval [−1,1], and de�ne ensemble structural align-

ment distance for A by summing d1(ai ,bj ) over all positions i,j for which neither character is

a gap symbol, then adding positive weight w(k) for all size k gaps. By Eq (3.4) and Eq (3.5), it

follows that an equivalent ensemble structural similarity measure between two positions ai ,bj ,

denoted STRSIM(ai ,bj ), is obtained by multiplying d1 and w(k) by −1:

STRSIM(ai ,bj ) = −|ma(i) −mb (j)| (3.8)

This equation will be used later, since our algorithm RNAmountAlign combines both sequence

and ensemble structural similarity. Indeed, −|ma(i) −mb (j)| ∈ [−2,0] with maximum value of

0 while RIBOSUM85-60, shown in Table 3.3, has similarity values in the interval [−1.86,2.22].

In order to combine sequence with structural similarity, both ranges should be rendered com-

parable as shown in the next section.

Pairwise alignment

In order to combine sequence and ensemble structural similarity, we determine a multiplicative

scaling factor αseq and an additive shift factor αstr such that the mean and standard deviation for

the distribution of sequence similarity values from a RIBOSUM matrix [87] (after being mul-

tiplied by αseq) are equal to the mean and standard deviation for the distribution of structural
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similarity values from STRSIM (after additive shift of αstr). The RIBOSUM85-60 nucleotide sim-

ilarity matrix used in this chapter is given in Table 3.3, and expected base pairing probabilities

p( ,p•,p) as a function of nucleotide probabilities pA,pC ,pG ,pU are indicated in Table 3.4. Dis-

tributions for RIBOSUM and STRSIM values are shown in Figure 3.2 for the 72 nt transfer RNA

AL671879.2. Given query [resp. target] nucleotide frequencies pA,pC ,pG ,pU [p ′A,p
′
C ,p
′
G ,p
′
U ] that

sum to 1, the mean µseq and standard deviation σseq of RIBOSUM nucleotide similarities can be

computed by

µseq =
∑

x,y∈{A,C,G,U }
pxp

′
y · RIBOSUM(x ,y) (3.9)

σseq =
√ ∑

x,y∈{A,C,G,U }
pxp

′
y · RIBOSUM(x ,y)2 − µ2seq (3.10)

Setting s0(x ,y) = −d0(x ,y), where d0(x ,y) is de�ned in Eq (3.7), for given query [resp. target]

base pairing probabilities p( ,p•,p) [resp. p ′
(
,p ′•,p

′

)
] of dot-bracket characters, it follows that

the mean µstr and standard deviation σstr of structural similarities can be computed by

µstr =
∑

x,y∈{( ,•, ) }
pxp

′
y · s0(x ,y) (3.11)

σstr =
√ ∑

x,y∈{( ,•, ) }
pxp

′
y · s0(x ,y)2 − µ2str (3.12)

Now we compute a multiplicative factor αseq and an additive shift term αstr, both dependent

on frequencies pA,pC ,pG ,pU and p( ,p•,p) , such that the mean [resp. standard deviation] of

nucleotide similarity multiplied by αseq is equal to the mean [resp. standard deviation] of struc-

tural similarity after addition of shift term αstr:
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A C G U
A +2.22 -1.86 -1.46 -1.39
C -1.86 +1.16 -2.48 -1.05
G -1.46 -2.48 +1.03 -1.74
U -1.39 -1.05 -1.74 +1.65

Table 3.3: RIBOSUM85-60 similarity matrix for RNA nucleotides from [87].

αseq = σstr/σseq (3.13)

αstr = αseq · µseq − µstr (3.14)

Given the query RNA a = a1, . . . ,an and target RNA b = b1, . . . ,bm with incremental ensemble

expected mountain heightsma(1) · · ·ma(m) of a,mb(1) · · ·mb(m) of b, and user-de�ned weight

0 ≤ γ ≤ 1, our �nal similarity measure is de�ned by

simγ (ai ,bj ) = (1 − γ ) · αseq · RIBOSUM(ai ,bj ) (3.15)

+γ ·
�
αstr + STRSIM(ai ,bj )�

where αseq,αstr are computed by Eqs (3.13,3.14) depending on probabilities pA,pC ,pG ,pU [resp.

p ′A,p
′
C ,p
′
G ,p
′
U ] and p( ,p•,p) [resp. p ′

(
,p ′•,p

′

)
] of the query [resp. target]. All benchmarking

computations were carried out using γ = 1/2, although it is possible to use position-speci�c

weight γi, j de�ned as the average probability that i is paired in a and j is paired in b.

Our structural similarity measure is closely related to that of STRAL, which we discovered only

after completing a preliminary version of this work. Let plai =
∑

j<i p
a
j,i and prai =

∑
j>i p

a
i, j
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Figure 3.2: For 72 nt tRNA query sequence AL671879.2, nucleotide frequencies are ap-
proximatelypA = 0.167,pC = 0.278,pG = 0.333,pU = 0.222, and for 69 nt tRNA target
sequence D16498.1, nucleotide frequencies are approximately pA = 0.377, pC = 0.174,
pG = 0.174, pU = 0.275. From the base pairing probabilities computed by RNAfold
-p, we have query frequencies p( = 0.3035, p• = 0.3930, p) = 0.3035 and target
frequencies p( = 0.2835, p• = 0.433, p) = 0.2835, so by Eqs (3.9,3.10,3.11,3.12), we
have µseq = −0.9098, σseq = 1.4117 and µstr = −0.8301, σstr = 0.6968. By Eqs (3.13)
and (3.14), we determine that RIBOSUM scaling factor αseq = 0.4936 and αstr = 0.3810
(values shown only to 4-decimal places). Panels (A) resp. (B) show the distribution
of RIBOSUM resp. STRSIM values for the nucleotide and base pairing probabilities
determined from query and target, while panels (C) resp. (D) show the distribution of
αseq-scaled RIBOSUM values resp. αstr-shifted STRSIM values. It follows that distribu-

tions in panels (C) and (D) have the same (negative) mean and standard deviation.



RNA sequence/structure alignment 61

pA pC pG pU p( p) p• std( std) std•
0.00 0.00 0.00 1.00 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000
0.00 0.00 0.05 0.95 0.000533 0.000533 0.998933 0.000292 0.000292 0.000583
0.00 0.00 0.10 0.90 0.001396 0.001396 0.997209 0.000818 0.000818 0.001636
0.00 0.00 0.15 0.85 0.002704 0.002704 0.994592 0.001548 0.001548 0.003096
0.00 0.00 0.20 0.80 0.004785 0.004785 0.990431 0.002863 0.002863 0.005725
0.00 0.00 0.25 0.75 0.008039 0.008039 0.983922 0.004992 0.004992 0.009983
0.00 0.00 0.30 0.70 0.013641 0.013641 0.972717 0.008488 0.008488 0.016976
0.15 0.20 0.15 0.50 0.198666 0.198666 0.602668 0.031304 0.031304 0.062607
0.15 0.20 0.20 0.45 0.244486 0.244486 0.511027 0.028368 0.028368 0.056737
0.15 0.20 0.25 0.40 0.280658 0.280658 0.438684 0.023478 0.023478 0.046957
0.15 0.20 0.30 0.35 0.306193 0.306193 0.387613 0.018226 0.018226 0.036452
0.15 0.20 0.35 0.30 0.319277 0.319277 0.361446 0.014271 0.014271 0.028541
0.15 0.20 0.40 0.25 0.320472 0.320472 0.359056 0.014868 0.014868 0.029735
0.15 0.20 0.45 0.20 0.310048 0.310048 0.379905 0.018890 0.018890 0.037781
0.15 0.20 0.50 0.15 0.289160 0.289160 0.421679 0.023603 0.023603 0.047205
0.15 0.20 0.55 0.10 0.259201 0.259201 0.481598 0.027322 0.027322 0.054644
0.15 0.20 0.60 0.05 0.223416 0.223416 0.553168 0.027906 0.027906 0.055813
0.15 0.20 0.65 0.00 0.183844 0.183844 0.632311 0.026849 0.026849 0.053698
0.15 0.25 0.00 0.60 0.009383 0.009383 0.981234 0.008960 0.008960 0.017920

Table 3.4: Initial portion of a table that determines expected base pairing probabil-
ities p( ,p•,p) as a function of nucleotide probabilities pA,pC ,pG ,pU . The full table
(not shown) has 1770 rows. To determine average base pairing probabilities, given
nucleotide probabilities pA,pC ,pG ,pU , a total of N = 10000 RNA sequences of length
n = 200 were randomly generated to have the given expected nucleotide frequency.
To compute p( [ resp. std( ], a library call of function pf_fold() from Vienna RNA
Package [27] was made in order to determine Prob[i pairs to right] = ∑n

i=1
∑n

j=i+1 pi, j

for position in each sequence, and the average [ resp. standard deviation ] was taken
over all sequences and values i = 1, . . . ,n. In a similar fashion, p• and p) were deter-

mined.

be the probability that position i of sequence a is paired to a position on the left or right,

respectively. The similarity measure used in STRAL is de�ned by

simSTRAL
γ (ai ,bj ) = γ · �

√
plai · pl

b
j +

√
prai · pr

b
j

�

+

√
(1 − prai − plai ) · (1 − prai − plai ) · RIBOSUM(ai ,bj ) (3.16)
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From Eq (3.15) and Eq (3.3) our measure can be de�ned as

simγ (ai ,bj ) = γ ·
(
αstr − |(prai − plai ) − (prbj − prbj )|

)
+(1 − γ ) · αseq · RIBOSUM(ai ,bj ) (3.17)

Though RNAmountAlign was developed independently much later than STRAL, our software

o�ers functionalities unavailable in STRAL, which latter appears to be no longer maintained.2

For instance, RNAmountAlign supports local and semiglobal alignment, and reports p-values

and E-values; these features are not available in STRAL.

To illustrate the method, suppose that the query [resp. target] sequence is the 72 nt tRNA

AL671879.2 [resp. 69 nt tRNA D16498.1]. Then nucleotide query [resp. target] probabilities are

(approximately) pA = 0.167, pC = 0.278, pG = 0.333, pU = 0.222, [resp. p ′A = 0.377, p ′C = 0.174,

p ′G = 0.174, p ′U = 0.275]. From the base pairing probabilities returned by RNAfold -p [27],

we determine that p( = 0.3035, p• = 0.3930, p) = 0.3035 [resp. p ′
(
= 0.2835, p ′• = 0.433,

p ′
)
= 0.2835]. Using these probabilities in Eqs (3.9–3.12), we determine that µseq = −0.9098,

σseq = 1.4117, and µstr = −0.8301, σstr = 0.6968. By Eq (3.13) and Eq (3.14), we determine that

RIBOSUM scaling factor αseq = 0.4936 and αstr = 0.3810. It follows that the mean and standard

deviation of αseq-scaled RIBOSUM values are identical with that of αstr-shifted STRSIM values,

hence can be combined in Eq (3.15). Since sequence identity of the BRAliBase 2.1 alignment

of these tRNAs is only 28%, we set structural similarity weightγ = 1 in Eq (3.15), and obtained a

(perfect) global alignment computed by RNAmountAlign. Figure 3.2 depicts the distribution of
2Since we were unable to compile STRAL, our benchmarking results for STRAL use an adaptation of our code to

support Eq (3.16). There are nevertheless some di�erences in how progressive alignment is implemented in STRAL
that could a�ect run time.
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RIBOSUM85-60 [resp. STRSIM] values in this case, both before and after application of scaling

factor αseq [resp. shift αstr] – recall that αseq and αstr] depend on pA,pC ,pG ,pU ,p( ,p•,p) of tRNA

AL671879.2 and p ′A,p
′
C ,p
′
G ,p
′
U ,p

′

(
,p ′•,p

′

)
of tRNA D16498.1.

Statistics for pairwise alignment

Karlin-Altschul statistics for local pairwise alignment. For a �nite alphabet A and similarity

measure s , suppose that the expected similarity
∑

x,y∈A
pxpy · s(x ,y) is negative and that s(x ,y) is

positive for at least one choice of x ,y. In the case of BLAST, amino acid and nucleotide similarity

scores are integers, for which the Karlin-Altschul algorithm was developed [63]. In contrast,

RNAmountAlign similarity scores scores are not integers (or more generally values in a lat-

tice), because Eq (3.15) combines real-valued αseq-scaled RIBOSUM nucleotide similarities with

real-valued αstr-shifted STRSIM structural similarities, which depend on query [resp. target]

probabilities pA,pC ,pG ,pU ,p( ,p•,p) [resp. p ′A,p
′
C ,p
′
G ,p
′
U ,p

′

(
,p ′•,p

′

)
]. For that reason, we use the

following reformulation of a result by Karlin, Dembo and Kawabata [64], the similarity score

s(x ,y) for RNA nucleotides x ,y is de�ned by Eq (3.15).

Theorem 3.1 (Theorem 1 of [64]).

Given similarity measure s between nucleotides in alphabet A = {A,C,G,U }, let λ∗ be the unique

positive root of E[es(x,y)] = ∑
x,y∈A

pxp
′
y · e

λs(x,y), and let random variable Sk denote the score of a

length k gapless alignment. For large z,

P

(
M >

lnnm
λ∗
+ z

)
≤ exp(−K∗e−λ∗z )
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where M denotes high maximal segment scores for local alignment of random RNA sequences

a1, . . . ,an and b1, . . . ,bm , and where

K∗ =
exp

�
−2

∑∞
k=1

1
k · (E[eλ

∗Sk ;Sk<0] + P(Sk ≥ 0)�
λ∗E[Xeλ∗X ]

Fitting data to probability distributions. Data were �t to the normal distribution (ND) by the

method of moments (i.e. mean and standard deviation were taken from data analysis). Data

were �t to the extreme value distribution (EVD)

P(x < s) = 1 − exp(−Keλs ) (3.18)

by an in-house implementation of maximum likelihood to determine λ,K , as described in sup-

plementary information to [87]. Data were �t to the gamma distribution by using the function

fitdistr(x,’gamma’) from the package MASS in the R programming language, which deter-

mines rate and shape parameters for the density function

f (x ,α ,λ) = λα xα−1e−λx
Γ(α ) (3.19)

with where α is the shape parameter, the rate is 1/λ, where λ is known as the scale parameter.
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Multiple alignment

Suppose pA,pC ,pG ,pU are the nucleotide probabilities obtained after the concatenation of all

sequences. Let p( ,p•,p) be computed by individually folding each sequence and taking the

arithmetic average of probabilities of ( , • and ) over all sequences. The mean and standard

deviation of sequence and structure similarity are computed similar to Eqs (3.9-3.12).

µseq =
∑

x,y∈{A,C,G,U }
pxpy · RIBOSUM(x ,y) (3.20)

σseq =
√ ∑

x,y∈{A,C,G,U }
pxpy · RIBOSUM(x ,y)2 − µ2seq (3.21)

µstr =
∑

x,y∈{( ,•, ) }
pxpy · s0(x ,y) (3.22)

σstr =
√ ∑

x,y∈{( ,•, ) }
pxpy · s0(x ,y)2 − µ2str (3.23)

Sequence multiplicative scaling factor αseq and the structure additive shift factor αstr are com-

puted from these values using Eqs (3.13,3.14).

RNAmountAlign implements progressive multiple alignment using UPGMA to construct the

guide tree. In UPGMA, one �rst de�nes a similarity matrix S , where S[i,j] is equal to (maxi-

mum) pairwise sequence similarity of sequences i and j. A rooted tree is then constructed

by progressively creating a parent node of the two closest siblings. Parent nodes are pro�les
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(PSSMs) that represent alignments of two or more sequences, hence can be treated as pseudo-

sequences in a straightforward adaptation of pairwise alignment to the alignment of pro�les.

Let’s consider an alignment of N sequencesA =

*.........
,

a∗11 · · ·a
∗
1M

· · ·

a∗N 1 · · ·a
∗
NM

+/////////
-

composed of M columns. Let

Ai = {a∗1i ,a∗2i , . . . ,a∗Ni} denote column i of the alignment (for 1 ≤ i ≤ M). Suppose p(i,x), for

x ∈ {A,C,G,U ,−}, indicates the probability of occurrence of a nucleotide or gap at column i of

alignment A. Then sequence similarity SEQSIM between two columns is de�ned by

SEQSIM(Ai ,Aj ) =
∑

x ∈{A,C,G,U ,−}

∑
y∈{A,C,G,U ,−}

p(i,x) · p(j,y) · R(x ,y) (3.24)

where

R(x ,y) =



0 if x = − or y = −

RIBOSUM(x ,y) otherwise
(3.25)

The structural measure for a pro�le is computed from the incremental ensemble heights av-

eraged over each column. Let mA(i) denote the arithmetic average of incremental ensemble

mountain height at column Ai

mA(i) =
∑

1≤j≤N ma∗j (i)
N

(3.26)
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wherema∗j (i) is the incremental ensemble mountain height at position i of sequence a∗j obtained

from Eq (3.3). Here, let ma∗j (i) = 0 if a∗ji is a gap. Structural similarity between two columns is

de�ned by

STRSIM(Ai ,Aj ) = −|mA(i) −mA(j)| (3.27)

Finally, the combined sequence/structure similarity is computed from

simγ (Ai ,Aj ) = (1 − γ ) · αseq · SEQSIM(Ai ,Aj ) (3.28)

+γ ·
�
αstr + STRSIM(Ai ,Aj )�

Benchmarking method

Accuracy measures

Sensitivity, positive predictive value, and F1-measure for pairwise alignments were computed

as follows. Let A =
*....
,

a∗1 · · ·a
∗
n

b∗1 · · ·b
∗
n

+////
-

denotes an alignment, where ai ,bi ∈ {A,C,G,U ,—}, and

the aligned sequences include may contain gap symbols — provided that it is not the case

that both a∗i and b∗i are gaps. The number TP of true positives [resp. FP of false positives]

is the number of alignment pairs (a∗i ,b∗i ) in the predicted alignment that belong to [resp. do

not belong to] the reference alignment. The sensitivity (Sen) [resp. positive predictive value
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(PPV )] of a predicted alignment is TP divided by reference alignment length [resp. TP divided

by predicted alignment length]. The F1-score is the harmonic mean of sensitivity and PPV, so

F1 = 2
1/Sen+1/PPV . For the computation of Sen ,PPV , and F1, pairs of the form (X ,—) and (—,X )

are also counted. In the case of local alignment, since the size of the reference alignment is

unknown, only the predicted alignment length and PPV are reported. To compute the accuracy

of multiple alignment, we used sum-of-pair-scores (SPS) [62], de�ned as follows. Suppose that

A denotes a multiple alignment of the form A =

*.........
,

a∗11 · · ·a
∗
1M

· · ·

a∗N 1 · · ·a
∗
NM

+/////////
-

. For 1 ≤ i,j ≤ M , 1 ≤ k ≤ N

de�ne pi jk = 1 if a∗ik is aligned with a∗jk in both the reference and predicted alignments, and

pi jk = 0 otherwise. Sum-of-pairs score SPS is then the sum, taken over all i,j,k , of the pi jk .

Though SPS can be considered as the average sensitivity, taken over all sequence pairs in the

alignment, this is not technically the case, since our de�nition of sensitivity also counts pairs

of the form (X ,—) and (—,X ) from the reference alignment.

To measure the conservation of secondary structures in alignments, structural conservation

index (SCI) was computed using RNAalifold [42]. RNAalifold computes SCI as the ratio of

the free energy of the alignment, computed by RNAalifold, with the average minimum free

energy of individual structures in the alignment. SCI values close to 1 [resp. 0] indicate high

[resp. low] structural conservation. All computations made with Vienna RNA Package used

version 2.1.7 [27] using default Turner 2004 energy parameters [23]).
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Dataset for global and local alignment comparison

For pairwise global alignment benchmarking in Table 3.5 and Figures 3.3 and 3.4, all 8976 pair-

wise alignments in k2 from BRAliBase 2.1 database [84] were used. For multiple global align-

ment benchmarking in Fig 3.7, k5 BRAliBase 3 was used [88]. This dataset includes 583

reference alignments, each composed of 5 sequences. For pairwise local alignment benchmark-

ing, 75 pairwise alignments having sequence identity ≤ 70% were randomly selected from each

of 20 well-known families from the Rfam 12.0 database [89], many of which were considered

in a previous study [90], yielding a total of 1500 alignments. Following [91], these alignments

were trimmed on the left and right, so that both �rst and last aligned pairs of the alignment do

not contain a gap symbol. For sequences a = a1, . . . ,an [resp. b = b1, . . . ,bm] from each align-

ment, random sequences a′ [resp. b′] were generated with the same nucleotide frequencies,

then a random position was chosen in a′ [resp. b′] in which to insert a [resp. b], thus result-

ing in a pair of sequences of lengths 4n and 4m. Finally, since sequence identity was at most

70%, the RIBOSUM70-25 similarity matrix was used in RNAmountAlign. Preparation of the

benchmarking dataset for local alignment was analogous to the method used in multiple local

alignment of [91]. We used LocARNA (version 1.8.7), FOLDALIGN (version 2.5), LARA (version

1.3.2) DYNALIGN (from version 5.7 of RNAstructure), and STRAL (in-house implementation

due to unavailability) for benchmarking.

Dataset for correlation of p-values for di�erent distribution �ts

A pool of 2220 sequences from the Rfam 12.0 database [89] was created as follows. One se-

quence was selected from each Rfam family having average sequence length at most 200 nt,
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with the property that the base pair distance between its minimum free energy (MFE) structure

and the Rfam consensus structure was a minimum. Subsequently, for each of 500 randomly

selected query sequences from the pool of 2220 sequences, 1000 random target sequences of

length 400 nt were generated to have the same expected nucleotide frequency as that of the

query. For each query and random target, �ve semiglobal (query search) alignments were

created using gap initiation costs of дi ∈ {−1, − 2, − 3, − 4, − 5} with gap extension cost дe

equal to one-third the gap initiation cost. For each alignment score x for query and random

target, the p-value was computed as 1 − CDF (x) for ND, EVD and GD, where CDF (x) is the

cumulative density function evaluated at x . Additionally, a heuristic p-value was determined

by calculating the proportion of alignment scores for given query that exceed x .

Benchmarking results

We benchmarked RNAmountAlign’s performance for pairwise and multiple alignments on

BraliBase k2 and k5 datasets, respectively.

Pairwise alignment

Figures 3.3 depicts running averages of pairwise global alignment F1-measure, sensitivity, pos-

itive predictive value (PPV) and structural conservation index (SCI) for the software described

in this chapter, as well as for LocARNA, FOLDALIGN, LARA, DYNALIGN, and STRAL. For pairwise

benchmarking, reference alignments of size 2, a.k.a. K2, were taken from the BRAliBase 2.1

database [84]. BRAliBase 2.1 K2 data are based on seed alignments of the Rfam 7.0 database,

and consist of 8976 alignments of RNA sequences from 36 Rfam families.
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(a) F1-measure (b) Sensitivity

(c) PPV (d) SCI

Figure 3.3: F1-measure (A), sensitivity (B), PPV (C) and structural conservation in-
dex (SCI) (D) for pairwise global alignments using RNAmountAlign, LocARNA, LARA,
FOLDALIGN, DYNALIGN, STRAL and sequence-only(γ = 0). F1-measure,sensitivity,
PPV and SCI are shown as a function of alignment sequence identity for pairwise

alignments in the BRAliBase 2.1 database used for benchmarking.

Running averages of sensitivity, positive predictive value, and F1-measure, averaging over win-

dows of size 11 nt (interval [k − 5,k + 5]), were computed as a function of sequence iden-

tity, where it should be noted that the number of pairwise alignments for di�erent values

of sequence identity can vary for the BRAliBase 2.1 data (e.g. there are only 35 pairwise

alignments having sequence identity < 20%). Default parameters were used for all other soft-

ware. For our software RNAmountAlign, gap initiation cost was -3, gap extension -1, and

sequence/structure weighting parameter γ was 0.5 (value obtained by optimizing on a small

set of 300 random alignments from Rfam 12.0, not considered in training or testing set). The
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Figure 3.4: Run time of pairwise global alignment for RNAmountAlign, LocARNA,
LARA, FOLDALIGN, and DYNALIGN. (Left) Log run time is shown as a function of seed
length for pairwise alignments in the BRAliBase 2.1 database used for benchmark-
ing. Window size of 51 is used for the computation of moving average. (Right) Actual
run time for RNAmountAlign and LARA on the same data. Unlike the left panel the
actual run time is shown, rather than log run time, without any moving average taken.

sequence-only alignment is computed from RNAmountAlign with the same gap penalties, but

for γ = 0. While its accuracy is high, RNAmountAlign is faster by an order of magnitude

than LocARNA, LARA, FOLDALIGN, and DYNALIGN – indeed, algorithmic time complexity of our

method isO(n3) compared withO(n4) for these methods. Since STRAL could not be compiled on

any of our systems, we implemented its algorithm by modifying RNAmountAlign and obtained

results for STRAL’s default parameter settings. Therefore, the run time of STRAL is identical

to RNAmountAlign but we achieve slightly higher F1-measure, sensitivity and PPV. Moreover,

RNAmountAlign supports semiglobal and local alignments as well as reporting p-values. The

right panel of Fig 3.4 depicts actual run times of the fastest software, RNAmountAlign, with

the next fastest software, LARA. Unlike the graph in the left panel, actual run times are shown,

graphed as a function of sequence length, rather than logarithms of moving averages.

In addition, Table 3.5 displays average pairwise global alignment F1 scores for RNAmountAlign,

LocARNA, LARA, FOLDALIGN, DYNALIGN, and STRALwhen benchmarked on 36 families from the
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BRaliBase K2 database comprising altogether 8976 RNA sequences with average length of

249.33. Averaging over all sequences, the F1 scores for the programs just mentioned were

respectively 0.8370, 0.7808, 0.8406, 0.7977, 0.6822, 0.8247; i.e. F1 score 0.8406 of LARA slightly

exceeded the F1 score 0.8370 of RNAmountAlign and 0.8247 of STRAL, while other methods

trailed by several percentage points. Tables 3.6 and 3.7 display values for global alignment

sensitivity and positive predictive value, benchmarked on the same data for the same programs

– these results are similar to the F1-scores in Table 3.5.

Although there appears to be no universally accepted criterion for quality of local alignments,

Table 3.8 shows pairwise local alignment comparisons for the above-mentioned methods sup-

porting local alignment: RNAmountAlign, FOLDALIGN, and LocARNA. We had intended to in-

clude SCARNA_LM [91] in the benchmarking of multiple local alignment software; however,

SCARNA_LM no longer appears to be maintained, since the web server is no longer functional

and no response came from our request for the source code. Since the reference alignments

for the local benchmarking dataset are not known, and sensitivity depends upon the length

of the reference alignment, we only report local alignment length and positive predictive

value. Abbreviating RNAmountAlign by MA, FOLDALIGN by FA, and LocARNA by LOC, Ta-

ble 3.8 shows average run time in seconds of MA (2.30 ± 2.12), FA (625.53 ± 2554.61), LOC

(5317.96 ± 8585.19), average alignment length of reference alignments (118.67 ± 47.86), MA

(50.35 ± 42.33), FA (114.86 ± 125.33), LOC (556.82 ± 227.00), and average PPV scores MA

(0.53 ± 0.42), FA (0.64 ± 0.36), LOC (0.03 ± 0.04).

Taken together, these results suggest that RNAmountAlign has comparable accuracy, but much

faster run time, hence making it a potentially useful tool for genome scanning applications.

Here it should be stressed that all benchmarking results used equally weighted contributions
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Type NumAln SeqId MA(F) LocARNA(F) LARA(F) FA(F) DA(F) STRAL(F)
5.8S rRNA 76 0.72 ± 0.13 0.90 ± 0.09 0.82 ± 0.07 0.87 ± 0.15 0.89 ± 0.11 0.66 ± 0.22 0.88 ± 0.12
5S rRNA 1162 0.60 ± 0.14 0.84 ± 0.16 0.87 ± 0.13 0.85 ± 0.16 0.86 ± 0.14 0.69 ± 0.17 0.82 ± 0.20
Cobalamin 188 0.43 ± 0.10 0.56 ± 0.16 0.38 ± 0.17 0.49 ± 0.20 0.43 ± 0.24 0.36 ± 0.19 0.54 ± 0.17
Entero 5 CRE 48 0.88 ± 0.06 0.98 ± 0.04 0.99 ± 0.04 0.99 ± 0.05 0.99 ± 0.02 0.87 ± 0.13 0.97 ± 0.06
Entero CRE 65 0.80 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.96 ± 0.07 0.99 ± 0.04 0.76 ± 0.17 1.00 ± 0.03
Entero OriR 49 0.84 ± 0.06 0.95 ± 0.07 0.92 ± 0.09 0.94 ± 0.08 0.94 ± 0.07 0.84 ± 0.15 0.95 ± 0.07
gcvT 167 0.44 ± 0.13 0.61 ± 0.19 0.61 ± 0.24 0.57 ± 0.25 0.40 ± 0.33 0.44 ± 0.19 0.62 ± 0.20
Hammerhead 1 53 0.71 ± 0.17 0.89 ± 0.13 0.90 ± 0.11 0.87 ± 0.16 0.83 ± 0.25 0.52 ± 0.27 0.88 ± 0.16
Hammerhead 3 126 0.66 ± 0.21 0.86 ± 0.20 0.88 ± 0.21 0.88 ± 0.20 0.80 ± 0.31 0.71 ± 0.31 0.90 ± 0.16
HCV SLIV 98 0.85 ± 0.05 0.99 ± 0.03 0.98 ± 0.04 0.98 ± 0.03 0.99 ± 0.03 0.81 ± 0.34 0.99 ± 0.03
HCV SLVII 51 0.83 ± 0.09 0.97 ± 0.06 0.96 ± 0.06 0.93 ± 0.10 0.95 ± 0.07 0.71 ± 0.22 0.95 ± 0.07
HepC CRE 45 0.86 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.77 ± 0.29 1.00 ± 0.00
Histone3 84 0.78 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
HIV FE 733 0.87 ± 0.04 1.00 ± 0.02 1.00 ± 0.02 0.98 ± 0.05 0.99 ± 0.05 0.64 ± 0.29 1.00 ± 0.02
HIV GSL3 786 0.86 ± 0.04 0.99 ± 0.02 0.99 ± 0.02 0.98 ± 0.05 0.99 ± 0.02 0.80 ± 0.19 0.99 ± 0.02
HIV PBS 188 0.92 ± 0.02 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.02 0.99 ± 0.03 0.91 ± 0.11 1.00 ± 0.01
Intron gpII 181 0.46 ± 0.13 0.64 ± 0.17 0.64 ± 0.17 0.63 ± 0.17 0.50 ± 0.28 0.49 ± 0.18 0.65 ± 0.15
IRES HCV 764 0.65 ± 0.11 0.88 ± 0.16 0.45 ± 0.19 0.86 ± 0.17 0.68 ± 0.38 0.85 ± 0.08 0.88 ± 0.08
IRES Picorna 181 0.84 ± 0.07 0.97 ± 0.03 0.61 ± 0.04 0.96 ± 0.04 0.95 ± 0.04 0.85 ± 0.11 0.96 ± 0.04
K chan RES 124 0.74 ± 0.10 0.99 ± 0.02 0.98 ± 0.05 0.89 ± 0.19 0.95 ± 0.08 0.58 ± 0.26 0.95 ± 0.11
Lysine 80 0.50 ± 0.13 0.72 ± 0.13 0.54 ± 0.15 0.71 ± 0.18 0.66 ± 0.16 0.50 ± 0.16 0.72 ± 0.15
Retroviral psi 89 0.88 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.92 ± 0.04 0.74 ± 0.12 0.93 ± 0.04
S box 91 0.60 ± 0.10 0.75 ± 0.13 0.76 ± 0.16 0.79 ± 0.14 0.67 ± 0.24 0.54 ± 0.16 0.77 ± 0.12
SECIS 114 0.44 ± 0.16 0.59 ± 0.21 0.62 ± 0.21 0.57 ± 0.25 0.54 ± 0.25 0.39 ± 0.24 0.61 ± 0.20
sno 14q I II 44 0.75 ± 0.10 0.92 ± 0.10 0.89 ± 0.16 0.85 ± 0.20 0.89 ± 0.19 0.58 ± 0.27 0.91 ± 0.13
SRP bact 114 0.48 ± 0.16 0.65 ± 0.21 0.66 ± 0.21 0.63 ± 0.25 0.65 ± 0.21 0.51 ± 0.22 0.61 ± 0.25
SRP euk arch 122 0.51 ± 0.20 0.62 ± 0.29 0.35 ± 0.17 0.64 ± 0.28 0.64 ± 0.26 0.50 ± 0.26 0.61 ± 0.29
T-box 18 0.68 ± 0.15 0.77 ± 0.17 0.49 ± 0.17 0.68 ± 0.25 0.70 ± 0.17 0.59 ± 0.21 0.74 ± 0.15
TAR 286 0.87 ± 0.04 0.99 ± 0.03 0.99 ± 0.02 0.99 ± 0.03 0.98 ± 0.04 0.83 ± 0.19 0.99 ± 0.04
THI 321 0.45 ± 0.10 0.68 ± 0.16 0.66 ± 0.20 0.68 ± 0.18 0.50 ± 0.29 0.48 ± 0.18 0.65 ± 0.20
tRNA 2039 0.43 ± 0.12 0.75 ± 0.21 0.85 ± 0.16 0.82 ± 0.19 0.76 ± 0.27 0.66 ± 0.23 0.72 ± 0.22
U1 82 0.63 ± 0.17 0.79 ± 0.17 0.70 ± 0.13 0.79 ± 0.19 0.80 ± 0.14 0.67 ± 0.20 0.77 ± 0.17
U2 112 0.64 ± 0.16 0.75 ± 0.17 0.63 ± 0.13 0.76 ± 0.19 0.73 ± 0.22 0.59 ± 0.19 0.75 ± 0.18
U6 30 0.83 ± 0.06 0.93 ± 0.05 0.89 ± 0.09 0.90 ± 0.08 0.88 ± 0.10 0.72 ± 0.14 0.93 ± 0.06
UnaL2 138 0.77 ± 0.08 0.93 ± 0.08 0.92 ± 0.09 0.89 ± 0.15 0.91 ± 0.10 0.65 ± 0.29 0.94 ± 0.08
yybP-ykoY 127 0.39 ± 0.14 0.58 ± 0.20 0.54 ± 0.23 0.57 ± 0.25 0.40 ± 0.33 0.46 ± 0.22 0.56 ± 0.20
Pooled Average 249.33 0.63 0.84 0.81 0.84 0.8 0.68 0.82

Table 3.5: Average F1 scores (± one standard deviation) for pairwise global alignment

of RNAmountAlign and four widely used RNA sequence/structure alignment algo-
rithms on the benchmarking set of 8976 pairwise alignments from the BRaliBase
K2 database [84]. For each indicated Rfam family, the the number of alignments (Nu-
mAln), sequence identity (SeqId), and F1-scores for RNAmountAlign, LocARNA, LARA,
FOLDALIGN, and DYNALIGN are listed, along with pooled averages over all 8976 pair-
wise alignments. Parameters used in Eq (3.15) for RNAmountAlign were similarity
matrix RIBOSUM85-60, structural similarity weight γ = 1/2, gap initiation дi = −3,

gap extension дe = −1.
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Type NumAln SeqId MA(sen) LOC(sen) LARA(sen) FA(sen) DA(sen) STRAL(sen)
5.8 S rRNA 76 0.90 ± 0.09 0.95 ± 0.07 0.87 ± 0.14 0.89 ± 0.11 0.65 ± 0.22 0.66 ± 0.22 0.71 ± 0.15
5S rRNA 1162 0.60 ± 0.14 0.83 ± 0.17 0.87 ± 0.13 0.84 ± 0.16 0.85 ± 0.14 0.69 ± 0.17 1.00 ± 0.02
Cobalamin 188 0.43 ± 0.10 0.55 ± 0.16 0.30 ± 0.13 0.48 ± 0.20 0.43 ± 0.24 0.37 ± 0.19 1.00 ± 0.02
Entero 5 CRE 48 0.88 ± 0.06 0.98 ± 0.05 0.99 ± 0.04 0.99 ± 0.05 0.99 ± 0.02 0.87 ± 0.12 0.88 ± 0.16
Entero CRE 65 0.80 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.97 ± 0.06 0.99 ± 0.03 0.77 ± 0.16 0.90 ± 0.16
Entero OriR 49 0.84 ± 0.06 0.94 ± 0.07 0.91 ± 0.09 0.94 ± 0.08 0.94 ± 0.07 0.84 ± 0.15 0.93 ± 0.06
gcvT 167 0.44 ± 0.13 0.59 ± 0.19 0.60 ± 0.24 0.57 ± 0.25 0.40 ± 0.33 0.44 ± 0.19 0.77 ± 0.17
Hammerhead 1 53 0.71 ± 0.17 0.89 ± 0.13 0.90 ± 0.12 0.87 ± 0.16 0.83 ± 0.25 0.53 ± 0.27 0.92 ± 0.03
Hammerhead 3 126 0.66 ± 0.21 0.86 ± 0.21 0.88 ± 0.21 0.88 ± 0.21 0.79 ± 0.31 0.71 ± 0.31 1.00 ± 0.01
HCV SLIV 98 0.85 ± 0.05 0.99 ± 0.03 0.98 ± 0.04 0.98 ± 0.03 0.99 ± 0.03 0.81 ± 0.34 0.94 ± 0.08
HCV SLVII 51 0.83 ± 0.09 0.97 ± 0.06 0.96 ± 0.06 0.93 ± 0.10 0.95 ± 0.07 0.72 ± 0.22 0.95 ± 0.07
HepC CRE 45 0.86 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.77 ± 0.29 0.82 ± 0.20
Histone3 84 0.78 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.07
HIV FE 733 0.87 ± 0.04 1.00 ± 0.02 1.00 ± 0.02 0.98 ± 0.05 0.99 ± 0.05 0.65 ± 0.29 0.99 ± 0.03
HIV GSL3 786 0.86 ± 0.04 0.99 ± 0.02 0.99 ± 0.02 0.98 ± 0.05 0.99 ± 0.03 0.81 ± 0.19 0.88 ± 0.11
HIV PBS 188 0.92 ± 0.02 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.02 0.99 ± 0.03 0.92 ± 0.10 0.61 ± 0.29
Intron gpII 181 0.46 ± 0.13 0.64 ± 0.17 0.63 ± 0.17 0.62 ± 0.18 0.50 ± 0.28 0.49 ± 0.18 0.61 ± 0.25
IRES HCV 764 0.65 ± 0.11 0.87 ± 0.16 0.32 ± 0.14 0.85 ± 0.17 0.67 ± 0.38 0.85 ± 0.08 0.97 ± 0.06
IRES Picorna 181 0.84 ± 0.07 0.97 ± 0.03 0.45 ± 0.03 0.96 ± 0.04 0.95 ± 0.04 0.85 ± 0.10 0.74 ± 0.18
K chan RES 124 0.74 ± 0.10 0.99 ± 0.02 0.98 ± 0.05 0.90 ± 0.19 0.95 ± 0.08 0.59 ± 0.26 0.96 ± 0.04
Lysine 80 0.50 ± 0.13 0.72 ± 0.13 0.44 ± 0.13 0.71 ± 0.18 0.65 ± 0.16 0.50 ± 0.16 0.54 ± 0.17
Retroviral psi 89 0.88 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.92 ± 0.04 0.74 ± 0.12 0.99 ± 0.03
S box 91 0.60 ± 0.10 0.75 ± 0.13 0.75 ± 0.17 0.79 ± 0.14 0.67 ± 0.24 0.54 ± 0.16 1.00 ± 0.00
SECIS 114 0.44 ± 0.16 0.58 ± 0.21 0.62 ± 0.21 0.57 ± 0.25 0.54 ± 0.25 0.39 ± 0.24 0.61 ± 0.20
sno 14q I II 44 0.75 ± 0.10 0.92 ± 0.10 0.89 ± 0.16 0.85 ± 0.20 0.89 ± 0.19 0.59 ± 0.27 0.99 ± 0.02
SRP bact 114 0.48 ± 0.16 0.65 ± 0.21 0.65 ± 0.21 0.63 ± 0.25 0.64 ± 0.21 0.52 ± 0.22 0.61 ± 0.20
SRP euk arch 122 0.51 ± 0.20 0.62 ± 0.29 0.24 ± 0.12 0.64 ± 0.29 0.64 ± 0.26 0.51 ± 0.26 0.65 ± 0.20
T-box 18 0.68 ± 0.15 0.77 ± 0.17 0.36 ± 0.13 0.68 ± 0.25 0.70 ± 0.17 0.59 ± 0.21 1.00 ± 0.00
TAR 286 0.87 ± 0.04 0.99 ± 0.03 0.99 ± 0.02 0.99 ± 0.03 0.98 ± 0.04 0.84 ± 0.19 0.91 ± 0.13
THI 321 0.45 ± 0.10 0.67 ± 0.16 0.65 ± 0.21 0.68 ± 0.18 0.50 ± 0.29 0.48 ± 0.18 0.65 ± 0.15
tRNA 2039 0.43 ± 0.12 0.75 ± 0.21 0.84 ± 0.16 0.81 ± 0.19 0.76 ± 0.27 0.66 ± 0.23 0.77 ± 0.12
U1 82 0.63 ± 0.17 0.78 ± 0.17 0.61 ± 0.11 0.78 ± 0.19 0.80 ± 0.14 0.67 ± 0.20 0.96 ± 0.10
U2 112 0.64 ± 0.16 0.75 ± 0.17 0.51 ± 0.11 0.76 ± 0.19 0.73 ± 0.22 0.60 ± 0.19 0.55 ± 0.20
U6 30 0.83 ± 0.06 0.93 ± 0.05 0.89 ± 0.09 0.90 ± 0.08 0.88 ± 0.10 0.72 ± 0.14 0.74 ± 0.15
UnaL2 138 0.77 ± 0.08 0.93 ± 0.08 0.92 ± 0.09 0.88 ± 0.15 0.91 ± 0.09 0.65 ± 0.29 0.87 ± 0.08
yybP-ykoY 127 0.39 ± 0.14 0.57 ± 0.21 0.51 ± 0.23 0.56 ± 0.26 0.39 ± 0.33 0.46 ± 0.22 0.73 ± 0.22
Pooled Average 249.33 0.63 0.83 0.78 0.84 0.80 0.68 0.82

