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Abstract

NOVEL ALGORITHMS TO ANALYZE RNA SECONDARY STRUCTURE EVOLUTION AND

FOLDING KINETICS
by AMIR HOSSEIN BAYEGAN

Advisor: DR. PETER CLOTE

RNA molecules play important roles in living organisms, such as protein translation, gene
regulation, and RNA processing. It is known that RNA secondary structure is a scaffold for
tertiary structure leading to extensive amount of interest in RNA secondary structure. This
thesis is primarily focused on the development of novel algorithms for the analysis of RNA
secondary structure evolution and folding kinetics. We describe a software RNAsampleCDS
to generate mRNA sequences coding user-specified peptides overlapping in up to six open
reading frames. Sampled mRNAs are then analyzed with other tools to provide an estimate of
their secondary structure properties. We investigate homology of RNAs with respect to both
sequence and secondary structure information as well. RNAmountAlign an efficient software
package for multiple global, local, and semiglobal alignment of RNAs using a weighted combi-
nation of sequence and structural similarity with statistical support is presented. Furthermore,
we approach RNA folding kinetics from a novel network perspective, presenting algorithms
for the shortest path and expected degree of nodes in the network of all secondary structures
of an RNA. In these algorithms we consider move set MS,, allowing addition, removal and
shift of base pairs used by several widely-used RNA secondary structure folding kinetics soft-
ware that implement Gillespie’s algorithm. We describe MS2distance software to compute the
shortest MS, folding trajectory between any two given RNA secondary structures. Moreover,
RNAdegree software implements the first algorithm to efficiently compute the expected de-
gree of an RNA MS, network of secondary structures. The source code for all the software
and webservers for RNAmountAlign, MS2distance, and RNAdegree are publicly available at
http://bioinformatics.bc.edu/clotelab/.
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Chapter 1

Introduction

Ribonucleic acid (RNA) together with deoxyribonucleic acid (DNA) and proteins are three key
molecules found in all domains of life. Francis Crick in 1958 first stated the central dogma of
molecular biology explaining the flow of sequential information within a biological system.
Later it was indicated that RNA has roles beyond just an intermediary between DNA and pro-
tein. The first non-coding RNA (ncRNA), alanine transfer RNA (tRNA) was discovered in 1965
by Holley et al. [8]]. Since then many other non-coding RNAs such as ribosomal RNAs(rRNAs),
siRNAs, piRNAs, snoRNAs, long ncRNAs, microRNAs, riboswitches, etc with various house-
keeping or regulatory roles have been discovered. The breakthrough finding of the RNA in-
terference (RNAi) mechanism associated with microRNAs by Fire and Mello [[g] was awarded
a Nobel Prize in 2006. The concepts of the prevailing RNA world theory were first introduced
by Alexander Rich in 1962 and Nobel laureate Walter Gilbert proposed the term in 1986 [10].
The theory states that RNA stored the genetic information and catalytic functions in primitive
cells and life later evolved to use DNA and proteins [1i]. In the current century, there have

been unprecedented findings in the RNA biochemistry. It is now clear that RNA plays variety
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of key regulatory roles in all levels of the flow of genetic information including gene silencing
(121 [13, [14]], transcriptional and translational regulation [15} 16} [i7], RNA splicing [18, [19}za], and
many more. With the ongoing discovery of novel roles for RNA molecules there is an increas-
ing need for structural information on RNA. In this thesis, various algorithms developed for

the analysis of RNA secondary structures are described.

RNA is a single-stranded molecule and similar to protein, proper functionality of RNA often
requires a specific tertiary structure and it is known that tertiary structure is largely deter-
mined by the secondary structure. RNAs are composed of linear strings of 4 distinct nucleo-
tide builidng blocks: gianosine (G), adenosine (A), Uracil (U), and cytidine (C). RNAs built from
these building blocks can form a wide range of structures enabling them to perform a wide
variety of roles in the cell. The major force keeping RNA structure together is hydrogen bond
interactions between nucleotides G and C (G-C) as well as A and U (A-U) called Watson-Crick
base pairs. In contrast to DNA, a slightly weaker interaction between G and U, G-U wobble
base pair, can occur in RNA which adds interesting chemical, structural and ligand/metal-ion
binding features to RNA [21]. The formal definition of a secondary structure for a given RNA
nucleotide sequence is as follows:

A secondary structure for a given RNA nucleotide sequence ay, ... ,a, is a set s of base pairs

(i,j), where 1 < i < j < n, such that:

1. if (i,j) € s then a;,a; form either a Watson-Crick (AU,UA,CG,GC) or wobble (GU,UG)

base pair,

2. if (i,j) € sthen j —i > 6 = 3 (a steric constraint requiring that there be at least 6 = 3

unpaired bases between any two positions that are paired),
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3. if (i,j) € s then for all i’ # i and j* # j, (i’,j) ¢ s and (i,j’) ¢ s (nonexistence of base

triples),

4. if (i,j) € s and (k,£) € s, then it is not the case that i < k < j < ¢ (nonexistence of

crossing interaction leading to pseudoknots).

Formation of RNA structure is guided by minimization of free energy. Given a thermodynamic
model and an RNA sequence one might be interested in the minimum free energy (MFE) struc-
ture or the most stable structure. The MFE structure is often only a single structure within a
huge ensemble of all structures. An RNA of length n has around 1.8" number of possible struc-
tures [22]] and hence the MFE structure may have a tiny probability of occurrence. Therefore,
one might also be interested in a collection of suboptimal structures which may be thermody-
namically less stable with higher (less negative) free energy. Most computational predictions
of RNA structure use nearest neighbor energy model where the free energy of a structure is
the sum of the free energy of all its structural elements [23] including stacking base pairs as
well as hairpin, bulge, internal, external and mutibranch loops indicated in Figure Forma-
tion of stacking base pairs is favorable (decrease free energy) while loops are often unfavorable
(increase free energy). In some models, flanking positions, known as dangling ends, are also
considered in the total free energy computation of a structure. The energy of various elements
for RNA folding in nearest neighbor model are compiled by the D. Turner group using optical
melting experiments [[23]. Free energy and enthalpy changes have been experimentally com-
puted at °37C, allowing structure predictions at arbitrary temperatures using Gibbs free energy

thermodynamic equations.

Secondary structures can be depicted in several equivalent manners. For instance, 5 different

representations for the MFE secondary structure of a glycine riboswitch from B. subtilis, Rfam
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FIGURE 1.1: Elements of RNA secondary structure

family RF00504 are indicated in Figure More technical background on RNA secondary

structure is provided in each chapter.

In this thesis, we provide novel computational tools for the analysis of RNA secondary struc-
tures in two contexts: molecular evolution and folding kinetics. In the first part, the tools that
we developed for the comparison of RNA secondary structures are discussed. In chapter
we describe our software, RNAsampleCDS for generating coding sequences in overlapping ge-
nomic regions. The sequences can be used as a control to analyze formation and evolution of
secondary structures in overlapping regions. This software can also be applied to find bias in
codon usage occurred due to selective pressure. In chapter [3 we describe an efficient software,
RNAmountAlign, for computing sequence/structure alignment of RNA sequences. Since func-
tion is often determined by molecular structure, RNA alignment programs should take into
account both sequence and base-pairing information for structural homology identification.

Our software computes statistical significance of the alignments as well.

The second part of the thesis is dedicated to study of folding kinetics through analysis of RNA
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FiGURE 1.2: Different representations of MFE secondary structure of a glycine ri-

boswitch selected from B. subtilis, Rfam family RF00504. In this figure from [24],

base pairs in different loop branches are indicated with distinct colors. From left to

right in the top panel: Feynman circular where base pairs are indicated by arcs and

the representation is planar i.e. there are no crossings. Conventional diagram where

the stems and loops are easily identified. Mountain height plot illustrating the height

at each position. Starting from 0, the height of each position is increased [decreased]

by 1 for opening [resp. closing] base pairs and remains unchanged for unpaired posi-

tion. Dot plot visualizing base paring probabilities matrix in the upper right half and

the MFE structure in the lower left half. The size of squares at each position are pro-

portional to probability values. The bottom diagram indicates the dot bracket notation

which is convenient for programming purposes.

structural networks. RNA folding kinetics plays an important role in various biological pro-
cesses and there have been numerous algorithms studying it. These computational methods
can be divided into three groups: (1) algorithms to determine optimal or near-optimal folding
pathways (2) explicit solutions of the master equation (3) repeated folding simulations. In this
thesis we shed light on RNA kinetics from a different perspective through investigating net-
work properties of RNA secondary structures. Consider the set of all secondary structures of
an RNA sequence as a network, or graph, where two structures are connected by an edge if one
can be obtained from another by a base pair addition, removal or shift possibly weighted by the

Boltzmann probability of structures. Computational kinetics algorithms indeed are looking for

an “optimal” pathway on this network, where optimality might have different meanings such
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as minimum barrier energy, minimum mean first passage time, minimum number of base-pair
operations. Therefore, understanding the network properties of RNA can provide better in-
sights about RNA folding kinetics. The challenge is the exponential size of the network with
respect to the length of RNA. In chapter |4| we present algorithms for computing the shortest
path between any two arbitrary secondary structures in the network, yielding a direct fold-
ing pathway between the given structures. Continuing to chapter [5| we describe algorithms to
compute the expected degree of the network for an RNA sequence and indicate it is correlated
with other folding properties of RNAs. This provides a fast method for computing a measure
that is correlated with folding rate of RNAs. In the analysis of structural networks we con-
sider two move sets: move set 1 (MS;) where base pairs can only be added or removed and
move set 2, MS,, where shift moves are considered along with additions and removal of base
pairs. Shift moves can model defect diffusion, which is several orders of magnitude faster than
helix zippering, according to experimental data [25] and consideration of them substantially

complicates the algorithms.



Part 1

Molecular Evolution of RNA



Chapter 2

New tools to analyze overlapping coding regions

Introduction

Retroviruses transcribe messenger RNA for the overlapping Gag and Gag-Pol polyproteins,
by using a programmed —1 ribosomal frameshift which requires a slippery sequence and an
immediate downstream stem-loop secondary structure, together called frameshift stimulat-
ing signal (FSS). It follows that the molecular evolution of this genomic region of HIV-1 is
highly constrained, since the retroviral genome must contain a slippery sequence (sequence
constraint), code appropriate peptides in reading frames 0 and 1 (coding requirements), and

form a thermodynamically stable stem-loop secondary structure (structure requirement).

We describe a unique computational tool, RNAsampleCDS, designed to compute the number of
RNA sequences that code two (or more) peptides p,q in overlapping reading frames, that are
identical (or have BLOSUM/PAM similarity that exceeds a user-specified value) to the input
peptides p,q. RNAsampleCDS then samples a user-specified number of messenger RNAs that
code such peptides; alternatively, RNAsampleCDS can exactly compute the position-specific

9
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scoring matrix and codon usage bias for all such RNA sequences. Our software allows the user
to stipulate overlapping coding requirements for all 6 possible reading frames simultaneously,
even allowing IUPAC constraints on RNA sequences and fixing GC-content. We generalize
the notion of codon preference index (CPI) to overlapping reading frames, and use RNAsam-
pleCDS to generate control sequences required in the computation of CPL. Moreover, by ap-
plying RNAsampleCDS, we are able to quantify the extent to which the overlapping coding
requirement in HIV-1 [resp. HCV] contribute to the formation of the stem-loop [resp. dou-
ble stem-loop] secondary structure known as the frameshift stimulating signal. Using our
software, we confirm that certain experimentally determined deleterious HCV mutations oc-
cur in positions for which our software RNAsampleCDS and RNAiFold both indicate a single
possible nucleotide. We generalize the notion of codon preference index (CPI) to overlap-
ping coding regions, and use RNAsampleCDS to generate control sequences required in the
computation of CPI for the Gag-Pol overlapping coding region of HIV-1. These applications
show that RNAsampleCDS constitutes a unique tool in the software arsenal now available to
evolutionary biologists. Source code for the programs and additional data are available at

http://bioinformatics.bc.edu/clotelab/RNAsampleCDS/.

Background

In HIV-1, Pol is obtained from a fused Gag-Pol polyprotein via a programmed —1 ribosomal
frameshift, which naturally occurs with a frequency of 5-10%; moreover, an increase of ri-
bosomal frameshift frequency is associated with a decrease in viral infectivity [26]. The —1

ribosomal frameshift is caused by two cis-acting RNA elements, together known as frameshift
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stimulating signal (FSS): (1) a heptameric slippery sequence (U UUU UUA), where the Gag read-
ing frame is indicated, and (2) a downstream stem-loop secondary structure, often with either
internal loop or right bulge. The FSS from HIV-1 genome (AF033819.3/1631 — 1682) is shown
in Figure where the minimum free energy (MFE) secondary structure was determined by
RNAfold from Vienna RNA Package 2.1.9 [27]]. The Pol reading frame is —1 with respect to the
Gag reading frame, or equivalently, the Gag reading frame is +1 with respect to the Pol read-
ing frame (convention adopted throughout this chapter) — Figure depicts the six reading
frames considered in this chapter. While the entire Gag-Pol overlap region in HIV-1 AF033819.3
is from position 1631 to 1838 (Pr55 Gag polyprotein is coded at AF033819.3/336 —1838), the 17-
mer Pol [resp. Gag] peptide coded in the 52 nt FSS region 1631—-1682 is FFREDLAFLQGKAREFS
[resp. FLGKIWPSYKGRPGNFL]. Moreover, we found the secondary structure from Figure|2.1a]
to be the most common MFE structure for 52 nt segments of the Pol coding region, which
begin by UUUUUUA, taken from the HIV Sequence Database in Los Alamos National Labora-
tory (LANL) available atwww.hiv.lanl.gov. Due to its importance, a collection of 145 HIV-1
ribosomal frameshift elements is given in the family RF00480 in Rfam 12.0 [28]. Figure [2.1d]
displays the sequence logo obtained from the 145 sequences in the seed alignment of RF00480,
while and[2.1¢|respectively display the sequence logos for the 17-mer Pol and Gag peptides

coded in RF00480.

For decades, research in evolutionary biology has focused mostly on protein-coding regions,
leading to the development of sophisticated computational tools, such as PAML [30] and HYPHY
[31], to compute the ratio dN/dS of non-synonomous mutation rate dN to the synonomous

mutation rate dS [32,[33,[34]. Pedersen and Jenson [35] extended the codon substitution model
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FIGURE 2.1: (@) Minimum free energy (MFE) structure of the initial 52-nt Gag-Pol overlapping
reading frame in positions 1631-1682 of the HIV-1 complete genome (GenBank AF033819.3).
This frameshift stimulating signal (FSS) contains the initial slippery sequence heptamer, given
by U UUU UUA in the Gag reading frame, as well as the displayed stem-loop secondary struc-
ture, which together promote a programmed -1 frameshift UUU UUU A in the Pol reading
frame. (b)Depiction of all 6 possible reading frames - RNAsampleCDS samples RNA sequences
that code in all possible reading frames, allowing IUPAC sequence constraints (c) Sequence
logo for 145 RNA HIV-1 frameshift signal sequences from the RF00480 seed alignment from
Rfam 12.0 [28]. (d) Sequence logo for the Pol peptide coded by 138 RNA HIV-1 frameshift sig-
nal sequences from the RF00480 seed alignment from Rfam 12.0; Pol peptide translated from
nucleotide positions 1-51. (e) Sequence logo for the Gag peptide coded by 138 RNA HIV-1
frameshift signal sequences from the RF00480 seed alignment from Rfam 12.0; Gag peptide
translated from nucleotide positions 2-52. Since some sequences from RF00480 contained IU-
PAC codes for uncertain data, the data were disambiguated—-for instance, the code B (not A)
was disambiguated by randomly assigning either C,G or U with probability 1/3. Seven se-
quences were removed from the seed alignment of 145 RNAs due to gaps in the alignment,
and another five sequences were removed since either the Pol or Gag peptide contained a stop
codon-resulting in 133 sequences for nucleotide analysis. Peptide sequence logos for the 138

Pol and Gag peptides were created using WebLogo [29].
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of Goldman and Yang [33] to overlapping genes in a site-specific manner, where evolution-
ary constraints of both genes are taken into account. However, estimation of evolutionary
parameters in this model required computationally expensive Markov chain Monte Carlo sim-
ulations. By dropping the condition of site specificity, Sabath et al. [[36] were able to apply a
maximum likelihood method to estimate parameters in a more efficient manner. The resulting
tool has been used to predict functionality of overlapping reading frames [37]. An evolutionary
model has been developed for coding regions with conserved RNA secondary structures [38]
as well. This approach was used to determine the effects of structural elements on nucleotide

substitution in hepatitis C virus.

Several methods have been developed to sample sequences using an evolutionary model de-
rived from a given phylogeny [39} [40} [41]. To the best of our knowledge, however, there is no
previously published method for sampling sequences in overlapping coding regions. The pro-
gram SISSI [[41] incorporates a user-defined system of dependencies between the nucleotides;
however, it is not possible using SISST to sample sequences that code in overlapping reading
frames, since SISSI requires that any position in an RNA sequence must belong to a single
codon. Moreover, SISST does not allow sequence and structural dependencies to be specified
simultaneously. Our work in this section is orthogonal to the foregoing computational mod-
els and tools of mathematical evolution theory and does not rely on phylogeny information.
In full generality, the new software RNAsampleCDS supports the following. For each reading
frame r € {+0, + 1, — 0, — 1, — 2} illustrated in Figure let p, be a length n sequence in the
22-letter alphabet consisting of IUPAC codes for each amino acid, together with symbol X (any
residue) and O (any residue or STOP). RNAsampleCDS computes the number of RNA sequences

ag, - . . ,asp+2 Which simultaneously code protein p/. in reading frame r, such that either p/ is
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identical to p,, or (optionally) whose BLOSUM/PAM similarity to p, exceeds a user-specified
value. (Throughout the chapter, we say that the peptide p is BLOSUM[PAM] 0 similarto another
peptide p’, if each amino acid of p has BLOSUM[PAM resp.] similarity of at least  with the
corresponding amino acid of p’.) RNAsampleCDS can then compute the PSSM and codon us-
age frequency for such proteins, as well as sample a user-specified number of such sequences.
RNAsampleCDS runs in linear time and space, although if GC-content is optionally controlled,
then time and space requirements are quadratic. For expository reasons, we describe the al-
gorithms for only two proteins p,q respectively in reading frame 0 and 1; however, our code
is general as just described. Using RNAsampleCDS, we undertake a preliminary analysis of the
Gag-Pol overlapping reading frame in human immunodeficiency virus (HIV-1) and of the triple

overlapping reading frame of hepatitis C virus (HCV).

Description of algorithms

Letp = p1,...,pn and q¢ = q1, . . .,qn be two peptides of equal length. In this section, we are

interested in the following questions.

1. Which sequences ay, . . . ,as, of messenger RNA translate the peptide p in reading frame

0 and also translate the peptide g in reading frame +1?

2. Which sequences ay, . . . ,a3, of messenger RNA translate peptides p” = pJ, ... ,p;, inread-
ing frame 0 and peptide ¢’ = ¢], .. ..q;, in reading frame +1, where the BLOSUM/PAM

similarity of p with p” and g with ¢’ is greater than or equal to a user-specified threshold

0?

3. What is the profile, or PSSM, for the collection of mRNAs from (1) and (2)?
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4. What is the total number of sequences satisfying (1) and (2), and how can we sample
sequences dy, . . . ,a3, of messenger RNA in an unbiased manner, in order to satisfy either

(1) or (2)?

By developing software to sample mRNA sequences that code user-specified proteins in differ-
ent reading frames, we can then analyze the samples with other tools to provide an estimate of
the probability of satisfying a given property of interest, hence give approximate answers for
questions like the following: What is the expected stem size in the minimum free energy (MFE)
structure of RNAs that translate peptides p’,¢’ in reading frames 0,1, where the BLOSUM/PAM
similarity of p,p” and of g,q’ is at least a user-specified threshold value of 8? As we show, it
is not difficult to see that questions (1,2) are easily answered using breadth first search (BFS);
however, for large values of n, it can happen that BFS in not practical, since the number of
messenger RNAs can be of size exponential in n. For that reason, we describe a novel dynamic

programming (DP) algorithm to answer questions (3) and (4).

We first need a few definitions. If xyz is a trinucleotide, then let tr(xyz) denote the amino
acid whose codon is xyz in the genetic code; i.e. tr(xyz) is the amino acid translated from
codon xyz, unless xyz is a stop codon. If xyzu is a tetranucleotide, then let try(xyzu) [resp.
tri(xyzu)] denote the amino acid whose codon is xyz [resp. yzu]; i.e. tro(xyzu) = tr(xyz) and
tri(xyzu) = tr(yzu). For each k = 1,...,n, define the collection L of 4-tuples s = sp,51,52,53
such that tro(s) = tr(so,s1,82) = pr and tri(s) = tr(s1,52,53) = qx. Define two 4-tuples s = sps15253
and t = tyt1tyt5 to be compatible if s; = t; — i.e. the tail of s equals the head of t. Note that if
4-tuples s,t are compatible, then the merge sy,s1,52,t0,t1,t2,t3 of s,¢t has the property that amino

acids are translated by each of the four codons sos152, $15253, tot1t2, and t1t,13.
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ALGORITHM 1: (BFS computation of sequences that code in reading frames 0 and 1)

Define the tree T by induction on depth as follows.

« Base case: The root of T is (; the children of the root are those 4-tuples s, such that
tro(s) = p1, tri(s) = g;1. The depth of the root is 0, and the depth of each child of the root

is 1.

« Inductive case: If s is a 4-tuple in T of depth k, then the children of s are those 4-tuples
t, such that s3 = t; (compatibility requirement) and try(t) = pg+1, tr1(f) = qr+1 (coding

requirement). The depth of each child of s is k + 1.

Suppose that 01,03, . ..,0k is a path from root to level k; i.e. 01,09, ...,0k is a sequence of 4-
tuples belonging to T, where for each i = 1,...,k, the level of o; is equal to i, and for each

i =1,....,k — 1, 041 is a child of g;. Define the merge of 0,09, ...,0% to be the RNA se-

quence dop,as, . . . ,dsk, where o1 = apa;aas, 0, = a3a4asags, 03 = Aed7;asdy, ..., Ok

a3(k—-1)d3k-2d3k-1d3k. By induction, it is easy to establish that in this case try(o;) = p;, tri(o;)
gi foreachi = 1,... k. An easy application of breadth first search then allows one to generate
the collection of level n nodes of T. It follows that the answer to question (1) is the set of RNAs

obtained by merging the paths from root to level n nodes of T. ]

Using our implementation of the BFS approach in Algorithm 1, we can easily determine that
there are exactly 32 52-nt RN As that translate the 17-residue Pol peptide FFREDLAFLQGKAREFS
in reading frame 0, and the 17-residue Gag peptide FLGKIWPSYKGRPGNFL in reading frame
+1. These 17-mer peptides are those which constitute the beginning of the Gag-Pol overlap in
the HIV-1 genome (nucleotides 1631-1682 in GenBank AF033819.3). The entire Gag-Pol over-

lap region is from 1631-1835, whereby the 68-mer Pol [resp. Gag] peptide is coded in the region
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(a) Centroid (B) Consensus (c) Mountain plot

FIGURE 2.2: (A) The centroid secondary structure,(B) RNAalifold consensus structure, and

(C) the corresponding mountain plot for the alignment of all 256 205-nt RNA sequences that

code the Pol and Gag 68-mer peptides from HIV-1 (Pol 1631-1835, Gag 1632-1836 in GenBank
AF033819.3).

1631-1834 [resp. 1632-1835 with a Gag STOP codon at 1836-1838]. Our implementation of the
BFS method returns exactly 256 208-nt RNAs that code the Pol [resp. Gag] 68-mers from HIV-1
(GenBank AF033819.3). Figure|2.2|displays the centroid secondary structure, RNAalifold
consensus structure, and the corresponding mountain plot for the alignment of all 256 205-nt
RNA sequences that code the Pol and Gag 68-mer peptides from HIV-1 (Pol 1631-1835, Gag
1632-1836 in GenBank AF033819.3), not necessarily containing the slippery sequence UUUU-

UUA.

Further analysis (data not shown) indicates that there is considerable variation in the low en-
ergy structures of RNAs that exactly code the same 68-mer Pol and Gag peptides as those coded
by AF033819.3/1631-1836. Question (2) is an obvious generalization of (1), and is easy to answer
by generalizing the collection Ly of 4-tuples s = s¢,51,52,53 such that try(s) = tr(so,s1,52) = p,’<
and try(s) = tr(s1,52,83) = q;, where the BLOSUM/PAM similarity of pr.p; and of qy.q; is at

least a user-specified threshold 6.

