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ABSTRACT

Mixtures of charged particles, where the components have different charge numbers

(ZA), masses (mA) and densities (nA), with A = 1, 2 denoting the components,

occur in Nature in a great variety. To be sure, even the simplest plasmas are neces-

sarily multicomponent systems, consisting of negative and positive charges. This

feature is, however, obscured within the centrally important and popular OCP

(one component plasma) or jellium models, where the role of one of the compo-

nents is reduced to providing a neutralizing background. When this background

is inert, one is led to the Coulomb OCP model, while when the background is

polarizable (such as an electron gas surrounding heavy particles), to a Yukawa

OCP (YOCP), with a screened Yukawa potential replacing the Coulomb poten-

tial between the dynamically active particles. There are, however situations of

physical importance, where the OCP description is inadequate and a genuine two

component description of a plasma composed of two species is required.

This Thesis focuses on the study of the dynamics of many-body systems con-

sisting of two components of like charges (all the ZA-s being of the same sig-

nature) in a neutralizing background. The methodology is based upon parallel

attacks through theoretical analysis and Molecular Dynamics (MD) simulations,

the latter yielding the capability of instant verification of the former. The investi-

gation involves the study of the partial (i.e. species by species) structure functions
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SAB(k, ω) and current-current correlation functions LAB(k, ω). The Fluctuation–

Dissipation Theorem (FDT) connects these quantities to the total and partial re-

sponse functions χAB(k, ω) (matrices in species space), which are instrumental in

the description of the collective mode excitations of the system. This analysis has

revealed an entirely novel feature: both S11(k, ω) and S22(k, ω) exhibit very sharp

and deep (several orders of magnitude) minima in the strongly coupled liquid phase

at robust characteristic frequencies of the system, which are virtually coupling in-

dependent. The FDT then demands that these anti-resonances show up as well in

the imaginary part of the partial density response function χAB(k, ω). Our the-

oretical analysis, based on the Quasi-Localized Charge Approximation (QLCA),

has confirmed that this is indeed the case. These anti-resonant frequencies being

related to the dissipative part of the response, require a physical description of the

principal source of dissipation. This has been identified as the inter-species mo-

mentum transfer, governed by drag between the microscopic current fluctuations

of the two species. The description of this effect was incorporated in the QLCA

formalism, making it possible to derive a closed analytic representation of the fluc-

tuation spectra in the frequency domain of interest and compare them with the

results of the MD simulations. Other important novel concepts, such as the idea of

coupling dependent effective mass, fast vs. slow sound, the mechanism of transi-

tion from short-range to long-range interaction have been identified and analyzed.

Furthermore, the investigation of the dynamics has led to the first comprehen-

sive description of the mode structures of classical binary Coulomb and Yukawa

mixtures at arbitrary coupling values, which has been a longstanding problem in

statistical plasma physics. Focusing on the longitudinal excitations, we describe

the transition from weak coupling (where one is acquainted with the RPA result

yielding only the single plasmon mode in the Coulomb case or a single acoustic

mode in the Yukawa case) to strong coupling, with a doublet of modes that arise
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from the complex relative motion between the two components, as affected by the

interaction with the background.
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CHAPTER I

Introduction

Plasma has a very broad definition, in the words of Harold Grad “A plasma

is any electrically conducting medium whose electrical properties are sufficiently

pronounced to react back on an external field. There is no end of materials that

fit this description.” (Grad, 1969). It is in the same of article that he coins the

famous phrase that 99% of matter in the universe is in the plasma state. Another

well known definition of plasma is the “Fourth State of Matter” and has been

known as such since the beginning of the 19th century (Jones, 1870). The Fourth

place, with the first three being solid, liquid, and gas, is due to the observation

that a gas heated to very high temperatures exhibits new interesting properties.

Early researchers suggested that these systems were “the ultimate result of gaseous

expansion” (Crookes, 1880; Crookes, 1879), e.g. a state in which the constituent

particles are free and don’t collide with each other. In technical terms, the mean

free path of the particles is much longer that the size of the containing volume.

This idea of a collisionless system was not too far fetched as it was shown in the

following century by Vlasov. Concomitantly with the discovery of these new sys-

tems was the development of electromagnetic theory which lead to question the

nature of these systems. Where they composed of matter or a manifestation of the

aether? It can be said that the conclusive answer was presented by J. J. Thompson
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in 1897 who demonstrated that cathode rays were a collection of electrical parti-

cles and as such subject to electric and magnetic fields (Thomson, 1897). Thus,

by the end of the 19th plasmas had obtained the definition given by Grad, but

not their name yet. The word “plasma”, in fact, was still used in connection to

blood and it was Nobel Laureate Irwing Langmuir in 1929 who instead used it to

denominate many-body systems of charged particles (Tonks, 1967).

1.1 Background: The One Component Plasma

Although, plasmas are necessarily multi-component systems composed by at

least by two types of particles distinguished by their charge, their behavior, can,

to first approximation, be described as a single component system. The simplest

example is that of metals where the large mass difference between ions and elec-

trons allows one to consider the dynamics of only one of the two while the other

one is reduced to providing a neutralizing background. This model is commonly

referred to as the One Component Plasma (OCP) if the dynamical particles are

the ions, or “jellium” in the case of electrons.

Furthermore, plasmas are classified based on the strength of the interaction be-

tween the constituent particles. The coupling parameter is defined as the ratio of

the average potential energy over the average kinetic energy of the particles and

it is indicated by Γ (see below for the defining equation). Plasma with Γ � 1

are considered weakly coupled, Γ ∼ 1 moderately coupled and Γ > 10 strongly

coupled. Therefore, we have that plasmas at high temperatures and low number

densities, as those produced in laboratory environments and in the sky during

aurora borealis, are considered weakly coupled, while those with large number

densities, as those found in the core of white dwarfs or the crust of neutron stars,

are strongly coupled.
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The OCP model has been a favourite of statistical physics for its defining charac-

teristic: the long-range interaction between particles. The prominent properties

of the OCP have been uncovered during the past decades via both theoretical and

numerical studies (Baus and Hansen, 1980). The thermodynamic properties, pair

correlations and the onset of crystallization of the system at a high coupling were

first studied by Brush et al. using Monte Carlo simulations (Brush, Sahlin, and

Teller, 1966). The crytallization temperature (coupling) has been refined in sub-

sequent studies (e.g. (Slattery, Doolen, and DeWitt, 1980; Stringfellow, DeWitt,

and Slattery, 1990)) that came up with values converging to Γc
∼= 175. Equilib-

rium, transport, and dynamical characteristics of the OCP have been investigated

by Hansen et al. in a series of Monte Carlo and Molecular Dynamics (MD) simula-

tions (Hansen, 1973; Pollock and Hansen, 1973; Hansen, McDonald, and Pollock,

1975). Further advancements of computational resources has allowed for a more

accurate determination of the above mentioned quantities and recent high perfor-

mance computations provided accurate data for the self-diffusion coefficient (Dali-

gault, 2012) and the shear viscosity (Daligault, Rasmussen, and Baalrud, 2014).

Besides these, computer simulations have also given access to studies of the be-

havior of individual particles. In particular, the “caging”, or “quasi–localization”,

of the particles was identified and quantified by Donkó and collaborators in early

2000 (Donkó, Kalman, and Golden, 2002; Donkó, Hartmann, and Kalman, 2003).

Daligault subsequently connected this behavior to particle diffusion and showed

that it is the root of some of the properties of the OCP in the liquid phase at Γ

values exceeding ∼ 50 (Daligault, 2006).

While all these studies have been motivated by the understanding of the strongly

coupled (Γ > 10) domain, studies of the dynamical properties of plasmas were,

actually, started much earlier, with the research by Lewi Tonks and Irving Lang-

muir (Tonks and Langmuir, 1929), who observed that the electron density, in a
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low ionization degree plasma (which corresponds to an OCP with Γ → 0), under-

goes oscillations just like an harmonic oscillator with a characteristic frequency

(the “plasma frequency”). This discovery presented interesting challenges from

a theoretical perspective since these new phenomenon could not be explained by

kinetic theory of gases. Only ten years after Tonks and Langmuir discovery Ana-

toly A. Vlasov showed that plasma particles are better described by a collisionless

Boltzmann equation with an effective force created by the average electric field.

The long range character of the Coulomb potential is the crucial element for the

finite frequency density oscillations at infinite wavelengths (Vlasov, 1938; Vlasov,

1967). The importance of Vlasov intuition can only be understated because since

then force will be classified as long-range or short-range.

The collisionless picture was later completed by the mathematical genius of Lev D.

Landau, who showed that the plasma oscillations are damped by particle-wave in-

teraction, the so called Landau damping. The idea to associate plasma oscillations

with “collective excitations” was proposed by Bohm, Gross and Pines (Bohm and

Gross, 1949a; Bohm and Gross, 1949b; Pines and Bohm, 1952; Bohm and Pines,

1953), and it was also Bohm and Gross (BG) (Bohm and Gross, 1949a; Bohm and

Gross, 1949b) who determined the wave number (k) dependent positive dispersion

of such oscillation (“plasmon”), caused by the thermal motion of the particles.

The first reliable results for the collective excitations in the strongly coupled do-

main were obtained by MD simulations of Hansen et al. (Hansen, McDonald,

and Vieillefosse, 1979), who also verified the change of the positive slope of the

dispersion curve at low coupling to a negative slope, the hallmark phenomenon

of strong coupling which was already predicted theoretically (Kalman, Kempa,

and Minella, 1991; Felde, Sprösser-Prou, and Fink, 1989; Singwi, Sjölander, et al.,

1969; Vashishta and Singwi, 1972).

In conclusion, the OCP model and its short range couterpart, the nominal Yukawa
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OCP, have been extensively studied and most of the interesting physics has been

addressed. The Yukawa OCP, in particular, has seen a resurrection in recent years

due to the wealth of experimentally available systems that can be modeled by it.

Some of the most important are Ultracold Neutral Plasmas (UNP) (Killian et al.,

2007; Strickler et al., 2016), Complex “Dusty” Plasmas (Merlino and Goree, 2004;

Fortov et al., 2005; Morfill and Ivlev, 2009), and Warm Dense Matter (WDM)

(Glenzer, Landen, et al., 2007; Glenzer and Redmer, 2009; Murillo, 2010; Gericke

et al., 2010; Höll et al., 2004; Murillo, 2010; Thiele et al., 2008).

1.2 Binary Mixtures

Binary Mixtures, i.e. plasmas composed by two positive ions species and a

negative electron background, are still an open research field. The most impor-

tant example of strongly coupled plasmas are found in astrophysical systems. The

core of white dwarfs is thought to be a mixture of completely ionzed Carbon and

Oxygen atoms (Bildsten and Hall, 2001; Horowitz, Schneider, and Berry, 2010;

Schneider et al., 2012; Hughto et al., 2012; Giammichele et al., 2018), the outer

layer of the crust and the ocean of the neutron star are a multi-ion strongly cou-

pled plasma surrounded by an ultrarelativistic degenerate electron gas (Brown,

2000; Peng, Brown, and Truran, 2007). Hence an investigation of the dynamics of

plasma mixtures is in need. Furthermore, as it will be shown in this thesis, such

systems exhibit novel physical effects, which have no equivalent in OCP systems.

On the static equilibrium level, the issues of a) miscibility of the different com-

ponents as functions of the various system parameters and of the temperature,

b) competing liquid-solid phase transitions, c) the existence of ordered phases and

d) the behavior of disordered phases e) thermodynamics and transport properties

are in the forefront of interest (DeWitt, 1994; Igarashi and Iyetomi, 2003; Igarashi,

Nakao, and Iyetomi, 2001; Ichimaru, Iyetomi, and Ogata, 1988). The latter is of
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special interest as stages of inertial confinement fusion are considered strongly

coupled and a precise determination of transport properties is necessary for the

achievement of ignition (Atzeni and Meyer-ter-Vehn, 2004; Haxhimali et al., 2014;

Haxhimali et al., 2015; Whitley et al., 2015; Stanton and Murillo, 2016; Ticknor

et al., 2016; Diaw and Murillo, 2016).

On the dynamical level research has focused on the matrix of partial dynamic

structure function (DSF) SAB(k, ω) and its longitudinal and transverse current

correlation counterparts LAB(k, ω) and TAB(k, ω). The frequency spectrum of

strongly coupled binary mixtures has been a longstanding problem in statisti-

cal plasma physics. At weak coupling one is acquainted with the Vlasov result

that yields the combination of the plasma frequencies of the two ionic species.

Early MD simulations on binary Coulomb mixtures, performed by Hansen et al.

(Hansen, McDonald, and Vieillefosse, 1979) showed that at strong coupling the

longitudinal spectrum was again governed by one collective mode shifted to higher

frequencies than the low coupling value. The observed higher frequency was ini-

tially identified as the hydrodynamic plasma frequency, i.e. the plasma frequency

obtained by the average charge and average mass of the two components. Baus

(Baus, 1977a; Baus, 1977b; Baus, 1977c; Baus, 1978), instead, suggested that

the shift was due to a term proportional to the coupling parameter. However, in

both cases discrepancies between MD and theory were observed. On the other

hand Kalman and Golden proposed that the spectrum was characterized by two

plasmon modes that arises from the complex relative motion between the two

components (Kalman and Golden, 1990; Golden and Kalman, 2000; Golden and

Kalman, 2001). The predicted high frequency mode showed good agreement with

simulations, but the absence of the second low frequency mode cast doubt on

the entire formulation. The existence of this mode was only recently confirmed

by MD simulations (Kalman, Donkó, et al., 2014). In this same work Kalman
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et al. suggested that the low frequency mode comes from the acoustic mode of

a binary mixture whose particles interact via a short–range potential. They ar-

gued that as the long range interaction is turned on the acoustic mode acquires a

mass by means of the Anderson mechanism (Anderson, 1963) to become the low

frequency plasmon observed in binary Coulomb mixtures. How the low coupling

single plasma frequency morphs into the strong coupling doublet as the system

moves as a function of the increasing coupling parameter Γ , from the gaseous to

the strongly coupled liquid phase, remains an intriguing question.