Table 3.6: Average sensitivity scores (± one standard deviation) for pairwise global
alignment of RNAmountAlign and four widely used RNA sequence/structure align-
ment algorithms on the benchmarking set of 8976 pairwise alignments from the
BRaliBase K2 database [84]. For each indicated Rfam family, the the number of
alignments (NumAln), sequence identity (SeqId), and sensitivity scores for RNAmoun-
tAlign, LocARNA, LARA, FOLDALIGN, and DYNALIGN are listed, along with pooled
averages over all 8976 pairwise alignments. Parameters used in Eq (3.15) for RNAmoun-
tAlign were similarity matrix RIBOSUM85-60, structural similarity weight γ = 1/2,

gap initiation дi = −3, gap extension дe = −1.
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Type NumAln SeqId MA(ppv) LOC(ppv) LARA(ppv) FA(ppv) DA(ppv) STRAL(ppv)
5.8 S rRNA 76 0.72 ± 0.13 0.90 ± 0.09 0.82 ± 0.07 0.87 ± 0.15 0.89 ± 0.11 0.66 ± 0.22 0.88 ± 0.12
5S rRNA 1162 0.60 ± 0.14 0.84 ± 0.16 0.88 ± 0.12 0.85 ± 0.16 0.86 ± 0.14 0.68 ± 0.17 0.82 ± 0.20
Cobalamin 188 0.43 ± 0.10 0.56 ± 0.16 0.54 ± 0.23 0.49 ± 0.20 0.43 ± 0.24 0.36 ± 0.19 0.54 ± 0.17
Entero 5 CRE 48 0.88 ± 0.06 0.98 ± 0.04 0.99 ± 0.04 0.99 ± 0.05 0.99 ± 0.02 0.86 ± 0.13 0.97 ± 0.06
Entero CRE 65 0.80 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.96 ± 0.08 0.99 ± 0.04 0.74 ± 0.18 0.99 ± 0.03
Entero OriR 49 0.84 ± 0.06 0.95 ± 0.07 0.94 ± 0.08 0.94 ± 0.08 0.94 ± 0.07 0.84 ± 0.15 0.96 ± 0.08
gcvT 167 0.44 ± 0.13 0.62 ± 0.18 0.63 ± 0.23 0.58 ± 0.25 0.41 ± 0.34 0.44 ± 0.19 0.62 ± 0.20
Hammerhead 1 53 0.71 ± 0.17 0.90 ± 0.13 0.90 ± 0.11 0.87 ± 0.16 0.83 ± 0.25 0.51 ± 0.27 0.88 ± 0.16
Hammerhead 3 126 0.66 ± 0.21 0.87 ± 0.20 0.88 ± 0.21 0.89 ± 0.20 0.80 ± 0.30 0.71 ± 0.31 0.91 ± 0.15
HCV SLIV 98 0.85 ± 0.05 0.99 ± 0.03 0.98 ± 0.04 0.98 ± 0.03 0.99 ± 0.03 0.80 ± 0.34 0.99 ± 0.03
HCV SLVII 51 0.83 ± 0.09 0.97 ± 0.06 0.96 ± 0.06 0.93 ± 0.10 0.95 ± 0.07 0.69 ± 0.22 0.95 ± 0.07
HepC CRE 45 0.86 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.29 1.00 ± 0.00
Histone3 84 0.78 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
HIV FE 733 0.87 ± 0.04 1.00 ± 0.02 1.00 ± 0.02 0.98 ± 0.05 0.98 ± 0.05 0.63 ± 0.30 1.00 ± 0.02
HIV GSL3 786 0.86 ± 0.04 0.99 ± 0.02 0.99 ± 0.02 0.98 ± 0.06 0.99 ± 0.02 0.80 ± 0.20 0.99 ± 0.02
HIV PBS 188 0.92 ± 0.02 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.02 0.99 ± 0.03 0.90 ± 0.11 1.00 ± 0.01
Intron gpII 181 0.46 ± 0.13 0.65 ± 0.16 0.66 ± 0.17 0.63 ± 0.17 0.50 ± 0.28 0.49 ± 0.18 0.65 ± 0.15
IRES HCV 764 0.65 ± 0.11 0.89 ± 0.16 0.77 ± 0.31 0.86 ± 0.17 0.69 ± 0.38 0.85 ± 0.08 0.89 ± 0.08
IRES Picorna 181 0.84 ± 0.07 0.97 ± 0.03 0.95 ± 0.06 0.96 ± 0.04 0.95 ± 0.04 0.84 ± 0.11 0.96 ± 0.04
K chan RES 124 0.74 ± 0.10 0.99 ± 0.02 0.98 ± 0.05 0.89 ± 0.19 0.95 ± 0.08 0.57 ± 0.26 0.95 ± 0.12
Lysine 80 0.50 ± 0.13 0.73 ± 0.13 0.70 ± 0.19 0.72 ± 0.18 0.66 ± 0.16 0.49 ± 0.16 0.72 ± 0.15
Retroviral psi 89 0.88 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.93 ± 0.04 0.73 ± 0.13 0.93 ± 0.04
S box 91 0.60 ± 0.10 0.75 ± 0.12 0.77 ± 0.16 0.79 ± 0.14 0.67 ± 0.24 0.53 ± 0.16 0.77 ± 0.12
SECIS 114 0.44 ± 0.16 0.59 ± 0.21 0.63 ± 0.21 0.58 ± 0.25 0.54 ± 0.25 0.38 ± 0.24 0.62 ± 0.20
sno 14q I II 44 0.75 ± 0.10 0.93 ± 0.10 0.89 ± 0.16 0.85 ± 0.20 0.89 ± 0.19 0.57 ± 0.27 0.91 ± 0.13
SRP bact 114 0.48 ± 0.16 0.66 ± 0.21 0.66 ± 0.20 0.64 ± 0.24 0.65 ± 0.21 0.51 ± 0.21 0.62 ± 0.25
SRP euk arch 122 0.51 ± 0.20 0.63 ± 0.29 0.63 ± 0.29 0.65 ± 0.28 0.65 ± 0.25 0.50 ± 0.25 0.62 ± 0.28
T-box 18 0.68 ± 0.15 0.78 ± 0.17 0.75 ± 0.25 0.67 ± 0.24 0.70 ± 0.17 0.59 ± 0.20 0.74 ± 0.15
TAR 286 0.87 ± 0.04 0.99 ± 0.03 0.99 ± 0.02 0.99 ± 0.03 0.98 ± 0.04 0.83 ± 0.20 0.99 ± 0.04
THI 321 0.45 ± 0.10 0.69 ± 0.15 0.68 ± 0.19 0.69 ± 0.17 0.51 ± 0.29 0.48 ± 0.18 0.66 ± 0.20
tRNA 2039 0.43 ± 0.12 0.75 ± 0.21 0.85 ± 0.16 0.82 ± 0.19 0.76 ± 0.27 0.65 ± 0.23 0.72 ± 0.22
U1 82 0.63 ± 0.17 0.80 ± 0.17 0.83 ± 0.14 0.79 ± 0.18 0.81 ± 0.14 0.67 ± 0.20 0.77 ± 0.17
U2 112 0.64 ± 0.16 0.76 ± 0.17 0.83 ± 0.17 0.77 ± 0.19 0.73 ± 0.22 0.59 ± 0.19 0.75 ± 0.18
U6 30 0.83 ± 0.06 0.93 ± 0.05 0.89 ± 0.09 0.90 ± 0.08 0.88 ± 0.10 0.71 ± 0.14 0.93 ± 0.06
UnaL2 138 0.77 ± 0.08 0.93 ± 0.08 0.92 ± 0.09 0.89 ± 0.15 0.91 ± 0.10 0.64 ± 0.29 0.94 ± 0.08
yybP-ykoY 127 0.39 ± 0.14 0.58 ± 0.20 0.59 ± 0.24 0.58 ± 0.25 0.40 ± 0.33 0.46 ± 0.21 0.56 ± 0.20
Pooled Average 249.33 0.63 0.84 0.86 0.85 0.8 0.67 0.83

Table 3.7: Average positive predictive value (PPV) scores (± one standard devia-
tion) for pairwise global alignment of RNAmountAlign and four widely used RNA
sequence/structure alignment algorithms on the benchmarking set of 8976 pairwise
alignments from the BRaliBase K2 database [84]. For each indicated Rfam fam-
ily, the the number of alignments (NumAln), sequence identity (SeqId), and PPV-
scores for RNAmountAlign, LocARNA, LARA, FOLDALIGN, and DYNALIGN are listed,
along with Pooled averages over all 8976 pairwise alignments. Parameters used in
Eq (3.15) for RNAmountAlign were similarity matrix RIBOSUM85-60, structural simi-

larity weight γ = 1/2, gap initiation дi = −3, gap extension дe = −1.
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TYPE SEED(LENGTH) MA(LENGTH) MA(PPV) MA(TIME) FA(LENGTH) FA(PPV) FA(TIME) LOC(LENGTH) LOC(PPV) LOC(TIME)
5 8S rRNA 158.48 ± 7.40 71.20 ± 41.55 0.80 ± 0.32 3.70 ± 0.43 168.33 ± 89.23 0.75 ± 0.25 509.56 ± 411.83 767.67 ± 43.35 0.01 ± 0.03 9571.39 ± 6152.56
5S rRNA 120.87 ± 2.09 34.79 ± 25.44 0.45 ± 0.46 1.90 ± 0.13 133.81 ± 84.46 0.65 ± 0.34 331.86 ± 488.57 584.00 ± 23.69 0.02 ± 0.04 3093.17 ± 1934.60
Cobalamin 221.03 ± 13.67 28.60 ± 16.77 0.57 ± 0.44 7.67 ± 1.14 451.73 ± 256.29 0.22 ± 0.28 6830.15 ± 9052.56 1028.20 ± 59.27 0.02 ± 0.02 25712.40 ± 15252.51
Hammerhead 3 64.24 ± 11.08 31.88 ± 20.40 0.38 ± 0.42 0.38 ± 0.11 36.91 ± 31.83 0.30 ± 0.41 23.95 ± 11.81 279.05 ± 38.70 0.04 ± 0.06 159.87 ± 123.44
let-7 85.73 ± 3.11 55.37 ± 28.14 0.75 ± 0.22 0.89 ± 0.10 72.95 ± 27.35 0.48 ± 0.33 65.51 ± 28.66 390.76 ± 21.37 0.04 ± 0.05 462.12 ± 283.01
Lysin 193.91 ± 13.07 68.71 ± 42.73 0.30 ± 0.33 6.27 ± 0.80 163.76 ± 104.21 0.57 ± 0.30 554.25 ± 730.12 918.41 ± 48.19 0.03 ± 0.04 18690.26 ± 10232.32
mir-10 75.71 ± 1.27 55.09 ± 21.97 0.67 ± 0.24 0.72 ± 0.04 66.91 ± 30.83 0.48 ± 0.36 45.68 ± 19.80 358.55 ± 15.96 0.03 ± 0.04 333.63 ± 227.10
Purine 102.01 ± 0.93 129.05 ± 86.84 0.41 ± 0.39 1.37 ± 0.07 69.80 ± 6.70 0.88 ± 0.15 87.27 ± 30.47 497.41 ± 16.81 0.03 ± 0.05 2395.40 ± 1571.67
RFN element 147.23 ± 13.62 44.11 ± 24.91 0.94 ± 0.11 2.83 ± 0.56 114.59 ± 98.77 0.80 ± 0.24 619.68 ± 1289.50 687.71 ± 62.46 0.03 ± 0.05 5893.83 ± 3827.59
S-box leader 120.13 ± 16.14 50.35 ± 30.00 0.57 ± 0.36 1.68 ± 0.44 88.72 ± 60.79 0.79 ± 0.21 190.03 ± 493.08 554.09 ± 55.21 0.03 ± 0.04 2399.58 ± 1484.64
SECIS 68.55 ± 2.88 25.76 ± 21.34 0.05 ± 0.19 0.53 ± 0.05 54.25 ± 53.42 0.16 ± 0.28 51.07 ± 65.81 318.53 ± 16.40 0.02 ± 0.03 279.38 ± 187.58
SNORD113 79.69 ± 6.10 40.03 ± 23.27 0.33 ± 0.42 0.75 ± 0.07 47.63 ± 30.40 0.62 ± 0.40 44.32 ± 18.12 373.69 ± 21.77 0.02 ± 0.02 641.43 ± 421.62
SRP bact 96.20 ± 9.99 30.81 ± 14.92 0.69 ± 0.41 0.99 ± 0.30 105.08 ± 82.04 0.66 ± 0.32 225.15 ± 336.93 423.55 ± 74.67 0.02 ± 0.04 726.66 ± 659.87
THI element 117.20 ± 11.95 33.03 ± 14.43 0.51 ± 0.45 1.62 ± 0.30 84.45 ± 85.58 0.75 ± 0.31 253.89 ± 352.01 535.40 ± 43.83 0.02 ± 0.02 2319.39 ± 1468.99
tRNA 76.05 ± 5.79 37.31 ± 45.09 0.23 ± 0.40 0.70 ± 0.09 62.15 ± 38.30 0.67 ± 0.40 73.45 ± 78.89 360.29 ± 24.06 0.02 ± 0.04 479.15 ± 265.22
Tymo tRNA-like 86.25 ± 1.35 41.27 ± 21.96 0.50 ± 0.39 0.79 ± 0.05 78.97 ± 33.70 0.76 ± 0.21 84.70 ± 55.19 409.13 ± 14.22 0.04 ± 0.05 684.12 ± 411.97
U1 167.16 ± 2.58 48.36 ± 32.73 0.69 ± 0.34 4.52 ± 0.16 221.36 ± 121.42 0.61 ± 0.23 1755.35 ± 1255.41 804.19 ± 24.78 0.03 ± 0.05 11142.21 ± 6902.37
U4 163.25 ± 24.55 50.64 ± 27.53 0.42 ± 0.41 3.72 ± 1.30 91.75 ± 41.17 0.79 ± 0.20 263.51 ± 140.53 742.17 ± 84.30 0.02 ± 0.03 9361.29 ± 5839.12
UnaL2 54.25 ± 0.66 48.80 ± 25.71 0.70 ± 0.40 0.36 ± 0.01 36.11 ± 3.30 0.99 ± 0.04 23.05 ± 8.38 263.79 ± 8.94 0.03 ± 0.06 171.59 ± 104.10
ykoK 175.39 ± 7.32 82.05 ± 58.19 0.68 ± 0.36 4.67 ± 0.45 147.55 ± 69.66 0.81 ± 0.20 472.79 ± 583.01 844.27 ± 31.56 0.03 ± 0.05 12019.33 ± 6178.91
ykoK 144.26 ± 63.44 81.06 ± 54.94 0.65 ± 0.38 4.74 ± 0.45 144.26 ± 63.44 0.81 ± 0.20 449.03 ± 526.67 482.97 ± 27.04 0.00 ± 0.00 12693.37 ± 7330.66
Pooled Average 118.67 ± 47.86 50.35 ± 42.33 0.53 ± 0.42 2.30 ± 2.12 114.86 ± 125.33 0.64 ± 0.36 625.53 ± 2554.61 556.82 ± 227.00 0.03 ± 0.04 5317.96 ± 8585.19

Table 3.8: Comparison of alignment length and positive predictive value (PPV) for
pairwise local alignment by RNAmountAlign against the widely used local alignment
software FOLDALIGN and LocARNA. Local alignment benchmarking was performed
on 1500 pairwise alignments (75 alignments per family, 20 Rfam families) extracted
from the Rfam 12.0 database [89], and prepared in a manner analogous to that of the
dataset used in benchmarking multiple local alignment in [91]. Parameters used in
Eq (3.15) for RNAmountAlignwere structural similarity weight γ = 1/2, gap initiation
дi = −3, gap extension дe = −1; since reference alignments were required to have at
most 70% sequence identity, nucleotide similarity matrix RIBOSUM8570-25 was used

in RNAmountAlign.

of sequence and ensemble structural similarity; i.e. parameter γ = 1/2 when computing simi-

larity by Eq (3.15). By setting γ = 1, RNAmountAlign alignments depend wholly on structural

similarity (see Figure 3.1). Indeed, for the following BRAliBase 2.1 alignment with 28% se-

quence identity, by setting γ = 1, RNAmountAlign returns the correct alignment.

GGGGAUGUAGCUCAGUGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGUUCGAUCCCCGGCAUCUCCA

GUUUCAUGAGUAUAGC---AGUACAUUCGGCUUCCAACCGAAAGGUUUUUGUAAACAACCAAAAAUGAAAUA
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of 72 nt tRNA AL671879.2with 69 nt tRNA D16387.1. Fig 3.1 shows the superimposed mountain

heights for this alignment.

Statistics for pairwise alignment

Fig 3.5 shows �ts of the relative frequency histogram of alignment scores with the normal (ND),

extreme value (EVD) and gamma (GD) distributions, where local [resp. semiglobal] alignment

scores are shown in the left [resp. right] panel. The EVD provides the best �t for local align-

ment sequence-structure similarity scores, as expected by Karlin-Altschul theo [63, 64]. More-

over, Fig 3.6 shows a 96% correlation between (expect) E-values computed by our implemen-

tation of the Karlin-Altschul method, and E-values obtained by maximum likelihood �tting of

local alignment scores. In contrast, the ND provides the best �t for semiglobal sequence/struc-

ture alignment similarity scores, at least for the sequence considered in Fig 3.5. This is not

an isolated phenomenon, as shown in Fig 3.6, which depicts scatter plots, Pearson correlation

values and sums of squared residuals (SSRs) when computing p-values for semiglobal (query

search) alignment scores between Rfam sequences and random RNA. As explained earlier, a

pool of 2220 sequences from the Rfam 12.0 database [89] was created by selecting one sequence

of length at most 200 nt from each family, with the property that base pair distance between

its minimum free energy (MFE) structure and the Rfam consensus structure was a minimum.

Then 500 sequences were randomly selected from this pool, and for each of �ve gap initia-

tion and extension costs дi = −5, − 4, − 3, − 2, − 1 with дe =
дi
3 . Taking each of the 500

sequences successively as query sequence and for each choice of parameters, 1000 random 400

nt RNAs were generated with the same expected nucleotide relative frequency as that of the

query. For each alignment score z for query and random target, the p-value was computed as
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Figure 3.5: Fits of 30-bin relative frequency histograms of scores for local (left),
semiglobal (middle) and global (right) alignments produced by RNAmountAlign for
the randomly chosen 5S rRNA AY544430.1:375-465 from Rfam 12.0 database having
A,C,G,U relative frequency of 0.25,0.27,0.26,0.21. A total of 10,000 random sequences
having identical expected nucleotide relative frequencies were generated, each of
length 400 nt for local/semiglobal and 100 nt for global. Local (left), semiglobal (mid-
dle) and global (right) alignments were computed by RNAmountAlign, in each case
�tting the data with the normal (ND), extreme value (EVD) and gamma (GD) distribu-
tions. As expected by Karlin-Altschul theory [63], local alignment scores are best �t
by EVD, while semiglobal alignment scores are best �t by ND (results supported by
data not shown, involving computations of variation distance, symmetrized Kullback-

Leibler distance, and χ 2 goodness-of-�t tests).

1 minus the cumulative density function, 1 − CDF (z), for �tted normal (ND), extreme value

(EVD) and gamma (GD) distributions, thus de�ning 1000 p-values. Additionally, a heuristic

p-value was determined by calculating the proportion of alignment scores for given query that

exceed z. For each set of 2.5 million (500 × 5 × 1000) p-values (heuristic, ND, EVD, GD), Pear-

son correlation values were computed and displayed in the upper triangular portion of Fig 3.6,

with SSRs shown in parentheses. Note that residuals were computed for regression equation

row = m · column + b, where column values constitute the independent variable. Assuming

that heuristic p-values constitute the reference standard, it follows that p-values computed

from the normal distribution correlate best with semiglobal alignment scores computed by

RNAmountAlign.

Earlier studies have suggested that protein global alignment similarity scores using PAM120,
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Figure 3.6: (Left)Pearson correlation values and scatter plots for p-values of
semiglobal alignment(query search) scores between Rfam sequences and random
RNA. For each score in a set of 2.5 million global pairwise alignment scores, a p-value
was computed by direct counts (heuristic), or by data �tting the normal (ND), extreme
value (EVD), or gamma (GD) distributions. Pairwise Pearson correlation values were
computed and displayed in the upper triangular portion of the �gure, with sums of
squared residuals shown in parentheses, and histograms of p-values along the diag-
onal. It follows that ND p-values correlate best with heuristic p-values, where the
latter is assumed to be the gold standard. (Right)Scatter plot of expect values EML,
computed by maximum likelihood, following the method described in [87] (y-axis)
and expect values EKA, computed by our implementation of the Karlin-Altschul. The
regression equation is EML = 0.1764+0.7991·EKA; Pearson correlation between EML and
EKA is 96%, with correlation p-value of 2 · 10−16. Expect values were determined from
local alignment scores computed by the genome scanning form of RNAmountAlign
with query tRNA AB031215.1/9125-9195 and targets consisting of 300 nt windows
(with 200 nt overlap) from E. coli str. K-12 substr. MG1655 with GenBank accession
code AKVX01000001.1. From the tRNA query sequence, the values pA,pC ,pG ,pU for
nucleotide relative frequencies, are determined, then average base pairing probabili-
ties p( ,p•,p) are computed by RNAfold -p [27]. For the current 300 nt target win-
dow, the nucleotide relative frequencies p ′A,p

′
C ,p
′
G ,p
′
U are computed, then probabilities

p ′
(
,p ′•,p

′

)
are obtained. From these values, scaling factor αseq and shift αstr, were com-

puted; with structural similarity weight γ = 1/2, the overall similarity function from
Eq (3.15) was determined.
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PAM250, BLOSUM50, and BLOSUM62 matrices appear to be �t best by the gamma distribution

(GD) [92], and that semiglobal RNA sequence alignment similarity scores (with no contribu-

tion from structure) appear to be best �t by GD [93]. However, in our preliminary studies

(not shown), it appears that the type of distribution (ND, EVD, GD) that best �ts RNAmoun-

tAlign semiglobal alignment depends on the gap costs applied (indeed, for certain choices,

EVD provides the best �t). Since there is no mathematical theory concerning alignment score

distribution for global or semiglobal alignments, it must be up to the user to decide which

distribution provides the most reasonable p-values.

Multiple alignment

We benchmarked RNAmountAlignwith the software LARA, mLocARNA, FOLDALIGNM and Mul-

tilign for multiple global K5 alignments in Bralibase 3. STRAL is not included since the

source code could not be compiled. Fig 3.7 indicates average SPS and SCI as a function of aver-

age pairwise sequence identity (APSI). We used the -sci �ag of RNAalifold to compute SCI

from the output of each software without reference to the reference alignment. Fig 3.7 indicates

that SCI values for outputs from various alignment algorithms is higher than the SCI value from

reference alignments, suggesting that the consensus structure obtained from sequence/struc-

ture alignment algorithms has a larger number of base pairs than the the consensus structure

obtained from reference alignments (this phenomenon was also in [94]). Fig 3.7 indicates

that RNAmountAlign produces SPS scores comparable to mLocARNA and LARA and higher than

Multilign and FOLDALIGNM while the SCI score obtained from RNAmountAlign are slightly

lower than other software. Averaging over all sequences, the SPS scores for RNAmountAl-

ign, LARA, mLocARNA, FOLDALIGNM and Multilignwere respectively: 0.84±0.17, 0.85±0.17,
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0.84 ± 0.17, 0.77 ± 0.22, and 0.84 ± 0.19. The left panel of Fig 3.8 indicates the run time of all

software on a logarithmic scale, while the right panel shows the actual run time in seconds for

RNAmountAlign as well as that of the next two fastest algorithms, mLocARNA and LARA. This

�gure clearly shows that RNAmountAlign has much faster run time than all other software in

our benchmarking tests, thus con�rming the earlier result from pairwise benchmarking.
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(a) SPS (b) Avg pairwise Sen

(c) Avg pairwise PPV (d) SCI

Figure 3.7: Sum-of-pairs(SPS) score (A), average pairwise sensitivity (B) and positive
predictive value (C), as well as structural conservation index (SCI) (D) for multiple

global alignments using RNAmountAlign, LARA, mLocARNA, FoldalignM and Mul-
tilign . The measures are shown as a function of average pairwise sequence iden-
tity(APSI) in the k5 BRAliBase 3 database used for benchmarking. Note that in our
de�nition of Sen and PPV , pairs of the form (X ,—) and (—,X ) are also counted while
SPS is the average pairwise sensitivity only considering aligned residue pairs. How-

ever, the results with and without gap counts are very close.
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Figure 3.8: Run time of multiple global alignment for RNAmountAlign, mLocARNA
and LARA, FoldalignM and Multilign. (Left) Log run time is as shown a function
of reference alignment length for K5 alignments in Bralibase 3. (Right) Actual run

time in seconds for mLocARNA and LARA.

Software usage

RNAmountAlign performs local, semiglobal, and global sequence/structure alignments. By

default the global alignment is computed unless �ags -local or -semi are used to perform

local and semiglobal alignments, respectively. In the simplest case, the program could be run

with

> ./RNAmountAlign -f <inputFasta>

or

> ./RNAmountAlign -s seq1 seq2

The parameters that were used to produce the results in the text are used as the default by

the software: structural similarity weight γ = 0.5, gap initiation дi = −3, and gap extension

дe = −1. The weight factor γ de�nes the importance of structural similarity versus sequence

similarity. When γ = 0 only sequence similarity is considered, while γ = 1 only uses the
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incremental ensemble mountain heights for the alignment. As an example, let’s consider the

following two toy sequences each forming a stem loop secondary structure

>seq1

AAAAAAAAAACCCCCUUUUUUUUUU

((((((((((.....)))))))))) (-2.1)

>seq2

CCCCCCCAAAAGGGGGGG

(((((((....))))))) (-15.7)

Running the software considering only sequence similarity with gap initiation and extension
penalties of -2 and -1, respectively, by the command

> ./RNAmountAlign -s AAAAAAAAAACCCCCUUUUUUUUUU CCCCCCCAAAAGGGGGGG -gamma 0 -gi

-2 -ge -1

produces the following alignment

seq1 1 AAAAAAAAAACCCCCUUUUUUUUUU 25

seq2 1 -------CCCCCCCAAAAGGGGGGG 18

where four C nucleotides are aligned together, regardless of the fact that in the secondary

structure for the �rst sequence, they are found in an apical loop region, while in the secondary

structure for the second sequence, they are part of a stem. However, using -gamma 1 returns

seq1 1 AAAAAAAAAACCCCCUUUUUUUUUU 25

seq2 1 CCCCCCC----AAAAGGGGGGG--- 18

where the opening, closing and unpaired bases are aligned to each other. Finally, using -gamma

0.5 gives
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seq1 1 AAAAAAAAAACCCCCUUUUUUUUUU 25

seq2 1 CCCCCCCAAAA-------GGGGGGG 18

where both sequence and structural similarity are equally weighted. The default nucleotide

similarity matrix is RIBOSUM85-60. Other RIBOSUM matrices are included in the software

and can be selected with -m �ag based on the user’s knowledge of divergence of the input se-

quences.

RNAmountAlign computes the consensus secondary structure by calling alifold() function

from libRNA.a in the Vienna RNA Package when �ag -alifold is used. For example the

following command outputs the consensus structure in addition to the alignment for the same

sequences indicated in Fig 3.1. See Fig 3.9.

> ./RNAmountAlign -f examples/trna.fa -alifold -global

Computation of alignment statistics depends on the alignment type. As discussed in this chap-

ter, local alignment scores follow extreme value distribution(EVD) while global and semiglobal

scores tend to follow normal distribution(ND). Flag -stat can be set to compute both E-

values and p-values, where the transformation between E-values and p-values is made by

p = 1− exp(−E). For global and semiglobal alignments, the �rst (query) sequence is aligned to

a number of random RNAs, de�ned by -num �ag, with the same nucleotide composition as the

second sequence (target), then the random alignment scores are �tted to normal distribution

and a p-value is returned.

> ./RNAmountAlign -f examples/trna.fa -global -stat -num 100
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Figure 3.9: Consensus structure for the pairwise alignment indicated in Fig 3.1. The
consensus structure is computed by a calling function alifold() from Vienna RNA

Package. The �gure is obtained from RNAalifold web server.

As part of the output, p-value from ND normal �tting of 100 random alignment scores is re-

ported:

Normal distribution E-value: 0.0476148

Normal distribution p-value: 0.046499

For local alignments either Karlin-Altschul statistics (default) or EVD �tting can be computed.

Let’s consider an example of a local alignment between two purine riboswitches with Rfam

seed alignment length of 102 and sequence identity 0.58. Random �anking regions with the

same nucleotide composition are added to the seed alignment as discussed in this chapter to

obtain two sequences of length 408 and 400. The local alignment between these two sequences

has length 53with extremely low E-value, with the property that all pairs in the local alignment

are found in the reference seed alignment (PPV = 1). E-value from Karlin-Altschul statistics

can be obtained very fast from the following command:
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> ./RNAmountAlign -f examples/RF00167_1.raw -local -stat

Karlin-Altschul E-value: 2.52137e-06

Karlin-Altschul p-value: 2.52137e-06

Computation of E-value from EVD �tting is more accurate but slower:

> ./RNAmountAlign -f examples/RF00167_1.raw -local -stat -evd -num 200

Extreme value distribution E-value: 4.41417e-05

Extreme value distribution P-value: 4.41408e-05

RNAmountAlign computes Karlin-Altschul E-values from maximum likelihood method de-

scribed in this chapter, and then multiplies it by the regression coe�cient of 0.7991, indicated

in the right panel of Fig 3.6, to obtain an estimated E-value. Therefore, there might be discrep-

ancy between the EVD �tting and Karlin-Altschul E-values. For the most accurate statistics

EVD �tting is recommended.

Our software could also be used for searching a query sequence de�ned by -qf <fastaFile>

in a target sequence de�ned by -tf <fastaFile>. The search computes semiglobal align-

ments of the query to sliding windows of the target, and returns the aligned segments of the

target sorted by p-value. The query is aligned to windows of a �xed size de�ned by -window,

sliding by steps de�ned by -step �ag. To compute the statistics, random alignment scores

are computed and �tted to ND. However, the software does not compute random alignments

for each window separately as it would be very slow. Instead, following [87], the range of the

GC-content of the target sequence over all the sliding windows is �rst obtained and binned

using bin size de�ned by -gc. For each GC-content bin, �tting paremeters are precomputed

by generating a number of random sequences whose GC-content is equal to the bin midpoint,
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aligning the query to random sequences, and �tting random alignment scores to normal dis-

tribution. For each sliding window the corresponding precomputed parameters are used for

the computation of p-value. As an example, a random tRNA from Rfam 12.0 whose minimum

free energy structure has the minimum base pair distance to the Rfam consensus structure was

selected and used as the query to search E. coli K12 MG1655 genome using window size 300

and step size 200 by the following command.

> ./RNAsearch -qf examples/tRNAscan.fa -tf examples/ecoli_MG1655.fa -window

300 -step 200 -gc 10 -num 1000

The output contains:

GC Bins: [0.23-0.33),[0.33-0.43),[0.43-0.53),[0.53-0.63),[0.63-0.73),[0.73-0.74]

1000 random seqs of size 300 generated for each each GC bin.

Fitting to Normal:

GC Location Scale

0.283 -12.18 1.96

0.383 -13.41 2.03

0.483 -15.01 2.05

0.583 -16.84 2.05

0.683 -18.98 2.16

0.735 -20.08 2.06

As indicated, six GC bins are generate in range [0.23−0.74]; for each bin 1000 random sequences

whose GC-content are equal to the average GC-content of the bins are generated, aligned
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to the query and their �tted location (mean) and scale (standard deviation) parameters are

precomputed to be used for computation of p-values. From the top 20 hits of our software, the

�rst 18 are reported to be tRNAs by tRNAscan-SE [95].

To see all the full parameter list for the software please use

> ./RNAmountAlign -h

Limitations

Figure 3.10 illustrates a potential weakness of RNAmountAlign. Using RNAmountAlign genome-

scanning software, semiglobal alignments of the query tRNA AB031215.1/9125-9195were made

with each 300 nt window (successive window overlap of 200 nt) of the E. coli str. K-12 substr.

MG1655 genome. This �gure shows the MFE structure, color-coded by positional entropy [96],

for the alignment

AGGGGCAUAGUUUAACGGUAGAACAGAGGUCUCCAAAACCUCCGGUGUGGGUUCGAUUCCUACUGCCCCUG

ACCUGGAU--UCGAACCAGGGAAUGCCGGUAUCAAAAA---CCGGUGCCUUACCGCUUGGCGAUACCCCAU

of positions 696097-696164 with score −7.70, p-value of 4.145010 · 10−6. (gap costs дi = −3,

дi = −1, γ = 0.5, scaling factor αseq = 0.447648, shift term αstr = 0.304766, γ = 1/2). However,

this RNA is clearly not a tRNA, since the three loops are not within the scope of a multiloop,

and the variable loop is located in the wrong position, and the large positional entropy suggests

that there is not an unambiguous structure. Moreover, this sequence is not one of the tRNA

genes/pseudogenes on the plus-strand predicted by tRNAscan-SE [95]
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Figure 3.10: Illustration of a potential weakness of RNAmountAlign in aligning mul-
tiloops.



Part II

Network Properties of RNA

92
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Consider the set of all secondary structures of an RNA sequence as a network, or graph, where

two structures are connected by an edge if one can be obtained from another by a base pair

addition, removal or shift possibly weighted by the Boltzmann probability of structures. In this

part we study folding kinetics of an RNA through analysis of its network of secondary struc-

tures. RNA folding kinetics plays an important role in various biological processes and there

have been numerous algorithms studying it. Many existing programs for RNA folding kinetics

simulate folding trajectories by starting from an initial structure and stochastically performing

a base pair move (addition, removal and shift) until the target structure is reached. In other

words, a folding trajectory is a stochastic walk from the initial structure to the target structure

on this network. Therefore, understanding the network properties of RNA can provide better

insights about RNA folding kinetics.

In chapter 4 we propose algorithms for computing the shortest path between any two arbitrary

secondary structures in the network, yielding a direct folding pathway between the given

structures. Continuing to chapter 5 we describe algorithms to e�ciently compute the MS2

expected network degree. We indicate that network degree is moderately highly correlated

with both contact order and the expected number of native contacts, both measures known to

be correlated with experimentally measured protein folding kinetics.



Chapter 4

Minimum length RNA folding trajectories

Introduction

Existent programs for RNA folding kinetics, such as Kinefold, Kinfold and KFOLD, imple-

ment the Gillespie algorithm to generate stochastic folding trajectories from an initial structure

s to a target structure t , in which each intermediate secondary structure is obtained from its

predecessor by the application of a move from a given move set. The Kinfold move set MS1

[resp. MS2] allows the addition or removal [resp. addition, removal or shift] of a single base

pair. De�ne the MS1 [resp. MS2] distance between secondary structures s and t to be the

minimum path length to refold s to t , where a move from MS1 [resp. MS2] is applied in each

step. The MS1 distance between s and t is trivially equal to the cardinality of the symmet-

ric di�erence of s and t , i.e. the number of base pairs belonging to one structure but not the

other; in contrast, the computation of MS2 distance is highly non-trivial. We describe algo-

rithms to compute the shortest MS2 folding trajectory between any two given RNA secondary

94
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structures. These algorithms include an optimal integer programming (IP) algorithm, an ef-

�cient near-optimal IP algorithm, a greedy algorithm, a branch-and-bound algorithm, and an

optimal algorithm if one allows intermediate structures to contain pseudoknots. The optimal

[resp. near-optimal] IP algorithm maximizes [resp. approximately maximizes] the number

of shifts and minimizes [resp. approximately minimizes] the number of base pair additions

and removals by applying integer programming to (essentially) solve the minimum feedback

vertex set (FVS) problem for the RNA con�ict digraph, then applies topological sort to tether

subtrajectories into the �nal optimal folding trajectory. We prove NP-hardness of the problem

to determine the minimum barrier energy over all possible MS2 folding pathways, and con-

jecture that computing the MS2 distance between arbitrary secondary structures is NP-hard.

Since our optimal IP algorithm relies on the FVS, known to be NP-complete for arbitrary di-

graphs, we compare the family of RNA con�ict digraphs with the following classes of digraphs

– planar, reducible �ow graph, Eulerian, and tournament – for which FVS is known to be ei-

ther polynomial time computable or NP-hard. This Chapter describes a number of optimal

and near-optimal algorithms to compute the shortest MS2 folding trajectory between any two

secondary structures. A web server and the source code for our algorithms are available at

http://bioinformatics.bc.edu/clotelab/MS2distance/.

Background

RNA secondary structure is known to form a sca�old for tertiary structure formation [97].

Moreover, secondary structure can be e�ciently predicted with reasonable accuracy by using

either machine learning with stochastic context-free grammars [98, 99, 100], provided that the

training set is su�ciently large and representative, or by using ab initio physics-based models

http://bioinformatics.bc.edu/clotelab/MS2distance/
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x y′ y x y′y xy′ y

x x′ y xx′ y x x′y

(x,y)-> (x,y'), y'<y (x,y)-> (x,y'), y'>y (x,y)-> (y',x), y'<x

(x,y)-> (x',y), x'>x (x,y)-> (x',y), x'<x (x,y)-> (y,x'), x'>y

Figure 4.1: Illustration of shift moves, taken from [7].

with thermodynamics-based algorithms [27, 101]. Since the latter approach does not depend

on any form of homology modeling, it has been successfully used for synthetic RNA molecular

design [50, 102, 103], to predict microRNA binding sites [104], to discover noncoding RNA

genes [105], in simulations to study molecular evolution [106, 107, 108, 109] and in folding

kinetics [110, 111, 112, 113]. Software to simulate RNA secondary structure folding kinetics, such

as Kinfold and KFOLD, implement the Gillespie algorithm to simulate the moves from one

structure to another, for a particular move set. At the elementary-step resolution, two move

sets have extensively been studied – the move set MS1 which allows the addition or removal

of a single base pair, and the move set MS2, which allows the addition, removal or shift of a

single base pair, where a shift move modi�es only one of the two positions in a base pair, as

shown in Figure 5.8.