It is more interesting to turn to question (3), which requires a different strategy, since the
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number of RNAs returned by BFS may be exponentially large. Indeed, if RNA sequences
are required to code peptides p [resp. q] whose amino acids have BLOSUM®62 similarity of
at least 6 to those of the Pol [resp. Gag] 17-mer peptide coded in reading frame 0 [resp.
1] in AF033819.3/1631-1682, then the number of solution sequences is 256 (6 = 4), 34,560
(0 = 3), 90,596,966,400 (0 = 2), 2.14285987145e+32 (§ = 1), 3.61150917928e+56 (6 = 0),
1.20555937201e+81 (0 = —1), 1.17643153215e+106 (8 = —2)! To address question (3), define

the forward and backwards partition function ZF, ZB as follows.

« Forward partition function: For integer k = 1,...,n and nucleotide ch € {A,C,G,U},
define ZF(k,ch) to be the number of RNAs a = aq, . . . ,as; such that a3y is the nucleotide

ch, and a translates the peptide p, . .. ,px resp. qi, . . . ,qx in reading frame 0 resp. 1; i.e.

tro(a) = pq,....px and try(a) = qq, . . . .qk-

« Backward partition function: For integer k = 1,...,n and nucleotide ch € {A,C,G,U},
define ZB(k,ch) to be the number of RNAs a = ask,dsk+1,- - . ,a3n such that asg is the

nucleotide ch, and a translates the peptide py, . . . ,pn resp. gk, . . . ,qn in reading frame 0

resp. 1; i.e. tro(a) = px, . . . ,pn and try(a) = g, . . - ,qn.

By dynamic programming, it is straightforward to compute the forward and backward partition

functions in linear time and space.

ALGORITHM 2: (DP partition function for sequences that code in reading frames 0 and 1)

Given n-mer peptides po,qo, for k = 1,...,n and ch € {A,C,G,U} define the forward partition

function ZF(k,ch) inductively as follows:
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« CaAsEl: k=1

ZF(k,ch) = > I[s3 = ch]

50515283 ELk

e« CaASE2: k=2,...,n

ZF(k,ch) = > I[s3 =ch]-ZF(k — 1,s0)

50515283 ELk

For k = n,...,1and ch € {A,C,G,U}, define the backward partition function ZB inductively as

follows:

« CAsEl: k=n

ZB(k,ch) = > I[so = ch]

503152$3€Lk
e« CASE2: k=n-1,...,1

ZB(k,ch) = > I[so =ch]-ZB(k + 1,s3)

50515283 ELk

Note the use of the boolean valued indicator function I[...], which has the value 1 if the ex-

pression within the brackets is true, and otherwise has the value 0. It follows that

Z = Z ZF(n,ch) = Z ZB(1,ch)

che{A,C,G,U} che{A,C,G,U}

is the total number of RNA sequences that translate p in reading frame 0 and q in reading frame

+1. |

By appropriately redefining L, the recursions of Algorithm 2 can easily be modified to instead
count the number of sequences coding py, ... .p;, in reading frame 0 and ¢, . .. ,q;, in reading

frame +1, such that for each i, the BLOSUM/PAM similarity of p;,p; and of g;,q; exceeds a
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user-specified threshold 6, or for which the Kyte-Doolittle hydrobicity of p;,p; and g;,q; dif-
fer by at most a user-specified upper bound, etc. The same remark applies to all algorithms
of this section, although for reasons of space, we do not explicitly mention such extensions.

Nevertheless, such extensions are supported by the software RNAsampleCDS.

By refining the definition of forward and backward partition function, Algorithms 1 and 2 can
be modified to keep track of the GC-content, albeit at an overhead for the space required. For

an arbitrary RNA sequence a, let gccount(a) denote the number of Gs or Cs occurring in a.

« Forward partition function accounting for GC-content: For integer k = 1,...,n and
nucleotide ch € {A,C,G,U}, define ZFsc(k,x,ch) to be the number of RNAsa = ay, .. . a3
such that a3y is the nucleotide ch, gccount(a) = x, and a translates the peptide p1, . . . ,px

resp. qi, - - - ,qx in reading frame 0 resp. 1; i.e. fro(a) = pq, . .. ,px and try(a) = qq, . . . Q.

« Backward partition function accounting for GC-content: For integer k = 1,...,n
and nucleotide ch € {A,C,G,U}, define ZBgc(k,x,ch) to be the number of RNAs a =
A3k,d3k+1, - - - ,d3n such that asy is the nucleotide ch, gccount(a) = x, and a translates the
peptide p, . . . .pn T€SP. Gk, - - - ,qn in reading frame 0 resp. 1; i.e. tro(a) = pg, . . .,p, and

tri(a) = gk, - - - sqn-

Though not explicitly described, all the following algorithms (PSSM computation and sam-
pling) can be modified to account for GC-content. Our program, RNAsampleCDS, implements
all the algorithms described in this section, including versions that account for GC-content.
Moreover, our program supports any two or more overlapping coding regions in any of the 6

reading frames - i.e. reading frame 0,1,2 on the plus-strand and 0,1,2 on the minus-strand, as

shown in Figure
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Note that an easy modification of the above algorithm allows one to compute the total number
of RNAs of length 3n + 1, which code n-mer peptides p [resp. g] in reading frames 0 [resp. 1],
i.e. for which neither reading frame contains a stop codon. This modification is later used to
compute the probability that a random RNA of length 3n + 1 will code in both reading frames
0 and 1. The following algorithm applies Algorithm 2 in order to compute the exact value of

the position specific scoring matrix (PSSM).

ALGORITHM 3: (PSSM computation of sequences that code in reading frames 0 and 1)

Given n-mer peptides po,qo, fori = 0, ...,3n and ch € {A,C,G,U}, define the profile or PSSM of

nucleotides at positions 0, . . . ,3n as follows:

« Casg 1: i = 0. Then PSSM(i,ch) equals

Yuser, I[so = ch] - ZB(1,ch)/Z

« CASE 2: i = 0 mod 3. Then PSSM(i,ch) equals

ZF(i/3,ch) - ZB(i/3,ch)/Z

« CAsE 3: i = 1 mod 3. Then PSSM(i,ch) equals

LZ I[sy = ch] - ZF(|i/3].s0) - ZB([i/3],83)/Z
s€Lii/s)

« CASE 4: i = 2 mod 3. Then PSSM(i,ch) equals

2 sy =ch]- ZF(li/3].50) - ZB([i/31.83)/Z

s€Lyi/3)

The recursions can be easily modified, if the RNA sequence is instead required to code py, . . . ,p;,
in reading frame 0 and q7, . . . ,q, in reading frame +1, such that for each i, the BLOSUM/PAM
similarity of p;,p] and of q;,q; exceeds a user-specified threshold 6. This answers question (3).
The resulting DP program is very fast, since the run time is linear in n, while the BFS program

has run time that is exponential in n.
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Given a gapless alignment S of mRNA sequences of length 3n+1, each of which codes a protein
in reading frame 0 and 1, define the positional codon frequency PCF(w,k,r) to be the number of
occurrences of w in the kth codon position in reading frame r € {0,1} of a sequence in S. If S
is the collection of all mRNAs that code proteins p,q respectively in reading frame 0,1, which
are identical to (or alternatively have BLOSUM/PAM similarity that exceeds threshold ), then

the positional codon frequency can be defined from the partition functions ZF,ZB as follows.

ALGORITHM 4: (Positional codon frequency) Given n-mer peptides py,qo, integer k = 1, .. . ,n,

codon w = wow;w, € ({A,C,G,U})?, and reading frame r € {0,1}, the positional codon fre-
quency PCF(w.k,r) for the set of all mRNAs that code py,qo respectively in reading frame 0,1

can be computed as follows.

« CASE 1: r = 0. Then PCF(w,k,0) equals

ZF(k = 1,wo) * Xcheqa,c,6,uy ZB(k,ch).

« Casg 2: r = 1. Then PCF(w,k,1) equals

Yicheiac,cuy ZF(k — 1,ch) - ZB(k,w»)

Next, in order to sample RNA sequences that code peptides p = p;,....pn resp. ¢ = q1,- .. .qn
in reading frames 0 resp. 1, we construct the sampled sequence from last to first character,
each time ensuring that ZF(k,ch) > 0 where ch is the leading character of the current sample
ask—1,43k, - - - ,3n. This is described as follows, where we recall that L denotes the collection
of 4-tuples s = s9,51,52,53 such that try(s) = tr(sp,s1,52) = pl’C and tri(s) = tr(sy,s2,83) = q,’(, and

the BLOSUM/PAM similarity of px,p; and of g.q, is at least a user-specified threshold 6.

ALGORITHM 5: (Uniform sampling of RNAs that code in reading frames 0 and 1)
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1. k =n //initialize to the common length of peptides p,q

2. rna = "" //initialize to empty sequence

3. ch = random nucleotide in { A,C,G,U } satisfying ZF(k,ch) >0

4. while k>0

5. choose random 4-tuple s = sy,81,52,53 such that s; =ch
6. rna = $1,52,83 + rna

7. ch =5

8. k = k-1

9. rna=ch+rna //prepend the remaining initial nucleotide

It is straightforward to modify the previous algorithm to sample in a weighted fashion. First,
recall that L denotes the collection of 4-tuples s = s¢,51,52,53 such that try(s) = tr(s,s1,52) = pl’C
and tri(s) = tr(s1,52,83) = ql’{, and the BLOSUM/PAM similarity o’fpk,pl’< and of qk,ql’< is at least
a user-specified threshold 6. Additionally, if ch € {A,C,G,U} then let Li .; denote the set of

tuples ¢ in L, whose last element t3 is ch.

ALGORITHM 6: (Weighted sampling of RNAs that code in reading frames 0 and 1)

1. k =n //initialize to the common length of peptides p,q

2. rna = "" //initialize to empty sequence

3 a =ZF(k,A); ¢ = ZF(k,Q); g = ZF(k,G); u = ZF(k,U);

4. zZ = a+c+g+u

5. a=a/z; c=c/z; g=g9/z; u=u/z

6. select ch from A,C,G,U with prob a,c,g,u using roulette wheel

7. while k>0

8. sum = 0; r = random(0,1) - ZF(k-1,ch))
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9. for t in Li_y ., //nmote that t = tytitzt3 and t3 = ch
10. sum = sum + ZF(k — 1,t)

11. if r < sum

12. rna = t + rna; ch = t; k = k-1; break

13. return rna

Our implementation of the algorithms described in this section allows the user to stipulate
sequence constraints using any IUPAC nucleotide codes, for instance, designating the first 7
nucleotides to be the slippery sequence UUUUUUA, or to consist of an alternation of purines and

pyrimidines RYRYRYR, etc.

Finally, we note that all the previous algorithms in this section can be extended to handle
multiple overlapping reading frames in all six reading frames, i.e. reading frames +0,+1,+2 on
the plus strand and reading frames —0,—1,—2 on the minus strand, as illustrated in Figure
For instance, in order to compute the forward partition function for reading frames 0,1,2 we
define ZF(k,ch1,ch2) to be the number of RNA sequences a of length 3k + 2 whose last two
nucleotides are chl,ch2, such that tro(a) = p1, ... ,pr, tr1(a) = q1, - - . gk, tra2(a) = 1y, .. . 1, for
user-specified peptides p = p1,...Pns qQ = q1---qn, T = F1,...,rm. Now we define Ly to be
the set of 5-tuples s = sy, .. .,s4 such that sys;s, codes residue pg, sys2s3 codes residue g, and
28384 codes residue ri. The definition of the generalization of the forward partition function

ZF(k,chl,ch2), analogous to that defined in Algorithm 2, is as follows:

« Cask 1: k = 1. Then ZF(k,ch1,ch2) equals

> I[s3 = chl,s4 = ch2]

5051525384 €L
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« Casg2: k=2,...,n2,...,n. Then ZF(k,chl,ch2) equals

> I[s3 = chl,s4 = ch2] - ZF(k — 1,89,51)

SgS]SzS3S4ELk

Our publicly available code RNAsampleCDS supports all the above described variants of Algo-
rithms 1-6 with possible IUPAC sequence constraints, stipulation of GC-content, and where
the user may stipulate that particular peptides are coded in any or all of the six reading frames
displayed in Figure See section [2.5/for details of how we determine the run time estimate
of = 0.58831373 - L+0.00550239 - N to generate compute the partition function and generate N
samples of RNA sequences of length L that code any peptide in each of the six possible reading

frames.

Applications of RNAsampleCDS

In this section, we use RNAsampleCDS to study novel aspects of human immunideficiency virus
HIV-1 and hepatitis C virus HCV, that cannot be determined using methods other than those

described in this chapter.

HIV-1 programmed —1 frameshift

Analysis of HIV-1 overlap

Since HIV-1 and other retroviruses have a —1 ribosomal frameshift in the initial portion of the
Gag-Pol overlap, this can be detected by the software FRESCo [43]], which predicts regions of

excess synonymous constraint in short, deep alignments. The phylogenetic tree expected as an
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input to FRESCo was built by RAXML v. 8 [44]. Figure[2.3adisplays the dN/dS ratio we obtained
for HIV-1 AF033819.3 with respect to the Gag reading frame, when aligned with other HIV-1
genomes from the Los Alamos HIV Database. This figure indicates that there is positive selec-
tion in the Gag region before the Gag-Pol overlap. In contrast, starting with the beginning of
the Gag-Pol overlap (nucleotide 1631), there is purifying selection; i.e. Figure suggests the
presence of an important signal starting around position 1631. As Figure confirms, in the
starting and ending regions of Pol where it has overlap with Gag and Vif genes, synonymous
substitution rate is low. Figure also indicates a sudden drop in the the synonymous substi-
tution rate for 200 artificial Gag-Pol sequences in which an extra nucleotide U’ is inserted at
the end of Gag to coordinate the reading frames. Figure[2.3d|displays the dN/dS ratio of the 52
nt Gag-Pol overlap region, for both the Gag and Pol reading frames, using the method of [36]
which computes a rate matrix for overlapping reading frames — an aspect ignored by PAML and
other software. Since Sabath’s program computes dN/dS from a pairwise alignment, which is
wholly inappropriate for the short 52 nt sequences considered here, we modified the approach
by first producing multiple alignments of 52 nt Gag-Pol overlap regions, and then computed
the number of (observed) synonomous and nonsynonomous mutations within the Gag [resp.
Pol] reading frame, taking account for all codon pairs in the same column. We then modified
Sabath’s Matlab program to compute dN/dS by maximum likelihood using counts obtained
from the multiple alignments. The multiple alignments considered in Figure[2.3d|are from Rfam
family RF00480 and from 52 nt RNA sequences generated by the programs RNAsampleCDS and
RNAiFold 2.0. RNAsampleCDS generates 52 nt sequences, that translate peptides in the Gag
[resp. Pol] reading frame, each of whose amino acids has BLOSUM62 similarity of either 0 or
1 to the corresponding amino acids in the Gag [resp. Pol] reading frame of the peptides trans-

lated by the 52 nt HIV-1 overlap region of AF033819.3/1631-1682. RNAiFold 2.0 generates
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52 nt sequences, that not only satisfy the same coding requirements as RNAsampleCDS, but
which also fold into the minimum free energy secondary structure shown in Figure In
each case, RNAiFold 2.0 generates all sequences that satisfy both the coding and structure
requirements, their number being substantially less than the 100,000 sequences generated by
RNAsampleCDS. Note the presence of purifying selection for the Gag reading frame, as indi-

cated by dN/dS values less than 1.

Codon preference index

In this section, we generalize the notion of codon preference index (CPI) [45] to the context of
overlapping coding regions. For RNA sequence a = ay, . . . ,as, which codes n-mer peptides in
reading frames 0,1, for codon w € ({A,C,G,U})3 and reading frame r € {0,1}, define f(,, 5 r) to
be the number of occurrences of codon w in reading frame r of a, and for amino acid AA, define
f(aa,a,r) to be the number of occurrences of codons coding AA in reading frame r of a. Define
the observed codon preference in a by p,ps(w,a) = ZLO fowan/ > fiaaar)- If S is a set of
mRNAs of length 3n + 1, each of which codes n-mer peptides in both reading frames 0,1, then
define the observed codon preferencein S by pops(w,S) = 31_; Sacs fiwan/ S Sacs faaar)-
Note that p,ps(w,S) is the probability that codon w will be used for amino acid AA in the collec-
tion S of overlapping coding sequences. Finally, define the codon preference index I(w) of codon

win S by I(w) = pops(W,S)/pops(W,S”), where S’ is a control set of mRNAs of length 3n + 1.

With these notations, Figure [2.4] depicts a heat map for the codon preference index I(w), com-
puted over 5,125 entire Gag-Pol overlap regions of average length 205 + 10 (Gag and Pol pep-

tide size ~ 68) extracted from LANL HIV-1 database, each starting with the slippery sequence
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FIGURE 2.3: Output from the program FRESCo [43], when run on the Gag (a), Pol (b) and
modified Gag-Pol (c) sequences of alignments of 200 sequences from the LANL HIV-1 data-
base using 50 nt windows. Gag-Pol sequences were modified by inserting one additional
nucleotide at the beginning of the overlapping coding region, thus causing the Pol read-
ing frame to be in-frame, rather than —1. Codon positions in the lower panels are based
on HXB2 reference sequence. Mature peptides are shown in yellow. (d) Values of dN/dS,
branch length, and transition/transversion rate (see [33] for definitions) for the 52 nt Gag-Pol
overlap regions within a multiple alignment from Rfam family RF00480 as well as from 52 nt
RNA sequences generated by the programs RNAsampleCDS and RNAiFold. These programs
generate sequences that code peptides, each of whose amino acids has BLOSUM62 similar-
ity of either 0 or 1 to the corresponding amino acids in the Gag [resp. Pol] reading frame
of the peptide translated by the 52 nt HIV-1 overlap region of [26] or by GenBank accession
code AF033819.3/1631-1681. The program RNAsampleCDS ensures only coding requirements,
while RNAiFold ensures both coding requirements and that the 52 nt RNAs fold into the min-
imum free energy structure of the Gag-Pol overlap region of HIV-1 from [26] and GenBank
accession code AF033819.3/1631 — 1682.
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UUUUUUA and terminating with the last Gag codon; additionally the heat map includes Gag-
only and Pol-only values for the same overlap region. For this figure, the control set S’ is
defined differently for each column 1 — 5, although in all cases, each sequence in S’ contains
the initial slippery sequence UUUUUUA. For column 1 [resp. 2] S’ is the set of all mRNAs
that code proteins in the Gag [resp. Pol] reading frame that are coded by some sequence of
S. For column 3, S’ is the set of all mRNAs that code proteins p and g that are identical to
proteins coded in the Gag and Pol reading frames of some sequence a of S. For column 4,
S’ is defined as in the case for column 3, except that ‘identical to’ is replaced by ‘BLOSUM62
+1 similar to’. For column 5, S’ is the set of all mRNAs that code proteins p and ¢ that are
BLOSUMS62 +1 similar to proteins coded in the Gag and Pol reading frames of a sequence a
of S, and whose GC-content lies in the range of GC-content of a + 5. The heat map of Fig-
ure [2.4| shows that for serine, I[(AGU,Gag) < I(AGU,Pol) < I(AGU,Gag/Pol) ~ 1; for valine,
I(GUG,Gag) < 1 < I(GUU,Gag) but I(GUG,Gag/Pol) > 1 > I(GUU,Gag/Pol); for proline,
I(CAU,Gag) < I(CAU,Pol) < I(CAU,Gag/Pol) ~ 1, but when the control set is taken to be
BLOSUMS62 +1 similar peptides to Gag and Pol, then I(CAU,Gag/Pol + 1) > 1. Figure
illustrates a comparison between the codon preference index of the entire gag and pol except
overlapping region with the overlapping region. In Figure in all columns S is the set of
Gag-Pol overlapping sequences from the LANL HIV-1 database. The control set S’ in columns
1 and 2 is the collection of sequences that code any protein of length 68 in a single reading
frame. However, in columns 3-5, S” is the collection of sequences that code any protein of
length 68 in both +0 and +1 reading frames. Mean peptide length in the overlapping region
of the dataset is 68. Note that the codon preference index (CPI) computed in Figure [2.6|is with
respect to all possible coding sequences regardless of amino acid coded, and so is natural gen-

eralization of the method of [45] to the case of overlapping reading frames. Figure [2.7| shows
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FIGURE 2.4: Heat map of the codon preference index (CPI) for a collection of 5125 entire Gag-
Pol overlap regions of average length 205 + 10 extracted from LANL HIV-1 database. CPI

values shown at bottom right of each square.

the standard deviation of I(w) for the codons of each amino acid. Here, I(w) is computed as in
Figure Arginine is the most varied and thus the most optimized amino acid in the Gag-Pol

overlapping region.

These results show that the codon usage bias observed at the Gag-Pol junction is not due to nat-
ural selection or to the underlying mutational bias, but rather imposed by the overlapping

coding constraints.

Overlapping coding and stem-loop formation

Here we describe how to quantify the extent to which coding HIV-1 17-mer peptides in over-
lapping reading frames induces a stem-loop structure. In particular, we consider the following

questions.
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in the corresponding reading frames.
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FIGURE 2.7: Standard deviation of CPI for synonymous codons computed from the

Gag-Pol overlapping sequence of 5,125 sequences from the LANL HIV-1 database.

1. What is the probability that random RNA forms a stem-loop structure?

2. What is the probability that RNA forms a stem-loop structure, if it is required to code

(any arbitrary) peptides in reading frames 0 and 1?

3. What is the probability that RNA forms a stem-loop structure, if it is required to code
peptides in reading frames 0 and 1, which are similar to peptides coded in the HIV-1

frameshift stimulating signal (FSS)?

4. Towhat extent do HIV-1 coding requirements in the Pol-Gag overlap region alone induce

stem-loop formation?
5. What is the (conditional) probability of coding peptides in reading frames 0 and 1 if the

RNA forms a secondary structure similar to the FSS stem-loop structure of HIV-1?

To answer question 1, we generated 200,000 52-nt RNAs, where the first seven nucleotides

constituted the slippery sequence UUUUUUA, and each nucleotide in position 8 through 52
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was randomly selected with probability 0.25 for each of A,C,G,U. Using RNAshapes, cf. [47],
we determined the Boltzmann probability that each RNA sequence has shape [ 1 [48], i.e.
P(L]1) = Y exp(—E(s)/RT), where the sum is taken over all stem-loop secondary struc-
tures, which may contain internal loops and bulges, but no multiloops or multiple stem-loops.
Throughout the sequel of the chapter, the probability that a given RNA sequence will form a
stem-loop structure is identified with P([ ]). A finer analysis could consider type 1 shapes
of the form _[_[]_1 or _[ [ ]_1, corresponding to a stem loop with internal loop or
right bulge, with left flanking unpaired region, but in this section we consider only the type 5
stem loop shape [ ].By MFE stem-loop structure, we mean the stem-loop secondary structure
which has the minimum free energy, taken over all stem-loop structures. Similarly, stem-loop
MEFE means the minimum free energy of all stem-loop structures. Note that the stem-loop MFE
is not necessarily equal to the MFE, since it is possible that a structure having two or more
external loops, or containing a multiloop, could have lower energy than that of any stem-loop
structure. By uniformly sampling 200,000 52 nt RNAs with no coding requirements, we esti-
mate an average probability of stem-loop formation of 60.7% with standard deviation of 36.2%,
and average stem-loop MFE was —7.65 kcal/mol with standard deviation 3.42 kcal/mol - again,

this is for 52 nt RNA with no constraints.

Before answering question 2, we first note that the conditional probability that a 52-nt RNA
codes in both reading frames 0,1 assuming that it begins by the slippery heptamer UUUUUUA
is 23.14%, and that the conditional probability that a 52-nt RNA codes in both reading frames
0,1 assuming that it begins by the slippery heptamer UUUUUUA and that it already codes in
reading frame 0 is 45.32%. In contrast, the conditional probability that a 52-nt RNA codes in

reading frame 0 assuming that it begins by the slippery heptamer UUUUUUA is 51.06%.
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Indeed, using RNAsampleCDS, we determine that the number x; of 52-nt RNAs beginning by
UUUUUUA and which code in both reading frames 0,1 is 2.86451 - 102, In contrast, the number
x3 of 52-nt RNAs beginning by UUUUUUA and which code in reading frame 0 is x = 16-61-
4 = 6.32117 - 10%°, since there are 16 codons that begin by A, a choice of 61 coding codons for
the remaining 14 residues (since the first two residues must be FF and the third residue have
a codon beginning by A), times 4 for the last nucleotide to ensure the RNA length is 52. The
number x; of all 52-nt RNAs that begin by UUUUUUA is clearly 4% = 1.23794 - 10?’. Finally,
the number x, of 52-nt RNAs that begin by UUUUUUA is x, = 4 - 64!* - 4. These computations
justify the previous probabilities, and suggest the potential utility of RNAsampleCDS when

speculating about molecular evolution.

To answer question 2, we used RNAsampleCDS to generate 200,000 52-nt RNA sequences, each
of which contains the slippery sequence UUUUUUA and codes 17-mer peptides in both reading
frames 0 and 1. Executing RNAshapes as previously described yielded an average probability
of stem-loop formation of 59.8% with standard deviation of 36.7%, and average stem-loop MFE

of —8.06 kcal/mol with standard deviation 3.58 kcal/mol.