We arrive, then, at the topic of this thesis: the study of the Dynamical Struc-

ture Functions of Binary plasma mixtures via theoretical models and computer

simulations. The rest of the Thesis is structured as follows: in the rest of this intro-

ductory Chapter I define the relevant parameters and equations used throughout

the Thesis. The Chapter is concluded with Sec. 1.5 in which I give a brief descrip-

tion of the computational methods. The next Chapter introduces in more details

the main theoretical model and its extension to address the dissipation in strongly

coupled binary mixtures. Theory and simulations results are then presented for

three systems: Binary mixtures of charged particles interacting via a Coulomb

potential (BIM) in Chap. III, binary mixtures of charged particles interacting via

a Yukawa potential (YBIM) in Chap. IV, and mass-asymmetric electronic bilayers

in Chap. VI.

1.3 Definition of Parameters

Consider a plasma composed of two species of ions, N = N1 +N2 with charge

number ZA, masses mA enclosed in a volume V , total density n0 = N/V . The

ions are surrounded by a rigid negative background that ensures charge neutrality

Z1en1 +Z2en2 − ene = 0, with e > 0 being the electric charge and ne the density.

The concentrations of each species are given by cA = NA/N . The average of a
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physical parameter, O, is indicated by 〈Oα〉 =
∑

AOαAcA. The average charge

number is

Zav = 〈Z〉 = Z1c1 + Z2c2, (1.1)

average mass

mav = 〈m〉 = m1c1 +m2c2. (1.2)

The entire system is at equilibrium temperature T (β = 1/(kBT )). The Debye

length and of ion species A

λD,A =
√

4πnAβ, µA = (λD,A)−1 (1.3)

The plasma parameter is defined as the number of particles in a Debye sphere. In

the case of an OCP/electron gas it is denoted by

Λ =
4π

3
neλ

3
D, (1.4)

1 Plasmas with many particles within the Debye sphere, Λ � 1, are considered

weakly coupled while plasmas with Λ � 1, with a Debye sphere sparsely popu-

lated, are considered strongly coupled. This idea is readily extended to binary

mixture where

ΛB =
(µ2

1 + µ2
2)3/2

4πn0

. (1.5)

The above definitions are mostly used in the weakly coupled plasma literature

since λD is the relevant length scale. When the correlations between particles

become dominant, instead, the Ion–Sphere model proposed by Edwin Salpeter, in

his work on nuclear reactions in the interior of stars, becomes more appropriate

(Salpeter, 1954). In this case positive ions, strongly repel each other so to create

1In old literature the letter γ is used instead of Λ. However, I will use γ for describing
collisional damping later on. Ichimaru uses ND in his textbook (Ichimaru, 2004a).
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a region around themselves where no other ion can be found, e.g. they create a

Coulomb hole. The relevant length scale becomes then the average interparticle

distance, aka the Wigner-Seitz (WS) radius, which, in the case of ions, we define

as

a3 =
3

4πn0

, (1.6)

and in the case of electrons as

a3
e =

3

4πne
. (1.7)

. Using the above equation we define the ion coupling parameter of species A as

ΓA =
(ZAe)

2β

aA
, a3

A =
3

4πnA
. (1.8)

The effective coupling parameter of the mixture is then given by an average of the

single species coupling parameters

Γeff = c1Γ1 + c2Γ2, (1.9)

which, by rewriting aA = a (Z/Z 〈Z〉)1/3, leads to

Γeff = 〈Z5/3〉 〈Z〉1/3 Γion (1.10)

where

Γion =
e2β

a
. (1.11)

In order to be complete the we give the relation between ΛB and Γion

ΛB =
(3Γion)3/2

3
. (1.12)
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The coupling parameter Γion is the parameter used in the computer simulations

presented in this Thesis. The above equations show that Γion < Γeff, however, this

difference does not play an important role for the purpose of this research because

the computer simulations span a wide range of parameters. The purpose of this

research is to study the strong coupling effects on the mixture’s dynamics and not

the determination of a critical value of the coupling parameter, Γc.

The electron coupling parameter is defined similarly as

Γe =
e2

aekBT
= 〈Z〉1/3 Γion. (1.13)

However, a more appropriate coupling parameter for the electrons is

rs = ae/a0 (1.14)

where a0 = ~2/(mee
2) is the Bohr radius. This parameter depends entirely on the

electron density; high (low) electron density leads to rs � 1 (rs � 1) and the

electrons are considered weakly (strongly) coupled. For the sake of completeness

we define Fermi wavenumber

kF =
(
3π2ne

)1/3
, (1.15)

the electron degeneracy parameter

Θ =
kBT

EF
, EF =

~2k2
F

2me

, (1.16)

and the relativistic parameter

xF =
~kF
mec

. (1.17)
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Electron liquids with Θ � 1 indicate a completely degenerate quantum electron

gas in which the thermal deBroglie wavelength is much greater than the mean in-

terparticle distance (i.e. the electrons’ wavefunctions overlap over large distances).

The relativistic parameter indicate whether the electrons have to be considered

relativistic xF ≈ 1 or not xF � 1. This parameter is usually found in astrophys-

ical systems where the large mass of stars implies a high electron density hence

xF ≈ 1. In particular, white dwarfs close to the Chandrasekar limit reach xF > 1

and in this case the electrons become ultrarelativistic. In the limit xF → ∞ the

coupling parameter rs → e2/~c ' 1/137 (Hartmann, Kalman, et al., 2009). The

electrons in the mixtures considered in this Thesis form a completely relativis-

tic degenerate quantum gas i.e. rs � 1, θ � 1, xF ≈ 1, therefore we neglect

electron–ion interaction.

1.4 Statistical Mechanics Background

In this section we give formulas for the calculation of the relevant quantities.

Neglecting the effects of the electronic background the ion-ion interaction Hamil-

tonian is

Hii =
1

2V

∑
k 6=0

φ(k)
[
ρ(k)ρ(−k)−N 〈Z2〉

]
(1.18)

where

ρ(k) =
∑
A

ZAnA(k), (1.19)

is the charge density operator and

φ(k) =
4πe2

k2
(1.20)
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the Fourier transform of the Coulomb interaction. The number density operator

of each ion species is

nA(r, t) =

NA∑
i

δ[r− xi(t)], nA(k) =

NA∑
i

e−ik·xi(t) (1.21)

and respective perturbation from the equilibrium density nA = NA/V

δnA(r, t) = n(r, t)− nA, δnA(k, t) = nA(k, t)−NAδk, (1.22)

and δk the Kronecker delta.

The focus of this research is on the species matrix of partial Dynamical Structure

Functions, SAB(k, ω). These are calculated from the Fourier transform of the

density correlation functions

SAB(k, ω) =
1

√
nAnB

1

2π

∫
dτ

∫
dr 〈nA(x + r, t+ τ)nB(x, t)〉 e−ik·reiωτ , (1.23)

where the brackets 〈·〉 indicate an ensemble average with the unperturbed Hamil-

tonian of eq. 1.18. The static structure functions are calculated by integrating

over the entire frequency spectrum

SAB(k) =

∞∫
−∞

dωSAB(k, ω), (1.24)

which is related to the pair correlation function hAB(k)

SAB(k) =
1√

NANB

〈nA(k)nB(−k)〉 (1.25)

= δAB +
√
nAnBhAB(k). (1.26)
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hAB(k) is the Fourier transform of the pair correlation function hAB(r) = gAB(r)−

1. Notice that SAB(k, ω) and SAB(k) have been defined with respect to particles

numbers NA and not the total number N , as found in textbooks Hansen and

McDonald, 2013; Ichimaru, 2004a; Ichimaru, 2004b. The reason for this is because

eqs. (1.23)–(1.26) are what is calculated in computer simulations.

SAB(k, ω)’s and their static counterparts are proportional to the differential cross-

section obtained from inelastic scattering experiments (Hansen and McDonald,

2013). In a mixture, scattering experiments are unable to distinguish between

particles species and give information about the entire liquid. Fortunately, linear

combinations of the partial DSF lead to total DSF. The charge density

SZZ(k, ω) = 〈ρ(k, ω)ρ(−k, ω)〉 /N (1.27)

can be rewritten as

SZZ(k, ω) = Z2
1c1S11(k, ω) + Z2

2c2S22(k, ω) + 2Z1Z2

√
c1c2S12(k, ω), (1.28)

the mass density as

SMM(k, ω) = m2
1c1S11(k, ω) +m2

2c2S22(k, ω) + 2m1m2

√
c1c2S12(k, ω). (1.29)

In particular, the normalized charge density structure factor as

S̃ZZ(k) =
1

N 〈Z2〉
〈ρ(k)ρ(−k)〉 (1.30)

=
1

N 〈Z2〉
∑
A,B

ZAZB
√
cAcBSAB(k) (1.31)
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in the long-wavelength limit has to behave as

S̃ZZ(k) =
k2

µ2
1 + µ2

2

+O(k4) =
(ka)2

3Γ 〈Z2〉
+O(k4). (1.32)

This follows from charge neutrality and perfect screening condition 2 (Hansen,

McDonald, and Vieillefosse, 1979; Baus and Hansen, 1980).

In the case of Binary Yukawa Mixtures we will also consider the total DSF

SNN(k, ω) = c1S11(k, ω) + c2S22(k, ω) + 2
√
c1c2S12(k, ω). (1.33)

and concentration DSF

SCC(k, ω) = c1c2 [c2S11(k, ω) + c1S22(k, ω)− 2
√
c1c2S12(k, ω)] (1.34)

as suggested by (Bhatia and Thornton, 1970; Bhatia and Thornton, 1971; Bhatia,

Thornton, and March, 1974).

Additionally, we define the correlation function of the longitudinal microscopic

velocities as

LAB(k, ω) = 〈V (L)
A (k, ω)V

(L)
B (k, ω)〉 , (1.35)

and transverse microscopic currents

TAB(k, ω) = 〈V (T )
A (k, ω)V

(T )
B (k, ω)〉 , (1.36)

where

V
(L)
A (k, t) =

NA∑
i

k · vie−ik·xi(t), V
(T )
A (k, t) =

NA∑
i

k× vie
−ik·xi(t). (1.37)

2any external charge introduced in the plasma will be completely screened at large distances
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From the above equations and the continuity equation for the number density we

find the relations between LAB(k, ω) and SAB(k, ω)

LAB(k, ω) =
ω2

k2
SAB(k, ω). (1.38)

For the sake of completeness we mention another important quantity used in the

study of liquids is the velocity auto–correlation function for species A

ZA(t) = 〈vA(t) · vA(0)〉 , (1.39)

where vA(t) is the velocity of a selected particle of species A and the brackets 〈·〉

indicate and equilbrium ensemble average. It is related to the diffusion coefficient

of species A via a Green–Kubo integral

DA =

∞∫
0

dtZA(t), (1.40)

and its t = 0 value is

ZA(0) =
kBT

mA

. (1.41)

In the case of mixtures we can define an inter–diffusion coefficient D12 as done in

(Haxhimali et al., 2014),

D12 =
ℵ

3Nc1c2

∞∫
0

dt 〈jint(t)jint(0)〉 , (1.42)

where the inter–species current jint(t) is given by

jint(t) = c2

N1∑
j

vj − c1

N2∑
j

vj, (1.43)
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and the prefactor ℵ

ℵ ≡ lim
k→0

c1c2

SCC(k)
= c1c2

[
∂2(βG/N)

∂c2
1

]
P,T

, (1.44)

with G being the Gibbs free energy. These quantities have not been investigated in

the research presented in this Thesis because the main interest was on the dynami-

cal properties and not on the calculation of transport coefficient. Notwithstanding

a calculation of the above with a study of the static properties of binary liquids is

in need and it is left as future work.

The most important relation that will be used in this Thesis is the Linear Fluctuation–

Dissipation theorem (FDT), relating SAB(k, ω) to the external density response

functions χ̂AB(k, ω). In a classical system we have

SAB(k, ω) = − 1

πβ
√
nAnB

Im{χ̂AB}(k, ω)

ω
. (1.45)

The FDT is an important tool in statistical physics as it relates the thermal fluc-

tuations (or else known as correlations) of a physical observable to the response of

the system to a weak external perturbation affecting the physical observable. In

simpler terms by weakly perturbing the system I can learn about its equilibrium

correlations and vice versa. It has been a success of early non–equilibrium sta-

tistical physics pioneered by Harry Nyquist (Nyquist, 1928) and Herbert Callen

and Theodore Welton (Callen and Welton, 1951) and later generalized by Ryogo

Kubo (Kubo, 1957; Kubo, Yokota, and Nakajima, 1957). The adjective Linear

is meant to distinguish it from its non–linear formulations originated from the

work of Kenneth I. Golden, Gabor J. Kalman, and Michael B. Silevitch (Golden,

Kalman, and Silevitch, 1972). Furthermore, Golden and Heath continued the work

by calculating a cubic and quartic fluctuation–dissipation relation in the case of an

un–magnetized OCP (Golden and Heath, 2016b; Golden and Heath, 2016a). This
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work lead to the calculation of a hierarchy of FDT connecting a single (p+1)–point

dynamical structure function to a linear combination of (p + 1)–order p density

response functions which was used again by Golden for the formulation of FDT

of Binary Coulomb mixtures (Golden, 2018). Unfortunately, the beauty of such

work is tainted by the cumbersome and tedious mathematical calculations that it

requires and for this reason not much subsequent work has been done. An im-

portant work confirming the quadratic FDT has been presented by my Hungarian

collaborators Zoltán Donkó, Peter Hartmann, and their student Peter Magyar in

(Magyar et al., 2016; Donkó, Hartmann, Magyar, et al., 2017). In this Thesis I

will limit to the use of the Linear FDT.

1.4.1 Plasma Response Functions

Response functions describe the dynamics of physical systems under the ef-

fects of an external perturbation. They provide a wealth of information on the

dynamical properties of plasmas such as the dispersion relation, damping of the

modes. Linear Response Theory applied to plasma physics has been reviewed by

Golden and Kalman in Ref. (Golden and Kalman, 1969). In plasmas the dielectric

function is the response function of interest as it is related to the density response

function, polarization, and conductivity. In an OCP the dielectric function can be

obtained response function from

ε−1(k, ω) = 1 + φ(k)χ̂(k, ω) (1.46)

where φ(k) is the Fourier transform of the Coulomb interaction and χ̂(k, ω) is

external density response function. At this point we need to distinguish between

two density response functions: the external and screened response function. It is

important to make this distinction as the two are different mathematical functions
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with different physical implications (Martin, 1967).