In simulation studies related to RNA secondary structure evolution, the structural distance

between two secondary structures s,t is often measured by the base pair distance, denoted

dBP (s,t), de�ned to be the cardinality of the symmetric di�erence, |s 4 t | = |s − t | + |t − s |, i.e.

the number of base pairs belonging to s but not t , plus the number of base pairs belonging

to t but not s . In studies concerning RNA folding kinetics, the fast, near-optimal algorithm

RNAtabupath [114] and the much slower, but exact (optimal) Barriers algorithm [27] can

be used to determine MS1 folding trajectories that minimize the barrier energy, de�ned as
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the maximum of the (Turner) free energy di�erence between an intermediate structure and

the initial structure. Thermodynamics-based software such as Kinfold, KFOLD, Barriers,

RNAtabupath use the nearest neighbor free energy model [23] whose energy parameters are

inferred from optical melting experiments. In contrast, the two theorems below concern the

Nussinov energy model [115], which assigns −1 per base pair and ignores entropy. Folding

trajectories s = s0,s1, . . . ,sm = t from s to t may either be direct, whereby each intermediate

structure si is required to contain only base pairs from s ∪ t , or indirect, without this restric-

tion. Note that indirect pathways may be energetically more favorable, though longer, than

direct pathways, and that the problem of constructing an energetically optimal direct folding

pathway is NP-hard. Indeed, the following theorem is proven in [116].

Theorem 4.1 (Maňuch et al. [116]).

With respect to the Nussinov energy model, it is NP-hard to determine, for given secondary struc-

tures s,t and integer k , whether there exists a directMS1 folding trajectory from s to t with energy

barrier at most k .

By an easy construction, we can show an analogous result for MS2 folding pathways. First, we

de�ne a directMS2 folding pathway from secondary structure s to secondary structure t to be

a folding pathway s = s0,s1, . . . ,sn = t where each intermediate structure si is obtained from

si−1 by removing a base pair that belongs to s , adding a base pair that belongs to t , or shifting

a base pair belonging to s into a base pair belonging to t .

Theorem 4.2. With respect to the Nussinov energy model, it is NP-hard to determine, for given

secondary structures s,t and integer k , whether there exists a directMS2 folding trajectory from s

to t with energy barrier at most k .
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Proof. Given secondary structures s,t for an RNA sequence a = a1, . . . ,an , without loss of

generality we can assume that s,t share no common base pair (otherwise, a minimum energy

folding trajectory for s − (s ∩ t) and t − (s ∩ t) yields a minimum energy folding trajectory for

s,t .) De�ne the corresponding secondary structures

s ′ = {(2i,2j) : (i,j) ∈ s}

t ′ = {(2i − 1,2j − 1) : (i,j) ∈ t}

a′2i = ai = a′2i−1 for each 1 ≤ i ≤ n

a′ = a′1,a
′
2, . . . ,a

′
2n

In other words, the sequence a′ = a1,a1,a2,a2, . . . ,an ,an is obtained by duplicating each nu-

cleotide of a, and placing each copy beside the original nucleotide; s ′ [resp. t ′] is obtained by

replacing each base pair (i,j) ∈ s by the base pair (2i,2j) ∈ s ′ [resp. (2i − 1,2j − 1) ∈ t ′. Since

there are no base-paired positions that are shared between s ′ and t ′, no shift moves are possible,

thus any direct MS2 folding pathway from s ′ to t ′ immediately yields a corresponding direct

MS1 folding pathway from s to t . Since the Nussinov energy of any secondary structure equals

−1 times the number of base pairs, it follows that barrier energy of the direct MS2 pathway

from s ′ to t ′ is identical to that of the corresponding direct MS1 pathway from s to t . Since

MS1 direct barrier energy is an NP-hard problem by Theorem 4.1, it now follows that the MS2

barrier energy problem is NP-hard. �

Shift moves, depicted in Figure 5.8, naturally models defect di�usion, which is several orders

of magnitude faster than helix zippering, according to experimental data [25]. However, shift

moves have rarely been considered in the literature, except in the context of folding kinetics
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Figure 4.2: Defect di�usion [25], where a bulge migrates stepwise to become absorbed
in a hairpin loop. The move from structure (a) to structure (b) is possible by the shift
(1,12) → (1,13), the move from (b) to (c) by shift (2,11) → (2,12), etc. Image taken

from [7].

[110]. For instance, presumably due to the absence of any method to compute MS2 distance,

Hamming distance is used as a proxy for MS2 distance in the work on molecular evolution of

secondary structures appearing in [108] – see also [117], where Hamming distance is used to

quantify structural diversity in de�ning phenotypic plasticity.

In this chapter, we introduce the �rst algorithms to compute the MS2 distance between two

secondary structures. Although MS1 distance, also known as base pair distance, is trivial to

compute, we conjecture that MS2 distance is NP-hard, where this problem can be formalized as

the problem to determine, for any given secondary structures s,t and integerm, whether there

is an MS2 trajectory s = s0,s1, . . . ,sm = t of length ≤ m. We describe an optimal (exact) but

possibly exponential time integer programming (IP) algorithm, a fast, near-optimal algorithm,

an exact branch-and-bound algorithm, and a greedy algorithm. Since our algorithms involve

the feedback vertex set problem for RNA con�ict digraphs, we now provide a bit of background

on this problem.

Throughout, we are exclusively interested in directed graphs, or digraphs, so unless otherwise

indicated, all graphs are assumed to be directed. Any unde�ned graph-theoretic concepts can

be found in the monograph by Bang-Jensen and Gutin [118]. Given a directed graphG = (V ,E),
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a feedback vertex set (FVS) is a subset V ′ ⊆ V which contains at least one vertex from every

directed cycle in G, thus rendering G acyclic. Similarly, a feedback arc set (FAS) is a subset

E ′ ⊆ E which contains at least one directed edge (arc) from every directed cycle inG. The FVS

[resp. FAS] problem is the problem to determine a minimum size feedback vertex set [resp.

feedback arc set] which renders G acyclic. The FVS [resp. FAS] problem can be formulated as

a decision problem as follows. Given an integer k and a digraphG = (V ,E), determine whether

there exists a subset V ′ ⊆ V of size ≤ k [resp. E ′ ⊆ E of size ≤ k], such that every directed

cycle contains a vertex in V ′ [resp. an edge in E ′].

In Proposition 10.3.1 of [118], it is proved that FAS and FVS have the same computational

complexity, within a polynomial factor. In Theorem 10.3.2 of [118], it is proved that the FAS

problem is NP-complete – indeed, this problem appears in the original list of 21 problems

shown by R.M. Karp to be NP-complete [119]. Note that Proposition 10.3.1 and Theorem 10.3.2

imply immediately that the FVS problem is NP-complete. In Theorem 10.3.3 of [118], it is

proved that the FAS problem is NP-complete for tournaments, where a tournament is a digraph

G = (V ,E), such that there is a directed edge from x toy, or fromy to x , for every pair of distinct

vertices x ,y ∈ V . In [120], it is proved that the FAS for Eulerian digraphs is NP-complete, where

an Eulerian digraph is characterized by the property that the in-degree of every vertex equals

its out-degree. In Theorem 10.3.15 of [118], it is proved that FAS can be solved in polynomial

time for planar digraphs, a result originally due to [121]. In [122], a polynomial time algorithm is

given for the FAS for reducible �ow graphs, a type of digraph that models programs without any

GO TO statements (see [123] for a characterization of reducible �ow graphs). There is a long

history of work on the feedback vertex set and feedback arc set problems, both for directed

and undirected graphs, including results on computational complexity as well as exact and
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approximation algorithms for several classes of graphs – see the survey [124] for an overview

of such results.

The plan of this chapter is now as follows. In Section 4.3, we present the graph-theoretic frame-

work for our overall approach and describe a simple, fast algorithm to compute the pseudoknot-

ted MS2 distance, or pk-MS2 distance, between structures s,t . By this we mean the minimum

length of an MS2 folding trajectory between s and t , if intermediate pseudoknotted structures

are allowed. We show that the pk-MS2 distance between s and t , denoted by dpk−MS2(s,t), is

approximately equal to one-half the Hamming distance dH (s,t) between s and t . This result

can be seen as justi�cation, ex post facto, for the use of Hamming distance in the investigation

of RNA molecular evolution [108], although results of this chapter suggest that either pk-MS2

distance or near-optimal MS2 distance may be a better approximation to (exact) MS2 distance

than using Hamming distance.

In Sections 4.4 and 4.7 we describe RNA con�ict digraphs and their properties used in all of

our MS2 distance algorithms. In Section 4.5, we describe optimal branch-and-bound, greedy

and exact integer programming (IP) algorithms as well as a faster near-optimal IP algorithm.

Our optimal algorithm in Section 4.5.3 enumerates all directed cycles, then solves the feedback

vertex problem for the collection of RNA con�ict digraphs, as described in Section 4.4. Our

IP algorithm is not a simple reduction to the feedback vertex set (FVS) problem; however,

since the complexity of FVS/FAS is known for certain classes of digraphs, we take initial steps

towards the characterization of RNA con�ict digraphs in Section 4.8. Our optimal IP algorithm

is much faster than the branch-and-bound algorithm, but it can be too slow to be practical to

determine MS2 distance between the minimum free energy (MFE) secondary structure and a

(Zuker) suboptimal secondary structure for some sequences from the Rfam database [89]. For
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this reason, in Section 4.5.4 we present a fast, near-optimal algorithm, and in Section 4.6, we

present benchmarking results to compare various algorithms of the chapter.

Since we believe that further study of RNA con�ict digraphs may lead to a solution of the

question whether MS2 distance is NP-hard, Section 4.7 presents the set of (oriented) directed

edges that are possible in an RNA con�ict digraph. Section 4.8 provides proofs that the collec-

tion of RNA con�ict digraphs is distinct from each of the following classes of digraphs: planar,

reducible �ow graph, Eulerian, and tournament.

All algorithms described in this chapter have been implemented in Python, and are publicly

available at bioinformatics.bc.edu/clotelab/MS2distance, where the user can also

use our web server. Our software uses the function simple_cycles(G) from the software

NetworkX https://networkx.github.io/documentation/networkx-1.9/reference/

generated/networkx.algorithms.cycles.simple_cycles.html, and the integer pro-

gramming (IP) solver Gurobi Optimizer version 6.0 http://www.gurobi.com,2014.

MS2 distance between possibly pseudoknotted structures

In this section, we describe a straightforward algorithm to determine theMS2-distancedpk−MS2(s,t)

between any two structures s,t of a given RNA sequence a1, . . . ,an , where dpk−MS2(s,t) is de-

�ned to be length of a minimal length trajectory s = s0,s1, . . . ,sm = t , where intermediate

structures si may contain pseudoknots, but do not contain any base triples. This variant is

called pk-MS2 distance. Clearly, the pk-MS2 distance is less than or equal to the MS2 distance.

The purpose of this section is primarily to introduce some of the main concepts used in the

remainder of the chapter. Although the notion of secondary structure is well-known, we give

bioinformatics.bc.edu/clotelab/MS2distance
https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.cycles.simple_cycles.html
https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.cycles.simple_cycles.html
http://www.gurobi.com, 2014
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three distinct but equivalent de�nitions, that will allow us to overload secondary structure

notation to simplify presentation of our algorithms.

De�nition 4.3 (Secondary structure as set of ordered base pairs). Let [1,n] denote the set

{1,2, . . . ,n}. A secondary structure for a given RNA sequence a1, . . . ,an of length n is de�ned

to be a set s of ordered pairs (i,j), with 1 ≤ i < j ≤ n, such that the following conditions are

satis�ed.

1.Watson-Crick and wobble pairs: If (i,j) ∈ s , then aiaj ∈ {GC,CG,AU ,UA,GU ,UG}.

2. No base triples: If (i,j) and (i,k) belong to s , then j = k ; if (i,j) and (k,j) belong to s , then

i = k .

3. Nonexistence of pseudoknots: If (i,j) and (k,`) belong to s , then it is not the case that i < k <

j < `.

4. Threshold requirement for hairpins: If (i,j) belongs to s , then j − i > θ , for a �xed value

θ ≥ 0; i.e. there must be at least θ unpaired bases in a hairpin loop. Following standard

convention, we set θ = 3 for steric constraints.

Without risk of confusion, it will be convenient to overload the concept of secondary structure

s with two alternative, equivalent notations, for which context will determine the intended

meaning.

De�nition 4.4 (Secondary structure as set of unordered base pairs). A secondary structure s

for the RNA sequence a1, . . . ,an is a set of unordered pairs {i,j}, with 1 ≤ i,j ≤ n, such that

the corresponding set of ordered pairs

{i,j}< def
= (min(i,j),max(i,j)) (4.1)
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satis�es De�nition 5.1.

De�nition 4.5 (Secondary structure as an integer-valued function). A secondary structure s

for a1, . . . ,an is a function s : [1, . . . ,n] → [0, . . . ,n], such that
{{i,s[i]}< : 1 ≤ i ≤ n, s[i] , 0

}

satis�es De�nition 5.1; i.e.

s[i] =



0 if i is unpaired in s

j if (i,j) ∈ s or (j,i) ∈ s
(4.2)

De�nition 4.6 (Secondary structure distance measures). Let s,t be secondary structures of

length n. Base pair distance is de�ned by equation (4.3) below, and Hamming distance is de-

�ned by equation (4.4) below.

dBP (s,t) = |{(x ,y) : ((x ,y) ∈ s ∧ (x ,y) < t) ∨ ((x ,y) ∈ t ∧ (x ,y) < s)}| (4.3)

dH (s,t) = |{i ∈ [1,n] : s[i] , t[i]}| (4.4)

Throughout this section, the term pseudoknotted structure is taken to mean a set of ordered pairs

[resp. unordered pairs resp. function], which satis�es conditions 1,2,4 (but not necessarily

3) of De�nition 5.1. Given structure s on RNA sequence {a1, . . . ,an}, we say that a position

x ∈ [1,n] is touched by s if x belongs to a base pair of s , or equivalently s[x] , 0. For possibly

pseudoknotted structures s,t on {a1, . . . ,an}, we partition the set [1,n] into disjoint setsA,B,C ,D

as follows. Let A be the set of positions that are touched by both s and t , yet do not belong to

the same base pair in s and t , so

A = {i ∈ [1,n] : s[i] , 0, t(i) , 0, s[i] , t[i]} (4.5)



Minimum length RNA folding trajectories 105

Let B be the set of positions that are touched by either s or t , but not by both, so

B = {i ∈ [1,n] : (s[i] , 0, t[i] = 0) ∨ (s[i] = 0, t[i] , 0)} (4.6)

Let C be the set of positions touched by neither s nor t , so

C = {i ∈ [1,n] : s[i] = 0 = t[i]} (4.7)

Let D be the set of positions that belong to the same base pair in both s and t , so

D = {i ∈ [1,n] : s[i] , 0, t[i] , 0, s[i] = t[i]} (4.8)

We further partition A ∪ B into a set of maximal paths and cycles, in the following manner.

De�ne an undirected, vertex-colored and edge-colored graphG = (V ,E), whose vertex setV is

equal to the set A∪ B of positions that are touched by either s or t , but not by a common base

pair in (s ∩ t), and whose edge set E = (s − t) ∪ (t − s) = (s ∪ t) − (s ∩ t) consists of undirected

edges between positions that are base-paired together. Color edge {x ,y} green if the base pair

(x ,y) ∈ s − t and red if (x ,y) ∈ t − s . Color vertex x yellow if x is incident to both a red and

green edge, green if x is incident to a green edge, but not to any red edge, red if x is incident to

a red edge, but not to any green edge. Note that A consists of all yellow nodes, whose incident

edges are either green or red; B consists of all nodes that are either green or red; C consists of

all uncolored nodes; D consists of all yellow nodes, whose incident edge is yellow.

The connected components ofG can be classi�ed into 4 types of (maximal) paths and one type

of cycle (also called path of type 5): type 1 paths have two green end nodes, type 2 paths have
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Figure 4.3: All possible maximal length red-green paths and cycles. Each equivalence
classX , as de�ned in De�nition 4.8, can be depicted as a maximal length path or cycle,
consisting of those positions x ∈ [1,n] that are connected by alternating base pairs
drawn from secondary structures s (green) and t (red). Nodes are yellow if incident to
both a green and yellow edge; nodes are green if incident only to a green edge; nodes
are red if incident only to a red edge. Note that the appearance of positions in left-
to-right order does not necessarily respect integer ordering, so the leftmost position
is not necessarily the minimum min(X ), nor is the rightmost position necessarily the

maximum max(X ).

a green end node x and a red end node y, where x < y, type 3 paths have a red end node x

and a green end node y, where x < y, type 4 paths have two red end nodes, and type 5 paths

(cycles) have no end nodes. These are illustrated in Figure 4.3. Note that all nodes of a cycle

and interior nodes of paths of type 1-4 are yellow, while end nodes (incident to only one edge)

are either green or red. If X is a connected component of G, then de�ne the restriction of s

[resp. t] to X , denoted by s � X [resp. t � X ], to be the set of base pairs (i,j) in s [resp. t] such

that i,j ∈ X . With this description, most readers will be able to determine a minimum length

pseudoknotted folding pathway from s � X to t � X , where X is a connected component of G.

For instance, if X is a path of type 2 or 3, then a sequence of shift moves transforms s � X into

t � X , beginning with a shift involving the terminal green node.
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Now we provide details on the simple algorithms for pk-MS2 minimum length folding path-

ways for each of the �ve types of paths depicted in Figure 4.3. If s and t are (possibly pseudo-

knotted) structures on [1,n], and X ⊆ [1,n] is an equivalence class, then de�ne the restriction

of s [resp. t] to X , denoted by s � X [resp. t � X ], to be the set of base pairs (i,j) in s [resp. t]

such that i,j ∈ X . Each path or cycle in A ∪ B can be subdivided into the following �ve cases.

Each equivalence class can be classi�ed as one of �ve types of paths, depicted in Figure 4.3

described below. For this classi�cation, we need to de�ne End(s,X ) = {x ∈ X : t[x] = 0}

and End(t ,X ) = {x ∈ X : s[x] = 0} – i.e. End(s,X ) [resp. End(t ,X )] is the set of elements

x of X that belong to a base pair in s [resp. t], but the path cannot be extended because x is

not touched by a base pair from t [resp. s]. For each type of path X , we present a (trivial)

algorithm that returns the shortest MS2 folding trajectory from s � X to t � X . Additionally,

we determine the relation between the pseudoknotted MS2 distance between s � X and t � X ,

denoted dXpk−MS2
(s,t), as well as the Hamming distance, denoted dXH (s,t).

An equivalence class X of size m is de�ned to be a path of type 1, if m is even, so path length

is odd, and |End(s,X )| = 2. Let b0 = min(End(s,X )) and for 1 ≤ i < m/2, de�ne ai+1 = s[bi ] and

bi = t[ai ], as shown in Figure 4.3a. A minimum length sequence of MS2 moves to transform

s � X into t � X is given by the following:

Path 1 subroutine

1. remove {bm/2,am/2} from s

2. for (m/2) − 1 down to 1

3. shift base pair (bi ,ai ) to (ai ,bi+1)

An alternate procedure would be to remove the �rst base pair {b1,a1} and perform shifts from
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left to right. Notice that if m = |X | = 2, then a path of type 1 is simply a base pair with

the property that neither i nor j is touched by t . For arbitrary m, dXpk−MS2
(s,t) = dXH (s,t )

2 . The

Hamming distance dXH (s,t) =m, and dXpk−MS2
(s,t) =m/2, so dXpk−MS2

(s,t) = bdXH (s,t )
2 c. Moreover,

dXpk−MS2
(s,t) = max(|s � X |, |t � X |).

An equivalence class X of size m is de�ned to be a path of type 2, if m is odd, so path length

is even, and |End(s,X )| = 1 = |End(t ,X )|, and min(End(s,X )) < min(End(t ,X )). Let b0 =

min(End(s,X )) and for 1 ≤ i ≤ bm/2c, de�ne ai+1 = s[bi ] and bi = t[ai ], as shown in Fig-

ure 4.3b. A minimum length sequence of MS2 moves to transform s � X into t � X is given by

the following:

Path 2 subroutine

1. for i = bm/2c down to 1

2. shift base pair {bi−1,ai} to {ai ,bi}

The Hamming distance dXH (s,t) = m, and dXpk−MS2
(s,t) = bm/2c, so dXpk−MS2

(s,t) = bdXH (s,t )
2 c.

Moreover, dXpk−MS2
(s,t) = max(|s � X |, |t � X |).

An equivalence class X of size m is de�ned to be a path of type 3, if m is odd, so path length

is even, and |End(s,X )| = 1 = |End(t ,X )|, and min(End(t ,X )) < min(End(s,X )). Let a0 =

min(End(t ,X )) and for 1 ≤ i ≤ bm/2c, de�ne bi = t[ai−1] and ai = s[bi ], as shown in Fig-

ure 4.3c. A minimum length sequence of MS2 moves to transform s � X into t � X is given by

the following:

Path 3 subroutine

1. for i = 1 to bm/2c

2. shift base pair {bi ,ai} to {ai−1,bi}
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The Hamming distancedXH (s,t) =m, and pk-MS2 distancedXpk−MS2
(s,t) = bm/2c, sodXpk−MS2

(s,t) =

bdXH (s,t )
2 c. Moreover, dXpk−MS2

(s,t) = max(|s � X |, |t � X |).

An equivalence class X of size m is de�ned to be a path of type 4, if m is even, so path length

is odd, and |End(t ,X )| = 2. Let a1 = min(End(t ,X )) and for 2 ≤ i < m/2, de�ne ai+1 = s[bi ] and

for 1 ≤ i ≤ m/2, de�ne bi = t[ai ], as shown in Figure 4.3d. A minimum length sequence of

MS2 moves to transform s � X into t � X is given by the following:

Path 4 subroutine

1. for i = 1 tom/2 − 1

2. shift base pair {bi ,ai+1} to {ai ,bi}

3. add base pair {am/2,bm/2}

Notice that ifm = 2, then a path of type 4 is simply a base pair (i,j) ∈ t , with the property that

neither i nor j is touched by s . The Hamming distance dXH (s,t) = m, and dXpk−MS2
(s,t) = m/2,

so dXpk−MS2
(s,t) = dXH (s,t )

2 . Moreover, dXpk−MS2
(s,t) = max(|s � X |, |t � X |).

An equivalence class X of size m is de�ned to be a path of type 5, if it is a cycle, i.e. each

element x ∈ X is touched by both s and t . Since base triples are not allowed due to condition

2 of De�nition 5.1, cycles have only even length, and so |X | is also even. Let a1 = min(X ), and

for 1 ≤ i ≤ m/2, de�ne bi = t[ai ], and for 2 ≤ i ≤ m/2, de�ne ai = s[bi−1], as shown in

Figure 4.3e. A minimum length sequence of MS2 moves to transform s � X into t � X is given

by the following:

Path 5 subroutine

1. remove base pair {bm/2,a1}

2. for i = 1 tom/2 − 1
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3. shift base pair {bi ,ai+1} to {ai ,bi}

4. add base pair {am/2,bm/2}

The Hamming distance dXH (s,t) =m, and dXpk−MS2
(s,t) =m/2+1, so dXpk−MS2

(s,t) = bdXH (s,t )
2 c+1.

Moreover, dXpk−MS2
(s,t) = max(|s � X |, |t � X |). Note that any base pair could have initially been

removed from s , and by relabeling the remaining positions, the same algorithm would apply.

In summary, pk-MS2 distance between s � X and t � X for any maximal path (equivalence

class) X is equal to Hamming distance bdH (s�X ,t�X )
2 c; in contrast, pk-MS2 distance between s �

X and t � X for any cycleX is equal to bdH (s�X ,t�X )
2 c+1. It follows that dpk−MS2(s,t) = bdH (s,t )

2 c

if and only if there are no type 5 paths, thus establishing equation (4.19).

Now let B1 [resp. B2] denote the set of positions of all type 1 paths [resp. type 4 paths] of

length 1 – i.e. positions incident to isolated green [resp. red] edges that correspond to base

pairs (i,j) ∈ s where i,j are not touched by t [resp. (i,j) ∈ t where i,j are not touched by s].

As well, let B0 designate the set of positions in B not in either B1 or B2. Note that B1 ⊆ B and

B2 ⊆ B, and that formally

B0 = B − (B1 ∪ B2) (4.9)

B1 = {i ∈ [1,n] : ∃j [{i,j} ∈ s, t(i) = 0 = t(j)] (4.10)

B2 = {i ∈ [1,n] : ∃j [{i,j} ∈ t , s(i) = 0 = s(j)] (4.11)

Note that B1 and B2 have an even number of elements, and that all elements of B − B1 − B2 are

incident to a terminal edge of a path of length 2 or more. Correspondingly, de�ne BP1 and BP2
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as follows:

BP1 = {(i,j) ∈ s : t[i] = 0 = t[j]} (4.12)

BP2 = {(i,j) ∈ t : s[i] = 0 = s[j]} (4.13)

Note that |BP1| = |B1|/2 and |BP2| = |B2|/2. The following is a restatement of Lemma 4.9.

Lemma 4.7. Let s,t be two arbitrary pseudoknotted structures for the RNA sequence a1, . . . ,an ,

and let X1, . . . ,Xm be the equivalence classes with respect to equivalence relation ≡ on A ∪ B0 =

[1,n] − B1 − B2 −C − D. Then the pk-MS2 distance between s and t is equal to

|BP1| + |BP2| +
m∑
i=1

max
(|s � Xi |, |t � Xi |

)

Alternatively, if X1, . . . ,Xm are the equivalence classes on A ∪ B = [1,n] −C − D, then

dpk−MS2(s,t) =
m∑
i=1

max
(|s � Xi |, |t � Xi |

)

The formal de�nitions given below are necessary to provide a careful proof of the relation

between Hamming distance and pseudoknotted MS2 distance, discussed above.

De�nition 4.8. Let s,t be (possibly pseudoknotted) structures on the RNA sequence a1, . . . ,an .

For i,j ∈ [1,n], de�ne i ∼ j if s[i] = j or t[i] = j, and let ≡ be the re�exive, transitive closure of

∼. Thus i ≡ j if i = j, or i = i1 ∼ i2 ∼ · · · ∼ im = j for any m ≥ 1. For i ∈ [1,n], let [i] denote

the equivalence class of i , i.e. [i] = {j ∈ [1,n] : i ≡ j}.

It follows that i ≡ j if and only if i = j, i is base-paired with j, or i is connected to j by a path

with alternating green and red edges. Equivalence classes X with respect to ≡ are maximal
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length paths and cycles, as depicted in Figure 4.3. Moreover, it is easy to see that elements of

A either belong to cycles or are found at interior nodes of paths, while elements of B are found

exclusively at the left or right terminal nodes of paths.

Note that odd-length cycles cannot exist, due to the fact that a structure cannot contain base

triples – see condition 2 of De�nition 5.1. Moreover, even-length cycles can indeed exist –

consider, for instance, the structure s , whose only base pairs are (1,15) and (5,10), and the

structure t , whose only base pairs are (1,5) and (10,15). Then we have the red/green cycle

1→ 5→ 10→ 15→ 1, consisting of red edge 1→ 5, since (1,5) ∈ t , green edge 5→ 10, since

(5,10) ∈ s , red edge 10→ 15, since (10,15) ∈ t , and green edge 15→ 1, since (1,15) ∈ s .

From the discussion before De�nition 4.8, it follows that A in equation (4.5) consists of the

nodes of every cycle together with all interior (yellow) nodes of paths of type 1-4. Moreover,

we can think of B in equation (4.6) as consisting of all path end nodes, i.e. those that have only

one incident edge. Let B1 ⊆ B [resp. B2 ⊆ B] denote the set of elements of B that belong to

type 1 paths [resp. type 4 paths] of length 1, i.e. positions incident to isolated green [resp.

red] edges that correspond to base pairs (i,j) ∈ s where i,j are not touched by t [resp. (i,j) ∈ t

where i,j are not touched by s]. Let B0 = B −B1 −B2 be the set of end nodes of a path of length

2 or more. Letting BP1 [resp. BP2] denote the set of base pairs (i,j) that belong to s and are

not touched by t [resp. belong to t and are not touched by s], we can formalize the previous

de�nitions as follows.
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B1 = {i ∈ [1,n] : ∃j [{i,j} ∈ s, t(i) = 0 = t(j)] (4.14)

B2 = {i ∈ [1,n] : ∃j [{i,j} ∈ t , s(i) = 0 = s(j)] (4.15)

B0 = B − (B1 ∪ B2) (4.16)

BP1 = {(i,j) ∈ s : t[i] = 0 = t[j]} (4.17)

BP2 = {(i,j) ∈ t : s[i] = 0 = s[j]} (4.18)

We proved that pk-MS2 distance between s � X and t � X for any maximal path X is equal

to Hamming distance bdH (s�X ,t�X )
2 c; in contrast, pk-MS2 distance between s � X and t � X for

any cycle X is equal to bdH (s�X ,t�X )
2 c + 1. It follows that

dpk−MS2(s,t) = bdH (s,t)
2

c (4.19)

if and only if there are no type 5 paths (i.e. cycles). This result justi�es ex post facto the use

of Hamming distance in the investigation of RNA molecular evolution [108, 117]. We also have

the following.

Lemma 4.9. Let s,t be two arbitrary (possibly pseudoknotted) structures for the RNA sequence

a1, . . . ,an , and let X1, . . . ,Xm be the equivalence classes with respect to equivalence relation ≡ on

A ∪ B. Then the pk-MS2 distance between s and t is equal to

dpk−MS2(s,t) =
m∑
i=1

max
(|s � Xi |, |t � Xi |

)
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This lemma is useful, since the pk-MS2 distance provides a lower bound for the MS2 distance

between any two secondary structures, and hence allows a straightforward, but slow (expo-

nential time) branch-and-bound algorithm to be implemented for the exact MS2 distance –

pseudocode for the branch-and-bound algorithm is given in Section 4.5.1. To compute pk-MS2

distance, we remove those base pairs in s − t that are not touched by t , compute the equiv-

alence classes (connected components) X on the set of positions belonging to the remaining

base pairs (provided that the position does not belong to a common base pair of both s and t ),

then determine for each X a minimum length pk-MS2 folding pathway from s � X to t � X .

The formal pseudocode follows.

Algorithm 1 pk-MS2 distance
MS2-path length between two possibly pseudoknotted structures s,t .

1 remove from s all base pairs of BP1
2 numMoves = ||BP1||
3 Q = A ∪ B0

4 while doQ , ∅
5 x0 = min(Q); X = [x0] . X is equivalence class of x0
6 determine path type of X
7 compute minimum length folding pathway from s � X to t � X

8 numMoves = numMoves +max(||s � X ||, ||t � X ||)
9 end while
10 add to s all base pairs in BP2

11 numMoves = numMoves + ||BP2||
12 return return numMoves

Straightforward details of how to implement line 7 are given in the �ve subroutines above. The

principle underlying the reason that Algorithm 1 produces a minimum length (pseudoknotted)

MS2 folding trajectory from s to t is that we maximize the number of shift moves, since a single

shift move from {x ,y} ∈ s to {y,z} ∈ t corresponds to the simultaneous removal of {x ,y} and

addition of {y,z}. We apply this principle in the next section to determine the minimum length

(non-pseudoknotted) MS2 folding trajectory from s to t .
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RNA con�ict digraph

Throughout this section, we take s,t to be two arbitrary, distinct, but �xed secondary structures

of the RNA sequence a1, . . . ,an . Recall the de�nitions ofA,B,C,D in equations (4.5–4.8), so that

A is the set of positions x ∈ [1,n] that are base-paired in both s and t , but the base pairs in s

and t are not identical; B is the set of positions x ∈ [1,n] that are base-paired in one of s or t ,

but not both; C is the set of positions x ∈ [1,n] that are base-paired in neither s nor t , and D is

the set of positions x ∈ [1,n] that are base-paired to the same partner in both s and t .

To determine a minimum length MS2 folding trajectory from secondary structure s to sec-

ondary structure t we need to maximize the number of shift moves, or equivalently to mini-

mize the number of base pair additions and removals. To that end, note that the base pairs in s

that do not touch any base pair of t must be removed in any MS2 path from s to t , since there is

no shift of such base pairs to a base pair of t – such base pairs are exactly those in BP1, de�ned

in equation (4.17). Similarly, note that the base pairs in t that do not touch any base pair of s

must occur must be added, in the transformation of s to t , since there is no shift of any base

pair from s to obtain such base pairs of t – such base pairs are exactly those in BP2, de�ned in

equation (4.18). We now focus on the remaining base pairs of s , all of which touch a base pair

of t , and hence could theoretically allow a shift move in transforming s to t , provided that there

is no base triple or pseudoknot introduced by performing such a shift move. Examples of all

six possible types of shift move are illustrated in Figure 4.4. To handle such cases, we de�ne

the notion of RNA con�ict digraph, solve the feedback vertex set (FVS) problem [119] by integer

programming (IP), apply topological sorting [125] to the acyclic digraph obtained by removing
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Figure 4.4: All six possible shift moves, in which a base pairs of s (teal) that touches a
base pairs of t (red) is shifted, thus reducing the base pair distance dBP(s,t) by 2. Each
such shift move can uniquely be designated by the triple (x ,y,z), where y is the pivot

position (common position to a base pair in both s and t ), x is the remaining position
in the base pair in t , and z is the remaining position in the base pair in s .

a minimum set of vertices occurring in feedback loops, then apply shift moves in topologically

sorted order. We now formalize this argument.

De�ne the digraph G = (V ,E), whose vertices (or nodes) n ∈ V are de�ned in the following

De�nition 4.10 and whose directed edges are de�ned in De�nition 4.11.

De�nition 4.10 (Vertex in an RNA con�ict digraph).

If s,t are distinct secondary structures for the RNA sequence a1, . . . ,an , then a vertex in the

RNA con�ict digraph G = G(s,t) is a triplet node, or more simply, node v = (x ,y,z) consisting

of integers x ,y,z, such that the base pair {x ,y}< = (min(x ,y),max(x ,y)) belongs to t , and the

base pair {y,z}< = (min(y,z),max(y,z)) belongs to s . Let v .t [resp. v .s] denote the base pair

{x ,y}< [resp. {y,z}<] belonging to t [resp. s]. The middle integer y of node v = (x ,y,z) is

called the pivot position, since it is common to both s and t . Nodes are ordered by the integer

ordering of their pivot positions: (x ,y,z) � (x ′,y ′,z ′) if and only if y ≤ y ′ (or y = y ′ and x < x ′,
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or y = y ′, x = x ′, and z < z ′). If v = (x ,y,z) is a node, then f latten(v) is de�ned to be the set

{x ,y,z} of its coordinates.

Nodes are representations of a potential shift move, and can be categorized into six types, as

shown in Figure 4.4.

De�nition 4.11 (Directed edge in an RNA con�ict digraph).

Base pairs {a,b}< and {c,d}< are said to touch if |{a,b} ∩ {c,d}| = 1; in other words, base

pairs touch if they form a base triple. Base pairs {a,b}< and {c,d}< are said to cross if either

min(a,b) < min(c,d) < max(a,b) < max(c,d) or min(c,d) < min(a,b) < max(c,d) < max(a,b);

in other words, base pairs cross if they form a pseudoknot. There is a directed edge from node

n1 = (x1,y1,z1) to node n2 = (x2,y2,z2), denoted by (n1,n2) ∈ E or equivalently by n1 → n2, if (1)

|f latten(n1) ∩ f latten(n2)| ≤ 1, or in other words if n1 and n2 overlap in at most one position,

and (2) the base pair {y1,z1}< ∈ s from n1 either touches or crosses the base pair {x2,y2}< ∈ t

from n2.

Note that if the base pair {y1,z1}< ∈ s from n1 touches the base pair {x2,y2}< ∈ t from n2, then

it must be that z1 = x2; indeed, since each pivot nodey1 [resp. y2] belongs to a base pair of both

s and t , it cannot be that z1 = y2 (because then {y1,z1}< ∈ s and {y2,z2}< ∈ s would form a base

triple in s at z1 = y2), nor can it be that y1 = x2 (because then {x1,y1}< ∈ t and {x2,y2}< ∈ t

would form a base triple in t at y1 = x2). Note as well that if n1 = (x1,y1,z1) and n2 = (x2,y2,z2)

are triplet nodes, then |f latten(n1) ∩ f latten(n2)| = 1 implies that either n1 → n2 or n2 → n1.

Indeed, if there is a common element shared by n1 and n2, then it cannot be a pivot element,

since s and t cannot have a base triple. For the same reason, the common element cannot

belong to the base pairs {x1,y1} ∈ t ofn1 and {x2,y2} ∈ t ofn2 (otherwise t would contain a base



Minimum length RNA folding trajectories 118

triple), nor can the common element belong to the base pairs {y1,z1} ∈ s of n1 and {y2,z2} ∈ s

of n2 (otherwise s would contain a base triple). It follows that either {x1,y1} ∩ {y2,z2} , ∅, or

{x2,y2}∩{y1,z1} , ∅. From the assumption that |f latten(n1)∩ f latten(n2)| = 1, this implies that

either n2 → n1 or that n1 → n2, but not both. Finally, note that if n1 = (x1,y1,z1), n2 = (x2,y2,z2)

and |f latten(n1) ∩ f latten(n2)| = 2, then there are exactly three possibilities, all of which can

be realized:

1. n1.t = n2.t , so that {x1,y1} = {x2,y2}, as in the example (1,5) ∈ s , (10,15) ∈ s , (5,10) ∈ t ,

n1 = (10,5,1), n2 = (5,10,15);

2. n1.s = n2.s , so that {y1,z1} = {y2,z2}, as in the example (1,5) ∈ t , (10,15) ∈ t , (5,10) ∈ s ,

n1 = (1,5,10), n2 = (15,10,5);

3. {x1,z1} = {x2,z2}, as shown in Figure 4.5. This latter example will be called a closed

2-cycle.

Our �rst de�nition of directed edge n1 → n2 of con�ict digraph did not require that n1 and n2

overlap in at most one position, hence would would have had n1 → n2 and n2 → n1 in each of

the three previous cases where |f latten(n1)∩ f latten(n2)| = 2. By adding the (subtle) technical

requirement that |f latten(n1)∩ f latten(n2)| ≤ 1, we obtain far fewer directed cycles in con�ict

digraphs according to the current de�nition, so obtain a 10-fold speed-up in run time for the

optimal IP Algorithm. Below is the notion of RNA con�ict digraph edge.

De�nition 4.12 (Con�ict digraph G = (V ,E)). Let s,t be distinct secondary structures for the

RNA sequence a1, . . . ,an . The RNA con�ct digraphG(s,t) = (V (s,t),E(s,t)), orG = (V ,E) when
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Figure 4.5: Two types of closed 2-cycles. (a) RNA con�ict digraph G = (V ,E) for
secondary structures t and s , where a1 < a2 < a3 < a4 and t = {(a1,a2), (a3,a4)}, and
s = {(a1,a4), (a2,a3)}. Nodes of V = {v1,v2,v3,v4} are the following: v1 = (a1,a2,a3)
of type 1, v2 = (a3,a4,a1) of type 5, v3 = (a2,a1,a4) of type 4, and v4 = (a4,a3,a2) of
type 2. (b) RNA con�ict digraph G = (V ,E) for secondary structures t and s , where
a1 < a2 < a3 < a4 and t = {(a1,a4), (a2,a3)} and s = {(a1,a2), (a3,a4)}. Nodes of
V = {v1,v2,v3,v4} are the following: v1 = (a1,a4,a3) of type 6,v2 = (a4,a1,a2) of type 3,
v3 = (a2,a3,a4) of type 1, v4 = (a3,a2,a1) of type 2. Since the overlap between any two
distinct vertices in (a) and (b) is 2, there are no edges in E for the con�ict digraphs
of (a) and (b). An optimal trajectory from s to t is constructed by removing a base
pair from s , performing a shift, and adding the remaining base pair from t . In each
case there are 2 choices for the base pair to remove and two choices for the shift, so 4

optimal trajectories for each of (a) and (b).

s,t are clear from context, is de�ned by

V = {(x ,y,z) : x ,y,z ∈ [1,n] ∧ {x ,y} ∈ t ∧ {y,z} ∈ s} (4.20)

E =
{(n1,n2) : n1 = (x1,y1,z1) ∈ V ∧ n2 = (x2,y2,z2) ∈ V∧

|f latten(n1) ∩ f latten(n2)| ≤ 1 ∧
(
z1 = x2∨( [min(y1,z1) < min(x2,y2) < max(y1,z1) < max(x2,y2)]∨

[min(x2,y2) < min(y1,z1) < max(x2,y2) < max(y1,z1)]
)}

(4.21)

The set of directed edges of con�ict digraphG = (V ,E), as de�ned in De�nition 4.12, establishes
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a partial ordering on vertices ofV with the property thatn1 → n2 holds for verticesn1 = (x ,y,z),

n2 = (u,v,w) if and only if (1) n1 and n2 overlap in at most one position, and (2) when shift

move n2 is applied, shifting {v,w} ∈ s to {u,v} ∈ t , the base pair {u,v} either touches or crosses

the base pair {y,z} ∈ s in n1. It follows that if n1 → n2, then the shift move in which {y,z} ∈ s

shifts to {x ,y} ∈ t must be performed before the shift move where {v,w} ∈ s shifts to {u,v} ∈ t

– indeed, if shifts are performed in the opposite order, then after shifting {v,w} ∈ s to {u,v} ∈ t

and before shifting {y,z} ∈ s to {x ,y} ∈ t , we would create either a base triple or a pseudoknot.