To answer question 3, we extracted 145 52-nt Pol-Gag overlapping FSS sequences in family
RF00480 from the Rfam 12.0, of which 133 sequences remained after disambiguation and re-
moval of sequences containing gaps or stop codons. For each of the 133 sequences, we gener-
ated 100,000 sequences using RNAsampleCDS, each of which begins by the same initial 7 nu-
cleotides of the Rfam sequence constituting a slippery sequence (since most but not all RF00480
sequences begin with UUUUUUA), and which code peptides p [resp. g] having BLOSUM62
similarity of at least +1 with the corresponding amino acids of the 17-mer peptide coded by

the Rfam sequence in frame 0 [resp. 1]. Two additional outliers, AF442567.1/1455-1506 and
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L11798.1/1290-1341, were removed since their stem-loop formation probabilities were respec-
tively 53.1% and 55.5%. GenBank annotations indicate that AF442567.1 is highly G to A hyper-
mutated with very many, mostly in-frame, stop codons throughout the genome, and that the

Gag gene of L11798.1 has a premature termination at position residue 46.

For the remaining 131 sequences from RF00480, we have the following statistics. Average
probability of stem-loop formation for RF00480 is 99.3 + 2.2%, and average stem-loop MFE is
—24.43 + 3.91 kcal/mol. For the collection of 100,000 sequences generated by RNAsampleCDS
for each sequence from Rfam family RF00480, coding BLOSUMS62 +1 similar peptides to those
coded by the Rfam sequence, the average stem-loop formation probability is is 69 + 12%, and
average stem-loop MFE is —13.43 + 2.32 kcal/mol. Figures and depict respectively
the stem-loop formation probabilities and stem-loop minimum free energies. In contrast, a
similar computational experiment using RNAsampleCDS shows that the average probability of
stem-loop formation is 98.1% =+ 8.1 if each sampled sequence is required to code exactly the

same peptides as those from HIV-1 in RF00480. This answers question 4.

Together, these results show that stem-loop formation is a consequence of the precise HIV-1
Gag and Pol 17-mer peptides, but not of BLOSUM62 +1 similar peptides. As well, stem-loop for-
mation probability is not statistically different (T-test) between random sequences, sequences
that have no stop codon in reading frame 0 or 1, and sequences that code peptides having
BLOSUMS62 similarity of at least +1 to HIV-1 peptides. To determine particular nucleotide po-
sitions in the 52-nt FSS that appear to be critical in stem-loop formation, we computed the
position-dependent nucleotide frequency (PSSM), denoted by 1, for 200,000 sequences gener-
ated by RNAsampleCDS that begin by the slippery sequence UUUUUUA, and code peptides p

[resp. q], each of whose amino acids has BLOSUM62 similarity greater than or equal to 1 with
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FIGURE 2.8: For each of 131 52 nt frameshift stimulating signals (FSS) from family RF00480
from the Rfam 12.0, RNAsampleCDS generated 100,000 RNAs that have the same slippery
sequence as the Rfam sequence, and code 17-mer peptides p [resp. g] in reading frame 0
[resp. 1] each of whose amino acids has BLOSUMS62 similarity of at least +1 with the corre-
sponding amino acid in the Pol [resp. Gag] peptide coded by the Rfam sequence. Stem-loop
formation probability, P([ ] ), and stem-loop minimum free energy (MFE) were computed
by RNAshapes [47] with the command RNAshapes -q -m ‘[]’. (a) Average stem-loop for-
mation probability for 100,000 sequences sampled from RNAsampleCDS for each RF00480 se-
quence (red); stem-loop formation probability of HIV-1 frameshift stimulating Overall mean
RNAsampleCDS samples is 69% + 12 (red), while that for the RF00480 sequences is 99.3 + 2.2
(blue). (b) Average stem-loop MFE for 100,000 sequences sampled by RNAsampleCDS for each
RF00480 sequence (red); stem-loop minimum free energy for HIV-1 frameshift stimulating sig-
nals from RF00480 (blue). Overall mean for RNAsampleCDS samples is -13.43 + 2.32 kcal/mol
(red), while that for RF00480 sequences is -24.43 + 3.91 kcal/mol (blue). (c) Base pair distance
between the MFE structure of each RNA sampled by RNAsampleCDS and the FSS structure of

Figure

the corresponding amino acids of the Pol [resp. Gag] 17-mer peptides FFREDLAFPQGKAREFS
[resp. FLGKIWPSHKGRPGNFL] coded in AF033819.3/1631-1682. Using RNAiFold 2.0, we
also computed the PSSM, denoted by s, for all possible sequences that begin by slippery hep-
tamer UUUUUUA, and fold into the MFE structure of AF033819.3/1629-1682 shown in Fig-

ure and which code peptides that are BLOSUM62 +1 similar to the peptides coded by



New tools to analyze overlapping coding regions 37

AF033819.3/1631-1682. We then computed the position-dependent total variation distance be-
tween 7; and 7y, defined by §(7y,;,7m2,i) = 1/2 - Yxeqa,c,6,u} 711,i(X) — 72,i(x)|, where 7y ; resp.
7,,; denotes the mononucleotide frequency at position i of the PSSM for sequences generated
by RNAsampleCDS resp. RNAiFold 2.0. With the exception of specific regions, the total vari-
ation distance is close to zero, thus pinpointing critical nucleotides necessary for stem-loop
formation of the FSS. Figures display the sequence logo for the PSSM 7y and m,, and
Figures and respectively depict the position-dependent entropy and total variation

distance.

To answer question 5, we used RNAiFold 2.0 with target structure as depicted in Figure|2.1a]
in order to generate 200,000 52-nt RNA sequences, each containing the slippery sequence UUU-
UUUA and each folding into the target structure. We determined that 61.91% of these sequences
have no stop codon in reading frames 0 or 1. The percentage of sequences that have no stop
codon in reading frame 0 [resp. 1] alone is somewhat higher, with value 78.7% [resp. 79.59%].
We additionally determined that the average base pair distance between the MFE structure of
the sampled sequences and the target FSS secondary structure is 2.04 and average ensemble

defect is 3.58.

The probability of stem-loop formation for frameshift stimulating signal (FSS) regions of HIV-1
is close to 1, with average value of 99% =+ 2 for RF00480 as shown in Figure This value
is much larger than that of random 52-nt RNAs (~ 61%), or 52-nt RNA having no stop codons
in reading frames 0 or 1 (~ 60%), or even 52-nt RNA coding peptides in reading frames 0,1
with BLOSUM62 similarity of at least +1 to HIV-1 peptides (= 69%). It follows that coding
BLOSUMBS62 +1 similar peptides to those of HIV-1 at most slightly induces stem-loop formation.

Yet the probability that stem-loop structures do not have a stop codon in either reading frame
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0 or 1 is only about 62%, without requiring that the peptides be similar to those of HIV-1. It
follows that BLOSUMS62 +1 similarity to HIV-1 peptides cannot induce the required stem-loop
FSS structure, nor can the target FSS structure from Figure[2.1a|induce BLOSUM62 +1 similarity
to HIV-1 peptides. We speculate that starting from a genomic region that codes a polyprotein
similar to that of Gag, a series of pointwise mutations could slowly induce a stem-loop FSS
structure and at the same time slowly create a Pol-like reading frame. Although speculative,
it is possible to create an adaptive walk or Monte Carlo program to test the likelihood of this

hypothesis, using intermediate sequences generated by RNAsampleCDS and RNAiFold2.0.

HCV programmed -1 and +1 frameshifts

There is both in vitro and in vivo experimental evidence for a -2/+1 (hereafter designated as
+1) and -1/+2 (hereafter designated as +2) programmed ribosomal frameshift in the core pro-
tein of the hepatitis C virus (HCV) [49]]. The +1 frameshift produces a 17 kDa protein called
protein F (Frameshift), also designated as ARFP (Alternative Reading Frame Protein). In ad-
dition, the +2 frameshift produces a 1.5 kDa protein. As measured by in vitro assays, the +1
ribosomal frameshift efficiency is ~ 12 — 15%, while the +2 ribosoma frameshift efficiency is
~ 30 — 45% [[49]]. Figure depicts the organization of the overlapping coding region for the
HCV genome (GenBank M62321.1), including a double stem-loop RNA structure designated as
frameshift stimulating signal (FSS) depicted in Figure According to [49]], the frameshift is
caused by a poly-A slippery sequence (A AAA AAA AAC) in the triple coding region, although
amutated slippery sequence (A AGA AAA ACC) has also been shown to cause a frameshift, but
with a lower efficiency. Out of 6,589 sequence hits for the HCV1 frameshift signal for the LANL

HCV database (www.hcv. lanl. gov), we found that 94% of the sequences started with (A AGA


www.hcv.lanl.gov
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AAA ACC). Furthermore, downstream of the slippery sequence a double stem-loop structure
facilitates translational frameshifting (Figure [2.11). For this analysis, we took nucleotides 344-
500 from the 9401 nt HCV subtype 1a genome (GenBank M62321.1) [49]], corresponding to the
region starting at the triple coding region and extending to the end of double-stem loop. Using
RNAsampleCDS we computed the logo plot for all sequences that code BLOSUM62 +1 similar
peptides to those coded by the reference genome (Figure|z.12a). Using RNAiFold 2.0 [50], we
generated more than 11 million sequences that fold into the double-stem loop structure indi-
cated in Figure[2.1]and which have BLOSUMS62 similarity of at least +1 to the reference genome
peptides (Figure [2.12b). Although RNAiFold 2.0 does not support pseudoknot structures, by
providing structural compatibility constraints, we ensured that every sequence returned by
RNAiFold 2.0 has the property that the nucleotides, which participate in the “kissing hair-
pin” model of Figure 1A of [49]], can indeed form a base pair together. Note that the set of all
sequences returned by RNAiFold 2.0, which satisfy both the coding and structural require-
ments, forms a proper subset of the set of all sequences returned by RNAsampleCDS, which
are required to satisfy only the coding requirements. Figure depicts the total variation
distance between these sequence two profiles. At positions where the total variation distance
is zero, the secondary structure is likely to be induced by the overlapping coding constraints.
Indeed, a mutation in such positions could lead to a disruption of the double stem-loop or to
a modification of the amino acid in one of the overlapping reading frames. Our results from
Figure agree with experimental evidence showing that modifications of nucleotides at
positions 64, 91, 130 and 137 lead to detrimental mutations for the hepatitis C virus [51]. Mu-
tations at these positions resulted in an attenuated HCV infection in chimpanzee. According
to our analysis, an introduction of mutations at positions whose variation distance is much

greater than zero, should allow the disruption of the double-stem loop with minimal effects on
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the protein function. This hypothesis could be tested experimentally.

To further investigate whether the overlapping coding requirement of HCV possibly induces
the FSS double stem-loop structure, we proceeded in a manner analogous to that for our HIV-1
analysis. We sampled 100,000 RNA sequences using RNAsampleCDS with BLOSUM62 similar-
ity of +1 and 0 to the reference peptides in each reading frame. Using RNAshapes, we computed
the average Boltzmann probability of formation of a double-stem loop with shape [ ] [ ],in
the sampled RNA sequences as well as 6,589 sequences from LANL database (2.13). Average
Boltzmann probability of the double stem-loop shape [ ] [ ] is 19% [resp. 9%] for BLOSUM62
similarity of +1 [resp. 0], compared with 98% probability for the sequences from LANL HCV
database. In contrast, dinucleotide shuffles of sequences generated by RNAsampleCDS having
BLOSUMBS62 +1 similarity to the reference peptides have average probability of 5% of double
stem-loop formation, while the probability double stem-loop formation is 6% for random RNA
sequences generated with probability of % for each nucleotide. Figure displays average
double stem-loop probability and free energy results for the HCV overlapping coding region,

which are analogous to results for HIV-1 presented in Figure
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FIGURE 2.9: (a) Sequence logo from RNAsampleCDS for one million sequences that code
peptides p [resp. q], each of amino acids has BLOSUM62 similarity greater than or equal
to +1 with the corresponding amino acids of the Pol [resp. Gag] 17-mer peptides FFRED-
LAFPQGKAREFS [resp. FLGKIWPSHKGRPGNFL] in AF033819.3/1631 — 1682. (b) Sequence
logo for all 1196 sequences determined by RNAiFold 2.0 to fold into the frameshift stimu-
lating signal (FSS) given by the MFE structure from AF033819.3/1629 — 1682 and code pep-
tides P,Q, each of whose BLOSUMS62 similarity with the Gag,Pol peptides in the overlap re-
gion is greater than or equal to +1. (c) The position-dependent entropy is defined by H; =
—palnpa—pclnpc —pcInps — py In py for each nucleotide position i = 1, . ..,52. Subfigure
(c) shows the position-dependent difference Hf — H, f’ in entropies of (a) minus (b). (d) Position-
dependent total variation distance 6(71,i,72,i) = 1/2- ¥ xeqa,c,6,u} |71,i(x) —7m2,:(x)| in the 52 nt
region of the Gag-Pol overlap in the HIV-1 genome (GenBank AF033819.3/1631 — 1682) that
contains the frameshift stimulating signal (FSS). Here 71 ; resp. 2 ; is the mononucleotide
frequency at position i of the PSSM in the left resp. right panel. If total variation distance is
zero, then it is suggestive that the coding constraint automatically may already entail the FSS

secondary structure constraint.
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FIGURE 2.10: Organization of the initially triple, then double overlapping reading
frame region of hepatitis C virus (HCV) (GenBank M62321.1). The top gene orga-
nization map is adapted from Figure 1A of [49]. All coding regions mentioned in the
following include a terminal stop codon. The second line depicts the core in-frame
protein, coded in nucleotides 342-915. Next, a 1.5 kDa protein is coded in nucleo-
tides 344-383, while protein F is coded in nucleotides 346-829. The double stem-loop
frameshift stimulating signal (FSS) is found at nucleotides 365-501; the FSS structure
is depicted in Figure H
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FIGURE 2.11: HCV ribosomal frameshift stimulating signal (FSS). (a) Proposed pseudoknotted

structure from [49]. (b) Minimum free eneergy (MFE) structure computed by RNAfold 2.1.9

(green, red), with added pseudoknot (blue). Green arcs indicate common base pairs; red arcs

indicate base pairs predicted by RNAfold but not present in the structure from [49]}; blue arcs

indicate pseudoknot base pairs from the model proposed by [49] that are absent from the
RNAfold MFE structure. Figures produced using jViz [52].
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FIGURE 2.12: (A) Exact sequence logo determined by RNAsampleCDS for all 2.55 x 10'7 se-
quences, whose initial 39 nucleotides code amino acids having BLOSUM62 +1 similarity to
the corresponding amino acids from each of the three reading frames in the triple overlapping
coding region 344-383 of the reference HCV genome, and whose remaining nucleotides code
amino acids having BLOSUM62 +1 similarity to the corresponding amino acids from each
of teh two reading frames in the double overlapping coding region 383-501 of the reference
HCV genome. (B) Sequence logo determined by RNAiFold 2.0 for the more than 11 million
sequences that fold into the HCV FSS structure depicted in Figure[2.11] whose initial 39 nucleo-
tides code BLOSUM62 +1 amino acids having BLOSUM62 +1 similarity to the corresponding
amino acids from each of the three reading frames in the triple overlapping coding region
344-383 of the reference HCV genome, and whose remaining nucleotides code amino acids
having BLOSUMS62 +1 similarity to the corresponding amino acids from each of teh two read-
ing frames in the double overlapping coding region 383-501 of the reference HCV genome.
(C) Total variation distance shown for each nucleotide position, determined by computing the

total variation distance between the position-specific profiles of (A) and (B).
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FIGURE 2.13: Using RNAsampleCDS, we sampled 100,000 sequences coding peptides having
BLOSUMBS62 +1/0 similarity to the peptides in each overlapping reading frame of the reference
HCVia genome (GenBank M62321.1). Using RNAshapes [47], we determined the Boltzmann
probability of having a double stem-loop shape [ ] [ ]. We also determined the Boltzmann
probability of double stem-loop shape [ ] [ ] in 6,589 sequences from the LANL HCV data-
base. (A) Average double stem-loop probability of BLOSUM62 +1 sequences compared with
that of the LANL HCV sequences. (B) Average double stem-loop probability of BLOSUM62
+1 sequences compared with Blosum 0 sequences. (C) Average double stem-loop free energy
of BLOSUMS62 +1 sequences compared with that of the LANL HCV sequences. (D) Average
double stem-loop free energy of BLOSUM62 +1 sequences compared with that of BLOSUM62

0 similar sequences.
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Performance analysis

The run time for RNAsampleCDS is ostensibly linear in RNA sequence length and number of
samples to be generated. Using least squares fitting, we can compute the run time as follows.
For each sample size N equal to 10%, 2 x 10%, 3 X 10%, we generated N samples using RNAsam-
pleCDS, which code peptides having RNAsampleCDS generated N samples that code peptides
having A = 20, 30, 40, . . ., 160 many amino acids. It follows that sequence length L =3 - A+ 2
takes values 62,92,122, . .. ,482 thus providing 45 data points. Now define M to be the 45 X 2
matrix, for which M; ; is the sequence length L € {62,92,...,482} and M; ; is the number of
samples N € {10%, 2x10%,3x10%} for the ith data point. Define B to be the 45x 1 column vector,
where B; is the run time for RNAsampleCDS to compute the partition function and generate N
samples for the ith data point. Using the Python function numpy.linalg.lstsq, we solved
MX = B by least squares to determine that RNAsampleCDS computes the partition function in
time ~ 0.58831373 - L, and samples N RNA sequences of length L in time ~ 0.00550239 - N. See

Figure for a plot of the run time of RNAsampleCDS for this data.
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FIGURE 2.14: Run time for RNAsampleCDS to generate RNA sequences of length L that code

peptides in all six reading frames - i.e. a stop codon does not appear in any of the six reading

frames. For each sample size N equal to 10%, 2 x 10%, 3 x 10*, RNAsampleCDS generated N

samples that code peptides having A = 20, 30, 40, . . ., 160 many amino acids. Thus sequence

length L = 3 - A + 2 takes values 62,92,122, . . . ,482 thus providing 45 data points. Using least

squares fitting, we determine that RNAsampleCDS computes the partition function in time
~ 0.58831373 - L, and samples N sequences each of length L in time ~ 0.00550239 - N.



Chapter 3

RNA sequence/structure alignment

Introduction

Alignment of structural RNAs is an important problem with a wide range of applications. Since
function is often determined by molecular structure, RNA alignment programs should take into
account both sequence and base-pairing information for structural homology identification. A
number of successful alignment programs are heuristic versions of Sankoft’s optimal algo-
rithm. Most of them require O(n*) run time. This chapter describes C++ software, RNAmoun-
tAlign, for RNA sequence/structure alignment that runs in O(n®) time and O(n?) space; more-
over, our software returns a p-value (transformable to expect value E) based on Karlin-Altschul
statistics for local alignment, as well as parameter fitting for local and global alignment. Using
incremental mountain height, a representation of structural information computable in cubic

time, RNAmountAlign implements quadratic time pairwise local, global and global/semiglobal

47
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(query search) alignment using a weighted combination of sequence and structural similar-
ity. RNAmountAlign is capable of performing progressive multiple alignment as well. Bench-
marking of RNAmountAlign against LocARNA, LARA, FOLDALIGN, DYNALIGN and STRAL shows
that RNAmountAlign has reasonably good accuracy and much faster run time supporting all
alignment types. The source code and webserver for RNAmountAlign is publicly available at

http://bioinformatics.bc.edu/clotelab/RNAmountAlign,

Background

A number of different metrics exist for comparison of RNA secondary structures, including
base pair distance (BP), string edit distance (SE) [53], mountain distance (MD) [54], tree edit
distance (TE) [55], coarse tree edit distance (HTE) [27], morphological distance [56]] and a few
other metrics. In what appears to be the most comprehensive published comparison of var-
ious secondary structure metrics [57], it was shown that all of these distance measures are
highly correlated when computing distances between structures taken from the Boltzmann
low-energy ensemble of secondary structures [58]] for the same RNA sequence — so-called
intra-ensemble correlation. In contrast, these distance measures have low correlation when
computing distances between structures taken from Boltzmann ensembles of different RNA
sequences of the same length — so-called inter-ensemble correlation. For instance, the intra-
ensemble correlation between base pair distance (BP) and mountain distance (MD) is 0.822,
while the corresponding inter-ensemble correlation drops to 0.210. Intra-ensemble correlation
between string edit distance (SE) and the computationally more expensive tree edit distance

(TE) is 0.975, while the corresponding intra-ensemble correlation drops to 0.590 — see Table/[3.1]


http://bioinformatics.bc.edu/clotelab/RNAmountAlign
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BP MD SE TE HTE

BP 0.210 0.134 0.133 0.230
MD | 0.822 0.519 0.607 0.515
SE | 0.960 0.853 0.590 0.310
TE | 0.943 0.879 0.975 0.597

HTE | 0.852 0.844 0.879 0.913

TaBLE 3.1: Correlation between various secondary structure metrics, as computed in
[57]: base pair distance (BP), string edit distance (SE) [53], mountain distance (MD)
[54], tree edit distance (TE) [55] and coarse tree edit distance (HTE) [27]. Lower tri-
angular values indicate intra-ensemble correlations; upper triangular values indicate
inter-ensemble correlations. Table values are taken from [57].
Due to poor inter-ensemble correlation of RNA secondary structure metrics, and the fact that
most secondary structure pairwise alignment algorithms depend essentially on some form of
base pair distance, string edit distance, or free energy of common secondary structure, we
have developed the first RNA sequence/structure pairwise alignment algorithm that is based
on (incremental ensemble) mountain distance. Our software, RNAmountAlign, uses this dis-
tance measure, since the Boltzmann ensemble of all secondary structures of a given RNA of
length n can represented as a length n vector of real numbers, thus allowing an adaptation of
fast sequence alignment methods. Depending on the command-line flag given, our software,
RNAmountAlign can perform pairwise alignment, (Needleman-Wunsch global [59], Smith-
Waterman local [[60] or semiglobal [61] alignment) as well as progressive multiple alignment
(global and local), computed using a guide tree as in CLUSTAL [62]. Expect values E for local
alignments are computed using Karlin-Altschul extreme-value statistics [[63}[64]], suitably mod-
ified to account for our new sequence/structure similarity measure. Additionally, RNAmoun-

tAlign can determine p-values (hence E-values) by parameter fitting for the normal (ND),

extreme value (EVD) and gamma (GD) distributions.
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We benchmark the performance of RNAmountAlign on pairwise and multiple global sequence/struc-
ture alignment of RNAs against the widely used programs LARA, FOLDALIGN, DYNALIGN, Lo-
CARNA and STRAL. LARA (Lagrangian relaxed structural alignment) [[65] formulates the prob-
lem of RNA (multiple) sequence/structure alignment as a problem in integer linear program-
ming (ILP), then computes optimal or near-optimal solutions to this problem. The software
FOLDALIGN [66, 67, [68]], and DYNALIGN [69] are different O(n*) approximate implementations
of Sankoff’s O(n®) optimal RNA sequence/structure alignment algorithm. FOLDALIGN sets
limits on the maximum length of the alignment as well as the maximum distance between
subsequences being aligned in order to reduce the time complexity of the Sankoff algorithm.
DYNALIGN [[69]] implements pairwise RNA secondary structural alignment by determining the
common structure to both sequences that has lowest free energy, using a positive (destabiliz-
ing) energy heuristic for gaps introduced, in addition to setting bounds on the distance between
subsequences being aligned. In particular, the only contribution from nucleotide information
in Dynalign is from the nucleotide-dependent free energy parameters for base stacking, dan-
gles, etc. LocARNA (local alignment of RNA) [[70, [71] is a heuristic implementation of PMcomp
[72] which compares the base pairing probability matrices computed by McCaskill’s algorithm.
Although the software is not maintained, STRAL [[73]] which is similar to our approach, uses up-
and downstream base pairing probabilities as the structural information and combines them

with sequence similarity in a weighted fashion.

LARA, mLocARNA (extension of LocARNA), FOLDALIGNM [67,[74]] (extension of FOLDALIGN), Mul-
tilign [f75,[76]] (extension of DYNALIGN) and STRAL support multiple alignment. LARA com-

putes all pairwise sequence alignments and subsequently uses the T-Coffee package [77] to
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Software Local Global Semiglobal E-value Fi(Pairwise) SPS(Multiple)
RNAmountAlign v v v v 0.84 0.84
LocARNA v v — — 0.81 0.84
LARA — v — — 0.84 0.85
FOLDALIGN v v — v 0.80 0.77
DYNALIGN — v - — 0.68 0.67
STRAL — v — — 0.82 -

TaBLE 3.2: Overview of features in software used in benchmarking tests, where v/

[resp. —] indicates the presence [resp. absence] of said feature, to the best of our

knowledge. Average F1 [resp. SPS] scores for the pairwise [resp. multiple] global

alignment are given in the text.

construct multiple alignments. Both FOLDALIGNM and mLocARNA implement progressive align-
ment of consensus base pairing probability matrices using a guide tree similar to the approach
of PMmulti [72]]. For a set of given sequences, Multilign uses DYNALIGN to compute the pair-
wise alignment of a single fixed index sequence to each other sequence in the set, and computes
a consensus structure. In each pairwise alignment, only the index sequence base pairs found
in previous computations are used. More iterations in the same manner with the same index
sequence are then used to improve the structure prediction of other sequences. The number of
pairwise alignments in Multilign is linear with respect to the number of sequences. STRAL
performs multiple alignment in a fashion similar to CLASTALW [78]]. Table[3.2|provides an over-

view of various features, to the best of our knowledge, supported by the software benchmarked

in this chapter.