Density response functions are defined as the coefficients of a series expansion in

powers of the external potential Φ̂(k, ω). More precisely, they are the functional

derivatives of the local density with respect of the external potential. In this thesis

we are interested in the linear term of this expansion

δn(k, ω) = χ̂(k, ω)Φ̂(k, ω) (1.47)

At the same time, instead of considering the external potential as the perturba-

tion, we can consider the total potential since this is the quantity measured in

experiments (Giuliani and Vignale, 2005). The total potential is given by

Φ̄(k, ω) = Φ̂(k, ω) + Φ̆(k, ω) (1.48)

where Φ̆(k, ω) is the polarization field induced by Φ̂(k, ω). Using Φ̄(k, ω) we then

define the total response function

δn(k, ω) = χ̄(k, ω)Φ(k, ω). (1.49)

Note that the Total response function is indicate by a overhead bar χ̄ while the

external response by a hat χ̂. In terms of χ̄ the dielectric function is calculated as

ε(k, ω) = 1− φ(k)χ̄(k, ω). (1.50)

1.4.2 Partial Response Theory

The extension of linear response to multicomponent systems is presented in

Ref. (Kalman and Golden, 1984). In the following I will reproduce the main for-

mulas as they are key relations for the calculations of χ̂(k, ω). Although external
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response functions are directly related to SAB(k, ω), a description in terms of total

response functions has the advantage of being more transparent. The generaliza-

tion of response theory to a binary system is presented, however, it is valid for

any multicomponent system (Kalman and Golden, 1984; Ichimaru, Mitake, et al.,

1985).

Consider a system composed of two particles species that interact via the potential

ψAB(k) = ZAZBφ(k), (1.51)

where φ(k) is the Fourier transform of the interaction. Introduce a weak charge

Q at the origin which creates a pervading potential V (r) = Q/r. The external

potential Φ̂1 = Z1eV will cause a response χ̂11 in the species density n1. At the

same time, the external potential Φ̂2 = Z2eV will perturb the density n2 which in

turn will cause a response χ̂12 in n1. Mathematically,

δnA(k, ω) =
∑
B

χ̂AB(k, ω)Φ̂B, (1.52)

or if we take the total potential Φ̄A = Φ̂A + Φ̆A as the perturbation

δnA(k, ω) =
∑
B

χ̄AB(k, ω)Φ̄B, (1.53)

where Φ̆A =
∑

B ψABδnB(k, ω) is the induced plasma field. The dielectric matrix

is then defined as

Φ̂A(k, ω) =
∑
B

εAB(k, ω)Φ̄B(k, ω). (1.54)
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Using the above the definition we find (in matrix notation)

εΦ̄ = Φ̂ = Φ̄− Φ̂ (1.55)

= Φ̄− ψn (1.56)

= (1− ψχ̄)Φ̄ (1.57)

⇒ ε = 1− ψχ̄ (1.58)

and defining η = ε−1

ηΦ̂ = Φ̄ = Φ̂+ Φ̆ (1.59)

= Φ̂+ ψn (1.60)

= (1 + ψχ̂)Φ̂ (1.61)

⇒ η = 1 + ψχ̂ (1.62)

where 1 is the 2x2 identity matrix. Finally, using ηε = 1 we obtain the relation-

ships between the total and external response function

χ̂ = χ̄ε−1 = χ̄ [1− ψχ̄]−1 , (1.63)

χ̄ = χ̂η−1 = χ̂ [1 + ψχ̂]−1 , (1.64)

The collective modes of the system are now solutions to the equation

det ε = 0. (1.65)

Few words about symmetry. The external response χ̂AB must be a symmetric ma-

trix since the matrix of SAB is symmetric. The total response χ̄AB, as derived from

χ̂AB, is also symmetric. This can be seen by expanding (1 + ψχ̂)−1 in eq. (1.64)
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via its infinite series. However, the symmetry of χ̄ does not imply a symmetric

dielectric matrix which is, in general, asymmetric. This asymmetry of ε(k, ω) is

not always verified and often overlooked as, in the end, one is interested χ̂. We

can rewrite det ε as

det ε = 1− Tr(ψχ̄) + [detψ][det χ̄] (1.66)

= 1− ψ11χ̄11 − ψ22χ̄22 − 2ψ12χ̄12, (1.67)

where in the last step we made use of the symmetry of χ̄ and the fact that detψ =

0. Notice, though, that in the case of bilayers (Chap. VI) detψ 6== 0. We

note, also, that here that dielectric matrix has been defined as the response of

the potential, eq. (1.54), and not as the response of the field as it is usually done.

The latter definition will cause
∑
ψACχ̄CB → ZB/ZA

∑
C ψACχ̄CB which, however,

does not have any impact in the quantity of interest, det ε. It does, however, affect

the polarizability α = φχ̄ which is found in old literature and not currently used

(Kalman and Golden, 1984).

1.5 Computer Simulations

Computer simulations have become an essential tool both in theoretical and

experimental physics. In the field of strongly coupled plasmas Monte Carlo (MC)

and Molecular Dynamics (MD) simulations are the most common techniques. MC

simulations consist in sampling the phase space of the system by randomly chang-

ing the configuration of the particles. MD, on the other hand, follow a more

deterministic approach by solving the equation of motion all the particles.

The simulations presented in this thesis have been performed by our collabora-

tors Zoltán Donkó and Peter Hartmann from the Wigner Research Institute in

Budapest, Hungary. A typical MD simulation is as follows. N particles are ini-
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tialized with random initial positions and velocities. The system is let evolve in

time by solving Newton’s equations of motion

ẍi(t) =
F

mi

(1.68)

for each particle. The equation is solved numerically using the Velocity Verlet

algorithm. At each time step the positions and velocities are calculated as follows

1. Calculate x(t+∆t) = x(t) + v(t)∆t+ a(t)(∆t)2/2

2. Apply boundary conditions

3. Calculate the forces and acceleration on each particle: a(t+∆t) = F/m

4. Calculate v(t+∆t) = v(t) + [a(t) + a(t+∆t)]∆t/2.

The most expensive part of the simulation is the calculation of forces as this is

done over each pair of particles, ∝ N(N − 1)/2. If the particles interact via the

Yukawa potential we can calculate the forces on a particular particles from all the

particles that fall within a sphere of radius Rcut. In the case of Coulomb inter-

action, the forces are calculated using the Particle–Particle–Particle–Mesh (P3M)

algorithm (Hockney and Eastwood, 1981). This consists in dividing the force into

a long range term and a short range term. The long range force is then Fourier

transformed and used to solve Poisson equation. The solution is inverse Fourier

transformed and added to the short range force. The thermalization of the system

is achieved by rescaling the velocities, at each time step, to the desired tempera-

ture (Γ ). Once the system has reached equilibrium the “measurement” phase is

initiated. In Fig. 1.1 we show a sample plot of the calculated Γ as a function of the

number of time steps. Notice that the line shows no oscillations in the first 30 000

steps indicating the thermalization phase. In the next 50 000 steps Γ oscillates

around 300 as this was the chosen value. This is the measurement phase. If the
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Figure 1.1:
Calculated Γ as function of time step number. The simulation was of a
3D binary Yukawa mixture and performed on the BC cluster Pleiades.

system had not reached equilibrium Γ would have kept increasing to larger values.

In measurement phase rescaling of the velocities is stopped and the positions and

velocities of the particles are recorded at set interval of times. Therefore, at the

end of the simulation, we have data sets containing the position and velocities of

all the particles as a function of time. Physical observables are then calculated, as-

suming ergodicity, as time average of these data sets. For example, the Dynamical

Structure Functions, SAB(k, ω) are calculated from

SAB(k, ω) =
1

2π
√
NANB

lim
∆T→∞

nA(−k, ω)nB(k, ω)

∆T
, (1.69)

where nA(k, ω) is the Fourier transform of the number density operator

nA(k, t) =

NA∑
i

eik·xA,i(t) (1.70)
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and ∆T is the time span of recorded data.

The other important quantity calculated from MD is the pair distribution function

g(r). It gives information on the structure of the spatial distribution of the parti-

cles. The quantity g(r)δV , where δV is an infinitesimal volume, is the probability

of finding two particles at a distance r from each other. In MD simulation this

is calculated by counting the number of particles inside a sphere of radius r from

each particle and then dividing it by the total number N . Obviously g(r = 0) = 0

since two classical particles cannot be in the same spot and g(r →∞) = 1 because

the particles become uncorrelated at long distances. In a completely uncorrelated

plasmas g(r) = 1, because the density is uniform. In a correlated liquid g(r)

will start from zero and show an oscillatory behavior around 1. The oscillations

will decrease in amplitude as r increases and the strongest peak will be at the

mean interparticles distance. As correlations become stronger the amplitude of

the oscillations will increase and the oscillatory behavior will decay more slowly.

When the system has crystallized g(r) will be a series of delta function at r val-

ues corresponding to the lattice points. An example of a strongly coupled binary

Yukawa mixture at Γ = 300 is shown in Fig. 1.2. In this plot we show the in-

terspecies distribution function g12(r) normalized to
√
N1N2. Notice that g12(r)

has the strongest peak around r = a and quickly approaches the value 1 at higher

distances.
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Figure 1.2:
Calculated g12(r) from a simulation of a 3D binary Yukawa mixture
performed on the BC cluster Pleiades.
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CHAPTER II

Theoretical Methods in Plasma Physics

This chapter is devoted to the introduction of the principal theoretical model

used in this thesis: the Quasi–Localized Charge Approximation (QLCA). Before

describing the QLCA, I give a brief introduction of the different theoretical meth-

ods used in plasma physics in order to show how the QLCA fits in the among

them. In the following, Sec. 2.1, I start from the early work of Vlasov, Landau,

Bohm, Gross, and Pines. Although this can be found in many textbooks I will try

to expand more on the physics and the reason their work has become so important.

In Sec. 2.2 I will introduce the QLCA and its principal modification. I will show

details of the calculation of response functions while details of the derivation of the

dynamical QLCA matrix are given in App. B. Sec. 2.3 is the central piece of this

Chapter and the Thesis. In here, I will demonstrate the existence of new charac-

teristic frequencies of binary plasma mixtures: the Silvestri–Kalman frequencies.

They appear as the zeros of density response functions. The Chapter concludes

with Sec. 2.4 in which I present a simple toy model of two harmonic coupled

oscillators illustrating the physics behind the Silvestri–Kalman frequencies.
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2.1 Weakly Coupled Plasmas

As a many-body system of charged particles the study of the dynamics of plas-

mas was approached early on using kinetic equations. However, it soon became

obvious that plasmas were different from normal fluids of neutral particles. In

the latter we can identify a maximum interaction distance beyond which particles

“effectively” do not interact1. In this case pairs of particles interact or “collide”

only when they enter each other’s range of action while for the rest they move

on straight orbits described by x + vt. In a gas at high temperature and high

density, thermal equilibrium is achieved and maintained by binary collisions. If

we apply any pressure gradient to the system particle in regions at higher pres-

sure will experience many more collisions than particles in low pressure regions.

The perturbation is relaxed as fast particles escapes into low pressure regions and

slow particles enter the high pressure region. In a microscopic description of such

systems we talk of a particle interacting via an average field. In this case the av-

erage is carried over many short–time momentum transfers, hence the Boltzmann

transport equation.

On the other hand, due to the slow decay of the Coulomb interaction, we cannot

define a sphere of action in the case of plasmas. Here each charged particle is

simultaneously under the influence of all the other particles. At high tempera-

ture and high density the field created by the charges exceeds any close encounter

interaction between two particles. Therefore, particles do not move on straight

lines, but on smooth orbits defined by the surrounding electric field, given by the

solution of the Laplace equation. In this case we talk about a space average of

the field in which fluctuations due to the point–like nature of the particles are

removed. This average field is an important piece since it provides the restoring

1The simplest example is a gas of hard spheres. The potential is infinitely strong for distance
smaller or equal the radius of the sphere and zero elsewhere.
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force needed for the formation of plasma oscillations (Vlasov, 1968; Bohm and

Gross, 1949a). The first to realize that the usual kinetic approach is inapplicable

to plasmas was, of course, Lev D. Landau who showed that the Boltzmann colli-

sion operator, in this case, is tainted by divergences and thus it requires ad hoc

cutoffs (Landau, 1965b). This lead to the famous Coulomb Logarithm

lnΛc = ln

(
bmin

bmax

)
= ln

(
λD
rc

)
, (2.1)

where the rc is the classical distance of closest approach 2 and λD is the De-

bye wavelength. Anatoly A. Vlasov built upon Landau’s work by separating the

Coulomb interaction into a short–range and long–range part. He then showed

that the long–range part greatly exceeds the short–range part and it is the main

element in the description of the plasma oscillations (Vlasov, 1968). This, in turn,

enormously simplifies the Boltzamnn transport equation by completely removing

the collision integral. This is why the Vlasov equation is often referred to as the

Collisionless Boltzmann equation. Landau, again, complemented Vlasov’s work

by showing that plasma oscillation continued to be damped even in the absence

of collisions. This damping, also known as Landau Damping, is due to the inter-

action between the discrete aspect of plasma, i.e. particles, and their collective

behavior (Landau, 1965a). The identification of the plasma oscillations as a col-

lective excitation – in fact, the very idea of collective excitations and the notion of

collective coordinates – is due to the pioneering series works by David Bohm, Eu-

gene P. Gross and David Pines (Bohm and Gross, 1949a; Bohm and Gross, 1949b;

Pines and Bohm, 1952; Bohm and Pines, 1953). Bohm and Gross (BG) deter-

mined the eponymous k–dependent positive dispersion of the plasmon, caused by

the random thermal motion of the particles (Bohm and Gross, 1949a; Bohm and

Gross, 1949b). Soon, however, it became clear that both the Vlasov treatment

2rc is calculated by equating kinetic and potential energy, mv2/2 = e2/rc
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and the BG dispersion share an underlying theoretical foundation (which later

was reformulated in many different guises (Pines and Bohm, 1952; Nozières and

Pines, 1958; Gell-Mann and Brueckner, 1957; Sawada et al., 1957; Singwi, Tosi,

et al., 1968) and has commonly become known as the Random Phase Approxi-

mation (RPA) ) and are appropriate for weak coupling only. In the following we

reproduce the Vlasov result as obtained from the Liouville equation. The reason

for this is because the Vlasov (RPA) results will be used throughout this Thesis.