As mentioned, in our initial de�nition we did not require that n1 and n2 overlap in at most

one position, which led to the existence of many more directed cycles in con�ict digraphs than

is the case with the current De�nition 4.12. By including the requirement that |f latten(n1) ∩

f latten(n2)| ≤ 1, there is a drastic reduction in the number of directed cycles, hence a huge re-

duction in run time to generate all simple cycles and in the run time to solve the corresponding

integer programming problem.

MS2 distance between secondary structures

In this section, we present an optimal integer programming (IP), branch and bound and greedy

algorithms to compute the MS2 distance between any two secondary structures s,t , i.e. the

minimum length of an MS2 trajectory from s to t .

As in the previous section, our goal is to maximize the number of shift operations in the MS2

trajectory, formalized in the following simple theorem, whose proof is clear.

Theorem 4.13. Suppose that theMS2 distance between secondary structures s,t is k , i.e. base pair

distance dBP (s,t) = |s − t |+ |t − s | = k . Suppose that ` is the number of shift moves occurring in a
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minimum lengthMS2 refolding trajectory s = s0,s1, . . . ,sm = t from s to t . Then theMS2 distance

between s and t equals

dMS2(s,t) = ` + (k − 2`) = k − ` (4.22)

Our strategy will now be to use a graph-theoretic approach to maximize the number of shift

moves.

Branch-and-bound algorithm

In algorithm 2 we describe a branch-and-bound algorithm to compute the minimum length

folding trajectory and MS2 distance from s to t , where s,t are distinct secondary structures

of RNA sequence a1, . . . ,an . Base pair removals, shifts and additions are repeatedly applied

to s until the (possibly pruned) search space is traversed and the best solution is found. Data

structure state = {s,t ,d,lb,rm,ad,sh} stores local information for each state in the search space.

Speci�cally, for current state cs , the local values for secondary structures s and t are stored

respectively in cs .s and cs .t . Similarly, cs .d is the number of moves performed on the ini-

tial values s ,t to obtain current values cs .s ,cs .t , and cs .lb is a lower bound for the length of a

folding trajectory from s to t , that passes through the node cs . Finally, cs .rm, cs .sh, cs .ad are

respectively the lists of base pair removals, additions and shifts to transform s,t into cs .s , cs .t .

In lines 1-5, input structures s,t are stored in s0,t0, while updated structures s [resp. t] are

obtained from s0 [resp. t0] by removing those base pairs in s [resp. t] that are not touched by t

[resp. s], as well as those base pairs that are common to both s and t ; i.e. s = s0−BP1− (s0∩ t0),

and t = t0 − BP2 − (s0 ∩ t0). A depth-�rst-search tree is de�ned, whose nodes are states, where
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state is a data structure containing �elds s,t ,dist ,lb,rm,ad,sh. For instance, if cs is the node

or current state under consideration, then cs .s and cs .t are local copies of (currently modi�ed)

structures s,t ; cs .dist is theMS2 distance from the input structures s0 and t0 to the local copies of

(currently modi�ed) structures cs .s and cs .t ; cs .lb is a lower bound for shortest MS2 path from

s0 to t0 that passes through current state cs given by cs .lb = cs .dist + pk-MS2(cs .s,cs .t); cs .rm,

cs .ad and cs .sh are respectively lists of base pair removals, additions and shifts to transform s0

to cs .s and t0 to cs .t . In line 7, global variable best holds the current value for the length of a

shortest MS2 folding trajectory from s0 to t0.

In lines 30-54, removals and shifts are applied to each current state, cs , such that after shifting

base pair {x ,y}< ∈ cs .s to base pair {y,z}< ∈ cs .t , the pairs {x ,y}< and {y,z}< are removed

respectively from cs .s and cs .t . After each removal or shift, a lower bound is computed for

the length of a shortest MS2 path from s to t that passes through current state cs . This lower

bound is equal to the number of moves performed so far, cs .dist , plus the pk-MS2 distance

from cs .s to cs .t (allowing pkseudoknots). If this (optimistic) MS2 distance is greater than

the best value obtained so for for MS2, then the subtree rooted at cs is pruned. Additionally,

the order of visitation of states in the search space is based on their computed lower bound.

States with smaller lower bounds are more likely to be located on the optimal path. This is

accomplished using a priority queue, where states with smaller lower bound appear at the top

of the queue. Finally, after repeated base pair removals and shifts, either cs .s or cs .t will have

been transformed into the empty structure ∅ containing no base pairs. The �nal, optimal MS2

folding trajectory is then obtained by adding [resp. removing] the remaining base pairs in cs .t

[resp. cs .s] to cs .s [resp. cs .t]. This situation is handled in lines 15-21 [resp. lines 22-28], where

the solution is returned in global variable sol .
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Algorithm 2 Branch-and-bound algorithm for MS2 distance
Input: Secondary structures s,t for RNA sequence a1, . . . ,an
Output: Shortest folding trajectory from s to t and MS2 distance
1 BP1 is the set of base pairs (i, j) ∈ s that are not touched by t

2 BP2 is the set of base pairs (i, j) ∈ t that are not touched by s

3 BP3 = s ∩ t is the set of base pairs common to both s and t

4 s0 = s; s = s − BP1 − BP3 . s0 is original s; remove base pairs in BP1 ∪ BP3 from s

5 t0 = t ; t = t − BP2 − BP3 . t0 is original t ; remove base pairs in BP2 ∪ BP3 from t

6 de�ne data structure state = (s,t ,dist ,lb,rm,ad,sh) for nodes in search tree
. cs .s , cs .t are current local copies of (modi�ed) structures s,t
. cs .dist is MS2 distance from initial values of s0,t0 to cs .s,cs .t

. cs .lb = cs .dist+ pk-MS2(cs .s,cs .t) lower bound for shortest MS2 path from s0 to t0 that passes
through cs

. cs .rm, cs .ad , and cs .sh are lists of removals, additions and shifts to transform s0,t0 into cs .s,cs .t

. global variable sol is the data structure state() for the solution
7 best = MS1 distance between s0 and t0 . largest possible MS2 distance
8 lb = pk-MS2(s,t) + numMoves . lower bound allowing pk from s to t

9 root = (s,t ,numMoves,lb,BP1,BP2,∅)
10 visited[root] = true . used to avoid repeated computations for the same state
11 Q = add_with_priority(root) . state with smaller lb has higher priority
12 while (Q is not empty) do
13 cs = Q .extract_min() . state with smallest lb will be popped
14 if (cs .lb < best ) then . prune if lower bound is worse than the best solution so far
15 if (cs .s has no base pairs) then . no more base pairs in cs .s

16 for (x ,y) ∈ cs .t do . add remaining base pairs in cs .t

17 append base pair addition (x ,y) to cs .ad

18 cs .dist = cs .dist + 1
19 end for
20 if (cs .dist < best ) then . good path?
21 best = cs .dist

22 sol = cs . new solution found
23 end if
24 else if (cs .t has no base pairs) then . no more base pairs in cs .t .
25 for (x ,y) ∈ cs .s do . remove remaining base pairs in cs .s

26 append base pair removals (x ,y) to cs .rm

27 cs .dist = cs .dist + 1
28 end for
29 if (cs .dist < best ) then . good path?
30 best = cs .dist

31 sol = cs . new solution found
32 end if
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33 else
34 Vsh = {(x ,y,z) : x ,y,z ∈ [1,n] ∧ {x ,y}< ∈ cs .t ∧ {y,z}< ∈ cs .s}
35 Vrm = {(y,z) : y,z ∈ [1,n] ∧ {y,z}< ∈ cs .s}
36 . Vsh ,Vrm denote all possible base pair shifts and removals for current state
37 form ∈ (Vsh ∪Vrm) do
38 if m = (x ,y,z) ∈ Vsh then . test if valid shift move
39 if {x ,y}< does not touch or cross cs .s − {{y,z}<} then
40 cs ′.s = cs .s − {{y,z}<}
41 cs ′.t = cs .t − {{x ,y}<}
42 cs ′.dist = cs .dist + 1
43 cs ′.lb = cs ′.dist + pk −MS2(cs ′.s,cs ′.t)
44 cs ′.sh = cs .sh; cs ′.ad = cs .ad
45 cs ′.sh = cs .sh ∪ {(x ,y,z)} . shift (y,z)→ (x ,y)
46 if not visited[cs ′] then
47 Q .add_with_priority(cs ′)
48 . add new state cs ′ to queue Q with priority cs ′.lb

49 visited[cs ′] = true
50 end if
51 end if
52 else if m = (y,z) ∈ Vrm then
53 cs ′.s = cs .s − {{y,z}<}
54 cs ′.t = cs .t

55 cs ′.dist = cs .dist + 1
56 cs ′.lb = cs ′.dist + pk-MS2(cs ′.s,cs ′.t)
57 cs ′.rm = cs .rm ∪ {(y,z)} . remove (y,z)
58 cs ′.sh = cs .sh; cs ′.ad = cs .ad
59 if not visited[cs ′] then
60 Q .add_with_priority(cs ′) . add new state to Q with priority cs ′.lb

61 visited[cs ′] = true

62 end if
63 end if
64 end for
65 end if
66 end if
67 end while
68 path = sol .rm + sol .sh + sol .ad

69 MS2 = sol .d
70 returnMS2,path
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Greedy algorithm

For a digraphG = (V ,E), in this section, we present the pseudocode for a staightforward greedy

algorithm to determine a (possibly non-maximal) vertex subset V ⊂ V such that the induced

subgraph H = (V ,E) contains no directed cycles, where E = E ∩ (V × V ). Nevertheless, in

the following greedy algorithm, it is necessary to �rst generate a list of all (possibly exponen-

tially many) directed cycles. This computational overhead is sidestepped by the near-optimal

algorithm in the next section.

We now analyze the time and space complexity of the greedy algorithm. In line 6, Johnson’s

algorithm [126] is used to enumerate all simple directed cycles, resulting in run time O((|V | +

|E|) · (|C| + 1)), where |V | [resp. |E|] denotes the number of vertices [resp. edges] of the initial

con�ict digraph G, and |C| denotes the number of directed cycles of G. Let M = |C| denote

the number of directed cycles in C, and let N = O(|V | ·M) denote the total number of vertices

(counting duplicates) in the set of all simple directed cycles C = {C1, . . . ,CM}. Lines 7 through

28 require O(N ) time and space, provided that one introduces the data structures A1,A2,A3,A4,

de�ned by as follows:

A1[v] = |{C ∈ C : v ∈ C}|

A2[v] = {k ∈ {1, . . . ,|C|} : Ck ∈ C ∧v ∈ Ck}

A3[k] = {v ∈ V : v ∈ Ck}

A4[k] =



1 if Ck ∈ C

0 else
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Algorithm 3 Greedy approximation of MS2 distance from s to t
Input: Secondary structures s,t for RNA sequence a1, . . . ,an
Output: Greedy MS2 folding trajectory
s = s0,s1, . . . ,sm = t , where s0, . . . ,sm are secondary structures, m is the minimum possible
value for which si is obtained from si−1 by a single base pair addition, removal or shift for each
i = 1, . . . ,m.
. First, initialize the variable numMoves to 0, and the list moveSequence to the empty
list [ ]. De�ne BP1 = {(x ,y) : (x ,y) ∈ t , (t − s)[x] = 0, (t − s)[y] = 0}; i.e. BP1
consists of those base pairs in s which are not touched by any base pair in t . De�ne
BP2 = {(x ,y) : (x ,y) ∈ t , (s − t)[x] = 0, (s − t)[y] = 0}; i.e. BP2 consists of those base pairs
in t which are not touched by any base pair in s . Bear in mind that s is constantly being updated,
so actions performed on s depend on its current value.

1 for (x ,y) ∈ BP1 do . remove base pairs from s that are untouched by t

2 remove (x ,y) from s; numMoves = numMoves+1
3 end for
. de�ne con�ict digraph G = (V ,E) on updated s and unchanged t

4 de�ne V by equation (4.20)
5 de�ne E by equation (4.21)
6 de�ne con�ict digraph G = (V ,E)
7 C = {C1, . . . ,Cm} . list of all simple directed cycles in G

. determine set V0 of vertices to remove so that restriction of G to V −V0 is acyclic
8 V0 = ∅ . V0 is set of vertices to be removed from V

9 for v ∈ V do
10 Cv = {C ∈ C : v ∈ C}
11 end for
12 while C , ∅ do
13 v0 = argmaxv ||Cv || //v0 belongs to largest number of cycles
14 V0 = V0 ∪ {v0}
15 V = V − {v0}
16 E = E − {(x ,y) : x = v0 ∨ y = v0}
17 G = (V ,E) //induced subgraph obtained by removing v0
18 C = C − Cv0 // remove all cycles containing v0
19 v0 = (x ,y,z) //unpack v0 to obtain base pairs {x ,y}< ∈ t , {y,z}< ∈ s
20 s = s − {(min(y,z),max(y,z))}
21 end while
. topological sort of the now acyclic digraph G = (V ,E) for updated V ,E

22 topological sort of G using DFS [125] to obtain total ordering ≺ on V

23 for v = (x ,y,z) ∈ V in topologically sorted order ≺ do
. check if shift would create a base triple, as in type 1,5 paths from Figure 4.3 of text

24 if s[x] = 1 then . i.e. {u,x} ∈ s for some u ∈ [1,n]
25 remove {u,x} from s; numMoves = numMoves+1
26 end if
27 shift {y,z} to {x ,y} in s; numMoves = numMoves+1
28 end for
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. remove any remaining base pairs from s that have not been shifted
29 for (x ,y) ∈ s − t do
30 remove (x ,y) from s; numMoves = numMoves+1
31 end for
. add remaining base pairs from t − s , e.g. from BP2 and type 4,5 paths in Figure 4.3 of text

32 for (x ,y) ∈ t − s do
33 add (x ,y) to s; numMoves = numMoves+1
34 end for
35 return folding trajectory, numMoves

In other words, A1 is a linked list of size |V |, where A1[v] equals the (current) number of cycles

to which v belongs (in line 13, the node A1[v] is deleted from the linked list); A2 is an array of

size |V |, whereA2[v] is a linked list of indices k of cyclesCk that contain vertexv (note that the

size of linked listA2[i] isA1[i]); A3 is an array of size the number |C| of cycles, whereA3[k] is a

linked list of verticesv that belong toCk ; A4 is an array of size the number |C| of cycles, where

A4[k] is a a boolean value (true/false), depending on whether the cycle Ck currently belongs

to C (used to implement line 16). Details are left to the reader, or can be gleaned from reading

our publicly available source code. It follows that the run time complexity of Algorithm 3 is

O((|V | + |E|) · (|C| + 1)) with space complexity of O(|V | · (|C| + 1) + |E|).

Optimal IP algorithm

We �rst explain how to treat closed 2-cycleswhen constructing a shortestMS2 folding trajectory

from s to t . As shown in Figure 4.5, a closed 2-cycle consists of nodes n1,n2, such that n1 =

(x1,y1,z1), n2 = (x2,y2,z2), and {x1,z1} = {x2,z2}. It follows that a closed 2-cycle contains four

integers a1 < a2 < a3 < a4. A 3-step folding trajectory consists of the following steps. (1)

Remove the lexicographically �rst base pair in closed 2-cycle belonging to s . (2) Perform a

shift move from the remaining 2-cycle base pair in s to the lexicographically �rst base pair in



Minimum length RNA folding trajectories 128

closed 2-cycle belonging to t . (3) Add the remaining 2-cycle base pair from t to the trajectory.

For concreteness, we give an explicit description for the only two possible cases.

Case A: Base pairs (a1,a2) and (a3,a4) belong to t , while base pairs (a1,a4) and (a2,a3) belong to

s , as shown in Figure 4.5a.

In this case, the con�ict digraph G = (V ,E) contains the following 4 vertices v1 = (a1,a2,a3) of

type 1, v2 = (a3,a4,a1) of type 5, v3 = (a2,a1,a4) of type 4, and v4 = (a4,a3,a2) of type 2. The

overlap of any two distinct vertices has size 2, so by De�nition 4.12, there can be no directed

edge between any vertices. There are four optimal trajectories of size 3; for speci�city we will

perform the following steps.

remove (a1,a4) (4.23)

shift (a2,a3) to (a1,a2)

add (a3,a4)

Case B: Base pairs (a1,a2) and (a3,a4) belong to s , while base pairs (a1,a4) and (a2,a3) belong to

t , as shown in Figure 4.5b.

In this case, the con�ict digraph G = (V ,E) contains the following 4 vertices v1 = (a1,a4,a3) of

type 6, v2 = (a4,a1,a2) of type 3, v3 = (a2,a3,a4) of type 1, and v4 = (a3,a2,a1) of type 2. The

overlap of any two distinct vertices has size 2, so by De�nition 4.12, there can be no directed

edge between any vertices. There are four optimal trajectories of size 3; for speci�city we will
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perform the following steps.

remove (a1,a2) (4.24)

shift (a3,a4) to (a2,a3)

add (a1,a4)

In Algorithm 4 below, it is necessary to list all closed 2-cycles, as depicted in Figure 4.5. This

can be done in linear time O(n), for RNA sequence a = a1, . . . ,an and secondary structures

s,t by computing equivalence classes as de�ned in De�nition 4.8, then inspecting all size 4

equivalence classesX = {a1,a2,a3,a4} to determine whether Case A or Case B applies. For each

such closed 2-cycle, Algorithm 4 computes the partial trajectory (4.23) or (4.24) appropriately,

then the vertices v1,v2,v3,v4 are deleted. No edges need to be deleted, since there are no edges

between vi and vj for 1 ≤ i,j ≤ 4.

Note now that De�nition 4.12 establishes a partial ordering on vertices of the con�ict digraph

G = (V ,E), in that edges determine the order in which shift moves should be performed. Indeed,

if n1 = (x ,y,z), n2 = (u,v,z) and (n1,n2) ∈ E, which we denote from now on by n1 → n2, then

the shift move in which {y,z} ∈ s shifts to {x ,y} ∈ t must be performed before the shift move

where {v,w} ∈ s shifts to {u,v} ∈ t – indeed, if shifts are performed in the opposite order,

then after shifting {v,w} ∈ s to {u,v} ∈ t and before shifting {y,z} ∈ s to {x ,y} ∈ t , we would

create either a base triple or a pseudoknot. Our strategy to e�ciently compute theMS2 distance

between secondary structures s and t will be to (1) enumerate all simple cycles in the con�ict

digraph G = (V ,E) and to (2) apply an integer programming (IP) solver to solve the minimum

feedback vertex set (FVS) problemV ′ ⊆ V . Noticing that the induced digraphG = (V ,E), where
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V = V −V ′ and E = E ∩ (V ×V ), is acyclic, we then (3) topologically sort G, and (4) perform

shift moves from V in topologically sorted order.

We now illustrate the de�nitions and the execution of the algorithm for a tiny example where

s = {(1,5), (10,15), (20,25)} and t = {(5,10), (15,20)}. From De�nition 4.8, there is only one

equivalence class X = {1,5,10,15,20,25} and it is a path of type 1, as illustrated in Figure 4.3,

where b1 = 1, a1 = 5, b2 = 10, a2 = 15, b3 = 20, a3 = 25. From De�nition 4.10, there are 4

vertices in the con�ict digraph G = (V ,E), where v1 = (10,5,1), v2 = (5,10,15), v3 = (20,15,10),

v4 = (15,20,25) – recall the convention from that de�nition that vertex v = (x ,y,z) means that

base pair {y,z} ∈ s and base pair {x ,y} ∈ t , so that the pivot position y is shared by base

pairs from both s and t . From De�nition 4.11, there are only two directed edges, v1 → v3 since

|f latten(v1) ∩ f latten(v2)| ≤ 1 and v1.s touches v2.t , and |f latten(v2) ∩ f latten(v4)| ≤ 1 and

v2 → v4 since v2.s touches v4.t . Note there is no edge from v1 to v2, or from v2 to v3, or from

v3 to v4, since their overlap has size 2 – for instance f latten(v1) = {1,5,10}, f latten(v2) =

{5,10,15}, and f latten(v1)∩ f latten(v2) = {5,10} of size 2. There is no cycle, so the constraint

(†) in line 7 of Algorithm 4 is not applied; however the constraint (‡) does apply, so that xv1 +

xv2 ≤ 1, xv2 +xv3 ≤ 1, xv3 +xv4 ≤ 1. It follows that there are three possible IP solutions for the

vertex set V .

Case 1: V = {v1,v3}

Then v1.s = (1,5), v3.s = (10,15) so V .s = {(1,5),(10,15)} and by lines 11-14 we remove base

pair (20,25) from s . Now G = (V ,E), where E = {v1 → v3}, so topological sort is trivial and we

complete the trajectory by applying shift v1 and then shift v3. Trajectory length is 5.

Case 2: V = {v1,v4}

Then v1.s = (1,5), v4.s = (20,25) so V .s = {(1,5),(20,25)} and by lines 11-14 we remove base
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Algorithm 4 Shortest MS2 folding trajectory from s to t
Input: Secondary structures s,t for RNA sequence a1, . . . ,an
Output: Folding trajectory
s = s0,s1, . . . ,sm = t , where s0, . . . ,sm are secondary structures, m is the minimum possible
value for which si is obtained from si−1 by a single base pair addition, removal or shift for each
i = 1, . . . ,m.
. First, initialize the variable numMoves to 0, and the list moveSequence to the empty list [ ]. Recall
that BP2 = {(x ,y) : (x ,y) ∈ t , (s − t)[x] = 0, (s − t)[y] = 0}. Bear in mind that s is constantly being
updated, so actions performed on s depend on its current value.
. remove base pairs from s that are untouched by t

1 BP1 = {(x ,y) : (x ,y) ∈ s, (t − s)[x] = 0, (t − s)[y] = 0}
2 for (x ,y) ∈ BP1 do
3 remove (x ,y) from s; numMoves = numMoves+1
4 end for
. de�ne con�ict digraph G = (V ,E) on updated s and unchanged t

5 de�ne V by equation (4.20)
6 de�ne E by equation (4.21)
7 de�ne con�ict digraph G = (V ,E)
. IP solution of minimum feedback arc set problem

8 maximize
∑
v ∈V xv where xv ∈ {0,1}, subject to constraints (†) and (‡)

. constraint to remove vertex from each simple cycle of G
9 (†)

∑
v ∈C

xv < ||C || for each simple directed cycle C of G

. constraint to ensure shift moves cannot be applied if they share same base pair from s or t
10 (‡) xv +xv ′ ≤ 1, for all pairs of verticesv = (x ,y,z) andv ′ = (x ′,y ′,z ′) with ||{x ,y,z}∩{x ′,y ′,z ′}|| = 2
. de�ne IP solution acyclic digraph G = (V ,E)

11 V = {v ∈ V : xv = 1}; V ′ = {v ∈ V : xv = 0}
12 E = {(v,v ′) : v,v ′ ∈ V ∧ (v,v ′) ∈ E}
13 G = (V ,E)
. handle special, closed 2-cycles

14 for each closed 2-cycle [x] = {a1,a2,a3,a4} as depicted in Figure 4.5 do
15 if [x] is of type A as depicted in Figure 4.5a then
16 remove base pair from s by line 1 of equation (4.23)
17 end if
18 if [x] is of type B as depicted in Figure 4.5b then
19 remove base pair from s by line 1 of equation (4.24)
20 end if
21 end for
. remove base pairs from s that are not involved in a shift move

22 V .s = {(x ,y) : ∃v ∈ V (v .s = (x ,y))}
23 for (x ,y) ∈ s − t do
24 if if (x ,y) < V .s then
25 remove (x ,y) from s; numMoves = numMoves+1
26 end if
27 end for
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. topological sort for IP solution G = (V ,E)
28 topological sort of G using DFS [125] to obtain total ordering ≺ on V

29 for v = (x ,y,z) ∈ V in topologically sorted order ≺ do
30 shift {y,z} to {x ,y} in s; numMoves = numMoves+1
31 end for
. add remaining base pairs from t − s , e.g. from BP2 and type 4,5 paths in Figure 4.3

32 for (x ,y) ∈ t − s do
33 add (x ,y) to s; numMoves = numMoves+1
34 end for
35 return folding trajectory, numMoves

pair (10,15) from s . NowG = (V ,E), where E = ∅, so topological sort is trivial and we complete

the trajectory by applying shift v1 and then shift v4, or by applying shift v4 and then shift v1.

Trajectory length is 5.

Case 3: V = {v2,v4}

Then v2.s = (10,15), v4.s = (20,25) so V .s = {(10,15),(20,25)} and by lines 11-14 we remove

base pair (1,5) from s . Now G = (V ,E), where E = {v2 → v4}, so topological sort is trivial and

we complete the trajectory by applying shift v2 and then shift v4. Trajectory length is 5.

Examples to illustrate IP Algorithm 4

We illustrate concepts de�ned so far with three examples: a toy 20 nt RNA sequence, a 25 nt

bistable switch, and the 56 nt spliced leader RNA from L. collosoma.

20 nt sequence For the toy 20 nt sequence GGGAAAUUUC CCCAAAGGGG with initial

structure s shown in Figure 4.6a, and target structure t shown in Figure 4.6b, the corresponding

con�ict digraph is shown in Figure 4.6c. This is a toy example, since the empty structure is

energetically more favorable than either structure: free energy of s is +0.70 kcal/mol, while

that for t is +3.30 kcal/mol. The con�ict digraph contains 6 vertices, 10 directed edges, and 3
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Figure 4.6: Con�ict digraph for a 20 nt toy example with sequence GGGAAAUUUC
CCCAAAGGGG, with initial structure s whose free energy is +0.70 kcal/mol, and
target structure t whose free energy is + 3.30 kcal/mol. The con�ict digraph contains
3 simple cycles: a �rst cycle {(8, 20, 10), (9, 19, 11), (18, 10, 20), (19, 9, 1)} of size 4, a
second cycle {[(8, 20, 10), (19, 9, 1)} of size 2, and a third cycle {(18, 10, 20), (9, 19, 11)}

of size 2.

simple cycles: a �rst cycle {(8, 20, 10), (9, 19, 11), (18, 10, 20), (19, 9, 1)} of size 4, a second cycle

{[(8, 20, 10), (19, 9, 1)} of size 2, and a third cycle {(18, 10, 20), (9, 19, 11)} of size 2.

Bistable switch Figure 4.7 depicts the secondary structure for the metastable and the MFE

structures, as well as the corresponding con�ict digraphs for the 25 nt bistable switch, with se-

quence UGUACCGGAA GGUGCGAAUC UUCCG, taken from Figure 1(b).1 of [127], in which

the authors report structural probing by comparative imino proton NMR spectroscopy. The

minimum free energy (MFE) structure has -10.20 kcal/mol, while the next metastable struc-

ture has -7.40 kcal/mol. Two lower energy structures exist, having -9.00 kcal/mol resp. -7.60

kcal/mol; however, each is a minor variant of the MFE structure. Figures 4.7a and 4.7b de-

pict respectively the metastable and the MFE secondary structures for this 25 nt RNA, while

Figures 4.7c and 4.7d depict respectively the MFE con�ict digraph and the metastable con�ict

digraph. For this 25 nt bistable switch, let s denote the metastable structure and t denote the



Minimum length RNA folding trajectories 134

MFE structure. We determine the following:

s = [(1, 16), (2, 15), (3, 14), (4, 13), (5, 12), (6, 11)] with 6 base pairs

t = [(6, 25), (7, 24), (8, 23), (9, 22), (10, 21), (11, 20), (12, 19), (13, 18)] with 8 base pairs

A = {6, 11, 12, 13}

B = {1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25}

C = {17}

D = ∅

BP1 = {(1, 16), (2, 15), (3, 14)} with 3 base pairs

BP2 = {(7, 24), (8, 23), (9, 22), (10, 21)} with 4 base pairs

B0 = {4, 5, 18, 19, 20, 25}

B1 = {1, 2, 3, 14, 15, 16}

B2 = {7, 8, 9, 10, 21, 22, 23, 24}

and there are three equivalence classes: X1 = {4, 13, 18} of type 2, X2 = {5, 12, 19} of type 2,

and X3 = {6, 11, 20, 25} of type 4. Figure 4.7c depicts the MFE con�ict digraph, where s de-

notes the metastable structure and t denotes the MFE structure. In the MFE con�ict digraph

G = (V ,E), vertices are triplet nodes (x ,y,z), where (unordered) base pair {y,z} ∈ s belongs

to the metastable [resp. MFE] structure, and (unordered) base pair {x ,y} ∈ t belongs to the

MFE [resp. metastable] structure. A direct edge (x ,y,z) → (u,v,w) occurs if {y,z} ∈ s touches

or crosses {u,v} ∈ t . Both the MFE and the metastable con�ict digraphs are acyclic. Al-

though there are no cycles, the IP solver is nevertheless invoked in line 7 with constraint (‡),

resulting in either a �rst solution V = {(18, 13, 4), (19, 12, 5), (20, 11, 6)} or a second solution
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Figure 4.7: Con�ict digraphs for the 25 nt bistable switch with sequence UGUACCG-
GAA GGUGCGAAUC UUCCG taken from Figure 1(b).1 of [127], which reports results
from structural probing by comparative imino proton NMR spectroscopy. (a) Mini-
mum free energy (MFE) structure having -10.20 kcal/mol. (b) Alternate metastable
structure having next lowest free free energy of -7.40 kcal/mol. Two lower energy
structures exist, having -9.00 kcal/mol resp. -7.60 kcal/mol; however, each is a minor
variant of the MFE structure. (c) RNA con�ict digraph G = (V ,E), having directed
edges (x ,y,z) → (u,v,w) if the (unordered) base pair {y,z} ∈ s touches or crosses the
(unordered) base pair {u,v} ∈ t . Here, s is in the metastable structure shown in (b)
having -7.40 kcal/mol, while t is the MFE structure shown in (a) having -10.20 kcal/-
mol. The con�ict digraph represents a necessary order of application of shift moves,
in order to avoid the creation of base triples or pseudoknots. Note that the digraphG

is acyclic, but the IP solver must nevertheless be invoked with constraint (‡) that pre-
cludes both vertices (20,11,6) and (25,6,11) from belonging to the solutionV . (d) RNA
con�ict digraph G ′ = (V ′,E ′), having similar de�nition in which roles of s and t are
reversed – i.e. MS2 folding pathways from the MFE structure to the (higher energy)

metastable structure.

V = {(18, 13, 4), (19, 12, 5), (25, 6, 11)}. Indeed, the overlap of vertices (20, 11, 6) and (25, 6, 11)

has size 2, so one of these vertices must be excluded from V in 8 of Algorithm 4. Assume that

the �rst solution is returned by the IP solver. Then we obtain the following minimum length

MS2 folding trajectory from metastable s to MFE t . Vertex and edge set of G = (V ,E) are given



Minimum length RNA folding trajectories 136

by the following.

V = {(18, 13, 4), (19, 12, 5), (20, 11, 6), (25, 6, 11)}

E = {(18, 13, 4)→ (19, 12, 5), (18, 13, 4)→ (20, 11, 6), (18, 13, 4)→ (25, 6, 11),

(19, 12, 5)→ (20, 11, 6), (19, 12, 5)→ (25, 6, 11)}

One minimum length MS2 folding trajectories is given by the following.

1. UGUACCGGAAGGUGCGAAUCUUCCG

2. 1234567890123456789012345

0. ((((((....))))))......... metastable s

1. .(((((....))))).......... remove (1,16)

2. ..((((....))))........... remove (2,15)

3. ...(((....)))............ remove (3,14)

4. ....((....))(....)....... shift (4,13) to (13,18)

5. .....(....)((....))...... shift (5,12) to (12,19)

6. ..........(((....)))..... shift (6,11) to (11,20)

7. ......(...(((....)))...). add (7,24)

8. ......((..(((....)))..)). add (8,23)

9. ......(((.(((....))).))). add (9,22)

10. ......(((((((....))))))). add (10,21)

11. .....((((((((....)))))))) add (6,25)

Algorithm 4 executes the following steps: (1) Remove base pairs in BP1 from s . (2) Compute

con�ict digraph G = (V ,E). (3) Apply IP solver to determine maximum size V ⊆ V , subject to

removing a vertex from each cycle (†) and not allowing any two vertices in V to have overlap
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of size 2. (4) Topologically sorting the induced digraphG = (V ,E). (5) Execute shifts according

to total ordering ≺ given by topological sort. (6) Add remaining base pairs from t −s . Note that

in trajectory steps 7-10, the base pair added comes from BP2, while that in step 11 is a base pair

from t that is “leftover”, due to the fact that triplet node (shift move) (25,6,11) does not belong

to IP solution V .

Spliced leader from L. collosoma For the 56 nt L. collosoma spliced leader RNA, whose

switching properties were investigated in [128] by stopped-�ow rapid-mixing and temperature-

jump measurements, the MFE and metastable structures are shown in Figure 4.8, along with the

con�ict digraph for MS2 folding from the metastable structure to the MFE structure. This RNA

has sequence AACUAAAACA AUUUUUGAAG AACAGUUUCU GUACUUCAUU GGUAUGUAGA

GACUUC, an MFE structure having -9.40 kcal/mol, and an alternate metastable structure hav-

ing -9.20 kcal/mol. Figure 4.8 displays the MFE and metastable structures for L. collosoma

spliced leader RNA, along with the con�ict digraph for MS2 folding from the metastable to the

MFE structure.

For L. collosoma spliced leader RNA, if we let s denote the metastable structure and t denote

the MFE structure, then there are seven equivalence classes: X1 = {10, 45, 31, 23} of type 4;

X2 = {11, 43, 33} of type 3; X3 = {12, 42, 34, 20} of type 4, X4 = {13, 41, 35, 19} of type 4,

X5 = {22, 32, 44} of type 3, X6 = {24, 54, 30, 48} of type 1, and X7 = {25, 53, 29, 49} of type 1.

As in the case with the 25 nt bistable switch, the equivalence classes for the situation where

s and t are interchanged are identical, although type 1 paths become type 4 paths (and vice

versa), and type 2 paths become type 3 paths (and vice versa). Output from our (optimal) IP

algorithm is as follows.
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Figure 4.8: Con�ict digraph for the 56 nt spliced leader RNA from L. collosoma

with sequence AACUAAAACA AUUUUUGAAG AACAGUUUCU GUACUUCAUU
GGUAUGUAGA GACUUC. (a) Metastable structure having free energy of -9.20 kcal/-
mol. (b) Minimum free energy (MFE) structure having free energy of -9.40 kcal/mol.
(c) The RNA con�ict digraph for refolding from metastable s to MFE t contains 12
vertices, 61 directed edges and no directed cycles. Free energies and minimum free
energy (MFE) and metastable structures in (a) and (b) computed by Vienna RNA Pack-

age [27], while secondary structure created with VARNA [129].
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AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGAGACUUC

12345678901234567890123456789012345678901234567890123456

Number of Nodes: 12

Number of edges: 71

Number of cycles: 5

s: .......................((((((((((((.....)))))..))))))).. -9.20 kcal/mol

t: .......((((((..(((((.((((...)))).)))))..))).)))......... -9.40 kcal/mol

0. .......................((((((((((((.....)))))..))))))).. metastable s

1. .......................((.(((((((((.....)))))..)))).)).. remove (26,52)

2. .......................((..((((((((.....)))))..)))..)).. remove (27,51)

3. .......................((...(((((((.....)))))..))...)).. remove (28,50)

4. .......................((....((((((.....)))))..)....)).. remove (29,49)

5. .......................((.....(((((.....))))).......)).. remove (30,48)

6. .......................((...).(((((.....)))))........).. (25,53) -> (25,29)

7. .......................((...))(((((.....)))))........... (24,54) -> (24,30)

8. .........(.............((...)).((((.....)))))........... (31,45) -> (10,45)

9. .........(...........(.((...)).)(((.....))).)........... (32,44) -> (22,32)

10. .........((..........(.((...)).).((.....))).)........... (33,43) -> (11,43)

11. .........(((.........(.((...)).)..(.....))).)........... (34,42) -> (12,42)

12. .........(((......(..(.((...)).)..)......)).)........... (35,41) -> (19,35)

13. .......(.(((......(..(.((...)).)..)......)).).)......... add (8,47)

14. .......(((((......(..(.((...)).)..)......)).)))......... add (9,46)

15. .......(((((...(..(..(.((...)).)..)..)...)).)))......... add (16,38)

16. .......(((((...((.(..(.((...)).)..).))...)).)))......... add (17,37)

17. .......(((((...((((..(.((...)).)..))))...)).)))......... add (18,36)

18. .......(((((...(((((.(.((...)).).)))))...)).)))......... add (20,34)

19 .......(((((...(((((.((((...)))).)))))...)).)))......... add (23,31)

20. .......((((((..(((((.((((...)))).)))))..))).)))......... add (13,41)
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Number of base pair removals: 5

Number of base pair additions: 8

Number of base pair shifts: 7

MS2 Distance: 20

Figure 4.8a depicts the initial structure s , and Figure 4.8b depicts the target minimum free

energy structure t for spliced leader RNA from L. collosoma. The con�ict digraph for the re-

folding from s to t is shown in Figure 4.8c. Figure 4.9a displays the rainbow diagram for spliced

leader RNA from L. collosoma, in which the base pairs for the initial structure s (Figure 4.8a)

are shown below the line in red, while those for the target structure t (Figure 4.8b) are shown

above the line in blue. Figure 4.9c displays the Arrhenius tree, where leaf index 2 represents

the initial metastable structure s with free energy -9.20 kcal/mol as shown in Figure 4.8a, while

leaf index 1 represents the target MFE structure t with free energy -9.40 kcal/mol as shown in

Figure 4.8b. In Figure 4.9b, the dotted blue line depicts the free energies of structures in the

shortest MS2 folding trajectory for spliced leader, as computed by Algorithm 4, while the solid

red line depicts the free energies of the energy-optimal folding trajectory as computed by the

programs RNAsubopt [130] and barriers [131].

xpt riboswitch from B. subtilis In this section, we describe the shortest MS2 folding tra-

jectory from the initial gene ON structure s to the target gene OFF structure t for the 156 nt

xanthine phosphoribosyltransferase (xpt) riboswitch from B. subtilis, where the sequence and

secondary structures are taken from Figure 1A of [132]. The gene ON [resp. OFF] structures

for the 156 nt xpt RNA sequence AGGAACACUC AUAUAAUCGC GUGGAUAUGG CACG-

CAAGUU UCUACCGGGC ACCGUAAAUG UCCGACUAUG GGUGAGCAAU GGAACCGCAC
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Figure 4.9: (a) Rainbow diagram for spliced leader RNA from L. collosoma, in which
the base pairs for the initial structure s (Figure 4.8a) are shown below the line in
red, while those for the target structure t (Figure 4.8b) are shown above the line in
blue. (b) Free energies of structures in the shortest MS2 folding trajectory for spliced
leader are shown by the dotted blue line, while those for the energy-optimal MS2

folding trajectory are shown in the solid red line. Algorithm 4 was used to compute
the shortest MS2 trajectory, while the programs RNAsubopt [130] and barriers [131]

were used to compute the energy-optimal folding trajectory.
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GUGUACGGUU UUUUGUGAUA UCAGCAUUGC UUGCUCUUUA UUUGAGCGGG CAAUGCU-

UUU UUUAUU are displayed in Figure 4.10a [resp. 4.10b], while Figure 4.10c shows the rainbow

diagram, where lower red arcs [resp. upper blue arcs] indicate the base pairs of the initial gene

ON [resp. target gene OFF] structure. The default structure for the xpt riboswitch in B. subtilis

is the gene ON structure; however, the binding of a guanine nucleoside ligand to cytidine in

position 66 triggers a conformational change to the gene OFF structure. Figure 4.10d depicts

the con�ict digraph G = (V ,E) containing 18 vertices, 113 directed edges, and 1806 directed

cycles, which is used to compute the shortest MS2 folding trajectory from the gene ON to the

gene OFF structure.