RNAmountAlign can perform semiglobal alignments in addition to global and local alignments.
As in the RNA tertiary structural alignment software DIAL [79]], semiglobal alignment allows
the user to perform a query search, where the query is entirely matched to a local portion of
the target. Quadratic time alignment using affine gap cost is implemented in RNAmountAlign

using the Gotoh method [80] with the following pseudocode, shown for the case of semiglobal
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alignment. Let g(k) denote an affine cost for size k gap, defined by g(0) = 0 and g(k) = g; + (k —
1)-g. for positive gap initiation [resp. extension] costs g; [resp. g.]. For querya = a, . .. ,a, and
targetb = by, ... ,by,, define (n+ 1) X (m + 1) matrices M,P,Q as follows: M; o = g(i) forall 1 <
i <n,M,;=0foralll < j < m,while for positive i,j we have M; ; = max (M;_; j_1+ sim (a;,b;),
Pij,Qij). For1 <i<n1<j<mletPy;=0andP;; =max(M;_1;+gi, Pi_1j + ge), and
define Q; o = 0 and Q; ; = max (M,-’ j-1+9i,Qij-1 + Ge, 0). Determine the maximum semiglobal
alignment score in row n, then perform backtracking to obtain an optimal semiglobal (or query

search) alignment.

In this chapter we provide a very fast, comprehensive software package capable of pairwise/-
multiple local/global/semiglobal alignment with p-values and E-values for statistical signifi-
cance. Moreover, due to its speed and relatively good accuracy, the software can be used for
whole-genome searches for homologues of a given orphan RNA as query. This is in contrast
to Infernal [81], which requires a multiple alignment to construct a covariance model for

whole-genome searches.
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Algorithm description

Incremental ensemble expected mountain height

Introduced in [82], the mountain heighf| hs(k) of secondary structure s at position k is defined

as the number of base pairs in s that lie between an external loop and k, formally given by

hs(k) = {(ij) € s :i <k} = {(ij) € s : j <k} (3-1)

The ensemble mountain height (h(k)) [83]] for RNA sequence a = aj,...,a, at position k is
defined as the average mountain height, where the average is taken over the Boltzmann en-
semble of all low-energy structures s of sequence a. If base pairing probabilities p; ; have been

computed, then it follows that

(hk)Y = D pij= D pij (32)

i<k j<k

and hence the incremental ensemble mountain height, which for values 1 < k < n is defined by

ma(k) = (h(k)) — (h(k — 1)) can be readily computed by

0 ifk=1

my(k) = (3-3)
2 Pkj— X Pik else
k<j i<k

'We follow [54} 82] in our definition of mountain height, and related notions of ensemble mountain height and
distance, while [83] and Vienna RNA package [27] differ in an inessential manner by defining hs(k) = [{(i,j) € s :
i<k} -HGj)es:j<k}.
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F1GURE 3.1: Ensemble mountain heights of 72 nt tRNA AL671879.2 and 69 nt tRNA
D16387.1, aligned together by RNAmountAlign. Since the BRAliBase 2.1 K2 refer-
ence (pairwise) alignment [84]] has only 28% sequence identity, structural similarity
parameter y was set to 1 in our software RNAmountAlign, which returned the cor-
rect alignment. See Methods section for explanation of y and the algorithm used by
RNAmountAlign.
It is clear that —1 < m,(k) < 1, and that both ensemble mountain height and incremental
ensemble mountain height can be computed in time that is quadratic in sequence length n,
provided that base pairing probabilities p; ; have been computed. Except for the cubic time
taken by a function call of RNAfold from Vienna RNA package [27], the software RNAmoun-
tAlign has quadratic time and space requirements. Figure (3.1 depicts a global alignment of

two transfer RNAs, computed by RNAmountAlign, shown as superimposed ensemble moun-

tain height displays with gaps.
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Transforming distance into similarity

In [85]], Seller’s (distance-based) global pairwise alignment algorithm [86] was rigorously shown
to be equivalent to Needleman and Wunsch’s (similarity-based) global pairwise alignment al-
gorithm [59]. Recalling that Seller’s alignment distance is defined as the minimum, taken over
all alignments of the sum of distances d(x,y) between aligned nucleotides x,y plus the sum
of (positive) weights w(k) for size k gaps, while Needleman-Wunsch alignment similarity is
defined as the maximum, taken over all alignments of the sum of similarities s(x,y) between
aligned nucleotides x,y plus the sum of (negative) gap weights g(k) for size k gaps, Smith and

Waterman [[85] show that by defining

dixy) = oyl s(a,b) — s(x,y) (3-4)
k) =k. b) — g(k .
w(k) =3 . beﬁach’U}S(a, ) —g(k) (3:5)

and by taking the minimum distance, rather than maximum similarity, the Needleman-Wunsch
algorithm is transformed into Seller’s algorithm. Though formulated here for RNA nucleotides,

equivalence holds over arbitrary alphabets and similarity measures (e.g. BLOSUM62).

For x,y € { (, »,) } from Eq (3.3) we have
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1 ifx=(
m(x) =19 o ifx=oe (3-6)
-1 ifx=)

Define the distance dy(x,y) between characters x,y in the dot-bracket representation of a sec-

ondary structure by

0 ifx=y

do(xy) = |m(x) —myl =71 if[x=eyec{()Hor[xe{()}y=-e] (3.7)

2 if[x=Cy=)]or[x=)y= (]

s* .. s*
N
Let A = denote an alignment between two arbitrary secondary structures s,t of
[
1 N

(possibly different) lengths n,m, where s},t; € { (, ®,) ,—} and — denotes the gap symbol. We
define the structural alignment distance for A by summing dy(s;,t;) over those positions i where
neither character s7,t; is a gap symbol, then adding w(k) for all size k gaps in A. Using previous
definitions of incremental ensemble expected mountain height from Eq (3.3), we can generalize
structural alignment distance from the simple case of comparing two dot-bracket representa-
tions of secondary structures to the more representative case of comparing the low-energy

Boltzmann ensemble of secondary structures for RNA sequence a to that of RNA sequence b.

ma(1)* - - ma(N)*
Given sequences a = dy,...,ap and b = by,....b,, let A = denote an
mp(1)* -+ - mp(N)*

alignment between the incremental ensemble expected mountain height m,(1) - - - my(n) of a
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and and the ensemble incremental expected mountain height my,(1) - - - mp(m) of b. Generalize
structural distance d, defined in Eq to dy defined by di(a;,bj) = |ma(i) — mp(j)l, where
mg(i) and my(j) are real numbers in the interval [—1,1], and define ensemble structural align-
ment distance for A by summing d;(a;,b;) over all positions i,j for which neither character is
a gap symbol, then adding positive weight w(k) for all size k gaps. By Eq and Eq (3.5), it
follows that an equivalent ensemble structural similarity measure between two positions a;,b;,

denoted STRSIM(a;,b;), is obtained by multiplying d; and w(k) by —1:

STRSIM(ai,bj) = —[ma(i) — mp(j)| (3-8)

This equation will be used later, since our algorithm RNAmountAlign combines both sequence
and ensemble structural similarity. Indeed, —|m, (i) — m(j)| € [-2,0] with maximum value of
0 while RIBOSUMS85-60, shown in Table has similarity values in the interval [-1.86,2.22].
In order to combine sequence with structural similarity, both ranges should be rendered com-

parable as shown in the next section.

Pairwise alignment

In order to combine sequence and ensemble structural similarity, we determine a multiplicative

scaling factor «,., and an additive shift factor «,, such that the mean and standard deviation for

seq

the distribution of sequence similarity values from a RIBOSUM matrix [87] (after being mul-

tiplied by «,.,) are equal to the mean and standard deviation for the distribution of structural
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similarity values from STRSIM (after additive shift of ). The RIBOSUMS85-60 nucleotide sim-
ilarity matrix used in this chapter is given in Table and expected base pairing probabilities
p(pepy asa function of nucleotide probabilities p4,pc.ps.pu are indicated in Table Dis-
tributions for RIBOSUM and STRSIM values are shown in Figure 3.2|for the 72 nt transfer RNA
AL671879.2. Given query [resp. target] nucleotide frequencies pa,pc.pc.pu [p):pc-Pg-py;] that
sum to 1, the mean y., and standard deviation o,., of RIBOSUM nucleotide similarities can be

computed by

Hseq - D Pxpg// - RIBOSUM(x,y) (3.9)
x,ye{A,C,G,U}
Owqg = > PPy RIBOSUM(x,y)? — ,uszeq (3.10)
x,y€{A,C,G, U}

Setting so(x,y) = —do(x,y), where dy(x,y) is defined in Eq (3.7), for given query [resp. target]
base pairing probabilities p (PP [resp. p’( ,p:,p’) ] of dot-bracket characters, it follows that

the mean p,,, and standard deviation o, of structural similarities can be computed by

Hr = X pxpy - So(xy) (3.11)
xye{(0.)}

0w = \/ S pxpy - so(xy)? — i, (3.12)
xye{ (o)}

Now we compute a multiplicative factor «,, and an additive shift term a,, both dependent
on frequencies pa.pc.pc.pu and p PPy such that the mean [resp. standard deviation] of
nucleotide similarity multiplied by «,., is equal to the mean [resp. standard deviation] of struc-

tural similarity after addition of shift term a,:



RNA sequence/structure alignment 59

A C G U
+2.22 -1.86 -1.46 -1.39
-1.86 +1.16 -2.48 -1.05
-1.46 -2.48 +1.03 -1.74
-1.39  -1.05 -1.74 +1.65

cOo0O»

TaBLE 3.3: RIBOSUMS85-60 similarity matrix for RNA nucleotides from [87].

aseq = O-str/o-seq (313)

astr = aseq : ,useq - ,ustr (314)

Given the query RNA a = ay, ... ,a, and target RNA b = by, . . . by, with incremental ensemble
expected mountain heights m,(1) - - - my(m) of a, mp(1) - - - my(m) of b, and user-defined weight

0 <y < 1, our final similarity measure is defined by

simy (a;,b;) = (1-y) -y, - RIBOSUM(a;,b;) (3.15)

+y - (@ + STRSIM(a;.b;))

where a,.,, @, are computed by Eqs depending on probabilities pa,pc.pc.pu [resp.
PLuPePGPy] and p(Pely [resp. p’( ,p:,p’)] of the query [resp. target]. All benchmarking
computations were carried out using y = 1/2, although it is possible to use position-specific

weight y; ; defined as the average probability that i is paired in a and j is paired in b.

Our structural similarity measure is closely related to that of STRAL, which we discovered only

after completing a preliminary version of this work. Let pl! = 3;c; pj; and pri! = Xjs; pi';
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FIGURE 3.2: For 72 nt tRNA query sequence AL671879.2, nucleotide frequencies are ap-
proximately p4 = 0.167, pc = 0.278, pg = 0.333, py = 0.222, and for 69 nt tRNA target
sequence D16498.1, nucleotide frequencies are approximately p4 = 0.377, pc = 0.174,
pc = 0.174, py = 0.275. From the base pairing probabilities computed by RNAfold
-p, we have query frequencies p¢ = 0.3035 p, = 0.3930, py = 0.3035 and target
frequencies p ¢ = 0.2835, p, = 0.433, py = 0.2835, so by Egs l,,,) we
have ., = —0.9098, 0., = 1.4117 and p,, = —0.8301, o, = 0.6968. By Eqs
and , we determine that RIBOSUM scaling factor a,., = 0.4936 and a,, = 0.3810
(values shown only to 4-decimal places). Panels (A) resp. (B) show the distribution
of RIBOSUM resp. STRSIM values for the nucleotide and base pairing probabilities
determined from query and target, while panels (C) resp. (D) show the distribution of
,-scaled RIBOSUM values resp. a,-shifted STRSIM values. It follows that distribu-

tions in panels (C) and (D) have the same (negative) mean and standard deviation.
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pa | pc | Pc | PU P ) e std ¢ stdy stds
0.00 | 0.00 | 0.00 | 1.00 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000
0.00 | 0.00 | 0.05 | 0.95 | 0.000533 | 0.000533 | 0.998933 | 0.000292 | 0.000292 | 0.000583
0.00 | 0.00 | 0.10 | 0.90 | 0.001396 | 0.001396 | 0.997209 | 0.000818 | 0.000818 | 0.001636
0.00 | 0.00 | 0.15 | 0.85 | 0.002704 | 0.002704 | 0.994592 | 0.001548 | 0.001548 | 0.003096
0.00 | 0.00 | 0.20 | 0.80 | 0.004785 | 0.004785 | 0.990431 | 0.002863 | 0.002863 | 0.005725
0.00 | 0.00 | 0.25 | 0.75 | 0.008039 | 0.008039 | 0.983922 | 0.004992 | 0.004992 | 0.009983
0.00 | 0.00 | 0.30 | 0.70 | 0.013641 | 0.013641 | 0.972717 | 0.008488 | 0.008488 | 0.016976
0.15 | 0.20 | 0.15 | 0.50 | 0.198666 | 0.198666 | 0.602668 | 0.031304 | 0.031304 | 0.062607
0.15 | 0.20 | 0.20 | 0.45 | 0.244486 | 0.244486 | 0.511027 | 0.028368 | 0.028368 | 0.056737
0.15 | 0.20 | 0.25 | 0.40 | 0.280658 | 0.280658 | 0.438684 | 0.023478 | 0.023478 | 0.046957
0.15 | 0.20 | 0.30 | 0.35 | 0.306193 | 0.306193 | 0.387613 | 0.018226 | 0.018226 | 0.036452
0.15 | 0.20 | 0.35 | 0.30 | 0.319277 | 0.319277 | 0.361446 | 0.014271 | 0.014271 | 0.028541
0.15 | 0.20 | 0.40 | 0.25 | 0.320472 | 0.320472 | 0.359056 | 0.014868 | 0.014868 | 0.029735
0.15 | 0.20 | 0.45 | 0.20 | 0.310048 | 0.310048 | 0.379905 | 0.018890 | 0.018890 | 0.037781
0.15 | 0.20 | 0.50 | 0.15 | 0.289160 | 0.289160 | 0.421679 | 0.023603 | 0.023603 | 0.047205
0.15 | 0.20 | 0.55 | 0.10 | 0.259201 | 0.259201 | 0.481598 | 0.027322 | 0.027322 | 0.054644
0.15 | 0.20 | 0.60 | 0.05 | 0.223416 | 0.223416 | 0.553168 | 0.027906 | 0.027906 | 0.055813
0.15 | 0.20 | 0.65 | 0.00 | 0.183844 | 0.183844 | 0.632311 | 0.026849 | 0.026849 | 0.053698
0.15 | 0.25 | 0.00 | 0.60 | 0.009383 | 0.009383 | 0.981234 | 0.008960 | 0.008960 | 0.017920

TABLE 3.4: Initial portion of a table that determines expected base pairing probabil-
ities p ¢ ,ps.py as a function of nucleotide probabilities pa,pc,pG.pu. The full table
(not shown) has 1770 rows. To determine average base pairing probabilities, given
nucleotide probabilities pa,pc.pG.pu, a total of N = 10000 RNA sequences of length
n = 200 were randomly generated to have the given expected nucleotide frequency.
To compute p ¢ [ resp. std ( ], alibrary call of function pf_fold () from Vienna RNA
Package [27] was made in order to determine Prob[i pairs to right] = }7", Z}l:i 1 Dij
for position in each sequence, and the average [ resp. standard deviation ] was taken

over all sequences and values i = 1, .. .,n. In a similar fashion, p, and py were deter-

mined.

respectively. The similarity measure used in STRAL is defined by

sim)S,TRAL(ai,bj) =y- (\/Pl? .plj’? + \/pria .pr]l.’)

be the probability that position i of sequence a is paired to a position on the left or right,

+ \/(1 — pré — pl%) - (1= pré — pl®) - RIBOSUM(ay.b;) (3.16)
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From Eq (3.15) and Eq our measure can be defined as

simy (a;,b) =y - (am —|(pri — pl¢) - (Pr;’ —Pr}’.’)|)

+(1 = y) - wq - RIBOSUM(a;,b;) (3.17)

Though RNAmountAlign was developed independently much later than STRAL, our software
offers functionalities unavailable in STRAL, which latter appears to be no longer maintained[]
For instance, RNAmountAlign supports local and semiglobal alignment, and reports p-values

and E-values; these features are not available in STRAL.

To illustrate the method, suppose that the query [resp. target] sequence is the 72 nt tRNA
AL671879.2 [resp. 69 nt tRNA D16498.1]. Then nucleotide query [resp. target] probabilities are
(approximately) pa = 0.167, pc = 0.278, pc = 0.333, py = 0.222, [resp. p/, = 0.377, p;. = 0.174,
P = 0.174, p; = 0.275]. From the base pairing probabilities returned by RNAfold -p [27],

we determine thatp( = 0.3035, po = 0.3930, py = 0.3035 [resp. p’( = 0.2835, p, = 0.433,

p’) 0.2835]. Using these probabilities in Eqs 4 , we determine that p,, = —0.9098,

[of

wq = 1.4117, and p,, = —0.8301, o, = 0.6968. By Eq (3.13) and Eq (3.14), we determine that

RIBOSUM scaling factor a,., = 0.4936 and a,, = 0.3810. It follows that the mean and standard
deviation of a,-scaled RIBOSUM values are identical with that of a,-shifted STRSIM values,
hence can be combined in Eq (3.15). Since sequence identity of the BRAliBase 2.1 alignment
of these tRNAs is only 28%, we set structural similarity weight y = 1in Eq (3.15), and obtained a

(perfect) global alignment computed by RNAmountAlign. Figure[3.2|depicts the distribution of

2Since we were unable to compile STRAL, our benchmarking results for STRAL use an adaptation of our code to
support Eq (3.16). There are nevertheless some differences in how progressive alignment is implemented in STRAL
that could affect run time.
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RIBOSUMS85-60 [resp. STRSIM] values in this case, both before and after application of scaling

factor a,

[resp. shift &, ] — recall that «,., and a,] depend on pa.pc.pG.pu.p (PeP) of tRNA

AL671879.2 and pz’q,p'c,pé,p{],p’( ,p;,p’) of tRNA D16498.1.

Statistics for pairwise alignment

Karlin-Altschul statistics for local pairwise alignment. For a finite alphabet A and similarity
measure s, suppose that the expected similarity ) ., Pxpy - $(x,y) is negative and that s(x,y) is
x,ye
positive for at least one choice of x,y. In the case of BLAST, amino acid and nucleotide similarity
scores are integers, for which the Karlin-Altschul algorithm was developed [63]. In contrast,
RNAmountAlign similarity scores scores are not integers (or more generally values in a lat-
tice), because Eq combines real-valued a,.,-scaled RIBOSUM nucleotide similarities with
real-valued a,-shifted STRSIM structural similarities, which depend on query [resp. target]
probabilities pa.pc.pc.pu.p ¢ Po:py [resp. pli\,p’c,pé,p{],p’( ,p:,p’) ]. For that reason, we use the
following reformulation of a result by Karlin, Dembo and Kawabata [[64]], the similarity score

s(x,y) for RNA nucleotides x,y is defined by Eq (3.15).

Theorem 3.1 (Theorem 1 of [64]).

Given similarity measure s between nucleotides in alphabet A = {A,C,G,U}, let A* be the unique

positive root of E[es®¥)] = % Pxpy - e’5Y) | and let random variable Sy denote the score of a
xX,y€A

length k gapless alignment. For large z,

1 *
P (M > n;m + z) < exp(—K"e %)
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where M denotes high maximal segment scores for local alignment of random RNA sequences

ai,...,anp and by, ...,by, and where

exp (235 £+ (E[e Se5k<0] + P(Sy > 0))
M E[Xer X

Fitting data to probability distributions. Data were fit to the normal distribution (ND) by the
method of moments (i.e. mean and standard deviation were taken from data analysis). Data

were fit to the extreme value distribution (EVD)

P(x <s) =1-exp(—Ke*) (3.18)

by an in-house implementation of maximum likelihood to determine A,K, as described in sup-
plementary information to [87]. Data were fit to the gamma distribution by using the function
fitdistr(x, ’gamma’) from the package MASS in the R programming language, which deter-

mines rate and shape parameters for the density function

Aaxa—le—lx

f(x,a,/l) - T (319)

with where « is the shape parameter, the rate is 1/4, where A is known as the scale parameter.
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Multiple alignment

Suppose pa.pc.pc.pu are the nucleotide probabilities obtained after the concatenation of all
sequences. Let p ¢.pe.p) be computed by individually folding each sequence and taking the
arithmetic average of probabilities of ( , @ and ) over all sequences. The mean and standard

deviation of sequence and structure similarity are computed similar to Eqs (3.91{3.12).

Hseq = D Pxpy - RIBOSUM(x,y) (3-20)
x,ye{A,C,G,U}
Oeq = \/ )y pxpy - RIBOSUM(x,y)* — .Uszeq (3-21)
x,ye{A,C,G,U}
,ustr = Z Pxpy : so(xvy) (3‘22)
xye{ (o)}
Owr = > PxPy - 30(x,y)2 - ,usztr (3-23)
xye{ (o)}

Sequence multiplicative scaling factor e, and the structure additive shift factor a,, are com-

puted from these values using Eqs (3.13]3.14).

RNAmountAlign implements progressive multiple alignment using UPGMA to construct the
guide tree. In UPGMA, one first defines a similarity matrix S, where S[i,j] is equal to (maxi-
mum) pairwise sequence similarity of sequences i and j. A rooted tree is then constructed

by progressively creating a parent node of the two closest siblings. Parent nodes are profiles
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(PSSMs) that represent alignments of two or more sequences, hence can be treated as pseudo-

sequences in a straightforward adaptation of pairwise alignment to the alignment of profiles.

* *
P Y
Let’s consider an alignment of N sequences A = e composed of M columns. Let
* *
ANt ANM

A; = {a};,a3;,...,a},;} denote column i of the alignment (for 1 < i < M). Suppose p(i,x), for
x € {A,C,G,U,-}, indicates the probability of occurrence of a nucleotide or gap at column i of

alignment A. Then sequence similarity SEQSIM between two columns is defined by

SEQSIM(AiA) = ) 2, P ply) - Rey) (3:24)

xe{A,C,G,U,-} ye{A,C,G,U,-}

where

0 ifx=—-ory=-
R(xy) = (3.25)
RIBOSUM(x,y) otherwise

The structural measure for a profile is computed from the incremental ensemble heights av-
eraged over each column. Let my(i) denote the arithmetic average of incremental ensemble

mountain height at column A;

o 2igjenma()
ma(i) = ——————
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where ma;(i) is the incremental ensemble mountain height at position i of sequence a} obtained
from Eq 1} Here, let ma;(i) = 0 if a}; is a gap. Structural similarity between two columns is

defined by

STRSIM(A;,A}) = —|ma(i) — ma(j)| (3-27)

Finally, the combined sequence/structure similarity is computed from

sirn},(Ai,Aj) = (1 - )/) . (Xseq . SEQSIM(A“A]) (328)

+y - (@ + STRSIM(A.A}))

Benchmarking method

Accuracy measures

Sensitivity, positive predictive value, and F1-measure for pairwise alignments were computed

a* .« e a*
as follows. Let A = ! " denotes an alignment, where a;,b; € {A,C,G,U,—}, and
bt b

the aligned sequences include may contain gap symbols — provided that it is not the case
that both a} and b; are gaps. The number TP of true positives [resp. FP of false positives]
is the number of alignment pairs (a},b]) in the predicted alignment that belong to [resp. do

not belong to] the reference alignment. The sensitivity (Sen) [resp. positive predictive value
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(PPV)] of a predicted alignment is TP divided by reference alignment length [resp. TP divided
by predicted alignment length]. The F1-score is the harmonic mean of sensitivity and PPV, so

F1= For the computation of Sen ,PPV, and F1, pairs of the form (X,—) and (—,X)

2
1/Sen+1/PPV "
are also counted. In the case of local alignment, since the size of the reference alignment is

unknown, only the predicted alignment length and PPV are reported. To compute the accuracy

of multiple alignment, we used sum-of-pair-scores (SPS) [62]], defined as follows. Suppose that

aj - iy
A denotes a multiple alignment of the form A = ... .For1<ij<M,1<k<N
an Ay

define p;jx = 1if a,_is aligned with a;fk in both the reference and predicted alignments, and
pijk = 0 otherwise. Sum-of-pairs score SPS is then the sum, taken over all i,j,k, of the p; .
Though SPS can be considered as the average sensitivity, taken over all sequence pairs in the
alignment, this is not technically the case, since our definition of sensitivity also counts pairs

of the form (X,—) and (—,X) from the reference alignment.