In kinetic theory the Liouville equation of the full N–particle distribution func-

tion is reduced to a set of coupled equations known as the Bogoliubov-–Born–

Green–Kirkwood–Yvon (BBGKY) hierarchy. The first of these equations gives

the time evolution of the single–particle distribution, as a function of the two–

particle distribution which in turn is a function of the three–particle distribution

and so on. The above discussion, in the case of plasmas, translates in the charged

particles being statistically independent so that the N–particle distribution can

be expressed as the product of N single–particle distribution functions. This

leads to, skipping some steps, the wavenumber and frequency dependent linearized

Vlasov equation for the perturbed single–particle distribution function, of species

A, fA(k, ω,v) = f
(0)
A (v) + δfA(k, ω,v),

(ω − k · v) δfA(k, ω,v) +

[∑
B

ψAB(k)δnB(k, ω) + Φ̂A(k, ω)

]
k · ∂

∂v
f

(0)
A (v) = 0

(2.2)

where we recall that ψAB is any two–body interaction potential and Φ̂A is an

external perturbation. Integrating fA(k, ω,v) over the velocity v gives

∫
dvfA(k, ω,v) = nA + δnA(k, ω). (2.3)

Now, if we consider Φ̂A(k, ω) as the perturbation, δf1 will be coupled, through

δn2(k, ω), to δf2. However, by considering the total field Φ̄A as the perturbation
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the two distributions will be independent of each and lead to

(ω − k · v) δfA(k, ω,v) + Φ̄A(k, ω)k · ∂
∂v

f
(0)
A (v) = 0, (2.4)

which then gives a diagonal response matrix

χ̄(k, ω) =

χ(0)
1 (k, ω) 0

0 χ
(0)
2 (k, ω)

 (2.5)

with

χ
(0)
A (k, ω) = − 1

mA

∫
dv

k · v − ω − iδ
k · ∂

∂v
f

(0)
A (v) (2.6)

being the familiar Vlasov polarization function. Using eq. (1.63) we can then

calculate the elements of the external response χ̂(k, ω)

χ̂11(k, ω) =
χ

(0)
1 (k, ω)

[
1− ψ22(k)χ

(0)
2 (k, ω)

]
ε(k, ω)

(2.7)

χ̂12(k, ω) = −χ
(0)
1 (k, ω)ψ12(k)χ

(0)
2 (k, ω)

ε(k, ω)
(2.8)

χ̂22(k, ω) =
χ

(0)
2 (k, ω)

[
1− ψ11(k)χ

(0)
1 (k, ω)

]
ε(k, ω)

(2.9)

and the dielectric matrix

ε11(k, ω) = 1− ψ11(k)χ
(0)
1 (k, ω), (2.10)

ε12(k, ω) = −ψ12(k)χ
(0)
2 (k, ω), (2.11)

ε21(k, ω) = −ψ12(k)χ
(0)
1 (k, ω), (2.12)

ε22(k, ω) = 1− ψ22(k)χ
(0)
2 (k, ω), (2.13)
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whose determinant is

det ε(k, ω) = 1− ψ11(k)χ
(0)
1 (k, ω)− ψ22(k)χ

(0)
2 (k, ω). (2.14)

These equations explicitly show that ε(k, ω) is not symmetric (ε12 6= ε21) while

χ̂(k, ω) is.

2.1.1 Moderately to Strongly Coupled Plasmas

The Vlasov equation, as mentioned, neglects correlations between particles

and can be considered as the zeroth order of a perturbation expansion in terms

of the coupling parameter (Liboff, 2003). Therefore, the next logical step is to

calculate the next order term. This amounts to keeping the first two equations

of the BBGKY hierarchy and expand to first order in perturbation the two–

particle distribution function. This approach, carried out in different forms by

many researchers (Guernsey, 1962; Oberman, Ron, and Dawson, 1962; Coste,

1965a; Coste, 1965b), leads to an exact calculation of the high frequency plasma

conductivity and to the calculation of collisional damping, different than Landau

damping, of the collective modes. Most importantly it was shown that electron–ion

collisions dominates over electron–electron collisions in the damping of the modes

(DuBois, Gilinsky, and Kivelson, 1962; Ogasawara, 1963). The reason for this can

be explained in simple terms. Electron–electron collisions, in the k → 0 limit,

do not affect the electron current because in the averaging process one cannot

distinguish between two electrons, but can distinguish between ions and electron

since each species carries a different current.3

3Here I would like to make a little side note. Parallel to the BBGKY hierarchy there is the
European School of Iliya Prigogine. Their method consists in solving the full Liouville equation
for fN in terms of a resolvent (very similar to the more commonly known Green’s function).
The solution is a series of interaction integrals which can be associated with diagrams whose
topology is connected with the order of interaction between particles. This method has not
been used beyond Prigogine’s students due to its mathematical complexity. However, its general
formalism, I believe, is a good pedagogical tool as it is the classical equivalent of the Feynman
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Another technique, more adequate for the calculation of transport coefficients,

is to use the transport Boltzmann equation with an adequate collision operator.

The most famous examples of this approach are the Landau integral (Landau,

1965b), Lenard–Balescu collision operator (Lenard, 1960; Balescu, 1960), and the

Bhatnagar–Gross–Krook collision operator (Bhatnagar, Gross, and Krook, 1954)

and its recent multispecies extension (Haack, Hauck, and Murillo, 2017). By ex-

tending this approach to finite and strong coupling, however, one readily encoun-

ters unphysical situations when the Coulomb logarithm becomes negative around

Γ ∼ 1/31/3 ≈ 0.69. One extension able to overcome this obstacle is the Effective

Potential Theory of Baalrud and Daligault (Baalrud and Daligault, 2013).

The above approaches, however, are sullied by the complex mathematical land-

scape which makes it difficult to exctract a clear physical picture.

In the late 1960s and early 1970s mean-field theories started to make their way

into plasma physics. The basic idea is to replace the polarization potential Φ̆ by

an effective potential that incorporates all the correlational effects, that is

Φ̆(k, ω)→ Φ̆(k, ω) = φ(k) [1−G(k, ω)] δn(k, ω) (2.15)

where φ(k) is the bare Coulomb interaction and G(k, ω) is called the Local Field

Corrections. G(k, ω) = 0 is entirely correlational dependent and by setting

G(k, ω) = 0 one recovers the RPA. This allows, then, the use of the Vlasov

equation with the new effective potential leading to a dielectric function, looking

at an OCP for simplicity,

ε(k, ω) = 1− φ(k)χ(0)(k, ω)

1 + φ(k)G(k, ω)χ(0)(k, ω)
, (2.16)

diagrams.
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a total response function

χ̄(k, ω) =
χ(0)(k, ω)

1 + φ(k)G(k, ω)χ(0)(k, ω)
, (2.17)

and an external response function

χ̂(k, ω) =
χ(0)(k, ω)

1− φ(k) [1−G(k, ω)]χ(0)(k, ω)
. (2.18)

The problem now becomes to find a valid G(k, ω). This is easier than before

since G(k, ω) must satisfy different conditions which are obtained from sum rules

of S(k, ω). The most recent, and definitely the offspring of current times, is to

use machine learning to calculate G(k, ω) as shown in (Dornheim et al., 2018).

However, even though machines are more efficient than human in analyzing large

datasets, the paper shows that human ingenuity play the main role in scientific

research since the newly found G(k, ω) does not improve on those proposed in the

early 1970’s. The most famous of these mean-field theories is, perhaps, the STLS

(Singwi, Tosi, et al., 1968; Singwi, Sjölander, et al., 1969; Singwi, Sjölander, et al.,

1970) which uses a static LFC of the form

φ(k)G(k, 0) = −
∑
q

k · q
q2

φ(q) [S(k− q)− 1] (2.19)

where S(k) is the static structure function. This LFC is obtained from the follow-

ing approximation of the two particle distribution function, f2

f
(STLS)
2 (r1,v1, r2,v2, t) = f1(r1,v1, t)f1(r2,v2, t) [1 + h(r1, r2)] , (2.20)

and by the use of the linear FDT

S(k) = 1 + h(k) (2.21)
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Physically, this means that binary correlations relax on a much shorter time scales

than single–particle distributions. The STLS was the first great improvement

over the RPA and agreed very well with computer simulations and experiments.

However, unphysical predictions appear at moderate coupling and it does not

satisfy several of the required sum–rules (Giuliani and Vignale, 2005). Its main

disagreement with the QLCA in the case of binary mixture has been elucidated

by Kalman and Golden in (Kalman and Golden, 1998). The main difference being

that the STLS is a static approximation while the QLCA a dynamical one, thus,

leading to the correct prediction of the collective mode spectrum.

A recent improvement on the STLS, for application to inhomogeneous strongly

coupled plasmas, has been proposed by Kählert et al. (Kählert, Kalman, and

Bonitz, 2014; Kählert, Kalman, and Bonitz, 2015). It consists in keeping the time

dependence of the pair correlation function.

f
(ESTLS)
2 (r1,v1, r2,v2, t) = f1(r1,v1, t)f1(r2,v2, t) [1 + h(r1, r2, t)] . (2.22)

Before concluding I cannot fail to mention the Velocity Average Approximation

(VAA) proposed by Golden and Kalman in 1974 (Golden, Kalman, and Silevitch,

1974; Golden and Kalman, 1979; Golden and Kalman, 1982). It consists in the

following approximation of the two–particle distribution function

f
(V AA)
2 (r1,v1, r2,v2, t) =

1

2

[
f1(r1,v1, t)

n(r1, t)

∫
dv′1f2(r1,v

′
1, r2,v2, t)

+
f1(r2,v2, t)

n(r2, t)

∫
dv′2f2(r1,v1, r2,v

′
2, t)

]
. (2.23)

The VAA was very successful as it satisfied both the compressibility sum–rule and

the first and third moment sum–rules. It lead to exact results in both the OCP

and Binary Mixtures (Golden, 1982; Golden, Green, and Neilson, 1985a; Golden,
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Green, and Neilson, 1985b), however, it required a great deal of mathematical

effort which discouraged many researchers since it required the use of the Non–

Linear FDT. The work on VAA, though, provided great insights to its originators

who later proposed the QLCA which trades mathematical complexity and internal

consistency for a clear physical picture.

2.2 Quasi–Localized Charge Approximation

The Quasi-Localized Charge Approximation was proposed almost three decades

ago by Kalman and Golden (Kalman and Golden, 1990; Golden and Kalman,

2000; Golden and Kalman, 2001). Its basic assumption is that at strong coupling

the liquid state closely resembles that of a disordered solid. That is charges are

localized in deep potential minima whose positions are strongly correlated, but

randomly distributed. The dynamics of the system are then dictated by the small

amplitude oscillations that charges undergo around these minima. Notwithstand-

ing, the liquid aspect is represented by the fact that the positions of the minima

change over a time much longer than the period of oscillations. Inherent in the

QLC model is the assumption that the two time scales are well separated and that

for the description of the oscillating motion, the time average (converted into en-

semble average) of the drifting quasi-equilibrium configuration is sufficient. This

physical picture is supported by computer simulations which show that the pair

distribution function is characterized by strong peaks at periodic space intervals,

thermodynamic quantities, e.g. energy, of the strongly coupled liquid state do

not change drastically from those of a solid (Baus and Hansen, 1980), and on a

more dynamical level particles are effectively quasi-localized (Donkó, Kalman, and

Golden, 2002; Donkó, Hartmann, and Kalman, 2003).

The strength of the QLCA is in its mathematical simplicity which provides a clear

distinction of the roles played by the different physical effects. However, all of this
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comes at the cost of self-consistency and various pitfalls. In fact, the QLCA re-

quires the external input of the pair distribution function, obtained from computer

simulations, it satisfies the first and third frequency sum rule, but fails to satisfy

the compressibility sum rule, thermal effects while being small are completely ab-

sent, and finally it lacks a coherent description of the damping mechanism of the

collective modes. It is on these last two points that this thesis tries to expand.