Figures 4.11a and 4.11b show an enlargement of the initial gene ON structure s and target gene

OFF structure t , which allows us to follow the moves in a shortest MS2 trajectory that is dis-

played in Figure 4.11c.

Near-optimal IP algorithm

Since the exact IP Algorithm 4 could not compute the shortestMS2 folding trajectories between

the minimum free energy (MFE) structure and Zuker suboptimal structures for some Rfam

sequences of even modest size (≈ 100 − 150 nt), we designed a near-optimal IP algorithm

(presented in this section), and a greedy algorithm (presented in Section 4.5.2). The exact

branch-and-bound algorithm from Section 4.5.1 was used to debug and cross-check the exact

IP Algorithm 4.

The run time complexity of both the exact IP Algorithm 4 and the greedy algorithm is due

to the possibly exponentially large set of directed simple cycles in the RNA con�ict digraph.
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Figure 4.10: Gene ON and gene OFF structures and the RNA con�ict digraph for the
156 nt xanthine phosphoribosyltransferase (xpt) riboswitch from B. subtilis – struc-
tures consistent with in-line probing data taken from Figure 1A of [132]. (a) Gene
ON structure (default) in absence of free guanine, having (computed) free energy of
-33.11 kcal/mol. (b) Gene OFF structure when guanine binds cytidine in position 66,
having (computed) free energy of -56.20 kcal/mol (guanine not shown). (c) Con�ict
digraph G = (V ,E), containing 18 vertices, 113 directed edges, and 1806 directed cy-
cles. Free energies and minimum free energy (MFE) and metastable structures in (a)
and (b) computed by Vienna RNA Package [27], while secondary structure created

with VARNA [129].
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Figure 4.11: (a) Rainbow diagram with red gene ON structure below line and blue
gene OFF structure above line. Rainbow diagrams allow one to determine by visual
inspection when base pairs touch or cross. (b) Shortest MS2 folding trajectory from
the gene ON structure s to the gene OFF structure t for the 156 nt xpt riboswitch from
B. subtilis, described in the caption to Figure 4.10. Note the initial elongation of the P1
helix by the �rst shift, followed by the stepwise removal of the anti-terminator and
construction of the terminator loops by shift 2-10, followed by base pair additions
to lengthen the terminator loop. (c) Free energies of structures in the shortest MS2

folding trajectory for xpt are shown by the dotted blue line, while those for the an en-
ergy near-optimal MS1 folding trajectory are shown in the solid red line. Algorithm 4
was used to compute the shortest MS2 trajectory, while the program RNAtabuPath
[114] was used to compute the energy near-optimal MS1 folding trajectory. The size
of the 156 nt xpt riboswitch and the fact that the program RNAsubopt would need to
generate all secndary structures within 30 kcal/mol of the minimum free energy -54.1
kcal/mol preclude any possibility that the optimal MS2 trajectory can be computed

by application of the program barriers [131].
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By designing a 2-step process, in which the feedback arc set (FAS) problem is �rst solved for a

coarse-grained digraph de�ned below, and subsequently the feedback vertex set (FVS) problem

is solved for each equivalence class, we obtain a much faster algorithm to compute a near-

optimal MS2 folding trajectory between secondary structures s and t for the RNA sequence

{a1, . . . ,an}. In the �rst step, we use IP to solve the feedback arc set (FAS) problem for a par-

ticular coarse-grained digraph de�ned below, whose vertices are the equivalence classes as

de�ned in De�nition 4.8. The number of cycles for this coarse-grained digraph is quite man-

ageable, even for large RNAs, hence the FAS can be e�ciently solved. After removal of an arc

from each directed cycle, topological sorting is applied to determine a total ordering according

to which each individual equivalence class is processed. In the second step, Algorithm 4 is

applied to each equivalence class in topologically sorted order, whereby the feedback vertex

set (FVS) problem is solved for the equivalence class under consideration. In the remainder

of this section, we �ll in the details for this overview, and then present pseudocode for the

near-optimal Algorithm 5.

Given secondary structures s and t for the RNA sequence {a1, . . . ,an}, we partition the set [1,n]

into disjoint sets A,B,C,D as in Section 4.3 by equations (4.5-4.8). The union A ∪ B is subse-

quently partitioned into the equivalence classes X1, . . . ,Xm , de�ned in De�nition 4.8. De�ne

the coarse-grain, con�ict digraph G0 = (V0,E0), whose vertices are the indices of equivalence

classes X1, . . . ,Xm , and whose directed edges i → j are de�ned if there exists a base pair

(x ,y) ∈ s , x ,y ∈ Xi which crosses a base pair (u,v) ∈ t , u,v ∈ X j . Although there may be

many such base pairs (x ,y) ∈ s and (u,v) ∈ t , there is only one edge between i and j; i.e. G is a

directed graph, not a directed multi-graph. If i → j is an edge, then we de�ne Ni, j to be the set

of all base pairs (u,v) ∈ s , u,v ∈ Xi that cross some base pair (u,v) ∈ t , u,v ∈ X j , and let ni, j the
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number of base pairs in Ni, j . Formally, given equivalence classes X1, . . . ,Xm , the coarse-grain,

con�ict digraph G0 = (V0,E0) is de�ned by

V0 = {1, . . . ,m} (4.25)

E0 =
{
i → j : ∃(x ,y) ∈ s∃(u,v) ∈ t

�
x ,y ∈ Xi ∧ u,v ∈ X j ∧ (x ,y) crosses (u,v) �}

(4.26)

A directed edge from i to j may be denoted either by i → j ∈ E0 or by (i,j) ∈ E0. For each edge

i → j, we formally de�ne Ni, j and ni, j by the following.

Ni, j =
{(x ,y) ∈ s : x ,y ∈ Xi ∧ ∃(u,v) ∈ t�

u,v ∈ X j ∧ (x ,y) crosses (u,v) �}
(4.27)

ni, j =
���Ni, j

��� (4.28)

We now solve the feedback arc set (FAS) problem, rather than the feedback vertex set (FVS)

problem, for digraphG0, by applying an IP solver to solve the following optimization problem:

1. maximize
∑

(i, j)∈E0 ni, j · xi, j subject to constraint (]):

(])
∑

(i, j )∈E0
i, j ∈C

xi, j < |C |

for every directed cycle C = (i1,i2,i3, . . . ,ik−1,ik )

This IP problem can be quickly solved, since there is usually only a modest number of directed

cycles for the coarse-grained digraph. For each directed edge or arc i → j that is to be removed
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from a directed cycle, we remove all base pair (x ,y) ∈ from structure s that cross some base

pair (u,v) ∈ t for which u,v ∈ X j .

We now construct the usual (�ne-grain) con�ict digraph G(s,t), according to De�nition 4.12,

on the updated structure s and (unchanged) structure t . Note that by removing feedback arcs

from coarse-grain digraph G0, certain base pairs from s were removed, thus possibly discon-

necting some of the equivalence classes X1, . . . ,Xm into two or more connected components.

It follows that in constructingG(s,t), new equivalence classes X ′1, . . . ,X
′
m′ must �rst be recom-

puted for the updated structure s and (unchanged) structure t . Because G0 has been rendered

acyclic, it follows that every directed cycle in �ne-grain con�ict digraph G(s,t) must be prop-

erly contained within one of X ′1, . . . ,X
′
m′ , each of whose expected size is small. We now apply

the optimal IP Algorithm 4.

Examples to illustrate near-optimal IP Algorithm 5

In this section, we trace the execution of the near-optimal Algorithm 5 on the same examples

from Section 4.5.3.1, i.e. for a bistable switch, spliced leader RNA from L. collosoma, and the

XPT riboswitch.

Bistable switch Section 4.5.3.1 describes the metastable and MFE secondary structures for a

25 nt bistable switch, depicted in Figure 4.7. In that section, the execution of (exact) IP Algo-

rithm 4 is explained, which produces an optimal 11-step folding trajectory from the metastable

to MFE structure. Recall as well that for metastable structure s and MFE structure t , we have
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Algorithm 5 Near-optimal MS2 distance from s to t
Input: Secondary structures s,t for RNA sequence a1, . . . ,an
Output: Near-optimal folding trajectory
s = s0,s1, . . . ,sm = t , where s0, . . . ,sm are secondary structures, m is a near-optimal value
for which si is obtained from si−1 by a single base pair addition, removal or shift for each
i = 1, . . . ,m.
. First, initialize the variable numMoves to 0, and the list moveSequence to the empty list [ ].
De�ne BP1 = {(x ,y) : (x ,y) ∈ t , (t − s)[x] = 0, (t − s)[y] = 0}; i.e. BP1 consists of those base pairs
in s which are not touched by any base pair in t . De�ne BP2 = {(x ,y) : (x ,y) ∈ t , (s − t)[x] =
0, (s − t)[y] = 0}; i.e. BP2 consists of those base pairs in t which are not touched by any base pair in
s .
. remove base pairs from s that are untouched by t

1 for (x ,y) ∈ BP1 do
2 s = s − {(x ,y)}
3 numMoves = numMoves + 1
4 end for
. de�ne equivalence classes on updated s,t

5 [1,n] = A ∪ B ∪C ∪ D by equations (4.5-4.8)
6 determine equivalence classes X1, . . . ,Xm with union A ∪ B

. de�ne digraph G0 on collection of equivalence classes
7 de�ne coarse-grain, con�ict digraph G0 = (V0,E0) where
8 V0 = {1, . . . ,m}
9 E0 = {(i,j) : 1 ≤ i,j ≤ m} by equation (4.26)
. IP solution of feedback arc set problem (not feedback vertex set problem)

10 maximize
∑

(i, j)∈E0 ni, j · xi, j subject to constraint (]):
11 (])

∑
(i, j )∈E0
i→j ∈C

xi, j < ||C || for every directed cycle C = (i1,i2, . . . ,ik−1,ik )

. remove arc from each simple cycle whereni, j de�ned in equation (4.28)

12 Ẽ0 = {(i,j) : xi, j = 0} //Ẽ0 is set of edges that must be removed

. process the IP solution Ẽ0

13 for (i,j) ∈ Ẽ0 do
14 for (x ,y) ∈ Ni, j //Ni, j de�ned in De�nition 4.27 do
15 s = s − {(x ,y)} . remove base pair from s belonging to feedback arc
16 numMoves = numMoves + 1
17 end for
18 end for
19 apply IP Algorithm 14 to s,t
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s = [(1, 16), (2, 15), (3, 14), (4, 13), (5, 12), (6, 11)] with 6 base pairs

t = [(6, 25), (7, 24), (8, 23), (9, 22), (10, 21), (11, 20), (12, 19), (13, 18)] with 8 base pairs

A = {6, 11, 12, 13}

B = {1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25}

C = {17}

D = ∅

BP1 = {(1, 16), (2, 15), (3, 14)} with 3 base pairs

BP2 = {(7, 24), (8, 23), (9, 22), (10, 21)} with 4 base pairs

B0 = {4, 5, 18, 19, 20, 25}

B1 = {1, 2, 3, 14, 15, 16}

B2 = {7, 8, 9, 10, 21, 22, 23, 24}

The initial digraph constructed in lines 5-8 of the near-optimal IP Algorithm 5 is de�ned to

have as vertex set V the equivalence classes (maximal paths of types 1-5) de�ned on A ∪ B0 =

{4, 5, 6, 11, 12, 13, 18, 19, 20, 25}. There are only three such equivalence classes: (1) type 2 path a

with nodes 4,13,18, where 4 is green, 13 is yellow, 18 is red; (2) type 2 pathb with nodes 5, 12, 19,

where 5 is green, 12 is yellow, 19 is red; (3) type 4 path c with nodes 6, 11, 20, 25, where 6 is

yellow, 11 is yellow, 20 is red, 25 is red. Figure 4.12a depicts the directed graph, whose vertices

are equivalence classes a,b,c , and whose directed edges X → Y are de�ned from equivalence

class X to equivalence class Y if there exists a base pair (u,v) ∈ s with u,v ∈ X that crosses

a base pair (x ,y) ∈ t with x ,y ∈ Y . Directed edges are labeled by equation (4.28), so that (1)
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Figure 4.12: Coarse-grain digraph constructed in initial phase (lines 5-8) of near-
optimal Algorithm 5 for the bistable switch discussed in Section 4.5.3.1 (left panel) and
spliced leader RNA from L. collosoma discussed in Section 4.5.3.1. Nodes are equiva-
lence classes X1, . . . ,Xm of the collection of positions x ∈ A∪ B0 that are base-paired
in either s or t , but that do not belong to any base pair of s ∩ t , and for which the
equivalence class [x] of x has size > 2. Directed edges are labeled by the number ni, j
of crossings of a base pair in Xi with a base pair in X j , as de�ned in equation (4.28).
There is no directed cycle in the bistable switch digraph, depicted in the left panel,
hence line 15 of near-optimal Algorithm 5 proceeds by applying the (exact) optimal

Algorithm 4.

a → b has label 1, since (4,13) ∈ s crosses (12,19) ∈ t ; (2) a → c has label 2, since (4,13) ∈ s

crosses (11,20) ∈ t , and (4,13) ∈ s crosses (6,25) ∈ t ; (3) b → c has label 2, since (5,12) ∈ s

crosses (11,20) ∈ t , and (5,12) ∈ s crosses (6,25) ∈ t .

Algorithm 5 executes the following steps: (1) Remove base pairs in BP1 from s . (2) Compute

the edge-labeled, coarse-grain con�ict digraph G = (V ,E) as depicted in Figure 4.12a. (3) Solve

the feedback arc set (FAS) problem with an additional constraint: maximize
∑

(i, j)∈E ni, j · xi, j

subject to the constraint that
∑

(i, j)∈E ;i, j ∈C xi, j < ||C || for every directed cycleC , where xi, j is a
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binary variable that indicates presence of directed edge from i to j. Since there are no directed

cycles, nothing need be done. (4) Perform topological sort on the digraph G, resulting in the

total ordering a ≺ b ≺ c . (5) Apply the (exact) IP Algorithm 4 to equivalence class a, then to b,

then to c , where for a given equivalence class X we de�ne a (new) �ne-grain con�ict digraph

on X as in line 6 of IP Algorithm 4, and proceed. For equivalence class (type 2 path) a =

{4,13,18}, this results in the (trivial) trajectory comprising shift (4,13) ∈ s → (13,18) ∈ t . For

equivalence class (type 2 path) b = {5, 12, 19}, this results in the (trivial) trajectory comprising

shift (5,12) ∈ s → (12,19) ∈ t . For equivalence class (type 4 path) c = {6, 11, 20, 25}, this

results in the (2-move) trajectory comprising shift (6,11) ∈ s → (6,25) ∈ t , followed by base

pair addition (11,20). (6) Add base pairs from BP2. The resulting 11-step folding trajectory

from s to t produced by near-optimal Algorithm 5 is identical to that produced by the (exact)

IP Algorithm 4 described in Section 4.5.3.1.

Spliced leader from L. collosoma Section 4.5.3.1 describes the metastable structure s and

MFE secondary structure t for the 56 nt L. collosoma spliced leader RNA, depicted in Fig-

ure 4.9a,b. From equations (4.5,4.6), we have the set A of yellow nodes incident to both a green

and red edge, the set B0 of green or red nodes adjacent to a yellow node, and 6 equivalence
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classes on the set A ∪ B0 as follows:

A = {24, 25, 29, 30, 31, 32, 34, 35, 41, 42, 43, 45}

B0 = {10, 11, 12, 13, 19, 20, 22, 23, 33, 44, 48, 49, 53, 54}

a = {10, 45, 31, 23} path of type 4

b = {11, 43, 33} path of type 3

c = {12, 42, 34, 20} path of type 4

d = {13, 41, 35, 19} path of type 4

e = {22, 32, 44} path of type 3

f = {24, 54, 30, 48} path of type 1

д = {25, 53, 29, 49} path of type 1

Figure 4.12b displays the edge-labeled directed graph, whose vertices are a,b,c,d,e,f ,д and

whose direct edges X → Y are de�ned if a base pair (i,j) ∈ s with i,j ∈ X crosses a base

pair (x ,y) ∈ t with x ,y ∈ Y . As in the bistable switch, there is no directed cycle in Figure 4.12b

hence no need to remove any directed edge before proceeding to determine the optimal folding

trajectory for each equivalence class. The resulting 20-step folding trajectory from s to t pro-

duced by near-optimal Algorithm 5 is identical to that produced by the (exact) IP Algorithm 4

described in Section 4.5.3.1.

XPT riboswitch Section 4.5.3.1 describes the metastable structure s and MFE secondary struc-

ture t for the 156 nt XPT riboswitch, depicted in Figure 4.11a,b. The edge-labeled, coarse-grain

directed graph whose vertices are the equivalence classes de�ned on the set A ∪ B0 is shown

in Figure 4.13a. This graph has 10 nodes, 59 edges (of which 56 have label 1, and 3 have label
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Figure 4.13: (a) Coarse-grain digraph constructed in initial phase (lines 5-8) of near-
optimal Algorithm 5 for the XPT riboswitch with gene ON structure s and gene OFF
structure t , as discussed in Section 4.5.3.1 and in the previous Figures 4.10, 4.11. (b) Let
s ′ denote the gene ON structure for XPT riboswitch after having removed base pairs
(u,v) ∈ s that are identi�ed in solution of the feedback arc set (FAS) problem in lines
6-9 of Algorithm 5. This panel displays the con�ict digraph constructed on A ∪ B0

from s ′ and t , where t is the target XPT structure shown in Figure 4.11b.

2), and 344 directed cycles. Applying the IP solver to maximize
∑

(i, j)∈E ni, j · xi, j subject to the

constraint that
∑

(i, j)∈E ;i, j ∈C xi, j < ||C || for every directed cycleC , we remove those arcs causing

a feedback loop i → j, where by ‘remove’ we mean to remove every base pair (u,v) ∈ s with

u,v ∈ Xi which crosses a base pair (x ,y) ∈ t . We have reduced the problem of �nding a near-

optimal trajectory from s to t to the simpler problem of �nding an (exact) optimal trajectory

from s ′ to t , where s ′ results from s after the base pair removals just described. We then apply

the (exact) IP Algorithm 4 on the con�ict digraph constructed from s ′ and t , having 9 nodes,

25 directed edges, and zero cycles, as shown in Figure 4.13b.
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Including the initial base pair removals, this results in the 29-step trajectory shown below

0. initial structure
1. remove (77,119)
2. remove (78,118)
3. remove (79,117)
4. remove (81,115)
5. remove (80,116)
6. shift (70,126)→ (10,70)
7. shift (71,125)→ (9,71)
8. shift (72,124)→ (8,72)
9. shift (75,121)→ (121,139)
10. shift (76,120)→ (120,140)
11. add(7,73)
12. add(6,74)
13. add(81,102)
14. add(79,103)
15. add(78,104)
16. add(77,105)
17. add(76,106)
18. add(126,134)
19. add(125,135)
20. add(124,136)
21. add(123,137)
22. add(122,138)
23. add(119,141)
24. add(118,142)
25. add(117,143)
26. add(116,144)
27. add(115,145)
28. add(114,146)
29. add(113,147)

Benchmarking results

We compared theMS2 distance with various distance measures on random and Rfam sequences

discribed in the following.
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Random sequences

Given a random RNA sequence a = a1, . . . an of length n, we generate a list L of all possible

base pairs, then choose with uniform probability a base pairs (x ,y) from L, add (x ,y) to the

secondary structure s being constructed, then remove all base pairs (x ′,y ′) from L that either

touch or cross (x ,y), and repeat these last three steps until we have constructed a secondary

structure having the desired number (n/5) of base pairs. If the list L is empty before comple-

tion of the construction of secondary structure s , then reject s and start over. The following

pseudocode describes how we generated the benchmarking data set, where for each sequence

length n = 10,15,20, · · · ,150 nt, twenty-�ve random RNA sequences were generated of length

n, with probability of 1/4 for each nucleotide, in which twenty secondary structures s,t were

uniformly randomly generated for each sequence so that 40% of the nucleotides are base-paired.

1. for n = 10 to 150 with step size 10

2. for numSeq = 1 to 25

3. generate random RNA sequence a = a1, . . . ,an of length n

4. generate 20 random secondary structures of a

5. for all
�20
2

�
= 190 pairs of structures s,t of a

6. compute optimal and near-optimal MS2 folding trajectories

from s to t

The number of computations per sequence length is thus 25 · 190 = 4750, so the size of the

benchmarking set is 15 · 4750 = 71,250. This benchmarking set is used in Figures 4.14 – 4.18.

Figure 4.14 compares various distance measures discussed in this chapter: MS2 distance com-

puted by the optimal IP Algorithm 4, approximate MS2 distance computed by the near-optimal
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Figure 4.14: Average lengths of folding trajectories produced by various algorithms,
depicted as a function of sequence length of random RNAs, where error bars indicate
±1 standard deviation. For each sequence length n = 10,15,20, · · · ,150 nt, twenty-�ve
random RNA sequences were generated of length n, with probability of 1/4 for each
nucleotide. For each RNA sequence, twenty secondary structures s,t were uniformly
randomly generated so that 40% of the nucleotides are base-paired. Thus the num-
ber of computations per sequence length is thus 25 · 190 = 4750, so the size of the
benchmarking set is 15 · 4750 = 71,250. Using this dataset, the average MS2 distance
was computed for both the exact IP Algorithm 4 and the near-optimal Algorithm 5.
In addition, the �gure displays pk −MS2 distance (allowing pseudoknots in interme-
diate structures) as computed by Algorithm 1, the MS1 distance (also known as base
pair distance), Hamming distance over 2, and provides a breakdown of the MS1 dis-
tance in terms of the number of base pair addition/removal moves “num base pair +/-

(optimal)” and the shift moves “num shift moves (optimal)”.

Algorithm 5, pk − MS2 distance that allows pseudoknotted intermediate structures, MS1 dis-

tance, and Hamming distance divided by 2. Additionally, this �gure distinguishes the number

of base pair additions/removals and shifts in the MS2 distance.

Figure 4.15a shows the scatter plots and Pearson correlation coe�cients all pairs of the distance

measures: MS2 distance, near-optimal MS2 distance, pk − MS2 distance, Hamming distance
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Figure 4.15: Pairwise correlations for optimal MS2 distance, pk −MS2 distance, near-
optimal MS2 distance, Hamming distance divided by 2, and MS1 distance (also called
base pair distance). For each two measures, scatter plots were created for the 71,250
many data points from the benchmarking set described in Figure 4.14. Pearson cor-
relation and normalized Pearson correlation values computed, where by normalized,
we mean that for each of the 71,250 data points, we consider the length-normalized

distance (distance divided by sequence length). These correlations are statistically
signi�cant – each Pearson correlation values has a p-value less than 10−8.

divided by 2, MS1 distance. In contrast to Figure 4.15, the second panel Figure 4.15b shows

the length-normalized values. It is unclear why MS2 distance has a slightly higher length-

normalized correlation with both Hamming distance divided by 2 and MS1 distance, than that

with approximate MS2 distance, as computed by Algorithm 5 – despite the fact that the latter

algorithm approximates MS2 distance much better than either Hamming distance divided by

2 or MS1 distance.

Figure 4.16 shows that run-time of Algorithms 4 and 5, where the former is broken down into

time to generate the set of directed cycles and the time for the IP solver. Since Algorithm 5
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Figure 4.16: Run time for the exact IP (optimal) algorithm 4 and the near-optimal
algorithm 5 to compute minimum length MS2 folding trajectories for the same data
set from previous Figure 4.14. Each data point represents the average, taken over
71,250 many sequence/structure pairs. Run time of the optimal algorithm depends on
time to perform topological sort, time to enumerate all directed cycles and time for

the Gurobi IP solver (ordered here by increasing time demands).

applies Algorithm 4 to each equivalence class, there is a corresponding, but less striking speed-

up in the near-optimal algorithm.

Since run-time depends heavily on the number of directed cycles in the con�ict digraphs, Fig-

ure 4.17a shows the size of vertex and edge sets of the con�ict digraphs for the benchmarking

data, and Figure 4.17b depicts the cycle length distribution for benchmarking data of length

150; for di�erent lengths, there are similar distributions (data not shown). Finally, Figure 4.17c

showns the (presumably) exponential increase in the number of directed cycles, as a function

of sequence length. Since Algorithm 5 does not compute the collection of all directed cycles

(but only those for each equivalence class), the run time of Algorithm 5 appears to be linear in

sequence length, compared to the (presumably) exponential run time of Algorithm 4.
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Figure 4.17: (Left) Average size of vertex sets V and of directed edge sets E for RNA
con�ict digraphs G = (V ,E) for the data set of described in Figure 4.14. Error bars
represent ±1 standard deviation. Clearly the size of a con�ict digraph grows linearly
in the length n of random RNAs a = a1, . . . ,an , given random secondary structures
s,t having n/5 base pairs. (Right) Cycle length distribution for random RNAs a =

a1, . . . ,an of length n = 150, with randomly chosen secondary structures s,t having
n/5 base pairs, using data extracted from the data set described in Figure 4.14. For
values of n = 50, . . . ,150, the cycle length distribution appears approximately normal,

although this is not the case for n ≤ 40 (data not shown).

Rfam sequences

In this section, we use data from the Rfam 12.0 database [89] for analogous computations as

those from the previous benchmarking section. For each Rfam family having average sequence

length less than 100 nt, one sequence is randomly selected, provided that the base pair distance

between its MFE structure and its Rfam consensus structure is a minimum. Figrue 4.19 indicates

the distribution of sequences length for the selected Rfam sequences. For each such sequence

a, the target structure t was taken to be the secondary structure having minimum free energy

among all structures of a that are compatible with the Rfam consensus structure, as computed
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Figure 4.18: Average number of directed cycles as a function of sequence length for
the data set described in Figure 4.14. For each random RNA sequence a = a1, . . . ,an

of length n, and for each pair of random secondary structures s,t of a having n/5
base pairs, we computed the total number of directed cycles in the con�ict digraph
G(a,s,t). The �gure suggests that starting at a threshold sequence length n, there is an
exponential growth in the number of directed cycles in the con�ict digraph of random

sequences of length n.

by RNAfold -C [27] constrained with the consensus structure of a. The corresponding ini-

tial structure s for sequence a was selected from a Zuker-suboptimal structure, obtained by

RNAsubopt -z [27], with the property that |dBP(s,t)−dH(s,t)| < 0.2 ·dBP(s,t). Since we know

from Figure 4.16 that run time of the optimal IP Algorithm 4 depends on the number of cycles

in the corresponding RNA con�ict digraph, the last criterion is likely to result in a less than

astronomical number of cycles. The resulting dataset consisted of 1333 sequences, some of

whose lengths exceed 100 nt. Nevertheless, the number of cycles in the RNA constraint di-

graph of 22 of the 1333 sequences exceeded 50 million (an upper bound set for our program),

so all �gures described in this section are based on 1311 sequences from Rfam.

Figure 4.20 depicts the moving averages in centered windows [x − 2,x + 2] of the following
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Figure 4.19: Number of sequences as a function of sequence length for 1311 sequences
extracted from Rfam 12.0 and used in benchmarking tests.

distance measures for the 1311 sequences extracted from Rfam 12.0 as described. Distance mea-

sures include (1) optimal MS2-distance computed by the exact IP (optimal) Algorithm 4 (where

the number of base pair additions (+) or removals (−) is indicated, along with the number of

shifts), (2) near-optimal MS2-distance computed by near-optimal Algorithm 5, (3) Hamming

distance divided by 2, (4) MS1 distance aka base pair distance, (5) pseudoknotted MS2 distance

(pk-MS2) computed from Algorithm 1, (6) optimal local MS2 with parameter d = 10, and (7)

optimal local MS2 with parameter d = 20. The latter values were computed by a variant of the

exact IP Algorithm 4 with locality parameter d , de�ned to allow base pair shifts of the form

(x ,y) → (x ,z) or (y,x) → (z,x) only when |y − z| ≤ d . This data suggests that Hamming

distance over 2 (dH(s,t)/2) closely approximates the distance computed by near-optimal Algo-

rithm 5, while pk-MS2 distance (dpk-MS2(s,t)) is a better approximation to MS2 distance than

is Hamming distance over 2.
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Figure 4.20: Moving averages of distance measures graphed as a function of sequence
length for 1311 sequences extracted from Rfam 12.0. Distance measures included op-
timal MS2-distance computed by the exact IP (optimal) algorithm 4 (where the num-
ber of base pair additions (+) or removals (−) is indicated, along with the number of
shifts), approximate MS2-distance computed by near-optimal algorithm 5, Hamming
distance divided by 2, MS1 distance aka base pair distance, pseudoknotted MS2 dis-
tance (pk-MS2) computed from Lemma 4.9, optimal local MS2 with parameter d = 10,
and optimal local MS2 with parameter d = 20. The latter values were computed by a
variant of the exact IP algorithm 4 where shift moves were restricted to be local with
parameter d , whereby base pair shifts of the form (x ,y)→ (x ,z) or (y,x)→ (z,x) were
allowed only when |y − z| ≤ d . All moving averages were computed over symmetric
windows of size 9, i.e. [i − 4,i + 4]. From smallest to largest value, the measures are:
number of shifts in optimal MS2 trajectory < number of base pair additions or dele-
tions (+/−) in optimal MS2 trajectory < pk-MS2 <MS2 distance < Hamming distance
over 2 ≈ near-optimal MS2 <MS2 with locality parameter d = 20 <MS2 with locality

parameter d = 10 < MS1.
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Figure 4.21: Pairwise correlations using Rfam benchmarking data for optimal MS2

distance, pk − MS2 distance, near-optimal MS2 distance, Hamming distance divided
by 2, and MS1 distance (also called base pair distance). For each two measures, scatter
plots were created for 1311 data points. Pearson correlation and normalized Pearson
correlation values computed, where by normalized, we mean that for each of the 1311
data points, we consider the length-normalized distance (distance divided by sequence
length). These correlations are statistically signi�cant – each Pearson correlation val-

ues has a p-value less than 2.2 · 10−16.

Figure 4.21 presents scatter plots and Pearson correlation values when comparing various dis-

tance measures using the Rfam data. Figure 4.21a [resp. Figure 4.21b] presents Pearson corre-

lation [resp. normalized Pearson correlation] values computed, where by normalized, we mean

that for each of the 1311 extracted Rfam sequences a with corresponding initial structure s and

target structure t , the length-normalized distance measures d(s,t)/|a| are correlated.

Figure 4.22 depicts the moving average run times as a function of sequence length, where for

given value x the run times are averaged for sequences having length in [x − 2,x + 2]. Finally,

Figure 4.19 depicts the number of sequences of various lengths used in the Rfam benchmarking

set of 1311 sequences.
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Figure 4.22: Moving averages of run time as a function of sequence length for 1311
sequences extracted from Rfam 12.0. Distance measures considered are the exact MS2

distance computed by the optimal IP Algorithm 4, an approximation to the MS2 dis-
tance computed by the near-optimal IP Algorithm 5, the pk −MS2 distance (allowing
pseudoknots in intermediate structures) as computed by Algorithm 1, and two vari-
ants of exact MS2 distance, where shifts are restricted by locality parameter d = 10,20.
These latter values were computed by the exact IP Algorithm 4 modi�ed to allow base

pair shifts of the form (x ,y)→ (x ,z) or (y,x)→ (z,x) only when |y − z| ≤ d .

Classi�cation of edges in RNA con�ict digraphs

In this section, we describe the collection of all possible directed edges v → v ′ in which v .s

crosses v ′.t , that can appear in an RNA con�ict digraph, classi�ed as forward, backward or

2-cycles and according to each type of vertex (see Figure 4.4 for the six types of vertices). It

is straightforward for the reader to imagine additional directed edges v → v ′ in which v .s

touches v ′.t , so these are not shown.

Given two secondary structures s,t for the RNA sequence a1, . . . ,an , recall that notation for

a shift move from the (unordered) base pair {x ,y} ∈ s to the (unordered) base pair {y,z} ∈ t
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is given by the triple (z,y,x), where the middle coordinate y is the pivot position, common to

both base pairs {x ,y} ∈ s and {y,z} ∈ t , while the �rst [resp. last] coordinate z [resp. x] is

the remaining position from the base pair {y,z} ∈ t [resp. {x ,y} ∈ s]. A directed edge is given

from shift move (x ,y,z) to shift move (u,v,w) if the base pair {y,z} ∈ s from the �rst shift move

crosses with the base pair {u,v} ∈ t from the second shift move; i.e. min(u,v) < min(y,z) <

max(u,v) < max(y,z) or min(y,z) < min(u,v) < max(y,z) < max(u,v). The reason for the

directed edge is that if the second shift (u,v,w) is applied before the �rst shift (x ,y,z), then a

pseudoknot (crossing) would be created; it follows that the �rst shift must be applied before

the second shift.

Edges may be forward (left-to-right) or backward (right-to-left), depending on whether the

pivot position of the �rst shift is (strictly) less than or (strictly) greater than the pivot position of

the second shift. We conjecture that the question of NP-hardness of the FVS problem for RNA

con�ict digraphs may ultimately be resolved by exploiting the linear placement of vertices and

orientation of directed edges. This section does not list similar examples, where the (unordered)

base pair {y,z} ∈ s from the �rst shift move touches the (unordered) base pair {u,v} ∈ t from

the second shift move, as such examples are clear from Figure 4.3.

Forward Edges

4 52 53 61 6

forward edge of type 5→ 5

(4,5,2)→ (3,6,1)

3 41 42 55 6

forward edge of type 5→ 1

(3,4,1)→ (2,5,6)

4 52 43 61 6

forward edge of type 2→ 5

(5,4,2)→ (3,6,1)
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3 41 42 65 6

forward edge of type 5→ 6

(3,4,1)→ (2,6,5)

2 33 61 44 5

forward edge of type 1→ 1

(2,3,6)→ (1,4,5)

2 33 61 54 5

forward edge of type 1→ 6

(2,3,6)→ (1,5,4)

3 41 32 55 6

forward edge of type 2→ 1

(4,3,1)→ (2,5,6)

2 33 54 61 6

forward edge of type 1→ 5

(2,3,5)→ (4,6,1)

3 41 32 65 6

forward edge of type 2→ 6

(4,3,1)→ (2,6,5)

1 22 53 63 4

forward edge of type 1→ 3

(1,2,5)→ (6,3,4)

2 32 61 44 5

forward edge of type 4→ 1

(3,2,6)→ (1,4,5)

1 22 54 63 4

forward edge of type 1→ 2

(1,2,5)→ (6,4,3)

1 22 43 55 6

forward edge of type 1→ 1

(1,2,4)→ (3,5,6)

2 32 61 54 5

forward edge of type 4→ 6

(3,2,6)→ (1,5,4)

2 32 54 61 6

forward edge of type 4→ 5

(3,2,5)→ (4,6,1)

1 22 43 65 6

forward edge of type 1→ 6

(1,2,4)→ (3,6,5)

1 61 42 52 3

forward edge of type 3→ 3

(6,1,4)→ (5,2,3)

1 21 53 63 4

forward edge of type 4→ 3

(2,1,5)→ (6,3,4)

1 61 43 52 3

forward edge of type 3→ 2

(6,1,4)→ (5,3,2)

1 61 32 44 5

forward edge of type 3→ 1

(6,1,3)→ (2,4,5)

1 21 54 63 4

forward edge of type 4→ 2

(2,1,5)→ (6,4,3)
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1 21 43 55 6

forward edge of type 4→ 1

(2,1,4)→ (3,5,6)

1 61 32 54 5

forward edge of type 3→ 6

(6,1,3)→ (2,5,4)

1 21 43 65 6

forward edge of type 4→ 6

(2,1,4)→ (3,6,5)

Backward Edges

2 54 51 63 6

backward edge of type 6← 6

(2,5,4)← (1,6,3)

1 43 4 5 62 5

backward edge of type 6← 2

(1,4,3)← (6,5,2)

2 44 51 63 6

backward edge of type 1← 6

(2,4,5)← (1,6,3)

1 43 4 5 62 6

backward edge of type 6← 5

(1,4,3)← (5,6,2)

3 62 3 4 51 4

backward edge of type 2← 2

(6,3,2)← (5,4,1)

1 33 4 5 62 5

backward edge of type 1← 2

(1,3,4)← (6,5,2)

3 62 3 4 51 5

backward edge of type 2← 5

(6,3,2)← (4,5,1)

1 33 4 5 62 6

backward edge of type 1← 5

(1,3,4)← (5,6,2)

3 52 31 64 6

backward edge of type 2← 6

(5,3,2)← (1,6,4)
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2 51 2 3 43 6

backward edge of type 2← 4

(5,2,1)← (4,3,6)

2 62 3 4 51 4

backward edge of type 3← 2

(6,2,3)← (5,4,1)

2 51 2 3 44 6

backward edge of type 2← 1

(5,2,1)← (3,4,6)

2 62 3 4 51 5

backward edge of type 3← 5

(6,2,3)← (4,5,1)

2 41 2 5 63 5

backward edge of type 2← 2

(4,2,1)← (6,5,3)

2 52 31 64 6

backward edge of type 3← 6

(5,2,3)← (1,6,4)

2 41 2 5 63 6

backward edge of type 2← 5

(4,2,1)← (5,6,3)

1 41 62 32 5

backward edge of type 4← 4

(4,1,6)← (3,2,5)

1 51 2 3 43 6

backward edge of type 3← 4

(5,1,2)← (4,3,6)

1 41 62 33 5

backward edge of type 4← 1

(4,1,6)← (2,3,5)

1 51 2 3 44 6

backward edge of type 3← 1

(5,1,2)← (3,4,6)

1 31 64 52 4

backward edge of type 4← 2

(3,1,6)← (5,4,2)

1 41 2 5 63 5

backward edge of type 3← 2

(4,1,2)← (6,5,3)

1 31 64 52 5

backward edge of type 4← 5

(3,1,6)← (4,5,2)

1 41 2 5 63 6

backward edge of type 3← 5

(4,1,2)← (5,6,3)
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1↔ 5 2↔ 6 3↔ 5 4↔ 6 3↔ 1 4↔ 2

Table 4.1: All 6 possible bidirectional edges, or 2-cycles. Note that 1 ↔ 5 is distinct
from 5 ↔ 1, since the pivot point from the left node must be less than that from the
right node in our notation. Here, by bidirectional edge between nodes x and y, we

mean the existence of directed edges x → y and y → x .

2-Cycles

1 33 54 62 6

2-cycle of type 1↔ 5

(1,3,5)↔ (4,6,2)

3 51 32 64 6

2-cycle of type 2↔ 6

(5,3,1)↔ (2,6,4)

2 62 43 51 5

2-cycle of type 3↔ 5

(6,2,4)↔ (3,5,1)

2 42 61 53 5

2-cycle of type 4↔ 6

(4,2,6)↔ (1,5,3)

1 51 32 44 6

2-cycle of type 3↔ 1

(5,1,3)↔ (2,4,6)

1 31 54 62 4

2-cycle of type 4↔ 2

(3,1,5)↔ (6,4,2)

Summary tables of shift moves edges

Table 4.1 presents a count of all 12 possible bidirectional edges, while Table 4.2 [resp. Table 4.3]

presents a count of all 34 possible forward [resp. back] directed edges. Here, by bidirectional

edge between nodes x and y, we mean the existence of directed edges x → y and y → x .

Figures in Sections 4.7.3, 4.7.1 and 4.7.2 depict all of these these directed edges.
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edge num edge num edge num edge num edge num edge num
1→ 1 2 2→ 1 1 3→ 1 1 4→ 1 2 5→ 1 1 6→ 1 0
1→ 2 1 2→ 2 0 3→ 2 1 4→ 2 1 5→ 2 0 6→ 2 0
1→ 3 1 2→ 3 0 3→ 3 1 4→ 3 1 5→ 3 0 6→ 3 0
1→ 4 0 2→ 4 0 3→ 4 0 4→ 4 0 5→ 4 0 6→ 4 0
1→ 5 1 2→ 5 1 3→ 5 0 4→ 5 1 5→ 5 1 6→ 5 0
1→ 6 2 2→ 6 1 3→ 6 1 4→ 6 2 5→ 6 1 6→ 6 0
1⇒ ∗ 7 2⇒ ∗ 3 3⇒ ∗ 4 4⇒ ∗ 7 5⇒ ∗ 3 6⇒ ∗ 0

Table 4.2: All 24 possible forward edges and their number. Here only shift moves of
the form (x ,y,z)→ (u,v,w) are considered, where the (unordered) base pair {y,z} ∈ s

crosses the (unordered) base pair {u,v} ∈ t , where y < v .

edge num edge num edge num edge num edge num edge num
1← 1 0 2← 1 1 3← 1 1 4← 1 1 5← 1 0 6← 1 0
1← 2 1 2← 2 2 3← 2 2 4← 2 1 5← 2 0 6← 2 1
1← 3 0 2← 3 0 3← 3 0 4← 3 0 5← 3 0 6← 3 0
1← 4 0 2← 4 1 3← 4 1 4← 4 1 5← 4 0 6← 4 0
1← 5 1 2← 5 2 3← 5 2 4← 5 1 5← 5 0 6← 5 1
1← 6 1 2← 6 1 3← 6 1 4← 6 0 5← 6 0 6← 6 1
1⇐ ∗ 3 2⇐ ∗ 7 3⇐ ∗ 7 4⇐ ∗ 4 5⇐ ∗ 0 6⇐ ∗ 3

Table 4.3: All 24 possible backward edges and their number. Here only shift moves of
the form (x ,y,z)← (u,v,w) are considered, where the (unordered) base pair {v,w} ∈ s

crosses the (unordered) base pair {x ,y} ∈ t , where y < v .