To measure the conservation of secondary structures in alignments, structural conservation
index (SCI) was computed using RNAalifold [42]]. RNAalifold computes SCI as the ratio of
the free energy of the alignment, computed by RNAalifold, with the average minimum free
energy of individual structures in the alignment. SCI values close to 1 [resp. 0] indicate high
[resp. low] structural conservation. All computations made with Vienna RNA Package used

version 2.1.7 [[27] using default Turner 2004 energy parameters [23]).
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Dataset for global and local alignment comparison

For pairwise global alignment benchmarking in Table [3.5]and Figures|[3.3/and 3.4} all 8976 pair-
wise alignments in k2 from BRAliBase 2.1 database [[84] were used. For multiple global align-
ment benchmarking in Fig k5 BRAliBase 3 was used [88]. This dataset includes 583
reference alignments, each composed of 5 sequences. For pairwise local alignment benchmark-
ing, 75 pairwise alignments having sequence identity < 70% were randomly selected from each
of 20 well-known families from the Rfam 12.0 database [[89]], many of which were considered
in a previous study [90], yielding a total of 1500 alignments. Following [91], these alignments
were trimmed on the left and right, so that both first and last aligned pairs of the alignment do
not contain a gap symbol. For sequences a = ay, . .. ,a, [resp. b = by, ... ,b,,] from each align-
ment, random sequences a’ [resp. b’] were generated with the same nucleotide frequencies,
then a random position was chosen in a’ [resp. b’] in which to insert a [resp. b], thus result-
ing in a pair of sequences of lengths 4n and 4m. Finally, since sequence identity was at most
70%, the RIBOSUM70-25 similarity matrix was used in RNAmountAlign. Preparation of the
benchmarking dataset for local alignment was analogous to the method used in multiple local
alignment of [g1]. We used LocARNA (version 1.8.7), FOLDALIGN (version 2.5), LARA (version
1.3.2) DYNALIGN (from version 5.7 of RNAstructure), and STRAL (in-house implementation

due to unavailability) for benchmarking.

Dataset for correlation of p-values for different distribution fits

A pool of 2220 sequences from the Rfam 12.0 database [89]] was created as follows. One se-

quence was selected from each Rfam family having average sequence length at most 200 nt,



RNA sequence/structure alignment 70

with the property that the base pair distance between its minimum free energy (MFE) structure
and the Rfam consensus structure was a minimum. Subsequently, for each of 500 randomly
selected query sequences from the pool of 2220 sequences, 1000 random target sequences of
length 400 nt were generated to have the same expected nucleotide frequency as that of the
query. For each query and random target, five semiglobal (query search) alignments were
created using gap initiation costs of g; € {—1, — 2, — 3, — 4, — 5} with gap extension cost g,
equal to one-third the gap initiation cost. For each alignment score x for query and random
target, the p-value was computed as 1 — CDF(x) for ND, EVD and GD, where CDF(x) is the
cumulative density function evaluated at x. Additionally, a heuristic p-value was determined

by calculating the proportion of alignment scores for given query that exceed x.

Benchmarking results

We benchmarked RNAmountAlign’s performance for pairwise and multiple alignments on

BraliBase k2 and k5 datasets, respectively.

Pairwise alignment

Figures|3.3|depicts running averages of pairwise global alignment F1-measure, sensitivity, pos-
itive predictive value (PPV) and structural conservation index (SCI) for the software described
in this chapter, as well as for LocARNA, FOLDALIGN, LARA, DYNALIGN, and STRAL. For pairwise
benchmarking, reference alignments of size 2, a.k.a. K2, were taken from the BRAliBase 2.1
database [[84]]. BRAliBase 2.1 K2 dataare based on seed alignments of the Rfam 7.0 database,

and consist of 8976 alignments of RNA sequences from 36 Rfam families.
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FIGURE 3.3: Fl-measure (A), sensitivity (B), PPV (C) and structural conservation in-

dex (SCI) (D) for pairwise global alignments using RNAmountAlign, LocARNA, LARA,

FOLDALIGN, DYNALIGN, STRAL and sequence-only(y = 0). Fl-measure,sensitivity,

PPV and SCI are shown as a function of alignment sequence identity for pairwise

alignments in the BRAliBase 2.1 database used for benchmarking.

Running averages of sensitivity, positive predictive value, and F1-measure, averaging over win-
dows of size 11 nt (interval [k — 5,k + 5]), were computed as a function of sequence iden-
tity, where it should be noted that the number of pairwise alignments for different values
of sequence identity can vary for the BRAliBase 2.1 data (e.g. there are only 35 pairwise
alignments having sequence identity < 20%). Default parameters were used for all other soft-
ware. For our software RNAmountAlign, gap initiation cost was -3, gap extension -1, and

sequence/structure weighting parameter y was 0.5 (value obtained by optimizing on a small

set of 300 random alignments from Rfam 12.0, not considered in training or testing set). The
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FIGURE 3.4: Run time of pairwise global alignment for RNAmountAlign, LocARNA,

LARA, FOLDALIGN, and DYNALIGN. (Left) Log run time is shown as a function of seed

length for pairwise alignments in the BRA1iBase 2.1 database used for benchmark-

ing. Window size of 51 is used for the computation of moving average. (Right) Actual

run time for RNAmountAlign and LARA on the same data. Unlike the left panel the

actual run time is shown, rather than log run time, without any moving average taken.
sequence-only alignment is computed from RNAmountAlign with the same gap penalties, but
for y = 0. While its accuracy is high, RNAmountAlign is faster by an order of magnitude
than LocARNA, LARA, FOLDALIGN, and DYNALIGN - indeed, algorithmic time complexity of our
method is O(n®) compared with O(n*) for these methods. Since STRAL could not be compiled on
any of our systems, we implemented its algorithm by modifying RNAmountAlign and obtained
results for STRAL’s default parameter settings. Therefore, the run time of STRAL is identical
to RNAmountAlign but we achieve slightly higher F1-measure, sensitivity and PPV. Moreover,
RNAmountAlign supports semiglobal and local alignments as well as reporting p-values. The
right panel of Fig depicts actual run times of the fastest software, RNAmountAlign, with

the next fastest software, LARA. Unlike the graph in the left panel, actual run times are shown,

graphed as a function of sequence length, rather than logarithms of moving averages.

In addition, Table[3.5|displays average pairwise global alignment F1 scores for RNAmountAlign,

LocARNA, LARA, FOLDALIGN, DYNALIGN, and STRAL when benchmarked on 36 families from the
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BRaliBase K2 database comprising altogether 8976 RNA sequences with average length of
249.33. Averaging over all sequences, the F1 scores for the programs just mentioned were
respectively 0.8370, 0.7808, 0.8406, 0.7977, 0.6822, 0.8247; i.e. F1 score 0.8406 of LARA slightly
exceeded the F1 score 0.8370 of RNAmountAlign and 0.8247 of STRAL, while other methods
trailed by several percentage points. Tables and display values for global alignment
sensitivity and positive predictive value, benchmarked on the same data for the same programs

— these results are similar to the F1-scores in Table[3.5]

Although there appears to be no universally accepted criterion for quality of local alignments,
Table [3.8]shows pairwise local alignment comparisons for the above-mentioned methods sup-
porting local alignment: RNAmountAlign, FOLDALIGN, and LocARNA. We had intended to in-
clude SCARNA_LM [jo1] in the benchmarking of multiple local alignment software; however,
SCARNA_LM no longer appears to be maintained, since the web server is no longer functional
and no response came from our request for the source code. Since the reference alignments
for the local benchmarking dataset are not known, and sensitivity depends upon the length
of the reference alignment, we only report local alignhment length and positive predictive
value. Abbreviating RNAmountAlign by MA, FOLDALIGN by FA, and LocARNA by LOC, Ta-
ble shows average run time in seconds of MA (2.30 + 2.12), FA (625.53 + 2554.61), LOC
(5317.96 + 8585.19), average alignment length of reference alignments (118.67 + 47.86), MA
(50.35 + 42.33), FA (114.86 + 125.33), LOC (556.82 + 227.00), and average PPV scores MA

(0.53 + 0.42), FA (0.64 + 0.36), LOC (0.03 = 0.04).

Taken together, these results suggest that RNAmountAlign has comparable accuracy, but much
faster run time, hence making it a potentially useful tool for genome scanning applications.

Here it should be stressed that all benchmarking results used equally weighted contributions
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Type NumAln  Seqld MA(F)  LocARNA(F) LARA(F) FA(F) DA(F)  STRAL(F)
5.85 rRNA 76 0.72+0.13 0.90+0.09 0.82+0.07 0.87+£0.15 0.89+0.11 0.66+0.22 0.88+0.12
55 TRNA 1162 0.60+£0.14 0.84+0.16 0.87+0.13 0.85+0.16 0.86+0.14 0.69+0.17 0.82+0.20
Cobalamin 188 0.43+0.10 0.56+£0.16 0.38+0.17 049+0.20 043+0.24 036+0.19 0.54+0.17
Entero 5 CRE 48 0.88+0.06 0.98+0.04 0.99+£0.04 099+£0.05 099+0.02 0.87+0.13 0.97+0.06
Entero CRE 65 0.80+0.07 1.00£0.00 0.99+0.03 0.96+0.07 0.99£0.04 0.76+0.17 1.000.03
Entero OriR 49 0.84+0.06 0.95+£0.07 0.92+£0.09 0.94+£0.08 0.94+0.07 0.84+0.15 0.95+0.07
gevT 167  044£0.13 0.61£0.19 0.61+£0.24 0.57+0.25 040£0.33 044£0.19 0.62+0.20
Hammerhead 1 53 0.71+0.17 089+0.13 090+0.11 0.87+0.16 0.83+0.25 0.52+0.27 0.88+0.16
Hammerhead 3 126 0.66+0.21 086+0.20 0.88+0.21 0.88+0.20 0.80+0.31 0.71+0.31 0.90+0.16
HCV SLIV 98 0.85+0.05 0.99+£0.03 0.98+0.04 0.98+0.03 0.99+0.03 0.81+0.3¢ 0.99+0.03
HCV SLVII 51 0.83+£0.09 0.97+0.06 0.96+0.06 093+£0.10 0.95+0.07 0.71+0.22 0.95+0.07
HepC CRE 45 0.86+0.06 1.00£0.00 1.00£0.00 1.00£0.00 1.00£0.00 0.77+0.29 1.000.00
Histone3 84 0.78+0.09 1.00£0.00 1.00£0.00 1.00£0.00 1.00+0.00 1.00+0.00 1.00+0.00
HIVFE 733 0.87+0.04 1.00+0.02 1.00+0.02 098+£0.05 0.99+0.05 0.64+0.29 1.00+0.02
HIV GSL3 786 0.86+0.04 099+0.02 0.99+0.02 098+£0.05 0.99+0.02 0.80+0.19 0.99+0.02
HIV PBS 188 0.92+0.02 1.00+£0.01 1.00£0.01 1.00£0.02 0.99+0.03 0.91+0.11 1.00+0.01
Intron gpll 181 046+0.13 0.64+0.17 0.64+0.17 0.63£0.17 050£0.28 0.49+£0.18 0.65+0.15
[RES HCV 764 0.65+0.11 0.88+0.16 045+0.19 0.86+0.17 0.68+0.38 0.85+0.08 0.88+0.08
IRES Picorna 181 0.84+0.07 0.97+0.03 0.61+£0.04 0.96+0.04 0.95+£0.04 0.85+0.11 0.96+0.04
K chan RES 124 0.74+0.10 0.99+0.02 0.98+£0.05 0.89+£0.19 0.95+£0.08 0.58+0.26 0.95+0.11
Lysine 30 050+£0.13 0.72+0.13 0.54+£0.15 0.71£0.18 0.66+0.16 0.50+0.16 0.72+0.15
Retroviral psi 89 0.88+0.03 093+£0.03 093+0.03 093+£0.03 0.92+0.04 0.74+0.12 0.93+0.04
S box 91 0.60+0.10 0.75£0.13 0.76+£0.16 0.79+0.14 0.67+0.24 0.54+0.16 0.77+0.12
SECIS 114 044+016 059021 0.62+0.21 0.57+0.25 054+£025 039+0.24 0.61+0.20
sno 14q 111 44 0.75+£0.10 0.92+£0.10 0.89+0.16 0.85+0.20 0.89£0.19 0.58+0.27 0.91+0.13
SRP bact 114 0.48+0.16 0.65+£0.21 0.66+£0.21 0.63+£0.25 0.65+0.21 0.51+0.22 0.61+0.25
SRP euk arch 122 0.51+£0.20 0.62+0.29 035+0.17 0.64+£0.28 0.64+£0.26 0.50+£0.26 0.61+0.29
T-box 18 0.68+0.15 0.77+0.17 0.49+0.17 0.68+£0.25 0.70£0.17 0.59+0.21 0.74+0.15
TAR 286 0.87+£0.04 0.99+0.03 0.99+0.02 0.99+0.03 0.98+0.04 0.83+0.19 0.99+0.04
THI 321 0.45+0.10 0.68+£0.16 0.66+£0.20 0.68+0.18 0.50+0.29 0.48+0.18 0.65+0.20
tRNA 2039 043+0.12 0.75+£0.21 0.85+0.16 0.82+0.19 0.76+0.27 0.66+0.23 0.72 £0.22
U1 82 0.63+0.17 0.79+£0.17 0.70+0.13  0.79+0.19 0.80£0.14 0.67+0.20 0.77+0.17
U2 112 0.64+0.16 0.75+£0.17 0.63+£0.13 0.76+£0.19 0.73+£0.22 0.59+0.19 0.75+0.18
U6 30 0.83+£0.06 0.93+0.05 0.89+0.09 090+£0.08 0.88+0.10 0.72+0.14 0.93+0.06
Unal2 138 0.77+£0.08 0.93+£0.08 092+0.09 0.89+0.15 091+0.10 0.65+0.29 0.94+0.08
yybP-ykoY 127 0.39+0.14 058+£0.20 0.54+£0.23 0.57+£0.25 040+0.33 0.46+0.22 0.56+0.20
Pooled Average | 249.33 0.63 0.84 0.81 0.84 0.8 0.68 0.82

TABLE 3.5: Average F1 scores (+ one standard deviation) for pairwise global alignment

of RNAmountAlign and four widely used RNA sequence/structure alignment algo-

rithms on the benchmarking set of 8976 pairwise alignments from the BRaliBase

K2 database [[84]. For each indicated Rfam family, the the number of alignments (Nu-
mAln), sequence identity (Seqld), and F1-scores for RNAmountAlign, LocARNA, LARA,
FOLDALIGN, and DYNALIGN are listed, along with pooled averages over all 8976 pair-

wise alignments. Parameters used in Eq (3.15) for RNAmountAlign were similarity

matrix RIBOSUMS85-60, structural similarity weight y = 1/2, gap initiation g; = -3,

gap extension g, = —1.
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Type NumAln  Seqld MA(sen)  LOC(sen) LARA(sen) FA(sen)  DA(sen) STRAL(sen)
5.8 STRNA 76 0.90£0.09 0.95+£0.07 0.87+£0.14 0.89£0.11 0.65+0.22 0.66+0.22 0.71+0.15
55 rRNA 1162 0.60+0.14 0.83+0.17 0.87+0.13 0.84+£0.16 0.85+£0.14 0.69+0.17 1.00£0.02
Cobalamin 188 0.43+£0.10 0.55+£0.16 0.30+£0.13 0.48+0.20 0.43+0.24 0.37+0.19 1.00+0.02
Entero 5 CRE 48 0.88+£0.06 0.98+0.05 0.99+£0.04 099+0.05 0.99+0.02 0.87+0.12 0.88+0.16
Entero CRE 65 0.80 £0.07 1.00£0.00 0.99+0.03 097+0.06 0.99+0.03 0.77+£0.16 0.90+0.16
Entero OriR 49 0.84+0.06 0.94+£0.07 091+£0.09 094+£0.08 094+£0.07 0.84+0.15 0.93+0.06
gevT 167 0.44+0.13 0.59+£0.19 0.60+0.24 0571025 0.40+0.33 0.44+0.19 0.77+0.17
Hammerhead 1 53 0.71£0.17 0.89+£0.13 090+0.12 087+0.16 0.83+0.25 0.53+0.27 0.92+0.03
Hammerhead 3 126 0.66+£0.21 0.86+0.21 088+0.21 088+0.21 0.79+£0.31 0.71+0.31 1.00+0.01
HCV SLIV 98 0.85+0.05 0.99+£0.03 098+0.04 098+£0.03 099+0.03 0.81+0.34 0.94+0.08
HCV SLVII 51 0.83£0.09 0.97+£0.06 096+0.06 093+£0.10 0.95+£0.07 0.72+£0.22 0.95+0.07
HepC CRE 45 0.86 £0.06 1.00£0.00 1.00£0.00 1.00£0.00 1.00+£0.00 0.77+£0.29 0.82+0.20
Histone3 84 0.78£0.09 1.00£0.00 1.00£0.00 1.00£0.00 1.00£0.00 1.00+0.00 0.95+0.07
HIV FE 733 0.87+0.04 1.00£0.02 1.00+£0.02 098+£0.05 0.99+£0.05 0.65+0.29 0.99+0.03
HIV GSL3 786 0.86 £0.04 0.99+0.02 099+£0.02 098+£0.05 0.99+£0.03 0.81+£0.19 0.88+0.11
HIV PBS 188 0.92+£0.02 1.00£0.01 1.00£0.01 1.00£0.02 0.99+0.03 0.92+0.10 0.61+0.29
Intron gpll 181 0.46+£0.13 0.64£0.17 0.63£0.17 0.62+£0.18 0.50+0.28 0.49+0.18 0.61+0.25
IRES HCV 764 0.65+£0.11 0.87+£0.16 0.32+£0.14 0.85+0.17 0.67+0.38 0.85+0.08 0.97+0.06
IRES Picorna 181 0.84+£0.07 0.97+£0.03 0.45+£0.03 0.96+0.04 0.95+0.04 0.85+0.10 0.74+0.18
K chan RES 124 0.74+£0.10 0.99+£0.02 0.98+£0.05 0.90£0.19 0.95+£0.08 0.59+0.26 0.96+0.04
Lysine 80 0.50+£0.13 0.72+£0.13 0.44+£0.13 0.71£0.18 0.65+0.16 0.50+0.16 0.54+0.17
Retroviral psi 89 0.88+£0.03 0.93£0.03 0.93+£0.03 093+£0.03 0.92+0.04 0.74+0.12 0.99+0.03
S box 91 0.60£0.10 0.75£0.13 0.75£0.17 0.79+£0.14 0.67+0.24 0.54+0.16 1.00+0.00
SECIS 114 0.44+0.16 0.58+£0.21 0.62+021 057+0.25 054+0.25 0.39+0.24 0.61+0.20
sno 14q 111 44 0.75£0.10 0.92+£0.10 0.89+£0.16 0.85+0.20 0.89+0.19 0.59+0.27 0.99+0.02
SRP bact 114 0.48+0.16 0.65+£0.21 0.65+£0.21 0.63+£0.25 0.64+0.21 0.52+0.22 0.61+0.20
SRP euk arch 122 0.51£0.20 0.62+£0.29 0.24+0.12 0.64+£0.29 0.64+£0.26 0.51+0.26 0.65+0.20
T-box 18 0.68+0.15 0.77+£0.17 036+0.13 0.68+0.25 0.70+£0.17 0.59+0.21 1.00 +£0.00
TAR 286 0.87+0.04 0.99+0.03 099+0.02 099+0.03 098+0.04 0.84+0.19 0.91+0.13
THI 321 0.45+0.10 0.67+0.16 0.65+0.21 0.68+0.18 0.50+£0.29 0.48+0.18 0.65+0.15
tRNA 2039 0.43+0.12 0.75+0.21 0.84+0.16 0.81+£0.19 0.76 £0.27 0.66£0.23 0.77 £0.12
Ul 82 0.63+0.17 0.78+£0.17 0.61+£0.11 0.78+£0.19 0.80+0.14 0.67+£0.20 0.96+0.10
U2 112 0.64£0.16 0.75£0.17 051+£0.11 0.76+£0.19 0.73+£0.22 0.60+0.19 0.55+0.20
U6 30 0.83+0.06 0.93+£0.05 0.89+£0.09 090+0.08 0.88+0.10 0.72+0.14 0.74+0.15
Unal.2 138 0.77+0.08 0.93+£0.08 0.92+0.09 088+0.15 091+£0.09 0.65+0.29 0.87+0.08
yybP-ykoY 127 0.39+0.14 0.57+£0.21 051+£0.23 056+£0.26 039+£0.33 0.46+0.22 0.73+0.22

| Pooled Average | 249.33 0.63 0.83 0.78 0.84 0.80 0.68 082 |

TABLE 3.6: Average sensitivity scores (+ one standard deviation) for pairwise global

alignment of RNAmountAlign and four widely used RNA sequence/structure align-

ment algorithms on the benchmarking set of 8976 pairwise alignments from the

BRaliBase K2 database [84]. For each indicated Rfam family, the the number of

alignments (NumAln), sequence identity (Seqld), and sensitivity scores for RNAmoun-
tAlign, LocARNA, LARA, FOLDALIGN, and DYNALIGN are listed, along with pooled

averages over all 8976 pairwise alignments. Parameters used in Eq (3.15) for RNAmoun-

tAlign were similarity matrix RIBOSUMS85-60, structural similarity weight y = 1/2,

gap initiation g;

-3, gap extension g, = —1.