2.2.1 Collisional QLCA

In an OCP, to first order, we can identify two major damping mechanism:

wave-particle interaction and particle-particle interaction. In the former plasma

waves lose energy to particles that are slower than the wave speed and gain energy

from particles that are faster. Since, at equilibrium, there are more slow particles

than fast the wave becomes damped. This is known as Landau damping and is

the only damping mechanism present for an OCP with Γ = 0 and dominates over

collisional damping at very long wavelengths. At shorter wavelengths, instead, the

individuality of particles becomes more and more relevant and collisions destroy

the collective behavior. As correlations between particles increase one expect the

second mechanism to become the dominant one even at very short wavelengths,

however, both mechanisms vanish at infinite wavelengths (k = 0). If, instead,

we were to consider a plasma mixtures we will have that collisional damping

survives even at k = 0 due to distinguishability between the species composing

the mixture. As a matter of fact, it was shown in the early days of plasma physics,

that collisional damping due to like particles, e.g. electrons, vanishes as k2, while

collisions between different particles, e.g. electrons and ions, remains finite even

at k = 0 (DuBois, Gilinsky, and Kivelson, 1962; Ogasawara, 1963). It is on this

important difference that the Collisional QLCA relies on.
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2.2.2 Derivation of relevant formulas

The system under consideration is composed of N charged particles of two

species enclosed in a volume V with densities nA = NA/V . In the strong coupling

regime the position of the ith particle is defined as XA,i = xA,i + ξA,i(t), where

xA,i indicates the quasi-static equilibrium positions and ξA,i small displacements

around them. The introduction of damping in the original QLCA is achieved by

adding a drag force term proportional to the relative velocities of the individual

particles of species A in the microscopic equation of motion of ξA,i

mAξ̈A,i +
∑
B

∑
j

γAB(rAB,ij)
(
ξ̇A,i − ξ̇B,j

)
+
∑
B

∑
j

KAB̄,ijξB,j = ZAeE(xA,i, t)

(2.24)

where KAB,ij is the (species matrix) element of the force obtained from the har-

monic approximation of the potential, E is an external field acting only on species

A, and rAB,ij = xA,i − xB,j. The new element is γAB, a symmetric two-body col-

lisional matrix. Following the idea of the QLCA, the collisional matrix can now

be averaged over all the pairs with the aid of the equilibrium pair distribution

function and absorbed in a drag matrix R with elements

RAB(k) =

√
nAnB
mAmB

{∫
d3rγAB(r) [1 + hAB(r)] e−ik·r

− δAB
∑
C

nC
nA

∫
d3rγAC(r) [1 + hAC(r)]

}
, (2.25)

where hAB(r) is the pair correlation function between species A and B. The

R matrix describes the total drag force acting on a selected particle. The first

term represents the force generated by the motion of all the other particles in

the system on the selected particle, while the second is due to the velocity of

the selected particle itself with the equilibrium environment of all the others (see

eq. (B.2)). The drag matrix now combined with the original QLCA dynamical
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matrix, C(k) from eq. (B.19), provides the collisional dynamical matrix

GAB(k, ω) = −iωRAB(k) + CAB(k). (2.26)

The equation of motion, then, becomes

[
ω2δAB −GAB(k, ω)

]
ξB,k(ω) = − ZAenA√

NAmA

EA(k, ω), (2.27)

from which we calculate the matrix elements of the external response functions

χAB(k, ω) =

√
nAnB
mAmB

k2[ω2I−G(k, ω)]−1
AB, (2.28)

I being the identity matrix in species space. Using now the formalism of partial

response functions presented in Sec. 1.4.2 we calculate the partial polarization

function χ̄AB(k, ω), and the dielectric matrix ε(k, ω). The former is

χ̄AB(k, ω) =

√
nAnB
mAmB

k2[ω2I−P(k, ω)]−1
AB, (2.29)

where

PAB(k, ω) = −iωRAB(k) + CAB(k)− ωAωBk2φ(k), (2.30)

is an entirely correlational dependent term. φ(k) = 1/k2 in the case of Coulomb

interaction and φ(k) = 1/(k2 + κ2) in the case of Yukawa. In other words P

is calculated by removing the mean-field terms from the dynamical matrix C.

Nevertheless, by setting P = 0 one does not recover the RPA, because of the

underlying quasi–localization assumption. Using the the above equations we can

calculate the dielectric matrix, however, we are not interested in the individual

matrix elements, but only to the determinant of the dielectric matrix from which
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we obtain the dispersion relation. This is given by

det ε(k, ω) =
det{ω2I−G(k, ω)}
det{ω2I−P(k, ω)}

= 0. (2.31)

Given the fact that the primary quantity of interest in this thesis is the matrix of

the external response functions below, for the sake of future reference, the explicit

expressions of its elements. The diagonal elements are

χ′11(k, ω) =
n1

m1

k2

|D|2

{(
ω2 − C22

) [
(ω2 − ω2

+)(ω2 − ω2
−)− ω2 det R

]
+(ωR11)2

(
ω2 − ω2

∗2
)

+ (ωR12)2

(
ω2 − C11 +

R11

R12

C12

)}
,(2.32)

χ′′11(k, ω) =
n1

m1

k2

|D|2

{
ωR11

(
ω2 − ω2

∗2
)2

+ ωR22

(
ω2 +

C2
12

R11R22

)
det R

}
, (2.33)

and the off diagonal elements

χ′12(k, ω) = −
√

n1n2

m1m2

k2

|D|2

{
C12

[
(ω2 − ω2

+)(ω2 − ω2
−)− ω2 det R

]
−ω2R12

[
R22

(
ω2 − ω2

∗1
)

+R11

(
ω2 − C22 +

R22

R12

C12

)]}
,(2.34)

χ′′12(k, ω) = −
√

n1n2

m1m2

k2

|D|2
ωR11R22

R12

{(
ω2 − ω2

∗1
) (
ω2 − ω2

∗2
)

−ωR12

[
ω2 − (ω2 − C11)(ω2 − C22)

R2
12

]
det R

}
. (2.35)

χ22(k, ω) is obtained by the exchange 1 → 2 in the formulas of χ11(k, ω) and

χ21(k, ω) = χ12(k, ω). In the above expressions the term D in the denominator is

given by

D(k, ω) = det
{
ω2I−G(k, ω)

}
, (2.36)
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and its zeros give the dispersion of the collective modes. The explicit expression,

in terms of RAB and CAB is

D(k, ω) =
[
ω2 − ω2

+(k)
] [
ω2 − ω2

−(k)
]
− ω2 det R(k)

−iω
{
R11(k)

[
ω2 − ω2

∗2(k)
]

+R22(k)
[
ω2 − ω2

∗1(k)
]}
, (2.37)

where ω±(k) are the eigenvalues of the C-matrix and we have defined

ω2
∗1(k) = C11(k)− R12(k)

R22(k)
C12(k), (2.38)

ω2
∗2(k) = C22(k)− R12(k)

R11(k)
C12(k). (2.39)

Further simplification of the imaginary part of the determinant leads to

D′′(k, ω) = −ω
{
R11(k)

[
ω2 − ω2

∗2(k)
]

+R22(k)
[
ω2 − ω2

∗1(k)
]}

= −ω [R11(k) +R22(k)]
[
ω2 − ω2

im(k)
]

(2.40)

with a zero at

ω2
im(k) =

R11ω
2
∗2(k) +R22ω

2
∗1(k)

R11 +R22

. (2.41)

For future reference we rewrite the entire determinant as

D(k, ω) =
[
ω2 − ω2

+(k)
] [
ω2 − ω2

−(k)
]
− ω2 det R− iω (R11 +R22)

[
ω2 − ω2

im(k)
]
.

(2.42)

This formula is different from the original QLCA in the fact that it is a complex

function and thus allows for the calculation of damping of the collective modes.

We conclude this section with two important points. First, the matrix G(k, ω)

should not be confused with the dynamical local field corrections talked about in

the previous section. The same labeling is due to be consistent with the current
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literature. Nevertheless, the LFC is more closely related to the matrix P(k, ω)

and shown in (Kalman, Golden, Donkó, et al., 2005). The second important point

is that the above equations have been obtained via simple algebra and no specific

property of the R or C has been used. This indicates that the “frequencies” ω∗1,2

are not specific to strongly coupled plasmas, but general formulas of 2×2 matrices.

Furthermore, this suggests that similar relations should exist for larger symmetric

matrices and it is indeed so. However, a generalization of this formulas to N ×N

is out of the scope of this thesis and it is left as future work. A preliminary work

on this topic can be found in (Belbasi, Ebrahim Foulaadvand, and Joe, 2014) in

which the authors consider a one dimensional chain of identical driven coupled

oscillators.

2.2.3 Extended Collisional QLCA

In 2005 Kalman and Golden (Kalman, Golden, Donkó, et al., 2005) proposed

an extension of the QLCA in order to try to include thermal effects. The extension

amounts in recognizing that the multiplying factor

n1

m1

k2 (2.43)

in (B.19) is the high frequency expansion of the Vlasov polarization function

χ
(0)
A (k, ω) = − 1

mA

∫
d3v

1

k · v − ω − iδ
k · ∂f

(0)

∂v
≈ nA
mA

k2

ω2
. (2.44)

This leads to

χ̄AB(k, ω) =

√
χ̄

(0)
A χ̄

(0)
B [I− P(k, ω)]−1

AB (2.45)

PAB(k, ω) = −iωRAB(k, ω) +HAB(k, ω), (2.46)
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RAB(k, ω) =

√
χ̄

(0)
A χ̄

(0)
B

1

k2

[
γ̄AB(k)− δAB

∑
C

nA
nC

γ̄AC(0)

]
, (2.47)

HAB(k, ω) =

√
χ̄

(0)
A χ̄

(0)
B

1

k2

1

V

∑
q

qαqβ
{
φAB(q)hAB (|k− q|)

−δAB
∑
C

nC
nA
φAC(q)hAC(q)

}
, (2.48)

and γ̄AB(k) is defined below. From the above equations it is evident that the

matrices of the external response χAB, polarization function χ̄AB, and dielectric

matrix εAB are all symmetric. While this is not an issue for χAB and χ̄AB, it

certainly is for εAB. However, this discrepancy has often been ignored in the

past and in other strong coupling theories since one is, in the end, interested in

the external response χAB and it is, tacitly, expected that the asymmetry in εAB

vanishes when one calculates the determinant. This discrepancy is also found

in the STLS and in the dynamical field correction of Ichimaru and co-workers.

Furthermore, the most drastic flaw is in the square root of term in the off-diagonal

terms χ̄12(k, ω). At low frequencies χ
(0)
A (k, ω) are negative and change sign at

higher frequencies. However, the frequency at which χ
(0)
1 = 0 is different than

the frequency at which χ
(0)
2 = 0. Therefore there is a region for which χ̄12(k, ω)

is ill-defined. This flaw is not present in χAB(k, ω) and det ε(k, ω) were only

the product χ̄
(0)
1 χ̄

(0)
2 , and not its square root, appears. Finally, a first principle

derivation on the lines of (Kalman, Golden, Donkó, et al., 2005) does not recover

the correct dispersion relation nor a symmetric χAB. Thus, the Extended QLCA

for Binary systems can be considered only as phenomenological approximation of

the external response χAB(k, ω).
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2.3 The Silvestri–Kalman Frequencies

We arrive now at the central point of this thesis. Let’s look at the damping

matrix R in more details, by defining

γ̄AB(k) =

∫
d3rγAB(r) [1 + hAB(r)] e−ik·r (2.49)

we can rewrite the R-matrix elements as

R11(k) =
n1

m1

[
γ̄11(k)− γ̄11(0)− n2

n1

γ̄12(0)

]
, (2.50)

R12(k) =

√
n1n2

m1m2

γ̄12(k). (2.51)

This shows that the diagonal elements are composed by two terms: a term describ-

ing collisions between particles of the same species and a term indicating collisions

between particles of different species. In the long wavelength limit (k → 0) conser-

vation of momentum causes the intra–species term to vanish and leaving only the

inter–species term. This, then, leads to the matrix elements being all proportional

to each other and the damping matrix becomes a singular matrix

R(0) = −γ̄12

 n2/m1 −
√

n1n2

m1m2

−
√

n1n2

m1m2
n1/m2

 . (2.52)

Exploiting the fact that det R = 0 ⇒ R11/R12 = R12/R22, the real parts of χAB

become

χ′11(k, ω) =
n1

m1

k2

|D(k, ω)|2
{[
ω2 − C22(k)

] [
ω2 − ω2

+(k)
] [
ω2 − ω2

−(k)
]

+ ω2R22 (R11 +R22)
[
ω2 − ω2

im(k)
]}
, (2.53)
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χ′22(k, ω) =
n2

m2

k2

|D(k, ω)|2
{[
ω2 − C11(k)

] [
ω2 − ω2

+(k)
] [
ω2 − ω2

−(k)
]

+ ω2R11 (R11 +R22)
[
ω2 − ω2

im(k)
]}
, (2.54)

χ′12(k, ω) = −
√

n1n2

m1m2

k2

|D(k, ω)|2
{
C12(k)

[
ω2 − ω2

+(k)
] [
ω2 − ω2

−(k)
]

− ω2R12 (R11 +R22)
[
ω2 − ω2

im(k)
]}
, (2.55)

and the imaginary parts

χ′′11(k, ω) =
n1k

2

m1

ωR11

|D(k, ω)|2
[
ω2 − ω2

∗2(k)
]2
, (2.56)

χ′′22(k, ω) =
n2k

2

m2

ωR22

|D(k, ω)|2
[
ω2 − ω2

∗1(k)
]2
, (2.57)

χ′′12(k, ω) =

√
n1n2

m1m2

ωR12k
2

|D(k, ω)|2
[
ω2 − ω2

∗1(k)
] [
ω2 − ω2

∗2(k)
]
. (2.58)

We notice that the numerators of all the above expressions vanish at specific

frequencies. These are commonly referred to as anti–resonances. Specifically, the

numerators of χ′11(k, ω) and χ′22(k, ω) vanish at C22(k) and C11(k) respectively,

only when terms of O(γ̄2
12) are neglected, while those of χ′′11(k, ω), χ′′22(k, ω), and

χ′′12(k, ω) have exact zeros at ω∗2 and ω∗1. The important thing to notice is that the

zeros of χ′′AB(k, ω), by means of the Fluctuation–Dissipation theorem eq. (1.45),

become also the zeros of SAB(k, ω). For future reference, the explicit expressions

of SAB(k, ω) are

S11(k, ω) = − k2

πβm1

R11

|D(k, ω)|2
[
ω2 − ω2

∗2(k)
]2
, (2.59)

S22(k, ω) = − k2

πβm2

R22

|D(k, ω)|2
[
ω2 − ω2

∗1(k)
]2
, (2.60)
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S12(k, ω) = − k2

π
√
βm1βm2

R12

|D(k, ω)|2
[
ω2 − ω2

∗1(k)
] [
ω2 − ω2

∗2(k)
]
. (2.61)

In the next chapters we will show that ω∗A, to first order in k

• are independent of the absolute value of γ̄12,

• are independent of the coupling parameter, Γ , and therefore on the strength

of correlations. Their derivation, however, is contingent on the quasi–localization

of the charges.

They are, then, new characteristic frequencies of strongly coupled plasmas, de-

pendent only on system’s parameters e.g. charge, mass, and concentration of the

species. We baptize these frequencies, with perhaps forgivable measure of self–

indulgence, the Silvestri–Kalman (SK) frequencies.