Graph theoretical properties

This section proofs that the collection of RNA con�ict digraphs is distinct from each of the

following classes of digraphs: planar, reducible �ow graph, Eulerian, and tournament.

Recall that digraph G = (V ,E) is isomorphic to digraph G ′ = (V ′,E ′) if there is a bijective

function (i.e. one-one and onto) Φ : V → V ′, such that for all u,v ∈ V , (u,v) ∈ E if and only

if (Φ(u),Φ(v)) ∈ E ′. Since RNA con�ict digraphs have a natural ordering of vertices de�ned in

De�nition 4.10, we now de�ne digraph order-isomorphism.
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De�nition 4.14 (Order-isomorphism). Let G = (V ,E, �) [resp. G ′ = (V ′,E ′, �′)] be a digraph,

whose vertex set V [resp. V ′] is totally ordered by � [resp. �′]. We say that G is order-

isomorphic toG ′ if there exists an order-preserving bijective function Φ : V → V ′ (i.e. one-one

and onto) such that (1) for u,v ∈ V , x � y if and only if Φ(u) �′ Φ(v), (2) for u,v ∈ V , (u,v) ∈ E)

if and only if (Φ(u),Φ(v)) ∈ E ′. If Φ is an injective function (one-one, but not necessarily onto),

then G is said to have an order-preserving embedding in G ′.

We say that a digraph G = (V ,E) is representable if it is order-isomorphic to an RNA con�ict

digraph, formally de�ned as follows.

De�nition 4.15 (Representable digraph).

Let V = {1, . . . ,n} be a set of vertices and E a set of directed edges on V . The digraph G =

(V ,E) is said to be representable if there exist secondary structures s,t of some RNA sequence

a1, . . . ,am , an integer N , and an order-preserving function Φ : [1,n] → [1,N ]3 such that (1)

for v,v ′ ∈ [1,n], x < y if and only if Φ(v) < Φ(v ′), (2) for each v ∈ [1,n], Φ(v) = (x ,y,z)

where x ,y,z are distinct, {x ,y}< ∈ t , {y,z}< ∈ s , (3) there is an edge u → v in E if and only if

Φ(u).s = {y,z}< ∈ s touches or crosses Φ(v).t = {x ,y}< ∈ t .

As just de�ned, the notion of representability depends on the nucleotide sequence a1, . . . ,an . In

a mathematical investigation to determine which digraphs are representable, it is more natural

to reinterpret the notion of secondary structure to satisfy requirements 2-4 of De�nition 5.1,

but not necessarily requirement 1.

The requirement that mapping Φ be order-preserving is important. Consider the RNA con�ict

digraph G in Figure 4.23, equivalent to the ordered digraph in Figure 4.27a, having edges 1→

2 → 3 → 4 → 1. Clearly G is isomorphic to the digraph G ′ in Figure 4.27b, although there
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is no order-isomorphism between G and G ′. Indeed, by writing a program to exhaustively

enumerate all representable digraphs having a vertex set of size 4, we know that G ′ is not

order-isomorphic to any RNA con�ict digraph. It is a straightforward exercise to show that

each of the 2(32) = 8 many tounaments on 3 nodes is representable (data not shown); however,

not all 2(42) = 64 many tournaments on 4 nodes are representable, as shown in Figure 4.27c.

Although representability is not invariant under isomorphism, it clearly is invariant under

order-isomorphism. Moreover, we have the following.

Theorem 4.16. Suppose that Φ is an order-preserving embedding of digraph G = (V ,E) into

digraph G ′ = (V ′,E ′). If G is not representable, then G ′ is not realizable.

The theorem is immediate, since ifG ′ were order-isomorphic to an RNA con�ict digraph, then

the induced subgraph Φ(G) of G ′ must be representable, and hence G must be representable.

Figure 4.28a depicts a nonrepresentable digraph having 4 vertices and 4 edges. By adding an

edge to that �gure, we obtain the digraph in Figure 4.28b, which is not representable.

Recall that an automorphism of a directed graph G = (V ,E) is the set of permutations σ on

n letters, for V = {1, . . . ,n}, such that G and σ (G) are isomorphic. Using a small program

that we wrote to compute the automorphism group Aut(G) for any connected, directed graph

G = (V ,E), we found that the digraphs in Figures 4.27c and 4.28b both have the trivial auto-

morphism group consisting only of the identity permutation on 4 letters. Since the former is

not representable and the latter is representable, it follows that the automorphism group of a

digraph implies nothing about whether the digraph is representable.
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Figure 4.23: RNA con�ict digraph G = (V ,E) for secondary structures t and s , where
t = {(a2,a1), (b1,b2),(c1,c2), (d1,d2)}, and s = {(a2,a3), (b2,b3),(c2,c3), (d2,d3)}. The trip-
let nodes of V = {va ,vb ,vc ,vd} are the following: va = (a1,a2,a3) of type 3, shift
vb = (b1,b2,b3) of type 1, shift vc = (c1,c2,c3) of type 1, and shift vd = (d1,d2,d3) of
type 1. The edges in E are the following: va → vb , vb → vc , vc → vd , vd → va . The
con�ict digraph G = (V ,E) is order-isomorphic to the digraph G ′ = (V ′,E ′), where

V ′ = {1,2,3,4} and edges are as follows: 1→ 2→ 3→ 4→ 1.

Figure 4.24: (a) Complete bipartite graph K3,3. A �nite graph is planar if and only if it
does not contain the forbidden graphK3,3 or the complete graphK5 [133]. (b) Directed
graph realized by the RNA con�ict digraph in Figure 4.25. It follows that RNA con�ict
digraphs are not necessarily planar. (c) Directed graph realized by the RNA con�ict
digraph in Figure 4.26. A �ow graph is reducible if and only if it does not contain
such a forbidden �ow graph, where edges between nodes may be replaced by arc-
disjoint directed paths [123]. It follows that RNA con�ict digraphs are not necessarily

reducible �ow graphs.
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Figure 4.25: RNA con�ict digraph that realizes the digraph K3,3 depicted in Fig-
ure 4.24b, whose undirected red edges represent the undirected graph K3,3 depicted
in Figure 4.24b. The nonplanar complete, bipartite digraph K3,3, with shift moves
c,b,a,d,e,f , all of type 1, in order from left to right – i.e. order of positions along the
x-axis is given by: c1,b1,a1,a2,b2,c2, d1,e1,f1,c3,b3,a3, f2,e2,d2,d3,e3,f3. Notice that as
crosses bt , ct , dt , et and ft so c ← a, b ← a and a → d , a → e , a → f ; bs crosses ct ,
dt , et and ft so c ← b and b → d , b → e , b → f ; cs crosses dt , et and ft so c → d ,

c → e , c → f .

Figure 4.26: Forbidden �ow graph with nodes i = (i1,i2,i3), a = (a1,a2,a3), b =
(b1,b2,b3), c = (c1,c2,c3), where nodes i,a,c are of type 1 and node b is of type 3. Notice
that is crosses at so i → a; as crosses bt so a → b; as crosses ct so a → c; bs crosses

ct so b → c; cs crosses bt so c ← b.
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Figure 4.27: (a) Digraph of an ordered 4-cycle, which is representable by an RNA
con�ict digraph, as shown in Figure 4.23. (b) Digraph of an ordered 4-cycle, which is
not representable by an RNA con�ict digraph. Note that digraph (b) is Eulerian, with
the property that the in-degree of each vertex equals its out-degree. (c) Digraph of
a tournament on 4 vertices, which is not representable by an RNA con�ict digraph.
Digraph (a) is isomorphic with digraph (b), thus showing that representability is not
preserved under isomorphism. Since it is not di�cult to show that all 2(32) = 8 tour-
naments on 3 nodes are representable by RNA con�ict digraphs (data not shown), it
follows that digraph (c) is a minimum sized non-representable tournament, which we
veri�ed by constraint programming. In general there are 2(n2) many tournaments on

n.

Figure 4.28: Example of a 4-node digraph in (a) that is not representable by an RNA
con�ict digraph. However, by adding an edge to digraph (a), we obtain a representable
digraph in (b). Note that digraph (a) is neither order-isomorphic to digraph (b), nor is

there an order-preserving embedding of digraph (a) into digraph (b).



Chapter 5

Expected degree of RNA secondary structure

networks

Introduction

RNA folding kinetics plays an important role in various biological processes, including (i) trans

splicing of RNA, which is controlled by trypanosomal spliced leader (SL) RNA kinetics [128],

and (ii) the hok/sok host-killing/suppression of killing (hok/sok) system that kills E. coli repli-

cates if insu�cient plasmids are transfered to the new daughter cell [134]. To better understand

how macromolecules fold into their native state, energy landscapes for protein and RNA fold-

ing have been intensively studied [110, 131, 135, 136, 137, 138]. In the case of RNA secondary

structure formation, numerous algorithms have been developed beyond thermodynamic equi-

librium structure prediction [27, 139], including algorithms (1) to determine optimal or near-

optimal folding pathways, [114, 131, 137, 140, 141], (2) to compute explicit solutions of the master

equation for possibly coarse-grained models [142, 143, 144, 145, 146], and (3) to simulate stepwise
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folding from an initial secondary structure to the target minimum free energy (MFE) structure

[110, 147, 148, 149, 150, 151, 152]. Nevertheless, RNA secondary structure folding kinetics remains

a computationally di�cult problem, since it is known that the problem of determining opti-

mal folding pathways is NP-complete [153]. Despite increasing awareness of the importance

of regulatory and catalytic RNA, no database currently exists of experimentally determined

RNA folding rates, in contrast to the situation for proteins. Indeed, KineticDB is a database

that provides users with a diverse set of experimentally determined folding rates for 87 unique

proteins and approximately one hundred mutants [154].

It is currently an open problem to predict the folding rate of proteins and RNA molecules

from the sequence alone. The goal of this chapter is to raise awareness of this problem – in

particular, the problem of predicting RNA secondary structure folding rate from the nucleotide

sequence. For proteins, it has been shown that absolute contact order, which scales as ≈ n0.7

for sequence length n, correlates rather well with protein folding rates for two- and multi-state

folding proteins, reaching a correlation of 77% [155] – see as well Table 1 of [156]. Here, protein

contact order is de�ned as the average chain separation of residues in contact (e.g. within 6 ) in

the native structure. It has also been shown that the number of native contacts correlates with

folding rates of small single-domain proteins with two-state kinetics. In this case, Makarov et

al. showed that ln(k) ≈ ln(N ) + a + bN , where k denotes the folding rate, N is the number of

contacts in the folded state, and a,b are constants whose physical meaning is understood [157].

To our knowledge, no relation has been established between RNA folding rate and either con-

tact order or the number of native contacts, due in part to the above-mentioned absence of a

database of RNA folding rates, and due in part to the notorious di�culty of estimating RNA

secondary structure folding rates when using secondary structure kinetics software such as
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Kinfold [110], Kinefold [148], RNAKinetics [149], KFold [113], or other software [150, 151].

Such programs implement an event-driven Monte Carlo algorithm known as Gillespie’s algo-

rithm [158]; it follows that repeated (time-consuming) simulations will generate a collection

of mean �rst passage times which are approximately exponentially distributed. Since an ex-

ponential distribution has the property that the mean is equal to the standard deviation, it

follows that precise kinetics obtained by such methods necessarily requires inordinate com-

putation time (e.g. the population occupancy curve for yeast phe-tRNA required 3 months of

CPU time on a 2.4 GHz Intel Pentium 4 running linux [142]). Until the availability of a data-

base of experimentally determined RNA folding rates, it is likely that the best approximation

of folding rates can be made using exact, coarse-grained approaches using spectral methods,

as Treekin [142], basin hopping with RNAlocmin [145], and Hermes [146].

Apart from contact order and the number of native contacts, the expected degree of the net-

work of RNA secondary structures of an RNA sequence is another order parameter that could

play a role in RNA folding kinetics – see the left panel of Fig 5.1 for an example of expected

network degree for the toy sequence GGGGCCC. Here, the degree of a node (secondary struc-

ture) s is the number of secondary structures t that can be obtained from s by the addition,

removal or shift of a base pair. These moves constitute the default move set employed by the

program Kinfold [110], often used to estimate RNA folding kinetics. Moreover, by analyzing

the network G = (V ,E), whose node set V consists of low energy secondary structures of E.

coli phe-tRNA (RF6280 [159]) and whose edge set E consists of directed edges s → t , where

t is obtained from s by a base pair addition, removal or shift, the network for phe-tRNA was

shown to be small-world in [160].

In this chapter, we provide the �rst algorithm to e�ciently compute the expected degree of
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an RNA network of secondary structures. Our work generalizes a recent paper [161], which

describes a vastly simpler algorithm to compute the expected degree without consideration of

shift moves. Since our current algorithm is surprisingly complex, for clarity of exposition, we

consider three successive models. Model A is the RNA homopolymer model [162], in which

any two positions i,j can constitute a base pair, provided only that i + 1 < j. Model B is

the usual RNA secondary structure model, where positions i,j can constitute a base pair if

the corresponding nucleotides form a Watson-Crick or wobble pair and i + 3 < j; however,

in Model B, the energy of a structure is taken to be zero, so the probability of a structure is

simply one over the number of structures. Model C extends Model B by using the Turner

2004 energy parameters [23] without dangles. Our algorithms have been extensively tested

against brute-force exhaustive methods to be sure of algorithm and implementation. Finally,

we begin a preliminary investigation into the relation between network degree, contact order,

conformational entropy, and number of native contacts using two benchmarking sets of RNA

structures. Since we show later that expected network degree is linear in sequence length for

the (theoretical) homopolymer case, we additionally compute the length-normalized network

degree.
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Figure 5.1: (Left) Network for the toy 7-mer GGGGCCC which has 8 nodes and 16
edges (hence 32 directed edges). The expected network degree is 32

8 = 4. Red edges
indicate base pair addition or removal, while blue edges indicate shift moves. (Center)
Feynman circular representation of secondary structure of Y RNA. (Right) Conven-
tional representation of secondary structure of Y RNA. According to [163], one func-
tion of Y RNA is to bind to certain misfolded RNAs, including 5S rRNA, as part of a
quality control mechanism. The secondary structure depicted is the consensus sec-
ondary structure of Y RNA with EMBL access number AAPY01489510:220-119 from
Rfam family RF00195 in the Rfam database [164]. Images produced with sofware jViz

[52].

Background

De�nition 5.1. A secondary structure for a given RNA nucleotide sequence a1, . . . ,an is a set

s of base pairs (i,j), where 1 ≤ i < j ≤ n, such that:

1. if (i,j) ∈ s then ai ,aj form either a Watson-Crick (AU,UA,CG,GC) or wobble (GU,UG)

base pair,

2. if (i,j) ∈ s then j − i > θ = 3 (a steric constraint requiring that there be at least θ = 3

unpaired bases between any two positions that are paired),
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3. if (i,j) ∈ s then for all i ′ , i and j ′ , j, (i ′,j) < s and (i,j ′) < s (nonexistence of base

triples),

4. if (i,j) ∈ s and (k,`) ∈ s , then it is not the case that i < k < j < ` (nonexistence of

pseudoknots).

Secondary structures can be depicted in several equivalent manners. For instance, the sequence

and dot bracket representation for the secondary structure of Y RNA with EMBL access number

AAPY01489510:220-119 is given by

GGCUGGUCCGAGUGCAGUGGUGUUUACAACUAAUUGAUCACAGCCAGUUACAGAUUCCUUUGUUCCUUCUCUACUCCCACUGCUUCACUUGACUAGCCUUUU

((((((((.((..(((((((.(.....(((.((.........................)).)))...........))))))...))..))))))))))....

Y RNA is a noncoding RNA, known to be required for the initiation of chromosomal DNA

replication in mammalian cells [165]; a distinct function of Y RNA is mentioned in the caption

to Fig 5.1, where two other formats for this secondary structure are depicted. A base pair (i,j)

of structure s is an external base pair, if there is no base pair (x ,y) ∈ s with the property that

x < i < j < y. A position 1 ≤ k ≤ n is said to be visible in s if there is no base pair (i,j) ∈ s with

the property that i ≤ k ≤ j. The secondary structure of Y RNA in Fig 5.1 has only one external

base pair, i.e. (1,98), and only four visible positions, i.e. positions 99,100,101,102. Throughout

the remainder of this chapter, structure will mean secondary structure.

The base pair distance dBP(s,t) between secondary structures s,t is the number of base pairs

|s − t | + |t − s | belonging to s but not t , or vice versa. A shift move from base pair (i,j) in the

structure s is of the form (i,k) [resp. (k,j)], where (s \ {(i,j)}) ∪ {(i,k)} [resp. (s \ {(i,j)}) ∪

{(k,j)}] is a valid secondary structure. Throughout, let bp(i,j) be a boolean valued function,
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Figure 5.2: Defect di�usion [25], where a bulge migrates stepwise to become absorbed
in an hairpin loop. The move from structure (a) to structure (b) is possible by the shift
(1,12) → (1,13), the move from (b) to (c) by shift (2,11) → (2,12), etc. Our algorithm
properly accounts for such moves with respect to energy models A,B,C. Image adapted

from �gure on page 26 [147] and produced by VARNA [129].

where bp(i,j) = 1 if positions i,j can form a base pair; i.e. if ai ,aj constitute a Watson-Crick or

wobble pair. Reference [110] describes the Kinfold program, which implements the Gillespie

algorithm [158] for RNA secondary structure folding kinetics. Kinfold produces secondary

structure folding trajectories, or sequences s = s0,s1, . . . ,sm = t , where for 0 ≤ i < m, si+1 is

obtained from si by the addition or deletion of a base pair, and (optionally) by a shift move.

These are de�ned as follows.

The move set MS1 allows a move from structure s to structure t , if t can be obtained from s by

the removal of addition of a base pair; i.e. if t = s \ {(i,j)} or t = s ∪ {(i,j)}. The move set MS2

allows moves from MS1 as well as four shift moves, described by the following. Structure t is

obtained from s by the replacement of base pair (i,j) ∈ s by the distinct base pair (i,j ′), or (j ′,i),

or (i ′,j), or (j,i ′), provided that t is a valid secondary structure. Figs 5.2, 5.3 and 5.4 depict some

typical shift moves, including defect di�usion [25].
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Figure 5.3: Example of multiloop creation which is handled by our algorithm for all
energy models, including the Turner energy model. To move from (a) to (b), remove
the base pair (3,13); to move from (b) to (c), shift (4,12) → (12,18); to move from (c)

to (d), add base pair (13,17). Image produced by VARNA [129].

Figure 5.4: Example of multiloop creation which is handled by our algorithm for
energy models A,B but not for Turner energy model C. To move from (a) to (b), apply
the shift (3,13) → (13,17); to move from (b) to (c), apply the shift (4,12) → (12,18).
Our algorithm for the Turner energy model properly treats the move from (a) to (b),
but not from (b) to (c), as explained in the Remark at the end of Section “Remaining
recursions forQi, j andZi, j”. Image adapted from �gure on page 27 [147] and produced

by VARNA [129].

Expected network degree

Throughout this chapter, let a = a1, . . . ,an be a �xed, but arbitrary RNA sequence. Consider

the set of all secondary structures of a as a network, or graph, where two structures s,t , are

connected by an edge if t can be obtained from s by a base pair addition, removal or shift.

Fig 5.1 displays the network for a toy 7 nt sequence GGGGCCC, where moves come from move

set MS2 (base pair additions and removals indicated by red edge; shift moves indicated by blue

edge). Fig 5.5 displays the network for the slightly larger sequence ACGUACGUACGU, where
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moves come from move set MS2. In contrast, Fig 5.6 displays the network where moves are

restricted to the move set MS1, and Fig 5.7 displays the network where shifts are the only al-

lowable move – i.e. moves are restricted to the move set MS2 \MS1. When moves are allowed

to range over either MS1, or over MS2, the resulting network is connected; this is not the case

for moves in MS2 \ MS1. Since the network represents intermediate moves in RNA folding

trajectories, it is of interest to know the average network degree. This was done for move

set MS1 in [161]. The goal of this chapter is to describe the �rst algorithm, which computes

the expected network degree, or equivalently, the expected number of neighbors, for the RNA

network de�ned with move set MS2. Computing the expected number of neighbors when in-

cluding shift moves turns out to be remarkably di�cult, so for clarity of exposition, we present

three versions of the algorithm, each adding a layer of complexity. Source code and webserver

are available at http://bioinformatics.bc.edu/clotelab/RNAdegree.

The plan of this chapter is as follows. Section “Benchmarking results” discusses the degree

distribution for move sets MS1 and MS2, obtained by exhaustive enumeration and by sam-

pling low energy structures. Asymptotic network degree is discussed and the correlation is

computed between the expected network degree, contact order, conformational entropy, and

expected number of native contacts. In Section “Homopolymer Model A”, we derive the recur-

sions for the expected number of neighbors for move set MS2, with respect to the homopoly-

mer Model A. In the homopolymer model, introduced in [162], any two positions i < j can

form a base pair, provided only that j − i > 1; i.e. in De�nition 5.1, item (1) is removed, and

item (2) is modi�ed so that θ = 1. In this model, the partition function Z of a length n ho-

mopolymer is simply the number of well-balanced parenthesis expressions with dots, having

length n and in which j − i > 1 whenever a left [resp. right] parenthesis occurs at position

http://bioinformatics.bc.edu/clotelab/RNAdegree
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Figure 5.5: The network of all secondary structures of the 12 nt (toy) sequence
ACGUACGUACGU. The minimum free energy structure is shown in green. Edges
connect structures s,t , such that t is obtained by a move in MS2 from s , or vice versa;
i.e. structures are connected by an edge if they di�er by a base pair addition, removal
or shift. There are 35 structures, 126 edges between structures that di�er by a base
pair removal or addition, and 68 edges between structures that di�er by a base pair
shift. Altogether, there are 194 edges. It follows that the average network degree is

194
35 = 5.54.

Figure 5.6: The network of all secondary structures of the 12 nt sequence
ACGUACGUACGU, where edges connect structures s,t , such that t is obtained by
a move in MS1 from s , or vice versa; i.e. structures are connected by an edge if they
di�er by a base pair addition or removal. There are 35 structures, 126 edges between
structures that di�er by a base pair removal or addition, hence the average network

degree is 126
35 = 3.6.
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i [resp. j]. For this model, the probability P(s) of each structure s is equal to the uniform

probability 1/Z . In Section “Uniform, non-homopolymer Model B”, we give the recursions

for the non-homopolymer uniform Model B, in which every secondary structure has energy

zero, but where a secondary structure of the RNA sequence a = a1, . . . ,an must satisfy all

four properties of De�nition 5.1. In this case, the probability P(s) of structure s is de�ned by

P(s) = exp(−E(s)/RT )/Z where R = 0.00198717 kcal/mol, T is absolute temperature, and the

partition function is Z =
∑

s exp(−E(s)/RT ). However, since E(s) = 0 for each structure s , the

partition function Z is simply the number of secondary structures of a, and the probability

P(s) is equal to the uniform probability P(s) = 1/Z . In Section “Model C with Turner energy

parameters”, we give the the recursions for the full Model C, with respect to the Turner energy

model [23] which includes base stacking free energies and free energies for hairpins, bulges,

internal loops and multiloops. The partition function Z =
∑

s exp(−E(s)/RT ) can be computed

by the McCaskill algorithm [166], and the probability of structure s is the usual Boltzmann

probability P(s) = exp(−E(s)/RT )/Z .
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Figure 5.7: The network of all secondary structures of the 12 nt sequence
ACGUACGUACGU, where edges appear between structures that di�er by a shift
move. There are 35 structures, 68 edges between structures that di�er by a base pair
shift, hence the average network degree is 68

35 = 1.94. Note that the network is not
connected, unlike the previous two networks.

Algorithms

Let a = a1, . . . ,an be an arbitrary but �xed RNA sequence. For any 1 ≤ i ≤ j ≤ n, let a[i,j]

denote the subsequence ai , . . . ,aj , and let SS[i,j] denote the set of secondary structures of

a[i,j]. For s ∈ SS[i,j], let BF (s) denote the Boltzmann factor exp(−E(s)/RT ) of s , and de�ne

Qi, j =
∑

s ∈SS[i, j] BF (s) · N (s), where N (s) is the number of secondary structures t of a[i,j]

obtained from the structure s by the addition, deletion or shift of a base pair. The partition

function for a[i,j] is de�ned by Zi, j =
∑

s ∈SS[i, j] BF (s). It follows that the expected number

of neighbors (network degree) is Q1,n
Z1,n

. For clarity of exposition, in the following subsections,

we describe recursions to compute Qi, j and Zi, j for three energy models for RNA secondary

structures, each model a re�nement of the previous model.
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Homopolymer Model A

In this section, we derive the recursions forQ1,n andZ1,n for the homopolymer model, in which

any two positions 1 ≤ i < j ≤ n can form a base pair, provided only that i + 1 < j. For the

homopolymer model, there is no RNA sequence a = a1, . . . ,an , but rather only the interval

[1,n] = {1, . . . ,n}. Thus we speak of a structure on [i,j], rather than on a[i,j]. The energy of

each structure in the homopolymer model is zero, so the probability of each structure s on [i,j]

equals one divided by the number of structures on [i,j]. Moreover, there is no need to compute

the doubly-indexed values Qi, j and Zi, j , since the values depend only on the size j − i + 1 of

the sequence [i,j]; i.e. if j − i = j ′ − i ′, then Qi, j = Qi′, j′ and Zi, j = Zi′, j′ . Thus it is notationally

simpler to de�neQn [resp. Zn] in place ofQ1,n [resp. Z1,n], and similarly for all other auxilliary

functions.

For 0 ≤ n, de�ne Qn to be the sum, taken over all structures s of [1,n], of the number of base

pair additions, removals or shifts of a base pair of s . Formally, we have

Qn =
∑

s ∈SS[1,n]

∑
(x,y)∈s

n−2∑
k=1

n∑
`=k+2

I [((x ,y)→ (k,`)) ∈ MS2, (s \ {(x ,y)}) ∪ {(k,`)} is a valid str](5.1)

where I denotes the indicator function, and “(x ,y) → (k,`)” denotes the move which consists

of replacing base pair (x ,y) by base pair (k,`). As well, let Zn denote the total number of

homopolymer structures on [1,n] with θ = 1. Recursions for Zn are well-known [162], but for

completeness given in equation (5.2) below.



Expected degree of RNA secondary structure networks 189

Auxilliary functions f (n,x) and д(n,x)

Recall that here we take θ = 1 for simplicity of exposition of the ideas. Let Zn denote the

total number of structures on the homopolymer of length n. Since any two positions i,j can

base-pair, as long as j − i > θ = 1, we have

Zn =




1 if 0 ≤ n ≤ 2

Zn−1 +
∑n−2

r=1 Zr · Zn−r−2 otherwise.
(5.2)

The term Zn−1 counts all structures s on [1,n] in which n is unpaired in s , while the term

Zr · Zn−r−2 counts all structures s on [1,n] that contain the base pair (r + 1,n).

De�ne f (n,x) to be the number of secondary structures s for a length n homopolymer, such

that s has x visible positions. Now for 0 ≤ n and 0 ≤ x ≤ n, de�ne f by

f (n,x) =




1 if n = 0, x = 0

0 if n = 0, x > 0

Zn−2 +
∑n−3

r=1 f (r ,0) · Zn−r−2 if n > 0, x = 0

f (n − 1,x − 1) +∑n−3
r=1 f (r ,x) · Zn−r−2 if n > 0, x > 0

(5.3)

The computation of f (n,x) uses dynamic programming and proceeds by double induction, i.e.

for n �xed, induction is performed on x . The term Zn−2 arises from structures s on [1,n] that

contain the base pair (1,n); the term f (n − 1,x − 1) is the contribution from structures s on

[1,n] in which n is unpaired; the term f (r ,x) · Zn−r−2 accounts for all structures s on [1,n] that

contain the base pair (r + 1,n).



Expected degree of RNA secondary structure networks 190

De�ne д(n,x) to be the number of secondary structures s for the length n homopolymer, such

that s has x visible positions in the interval [1,n − θ − 1] = [1,n − 2], and position n is unpaired

in s .

д(n,x) =




0 if 0 ≤ n ≤ 2, for all x

f (n − 2,0) + Zn−3 +∑n−4
r=1 f (r ,0) · Zn−r−3 if n > 2, x = 0

f (n − 2,x) +∑n−4
r=1 f (r ,x) · Zn−r−3 if n > 2, x > 0

(5.4)

The term f (n − 2,x) accounts for all structures s on [1,n] in which n − 1,n are unpaired. The

term Zn−3 arises in the case n > 2,x = 0 for structures s on [1,n] that contain the base pair

(1,n− 1). Finally, the term f (r ,x) ·Zn−r−3 arises from structures s on [1,n] that contain the base

pair (r + 1,n − 1). In all cases, the structures considered are unpaired at position n, and have

exactly x visible positions in the interval [1,n − 2].

Auxilliary function En

For 1 ≤ n, de�ne the function En to be the number of external base pairs in all homopolymer

structures on [1,n]; formally, we have

En =
∑

s ∈SS[1,n]

∑
(x,y)

I [(x ,y) is an external base pair in s] (5.5)

Recalling that Zn denotes the number of structures on [1,n], we de�ne Z0 = 1, E0 = 1, and

En = 0 for 1 ≤ n ≤ 2 = θ + 1. Note that for 1 ≤ n ≤ 2, it must be that En = 0, since the empty
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structure is the only possible structure on [1,n] in this case. For larger values of n, note that

En =
∑

s ∈SS[1,n]

∑
1≤x<y≤n

I [(x ,y) is external base pair in s] (5.6)

=
∑

s ∈SS[1,n−1]

∑
1≤x<y≤n−1

I [(x ,y) is external base pair in s] +

n−θ−1∑
k=1

∑
s1∈SS[1,k−1]

∑
s2∈SS[k,n]

∑
1≤x<y≤n

I [(x ,y) external in s = s1s2 and (k,n) ∈ s2]

= En−1 +
n−θ−1∑
k=1

∑
s1∈SS[1,k−1]

∑
s2∈SS[k,n]

∑
1≤x<y≤k−1

I [(x ,y) external in s1] · I [(k,n) ∈ s2] +

n−θ−1∑
k=1

∑
s1∈SS[1,k−1]

∑
s2∈SS[k,n]

I [(k,n) external in s2] (5.7)

= En−1 +
n−θ−1∑
k=1

∑
s1∈SS[1,k−1]

∑
1≤x<y≤k−1

I [(x ,y) external in s1] *.
,

∑
s2∈SS[k,n]

I [(k,n) ∈ s2]+/
-
+

n−θ−1∑
k=1

∑
s1∈SS[1,k−1]

∑
s2∈SS[k,n]

I [(k,n) external in s2]

= En−1 +
n−θ−1∑
k=1

Ek−1 · Zn−k−1 +
n−θ−1∑
k=1

Zk−1 · Zn−k−1

(5.8)

Note that the rightmost term in the last line arises from the contribution of 1 for base pair (k,n).

In summary, we have shown that

En =




1 if n = 0

0 if 1 ≤ n ≤ 2

En−1 +
∑n−θ−1

k=1 (Ek−1 + Zk−1) · Zn−k−1 otherwise.

(5.9)
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x y′ y x y′y xy′ y

x x′ y xx′ y x x′y

(x,y)-> (x,y'), y'<y (x,y)-> (x,y'), y'>y (x,y)-> (y',x), y'<x

(x,y)-> (x',y), x'>x (x,y)-> (x',y), x'<x (x,y)-> (y,x'), x'>y

Figure 5.8: Illustration of shift moves de�ned in Sections “Main function Qn” and
“Recursion for function Qi, j”.

Main function Qn

For clarity in the derivation of Qn , we start by explicitly listing the moves in move set MS2.

Let x ,x ′,y,y ′ denote distinct positions all belonging to the interval [1,n]. The structure t can be

obtained from structure s by a move from MS2, if t is a valid secondary structure and can be

obtained from s by applying a move of the form 1-6.

1. Addition of a base pair (x ,y) to s .

2. Removal of a base pair (x ,y) from s .

3. Shift of a base pair (x ,y) in s to (x ,y ′) in t .

4. Shift of a base pair (x ,y) in s to (y ′,x) in t .

5. Shift of a base pair (x ,y) in s to (x ′,y) in t .

6. Shift of a base pair (x ,y) in s to (y,x ′) in t .

The shift moves 3-6 are depicted in Fig 5.8.

Let Qn =
∑

s ∈SS[1,n] N (s), where N (s) is the number of structures t that can be obtained from

s by applying a move from move set MS2. De�ne Q0 = 1, and Q1 = Q2 = 0, Z−1 = 0, Z0 = Z1 =
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Z2 = 1. For the inductive case where n > 2, initialize Qn = 0 and then add the contributions

from below.

Case 1(a): In this case, we consider the contribution from s ∈ SS[1,n], in which the last position

n is unpaired, and t is obtained from s by a move from MS2 involving x ,y,x ′,y ′ ∈ [1,n − 1].

Notice that in shifts of type 3,4 the original position x is retained, while in shifts of type 5,6

the original position y is retained, for distinct x ,x ′,y in the interval [1,n − 1]. Also, notice that

shifts of base pairs involving the last position n are not considered in Case 1(a) – such shifts

will later be treated in cases 1(c), 2(b) and 2(c). The contribution in this case is given by

Q (1a)
n = Qn−1. (5.10)

The term Qn−1 arises from neighbors t of s in which the last position n is unpaired, and the

base pair (x ,y) is added/removed/shifted in s .

Case 1(b): In this case, we consider the contribution from s ∈ SS[1,n], in which the last position

n is unpaired, and t is obtained from s by adding the base pair (k,n) for some 1 ≤ k ≤ n−θ − 1.

The contribution in this case is given by

Q (1b)
n =

n−θ−1∑
k=1

Zk−1 · Zn−k−1. (5.11)

Case 1(c): In this case, we consider the contribution from s ∈ SS[1,n], in which the last position

n is unpaired, and t is obtained from s by shifting the base pair (x ,y) to (x ,n), or by shifting
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the base pair (x ,y) to (y,n), for distinct x ,y in the interval [1,n − 1]. These shifts are treated

separately.

Case 1(c)(i): Consider a shift of the form (x ,y) to (x ,n), for y < n. The function En−1 counts the

number of external base pairs (x ,y) where y ≤ n − 1, for all structures on [1,n − 1]. For any

such (x ,y), it is possible to shift the base pair (x ,y) to (x ,n), and so the contribution is

En−1 (5.12)

Case 1(c)(ii): Consider a shift of the form (x ,y) to (y,n), for y < n − 1. The function En−2

counts the sum over all structures on [1,n − 2] of the number of external base pairs (x ,y) with

y ≤ n − 2. Since k ≤ n − 2 and θ = 1, and n is unpaired, it is possible to shift the base pair

(x ,y) to (y,n) and vice versa. So far, we have not considered structures s on [1,n − 1] in which

n − 1 is base-paired. For a structure s on [1,n − 1] that contains base pair (r + 1,n − 1), there

are Zn−r−3 many structures s2 on [r + 2,n − 2]; moreover, for any external base pair (x ,y) in a

structure s1 on [1,r ], we can shift the base pair (x ,y) to (y,n). This explains the presence of the

term
∑n−4

r=1 Er · Zn−r−3. Thus the contribution is

En−2 +
n−4∑
r=1

Er · Zn−r−3. (5.13)

In conclusion,

Q (1c)
n = En−1 + En−2 +

n−4∑
r=1

Er · Zn−r−3. (5.14)
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Case 2(a): The contribution from s ∈ SS[1,n], in which the last position n is base-paired, where

neighbor t is obtained from s by removal of that last base pair (k,n), is given by

Q (2a)
n =

n−θ−1∑
k=1

Zk−1 · Zn−k−1 (5.15)

Note that Case 2(a) is dual to Case 1(b).

Case 2(b): In this case, we consider the contribution from s ∈ SS[1,n], in which the last position

n is base-paired, where neighbor t is obtained from structure s by a shift of the last base pair

(k,n) to (k ′,n) for some k ′ , k that is visible in structure s − {(k,n)}. Note that if we were to

remove base pair (k,n) from s , then the last position of s − {(k,n)} must be unpaired, and the

position n − 1 may or may not be base paired. Recall that д(n,x) is the sum over all structures

s on [1,n], that contain x visible positions in the interval [1,n − 2], and in which position n

is unpaired. If we choose a �rst position k out of the x visible positions, and subsequently a

second distinct position k ′ out of the remaining x − 1 visible positions, then we properly count

the contribution from structures s containing (k,n) which can be transformed to a structure t

by the shift (k ′,n).

The contribution in this case is

Q (2b)
n =

n−θ−1∑
x=2

x(x − 1) · д(n,x). (5.16)

since we have x choices for value k and then (x − 1) choices for k ′, both selected from the x

visible positions of the structure.
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Case 2(c): In this case, we consider the contribution from s ∈ SS[1,n], in which the last position

n is base-paired, where neighbor t is obtained from structure s by a shift of base pair (k,n) to

(k,k ′), or a shift of the last base pair (k,n) to (k ′,k), for some k , k ′ that is visible in structure

s − {(k,n)}. These shifts are treated separately.

Case 2(c)(i): Consider a shift of the form (k,n) to (k,k ′), fork ′ < n. The function En−1 counts the

sum over all structures on [1,n − 1] of the number of external base pairs (k,k ′) with k ′ ≤ n − 1.

For any such (k,k ′), it is possible to apply the shift (k,n), and vice versa. Thus Case 2(c)(i) case

is dual to Case 1(c)(i) and the contribution is clearly

En−1 (5.17)

Case 2(c)(ii): Consider a shift of the form (k,n) to (k ′,k), for k ′ < k − 1. The function En−2

counts the sum over all structures on [1,n − 2] of the number of external base pairs (k ′,k) with

k ≤ n − 2. Since k ≤ n − 2 and θ = 1, and n is unpaired, it is possible to shift the base pair

(k ′,k) to (k,n) and vice versa. By duality to Case 1(c)(ii), we have the additional contribution of∑n−4
r=1 Er · Zn−r−3 to account for shifting the base pair (y,n) to an external base pair (x ,y) in a

structure s1 on [1,r ], in the case that n − 1 is base-paired. Thus Case 2(c)(ii) case is dual to Case

1(c)(ii) and the contribution is clearly

En−2 +
n−4∑
r=1

Er · Zn−r−3. (5.18)
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In conclusion,

Q (2c)
n = En−1 + En−2 +

n−4∑
r=1

Er · Zn−r−3. (5.19)

Case 2(d): In this case, we consider the contribution from s ∈ SS[1,n], in which the last position

n is base-paired with base pair (k,n), where neighbor t is obtained from a shift or addition/dele-

tion of a base pair in the left portion [1,k − 1] or right portion [k + 1,n − 1], so that t retains the

base pair (k,n). In this case, the contribution is

Q (2d )
n =

n−θ−1∑
k=1

(Zk−1 ·Qn−k−1 +Qk−1 · Zn−k−1) . (5.20)

The �rst term arises from the addition/removal/shift of a base pair (x ,y), where k+1 ≤ x < y ≤

n − 1, and the second term arises from the addition/removal/shift of a base pair (x ,y), where

1 ≤ x < y ≤ k − 1.