RNA sequence/structure alignment 76
Type NumAln  Seqld MA(ppv) LOC(ppv) LARA(ppv) FA(ppv)  DA(ppv) STRAL(ppv)
5.8 STRNA 76 0.72+£0.13 0.90+0.09 0.82+£0.07 0.87+0.15 0.89+0.11 0.66+0.22 0.88+0.12
55 rRNA 1162 0.60+0.14 0.84+0.16 0.88+0.12 0.85+0.16 0.86+0.14 0.68+0.17 0.82+0.20
Cobalamin 188 0.43+£0.10 0.56+0.16 0.54+0.23 049+0.20 0.43+0.24 0.36+0.19 0.54+0.17
Entero 5 CRE 48 0.88+£0.06 0.98+0.04 0.99+0.04 0.99+0.05 099+£0.02 0.86+0.13 0.97+0.06
Entero CRE 65 0.80£0.07 1.00+£0.00 0.99+0.03 0.96+0.08 0.99+0.04 0.74+0.18 0.99+0.03
Entero OriR 49 0.84+0.06 0.95+£0.07 0.94+0.08 0.94+0.08 0.94+0.07 0.84+0.15 0.96+0.08
gevT 167 0.44+0.13 0.62+0.18 0.63+0.23 0.58+0.25 0.41+0.34 0.44+0.19 0.62+0.20
Hammerhead 1 53 0.71+£0.17 0.90+£0.13 0.90+0.11 0.87+0.16 0.83+0.25 0.51+£0.27 0.88+0.16
Hammerhead 3 126 0.66+0.21 0.87+0.20 0.88+0.21 0.89+0.20 0.80+0.30 0.71£0.31 0.91+0.15
HCV SLIV 98 0.85+0.05 0.99+0.03 0.98+0.04 0.98+0.03 0.99+0.03 0.80+£0.34 0.99+0.03
HCV SLVII 51 0.83+0.09 0.97+£0.06 0.96+0.06 0.93+0.10 0.95+0.07 0.69+£0.22 0.95+0.07
HepC CRE 45 0.86+0.06 1.00+£0.00 1.00+0.00 1.00+0.00 1.00+0.00 0.76+0.29 1.00+0.00
Histone3 84 0.78+0.09 1.00£0.00 1.00+0.00 1.00+0.00 1.00+0.00 1.00+£0.00 1.00+0.00
HIV FE 733 0.87+0.04 1.00£0.02 1.00£0.02 0.98+0.05 0.98+0.05 0.63+0.30 1.00+0.02
HIV GSL3 786 0.86+£0.04 0.99+£0.02 0.99+0.02 0.98+0.06 0.99+0.02 0.80+£0.20 0.99+0.02
HIV PBS 188 0.92+£0.02 1.00+0.01 1.00+£0.01 1.00£0.02 0.99+0.03 0.90+0.11 1.00+0.01
Intron gpll 181 0.46+£0.13 0.65+0.16 0.66+0.17 0.63+0.17 0.50+0.28 0.49+0.18 0.65+0.15
[RESHCV 764 0.65£0.11 0.89+0.16 0.77+031 0.86+0.17 0.69+0.38 0.85+0.08 0.89+0.08
IRES Picorna 181 0.84+£0.07 097+0.03 0.95+£0.06 096+0.04 095+0.04 0.84+0.11 0.96+0.04
K chan RES 124 0.74£0.10 0.99+0.02 0.98+£0.05 0.89+0.19 0.95+0.08 0.57+0.26 0.95+0.12
Lysine 80 0.50+£0.13 0.73+£0.13 0.70£0.19 0.72+0.18 0.66+0.16 0.49+0.16 0.72+0.15
Retroviral psi 89 0.88+£0.03 0.93+0.03 0.94+0.03 094+0.03 093+0.04 0.73+0.13 0.93+0.04
S box 91 0.60£0.10 0.75+0.12 0.77+£0.16 0.79+0.14 0.67+0.24 0.53+0.16 0.77+0.12
SECIS 114 0.44+£0.16 0.59+0.21 0.63+£0.21 058+0.25 054+£0.25 0.38+0.24 0.62+0.20
sno 14q 11 44 0.75£0.10 0.93+0.10 0.89+0.16 0.85+0.20 0.89+0.19 0.57+0.27 0.91+0.13
SRP bact 114 0.48+0.16 0.66+0.21 0.66+0.20 0.64+0.24 0.65+0.21 0.51+£0.21 0.62+0.25
SRP euk arch 122 0.51+£0.20 0.63+£0.29 0.63+0.29 0.65+0.28 0.65+0.25 0.50+0.25 0.62+0.28
T-box 18 0.68+0.15 0.78+£0.17 0.75+0.25 0.67+0.24 0.70+0.17 0.59+0.20 0.74+0.15
TAR 286 0.87+0.04 0.99+£0.03 0.99+0.02 0.99+0.03 0.98+0.04 0.83+£0.20 0.99+0.04
THI 321 0.45+0.10 0.69+0.15 0.68+0.19 0.69+0.17 0.51+0.29 0.48+0.18 0.66+0.20
tRNA 2039 0.43+0.12 0.75+0.21 0.85+0.16 0.82+0.19 0.76+£0.27 0.65+0.23 0.72+0.22
U1 82 0.63+0.17 0.80+£0.17 0.83+0.14 0.79+0.18 0.81+0.14 0.67+£0.20 0.77+0.17
U2 112 0.64+0.16 0.76+£0.17 0.83+0.17 0.77+0.19 0.73+£0.22 0.59+0.19 0.75+0.18
U6 30 0.83+0.06 0.93+£0.05 0.89+0.09 0.90+0.08 0.88+0.10 0.71+£0.14 0.93+0.06
Unal2 138 0.77+0.08 0.93+£0.08 0.92+0.09 0.89+0.15 0.91+£0.10 0.64+£0.29 0.94+0.08
yybP-ykoY 127 0.39+0.14 0.58+0.20 0.59+0.24 0.58+0.25 0.40+0.33 0.46+0.21 0.56£0.20

| Pooled Average | 24933 0.63 0.84 0.86 0.85 0.8 0.67 0.83

TABLE 3.7: Average positive predictive value (PPV) scores (+ one standard devia-

tion) for pairwise global alignment of RNAmountAlign and four widely used RNA

sequence/structure alignment algorithms on the benchmarking set of 8976 pairwise

alignments from the BRaliBase K2 database [84]. For each indicated Rfam fam-

ily, the the number of alignments (NumAln), sequence identity (Seqld), and PPV-
scores for RNAmountAlign, LocARNA, LARA, FOLDALIGN, and DYNALIGN are listed,

along with Pooled averages over all 8976 pairwise alignments. Parameters used in

Eq (3.15) for RNAmountAlign were similarity matrix RIBOSUM85-60, structural simi-

larity weight y = 1/2, gap initiation g;

-3, gap extension g, = —1.
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TYPE SEED(LENGTH) MA(LENGTH) MA(PV) MA(TIME) FALENGTH) FAQPV)  FATIME)  LOC(LENGTH) LOCPPV)  LOC(TIME)
585 1RNA 158484740 T120£4155 0804032 3702043 16833£8923 075025 5095641183  T67.67£4335 0.01+003 957139615256
55 rRNA 120872209 34792544 045046 1902013 1338128446 065£034 33186448857 5840022569 0.02:0.04  3093.17+193460
Cobalamin DLOSEI3ET 26021677 0572044 7674114 £HL73£256.29 0204028 6830.15£9052.56 1028.20£59.27 0024002 2571240+ 152551
Hommerhead3 | 6441108 31882040 038042 0382011 369123183 0302041 23951181 290523870 0042006  15987+123.44
let-7 B33 BT 075£020 089£0.10 T2S5E2I5 048+033  G551£2866  30076:2137 004£0.05 46212228301
Lysin 193911307 68714273 030£033 627£080 16376210421 0572030 5342573012 9184144819 003£0.04 18690.26 + 1023232
mir-10 BN B09£2L97 067£024 072£0.04 66913083 048036 456841980 3851596 003004  33363£227.10
Purine 102012095 129.05£8684 0412039 1372007 69802670 0882015  §72743047 4974121681 0.030.05 2395.40+ 157167
RPNelement | 1473:1362 4411+2491 094011 283205 1145949877 0802024 61968128950 687716246 0032005 5893.833827.59
Shoxleader | 1201321614 50353000 057036 1682044 887226079 0792021 190.03493.08 5540945521 0032004 239,58 + 1484.64
SECIS 6855£288 25762134 005019 053£0.05 54255342 016£028  SLOT+6581 318531640 0.02£003  279.38+187.58
SNORD113 694610 A003£2327 033£042 0754007 4763£3040 062040 44321812 IBE9£ITT 002£002 6414342162
SRP bact 9204999 811492 0.69£041 0994030 1030848204 066032 25.15£33%6.95 435547467 0022004 72666+ 65987
THlelement | 172021195 3303:1443 051£0.45 1622030 844528558 0752031 233.89+35201 535.40+4383 0022002 231939+ 1468.99
{RNA T605£579  3731£45.09 023£040 0J0£0.09 621583830 067£040 TR547889  360.09£2406 002004  479.05+265.22
TymotRNAdke | 8625£135 4172196 050£039 079£0.05 789723370 0762021  8470£55.09 4091321422 0042005 6841241197
ut 16716+258 48363273 0.69£034 452£0.16 2136+ 12040 0612023 175354125541 8041922478 0.03£0.05 1114220 6902.37
U4 1632542455 50642753 042041 3728130 917524117 0792020 235114053 7TA217:8430 002£0.03 936129+ 5839.12
Unal2 425£060 48802571 0702040 036£001 36112330 09£0.04 2305838 26379:894 003006  17.59+10410
ykoK 175395732 8055819 068036 467£045 1475526966 081£020 47279458300 SM4.27£3156 003005 1201933617891
ykoK 426+ 6344 BLO6E5494 085038 4742045 142646344 0812020 4490350667 4829722704 0.00£0.00 1269337733086
Pooled Average | 11867+4786 50354233 053£0.42 230£2.12 11486212533 0642036 65532255461 55682£227.00 0032004  5317.968385.19

TaBLE 3.8: Comparison of alignment length and positive predictive value (PPV) for
pairwise local alignment by RNAmountAlign against the widely used local alignment
software FOLDALIGN and LocARNA. Local alignment benchmarking was performed
on 1500 pairwise alignments (75 alignments per family, 20 Rfam families) extracted
from the Rfam 12.0 database [89]], and prepared in a manner analogous to that of the
dataset used in benchmarking multiple local alignment in [91]. Parameters used in
Eq for RNAmountAlign were structural similarity weight y = 1/2, gap initiation
gi = —3, gap extension g, = —1; since reference alignments were required to have at
most 70% sequence identity, nucleotide similarity matrix RIBOSUMS8570-25 was used
in RNAmountAlign.

of sequence and ensemble structural similarity; i.e. parameter y = 1/2 when computing simi-

larity by Eq (3.15). By setting y = 1, RNAmountAlign alignments depend wholly on structural

similarity (see Figure [3.1). Indeed, for the following BRAliBase 2.1 alignment with 28% se-

quence identity, by setting y = 1, RNAmountAlign returns the correct alignment.

GGGGAUGUAGCUCAGUGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGUUCGAUCCCCGGCAUCUCCA

GUUUCAUGAGUAUAGC---AGUACAUUCGGCUUCCAACCGAAAGGUUUUUGUAAACAACCAAAAAUGAAAUA
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of 72 nt tRNA AL671879.2 with 69 nt tRNA D16387.1. Fig[3.1shows the superimposed mountain

heights for this alignment.

Statistics for pairwise alignment

Fig[3.5|shows fits of the relative frequency histogram of alignment scores with the normal (ND),
extreme value (EVD) and gamma (GD) distributions, where local [resp. semiglobal] alignment
scores are shown in the left [resp. right] panel. The EVD provides the best fit for local align-
ment sequence-structure similarity scores, as expected by Karlin-Altschul theo [63}64]. More-
over, Fig|[3.6| shows a 96% correlation between (expect) E-values computed by our implemen-
tation of the Karlin-Altschul method, and E-values obtained by maximum likelihood fitting of
local alignment scores. In contrast, the ND provides the best fit for semiglobal sequence/struc-
ture alignment similarity scores, at least for the sequence considered in Fig This is not
an isolated phenomenon, as shown in Fig which depicts scatter plots, Pearson correlation
values and sums of squared residuals (SSRs) when computing p-values for semiglobal (query
search) alignment scores between Rfam sequences and random RNA. As explained earlier, a
pool of 2220 sequences from the Rfam 12.0 database [[89]] was created by selecting one sequence
of length at most 200 nt from each family, with the property that base pair distance between
its minimum free energy (MFE) structure and the Rfam consensus structure was a minimum.
Then 500 sequences were randomly selected from this pool, and for each of five gap initia-
tion and extension costs g; = =5, — 4, — 3, — 2, — 1 with g, = %. Taking each of the 500
sequences successively as query sequence and for each choice of parameters, 1000 random 400
nt RNAs were generated with the same expected nucleotide relative frequency as that of the

query. For each alignment score z for query and random target, the p-value was computed as
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F1Gure 3.5: Fits of 30-bin relative frequency histograms of scores for local (left),

semiglobal (middle) and global (right) alignments produced by RNAmountAlign for
the randomly chosen 5S rRNA AY544430.1:375-465 from Rfam 12.0 database having
A,C,G,U relative frequency of 0.25,0.27,0.26,0.21. A total of 10,000 random sequences
having identical expected nucleotide relative frequencies were generated, each of
length 400 nt for local/semiglobal and 100 nt for global. Local (left), semiglobal (mid-
dle) and global (right) alignments were computed by RNAmountAlign, in each case
fitting the data with the normal (ND), extreme value (EVD) and gamma (GD) distribu-
tions. As expected by Karlin-Altschul theory [63], local alignment scores are best fit
by EVD, while semiglobal alignment scores are best fit by ND (results supported by
data not shown, involving computations of variation distance, symmetrized Kullback-

Leibler distance, and y? goodness-of-fit tests).
1 minus the cumulative density function, 1 — CDF(z), for fitted normal (ND), extreme value
(EVD) and gamma (GD) distributions, thus defining 1000 p-values. Additionally, a heuristic
p-value was determined by calculating the proportion of alignment scores for given query that
exceed z. For each set of 2.5 million (500 X 5 X 1000) p-values (heuristic, ND, EVD, GD), Pear-
son correlation values were computed and displayed in the upper triangular portion of Fig[3.6]
with SSRs shown in parentheses. Note that residuals were computed for regression equation
row = m - column + b, where column values constitute the independent variable. Assuming
that heuristic p-values constitute the reference standard, it follows that p-values computed
from the normal distribution correlate best with semiglobal alignment scores computed by

RNAmountAlign.

Earlier studies have suggested that protein global alignment similarity scores using PAM120,
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FiGure 3.6: (Left)Pearson correlation values and scatter plots for p-values of
semiglobal alignment(query search) scores between Rfam sequences and random
RNA. For each score in a set of 2.5 million global pairwise alignment scores, a p-value
was computed by direct counts (heuristic), or by data fitting the normal (ND), extreme
value (EVD), or gamma (GD) distributions. Pairwise Pearson correlation values were
computed and displayed in the upper triangular portion of the figure, with sums of
squared residuals shown in parentheses, and histograms of p-values along the diag-
onal. It follows that ND p-values correlate best with heuristic p-values, where the
latter is assumed to be the gold standard. (Right)Scatter plot of expect values Ey;,
computed by maximum likelihood, following the method described in [87] (y-axis)
and expect values Ey,, computed by our implementation of the Karlin-Altschul. The
regression equation is Eyy = 0.1764+0.7991- Ey,; Pearson correlation between E,; and
Exa is 96%, with correlation p-value of 2 - 1071°. Expect values were determined from
local alignment scores computed by the genome scanning form of RNAmountAlign
with query tRNA AB031215.1/9125-9195 and targets consisting of 300 nt windows
(with 200 nt overlap) from E. coli str. K-1z substr. MG1655 with GenBank accession
code AKVX01000001.1. From the tRNA query sequence, the values pa.,pc.pG.pu for
nucleotide relative frequencies, are determined, then average base pairing probabili-
ties p ¢ .pe.py are computed by RNAfold -p [27]. For the current 300 nt target win-
dow, the nucleotide relative frequencies p/,,p/.p(;.p(, are computed, then probabilities
p’( ,p:,p’) are obtained. From these values, scaling factor «,., and shift a,,, were com-

puted; with structural similarity weight y = 1/2, the overall similarity function from

Eq (3.15) was determined.
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PAM250, BLOSUM50, and BLOSUM62 matrices appear to be fit best by the gamma distribution
(GD) [92]], and that semiglobal RNA sequence alignment similarity scores (with no contribu-
tion from structure) appear to be best fit by GD [93]. However, in our preliminary studies
(not shown), it appears that the type of distribution (ND, EVD, GD) that best fits RNAmoun-
tAlign semiglobal alignment depends on the gap costs applied (indeed, for certain choices,
EVD provides the best fit). Since there is no mathematical theory concerning alignment score
distribution for global or semiglobal alignments, it must be up to the user to decide which

distribution provides the most reasonable p-values.

Multiple alignment

We benchmarked RNAmountAlign with the software LARA, mLocARNA, FOLDALIGNM and Mul -
tilign for multiple global K5 alignments in Bralibase 3. STRAL is not included since the
source code could not be compiled. Fig[3.7]indicates average SPS and SCI as a function of aver-
age pairwise sequence identity (APSI). We used the -sci flag of RNAalifold to compute SCI
from the output of each software without reference to the reference alignment. Fig [3.7)indicates
that SCI values for outputs from various alignment algorithms is higher than the SCI value from
reference alignments, suggesting that the consensus structure obtained from sequence/struc-
ture alignment algorithms has a larger number of base pairs than the the consensus structure
obtained from reference alignments (this phenomenon was also in [94]). Fig indicates
that RNAmountAlign produces SPS scores comparable to mLocARNA and LARA and higher than
Multilign and FOLDALIGNM while the SCI score obtained from RNAmountAlign are slightly
lower than other software. Averaging over all sequences, the SPS scores for RNAmountAl-

ign, LARA, mLocARNA, FOLDALIGNM and Multilign were respectively: 0.84 +0.17, 0.85+0.17,
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0.84 + 0.17, 0.77 £ 0.22, and 0.84 + 0.19. The left panel of Figindicates the run time of all
software on a logarithmic scale, while the right panel shows the actual run time in seconds for
RNAmountAlign as well as that of the next two fastest algorithms, mLocARNA and LARA. This
figure clearly shows that RNAmountAlign has much faster run time than all other software in

our benchmarking tests, thus confirming the earlier result from pairwise benchmarking.
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FIGURE 3.7: Sum-of-pairs(SPS) score (A), average pairwise sensitivity (B) and positive

predictive value (C), as well as structural conservation index (SCI) (D) for multiple

global alignments using RNAmountAlign, LARA, mLocARNA, FoldalignM and Mul-

tilign . The measures are shown as a function of average pairwise sequence iden-

tity(APSI) in the k5 BRAliBase 3 database used for benchmarking. Note that in our

definition of Sen and PPV, pairs of the form (X,—) and (—,X) are also counted while

SPS is the average pairwise sensitivity only considering aligned residue pairs. How-

ever, the results with and without gap counts are very close.
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FIGURE 3.8: Run time of multiple global alignment for RNAmountAlign, mLocARNA

and LARA, FoldalignM and Multilign. (Left) Log run time is as shown a function

of reference alignment length for K5 alignments in Bralibase 3. (Right) Actual run
time in seconds for mLocARNA and LARA.

Software usage

RNAmountAlign performs local, semiglobal, and global sequence/structure alignments. By
default the global alignment is computed unless flags -1ocal or -semi are used to perform
local and semiglobal alignments, respectively. In the simplest case, the program could be run
with

> ./RNAmountAlign -f <inputFasta>

or

> ./RNAmountAlign -s seql seq2

The parameters that were used to produce the results in the text are used as the default by
the software: structural similarity weight y = 0.5, gap initiation g; = —3, and gap extension
ge = —1. The weight factor y defines the importance of structural similarity versus sequence

similarity. When y = 0 only sequence similarity is considered, while y = 1 only uses the
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incremental ensemble mountain heights for the alignment. As an example, let’s consider the
following two toy sequences each forming a stem loop secondary structure
>seql

AAAAAAAAAACCCCCUUUUUUUUUU

e - 22000 (-2.1)
>seq2
CCCCCCCAAAAGGGGGGG

(CCCCCC.++223033)) (-15.7)

Running the software considering only sequence similarity with gap initiation and extension
penalties of -2 and -1, respectively, by the command

> ./RNAmountAlign -s AAAAAAAAAACCCCCUUUUUUUUUU CCCCCCCAAAAGGGGGGG -gamma O -gi

-2 -ge -1

produces the following alignment

seql 1 AAAAAAAAAACCCCCUUUUUUUUUU 25

seq2 1 ------- CCCCCCCAAAAGGGGGGG 18

where four C nucleotides are aligned together, regardless of the fact that in the secondary
structure for the first sequence, they are found in an apical loop region, while in the secondary

structure for the second sequence, they are part of a stem. However, using -gamma 1 returns

seql 1 AAAAAAAAAACCCCCUUUUUUUUUU 25

seq2 1 CCCCCCC----AAAAGGGGGGG--- 18

where the opening, closing and unpaired bases are aligned to each other. Finally, using -gamma

0.5 gives
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seql 1 AAAAAAAAAACCCCCUUUUUUUUUU 25

seq2 1 CCCCCCCAAAA------- GGGGGGG 18

where both sequence and structural similarity are equally weighted. The default nucleotide
similarity matrix is RIBOSUM85-60. Other RIBOSUM matrices are included in the software
and can be selected with -m flag based on the user’s knowledge of divergence of the input se-
quences.

RNAmountAlign computes the consensus secondary structure by calling alifold() function
from 1ibRNA.a in the Vienna RNA Package when flag -alifold is used. For example the

following command outputs the consensus structure in addition to the alignment for the same

sequences indicated in Fig[3.1] See Fig

> ./RNAmountAlign -f examples/trna.fa -alifold -global

Computation of alignment statistics depends on the alignment type. As discussed in this chap-
ter, local alignment scores follow extreme value distribution(EVD) while global and semiglobal
scores tend to follow normal distribution(ND). Flag -stat can be set to compute both E-
values and p-values, where the transformation between E-values and p-values is made by
p = 1—exp(—E). For global and semiglobal alignments, the first (query) sequence is aligned to
a number of random RNAs, defined by -num flag, with the same nucleotide composition as the
second sequence (target), then the random alignment scores are fitted to normal distribution

and a p-value is returned.

> ./RNAmountAlign -f examples/trna.fa -global -stat -num 100
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FIGURE 3.9: Consensus structure for the pairwise alignment indicated in Fig The
consensus structure is computed by a calling function alifold() from Vienna RNA
Package. The figure is obtained from RNAalifold web server.

As part of the output, p-value from ND normal fitting of 100 random alignment scores is re-

ported:

Normal distribution E-value: 0.0476148

Normal distribution p-value: 0.046499

For local alignments either Karlin-Altschul statistics (default) or EVD fitting can be computed.
Let’s consider an example of a local alignment between two purine riboswitches with Rfam
seed alignment length of 102 and sequence identity 0.58. Random flanking regions with the
same nucleotide composition are added to the seed alignment as discussed in this chapter to
obtain two sequences of length 408 and 400. The local alignment between these two sequences
has length 53 with extremely low E-value, with the property that all pairs in the local alignment
are found in the reference seed alignment (PPV = 1). E-value from Karlin-Altschul statistics

can be obtained very fast from the following command:
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> ./RNAmountAlign -f examples/RF00167_1.raw -local -stat
Karlin-Altschul E-value: 2.52137e-06

Karlin-Altschul p-value: 2.52137e-06

Computation of E-value from EVD fitting is more accurate but slower:

> ./RNAmountAlign -f examples/RF00167_1.raw -local -stat -evd -num 200
Extreme value distribution E-value: 4.41417e-05

Extreme value distribution P-value: 4.41408e-05

RNAmountAlign computes Karlin-Altschul E-values from maximum likelihood method de-
scribed in this chapter, and then multiplies it by the regression coefficient of 0.7991, indicated
in the right panel of Fig[3.6] to obtain an estimated E-value. Therefore, there might be discrep-
ancy between the EVD fitting and Karlin-Altschul E-values. For the most accurate statistics

EVD fitting is recommended.

Our software could also be used for searching a query sequence defined by -qf <fastaFile>
in a target sequence defined by -tf <fastaFile>. The search computes semiglobal align-
ments of the query to sliding windows of the target, and returns the aligned segments of the
target sorted by p-value. The query is aligned to windows of a fixed size defined by -window,
sliding by steps defined by -step flag. To compute the statistics, random alignment scores
are computed and fitted to ND. However, the software does not compute random alignments
for each window separately as it would be very slow. Instead, following [87], the range of the
GC-content of the target sequence over all the sliding windows is first obtained and binned
using bin size defined by -gc. For each GC-content bin, fitting paremeters are precomputed

by generating a number of random sequences whose GC-content is equal to the bin midpoint,
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aligning the query to random sequences, and fitting random alignment scores to normal dis-
tribution. For each sliding window the corresponding precomputed parameters are used for
the computation of p-value. As an example, a random tRNA from Rfam 12.0 whose minimum
free energy structure has the minimum base pair distance to the Rfam consensus structure was
selected and used as the query to search E. coli K12 MG1655 genome using window size 300

and step size 200 by the following command.

> ./RNAsearch -qf examples/tRNAscan.fa -tf examples/ecoli_MG1655.fa -window

300 -step 200 -gc 10 -num 1000

The output contains:

GC Bins: [0.23-0.33),[0.33-0.43),[0.43-0.53),[0.53-0.63),[0.63-0.73),[0.73-0.74]

1000 random seqs of size 300 generated for each each GC bin.

Fitting to Normal:
GC Location Scale
0.283 -12.18 1.96
0.383 -13.41 2.03
0.483 -15.01 2.05
0.583 -16.84 2.05
0.683 -18.98 2.16

0.735 -20.08 2.06

Asindicated, six GC bins are generate in range [0.23—0.74]; for each bin 1000 random sequences

whose GC-content are equal to the average GC-content of the bins are generated, aligned
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to the query and their fitted location (mean) and scale (standard deviation) parameters are
precomputed to be used for computation of p-values. From the top 20 hits of our software, the

first 18 are reported to be tRNAs by tRNAscan-SE [jg5].

To see all the full parameter list for the software please use

> ./RNAmountAlign -h

Limitations

Figure[3.10illustrates a potential weakness of RNAmountAlign. Using RNAmountAlign genome-
scanning software, semiglobal alignments of the query tRNA AB031215.1/9125-9195 were made
with each 300 nt window (successive window overlap of 200 nt) of the E. coli str. K-12 substr.
MG1655 genome. This figure shows the MFE structure, color-coded by positional entropy [[96]],

for the alignment

AGGGGCAUAGUUUAACGGUAGAACAGAGGUCUCCAAAACCUCCGGUGUGGGUUCGAUUCCUACUGCCCCUG

ACCUGGAU--UCGAACCAGGGAAUGCCGGUAUCAAAAA---CCGGUGCCUUACCGCUUGGCGAUACCCCAU

of positions 696097-696164 with score —7.70, p-value of 4.145010 - 107°. (gap costs g; = —3,
gi = =1,y = 0.5, scaling factor a,., = 0.447648, shift term o, = 0.304766, y = 1/2). However,
this RNA is clearly not a tRNA, since the three loops are not within the scope of a multiloop,
and the variable loop is located in the wrong position, and the large positional entropy suggests
that there is not an unambiguous structure. Moreover, this sequence is not one of the tRNA

genes/pseudogenes on the plus-strand predicted by tRNAscan-SE [jg5]
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FIGURE 3.10: Illustration of a potential weakness of RNAmountAlign in aligning mul-

tiloops.
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Consider the set of all secondary structures of an RNA sequence as a network, or graph, where
two structures are connected by an edge if one can be obtained from another by a base pair
addition, removal or shift possibly weighted by the Boltzmann probability of structures. In this
part we study folding kinetics of an RNA through analysis of its network of secondary struc-
tures. RNA folding kinetics plays an important role in various biological processes and there
have been numerous algorithms studying it. Many existing programs for RNA folding kinetics
simulate folding trajectories by starting from an initial structure and stochastically performing
a base pair move (addition, removal and shift) until the target structure is reached. In other
words, a folding trajectory is a stochastic walk from the initial structure to the target structure
on this network. Therefore, understanding the network properties of RNA can provide better

insights about RNA folding kinetics.