2.4 Toy Model

In this section we present a simple toy model in order to elucidate on the

physics of the anti–resonances. Consider two damped harmonic oscillators with

different natural resonant frequencies, ω1 =
√
k1/m1 and ω2 =

√
k2/m2, coupled

by a spring of constant q. Furthermore, assume that one of the two oscillators is

driven by a small periodic force. The equations of motions are

ẍ1 +
γ

m1

(ẋ1 − ẋ2) +
k1

m1

x1 +
q

m1

(x1 − x2) = a1e
iωt, (2.62)

ẍ2 +
γ

m2

(ẋ2 − ẋ1) +
k2

m2

x2 −
q

m2

(x1 − x2) = 0. (2.63)

In order to simplify the notation we define the Fano frequency ω̃A as

ω̃2
1 = ω2

1 + σ2
12, , σ2

12 =
q

m1

, (2.64)
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and the respective frequencies of the second oscillator are obtained by exchanging

1 → 2. The crucial assumption here is that the drag force is proportional to

the relative velocity between the two oscillators. The solutions of this system

of equations is given by the sum of the homogeneous solution (a1 = 0) and the

particular solution (a1 6= 0). Starting from the homogeneous equation, the normal

modes of the system are

Ω2
∓ =

1

2

{
ω̃2

1 + ω̃2
2 ±

√
(ω̃2

1 − ω̃2
2)

2
+ 4ν2

12ν
2
21

}
. (2.65)

The ∓ subscript indicate whether the two oscillators move in-phase or out-of-phase

with each other. The presence of damping (considered small) leads to a decaying

exponential factor e−γ±t to the homogeneous solution

x1 = b1e
−γ+te−iΩ+t + d1e

−γ−te−iΩ−t. (2.66)

In the case a1 6= 0, after an initial transient part (γ±t� 1), the system will oscillate

at the frequency ω of the driving force and the dynamical matrix, rewritten in

terms of the C and R matrices, is

ω2I−G =

ω2 − iωR11 − C11 −iωR12 − C12

−iωR21 − C21 ω2 − iωR22 − C22

 (2.67)

where

R =

−γ/m1 γ/m1

γ/m2 −γ/m2

 , C =

 ω̃2
1 −ν2

12

−ν2
21 ω̃2

2

 . (2.68)

The solutions of the system are then

x1(t) = c1(ω)eiωt, x2(t) = c2(ω)eiωt (2.69)
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where

c1(ω) = −a1

{
(ω2 − C22)D′ + ωR22D′′

|D(ω)|2
+ iωR22

(ω2 − ω2
∗2)2

|D(ω)|2

}
, (2.70)

c2(ω) = a1

{
C21D′ + ωR21D′′

|D(ω)|2
− iωR11R22

R12

(ω2 − ω2
∗1) (ω2 − ω2

∗2)

|D(ω)|2

}
, (2.71)

and D is the determinant of ω2I −G. Looking at the real part we notice that,

by neglecting terms of O(γ2), the amplitude c1 vanishes at the resonant frequency

of the second oscillator ω̃2 =
√

(k2 + q)/m2 while c2 never vanishes. On the

other hand, the imaginary part Im{c1(ω)} vanishes at the natural frequency of

the second oscillator

ω2
∗2 = C22 −

R12

R11

C21

= ω̃2
2 − ν2

21

=
k + q

m2

− q

m2

= ω2
2. (2.72)

Similarly, ω2
∗1 = ω1 is the natural frequency of the first oscillator.

Plots of the absolute value of the amplitudes and their imaginary parts to-

gether with their phases are shown in the Fig. 2.1. Notice that the zeros of the

imaginary parts corresponds to the frequencies at which each oscillator undergoes

a phase change of π. In other words, for frequencies ω < ω∗1 the two oscillators

move in phase with the driving force. At ω = Ω+ the entire system is at res-

onance and the two oscillators are in phase with each other (symmetric mode).

As the frequency is increased past the first resonance, ω > Ω+, both oscillators

move out of phase with the driving force until ω = ω∗2 ≈ 1.5 where the second

oscillators starts moving out–of–phase with the driving force. At ω = ω̃2 ≈ 1.68

the amplitude c1 vanishes at the first oscillator stops. At this frequency the first
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Figure 2.1: Plots of the complex amplitude of the two harmonic oscillators
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oscillator experiences two equal and opposite forces that cancel each other: the

driving force and the response of the second oscillator. Finally, further increasing

the driving frequency the system reaches the second resonance, ω = Ω−, where the

two oscillators move out–of–phase with each other (anti-symmetric mode). Bel-

basi et. al. have given an alternative interpretation of the ω̃∗2 frequency (Belbasi,

Ebrahim Foulaadvand, and Joe, 2014). We can think of the equilibrium position

of the first oscillator as being one of the nodes of the standing wave created by

the right propagating wave of the driving force and the left propagating wave of

the response of the second oscillator. However, in their investigation they do not

consider the ω∗2 frequency.

The important point to notice is that the zeros of the real and imaginary part of

c1(ω) are different from each other. In the literature, this toy model of driven cou-

pled oscillators is often considered to be the classical analog of the quantum Fano

effect (Joe, Satanin, and Kim, 2006; Miroshnichenko, Flach, and Kivshar, 2010).

However, it must be said that this is somewhat erroneous since the Fano effect is

the interference between a discrete state and a continuum of states (Fano, 1935;

Fano, 1961), while in the case of two harmonic oscillators we have an interference

between two discrete states.

We conclude this section by returning to our crucial assumption that the damping

term is proportional to the relative velocities of the particles. If each oscillator

were damped only by its own velocity then R12 = 0 which leads to ω∗2 = C22 and

no anti-resonance would be visible in the imaginary part of c1 since det R 6= 0.

2.5 Coulomb Drag and Anti–resonances

The physical picture suggested by the Collisional QLCA is, in other words, of

one species dragging the other. This, obviously, is reminiscent of a well known

effect in GaAs electronic bilayer; the Coulomb Drag. In order to study elelectron–
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electron interaction Russian physicist M. Pogrebinski proposed the following ex-

periment (Pogrebinskii, 1977; Narozhny and Levchenko, 2016). Imagine two 2D

conducting layers separated by a distance d and a driving current I1 is ran through

the first (active) layer. Due to the long range Coulomb interaction a current will

be induced in the other (passive) layer. If the passive layer acts as an open circuit

then a voltage drop V2 would be measured, otherwise a current I2 will be mea-

sured. Thus,the charge carriers in the active layers “drag” the charge carriers of

the passive layer. The ratio

RD = −V2

I1

(2.73)

defines the transresistance between the two layers and consequently the inter–layer

interaction. Pogrebinskii derived a Drude-like formula for the two resistivities

ρD = −ρ(12)
xx =

m2

e2n1τD
, ρ(11)

xx =
m1

e2n1

(
1

τ
+

1

τD

)
(2.74)

where 1,2 denote the two layers, τ is a relaxation time due to impurities in the sys-

tem, and τD is the drag relaxation time of the drift currents between the two layers

(Narozhny and Levchenko, 2016). In those years the semiconducting industry was

booming and researcher started to study this phenomenon using GaAs double

quantum well structures. Ref. (Rojo, 1999; Narozhny and Levchenko, 2016) are

review papers dedicated entirely to the Coulomb drag effect showing the immense

amount of interest that this phenomenon attracts. Nowadays, so called van der

Waals materials have allowed for the creation of better and more robust electronic

bilayers and thus, increasing the interest in Coulomb drag (Geim and Grigorieva,

2013). Most of the research is focused on the calculation of transport properties,

specifically, on the transresistivity ρD and a qualitative understanding of the phe-

nomenon can be claimed. In the case of semiconductor electronic bilayers, the

driving current in the active layer creates electron-hole pairs with finite momen-
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tum which is then transferred to the passive layer via the Coulomb interaction,

creating again electron-hole pairs. However, creation of electron–hole pairs does

not automatically creates a current in the passive layer since electrons and holes

“move” opposite to each other thus leading to a zero total momentum. The net

current is obtained thanks to the different effective masses of electrons and holes

in semiconductors (Kamenev and Oreg, 1995).

The extensive research on Coulomb drag, however, has not mentioned the pres-

ence of anti–resonances in the response function (or at least I am not aware of any

papers). The physical picture presented above is, obviously, specific to a quantum

electron liquid, which is not what is being investigated in this thesis, but it has

the basic element, asymmetry between constituent particle, for the existence of

anti–resonances. Furthermore, much work has been done on what, in this thesis

would be called, a weakly to moderately coupled electron liquid and research is

ongoing in the case of a strongly coupled electron liquid. I am aware of only one

paper which mentions the anti–resonance in the context of a 2D electron liquid

and it is the one in Ref. (Kreil et al., 2018). The asymmetry in this system is

given by two different spin orientations of the electron. A 3D strongly coupled

electron liquid has also been investigated in terms of the Collisional QLCA and

preliminary results are shown in Ref. (Kalman, Golden, and Silvestri, 2016).
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CHAPTER III

Binary Coulomb Plasmas

In this chapter we will study plasmas composed of two positive ions species

immersed in a neutralizing background of negative electrons. The system’s vari-

ables and parameters are given in Sec. 1.3 of Chap. I. In here we recall only that

c = N1/N is the concentration of species 1 and the coupling parameter Γ is given

in eq. (1.11), and the asymmetry parameters are

p2 =
Z2

Z1

(1− c)
c

, q2 =
Z2

Z1

m1

m2

. (3.1)

The particles interact via the unscreened Coulomb potential

φ̃AB(r) =
ZAZBe

2

r
, φAB(k) =

4πZAZBe
2

k2
. (3.2)

The rest of the chapter is structured as follows: Theoretical predictions are pre-

sented in Sec. 3.1, for the weakly coupled regime, and in Sec. 3.2 for the strongly

coupled regime. These results are then compared with MD simulation in Sec. 3.3.

The transition from weak to strong coupling is investigated in Sec. 3.4. Finally the

chapter concludes with a computer experiment for the verification of the physics

behind the Silvestri–Kalman frequencies in Sec. 3.5.
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3.1 Weak Coupling Regime

In the weak coupling regime the external response functions, calculated using

the RPA, are

χ11(k, ω) =
χ0

1(k, ω) [1− φ22(k)χ0
2(k, ω)]

ε(k, ω)
, (3.3)

χ12(k, ω) = −χ
(0)
1 (k, ω)φ12(k)χ

(0)
2 (k, ω)

ε(k, ω)
, (3.4)

χ22(k, ω) =
χ0

2(k, ω) [1− φ11(k)χ0
1(k, ω)]

ε(k, ω)
, (3.5)

where ε(k, ω) is the dielectric function

ε(k, ω) = 1− φ11(k)χ0
1(k, ω)− φ22(k)χ0

2(k, ω), (3.6)

and χ0
A(k, ω) the Vlasov polarization function which expressed in terms of the

Plasma Dispersion function W (x) is

χ0
A(k, ω) = −βnA [1 + ζAZ(ζA)] , ζA =

ω

k

√
βmA

2
. (3.7)

For references purposes the Plasma Dispersion function Z(ζ) is

Z(ζ) =
1√
π

∞∫
∞

e−t
2

t− ζ
dt, ζ = x+ iy. (3.8)

In the case of a real argument y = 0 it can be expressed in terms of the Dawson

integral, D(x), as

Z(x) = −2D+(x) + i
√
πe−x

2

, D+(x) = e−x
2

x∫
0

et
2

dt. (3.9)
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Nowadays there exist a wealth of computer programs that calculate Z(x) directly,

in this Thesis, we make use of the SciPy packages which uses the Faddeeva function

W(z), defined by the complementary error function and related via the imaginary

error function to the Dawson integral,

W(z) = e−z
2

erfc(−iz), D(x) =

√
π

2
e−x

2

erfi(x), (3.10)

UsingW(z) the Vlasov response function becomes (The Plasma Dispersion Func-

tion 1961)

χ0
A(ζA) = −βnA

[
1 + i

√
πW(ζA)

]
. (3.11)

The collective modes of the system are found from the solutions of the dispersion

equation det ε(k, ω) = 0. At high frequencies (ω/k �
√

1/βm2 >
√

1/βm1,

species 2 is the lighter species) the system supports a single plasmon mode with

a finite frequency at k = 0 and positive k2-dispersion. The explicit dispersion in

the long–wavelength limit is

ω2
0(k → 0) = ω2

p + 3
ω2

1v
2
1 + ω2

2v
2
2

ω2
p

k2, (3.12)

where ω2
p = ω2

1 +ω2
2 is the nominal total plasma frequency and v2

A = 1/(βmA) the

thermal speeds of the particles. Since the system is considered to be collisionless,

damping is due to wave-particle interactions and it is

γ0(k) =

√
π

8

ω2
0

k3

{
ω2

1

v3
1

exp

[
− ω2

0

k2v2
1

]
+
ω2

2

v3
2

exp

[
− ω2

0

k2v2
2

]}
. (3.13)

The multi-component aspect of the system allows for a second solution to the

dispersion equation in the regime
√

1/(βm1)� ω/k �
√

1/(βm2), however, this

mode is highly damped and never really observed. Only in the case of a plasma
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mixture with species at different temperatures, T2 � T1, one finds the solution

ωs(k → 0) = vthk, vth =

√
T2

m1

+ 3
T1

m1

. (3.14)

with the corresponding damping

γs(k) =

√
π

8
vthk

{√
m2

m1

+

(
T2

T1

)3/2

exp

[
− T2

2T1

− 3

2

]}
. (3.15)

This mode is usually found in an electron–ion plasma and it is commonly called the

“ion–acoustic mode”. It is associated with plasma oscillations of the ions screened

by the surrounding electron cloud. It can be rewritten also as

ωs(k → 0) =
ωi,p
εe(k)

(3.16)

where ωi,p is the plasma frequency of the ions and εe(k) the static dielectric function

of the electrons.