Putting together all contributions from Case 1(a) through Case 2(d), we have

Qn = Q (1a) +Q (1b) +Q (1c) +Q (2a) +Q (2b) +Q (2c) +Q (2d ) (5.21)

= Qn−1 + 2
n−θ−1∑
k=1

Zk−1 · Zn−k−1 + 2 *
,
En−1 + En−2 +

n−4∑
r=1

Er · Zn−r−3+
-
+

n−θ−1∑
x=2

x(x − 1) · д(n,x) +
n−θ−1∑
k=1

(Zk−1 ·Qn−k−1 +Qk−1 · Zn−k−1)

The functions f ,д require the greatest space and time resources, and it is easily seen that the

spece [resp. time] complexity for Z is O(n) [resp. O(n2)], for f is O(n2) [resp. O(n3)], for д is



Expected degree of RNA secondary structure networks 198

O(n2) [resp. O(n3)], and that given arrays that contain the values of f and д, the additional

space [resp. time] complexity for E and Q is O(n) [resp. O(n2)]. It follows that the expected

network degree in the homopolymer case Model A can be computed in quadratic space O(n2)

and cubic time O(n3). We have implemented a dynamic programming algorithm for each of

the functions E,f ,д,Q,Z resulting in software for the expected network degree, with respect

to homopolymer model. Our code has been cross-checked extensively with alternative brute-

force methods, hence is reliable.

Uniform, non-homopolymer Model B

In this section, we consider the uniform, non-homopolymer model B, in which secondary struc-

tures must satisfy De�nition 5.1; i.e. compared with the notion of structure from the previous

Section “Homopolymer Model A”, each base pair (i,j) of a secondary structure s of the RNA

sequence a = a1, . . . ,an must satisfy j − i > θ = 3, and ai ,aj must constitute a Watson-Crick or

wobble pair. In model B, the energy of each structure is zero, so the partition function Z = Z1,n

is the total number of structures of a, and the probability P(s) of each structure s is 1/Z . For

the recursions necessary to compute Qi, j =
∑

s ∈SS[i, j] N (s), where N (s) denotes the number of

neighbors of s under move set MS2, we need to de�ne new functions EL,ER,ER′, F ,G. There is

a correspondence between functions ELi, j−1,aj [resp. ER′i, j,aj ] { resp. Gi, j,aj ,x } in the current

section with the functions En−1 [resp. En−2 +
∑n−r−θ−1

r=1 Er · Zn−r−3] { resp. д(n,x) } from the

previous Section “Homopolymer Model A”.
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Critical de�nitions and recursions

For a given RNA sequence a = a1, . . . ,an , de�ne the subsequence a[i,j] = ai , . . . ,aj . Positions

i,j can form a base pair, denoted by bp(i,j) = 1, if ai ,aj is either a Watson-Crick pair AU,UA,GC,

or CG, or a wobble pair; otherwise bp(i,j) = 0. For k ∈ [1,n] and c ∈ {A,C,G,U }, we also

write bp(k,c) = 1 to mean that ak ,c constitute either a Watson-Crick or wobble base pair. A

nucleotide position k ∈ [1,n] is said to be visible in the secondary structure s , if for every base

pair (i,j) ∈ s , it is not the case that i ≤ k ≤ j. If we state that structure s has exactly x visible

occurrences of a nucleotide in [i,j − θ − 1] that can base pair with c , then we mean that there

are positions i ≤ i1 < i2 < · · · < ix ≤ j−θ −1 visible in s , such that bp(i1,c) = 1,. . . ,bp(ix ,c) = 1;

moreover there are no other positions beyond i1, . . . ,ix with this property.

The base pair (i,j) ∈ s is said to be an external base pair of the secondary structure s , if there is

no distinct base pair (i ′,j ′) ∈ s with the property that i ′ ≤ i < j ≤ j ′. In formulas, for brevity, we

write that ‘(i,j) is external in s’, to mean that (i,j) is an external base pair of s . Let SS[i,j] denote

the set of all secondary structures of the subword a[i,j]. Recall that the indicator function I [P]

is equal to 1 if relation P is true, and 0 otherwise. For 1 ≤ i ≤ j ≤ n, c ∈ {A,C,G,U }, and

x ∈ [0,n], and c ∈ {A,C,G,U }, de�ne the functions ELi, j,c , ERi, j,c , ER′i, j,c , Fi, j,c,x , G(i,j,c,x) as

follows.
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ELi, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

I [(x ,y) is external bp in s , bp(x ,c) = 1] (5.22)

ERi, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

I [(x ,y) is external bp in s , bp(y,c) = 1] (5.23)

ER′i, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

I [(x ,y) ∈ s is ext. bp in s , bp(y,c) = 1, y ≤ j − θ − 1, j unpaired in s ](5.24)

Fi, j,c,x =
∑

s ∈SS[i, j]
I [s has exactly x visible occurrences of a nucleotide that can pair with c](5.25)

Gi, j,c,x =
∑

s ∈SS[i, j]
I [s has exactly x visible occurrences of a nucleotide in [1,j − θ − 1] (5.26)

that can pair with c , and j unpaired in s]

The two di�erences between the homopolymer Model A and the current Model B are: (1) in

Model B, if (k,j) is a base pair, then the nucleotides at positions k,j must be one of AU, UA, GC,

CG, GU, UG, (2) in Model B, θ = 3, so if (k,j) is a base pair, then j ≥ i + θ + 1 = i + 4. Both

of these issues substantially complicate the treatment, so instead of the function En with one

argument, we have three functions, ELi, j,c , ERi, j,c , ER′i, j,c , each having three arguments. The

arguments i,j designate the left and right endpoints of the interval [i,j], and the functions are

de�ned by induction on increasing values of the di�erence j − i . The argument c contains the

value A,C,G,U for the nucleotide at position j; this allows one to test whether the nucleotide

at position k ∈ [i,j − θ − 1] can form a base pair with the nucleotide at position j. Thus ELi, j,c

is the sum, taken over all structures on [i,j], of the number of external base pairs (x ,y) where

we can alternatively form the base pair (x ,j) as depicted in panel (a) of Fig 5.9. As well, ER′i, j,c

is the sum, taken over all structures on [i,j], of the number of external base pairs (x ,y) where

we can alternatively form the base pair (y,j) as depicted in panel (b) of Fig 5.9. The function

ERi, j,c is �rst de�ned, since this simpli�es the recursion for ER′i, j,c . The function Gi, j,c,x has a
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i jx y i jyx

i jkk' i jy x

(a) case 1c: EL(i,j,c) (b) case 1d: ER'(i,j,aj)

(c) case 2c: F(i,k-1,j,x)ZB(k,j) (d) case 2d: G(i,k,ak,x)ZB(k,j)

Figure 5.9: Illustration of cases 1c, 1d, 2c, 2d from Section “Recursion for function
Qi, j”.

fourth parameter x , for whichGi, j,c,x counts the number of structures on [i,j] having exactly x

visible positions (external to all base pairs) in the interval [i,j −θ − 1] = [i,j − 4] of a nucleotide

that can form a base pair with nucleotide c , as depicted in panel (d) of Fig 5.9. It will follow that

for structures having exactly x such visible positions that can form a base pair with position

j, there are
�x
2
�
= x · (x − 1)/2 many pairs k ′,k where a shift of the form (k,j) → (k ′,j). The

function Fi, j,c,x is introduced to simplify the recursions forG, where Fi, j,c,x counts the number

of structures on [i,j] having exactly x visible occurrences of a nucleotide that can form a base

pair with c . With this introduction, we give the formal de�nitions.

De�nition of EL

For 1 ≤ i ≤ j ≤ n and c ∈ {A,C,G,U }, we de�ne ELi, j,c by induction on j − i .

Base Case: If j − i ≤ θ , de�ne ELi, j,c = 0.
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Inductive Case: If j − i > θ , de�ne ELi, j,c as the sum of the following

ELi, j,c = ELi, j−1,c + bp(i,j) · bp(i,c) · Zi+1, j−1 +
j∑

k=i+1
bp(k,j) · ELi,k−1,c · Zk+1, j−1 +(5.27)

j∑
k=i+1

bp(k,j) · bp(k,c) · Zi,k−1 · Zk+1, j−1

De�nition of ER

For 1 ≤ i ≤ j ≤ n and c ∈ {A,C,G,U }, we de�ne ERi, j,c by induction on j − i .

Base Case: If j − i ≤ θ , de�ne ERi, j,c = 0.

Inductive Case: If j − i > θ , de�ne ERi, j,c as the sum of the following

ERi, j,c = ERi, j−1,c + bp(i,j) · bp(j,c) · Zi+1, j−1 +
j∑

k=i+1
bp(k,j) · ERi,k−1,c · Zk+1, j−1 +(5.28)

j∑
k=i+1

bp(k,j) · bp(j,c) · Zi,k−1 · Zk+1, j−1

De�nition of ER′

For 1 ≤ i ≤ j ≤ n and c ∈ {A,C,G,U }, we de�ne ER′i, j,c by induction on j − i .

Base Case: If j − i ≤ θ , de�ne ER′i, j,c = 0.
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Inductive Case: If j − i > θ , de�ne ER′i, j,c as the sum of the following

ER′i, j,c = ERi, j−θ−1,c + (5.29)
3∑

u=1

j−θ−1+u−θ−1∑
k=i+1

bp(k,j − θ − 1 + u) · I [j − θ − 1 + u − k > θ ] · ERi,k−1,c · Zk+1, j−θ−1+u−1

Note that the �rst term to the right of the equality sign in the previous equation is ERi, j−θ−1,c

and not ER′i, j−θ−1,c .

De�nition of F

For 1 ≤ i ≤ j ≤ n, c ∈ {A,C,G,U } and x ∈ [0,n], we de�ne Fi, j,c,x by induction on j − i . For

j − i < 0, c ∈ {A,C,G,U }, and 0 ≤ x ≤ j − i + 1, de�ne Fi, j,c,x = 0.

Base Case i = j: For c ∈ {A,C,G,U }, de�ne Fi,i,c,bp(i,c); i.e.

Fi,i,c,0 =




1 if bp(i,c) = 0

0 else
(5.30)

and

Fi,i,c,1 =




1 if bp(i,c) = 1

0 else
(5.31)
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Base Case i < j ≤ i + θ : For i < j ≤ i + θ , and x ∈ [0,j − i + 1], de�ne by double induction on

j − i and x

Fi, j,c,x =




Fi, j−1,c,x−1 if x > 0 and bp(j,c) = 1

Fi, j−1,c,x if bp(j,c) = 0
(5.32)

Inductive Case j > i +θ : For j > i +θ , and x ∈ [0,n], we de�ne F by double induction on j − i

and x , where we separate the case that x = 0 and x > 0.

Subcase x = 0:

Fi, j,c,0 = (1 − bp(j,c)) · Fi, j−1,c,0 + bp(i,j) · Zi+1, j−1 +
j−θ−1∑
k=i+1

bp(k,j) · Fi,k−1,c,0 · Zk+1, j−1(5.33)

Subcase x > 0:

Fi, j,c,x = bp(j,c) · Fi, j−1,c,x−1 +
j−θ−1∑
k=i+1

bp(k,j) · I [x ∈ [0,k − i]] · Fi,k−1,c,x · Zk+1, j−1 (5.34)

De�nition of G

Recall thatGi, j,c,x is de�ned to be the number of structures s ∈ SS[i,j] having exactly x visible

occurrences of a nucleotide in [i,j − θ − 1] that can base-pair with c , and j is unpaired in s .

Initially de�ne Gi, j,c,x = 0 for all i,j,c,x .

Base Case: For i ≤ j ≤ i + θ , and c ∈ {A,C,G,U }, de�ne Gi, j,c,0 = 0.
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Inductive Case: In this case, j > i + θ , and c ∈ {A,C,G,U }. We separately treat the subcases

x = 0 and x > 0.

Subcase x = 0:

Gi, j,c,0 = Fi, j−θ−1,c,0 +
3∑

u=1
I [j − θ − 1 + u − i > θ ] · bp(i,j − θ − 1 + u) · Zi+1, j−θ−1+u−1 + (5.35)

3∑
u=1

j−θ−1+u−θ−1∑
k=i+1

I [j − θ − 1 + u − k > θ ] · bp(k,j − θ − 1 + u) · Fi,k−1,c,0 · Zk+1, j−θ−1+u−1

Subcase x > 0:

Gi, j,c,x = Fi, j−θ−1,c,x + (5.36)
3∑

u=1

j−θ−1+u−θ−1∑
k=i+1

I [j − θ − 1 + u − k > θ ] · bp(k,j − θ − 1 + u) · Fi,k−1,c,x · Zk+1, j−θ−1+u−1

Computing the total number of moves using MS1

For 1 ≤ i ≤ j ≤ n, de�ne Qi, j to be the sum, taken over all structures s of ai , . . . ,aj , of the

number of base pair additions or removals of a base pair to or from s . Formally, we have

Qi, j =
∑

s ∈SS[i, j]

∑
(x,y)∈s

j−θ−1∑
k=i

j∑
`=k+θ+1

I [((x ,y)→ (k,`)) ∈ MS1, (s \ {(x ,y)}) ∪ {(k,`)} valid str](5.37)

or equivalently

Qi, j =
∑

s ∈SS[i, j]

∑
t ∈SS[i, j]

I [dBP(s,t) = 1] (5.38)
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where dBP(s,t) denotes the base pair distance between structures s,t . De�ne Qi, j by recursion

on j − i , for 1 ≤ i ≤ j ≤ n.

Base Case: For i ≤ j ≤ i + θ , de�ne Qi, j = 0.

Inductive Case: For j > i + θ , de�ne

Qi, j = Qi, j−1 + 2 · *.
,
bp(i,j) · Zi+1, j−1 +

j−θ−1∑
k=i+1

bp(k,j) · Zi,k−1 · Zk+1, j−1+/
-
+ (5.39)

bp(i,j) ·Qi+1, j−1 +

j−θ−1∑
k=i+1

bp(k,j) · �Qi,k−1 · Zk+1, j−1 + Zi,k−1 ·Qk+1, j−1
�

Computing the total number of moves using MS2

For 1 ≤ i ≤ j ≤ n, de�ne Qi, j to be the sum, taken over all structures s of ai , . . . ,aj , of the

number of base pair additions, removals or shifts of a base pair of s . Formally, we have

Qi, j =
∑

s ∈SS[i, j]

∑
(x,y)∈s

j−θ−1∑
k=i

j∑
`=k+θ+1

I [((x ,y)→ (k,`)) ∈ MS2, (s \ {(x ,y)}) ∪ {(k,`)} is valid str](5.40)

Now de�ne Qi, j by recursion on j − i , for 1 ≤ i ≤ j ≤ n.

Base Case: For i ≤ j ≤ i + θ , de�ne Qi, j = 0.
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Inductive Case: For j > i + θ , de�ne

Qi, j = Qi, j−1 + 2 · *.
,
bp(i,j) · Zi+1, j−1 +

j−θ−1∑
k=i+1

bp(k,j) · Zi,k−1 · Zk+1, j−1+/
-
+ (5.41)

2 ·
(
ELi, j−1,aj + ER

′
i, j,aj

)
+

j−i−θ∑
x=2

x · (x − 1) ·Gi, j,aj ,x +

bp(i,j) ·Qi+1, j−1 +

j−θ−1∑
k=i+1

bp(k,j) · �Qi,k−1 · Zk+1, j−1 + Zi,k−1 ·Qk+1, j−1
�

Computing the total number of moves using MS2 \MS1

For 1 ≤ i ≤ j ≤ n, de�ne Qi, j to be the sum, taken over all structures s of ai , . . . ,aj , of the

number of shifts of a base pair of s . Formally, we have

Qi, j =
∑

s ∈SS[i, j]

∑
(x,y)∈s

j−θ−1∑
k=i

j∑
`=k+θ+1

(5.42)

I [(x ,y) ∈ s, ((x ,y)→ (k,`)) ∈ {MS2 \MS1}, (s \ {(x ,y)}) ∪ {(k,`)} valid str]

Now de�ne Qi, j by recursion on j − i , for 1 ≤ i ≤ j ≤ n.

Base Case: For i ≤ j ≤ i + θ , de�ne Qi, j = 0.

Inductive Case: For j > i + θ , de�ne

Qi, j = Qi, j−1 + 2 ·
(
ELi, j−1,aj + ER

′
i, j,aj

)
+

j−i−θ∑
x=2

x · (x − 1) ·Gi, j,aj ,x + (5.43)

bp(i,j) ·Qi+1, j−1 +

j−θ−1∑
k=i+1

bp(k,j) · �Qi,k−1 · Zk+1, j−1 + Zi,k−1 ·Qk+1, j−1
�
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We have implemented a dynamic programming algorithm for each of the functionsEL,ER,ER′, F ,G,

Q and Z , resulting in software for the expected network degree, with respect to uniform prob-

ability for the move sets MS1, MS2, MS2 \ MS1. Analysis of space and time resources needed

for the program can be determined in a manner similar to that described at the end of Subsec-

tion 5.3.1; however, there is an additional factor of n in both space and time requirements, so

that the software runs in space O(n3) and time O(n4). During the algorithm development and

implementation, we have extensively cross-checked with results obtained by exhaustive, brute

force counting, thus ensuring correctness of our code.

Model C with Turner energy parameters

Here we consider the Model C, for which secondary structures satisfy De�nition 5.1 and such

that E(s) indicates the Turner energy of s , which involves free energy parameters [23] for

stacked base pairs, hairpins, bulges, internal loops and multiloops. For RNA sequence a =

a1, . . . ,an , we present recursions in the following for Zi, j and Qi, j , where

N (s) =
∑

t ∈SS[i, j]
I [t obtained from s by a move in MS2] (5.44)

BF (s) = exp(−E(s)/RT ) (5.45)

Qi, j =
∑

s ∈SS[i, j]
BF (s) · N (s) (5.46)

QBi, j =
∑

s ∈SS[i, j];(i, j)∈s
BF (s) · N (s) (5.47)

Zi, j =
∑

s ∈SS[i, j]
exp(−E(s)/RT ) (5.48)

ZBi, j =
∑

s ∈SS[i, j];(i, j)∈s
exp(−E(s)/RT ) (5.49)
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Note that I is the indicator function, and that QBi, j is the Boltzmann weighted sum of the

number of neighbors, using move setMS2, where the sum is taken over all structures s ∈ SS[i,j]

that contain the base pair (i,j). SimilarlyZBi, j is the sum of Boltzmann factors BF (s), where the

sum is taken over all structures s ∈ SS[i,j] that contain the base pair (i,j). We write bp(k,j) = 1

to mean that nucleotides ak ,aj can form either a Watson-Crick or wobble base pair, and for

nucleotide c ∈ {A,C,G,U }, we write bp(k,c) = 1 to mean that nucleotides ak and c can form a

Watson-Crick or wobble base pair. From the context, there should be no confusion between

bp(k,j) and bp(k,c).

Auxilliary functions EL, ER, ER′, F , G

For 1 ≤ i ≤ j ≤ n, c ∈ {A,C,G,U }, and x ∈ [0,n], and c ∈ {A,C,G,U }, de�ne the Boltzmann

version of the functions de�ned in the previous Section “Uniform, non-homopolymer Model

B”, where without risk of confusion we use the same function notations for ELi, j,c , ERi, j,c ,

ER′i, j,c , Fi, j,c,x , Gi, j,c,x , although the underlying de�nitions must be modi�ed.

ELi, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

BF (s) · I [(x ,y) is an external base pair (bp) in s , bp(x ,c) = 1] (5.50)

ERi, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

BF (s) · I [(x ,y) is external bp in s , bp(y,c) = 1] (5.51)

ER′i, j,c =
∑

s ∈SS[i, j]
(x,y) ∈ s

BF (s) · I [(x ,y) ∈ s is ext. bp in s , bp(y,c) = 1, y ≤ j − θ − 1, j unpaired in s ](5.52)

Fi, j,c,x =
∑

s ∈SS[i, j]
BF (s) · I [s has x visible occurrences of a nucleotide that can pair with c](5.53)

Gi, j,c,x =
∑

s ∈SS[i, j]
BF (s) · I [s has exactly x visible occurrences of a nucleotide in [1,j − θ − 1](5.54)

that can pair with c , and j unpaired in s]
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Recursions for a dynamic programming implementation of these functions are given later in

Section “Recursions for auxilliary functions”. We focus now on how to compute Qi, j using

these auxilliary functions.

Recursion for function Qi,j

For notational convenience, de�neQi,i−1 = 0 and Zi,i−1 = 1 for all 1 ≤ i ≤ n. If i ≤ j < i+θ +1,

then for any secondary structure s ∈ SS[i,j], there are no structural neighbors of s and so

Qi, j = 0. If i ≤ j < i + θ + 1, then the only secondary structure on [i,j] is the empty structure

with free energy of zero, so Zi, j = 1. Now assume that i + θ + 1 ≤ j. By de�nition

Qi, j =
∑

s ∈SS[i, j]
j unpaired in s

BF (s)N (s) +
j−θ−1∑
k=i

∑
s ∈SS[i, j]
(k, j) ∈ s

BF (s)N (s). (5.55)

For the move set MS1 (in the absence of shift moves), it has been shown in [161] that

Qi, j = Qi, j−1 +

j−θ−1∑
k=i

bp(k,j) · �Zi,k−1 · Zk+1, j−1 +Qi,k−1 · ZBk, j + Zi,k−1 ·QBk, j
�

(5.56)

However, when allowing shift moves, the situation is more complicated since there are shifts

involving x ,y,x ′,y ′ ∈ [i,j] that are neither fully contained in the segment [i,j − 1] for structures

s ∈ SS[i,j] in which j is unpaired, nor fully contained in one of the segments [i,k − 1], [k,j]

structures s ∈ SS[i,j] which contain the base pair (k,j). The former shifts are treated in cases

1(c), 1(d), while the latter shifts are treated in cases 2(c), 2(d).

For clarity in the derivation of Qi, j , we start by explicitly listing the moves in move set MS2.

Let x ,z ′,y,y ′ denote distinct positions all belonging to the interval [i,j]. The structure t can be
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obtained from structure s by a move from MS2, if t is a valid secondary structure and can be

obtained from s by applying a move of the form 1-6.

1. Addition of a base pair (x ,y) to s .

2. Removal of a base pair (x ,y) from s .

3. Shift of a base pair (x ,y) in s to (x ,y ′) in t .

4. Shift of a base pair (x ,y) in s to (y ′,x) in t .

5. Shift of a base pair (x ,y) in s to (x ′,y) in t .

6. Shift of a base pair (x ,y) in s to (y,x ′) in t .

The shift moves 3-6 are depicted in Fig 5.8. Notice that in shifts of type 3,4 the original position

x is retained, while in shifts of type 5,6 the original position y is retained. for distinct x ,x ′,y in

the interval [i,j].

In the base case, for all i ∈ [1,n], we have Qi,i−1 = 0,Zi,i−1 = 1, and for i ≤ j ≤ i + θ = i + 3,

Qi, j = 0, Zi, j = 1. For the inductive case in which j − i > θ = 3, initialize Qi, j = 0 and then add

the contributions from the cases below. The recursions for Zi, j are well-known [166] and are

given later in Section “Remaining recursions for Qi, j and Zi, j”.

Case 1(a): In this case, we consider the contribution from s ∈ SS[i,j], in which j is unpaired in

the interval [i,j], and t is obtained from s by a move from MS2 involving x ,y,x ′,y ′ ∈ [i,j − 1].

The contribution is

Qi, j + = Qi, j−1. (5.57)
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which accounts for the addition, removal or shift of a base pair in [i,j − 1]. Note that shifts of

base pairs involving the last position j are not considered in Case 1(a) – such shifts will treated

in cases 1(c), 1(d), 2(c), 2(d).

Case 1(b): In this case, we consider the contribution from s ∈ SS[i,j], in which j is unpaired in

[i,j], and t is obtained from s by adding the base pair (k,j) for some i ≤ k ≤ j − θ − 1 = j − 4.

The contribution is

Qi, j + =

j−θ−1∑
k=i

bp(k,j) · Zi,k−1 · Zk+1, j−1. (5.58)

This term arises from those t obtained from s by adding a base pair (k,j) for somek ∈ [i,j−θ−1].

The remaining cases 1(c), 1(d) treat shifts involving x ,y,x ′,y ′ ∈ [i,j] in structures s ∈ SS[i,j] in

which j is unpaired in [i,j], where the position j is touched; i.e. it is not the case that x ,y,x ′,y ′ ∈

[i,j − 1] and so these shifts are not already counted in the term Qi, j−1.

Case 1(c): In this case, depicted in panel (a) of Fig 5.9, we consider the contribution from

s ∈ SS[i,j] in which j is unpaired in [i,j], and t is obtained from s by a shift of the base pair

(x ,y) to (x ,j) for i ≤ x ≤ y − θ − 1 and y ≤ j − 1. The function ELi, j−1,aj is the sum, taken

over all structures s ∈ SS[i,j] in which j in unpaired, of the product of the Boltzmann factor

B(s) times the number of external base pairs (x ,y) in s with y ≤ j − 1 such that the nucleotide

ax at position x can form a base pair with the nucleotide aj at position j. For any such (x ,y), it

is possible to shift the base pair (x ,y) to (x ,j), and vice versa. Before proceeding, note that the

current Case 1(c) handles shifts from (x ,y) to (x ,j), while Case 2(b) handles shifts from (x ,j) to
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(x ,y). The contribution in the current case is clearly

Qi, j + = ELi, j−1,aj . (5.59)

Case 1(d): In this case, depicted in panel (b) of Fig 5.9, we consider the contribution from

s ∈ SS[i,j] in which j is unpaired in [i,j], and t is obtained from s by a shift of the base pair

(x ,y) to (y,j) for i ≤ x ≤ y −θ − 1 and y ≤ j −θ − 1. The function ER′i, j,aj is the sum, taken over

all structures s ∈ SS[i,j] in which j in unpaired, of the product of the Boltzmann factor B(s)

times the number of external base pairs (x ,y) in s with y ≤ j − θ − 1 such that the nucleotide

ay at position y can form a base pair with the nucleotide aj at position j. For any such external

base pair (x ,y), it is possible to shift (x ,y) to (y,j), and vice versa. Before proceeding, note that

the current Case 1(d) handles shifts from (x ,y) to (y,j), while Case 2(d) handles shifts from (y,j)

to (x ,y). The contribution in the case at hand is clearly

Qi, j + = ER′i, j,aj . (5.60)

Case 2(a): In this case, we consider the contribution from structures s ∈ SS[i,j], which contain

the base pair (k,j), for some i ≤ k ≤ j − θ − 1, and t is obtained from s by a move from MS2

involving x ,y,x ′,y ′, such that x ,y,x ′,y ′ ∈ [i,k − 1]. The contribution is

Qi, j + =
∑j−θ−1

k=i bp(k,j) ·Qi,k−1 · ZBk, j . (5.61)
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Case 2(b): In this case, we consider the contribution from structures s ∈ SS[i,j], which contain

the base pair (k,j), for some i ≤ k ≤ j − θ − 1, and t is obtained from s by a move from MS2

involving x ,y,x ′,y ′, such that x ,y,x ′,y ′ ∈ [k,j]. The contribution is

Qi, j + =
∑j−θ−1

k=i bp(k,j) · Zi,k−1 ·QBk, j . (5.62)

The remaining cases 2(c), 2(d) treat shifts involving x ,y,x ′,y ′ ∈ [i,j] in structures s ∈ SS[i,j]

which contain the base pair (k,j) for some i ≤ k ≤ j − θ − 1, where it is neither the case that

x ,y,x ′,y ′ ∈ [i,k − 1] nor x ,y,x ′,y ′ ∈ [k,j]; i.e. cross talk shifts that touch both the left [i,k − 1]

and the right [k,j] segments.

Case 2(c): In this case, depicted in panel (c) of Fig 5.9, we consider the contribution from

s ∈ SS[i,j], which contain the base pair (k,j), for some i ≤ k ≤ j −θ − 1, and t is obtained from

s by a shift of the base pair (k,j) to (k ′,j) for some k ′ < k that is visible in structure s \ {(k,j)}.

Before proceeding, note that for k < k ′, the shift of base pair (k,j) to (k ′,j) is treated in Case

2(b).

Recall that the function Fi,k−1,aj ,x is the sum of Boltzmann factors of all structures s0 on [i,k−1]

that contain exactly x occurrences of a visible position that can form a base pair with the

nucleotide aj at position j. The contribution in this case is

Qi, j + =

j−θ−1∑
k=i

k−i∑
x=1

bp(k,j) · x · Fi,k−1,aj ,x · ZBk, j . (5.63)
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Case 2(d): In this case, depicted in panel (d) of Fig 5.9, we consider the contribution from

structures s ∈ SS[i,j], which contain the base pair (k,j), for some i ≤ k ≤ j − θ − 1, and t is

obtained from s by a shift of the base pair (k,j) to (k ′,k) for some i ≤ k ′ ≤ k − θ − 1 which is

visible in s . Recall that the functionGi,k,ak ,x is the sum of Boltzmann factors of all structures s0

on [i,k], in which k is unpaired, for which there are exactly x occurrences of a visible position

in [i,k − θ − 1] that can form a base pair with ak . The contribution is

Qi, j + =

j−θ−1∑
k=i

k−i∑
x=1

bp(k,j) · x ·Gi,k,ak ,x · ZBk, j . (5.64)

Putting together all contributions from Case 1(a) through Case 2(d), we have

Qi, j = Qi, j−1 +

j−θ−1∑
k=i

bp(k,j) · �Zi,k−1 · Zk+1, j−1 +Qi,k−1 · ZBk, j + Zi,k−1 ·QBk, j
�
+

ELi, j−1,aj + ER
′
i, j,aj +

j−θ−1∑
k=i

k−i∑
x=1

bp(k,j) · x · (Fi,k−1,aj ,x +Gi,k,ak ,x
)
· ZBk, j (5.65)

Recursions for auxilliary functions

We now provide the recursions for functions EL, ER, ER′, F and G.
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De�nition of EL

For 1 ≤ i ≤ j ≤ n and c ∈ {A,C,G,U }, we de�ne ELi, j,c by induction on j − i , where

ELi, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

BF (s) · I [(x ,y) is external bp in s , bp(x ,c) = 1] (5.66)

Base Case: If j − i ≤ θ , de�ne ELi, j,c = 0.

Inductive Case: If j − i > θ , de�ne ELi, j,c as the sum of the following

ELi, j,c = ELi, j−1,c + bp(i,j) · bp(i,c) · ZBi, j +
j∑

k=i+1
bp(k,j) · ELi,k−1,c · ZBk, j + (5.67)

j∑
k=i+1

bp(k,j) · bp(k,c) · Zi,k−1 · ZBk, j

De�nition of ER

For 1 ≤ i ≤ j ≤ n and c ∈ {A,C,G,U }, we de�ne ERi, j,c by induction on j − i , where

ERi, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

BF (s) · I [(x ,y) is external bp in s , bp(y,c) = 1] (5.68)

Base Case: If j − i ≤ θ , de�ne ERi, j,c = 0.
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Inductive Case: If j − i > θ , de�ne ERi, j,c as the sum of the following

ERi, j,c = ERi, j−1,c + bp(i,j) · bp(j,c) · ZBi, j +
j∑

k=i+1
bp(k,j) · ERi,k−1,c · ZBk, j + (5.69)

j∑
k=i+1

bp(k,j) · bp(j,c) · Zi,k−1 · ZBk, j

De�nition of ER′

For 1 ≤ i ≤ j ≤ n and c ∈ {A,C,G,U }, we de�ne ER′i, j,c by induction on j − i , where

ER′i, j,c =
∑

s ∈SS[i, j]

∑
(x,y)

BF (s) · (5.70)

I [(x ,y) ∈ s is external bp in s , bp(y,c) = 1, y ≤ j − θ − 1, j unpaired in s ]

Base Case: If j − i ≤ θ , de�ne ER′i, j,c = 0.

Inductive Case: If j − i > θ , de�ne ER′i, j,c as the sum of the following

ER′i, j,c = ERi, j−θ−1,c + (5.71)
θ∑

u=1

j−θ−1+u−θ−1∑
k=i+1

bp(k,j − θ − 1 + u) · I [j − θ − 1 + u − k > θ ] · ERi,k−1,c · ZBk, j−θ−1+u

Note that the �rst term to the right of the equality sign in the previous equation is ERi, j−θ−1,c

and not ER′i, j−θ−1,c .
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De�nition of F

For 1 ≤ i ≤ j ≤ n, c ∈ {A,C,G,U } and x ∈ [0,n], we de�ne Fi, j,c,x by induction on j − i , where

Fi, j,c,x =
∑

s ∈SS[i, j]
BF (s) · I [s has exactly x visible occurrences of a base that can pair with c](5.72)

De�ne Fi, j,c,x = 0 for j < i and c ∈ {A,C,G,U } and x ∈ [0,n].

Base Case i = j: For c ∈ {A,C,G,U }, de�ne Fi,i,c,bp(i,c) as follows

Fi,i,c,0 =




1 if bp(i,c) = 0

0 else
(5.73)

and

Fi,i,c,1 =




1 if bp(i,c) = 1

0 else
(5.74)

Base Case i < j ≤ i + θ : For i < j ≤ i + θ , and x ∈ [0,j − i + 1], de�ne by double induction on

j − i and x

Fi, j,c,x =




Fi, j−1,c,x−1 if x > 0 and bp(j,c) = 1

Fi, j−1,c,x if bp(j,c) = 0
(5.75)

Inductive Case j > i +θ : For j > i +θ , and x ∈ [0,n], we de�ne F by double induction on j − i

and x , where we separate the case that x = 0 and x > 0.
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Subcase x = 0:

Fi, j,c,0 = (1 − bp(j,c)) · Fi, j−1,c,0 + bp(i,j) · ZBi, j +
j−θ−1∑
k=i+1

bp(k,j) · Fi,k−1,c,0 · ZBk, j (5.76)

Subcase x > 0:

Fi, j,c,x = bp(j,c) · Fi, j−1,c,x−1 +
j−θ−1∑
k=i+1

bp(k,j) · I [x ∈ [0,k − i]] · Fi,k−1,c,x · ZBk, j (5.77)

De�nition of G

Recall thatGi, j,c,x is de�ned to be the sum of Boltzmann factors of structures s ∈ SS[i,j] having

exactly x visible occurrences of a nucleotide in [i,j − θ − 1] that can base-pair with c , and j is

unpaired in s , i.e.

Gi, j,c,x =
∑

s ∈SS[i, j]
BF (s) · I [s has exactly x visible occurrences of a nucleotide in [1,j − θ − 1](5.78)

that can pair with c , and j unpaired in s]

Initially de�ne Gi, j,c,x = 0 for all i,j,c,x .

Base Case: For i ≤ j ≤ i + θ , and c ∈ {A,C,G,U }, de�ne Gi, j,c,0 = 0.

Inductive Case: In this case, j > i + θ , and c ∈ {A,C,G,U }. We separately treat the subcases

x = 0 and x > 0.
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Subcase x = 0:

Gi, j,c,0 = Fi, j−θ−1,c,0 +
3∑

u=1
I [j − θ − 1 + u − i > θ ] · bp(i,j − θ − 1 + u) · ZBi, j−θ−1+u + (5.79)

3∑
u=1

j−θ−1+u−θ−1∑
k=i+1

I [j − θ − 1 + u − k > θ ] · bp(k,j − θ − 1 + u) · Fi,k−1,c,0 · ZBk, j−θ−1+u

Subcase x > 0:

Gi, j,c,x = Fi, j−θ−1,c,x + (5.80)
3∑

u=1

j−θ−1+u−θ−1∑
k=i+1

I [j − θ − 1 + u − k > θ ] · bp(k,j − θ − 1 + u) · Fi,k−1,c,x · ZBk, j−θ−1+u

Remaining recursions for Qi,j and Zi,j

In this section, we furnish the remaining recursions for Qi, j , Zi, j in the Turner 2004 energy

model [23]. For a �xed sequence a = a1, . . . ,an and for 1 ≤ i ≤ j ≤ n, de�ne

Qi, j =
∑

s ∈SS[i, j]
Ns · exp(−E(s)/RT ) (5.81)

Zi, j =
∑

s ∈SS[i, j]
exp(−E(s)/RT )

where Ns is the number of secondary structures that can be obtained from s by a base pair

addition, removal or shift – i.e. the number of neighbors of s with respect to move set MS2. It
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follows that Z = Z1,n is the partition function for secondary structures, and

〈Ns 〉 = Q1,n

Z1,n
=

∑
s ∈SS[1,n]

Ns · P(s) =
∑

s ∈SS[1,n]
Ns ·

exp(−E(s)/RT )
Z

=
∑

s ∈SS[1,n]
Ns ·

BF (s)
Z

(5.82)

where BF (s) abbreviates the Boltzmann factor exp(−E(s)/RT ) of s .

To provide a self-contained treatment, we recall McCaskill’s algorithm [166], which e�ciently

computes the partition function. For RNA nucleotide sequence a = a1, . . . ,an , let H (i,j) denote

the free energy of a hairpin closed by base pair (i,j), while IL(i,j,i ′,j ′) denotes the free energy

of an internal loop enclosed by the base pairs (i,j) and (i ′,j ′), where i < i ′ < j ′ < j. Internal

loops comprise the cases of stacked base pairs, left/right bulges and proper internal loops. The

free energy for a multiloop containing Nb base pairs and Nu unpaired bases is given by the

a�ne approximation a + bNb + cNu .

De�nition 5.2 (Partition function Z and related function Q).

• Zi, j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j].

• ZBi, j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j] which

contain the base pair (i,j).

• ZMi, j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j] which

are contained within an enclosing multiloop having at least one component.

• ZM1i, j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j] which

are contained within an enclosing multiloop having exactly one component. Moreover,

it is required that (i,r ) is a base pair of x , for some i < r ≤ j.
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• Qi, j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j].

• QBi, j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j]

which contain the base pair (i,j).

• QMi, j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j]

which are contained within an enclosing multiloop having at least one component.

• QM1i, j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ SS[i,j]

which are contained within an enclosing multiloop having exactly one component. More-

over, it is required that (i,r ) is a base pair of s , for some i < r ≤ j.

We will de�ne Zi, j and Qi, j by recursion on j − i , for 1 ≤ i ≤ j ≤ n.

Base Case: Recalling that θ = 3, for j − i ∈ {−1,0,1,2,3}, de�ne Qi, j = QBi, j = 0, Zi, j = 1,

ZBi, j = ZMi, j = ZM1i, j = 0, since the empty structure is the only possible secondary structure.

Inductive Case for Zi, j : For j > i + θ , de�ne

Zi, j = Zi, j−1 + ZBi, j +

j−θ−1∑
r=i+1

Zi,r−1 · ZBr, j (5.83)

ZBi, j = exp(−H (i,j)/RT ) +
∑

i≤`≤r ≤j

exp(−IL(i,j,`,r )/RT ) · ZB`,r + (5.84)

exp(−(a + b)/RT ) · *.
,

j−θ−2∑
r=i+θ+1

ZMi+1,r−1 · ZM1r, j−1+/
-

ZM1i, j =
j∑

r=i+θ+1
ZBi,r · exp(−c(j − r )/RT ) (5.85)

ZMi, j =

j−θ−1∑
r=i

ZM1r, j · exp(−(b + c(r − i))/RT ) + (5.86)

j−θ−1∑
r=i+θ+2

ZMi,r−1 · ZM1r, j · exp(−b/RT ).
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Inductive Case for Qi, j : For j > i + θ , recall that by equation (5.65) we have

Qi, j = Qi, j−1 +

j−θ−1∑
k=i

bp(k,j) · �Zi,k−1 · Zk+1, j−1 +Qi,k−1 · ZBk, j + Zi,k−1 ·QBk, j
�
+(5.87)

ELi, j−1,aj + ER
′
i, j,aj +

j−θ−1∑
k=i

k−i∑
x=1

bp(k,j) · x · (Fi,k−1,aj ,x +Gi,k,ak ,x
)
· ZBk, j

To complete the de�nition of QBi, j , we need additional auxilliary functions.

Auxilliary function arc

To complete the inductive de�nition of Qi, j just given, we must de�ne QBi, j , QM1i, j , QMi, j .