In chapter[q]we propose algorithms for computing the shortest path between any two arbitrary
secondary structures in the network, yielding a direct folding pathway between the given
structures. Continuing to chapter [s| we describe algorithms to efficiently compute the MS,
expected network degree. We indicate that network degree is moderately highly correlated
with both contact order and the expected number of native contacts, both measures known to

be correlated with experimentally measured protein folding kinetics.



Chapter 4

Minimum length RNA folding trajectories

Introduction

Existent programs for RNA folding kinetics, such as Kinefold, Kinfold and KFOLD, imple-
ment the Gillespie algorithm to generate stochastic folding trajectories from an initial structure
s to a target structure ¢, in which each intermediate secondary structure is obtained from its
predecessor by the application of a move from a given move set. The Kinfold move set MS;
[resp. MS;] allows the addition or removal [resp. addition, removal or shift] of a single base
pair. Define the MS; [resp. MS,] distance between secondary structures s and t to be the
minimum path length to refold s to t, where a move from MS; [resp. MS,] is applied in each
step. The MS; distance between s and t is trivially equal to the cardinality of the symmet-
ric difference of s and ¢, i.e. the number of base pairs belonging to one structure but not the
other; in contrast, the computation of MS, distance is highly non-trivial. We describe algo-

rithms to compute the shortest MS, folding trajectory between any two given RNA secondary

94
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structures. These algorithms include an optimal integer programming (IP) algorithm, an ef-
ficient near-optimal IP algorithm, a greedy algorithm, a branch-and-bound algorithm, and an
optimal algorithm if one allows intermediate structures to contain pseudoknots. The optimal
[resp. near-optimal] IP algorithm maximizes [resp. approximately maximizes] the number
of shifts and minimizes [resp. approximately minimizes] the number of base pair additions
and removals by applying integer programming to (essentially) solve the minimum feedback
vertex set (FVS) problem for the RNA conflict digraph, then applies topological sort to tether
subtrajectories into the final optimal folding trajectory. We prove NP-hardness of the problem
to determine the minimum barrier energy over all possible MS; folding pathways, and con-
jecture that computing the MS; distance between arbitrary secondary structures is NP-hard.
Since our optimal IP algorithm relies on the FVS, known to be NP-complete for arbitrary di-
graphs, we compare the family of RNA conflict digraphs with the following classes of digraphs
- planar, reducible flow graph, Eulerian, and tournament — for which FVS is known to be ei-
ther polynomial time computable or NP-hard. This Chapter describes a number of optimal
and near-optimal algorithms to compute the shortest MS; folding trajectory between any two
secondary structures. A web server and the source code for our algorithms are available at

http://bioinformatics.bc.edu/clotelab/MS2distance/.

Background

RNA secondary structure is known to form a scaffold for tertiary structure formation [g7].
Moreover, secondary structure can be efficiently predicted with reasonable accuracy by using
either machine learning with stochastic context-free grammars [[98} 99} 100]], provided that the

training set is sufficiently large and representative, or by using ab initio physics-based models
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(x,y)-> (x',y), x'>x (x,y)-> (x'y), x'<x (x,y)-> (y.x'), x'>y

FIGURE 4.1: lllustration of shift moves, taken from [7].

with thermodynamics-based algorithms [27, 1o1]. Since the latter approach does not depend
on any form of homology modeling, it has been successfully used for synthetic RNA molecular
design (50, 102} 03], to predict microRNA binding sites [104], to discover noncoding RNA
genes [[105]], in simulations to study molecular evolution [106} [107, 108| 109] and in folding
kinetics |10, 111, 112} [i13]]. Software to simulate RNA secondary structure folding kinetics, such
as Kinfold and KFOLD, implement the Gillespie algorithm to simulate the moves from one
structure to another, for a particular move set. At the elementary-step resolution, two move
sets have extensively been studied — the move set MS; which allows the addition or removal
of a single base pair, and the move set MS,, which allows the addition, removal or shift of a

single base pair, where a shift move modifies only one of the two positions in a base pair, as

shown in Figure

In simulation studies related to RNA secondary structure evolution, the structural distance
between two secondary structures s,t is often measured by the base pair distance, denoted
dpp(s,t), defined to be the cardinality of the symmetric difference, |s A t| = |s — t| + |t — 5], i.e.
the number of base pairs belonging to s but not ¢, plus the number of base pairs belonging
to t but not s. In studies concerning RNA folding kinetics, the fast, near-optimal algorithm
RNAtabupath [ii4]] and the much slower, but exact (optimal) Barriers algorithm [27] can

be used to determine MS; folding trajectories that minimize the barrier energy, defined as
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the maximum of the (Turner) free energy difference between an intermediate structure and
the initial structure. Thermodynamics-based software such as Kinfold, KFOLD, Barriers,
RNAtabupath use the nearest neighbor free energy model [23] whose energy parameters are
inferred from optical melting experiments. In contrast, the two theorems below concern the
Nussinov energy model [115], which assigns —1 per base pair and ignores entropy. Folding
trajectories s = sg,S1,...,Sm = t from s to  may either be direct, whereby each intermediate
structure s; is required to contain only base pairs from s U ¢, or indirect, without this restric-
tion. Note that indirect pathways may be energetically more favorable, though longer, than
direct pathways, and that the problem of constructing an energetically optimal direct folding

pathway is NP-hard. Indeed, the following theorem is proven in [116]].

Theorem 4.1 (Manuch et al. [116]).
With respect to the Nussinov energy model, it is NP-hard to determine, for given secondary struc-
tures s,t and integer k, whether there exists a direct MS; folding trajectory from s tot with energy

barrier at most k.

By an easy construction, we can show an analogous result for MS, folding pathways. First, we
define a direct MS, folding pathway from secondary structure s to secondary structure ¢ to be
a folding pathway s = sg,s1,...,S, = t where each intermediate structure s; is obtained from
si—1 by removing a base pair that belongs to s, adding a base pair that belongs to t, or shifting

a base pair belonging to s into a base pair belonging to ¢.

Theorem 4.2. With respect to the Nussinov energy model, it is NP-hard to determine, for given
secondary structures s,t and integer k, whether there exists a direct MS, folding trajectory from s

to t with energy barrier at most k.
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Proof. Given secondary structures s,t for an RNA sequence a = ay,...,a,, without loss of
generality we can assume that s, share no common base pair (otherwise, a minimum energy
folding trajectory for s — (s N t) and t — (s N t) yields a minimum energy folding trajectory for

s,t.) Define the corresponding secondary structures

s" ={(2i,2)) : (i,j) € s}
t' = {(2i — 1,2j — 1) : (i,j) € t}
ay; =a; =ay_, foreachl<i<n

r_ ’
a’ =ap,a;,....,0y,

In other words, the sequence a’ = ay,ay,az,az, . . . ,an,a, is obtained by duplicating each nu-
cleotide of a, and placing each copy beside the original nucleotide; s’ [resp. t’] is obtained by
replacing each base pair (i,j) € s by the base pair (2i,2j) € s’ [resp. (2i — 1,2j — 1) € t’. Since
there are no base-paired positions that are shared between s” and t’, no shift moves are possible,
thus any direct MS, folding pathway from s’ to ¢’ immediately yields a corresponding direct
MS; folding pathway from s to ¢. Since the Nussinov energy of any secondary structure equals
—1 times the number of base pairs, it follows that barrier energy of the direct MS, pathway
from s’ to t’ is identical to that of the corresponding direct MS; pathway from s to . Since
MS; direct barrier energy is an NP-hard problem by Theorem|[4.1] it now follows that the MS,

barrier energy problem is NP-hard. O

Shift moves, depicted in Figure naturally models defect diffusion, which is several orders
of magnitude faster than helix zippering, according to experimental data [25]. However, shift

moves have rarely been considered in the literature, except in the context of folding kinetics
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FIGURE 4.2: Defect diffusion [25], where a bulge migrates stepwise to become absorbed
in a hairpin loop. The move from structure (a) to structure (b) is possible by the shift
(1,12) — (1,13), the move from (b) to (c) by shift (2,11) — (2,12), etc. Image taken
from [7].
[1i0]. For instance, presumably due to the absence of any method to compute MS, distance,
Hamming distance is used as a proxy for MS, distance in the work on molecular evolution of

secondary structures appearing in [108] - see also [ir7], where Hamming distance is used to

quantify structural diversity in defining phenotypic plasticity.

In this chapter, we introduce the first algorithms to compute the MS, distance between two
secondary structures. Although MS; distance, also known as base pair distance, is trivial to
compute, we conjecture that MS, distance is NP-hard, where this problem can be formalized as
the problem to determine, for any given secondary structures s,t and integer m, whether there
is an MS, trajectory s = so,81,...,Sm = t of length < m. We describe an optimal (exact) but
possibly exponential time integer programming (IP) algorithm, a fast, near-optimal algorithm,
an exact branch-and-bound algorithm, and a greedy algorithm. Since our algorithms involve
the feedback vertex set problem for RNA conflict digraphs, we now provide a bit of background

on this problem.

Throughout, we are exclusively interested in directed graphs, or digraphs, so unless otherwise
indicated, all graphs are assumed to be directed. Any undefined graph-theoretic concepts can

be found in the monograph by Bang-Jensen and Gutin [118]]. Given a directed graph G = (V,E),



Minimum length RNA folding trajectories 100

a feedback vertex set (FVS) is a subset V' C V which contains at least one vertex from every
directed cycle in G, thus rendering G acyclic. Similarly, a feedback arc set (FAS) is a subset
E’ C E which contains at least one directed edge (arc) from every directed cycle in G. The FVS
[resp. FAS] problem is the problem to determine a minimum size feedback vertex set [resp.
feedback arc set] which renders G acyclic. The FVS [resp. FAS] problem can be formulated as
a decision problem as follows. Given an integer k and a digraph G = (V,E), determine whether
there exists a subset V' C V of size < k [resp. E’ C E of size < k], such that every directed

cycle contains a vertex in V'’ [resp. an edge in E’].

In Proposition 10.3.1 of [118], it is proved that FAS and FVS have the same computational
complexity, within a polynomial factor. In Theorem 10.3.2 of [118]], it is proved that the FAS
problem is NP-complete — indeed, this problem appears in the original list of 21 problems
shown by R.M. Karp to be NP-complete [119]]. Note that Proposition 10.3.1 and Theorem 10.3.2
imply immediately that the FVS problem is NP-complete. In Theorem 10.3.3 of [118], it is
proved that the FAS problem is NP-complete for tournaments, where a tournament is a digraph
G = (V,E), such that there is a directed edge from x to y, or from y to x, for every pair of distinct
vertices x,y € V. In [120], it is proved that the FAS for Eulerian digraphs is NP-complete, where
an Eulerian digraph is characterized by the property that the in-degree of every vertex equals
its out-degree. In Theorem 10.3.15 of [118], it is proved that FAS can be solved in polynomial
time for planar digraphs, a result originally due to [iz1]. In [i22], a polynomial time algorithm is
given for the FAS for reducible flow graphs, a type of digraph that models programs without any
GO TO statements (see [123] for a characterization of reducible flow graphs). There is a long
history of work on the feedback vertex set and feedback arc set problems, both for directed

and undirected graphs, including results on computational complexity as well as exact and
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approximation algorithms for several classes of graphs — see the survey [124] for an overview

of such results.

The plan of this chapter is now as follows. In Section[4.3| we present the graph-theoretic frame-
work for our overall approach and describe a simple, fast algorithm to compute the pseudoknot-
ted MS, distance, or pk-MS, distance, between structures s,t. By this we mean the minimum
length of an MS; folding trajectory between s and t, if intermediate pseudoknotted structures
are allowed. We show that the pk-MS, distance between s and ¢, denoted by dpx_ars,(s,t), is
approximately equal to one-half the Hamming distance dy(s,t) between s and ¢. This result
can be seen as justification, ex post facto, for the use of Hamming distance in the investigation
of RNA molecular evolution [108]], although results of this chapter suggest that either pk-MS,
distance or near-optimal MS; distance may be a better approximation to (exact) MS, distance

than using Hamming distance.

In Sections |4.4] and |4.7] we describe RNA conflict digraphs and their properties used in all of
our MS, distance algorithms. In Section we describe optimal branch-and-bound, greedy
and exact integer programming (IP) algorithms as well as a faster near-optimal IP algorithm.
Our optimal algorithm in Section[4.5.3|enumerates all directed cycles, then solves the feedback
vertex problem for the collection of RNA conflict digraphs, as described in Section Our
IP algorithm is not a simple reduction to the feedback vertex set (FVS) problem; however,
since the complexity of FVS/FAS is known for certain classes of digraphs, we take initial steps
towards the characterization of RNA conflict digraphs in Section[4.8] Our optimal IP algorithm
is much faster than the branch-and-bound algorithm, but it can be too slow to be practical to
determine MS, distance between the minimum free energy (MFE) secondary structure and a

(Zuker) suboptimal secondary structure for some sequences from the Rfam database [89]]. For
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this reason, in Section we present a fast, near-optimal algorithm, and in Section [4.6] we

present benchmarking results to compare various algorithms of the chapter.

Since we believe that further study of RNA conflict digraphs may lead to a solution of the
question whether MS, distance is NP-hard, Section [4.7| presents the set of (oriented) directed
edges that are possible in an RNA conflict digraph. Section [4.8|provides proofs that the collec-
tion of RNA conflict digraphs is distinct from each of the following classes of digraphs: planar,

reducible flow graph, Eulerian, and tournament.

All algorithms described in this chapter have been implemented in Python, and are publicly
available at bioinformatics.bc.edu/clotelab/MS2distance, where the user can also
use our web server. Our software uses the function simple_cycles(G) from the software
NetworkX https://networkx.github.io/documentation/networkx-1.9/reference/
generated/networkx.algorithms.cycles.simple_cycles.html, and the integer pro-

gramming (IP) solver Gurobi Optimizer version 6.0 http://www.gurobi.com, 2014.

MS, distance between possibly pseudoknotted structures

In this section, we describe a straightforward algorithm to determine the MS,-distance djx s, (s.t)
between any two structures s,t of a given RNA sequence ay, . . .,an, where dyx_ps, (s,t) is de-
fined to be length of a minimal length trajectory s = sg,s1,...,Sm = t, where intermediate
structures s; may contain pseudoknots, but do not contain any base triples. This variant is
called pk-MS, distance. Clearly, the pk-MS, distance is less than or equal to the MS, distance.
The purpose of this section is primarily to introduce some of the main concepts used in the

remainder of the chapter. Although the notion of secondary structure is well-known, we give


bioinformatics.bc.edu/clotelab/MS2distance
https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.cycles.simple_cycles.html
https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.cycles.simple_cycles.html
http://www.gurobi.com, 2014
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three distinct but equivalent definitions, that will allow us to overload secondary structure

notation to simplify presentation of our algorithms.

Definition 4.3 (Secondary structure as set of ordered base pairs). Let [1,n] denote the set
{1,2,...,n}. A secondary structure for a given RNA sequence aj, . . .,a, of length n is defined
to be a set s of ordered pairs (i,j), with 1 < i < j < n, such that the following conditions are

satisfied.

1. Watson-Crick and wobble pairs: If (i,j) € s, then a;a; € {GC,CG,AU,UA,GU,UG}.

2. No base triples: If (i,j) and (i,k) belong to s, then j = k; if (i,j) and (k,j) belong to s, then

i=k.

3. Nonexistence of pseudoknots: If (i,j) and (k,£) belong to s, then it is not the case thati < k <

j<dt.

4. Threshold requirement for hairpins: If (i,j) belongs to s, then j — i > 6, for a fixed value
0 > 0; i.e. there must be at least 8 unpaired bases in a hairpin loop. Following standard

convention, we set 6 = 3 for steric constraints.

Without risk of confusion, it will be convenient to overload the concept of secondary structure
s with two alternative, equivalent notations, for which context will determine the intended

meaning.

Definition 4.4 (Secondary structure as set of unordered base pairs). A secondary structure s
for the RNA sequence ay, .. .,a, is a set of unordered pairs {i,j}, with 1 < i,j < n, such that

the corresponding set of ordered pairs

(i}« % (min(i,j), max(i.j)) (42)
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satisfies Definition [5.1]

Definition 4.5 (Secondary structure as an integer-valued function). A secondary structure s
for ay,...,a, is a function s : [1,...,n] - [0, ...,n], such that {{i,s[i]}< 11 <i<nsli]# 0}

satisfies Definition[5.1} i.e.

0 ifiis unpaired in s

j if(i,j) €sor(ji)Es

Definition 4.6 (Secondary structure distance measures). Let s,t be secondary structures of

length n. Base pair distance is defined by equation below, and Hamming distance is de-

fined by equation below.

dpp(s,t) = {(x,y) : (xy) € sA(xy) € 1) V ((x.y) € t A(x,y) € 5)}] (4.3)

dy(s.t) = {i € [1,n] : s[i] # ¢[i]}] (4-4)

Throughout this section, the term pseudoknotted structure is taken to mean a set of ordered pairs
[resp. unordered pairs resp. function], which satisfies conditions 1,2,4 (but not necessarily
3) of Definition Given structure s on RNA sequence {ay,...,a,}, we say that a position
x € [1,n] is touched by s if x belongs to a base pair of s, or equivalently s[x] # 0. For possibly
pseudoknotted structures s,t on{ay, . . .,a, }, we partition the set [1,n] into disjoint sets A,B,C,D
as follows. Let A be the set of positions that are touched by both s and t, yet do not belong to

the same base pair in s and t, so

A={ie[1,n]:s[i] #0,t(i) # 0,s[i] # t[i]} (4.5)
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Let B be the set of positions that are touched by either s or ¢, but not by both, so

B={ie[Ln]:(s[i] #0,¢t[i] = 0) V (s[i] = 0, ¢[i] # 0)} (4.6)

Let C be the set of positions touched by neither s nor ¢, so

C={ie€[1,n]:s[i] =0=t[i]} (4.7)

Let D be the set of positions that belong to the same base pair in both s and t, so

D ={i € [1,n] : s[i] # 0, t[i] # 0,s[i] = ¢[i]} (4.8)

We further partition A U B into a set of maximal paths and cycles, in the following manner.
Define an undirected, vertex-colored and edge-colored graph G = (V,E), whose vertex set V is
equal to the set AU B of positions that are touched by either s or ¢, but not by a common base
pair in (s N t), and whose edge set E = (s —t) U (t —s) = (s Ut) — (s N t) consists of undirected
edges between positions that are base-paired together. Color edge {x,y} green if the base pair
(x,y) € s — t and red if (x,y) € t —s. Color vertex x yellow if x is incident to both a red and
green edge, green if x is incident to a green edge, but not to any red edge, red if x is incident to
ared edge, but not to any green edge. Note that A consists of all yellow nodes, whose incident
edges are either green or red; B consists of all nodes that are either green or red; C consists of

all uncolored nodes; D consists of all yellow nodes, whose incident edge is yellow.

The connected components of G can be classified into 4 types of (maximal) paths and one type

of cycle (also called path of type 5): type 1 paths have two green end nodes, type 2 paths have
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al a2 am
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s t s s \ \ It s t s \ s
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(a) Type 1 path (b) Type 2 path (¢) Type 3 path

(d) Type 4 path (e) Cycle

FIGURE 4.3: All possible maximal length red-green paths and cycles. Each equivalence

class X as defined in Definition[4.8] can be depicted as a maximal length path or cycle,

consisting of those positions x € [1,n] that are connected by alternating base pairs

drawn from secondary structures s (green) and ¢ (red). Nodes are yellow if incident to

both a green and yellow edge; nodes are green if incident only to a green edge; nodes

are red if incident only to a red edge. Note that the appearance of positions in left-

to-right order does not necessarily respect integer ordering, so the leftmost position

is not necessarily the minimum min(X), nor is the rightmost position necessarily the

maximum max(X).

a green end node x and a red end node y, where x < y, type 3 paths have a red end node x
and a green end node y, where x < y, type 4 paths have two red end nodes, and type 5 paths
(cycles) have no end nodes. These are illustrated in Figure Note that all nodes of a cycle
and interior nodes of paths of type 1-4 are yellow, while end nodes (incident to only one edge)
are either green or red. If X is a connected component of G, then define the restriction of s
[resp. t] to X, denoted by s [ X [resp. t | X], to be the set of base pairs (i,j) in s [resp. t] such
that i,j € X. With this description, most readers will be able to determine a minimum length
pseudoknotted folding pathway from s [ X to ¢ [ X, where X is a connected component of G.

For instance, if X is a path of type 2 or 3, then a sequence of shift moves transforms s ' X into

t I X, beginning with a shift involving the terminal green node.
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Now we provide details on the simple algorithms for pk-MS; minimum length folding path-
ways for each of the five types of paths depicted in Figure If s and ¢ are (possibly pseudo-
knotted) structures on [1,n], and X C [1,n] is an equivalence class, then define the restriction
of s [resp. t] to X, denoted by s ' X [resp. t [ X], to be the set of base pairs (i,j) in s [resp. t]
such that i,j € X. Each path or cycle in A U B can be subdivided into the following five cases.
Each equivalence class can be classified as one of five types of paths, depicted in Figure
described below. For this classification, we need to define End(s,X) = {x € X : t[x] = 0}
and End(t,X) = {x € X : s[x] = 0} — ie. End(s,X) [resp. End(t,X)] is the set of elements
x of X that belong to a base pair in s [resp. t], but the path cannot be extended because x is
not touched by a base pair from ¢ [resp. s]. For each type of path X, we present a (trivial)
algorithm that returns the shortest MS; folding trajectory from s | X to ¢t | X. Additionally,
we determine the relation between the pseudoknotted MS, distance between s [ X and ¢ [ X,

denoted d;fk_ MS, (s,t), as well as the Hamming distance, denoted dﬁ(s,t).

An equivalence class X of size m is defined to be a path of type 1, if m is even, so path length
is odd, and |End(s,X)| = 2. Let by = min(End(s,X)) and for 1 < i < m/2, define a;41 = s[b;] and
b; = t[a;], as shown in Figure[4.3p. A minimum length sequence of MS; moves to transform

s [ X into t | X is given by the following:

Path 1 subroutine
1. remove {b;,/2,am/2} from s
2. for (m/2) — 1 down to 1

3. shift base pair (b;,a;) to (a;,bi+1)

An alternate procedure would be to remove the first base pair {by,a; } and perform shifts from
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left to right. Notice that if m = |X| = 2, then a path of type 1 is simply a base pair with

dX(s,t)

the property that neither i nor j is touched by t. For arbitrary m, d;(k_ Msz(s,t) = #"—. The
. . d3i(s,
Hamming distance dﬁ(s,t) = m, and d;;(k—MSZ (s,t) = m/2, s0 d;i(k—MSz (s,t) = L#J Moreover,

@% s, (s.t) = max(ls 1 XLJ¢ | X]).

An equivalence class X of size m is defined to be a path of type 2, if m is odd, so path length

is even, and |End(s,X)| = 1 |End(t,X)|, and min(End(s,X)) < min(End(t,X)). Let by =

min(End(s,X)) and for 1 < i < |m/2], define a;4; = s[b;] and b; = t[a;], as shown in Fig-
ure [4.3b. A minimum length sequence of MS, moves to transform s | X into ¢ | X is given by

the following:

Path 2 subroutine
1. fori = |m/2] down to 1

2. shift base pair {b;_1,a;} to {a;,b;}

X
The Hamming distance dﬁ(s,t) = m, and d[))(k_Msz(s,t) = |m/2], so d;fk_Msz(s,t) = L#J

Moreover, d;(k_MSz(s,t) =max(]s [ X|, |t [ X]).

An equivalence class X of size m is defined to be a path of type 3, if m is odd, so path length

is even, and |End(s,X)| = 1

|End(t,X)|, and min(End(¢,X)) < min(End(s,X)). Let ay =
min(End(t,X)) and for 1 < i < |m/2], define b; = t[a;—1] and a; = s[b;], as shown in Fig-
ure[4.3c. A minimum length sequence of MS; moves to transform s [ X into ¢t | X is given by

the following:

Path 3 subroutine
1. fori =1to|m/2]

2. shift base pair {b;,a;} to {a;_1,b;}
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The Hamming distance dﬁ (s,t) = m, and pk-MS, distance d;fk—MSz (s,t) = |m/2],s0 d;)(k—MSz (s,t) =

dl){((s,t) dX _
25— 1. Moreover, pk_MSz(s,t) =max(Js [ X|,|t [ X]).