Without further ado we calculate the partial dynamic structure functions

SAB(k, ω), using the Fluctuation–Dissipation theorem (1.45),

S11(k, ω) = − 1

πβn1ω

[
Im{χ0

1} |1− φ22χ
0
2|

2

|ε(k, ω)|2
+
φ22φ̃11 Im{χ0

2} |χ0
2|

2

|ε(k, ω)|2

]
, (3.17)

S12(k, ω) = − φ12(k)

πβ
√
n1n2ω

[
(Im{χ0}1 Re{χ0

2}+ Im{χ0
2}Re{χ0

1}) Re{ε}
|ε(k, ω)|2

−(Re{χ0
1}Re{χ0

2} − Im{χ0
1} Im{χ0

2}) Im{ε}
|ε(k, ω)|2

]
, (3.18)

S22(k, ω) = − 1

πβn2ω

[
Im{χ0

2} |1− φ11χ
0
1|

2

|ε(k, ω)|2
+
φ11φ̃22 Im{χ0

1} |χ0
1|

2

|ε(k, ω)|2

]
. (3.19)

its line plots for four low values of ka in Fig. 3.1 and intensity plots in Fig. 3.2. In
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Figure 3.1:
Line plots of S11(k, ω) (top) and S22(k, ω) (bottom) at four different ka
values. The asymmetry parameters are indicated in the plots’ titles.
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Figure 3.2:
Intensity plots of S11(k, ω) (top) and S22(k, ω) (bottom) for the set
of asymmetry parameters indicated in the plots’ titles. White dashed
lines and black dashed lines are described in the text. Notice that
the lowest ka is 0.0189, therefore the white column at ka = 0.0 is the
empty part of the plots.
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both plots we observe the RPA plasmon mode ω0(k) at ω ≈ 6ω1 moving rightward

to higher frequencies with increasing ka. The interesting feature is the sharp

minimum found in S22(k, ω) at ω = ω1. This is not the Silvestri–Kalman anti–

resonance, but its equivalent in a weakly coupled mixture. Looking at eq. (3.19) we

immediately notice that, neglecting the second term, S22(k, ω) has a zero whenever

1− φ̃11(k)χ0
1(k, ω) = 0. This is none other than the dispersion relation of an OCP

composed by species 1. The second term is negligibly small due to the large mass

difference since

Im{χ0
1}/ Im{χ0

2} ∝ m2/m1 � 1. (3.20)

The zero of S22(k, ω) is at

ω2
1(k) = ω2

1 + 3v2
1k

2. (3.21)

No anti–resonance is visible in S11(k, ω) because its second term in eq. (3.17)

is non–negligible. The above dispersion relations are visible in color maps of

SAB(k, ω) shown in Fig. 3.2. In these plots peaks of SAB(k, ω) are identified with

a red-white color, while anti-resonances with a purple-black color. Both plots

show the positive k2 plasmon dispersion at high frequencies. The white dashed

line in the plot of S11(k, ω) represents dispersion (3.12). In the plot of S22(k, ω)

we observe the anti–resonance as a dark region around ω/ω1 ≈ 1 which becomes

narrower as ka increases up to 0.2. The white dashed line in the plot of S22(k, ω)

represents dispersion (3.21).

We would like to point out the similarity with the toy model presented in Sec. 2.4 of

the previous chapter. As mentioned at the end of it the zeros of the real and imag-

inary part of the response functions coincide whenever there is no inter–species

damping. We conclude by noting that no “ion–acoustic” peak is visible in any of

the above plots. This mode, in fact, is masked by the large damping as represented

by the wide red–yellow region below the black dashed line representing dispersion
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(3.14). We conclude this section with Table. 3.1 indicating the numerical values

of the frequencies discussed above.

ω1 ω2 ωp
1 5.657 5.744

Table 3.1:
Tabulated values of the relevant frequencies for the mixture shown in
Figs. 3.1– 3.2 (in units of ω1). Z1 = m1 = 1.

3.2 Strong Coupling Regime

Strong coupling brings new features in the Dynamic Structure Factor and

in this section we will use the Collisional QLCA to identify and describe them.

Similar to the weak coupling case we start by calculating the collective modes

from the dispersion relation and we conclude with the calculation of the Silvestri–

Kalman frequencies.

The principal quantity of interest is the dynamical matrix G(k, ω) = −iωR(k) +

C(k). The elements of C(k) are

C11(k) = ω2
1

[
1 +

1

3
p2 − 2D11(k)

]
, (3.22a)

C12(k) = ω2
1

[
2

3
pq − 2pqD12(k)

]
, (3.22b)

C22(k) = ω2
1

[
q2p2 +

1

3
q2 − 2q2p2D22(k)

]
, (3.22c)

with

DAB(k) =

∫
dr

r
hAB(r)

[
sin(kr)

kr
+ 3

cos(kr)

(kr)2
− 3

sin(kr)

(kr)3

]
. (3.23)

Details of the derivation of the above formulas are given in Appendix C.1.
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3.2.1 Collective Modes

As shown in the previous chapter the solutions of the det ε(k, ω) = 0 are

equivalent to those of

D(k, ω) =
[
ω2 − ω2

+(k)
] [
ω2 − ω2

−(k)
]
− iω (R11 +R22)

[
ω2 − ω2

im(k)
]
, (3.24)

where ω±(k) are the eigenvalues of the C(k) matrix

ω2
± =

ω2
1

2

{
Tr C(k)±

√
Tr C(k)2 − 4 det C(k)

}
, (3.25a)

Tr C(k) = 1 + q2p2 +
p2 + q2

3
− 2

[
D11(k) + q2p2D22(k)

]
, (3.25b)

det C(k) =
q2 (1 + p2)

2

3

[
1− 2

D11 + 2p2D12 + p4D22

(1 + p2)2

]
−2q2p2

[
D11 − 2D12 +D22 − 2

(
D11D22 −D2

12

)]
. (3.25c)

Since det C(k = 0) 6= 0 we find two plasmon modes with finite frequencies given

by

ω2
±(0) =

ω2
1

2

1 + q2p2 +
q2 + p2

3
±

√(
1 + q2p2 +

q2 + p2

3

)2

− 4

3
q2(1 + p2)2

 ,

(3.26)

which rewritten in terms of characteristic frequencies become

ω2
±(0) =

ω2
p

2
+
Ω2

12 +Ω2
21

6
± 1

2

√(
ω2
p +

Ω2
12 +Ω2

21

3

)2

− 4ω2
vaa

Ω2
12 +Ω2

21

3
, (3.27)

Ω2
AB =

4πZA
mA

ZBnBe, (3.28)

ω2
vaa =

4π 〈Z2〉n0e
2

〈m〉
(3.29)
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with ω2
p = ω2

1 +ω2
2 being the total plasma frequency. ΩAB represents the oscillation

frequency of a particle of species A in the frozen environment of particles of species

B. ωvaa is the called the hydrodynamic frequency or Virtual Average Atom (VAA)

frequency and it corresponds to the plasma frequency of an OCP created by the

average charge and mass of the components (Hansen, McDonald, and Vieillefosse,

1979). In the above equation we recall that 〈A〉 = Ac1 + Ac2 which leads to

ωvaa < ωp.

The diagonalization of the matrix ω2I−C(k, ω) allows us to retrieve information

on the “polarization” of these modes. The high frequency mode ω+, represents the

mode in which particles of different species move in–phase, while the out–of–phase

motion corresponds to the low frequency mode ω−.

At the other end of the spectrum, k →∞, the C(k) matrix becomes diagonal and

the collective modes become exactly the nominal Einstein frequencies

ω2
+(k →∞) =

ω2
1 +Ω2

12

3
, ω2

−(k →∞) =
ω2

2 +Ω2
21

3
, (3.30)

which, similar to eq. (3.28), represent the oscillation frequency of a particle of

species A in the frozen environment of particles of species A and B. This short

wavelength behaviour is somewhat expected since at such short wavelength λ� a

the wave couples only to the single particle motion.

3.2.2 Silvestri–Kalman Frequencies

As shown in the previous chapter the main frequencies of interest are the

zeros of the real and imaginary part of the external response functions. These

anti-resonances are easily calculated from the elements of the dynamical matrix.

Neglecting terms of O(R2
AB) in eq. (2.53)-(2.57), at k = 0, the zeros of the real
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part of χAB(k, ω) are

C11(0) = ω2
1 +

Ω2
12

3
, (3.31)

C22(0) = ω2
2 +

Ω2
21

3
. (3.32)

which we name Fano frequencies. The anti–resonances of the imaginary part,

ω∗1,2, are calculated from eqs. (2.38)–(2.39). As mentioned before at k = 0 the

term in RAB representing the intraspecies collision vanishes while the interspecies

term remains finite. Thus, all the elements of R become proportional to a single

collisional frequency, γ̄12. Rewriting R in unit of ω1 and casting all the details in

a nominal collisional frequency ν we have

R = −ν

 n −
√
n/m

−
√
n/m 1/m

 , (3.33)

which when used in conjunction with eq. (2.38) and eq. (2.39) leads to the Silvestri–

Kalman (SK) frequencies

ω2
∗1(0) = ω2

1(1 + p2) = ω2
1 +Ω2

12, (3.34)

ω2
∗2(0) = ω2

1q
2(1 + p2) = ω2

2 +Ω2
21 (3.35)

As mentioned before they are independent of the collisional frequency, ν, and are

entirely defined by the physical parameters of the system. We also notice that,

using the neutrality condition Z1n1e + Z2n2e − ene = 0, each frequency can be

rewritten in terms of the electronic background density

ω2
∗A(0) =

4πZAenA
mA

(Z1n1e+ Z2n2e) =
4πZAenA
mA

nee. (3.36)
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We point out that the SK frequency should not be confused with the oscillation

frequency of an ion A in the frozen negative background, as this frequency contains

a factor 1/
√

3

ω2
∗A = 3Ω2

E,A, Ω2
E,A =

4π

3

ZAenA
mA

nee (3.37)

The other relevant frequency is the zero of the imaginary part of the dispersion

relation, ωim. Using eq. (2.41) at k = 0, we find

ω2
im(0) = ω2

1

q2(1 + p2)2

q2 + p2
=
ω2
∗1(0)ω2

∗2(0)

Ω2
12 +Ω2

21

=
4π 〈Ze〉2 n0

〈m〉
= ω2

vaa. (3.38)

discussion of the implication of this equality is left for later.

At finite k intra–species and inter–species collisional become relevant and knowl-

edge of the functional form of νAB(k) is needed for the calculations of the SK fre-

quencies. However, assuming for the moment that these effects can be neglected we

can look at the short wavelength limit of these frequencies, which, similarly to the

collective modes, become the nominal Einstein frequencies at short wavelengths

ω2
∗A(k →) = CAA(k →∞) =

ω2
A +Ω2

AB

3
(3.39)

and

ω2
im(k →∞) =

ω2
vaa

3
. (3.40)

In Fig. 3.3 we show the dispersion of all the frequencies (collective modes, Fano,

Silvestri–Kalman, etc.) in order to show their positions with respect to each

other. The pair distribution gAB(r) computed in MD simulations has been used

for making of this plot. At k = 0 we notice the hierarchy

ω−(0) <
√
C11(0) < ω∗1(0) < ωim(0) < ω+(0) <

√
C22(0) < ω∗2(0), (3.41)
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as confirmed by the above equations and it remains valid for any set of asymmetry

parameters q, p. At k → ∞ all the frequencies reach their Einstein frequencies

ωE1,2. It is interesting to note that the collective modes and SK frequencies in-

tersect in multiple ka values which correspond to C12(ka) = 0, more about this

will be discussed later. As for ωim no intersection is found as expected since it

represents a weighted average of the SK frequencies.

Figure 3.3:
Dispersions of the relevant QLCA frequencies in units of ω1. The
collective mode are indicated by solid lines, Silvestri–Kalman frequen-
cies by dashed lines, QLCA Dynamical matrix elements by dashed-dot
lines. On the right side of the plot the values of characteristic frequen-
cies are indicated.

64



3.3 Results and Discussion

In this section we will compare the theoretical results with MD simulations

starting with the weak coupling regime followed by the strong coupling regime.

Before moving on we point out a discrepancy, noticed too late to rectify. The Γ

value reported in plots’ titles does not correspond to Γion defined in eq. (1.11).

The Γ reported in the plots’ titles is

Γ = Γ1 =
e2β

a1

, a3
1 =

3

4πn1

. (3.42)

This means that

Γion = Γ
a1

a
= Γ (1 + n)1/3 ⇒ Γion > Γ. (3.43)

Furthermore, we recall that neither Γ nor Γion are representative of the real effec-

tive coupling of the mixture. However, the difference between Γ, Γion, Γ eff is not

crucial for the purpose of this Thesis, where we are only concerned with strong

coupling effects in general and not in the determination of an exact coupling pa-

rameter.

3.3.1 Weak Coupling

In Figs. 3.4–3.5 we show plots of SAB(k, ω) at the lowest coupling values,

available from MD simulations, for two sets of asymmetry parameters. Solid lines

represent MD data while dashed lines, SAB(k, ω) calculated using the RPA. The

latter have been multiplied by a factor of 2 in order to lay on top of the MD lines

(likely due to a normalization factor in simulations). Furthermore, plots for the

second and third ka values have been shifted upwards for better viewing, both MD

and RPA. In the plots of S22(k, ω) we indicate the location of the plasmon ω0(k).

The plots show very good agreement between RPA and MD overall. This is some-

what unexpected since the RPA is considered exact at Γ = 0 and at finite Γ one
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expects some disagreement due to the presence of correlational effects neglected by

the RPA. The only disagreement is found in the profile of the plasmon peak which

is predicted to be narrower by the RPA. A slight shift to lower frequencies is also

observed at Γ = 0.5 in Fig. 3.5 likely due to correlational effects. The important

feature is the presence of an anti–resonance in the dynamic structure function of

the light component, S22(k, ω), while no anti–resonance is found in S11(k, ω). As

explained in Sec. 3.1 this is due to the small mass ratio m2/m1 = 0.02 which

causes the second term in S22(k, ω) to be negligible while it is non–negligible in

S11(k, ω). Both the plasmon peak and the anti–resonance are clearly visible only

at the lowest ka and are immediately broadened in the next two lowest ka values.

In the Figures we note also the faint presence of a low frequency peak at

ω/ω1 < 1. This peak is better visible in the total SZZ(k, ω) as shown by Fig. 3.6.