This �rst requires the following auxilliary de�nitions, which count the number of structures

obtained by adding a base pair within a hairpin, bulge, internal loop or multiloop, or by shifting
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a base pair at a boundary of the loop. For θ = 3 and j − i > θ de�ne

arc1a(i,j) = |{(x ,y) : bp(x ,y) = 1, i ≤ x < y ≤ j,x + θ < y}| (5.88)

arc1b (i,j) = |{(i,k) : bp(i,k) = 1, i < k < j, i + θ < k}|

arc1c (i,j) = |{(k,j) : bp(k,j) = 1, i < k < j,k + θ < j}|

arc2a(i,j,`,r ) = |{(x ,y) : bp(x ,y) = 1, i < x < ` < r < y < j}|

arc2b,1(i,j,`,r ) = |{(i,y) : bp(i,y) = 1, i < ` < r < y < j}| + |{(i,y) : bp(i,y) = 1, i + θ < y < `}|

arc2b,2(i,j,`,r ) = |{(`,y) : bp(`,y) = 1, i < ` < r < y < j}| + |{(x ,`) : bp(x ,`) = 1, i < x < ` − θ}|

arc2b (i,j,`,r ) = arc2b,1(i,j,`,r ) + arc2b,2(i,j,`,r )

arc2c,1(i,j,`,r ) = |{(x ,j) : bp(x ,j) = 1, i < x < ` < r < j}| + |{(x ,j) : bp(x ,j) = 1, r < x < j − θ}|

arc2c,2(i,j,`,r ) = |{(x ,r ) : bp(x ,r ) = 1, i < x < ` < r < j}| + |{(r ,x) : bp(r ,x) = 1, r + θ < x < j}|

arc2c (i,j,`,r ) = arc2c,1(i,j,`,r ) + arc2c,2(i,j,`,r )

arc2(i,j,`,r ) = arc2a(i,j,`,r ) + arc2b (i,j,`,r ) + +arc2c (i,j,`,r )

arc3(i,j,`,r ) = arc1a(i + 1,` − 1) + arc1a(r + 1,j − 1) + arc2(i,j,`,r )

arc4(i,j,k) = |{(i,x) : bp(i,x) = 1, i < j < x ≤ k, i + θ < x}|

arc5(i,j,k) = |{(j,x) : bp(j,x) = 1, i < j < x ≤ k, j + θ < x}|.

Note that arc1a(i,j) counts the number of neighbors obtained from structure s by adding a

base pair (x ,y) in the interval [i,j]. In contrast, arc1b (i,j) [resp. arc1c (i,j)] counts the number

of neighbors obtained from structure s by shifting the base pair (i,j) to (i,k) [resp. (k,j)] where

i < k < j. The function arc2a(i,j,`,r ) counts the number of neighbors obtained from structure

s by adding a base pair (x ,y) in the internal loop bounded by the base pairs (i,j) and (`,r ) where

i < x < ` < r < y < j – note that i + 1, . . . ,` − 1 and r + 1, . . . ,j − 1 are unpaired in the internal
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loop bounded by (i,j) and (`,r ). In contrast, arc2b,1(i,j,`,r ) [resp. arc2b,2(i,j,`,r )] counts the

number of neighbors obtained from structure s by shifting the base pair (i,j) to (i,y) [resp. (`,r )

to either (y,`) or (`,y)] where y occurs in the internal loop closed on both sides by (i,j) and

(`,r ). Similarly, arc2c,1(i,j,`,r ) [resp. arc2c,2(i,j,`,r )] counts the number of neighbors obtained

from structure s by shifting the base pair (i,j) to (x ,j) [resp. (`,r ) to either (r ,x) or (x ,r )] where

x occurs in the internal loop closed on both sides by (i,j) and (`,r ). Finally, arc2b (i,j,`,r ) [resp.

arc2c (i,j,`,r )] is equal to arc2b,1(i,j,`,r )+arc2b,2(i,j,`,r ) [resp. arc2c,1(i,j,`,r )+arc2c,2(i,j,`,r )],

and arc2(i,j,`,r ) is the sum of arc2a(i,j,`,r ), arc2b (i,j,`,r ), and arc2c (i,j,`,r ). Then arc3(i,j,`,r )

counts the number of neighbors obtained from structure s by either adding a base pair within

the internal loop de�ned by (i,j) and (`,r ), or by shifting either (i,j) or (`,r ). For i < j < k , the

function arc4(i,j,k) counts the number of neighbors obtained from structure s by shifting the

base pair (i,j) to (i,y) for some j < y ≤ k , while arc5(i,j,k) counts the number of neighbors

obtained from structure s by shifting the base pair (i,j) to (j,y) for some j < y ≤ k .

Recursion for QBi,j

We can now proceed with the de�nition of QBi, j , de�ned to be the sum of Ai, j ,Bi, j ,Ci, j , each

of which is de�ned below.

Case A: (i,j) closes a hairpin.

In this case, the contribution to QBi, j is given by

Ai, j = exp
(
−
H (i,j)
RT

)
· [1 + arc1a(i + 1,j − 1) + arc1b (i,j) + arc1c (i,j)] . (5.89)
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The term 1 arises from the neighbor of s = {(i,j)} by removing base pair (i,j). The term

arc1a(i+1,j−1) arises from neighbors of s obtained by adding a base pair in the region [i+1,j−1],

and the termarc1b (i,j) arises from a shift of the form (i,j)→ (i,y), and �nally the termarc1c (i,j)

arises from a shift of the form (i,j)→ (x ,j).

Case B: (i,j) closes a stacked base pair, bulge or internal loop, whose other closing base pair is

(`,r ), where i < ` < r < j.

Following the convention in Vienna RNA Package, we assume that all loops have at most 30

unpaired nucleotides. This convention explains the presence of 31 in some indices. In this case,

the contribution to QBi, j is given by the following

Bi, j =

min(i+31, j−5)∑
`=i+1

max(j−31,i+5)∑
r=j−1

exp
(
−
IL(i,j,`,r )

RT

)
·

∑
s ∈SS[`,r ]
(`,r ) ∈ s

BF (s) [1 + arc3(i,j,`,r ) + N (s)]

=

min(i+31, j−5)∑
`=i+1

max(j−31,i+5)∑
r=j−1

exp
(
−
IL(i,j,`,r )

RT

)
·

�
ZB`,r · (1 + arc3(i,j,`,r )) +QB`,r

�
.(5.90)

The term 1 arises from the neighbor of s = {(i,j)} by removing base pair (i,j) (the neighbor

obtained by removing base pair (`,r ) is counted by the term N (s) for s ∈ SS[`,r ]). The term

arc3(i,j,`,r ) counts neighbors obtained by either adding a base pair within the internal loop

de�ned by (i,j) and (`,r ), or by shifting either (i,j) or (`,r ).

In Case C below, we follow the convention that in the summation notation
b∑
i=a

, if upper bound

b is smaller than lower bound a, then we intend a loop of the form: FOR i = b downto a.

Case C: (i,j) closes a multiloop.
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In this case, the contribution to QBi, j is given by the following

Ci, j =
∑

s ∈SS[i, j],(i, j)∈s
(i, j) closes a multiloop

BF (s)N (s) (5.91)

= exp
(
−
a + b

RT

)
·

j−5∑
r=i+5

�
ZMi+1,r−1 · ZM1r, j−1+

QMi+1,r−1 · ZM1r, j−1 + ZMi+1,r−1 ·QM1r, j−1
�
.

Now QBi, j = Ai, j + Bi, j +Ci, j . It nevertheless remains to de�ne the recursions for QM1i, j and

QMi, j . These satisfy the following.

QM1i, j =
j∑

k=i+θ+1

∑
s ∈SS[i,k ]
(i,k ) ∈ s

exp
(
−
c(j − k)
RT

)
· BF (s) · [N (s) + arc1a(k + 1,j) + arc4(i,k,j) + arc5(i,k,j)]

=

j∑
k=i+θ+1

exp
(
−
c(j − k)
RT

)
·

�
QBi,k + ZBi,k · (arc1a(k + 1,j) + arc4(i,k,j) + arc5(i,k,j))

�
.(5.92)

The term arc1a(k + 1,j) counts neighbors obtained by adding a base pair in [k + 1,j]; the term

arc4(i,k,j) counts neighbors obtained by a shift of the base pair (i,k) to (i,y) for some k < y ≤ j;

the term arc5(i,k,j) counts neighbors obtained by a shift of the base pair (i,k) to (k,y) for some

k + θ < y ≤ j. Finally

QMi, j =

j−5∑
r=i

exp
(
−
b + c(r − i)

RT

)
·

�
QM1r, j + ZM1r, j · (arc1a(i,r − 1) + arc1c (i − 1,r ))� +(5.93)

j−5∑
r=i

exp
(
−

b

RT

)
·

�
QMi,r−1ZM1r, j + ZMi,r−1QM1r, j

�
.

Note that in the �rst line of the equation for QMi, j , the position r is required by de�nition

of QM1r, j to pair to some position in [r + θ + 1,j]. Thus r is the left endpoint of a base pair,

whose right endpoint will not be known until a subsequent call of function QM1r, j . The term
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arc1a(i,r −1) counts neighbors obtained by adding a base pair (x ,y) in the interval [i,r −1]; the

term arc1c (i − 1,r ) counts neighbors obtained by shifting the base pair whose left endpoint is

r to the base pair (x ,r ) for some i ≤ x < r . This completes the description of how to compute

the expected number of neighbors with respect to the Turner energy model.

Finally, to accelerate the computation of the functions arc1a , . . . ,arc5, the 4×n ×n array ARC

is precomputed, where if a = a1, . . . ,an denotes the input RNA sequence, then

ARC[α ,i,j] =




|x ∈ [i,j] : ax = U | if α = 0

|x ∈ [i,j] : ax = G | if α = 1

|x ∈ [i,j] : ax ∈ {C,U }| if α = 2

|x ∈ [i,j] : ax ∈ {A,G}| if α = 3.

(5.94)

As mentioned, we follow the convention that bulges and interior loops have a size of at most

30 nt; however, this bound does not apply to hairpin loops or multiloops.

Remark: Suppose that s = {(i,j),(i1,j1), . . . ,(ik ,jk )} is a multiloop closed by (i,j), where i <

i1 < j1 < i2 < j2 < · · · < ik < jk < j. Then note that we do not count neighbors of s

obtained by adding a base pair (x ,y) to the multiloop s , where i < x < i` < j` < y, nor do

we count shifts within a multiloop of the form (i`,j`) → (i`,k) for j` < k , nor (i`,j`) → (k,j`)

for k < i` . Following the paradigm in the treatment of multiloops in McCaskill’s partition

function algorithm [166], such added base pairs and shifts cannot be included. In particular,

our Turner energy algorithm properly counts shifts depicted in Figs 5.2, 5.3, but not those

depicted in Fig 5.4. Multiloops are energetically costly due to entropic considerations, and so

penalized in the Turner energy model. For this reason, multiloops are generally small, have few

components, and contain few unpaired bases that might allow the formation of base pairs or
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support shift moves. If a multiloop has su�cient size to permit such moves, then its free energy

will be large, hence the Boltzmann factor of such structures s is small and the contribution to

〈N 〉 is negligeable. By introducing multiloop analogues of functions EL, ER, ER′, F , and G,

it should be possible to account for such additional internal multiloop moves. However, this

would lead to substantial complications of the algorithm with no likely bene�t, hence this will

not be pursued.

Benchmarking results

In this section, we describe several results obtained by applying our novel algorithms to com-

pute the expected network degree for given RNA sequence. The left panel of Fig 5.10 depicts

the length-normalized expected network degree of an RNA homopolymer sequence of length

n, de�ned to be Qn
nZn

. In the homopolymer model, Qn =
∑

s N (s), where N (s) is the number of

neighbors of s , and the sum is taken over all secondary structures s of [1,n]. In the homopoly-

mer case, the energy is 0, so the partition function Zn equals the number of structures. Fig 5.10

displays the normalized network degree as a function of homopolymer size, both in the case of

move set MS1 (base pair additions, removals), and move set MS2 (base pair additions, removals,

shifts). An asymptotic value of 0.4742 for Qn
nZn

is suggested by running the dynamic program-

ming (DP) algorithm described in Section “Homopolymer Model A” for values of sequence

length 400 ≤ n ≤ 1000. Using methods from algebraic combinatorics, we have analytically

proved that the value of Qn
nZn

for MS1 is ≈ 0.4734176431521986 (see [167]). Runs of the DP al-

gorithm also suggest that the asymptotic value of Qn
nZn

for MS2 appears to be ≈ 1.530161, so

that there are more than 3 times more structural neighbors, on average, for move set MS2 than

for move set MS1 for the homopolymer model. The right panel of Fig 5.10 depicts an overlay
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Figure 5.10: (Left) Normalized expected network degree of an RNA homopolymer
sequence of length n is de�ned to be Qn

nZn
; i.e. the length-normalized expected net-

work degree Qn
Zn

divided by sequence length n. Here Qn is
∑

s N (s), where N (s) is the
number of neighbors of s , and the sum is taken over all secondary structures s of the
homopolymer. In the homopolymer case, the energy is 0, hence the partition func-
tion Zn is simply the number of structures of the length n homopolymer. The purple
graph was obtained with move set MS1 (base pair additions and removals), while the
red graph was obtained with move set MS2 (base pair additions, removals and shifts).
For n = 998, the value of Qn

nZn
with respect to MS1 is 0.472393; using methods from

enumerative combinatorics, we have analytically proved that the value of Qn
nZn

with
respect to MS1 is exactly 0.4734176431521986 [167]. For n = 998, the value of Qn

nZn

with respect to MS2 is 1.530161; since the values of Qn
nZn

are unchanged for n � 998,
it is likely that the asymptotic value is close to that value. It follows that there are
more than 3 times more structural neighbors, on average, for move set MS2 than for
move set MS1. (Right) Relative frequency for number of neighbors (degree) for the
network of all secondary structures of the 32 nt fruA selenocysteine (SECIS) element,
produced by exhaustive enumeration of all structures. The blue [resp. purple resp.

red] curve corresponds to move set MS2 [resp. (MS2 \MS1) resp. MS1].
.

of the degree distribution for secondary structures of the 32 nt selenocysteine element of fruA,

which latter encoding the A subunit of coenzyme F420-reducing hydrogenase, for move sets

MS1, MS2 \MS1 and MS2.
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Fig 5.11 and Fig 5.12 display the relative frequency (for energy model C) for the number of neigh-

bors, or degree, respectively for the 76 nt alanine transfer RNA fromMycoplasmamycoideswith

accession code RA1180 from tRNAdb 2009 [168] and for the 56 nt spliced leader RNA from L.

collosoma. RNAsubopt -d0 -e 12 [27] was used to generate 537,180 [resp. 266,065] struc-

tures s having free energy within 12 kcal/mol of the minimum free energy (MFE) for tRNA

RA1180 [resp. spliced leader RNA from L. collosoma]. The sum Z ∗ of all Boltzmann factors

exp(−E(s)/RT ) of the sampled structures was computed, and the ratio Z ∗/Z of Z ∗ with respect

to the partition function Z was determined to be 0.9998 for tRNA RA1180 [resp. 0.9999 for

spliced leader L. collosoma]. For tRNA RA1180, the sample mean ± one standard deviation is

29.11 ± 4.63 [resp. 46.51 ± 8.74] for move set MS1 [resp. MS2] using energy model C (Turner

2004 energy parameters), while the corresponding values for L. collosoma spliced leader are

69.87 ± 34.04 [resp. 90.46 ± 37.71] for move set MS1 [resp. MS2]. Table 5.1 compares these

values with those obtained by our dynamic programming method, and additionally compares

values for both Turner 1999 and Turner 2004 energy parameters. Note the stark di�erences

between the length-normalized degree distribution for transfer RNA (accession code RA1180

from tRNAdb 2009 [168]) and for the conformational switch of spliced leader from L. collosoma.

We are currently investigating whether other conformational switches have large values of

length-normalized expected number of neighbors.

Fig 5.13 depicts the correlation between expected network degree, conformational entropy,

contact order, and expected number of native contacts, computed with respect to a collection

of 180 PDB �les and to a collection of 1904 RNA sequence and consensus structures taken

from the Rfam 12.0 database [28]. Although the results are mixed and preliminary, the PDB

data suggests a possible correlation between secondary structure contact order and (uniform)
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Figure 5.11: Relative frequency for the Boltzmann weighted number of neighbors
for the 76 nt alanine transfer RNA from Mycoplasma mycoides with accession code
RA1180 from tRNAdb 2009 [168], where the sample mean ± one standard deviation
is 29.11 ± 4.63 [resp. 46.51 ± 8.74] for move set MS1 [resp. MS2] using energy
model C (Turner 2004 energy parameters). The length-normalized sample mean is
0.3831 ± 0.0610 for MS1 [resp. 0.6120 ± 0.1150 for MS2]. The number of neighbors,
or degree, is given on the x-axis. RNAsubopt -d0 -e 12 [27] was used to generate
537,180 structures s having free energy within 12 kcal/mol of the MFE. The sum Z ∗

of all Boltzmann factors exp(−E(s)/RT ) of the sampled structures was computed, and
the ratio Z ∗/Z of Z ∗ with respect to the partition function Z was determined to be
0.9998202. For given number x of neighbors, the corresponding value y is de�ned to
be the sum, taken over all the structures s , whose degree is x , of the Boltzmann factor
exp(−E(s)/RT ) of s normalized by Z ∗. Using our code, with respect to energy model
C (Turner 2004 energy parameters), we have the following values for the expected
number of neighbors expected number of neighbors: Q1,n

Z1,n
= 26.01 (Boltzmann-MS1);

Q1,n
Z1,n
= 37.61 (Boltzmann-MS2).
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Figure 5.12: Boltzmann relative frequency for the number of neighbors for the 56
nt spliced leader RNA from L. collosoma, where the mean ± one standard deviation
is 69.87 ± 34.04 [resp. 90.46 ± 37.71] for move set MS1 [resp. MS2] using energy
model C (Turner 2004 energy parameters). The length-normalized sample mean is
1.2477 ± 0.6079 for MS1 [resp. 1.6153 ± 0.6734 for MS2]. The number of neighbors,
or degree, is given on the x-axis. RNAsubopt -d0 -e 12 [27] was used to generate
266,065 structures s having free energy within 12 kcal/mol of the MFE. The sum Z ∗

of all Boltzmann factors exp(−E(s)/RT ) of the sampled structures was computed, and
the ratio Z ∗/Z of Z ∗ with respect to the partition function Z was determined to be
0.9998812, hence values of relative frequency should be close to the corresponding
values for the Boltzmann probability. For given number x of neighbors, the corre-
sponding valuey is de�ned to be the sum, taken over all the structures s , whose degree
is x , of the Boltzmann factor exp(−E(s)/RT ) of s normalized by Z ∗. Using our code,
with respect to energy model C (Turner 2004 energy parameters), we have the fol-
lowing values for the expected number of neighbors: Q1,n

Z1,n
= 70.03 (Boltzmann-MS1);

Q1,n
Z1,n
= 92.96 (Boltzmann-MS2).
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expected network degree, while the Rfam data suggests a possible correlation between the

expected number of native contacts and (uniform) expected network degree. De�nitions and

details of the computational experiments now follow.

Contact order is considered in the context of protein folding in [169], where absolute contact

order is de�ned by
∑

i<j (j − i)/N , where the sum is over all N pairs of residues i,j that are in

contact, taken here to mean that residues i,j each contain a heavy atom (non-hydrogen) within

6 Å, and that i,j are not consecutive (j , i + 1). In Fig 5.13, we consider several formulations of

RNA contact order. The 3D absolute contact order for an RNA structure is de�ned as above. The

pseudoknot (pknot) absolute contact order is de�ned as
∑

i<j (j − i)/N , where the sum is over all

N base pairs (i,j) determined by RNAview [170], a program that determines hydrogen-bonded

atoms of distinct nucleotides in a PDB �le of RNA and additionally classi�es the base pair with

respect to the Leontis-Westhof classi�cation [171]. The 2D absolute contact order is de�ned as∑
i<j (j − i)/N , where the sum is over all N base pairs (i,j) in the secondary structure extracted

from RNAview output by our implementation of the method described in [172, 173], which

essentially applies the Nussinov-Jacobson algorithm [115] to those base pairs determined by

RNAview from the tertiary PDB structure, resulting in the secondary structure having a largest

number of base pairs (one could alternatively use the web server RNApdbee [174]). We also

consider the corresponding versions of relative contact order, by dividing the absolute contact

order by RNA sequence length.

For benchmarking purposes, we took two datasets: (1) tertiary structures from the PDB, and

(2) consensus secondary structures from the Rfam 12.0 database [28]. For the former, we used

PDB �les from the dataset [176], since these �les have no discrepancies between the SEQRES

and ATOM �elds. From this set of 486 PDB �les, we retained 180 PDB �les with a total of 227
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Figure 5.13: Correlation of network degree (expected number of neighbors) with (ab-
solute) contact order, conformational entropy, expected number of native contacts,
etc. determined with respect to a collection of 180 PDB �les (left panel, see text) and to
the �rst sequence with its consensus structure from the seed alignment of every fam-
ily from the Rfam 12.0 database [28] (sequence length was capped at 200 nt, providing
1904 sequences and consensus structures). Move set MS1 consists of base pair addi-
tions and removals; move setMS2 consists of base pair additions, removals, and shifts.
(Left) The rows [resp. columns] correspond to the following measures, proceeding
from top to bottom [resp. left to right]: UnifMS1: uniform expected number of neigh-
bors for move set MS1. UnifMS2: uniform expected number of neighbors for move set
MS2. TurnerMS1: Boltzmann expected number of neighbors for move set MS1. Turner
MS2: Boltzmann expected number of neighbors for move set MS2. Entropy: confor-
mational entropy −kB

∑
s p(s) · lnp(s), where the sum is taken over all structures of

a given RNA sequence, and Boltzmann probability p(s) = exp(−E(s)/RT )/Z [175]. 3D
CO: 3D (absolute) contact order, where two nucleotides are in contact if at least one
atom of each is within with 6 . pknot CO: pseudoknot (absolute) contact order deter-
mined by of output of RNAview, 2D CO: 2D CO (absolute) contact order, determined
by extraction of maximal secondary structure from RNAview output. (Right) The rows
[resp. columns] correspond to the following measures, proceeding from top to bot-
tom [resp. left to right]: Unif MS1, Unif MS2, and Entropy: as explained in caption to
left panel. MFE CO [resp. Rfam CO]:

∑
(i, j)∈s0(j − i)/|s0|, where the sum is taken over

all base pairs (i,j) belonging to structure s0, and |s0| denotes the number of base pairs
in s0, where s0 denotes the minimum free energy [resp. Rfam consensus] structure.
Native Cont is number of native contacts, de�ned by

∑
s P(s) · |s ∩ s0|, where the sum

is taken over all structures s , P(s) = exp(−E(s)/RT )/Z is the Boltzmann probability of
s , and |s ∩ s0| denotes the number of base pairs common to both s and s0, where s0 is

the Rfam consensus structure.
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RNA chains, after removing PDB �les of very short RNAs, as well as those PDB �les consisting

of NMR data for which RNAview [170] did not use the �rst MODEL in its determination of base

pairing, as well as those for which RNAview returned no base pairing information at all. For

the latter, we took the �rst sequence, with its consensus structure, from the seed alignment

of every family of Rfam 12.0, where sequence length was capped at 200 nt. This provided a

collection of 1904 sequences and consensus structures.

The left panel of Fig 5.13 depicts the correlation computed for the 180 PDB �les between various

formulations of expected network degree and RNA secondary structure conformational entropy

[175] (highest correlation value of 0.90) and contact order (highest correlation value of 0.86).

Here, the conformational entropy is de�ned by−kB ·
∑

s p(s)·lnp(s), wherep(s) is the Boltzmann

probability of secondary structure s , and the sum is taken over all secondary structures of a

given RNA sequence (low entropy means that the Boltzmann probability is very high for a small

number of structures – i.e. a relatively small number of structures has low free energy). The

right panel of Fig 5.13 depicts the correlation for the 1904 Rfam consensus secondary structures

between (uniform) expected network degree and various formulations of conformational entropy

(highest correlation 0.80), the expected number of native contacts (highest correlation of 0.86),

and two formulations of contact order (highest correlation value of 0.43). Here, the expected

number of native contacts is de�ned by
∑

s p(s)· |s∩s0|, where the sum is taken over all structures

s , p(s) = exp(−E(s)/RT )/Z is the Boltzmann probability of s , and |s ∩ s0| denotes the number

of base pairs common to both s and the Rfam consensus structure s0. At present, it is unclear

why the correlation between expected network degree and contact order is higher in the PDB

data than in the Rfam data.
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Discussion

Computational methods for RNA secondary structure folding kinetics generally involve either

(1) algorithms to determine optimal or near-optimal folding pathways, [114, 131, 137, 140, 141],

(2) explicit solutions of the master equation for possibly coarse-grained models [142, 143, 144,

145, 146], or (3) repeated simulations to fold an initially empty secondary structure to the target

minimum free energy (MFE) structure [110, 148, 149, 150, 151, 152]. Despite its importance, RNA

secondary structure folding kinetics remains a computationally di�cult problem, since it is

known that the problem of determining optimal folding pathways is NP-complete [153].

To shed light on RNA kinetics from a di�erent perspective, in this chapter we have investi-

gated a network property of RNA secondary structures. Let G be the network corresponding

to the move set MS1 [resp. MS2] of the kinetics program Kinfold [110]; i.e. G = (V ,E) is

a directed graph, whose vertices are the secondary structures of a given RNA sequence and

whose edges s → t are de�ned if structure t can be obtained from s by the addition or re-

moval [resp. addition, removal or shift] of a base pair from s . In [161], we described an algo-

rithm that computes the MS1 expected network degree 〈N 〉 = ∑
s p(s) · N (s), where N (s) is

the out-degree of secondary structure s of a user-speci�ed RNA sequence a = a1, . . . ,an and

p(s) = exp(−E(s)/RT )/Z is the probability of structure s . In the current chapter, we describe

(surprisingly) much more di�cult algorithms to e�ciently compute the MS2 expected network

degree 〈N 〉 = ∑
s p(s) ·N (s), with respect to increasingly complex energy models A,B,C. Model

A is the homopolymer model [162], which we use to present a simpli�ed version of the more

complex algorithms for models B and C. Unlike the simple homopolymer model, Model B con-

cerns the usual notion of RNA secondary structure s , de�ned in De�nition 5.1 where the energy
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E(s) is zero, so that the probability p(s) is one over the number of structures (uniform prob-

ability). Model C concerns the Turner energy model without dangles, so that the probability

p(s) is the Boltzmann probability of s; however, due to technical issues, certain low probability

MS2 moves in multiloops can not be considered (see an example in Fig 5.4). The run time [resp.

space] for our algorithm for Model A is O(n3) [resp. O(n2)], while that for models B and C is

O(n4) [resp. O(n3)] – cubic space is required uniquely for functions F ,G.

Our algorithms for Models A and B are exact, computing the same values as obtained by ex-

haustive brute force. Our algorithm for Model C ignores certain kinds of base pair additions,

removals and shifts within a multiloop. Table 5.1 compares the values of expected number

of neighbors (expected degree) for move sets MS1 and MS2 for Models B,C where Turner 1999

and Turner 2004 energy parameters are considered [23]. Table 5.1 also includes values obtained

by brute force computation from structures generated by RNAsubopt [130] from the Vienna

RNA Package [27]. The time required for this method is O(n2) times the number of structures

sampled by RNAsubopt plus the overhead to run RNAsubopt. Except for small sequences, this

computation cost is prohibitive, which makes our dynamic programming computation of the

expected number of neighbors an attractive alternative. Nevertheless much less information

is conveyed by a single number, as shown in Table 5.1 than in the (approximate) distribution

as shown in Fig 5.11 for alanine transfer RNA from Mycoplasma mycoides and Fig 5.12 for the

spliced leader conformational switch from L. collosoma. The striking di�erence between these

�gures suggests that perhaps conformational switches may display a bimodal or multimodal

degree distribution – something we are currently investigating.

Table 5.1 displays a strong discrepancy for the expected number of neighbors for L. collosoma

when using Turner 1999 or Turner 2004 energy parameters. To investigate the origin of this
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odd discrepancy, we ran RNAsubopt -d0 -e 12 with Turner 2004 [resp. Turner 1999] pa-

rameters to generate 266,065 [resp. 259,626] structures for 56 nt L. collosoma spliced leader

RNA, 189,404 of which were common to both collections. Letting Z ∗(04) [resp. Z ∗(99)] de-

note the sum of Boltzmann factors of these 189,404 structures with respect to Turner 2004

[resp. Turner 1999] parameters, we computed the (pseudo) Boltzmann probability Pr04(s) =

exp(−E04(s)/RT )/Z ∗(04) [resp. Pr99(s) = exp(−E04(s)/RT )/Z ∗(99)] for each of the 189,404

common structures s . The di�erence in expected MS2 degree for Turner04 parameters minus

that for Turner99 parameters is
∑

s (Pr04(s) − Pr99(s)) · N (s) = 24.35. The contribution to ex-

pected degree for the set of sampled structures not common to both sets is negligeable, i.e. less

than 0.01. The strongest di�erence between Turner04 and Turner99 values are for the 1799

[resp. 246] structures having degree 33 [resp. 126], where the di�erence Pr04(33) − Pr99(33)

is −0.1415 [resp. 0.1570], as shown in the large negative [resp. positive] spike in Fig 5.14.

For unknown reasons, there are striking di�erences in the free energy values for Turner04 and

Turner99 energy models for these structures. Although the choice of Turner energy model may

entail a large di�erence in the expected degree computed, as shown in Table 5.1 and Fig 5.14,

the general form of the corresponding histograms is maintained, as shown in Figs 5.11 and 5.12.

We now summarize our �ndings.

Given the 3D native structure of a protein, the (absolute) contact order is de�ned by
∑

i<j (j −

i)/N , where the sum is over all N pairs of residues i,j that are in contact, where non-contiguous

residues i,j are in contact if each contain a heavy atom (non-hydrogen) within 6 Å [169]. We

use the de�nition of [169] for 3D RNA contact order, whereas we de�ne pseudoknot (pknot)

contact order by
∑

i<j (j − i)/N , where the sum is over all N base pairs (i,j) determined by

RNAview [170], a program that determines hydrogen-bonded atoms of distinct nucleotides in
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a PDB �le of RNA and additionally classi�es the base pair with respect to the Leontis-Westhof

classi�cation [171]. We de�ne 2D contact order by
∑

i<j (j − i)/N , where the sum is over all N

base pairs (i,j) in the secondary structure extracted from RNAview.

For benchmarking purposes, by removing short RNAs and RNAs for which RNAview yielded

no base pairing information, we extracted a set of 180 PDB �les with a total of 227 RNA chains

from the datase [176] of 486 PDB �les that have no discrepancies between the SEQRES and

ATOM �elds. For this benchmarking set, the left panel of Fig 5.13 shows a relatively high

correlation between contact order and expected network degree – for instance, there is a cor-

relation of 0.86 between 2D contact order and MS1 or MS2 network degree. Surprisingly, the

correlation is generally higher when expected network degree is computed with respect to uni-

form probability (corresponding to energy model B with zero energy) rather than Boltzmann

probability (corresponding to energy model C, i.e. Turner energy model). In the case of energy

model C, the correlation is somewhat higher for move set MS1 rather than move set MS2.
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Figure 5.14: Di�erence in Boltzmann probabilities for 56 nt spliced leader RNA from
L. collosoma with respect to move set MS2.
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The number of native contacts in a transitional protein structure is de�ned as the number of

pairs of noncontiguous residues i,j that are in contact (i.e. close spatial proximity) in the native

structure, usually meaning the X-ray structure [177]. The importance of this reaction coordi-

nate for protein folding has been established in [178], where Best et al. analyze long equilibrium

simulations of protein folding for more than 10 proteins using molecular dynamics trajectories

from D.E. Shaw Research. It follows from Markov chain theory that the expected number of

visitations of (transitional) structure s is the Boltzmann probability p(s) = exp(−E(s)/RT )/Z

times the trajectory length, and hence the expected number of native contacts for RNA sec-

ondary structure formation can be de�ned by

Q =
∑
i<j

∑
s ∈SS[1,n]

p(s) · |{(i,j) : 1 ≤ i < j ≤ j, (i,j) ∈ s0}| =
∑
i<j

∑
(i, j)∈s0

pi, j (5.95)

where |s0| denotes the number of base pairs in the native secondary structure s0, taken here

to be the Rfam consensus structure used in benchmarking. In the right panel of Fig 5.13, we

establish a relatively high correlation of 0.86 [resp. 0.84] between the expected number of

native contacts for a collection 1904 RNA sequences and their consensus secondary structures

from the Rfam 12.0 database and the uniform MS1 [resp. MS2] network degree. Again, it

is worth pointing out that the slightly higher correlation of the MS1 measure over the MS2

measure.

RNA secondary structure folding kinetics remains a computationally di�cult problem for RNA

sequences of even moderate length, despite the availability of software to compute near-optimal

folding pathways [114, 131, 140], compute population occupancy curves for coarse-grained mod-

els [142, 145, 146], and to repeatedly perform simulations of the Gillespie algorithm [110, 113,

148, 149, 150, 151]. Our motivation in this chapter is to approach folding kinetics from a novel
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network perspective, where we show that network degree is moderately highly correlated with

both contact order and the expected number of native contacts, both measures known to be cor-

related with experimentally measured protein folding kinetics. Despite the new algorithms of

this chapter and the existence of other software for RNA folding kinetics, it seems clear that

signi�cant progress in this �eld will require the a database of experimentally determined RNA

folding rates, comparable to the database KineticDB containing experimentally determined

folding rates for proteins [154].

Table 5.1: This table compares expected network degree and the length-normalized
expected network degree for three RNA sequences of moderate size: 32 nt fruA, en-
coding the A subunit of coenzyme F420-reducing hydrogenase; tRNA RA1180, 56
nt spliced leader RNA from L. collosoma; 76 nt transfer RNA with accession code
RA1180 from the database tRNAdb 2009 [168]. Unif-MS1 [resp. Unif-MS2] denote the
expected network degree for model B (uniform probability) for MS1 [resp. MS2] move
set. Turner99-MS1 [resp. Turner99-MS2] and Turner04-MS1 [resp. Turner04-MS2] and
denote the expected network degree for model C (Boltzmann probability for Turner
1999 and Turner 2004 energy parameters [23]) for MS1 [resp. MS2] move set. Sample-

MS1 [resp. Sample-MS2] denotes the approximation of the expected network degree
for model C (Turner 1999 and Turner 2004 parameters) obtained by generating low
energy structures by RNAsubopt -d0 -e 12, as explained in the text. In the case of
fruA, all 971,399 possible structures were generated by RNAsubopt -d0 -e 100, so
that Sample-MS1 and Sample-MS2 values are correct – for this reason, the standard
deviation values are not included. Note that for L. collosoma, the expected degree val-
ues for the Turner 2004 energy parameters are much larger than those obtained for

Turner 1999 energy parameters.

Unnormalized
len Unif-MS1 Unif-MS2 Turner99-MS1 Turner04-MS1 Turner99-MS2 Turner04-MS2 Sample-MS1 Sample-MS2

fruA 32 10.66 27.60 10.00 9.98 13.03 13.07 10.08 13.13
L. collosoma 56 20.47 52.64 48.37 70.03 69.26 93.58 69.87 ± 34.04 90.46 ± 37.71

tRNA 76 28.22 71.59 26.27 26.10 35.43 37.59 29.11 ± 4.63 46.51 ± 8.74
Normalized

len Unif-MS1 Unif-MS2 Turner99-MS1 Turner04-MS1 Turner99-MS2 Turner04-MS2 Sample-MS1 Sample-MS2
fruA 32 0.3330 0.8624 0.3125 0.3120 0.4072 0.4084 0.3150 0.4103

L. collosoma 56 0.3655 52.6355 0.8637 1.2505 1.2368 1.6710 1.2477 ± 0.6079 1.6153 ± 0.6734
tRNA 76 0.3713 71.5946 0.3457 0.3434 0.4662 0.4946 0.3830 ± 0.0610 0.6120 ± 0.1150
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Conclusion

RNA molecules play important roles in living organisms, such as protein translation, gene

regulation, and RNA processing. It is known that RNA secondary structure is a sca�old for

RNA tertiary structure. Therefore, in the last decade, a large number of software applications

have been developed for the analysis of RNA secondary structures for di�erent purposes such

as evolution, kinetics, design, structure prediction, etc. However, design and implementation of

tools to better understand RNA folding kinetics still has many challenges and open problems,

as well as developing medical applications from such tools. In the course of this thesis we

have described a collection of novel tools designed and implemented for the analysis of RNA

molecules.

In chapter 2, we developed the novel program RNAsampleCDS, the only existent program

which computes the number of RNA sequences that code user-speci�ed peptides in one to

six overlapping reading frames, as depicted in Figure 2.1b. More importantly, RNAsampleCDS

can compute (exact) PSSMs and sample, in an unweighted or weighted fashion, a user-speci�ed

243
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number of RNA sequences that code the speci�ed proteins (or code proteins having BLOSUM/-

PAM similarity that exceeds a user-speci�ed threshold to the given proteins). With exten-

sions to RNAiFold2.0 implemented by Juan Antonio Garcia-Martin [5], RNAsampleCDS and

RNAiFold2.0 complement each other and together allow one to analyze the HIV-1 Gag-Pol

overlapping reading frame and the HCV triple overlapping reading frame in a manner that

cannot be supported by any other software, thus augmenting the software arsenal available to

evolutionary biologists.

Chapter 3 described RNAmountAlign, a new C++ software package for RNA local, global, and

semiglobal sequence/structure multiple alignments. Using incremental mountain height, a rep-

resentation of structural information computable in cubic time, RNAmountAlign implements

quadratic time pairwise alignments using a weighted combination of sequence and structural

similarity. Our software provides accuracy comparable with that of a number of widely used

programs, but provides much faster run time. RNAmountAlign additionally computes E-values

for local alignments, using Karlin-Altschul statistics, as well as p-values for normal, extreme

value and gamma distributions by parameter �tting.

In chapter 4, we introduced the �rst optimal and near-optimal algorithms to compute the short-

est RNA secondary structure folding trajectories in which each intermediate structure is ob-

tained from its predecessor by the addition, removal or shift of a base pair; i.e. the shortest

MS2 trajectories. Since defect di�usion employs shift moves, one might argue that it is better

to include shift moves when physical modeling RNA folding [25], and indeed the RNA fold-

ing kinetics simulation program Kinfold [110] uses the MS2 move set by default. Using the
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novel notion of RNA con�ict directed graph, we describe an optimal and near-optimal algo-

rithm to compute the shortest MS2 folding trajectory. Such trajectories pass through substan-

tially higher energy barriers than trajectories produced by Kinfold, which uses Gillespie’s

algorithm [158] (a version of event-driven Monte Carlo simulation) to stochastically generate

physically realistic MS2 folding trajectories. We have shown in Theorem 4.2 that it is NP-hard

to compute the MS2 folding trajectory having minimum energy barrier, and have presented

anecdotal evidence that suggests that it may also NP-hard to compute the shortest MS2 fold-

ing trajectory. For this reason, and because of the exponentially increasing number of cycles

(see Figure 4.18) and subsequent time requirements of our optimal IP Algorithm 4, it is un-

likely that (exact) MS2 distance prove to be of much use in molecular evolution studies such as

[106, 107, 109]. Nevertheless, Figures 4.14 and 4.20 suggest that either pk-MS2 distance and/or

near-optimal MS2 distance may be a better approximation to (exact) MS2 distance than using

Hamming distance, as done in [108, 117]. However, given the high correlations between these

measures, it is unlikely to make much di�erence in molecular evolution studies. Our graph-

theoretic formulation involving RNA con�ict digraphs raises some interesting mathematical

questions partially addressed in Appendix 4.8; in particular, it would be very interesting to

characterize the class of digraphs that can be represented by RNA con�ict digraphs, and to

determine whether computing the shortest MS2 folding trajectory is NP-hard. Figures 4.23,

4.24, 4.25, 4.26, 4.27, 4.28 present partial results showing that the problem of NP-hardness of

the feedback arc set (FAS) problem for RNA con�ict digraphs is highly non-trivial.

In chapter 5 we described the �rst dynamic programming algorithm that computes the expected

degree for the network of all secondary structures of a given RNA sequence. Here, the nodes

V correspond to all secondary structures of a, while an edge exists between nodes s,t if the
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secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since

secondary structure kinetics programs implement the Gillespie algorithm, which simulates

a random walk on the network of secondary structures, the expected network degree may

provide a better understanding of kinetics of RNA folding when allowing defect di�usion,

helix zippering, and related conformation transformations. We showed that network degree

is moderately highly correlated with both contact order and the expected number of native

contacts, both measures known to be correlated with experimentally measured protein folding

kinetics.
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