An equivalence class X of size m is defined to be a path of type 4, if m is even, so path length
is odd, and |End(t,X)| = 2. Let a; = min(End(¢,X)) and for 2 < i < m/2, define a;,; = s[b;] and
for 1 < i < m/2, define b; = t[a;], as shown in Figure[4.3d. A minimum length sequence of

MS, moves to transform s [ X into ¢ | X is given by the following:

Path 4 subroutine
l.fori=1tom/2-1
2. shift base pair {b;,a;+1} to {a;,b;}

3. add base pair {am, 2,bm/2}

Notice that if m = 2, then a path of type 4 is simply a base pair (i,j) € t, with the property that

neither i nor j is touched by s. The Hamming distance dﬁ(s,t) = m, and d;)(k—MSz (s,t) = m/2,

dX(s,1)

so d¥ (s,t) = 5

pk—MS,

. Moreover, dX
pk

s, (8:8) = max(ls [ X].[¢ T X]).

An equivalence class X of size m is defined to be a path of type 5, if it is a cycle, i.e. each
element x € X is touched by both s and t. Since base triples are not allowed due to condition
2 of Definition [5.1] cycles have only even length, and so |X] is also even. Let a; = min(X), and
for 1 < i < m/2, define b; = t[a;], and for 2 < i < m/2, define a; = s[b;_1], as shown in

Figure[4.3e. A minimum length sequence of MS; moves to transform s | X into ¢ | X is given

by the following:

Path 5 subroutine
1. remove base pair {b,2,a; }

2.fori=1tom/2 -1
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3. shift base pair {b;,a;+1} to {a;,b;}

4. add base pair {am/2,bm/2}

X
The Hamming distance dﬁ(s,t) = m, and dj))(k—MSZ (s,t) =m/2+1,s0 d;(k_MSz (s,t) = |_dH (ZS’ t)J +1.

X
Moreover, d ok

_MS, (s,t) = max(|s [ X|,|t | X]). Note that any base pair could have initially been

removed from s, and by relabeling the remaining positions, the same algorithm would apply.

In summary, pk-MS, distance between s | X and ¢t | X for any maximal path (equivalence
i . . de(s1X,t1X) . :

class) X is equal to Hamming distance | ===~ |; in contrast, pk-MS, distance between s |

X andt [ X for any cycle X is equal to LMJ +1. It follows that dyx_as,(s,t) = L%S’t)]

if and only if there are no type 5 paths, thus establishing equation (4.19).

Now let By [resp. B;] denote the set of positions of all type 1 paths [resp. type 4 paths] of
length 1 — i.e. positions incident to isolated green [resp. red] edges that correspond to base
pairs (i,j) € s where i,j are not touched by t [resp. (i,j) € t where i,j are not touched by s].
As well, let By designate the set of positions in B not in either B; or B,. Note that B; C B and

B, C B, and that formally

By = B—(B; UBy) (4.9)
Bi ={i€[1,n]: Aj[{i,j} € s,t(i) = 0 = £(j)] (4.10)
B, ={i € [1,n] : Fj[{i,j} € t,s(i) = 0 = s(j)] (4.11)

Note that B; and B, have an even number of elements, and that all elements of B— B; — B, are

incident to a terminal edge of a path of length 2 or more. Correspondingly, define BP; and BP,
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as follows:

BP; ={(i,j) € s : t[i] = 0 = t[j]} (4.12)

BP, = {(i.j) € t : s[i] = 0 = s[j]} (4.13)

Note that |BPy| = |B1|/2 and |BP,| = |B,|/2. The following is a restatement of Lemma [4.9]

Lemma 4.7. Let s,t be two arbitrary pseudoknotted structures for the RNA sequence ay, . . . ,an,
and let X1, . .. . Xy, be the equivalence classes with respect to equivalence relation = on AU By =

[1,n] — By — B, — C — D. Then the pk-MS; distance between s and t is equal to

m
[BP1| + [BPy| + > max (Is P X, It P X;)
i=1

Alternatively, if X1, . . ., X, are the equivalence classes on AU B = [1,n] — C — D, then

dpk-Ms,($;t) = Zmax (Is P Xl It 1 i)

i=1

The formal definitions given below are necessary to provide a careful proof of the relation

between Hamming distance and pseudoknotted MS; distance, discussed above.

Definition 4.8. Let s,t be (possibly pseudoknotted) structures on the RNA sequence ay, . . . ,a,.
For i,j € [1,n], define i ~ j if s[i] = j or t[i] = j, and let = be the reflexive, transitive closure of
~ Thusi=jifi=j,ori=1ij ~ip~ -+~ I, =jforany m > 1. Fori € [1,n], let [i] denote

the equivalence class of i, i.e. [i] = {j € [1,n] : i = j}.

It follows that i = j if and only if i = j, i is base-paired with j, or i is connected to j by a path

with alternating green and red edges. Equivalence classes X with respect to = are maximal
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length paths and cycles, as depicted in Figure Moreover, it is easy to see that elements of
A either belong to cycles or are found at interior nodes of paths, while elements of B are found

exclusively at the left or right terminal nodes of paths.

Note that odd-length cycles cannot exist, due to the fact that a structure cannot contain base
triples — see condition 2 of Definition Moreover, even-length cycles can indeed exist —
consider, for instance, the structure s, whose only base pairs are (1,15) and (5,10), and the
structure ¢, whose only base pairs are (1,5) and (10,15). Then we have the red/green cycle
1—5—> 10 - 15 — 1, consisting of red edge 1 — 5, since (1,5) € ¢, green edge 5 — 10, since

(5,10) € s, red edge 10 — 15, since (10,15) € t, and green edge 15 — 1, since (1,15) € s.

From the discussion before Definition it follows that A in equation consists of the
nodes of every cycle together with all interior (yellow) nodes of paths of type 1-4. Moreover,
we can think of B in equation as consisting of all path end nodes, i.e. those that have only
one incident edge. Let B; C B [resp. B, C B] denote the set of elements of B that belong to
type 1 paths [resp. type 4 paths] of length 1, i.e. positions incident to isolated green [resp.
red] edges that correspond to base pairs (i,j) € s where i,j are not touched by t [resp. (i,j) € t
where i,j are not touched by s]. Let By = B — By — B; be the set of end nodes of a path of length
2 or more. Letting BP; [resp. BP,] denote the set of base pairs (i,j) that belong to s and are
not touched by ¢ [resp. belong to ¢ and are not touched by s], we can formalize the previous

definitions as follows.
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By ={ie[1,n]: Aj[{ij} €s,t() =0 =1t(j)] (4.14)
By ={i € [1,n]: Fj[{ij} € t,5() = 0 = s(j)] (4.15)
By =B—(B; UBy) (4.16)
BPy = {(i,j) € s : t[i] = 0 = t[j]} (4.17)
BP, = {(i,j) € t : s[i] = 0 = s[j]} (4.18)

We proved that pk-MS, distance between s [ X and t [ X for any maximal path X is equal
: . du(sI1X,t1X) . .
to Hamming distance | =~=5-——"]; in contrast, pk-MS, distance between s [ X and ¢ | X for

any cycle X is equal to LMJ + 1. It follows that

d
wd)) (4.19)

dpk—ms,(s:t) = |

if and only if there are no type 5 paths (i.e. cycles). This result justifies ex post facto the use
of Hamming distance in the investigation of RNA molecular evolution [108| [i17]. We also have

the following.

Lemma 4.9. Let s,t be two arbitrary (possibly pseudoknotted) structures for the RNA sequence
ai, . ..,an, and let Xy, ..., X, be the equivalence classes with respect to equivalence relation = on

AU B. Then the pk-MS, distance between s and t is equal to

dpk-is,(s:) = Y max (|s [ Xil. |t 1 Xil)

i=1
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This lemma is useful, since the pk-MS, distance provides a lower bound for the MS, distance
between any two secondary structures, and hence allows a straightforward, but slow (expo-
nential time) branch-and-bound algorithm to be implemented for the exact MS, distance —
pseudocode for the branch-and-bound algorithm is given in Section[4.5.1] To compute pk-MS,
distance, we remove those base pairs in s — t that are not touched by ¢, compute the equiv-
alence classes (connected components) X on the set of positions belonging to the remaining
base pairs (provided that the position does not belong to a common base pair of both s and ?),
then determine for each X a minimum length pk-MS, folding pathway froms [ X tot | X.

The formal pseudocode follows.

Algorithm 1 pk-MS, distance
MS;-path length between two possibly pseudoknotted structures s,t.

1 remove from s all base pairs of BP;

2 numMoves = ||BP,||

3 Q=AUB,

4 while doQ # 0

5 xo = min(Q); X = [xo] > X is equivalence class of xg
6 determine path type of X

7 compute minimum length folding pathway froms [ X tot [ X

8 numMoves = numMoves + max(||s | X||, ||t I X]||)

9 end while

10 add to s all base pairs in BP,
1 numMoves = numMoves + ||BP,||

12 return return numMoves

Straightforward details of how to implement line 7 are given in the five subroutines above. The
principle underlying the reason that Algorithm[i| produces a minimum length (pseudoknotted)
MS, folding trajectory from s to ¢ is that we maximize the number of shift moves, since a single
shift move from {x,y} € s to {y,z} € t corresponds to the simultaneous removal of {x,y} and
addition of {y,z}. We apply this principle in the next section to determine the minimum length

(non-pseudoknotted) MS, folding trajectory from s to t.
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RNA conflict digraph

Throughout this section, we take s,t to be two arbitrary, distinct, but fixed secondary structures
of the RNA sequence ay, . . . ,a,. Recall the definitions of A,B,C,D in equations , so that
A is the set of positions x € [1,n] that are base-paired in both s and ¢, but the base pairs in s
and t are not identical; B is the set of positions x € [1,n] that are base-paired in one of s or t,
but not both; C is the set of positions x € [1,n] that are base-paired in neither s nor ¢, and D is

the set of positions x € [1,n] that are base-paired to the same partner in both s and ¢.

To determine a minimum length MS, folding trajectory from secondary structure s to sec-
ondary structure t we need to maximize the number of shift moves, or equivalently to mini-
mize the number of base pair additions and removals. To that end, note that the base pairs in s
that do not touch any base pair of t must be removed in any MS, path from s to ¢, since there is
no shift of such base pairs to a base pair of ¢ — such base pairs are exactly those in BP;, defined
in equation (4.17). Similarly, note that the base pairs in ¢ that do not touch any base pair of s
must occur must be added, in the transformation of s to t, since there is no shift of any base
pair from s to obtain such base pairs of ¢ — such base pairs are exactly those in BP,, defined in
equation (4.18). We now focus on the remaining base pairs of s, all of which touch a base pair
of ¢, and hence could theoretically allow a shift move in transforming s to ¢, provided that there
is no base triple or pseudoknot introduced by performing such a shift move. Examples of all
six possible types of shift move are illustrated in Figure To handle such cases, we define
the notion of RNA conflict digraph, solve the feedback vertex set (FVS) problem [i19]] by integer

programming (IP), apply topological sorting [[iz5] to the acyclic digraph obtained by removing
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1 z z Y z
(a) Type 1 (b) Type 2 (¢) Type 3
| |
Y : z z 1 z y
| | |
(d) Type 4 (e) Type 5 (f) Type 6

FIGURE 4.4: All six possible shift moves, in which a base pairs of s (teal) that touches a

base pairs of t (red) is shifted, thus reducing the base pair distance dgp(s,t) by 2. Each

such shift move can uniquely be designated by the triple (x,y,z), where y is the pivot

position (common position to a base pair in both s and t), x is the remaining position
in the base pair in ¢, and z is the remaining position in the base pair in s.

a minimum set of vertices occurring in feedback loops, then apply shift moves in topologically

sorted order. We now formalize this argument.

Define the digraph G = (V,E), whose vertices (or nodes) n € V are defined in the following

Definition and whose directed edges are defined in Definition

Definition 4.10 (Vertex in an RNA conflict digraph).

If s,t are distinct secondary structures for the RNA sequence ay, . .. ,a,, then a vertex in the
RNA conflict digraph G = G(s,t) is a triplet node, or more simply, node v = (x,y,z) consisting
of integers x,y,z, such that the base pair {x,y}< = (min(x,y), max(x,y)) belongs to t, and the
base pair {y,z}< = (min(y,z), max(y,z)) belongs to s. Let v.t [resp. v.s] denote the base pair
{x,y}< [resp. {y.z}<] belonging to t [resp. s]. The middle integer y of node v = (x,y,z) is
called the pivot position, since it is common to both s and t. Nodes are ordered by the integer

ordering of their pivot positions: (x,y,z) < (x’,y’,z") ifand only if y < 3y’ (or y = y’ and x < x’,
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ory=y’,x =x",and z < 2’). If v = (x,y,2) is a node, then flatten(v) is defined to be the set

{x,y,z} of its coordinates.

Nodes are representations of a potential shift move, and can be categorized into six types, as

shown in Figure

Definition 4.11 (Directed edge in an RNA conflict digraph).

Base pairs {a,b}< and {c,d}< are said to touch if [{a,b} N {c,d}| = 1; in other words, base
pairs touch if they form a base triple. Base pairs {a,b} and {c,d}< are said to cross if either
min(a,b) < min(c,d) < max(a,b) < max(c,d) or min(c,d) < min(a,b) < max(c,d) < max(a,b);
in other words, base pairs cross if they form a pseudoknot. There is a directed edge from node
ny = (x1,41,21) to node ny = (x2,y2,22), denoted by (ny,n,) € E or equivalently by n; — n,, if (1)
|flatten(ny) N flatten(ny)| < 1, or in other words if n; and n, overlap in at most one position,
and (2) the base pair {y1,z1} < € s from n; either touches or crosses the base pair {x,,y,}< € ¢

from n,.

Note that if the base pair {y1,z1}< € s from n; touches the base pair {x,y,}< € t from ny, then
it must be that z; = x;; indeed, since each pivot node y; [resp. y,] belongs to a base pair of both
s and ¢, it cannot be that z; = y, (because then {y;,z; } < € s and {y2,22} < € s would form a base
triple in s at z; = y,), nor can it be that y; = x, (because then {x;,y;}< € t and {x2,y2}< € ¢t
would form a base triple in ¢ at y; = x7). Note as well that if ny = (x1,y1,21) and ny = (x2,12,22)
are triplet nodes, then |flatten(n;) N flatten(ny)| = 1 implies that either n;y — ny or ny — n;.
Indeed, if there is a common element shared by n; and n;, then it cannot be a pivot element,
since s and ¢ cannot have a base triple. For the same reason, the common element cannot

belong to the base pairs {x1,y; } € t of ny and {x3,y,} € t of n, (otherwise t would contain a base
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triple), nor can the common element belong to the base pairs {y1,z1} € s of n; and {y;,z2} € s
of n, (otherwise s would contain a base triple). It follows that either {x1,y;} N {y2,22} # 0, or
{x2,42}N{y1,21} # 0. From the assumption that | flatten(n;)N flatten(n,)| = 1, this implies that
either ny — ny or that ny — n,, but not both. Finally, note that if ny = (x1,y1,21), n2 = (x2,42,22)
and |flatten(ny) N flatten(n,)| = 2, then there are exactly three possibilities, all of which can

be realized:

1. ni.t = ny.t, so that {x1,y1} = {x2,y.}, as in the example (1,5) € s, (10,15) € s, (5,10) € t,

ng = (10’5’1)3 n; = (5’10’15)3

2. n1.s = ny.s, so that {y;,z1} = {y2,22}, as in the example (1,5) € ¢, (10,15) € ¢, (5,10) € s,

ny = (1,5,10), ny = (15,10,5);

3. {x1,21} = {x2,22}, as shown in Figure This latter example will be called a closed

2-cycle.

Our first definition of directed edge n; — n, of conflict digraph did not require that n; and n,
overlap in at most one position, hence would would have had n; — n, and n, — ny in each of
the three previous cases where |flatten(n;) N flatten(n,)| = 2. By adding the (subtle) technical
requirement that |flatten(n;) N flatten(n,)| < 1, we obtain far fewer directed cycles in conflict
digraphs according to the current definition, so obtain a 10-fold speed-up in run time for the

optimal IP Algorithm. Below is the notion of RNA conflict digraph edge.

Definition 4.12 (Conflict digraph G = (V,E)). Let s,t be distinct secondary structures for the

RNA sequence ay, . . .,a,. The RNA confict digraph G(s,t) = (V(s,t),E(s,t)), or G = (V,E) when
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\ /
(a) Closed 2-cycle A (b) Closed 2-cycle B

FIGURE 4.5: Two types of closed 2-cycles. (a) RNA conflict digraph G = (V,E) for
secondary structures t and s, where a; < a; < as < a4 and t = {(a1,az), (a3,a4)}, and
s = {(a1,a4), (az,a3)}. Nodes of V' = {vy,v2,03,04} are the following: v; = (a1,a2,a3)
of type 1, vy = (as,as,a1) of type 5, v3s = (az,a;,a4) of type 4, and vy = (a4,a3,a2) of
type 2. (b) RNA conflict digraph G = (V,E) for secondary structures t and s, where
a1 < ay < az < aq and t = {(ar,a4),(az,a3)} and s = {(ay,a,), (as,as)}. Nodes of
V = {v1,02,03,04 } are the following: vy = (a1,a4,a3) of type 6, v, = (a4,a1,a,) of type 3,
v = (az,as,aq) of type 1, vy = (as,az,a;) of type 2. Since the overlap between any two
distinct vertices in (a) and (b) is 2, there are no edges in E for the conflict digraphs
of (a) and (b). An optimal trajectory from s to ¢ is constructed by removing a base
pair from s, performing a shift, and adding the remaining base pair from t. In each
case there are 2 choices for the base pair to remove and two choices for the shift, so 4

optimal trajectories for each of (a) and (b).

s,t are clear from context, is defined by

V ={(xy,2) : x,y,z € [L,n] A{x,y} € t A{y,z} € s} (4.20)

E= {(n1,n2) tny = (x1,Y1,21) € V A ng = (x2,y2,22) € VA
|flatten(ny) N flatten(ny)| < 1 A (21 =xV
([min(yl,zl) < min(xz,Y) < max(y1,z1) < max(xz,yz)] v

[min(x2,y2) < min(y;,z1) < max(xz,y2) < max(y;,z1)] )} (4.21)

The set of directed edges of conflict digraph G = (VE), as defined in Definition [4.12] establishes
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a partial ordering on vertices of V with the property that n; — nj holds for vertices ny = (x,y,z),
ny = (u,v,w) if and only if (1) n; and n, overlap in at most one position, and (2) when shift
move n, is applied, shifting {v,w} € s to {u,v} € t, the base pair {u,v} either touches or crosses
the base pair {y,z} € s in n;. It follows that if n; — ny, then the shift move in which {y,z} € s
shifts to {x,y} € t mustbe performed mz the shift move where {v,w} € s shifts to {u,v} € ¢
- indeed, if shifts are performed in the opposite order, then after shifting {v,w} € s to {u,v} € ¢

and before shifting {y,z} € s to {x,y} € t, we would create either a base triple or a pseudoknot.

As mentioned, in our initial definition we did not require that n; and n; overlap in at most
one position, which led to the existence of many more directed cycles in conflict digraphs than
is the case with the current Definition By including the requirement that |flatten(n;) N
flatten(ny)| < 1, there is a drastic reduction in the number of directed cycles, hence a huge re-
duction in run time to generate all simple cycles and in the run time to solve the corresponding

integer programming problem.

MS, distance between secondary structures

In this section, we present an optimal integer programming (IP), branch and bound and greedy
algorithms to compute the MS, distance between any two secondary structures s,t, i.e. the

minimum length of an MS; trajectory from s to t.

As in the previous section, our goal is to maximize the number of shift operations in the MS,

trajectory, formalized in the following simple theorem, whose proof is clear.

Theorem 4.13. Suppose that the MS, distance between secondary structures s,t is k, i.e. base pair

distance dgp(s,t) = |s — t| + |t — s| = k. Suppose that € is the number of shift moves occurring in a
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minimum length MS, refolding trajectory s = $,51, . ..,Sm =t froms tot. Then the MS, distance

between s and t equals

dus,(s,t) =€+ (k=20)=k-¢ (4.22)

Our strategy will now be to use a graph-theoretic approach to maximize the number of shift

moves.

Branch-and-bound algorithm

In algorithm [2| we describe a branch-and-bound algorithm to compute the minimum length
folding trajectory and MS, distance from s to t, where s,t are distinct secondary structures
of RNA sequence ay, . ..,a,. Base pair removals, shifts and additions are repeatedly applied
to s until the (possibly pruned) search space is traversed and the best solution is found. Data
structure state = {s,t,d,lb,rm,ad,sh} stores local information for each state in the search space.
Specifically, for current state cs, the local values for secondary structures s and ¢t are stored
respectively in cs.s and cs.t. Similarly, cs.d is the number of moves performed on the ini-
tial values s,t to obtain current values cs.s,cs.t, and cs.lb is a lower bound for the length of a
folding trajectory from s to ¢, that passes through the node cs. Finally, cs.rm, cs.sh, cs.ad are

respectively the lists of base pair removals, additions and shifts to transform s,t into cs.s, cs.t.

In lines 1-5, input structures s,t are stored in sy,ty, while updated structures s [resp. t] are
obtained from s, [resp. fy] by removing those base pairs in s [resp. t] that are not touched by ¢
[resp. s], as well as those base pairs that are common to both s and ¢; i.e. s = s — BP; — (so N tp),

and t = ty — BP, — (sg N tp). A depth-first-search tree is defined, whose nodes are states, where



Minimum length RNA folding trajectories 122

state is a data structure containing fields s,t,dist,Ib,rm,ad,sh. For instance, if cs is the node
or current state under consideration, then cs.s and cs.t are local copies of (currently modified)
structures s,t; cs.dist is the MS, distance from the input structures sy and £, to the local copies of
(currently modified) structures cs.s and cs.t; cs.lb is a lower bound for shortest MS, path from
so to ty that passes through current state cs given by cs.lb = cs.dist + pk-MSy(cs.s,cs.t); cs.rm,
cs.ad and cs.sh are respectively lists of base pair removals, additions and shifts to transform s
to cs.s and tj to cs.t. In line 7, global variable best holds the current value for the length of a

shortest MS, folding trajectory from s, to t.

In lines 30-54, removals and shifts are applied to each current state, cs, such that after shifting
base pair {x,y}< € cs.s to base pair {y,z}< € cs.t, the pairs {x,y}< and {y,z}< are removed
respectively from cs.s and cs.t. After each removal or shift, a lower bound is computed for
the length of a shortest MS, path from s to ¢ that passes through current state cs. This lower
bound is equal to the number of moves performed so far, cs.dist, plus the pk-MS, distance
from cs.s to cs.t (allowing pkseudoknots). If this (optimistic) MS;, distance is greater than
the best value obtained so for for MS,, then the subtree rooted at cs is pruned. Additionally,
the order of visitation of states in the search space is based on their computed lower bound.
States with smaller lower bounds are more likely to be located on the optimal path. This is
accomplished using a priority queue, where states with smaller lower bound appear at the top
of the queue. Finally, after repeated base pair removals and shifts, either cs.s or cs.t will have
been transformed into the empty structure () containing no base pairs. The final, optimal MS,
folding trajectory is then obtained by adding [resp. removing] the remaining base pairs in cs.t
[resp. cs.s] to cs.s [resp. cs.t]. This situation is handled in lines 15-21 [resp. lines 22-28], where

the solution is returned in global variable sol.
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Algorithm 2 Branch-and-bound algorithm for MS, distance
Input: Secondary structures s,t for RNA sequence ay, . . . ,an
Output: Shortest folding trajectory from s to ¢t and MS, distance

1

2

(=)W, B N OV ]

20
21
22
23
24
25
26
27
28
29
30
31
32

BP; is the set of base pairs (i, j) € s that are not touched by ¢

BP;, is the set of base pairs (i, j) € ¢ that are not touched by s

BP; = s Nt is the set of base pairs common to both s and ¢

So =S;8$=5s— BP; — BP; > 5o is original s; remove base pairs in BP; U BP; from s
to=t;t =t— BP, — BPs > to is original t; remove base pairs in BP, U BP; from t
define data structure state = (s,t,dist,lb,rm,ad,sh) for nodes in search tree

> ¢s.s, cs.t are current local copies of (modified) structures s,t

> cs.dist is MS, distance from initial values of sy, to c¢s.s,cs.t

> cs.lb = cs.dist+ pk-MS,(cs.s,cs.t) lower bound for shortest MS, path from sg to t, that passes
through cs

> cs.rm, cs.ad, and cs.sh are lists of removals, additions and shifts to transform s, into cs.s,cs.t

> global variable sol is the data structure state() for the solution

best = MS; distance between s, and £, > largest possible MS, distance

Ib = pk-MS;(s,t) + numMoves > lower bound allowing pk from s to ¢
root = (s,t,numMou