While its existence is arguable for the second set of asymmetry parameters (bot-

tom plot), a peak is evident at the lowest ka value in the first set (top plot). This

peak is the “ion–acoustic mode” ωs(k) of eq. (3.14) and like the plasmon is highly

damped at higher ka. The dispersion of both the plasmon and “ion–acoustic”

mode is shown in color maps of LAB(k, ω) in Figs. 3.7–3.8, with the plasmon dis-

persion indicated by a solid white line and the dispersion of the “ion–acoustic”

mode by a dashed white line.

ωF1(kamin) ω∗1(0) ωF2(kamin) ω∗2(0) ωp ω0(kamin) ωvaa

1.1028 1.1255 4.6337 7.1181 3.4156 4.6437 1.2625
1.0915 1.6125 6.4475 7.2111 5.7446 6.5028 2.5019

Table 3.2:
Tabulated values of all the frequencies of the system (in units of ω1).
Z1 = m1 = 1. The first row represent Set 1: Γ = 0.2, Z2 = 0.8,
m2 = 0.02, c = c1 = 0.75. Second row Set 2: Γ = 0.5, Z2 = 0.4,
m2 = 0.02, c = c1 = 0.2

Before moving on we spend few words on the polarization of these two modes.

As said before, in an OCP the plasmon mode represents the out-of–phase motion
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Figure 3.4:
Comparison between the RPA and MD S11(k, ω) (top) and S22(k, ω)
(bottom) for the lowest three values of ka reached in simulations. The
asymmetry parameters are shown in the titles. Solid lines represent
MD data, dashed lines RPA calculations. The second (third) ka line
have been multiplied by a factor of 10 (100) for better viewing.
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Figure 3.5:
Comparison between the RPA and MD S11(k, ω) (top) and S22(k, ω)
(bottom) for the lowest three values of ka reached in simulations. The
asymmetry parameters are shown in the titles. Solid lines represent
MD data, dashed lines RPA calculations. The second (third) ka line
have been multiplied by a factor of 10 (100) for better viewing.
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Figure 3.6:
Plot of SZZ(k, ω) for the asymmetry parameters shown in Figs. 3.4–
3.5.
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of all the ions with respect to the negative electronic background, while the “ion–

acoustic” mode of an electron–ion plasma to plasma oscillation of the ions screened

by the electron cloud. Direct comparison with the OCP leads to the interpretation

of ω0(k), in the binary ionic mixture, to the in–phase motion between the two ion

species (while the still being out–of–phase with respect to the negative electronic

background). This leads then to the identification of the acoustic mode ωs(k)

with the out–of–phase motion between the two ion species. This physical picture

can be checked and confirmed by looking at the inter-species correlation functions

S12(k, ω) and L12(k, ω). Plots of MD L12(k, ω) are shown in Fig. 3.9. In here we

notice a negative peak at low frequencies, representative of ωs(k), and a positive

one at high frequencies, representative of ω0(k). We must note that this is different

than the coupled harmonic oscillator model in which the high frequency mode is

the out–of–phase mode. This is because ω0(k) is the only mode that survives at

T = 0, hence, it is the multi–component counterpart of the plasmon of an OCP.

For the sake of completeness we report all the values of the relevant frequencies of

the asymmetry parameters used in the plots in Table 3.2.

We conclude this part by mentioning a special case. The acoustic solution, ωs(k),

exists only in a binary mixture at finite temperature and within the range v1 �

ω/k � v2. In our case given that the two masses are different the two thermal

speeds are different, however, we can also have the case m1 = m2 and T1 6= T2.

This is a less realistic situation in classical plasma, but it is realizable in a quantum

electron gas. The duality of the system is obtained by considering the electron

gas as composed by two species: one with spin up and one with spin down. The

difference in temperature is then achieved by different populations of each spin

species (recall that temperature is proportional to the electron density). Such a

system has been considered by Agarwal et al. in Ref. (Agarwal et al., 2014) in

which ωs(k) is called the spin-plasmon.

70



Figure 3.7:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom) for the asym-
metry parameters shown in the titles. The dashed white lines indicate
the dispersion calculated from eq. (3.12).
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Figure 3.8:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom) for the asym-
metry parameters shown in the titles. The dashed white lines indicate
the dispersion calculated from eq. (3.12).
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Figure 3.9:
Plot of L12(k, ω) for the asymmetry parameters shown in Figs. 3.4–3.5.
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3.3.2 Strong Coupling

In Fig. 3.10 we show plots of SAB(k, ω) at the lowest ka values with Γ =

10 000 comparing MD and Collisional QLCA calculations. Given the large Γ the

particles were initialized in a bcc lattice, so to reduce the thermalization time, and

remained in this configuration for the entirety of the simulation. This high Γ is

chosen so to reduce thermal effects to the minimum and therefore representative of

the QLCA assumptions. The agreement between MD (solid lines) and collisional

QLCA (dashed lines) is very good. The Collisional QLCA correctly predicts the

locations of the collective modes and of the anti–resonance in S22(k, ω). No anti-

resonance is instead visible in S11(k, ω). However, the fast decay of S11(k, ω) to

the left of the ω∗2 suggests that the anti–resonance is still present it is masked by

the high frequency tail.

In Figs. 3.11–3.17 we show plots for few different asymmetry parameters with

liquid values of the coupling parameter Γ . The nominal collisional frequency ν

used is shown in the plots’ legends. In these plots it is evident the existence of

both anti–resonances. We stress that the values of |ν| are only indicative and

should not be considered as the best fit. The reason being that the QLCA was

originally formulated for the calculation of the collective modes and not meant for

an accurate reproduction of SAB(k, ω). The Collisional QLCA is to be considered

as a first step toward a reproduction of SAB(k, ω). As a matter of fact, eqs. (2.59)–

(2.61) show that SAB(k, ω) is approximated as a product of two Lorentzians. From

the plots it is evident that such an approximation is very crude, nontheless it

captures some of the main features of SAB(k, ω): the collective modes and anti–

resonances. The main drawbacks of the QLCA, and consequently of the Collisional

QLCA, is the lack of consideration of thermal effects. This causes the QLCA to

fail to reproduce the diffusive peak at ω = 0 for coupling parameters Γ indicative

of a moderately coupled liquid. As mentioned above a disordered lattice structure
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is the closest representation of the QLC formalism hence the good agreement at

ω = 0 in Fig. 3.10. Furthermore, the Collisional QLCA poorly reproduces the high

frequency tail of SAB(k, ω) in all cases. MD simulations studies on the OCP have

shown that the high frequency tail decays with a power law and the exponents

becomes very large as Γ increase ∼ ω−10 (Korolov et al., 2015).

Moving on to the strengths of the Collisional QLCA we find an overall good

agreement with MD simulations. The Collisional QLCA correctly identifies the

collective mode and anti–resonance frequencies in all cases. The main purpose

of these plots is to show the existence of both anti–resonances at any Γ > 10

and the effects of the collisional frequency ν on the collective modes. Fig. 3.12 is

obtained by using two values of the collisional frequency, namely |ν| = 0.5ω1 and

|ν| = 0.05ω1. The large value of |ν| causes the disappearance of the low frequency

plasmon ω− = 0.7769ω1. The high frequency plasmon ω+ = 1.3568ω1, on the

other hand, is clearly visible and its widths appears unaffected by ν. The chosen

asymmetry parameters lead to

ω∗1 = 1.4142ω1, ω∗2 = 1.2910ω1 (3.44)

respectively, to the right and left of ω+. This feature of the SK–frequencies being

above and below of the in–phase collective mode is an interesting feature that is

found in the entirety of this Thesis. The effects of |ν| on the collective modes

are evident by looking at the denominator of SAB(k, ω), rewriting |D(, ω)|2 from

eq. (3.24) in terms of ν we have

D(k, ω) =
[
ω2 − ω2

+(k)
]2 [

ω2 − ω2
−(k)

]2
+ ω2ν2 (n+ 1/m)2 [ω2 − ω2

im(k)
]
. (3.45)

The frequencies ω±(k) are the eigenvalues of the real matrix C(k) and we claimed

these to be the collective modes of the system under the assumption of small
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damping |ν| � 1. Obviously, |ν| = 0.5 does not satisfy this condition and the

peaks in SAB(k, ω) are now given by the complex solution of

det |ω2I− iωR−C(k)| = 0. (3.46)

Furthermore these solutions are the eigenfrequencies of the matrix χ(k, ω) related

to the displacement fields, ¸A. In general, the collective modes of a plasma are

given by the zeros of the ε(k, ω) which is the response of a plasma to external

electric field. Plots of the Real and Imaginary part of det ε(k, ω) for the simulation

parameters of Fig. 3.12 is shown in Fig. 3.18. Notice that the Real part of crosses

the zero line only at ω = ω+. At ω = ω− the Real part shows an asymmetric peak

for the lowest |ν|. From these results we argue that for the simulations parameters

of Fig. 3.12 there exists only one collective mode: the high frequency plasmon ω+.

The second low frequency plasmon predicted by the QLCA is instead annihilated

due to the large collisional frequency |ν| and only at much higher Γ , where |ν| � 1,

this second plasmon will be observed. A more thorough study of det ε(k, ω) will

be given in the next Chapter.

Figs. 3.13–3.15 are meant to show how the low frequency plasmon is affected

by the collisional frequency. Notice that ω− becomes visible in S11(k, ω) when

the concentration is increased. We note that Γeff, as given by eq. (1.9), does

not change appreciably with the concentration, Γeff = {96.8, 92.6, 95.2} for c =

c1 = {0.25, 0.5, 0.75}. Indication that the collisional frequency increase with Γ

is shown in Figs. 3.16–3.17 where the same asymmetry parameters are shown for

two Γ values.

A final feature of note is that the SK frequencies appear only in the partial DSF

and not in the total DSF’s such as the charge-charge SZZ(k, ω) and mass-mass,

SMM(k, ω), hence, would not be visible in any scattering experiment unable to
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probe a single species. SMM(k, ω) and SZZ(k, ω) calculated using the Collisional

QLCA are

SMM(k, ω) = c1m
2
1S11(k, ω) + 2

√
c1c2m1m2S12(k, ω) + c2m

2
2S22(k, ω)

=
νk2

βπ

m1c1

|D|2

[(
ω2 − ω2

∗2
)2 − 2

|R12|
R11

√
mn

(
ω2 − ω2

∗2
) (
ω2 − ω2

∗1
)

+mn
R22

R11

(
ω2 − ω2

∗1
)2
]

=
k2

βπ

m1c1ν

|D|2
(
ω2
∗2 − ω2

∗1
)2

(3.47)

SZZ(k, ω) = c1Z
2
1S11(k, ω) + 2

√
c1c2Z1Z2S12(k, ω) + c2Z

2
2S22(k, ω)

= − k2R11

βπ|D|2
Z2

1c1

m1

[(
ω2 − ω2

∗2
)2

+ 2
R12

R11

√
Z2n

m

(
ω2 − ω2

∗2
) (
ω2 − ω2

∗1
)

+
Z2n

m

R22

R11

(
ω2 − ω2

∗1
)2
]

=
k2νω1

βπ|D(k, ω)|2
Z2

1c1

m1

(1− q2)2

(
ω2 − ω2

∗2 − q2ω2
∗1

1− q2

)2

k→0−−→ k2νω1

βπ|D(k, ω)|2
Z2

1c1

m1

(1− q2)2ω4 (3.48)

where the last expression is obtained by recalling that ω2
∗2(k) = q2ω2

∗1(k) to O(1)

in k (compare eqs. (3.34)–(3.35)). Plots of SMM(k, ω) and SZZ(k, ω) with a lattice

Γ are shown in Fig. 3.19, while plots of SZZ(k, ω) only are shown in Figs. 3.20–

3.21. The disagreement between Collisional QLCA and MD simulations is again

expected in this case. In particular we point out that SZZ(k, ω = 0) calcu-

lated from MD approaches a finite value, while the Collisional QLCA predicts

SZZ(k, ω → 0) → 0. Finally, in Fig. 3.22 we show a list LAB(k, ω) for the range

Γ = 10− 300 to further confirm the Γ–independence of the Silvestri–Kalman fre-

quencies as given in eqs. (3.34)–(??)

The mode dispersion are shown in Fig. 3.23 via intensity plots of LAB(k, ω) for the
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highest Γ shown in Fig. 3.22. In Figs. 3.24-3.25 a collection of intensity plots for

different concentrations. Solid white lines represent the dispersion of the QLCA

collective modes ω±, eq. (3.25), while dashed white lines the dispersion of the SK

frequencies, eqs. (2.38) – (2.39), with RAB(k) = RAB(0). We notice that the high

frequency plasmon is always present, while the low frequency plasmon appears

only in the case of mixtures with a high concentration of heavy particles. In the

opposite case, instead, we notice the presence of an acoustic-like mode. However,

this is not a real collective mode and it is only an artifact of the intensity plots

since LAB(k, ω) vanishes at ω = 0. Confirmation that this is not a real mode is

given by looking at Fig. 3.26 where we show plots of SAB(k, ω) for the first few ka.

Notice that there is no presence of an acoustic–like mode. As mentioned above

the absence of the low frequency plasmon is likely due to a large concentration of

light particles.

Overall all the plots show qualitatively good agreement between the QLCA and

MD. The QLCA correctly predicts the main features of the dispersion of the two

plasmons. Both modes start at finite frequencies at k = 0 and show a negative

dispersion at finite k, a hallmark of strong coupling. The dispersions reach a min-

imum around ka ∼ 4. In the literature, this is identified as the “roton minimum”,

another feature of strongly correlated liquids (Kalman, Kyrkos, et al., 2012). We

notice that the location of the minimum appears to be independent of the asym-

metry parameters. This is due to the fact that all the simulations use N = 10 000

particles and a simulation box of side L = 1e − 5, the Wigner–Seitz radius is

then defined by the total density N/L3 which is the same for all the asymmetry

parameters. As suggested in (Kalman, Kyrkos, et al., 2012) the location of the

minimum can be interpreted as the location of the boundary of the first Brillouin

zone of a bcc lattice. In fact, if we consider a bcc lattice with lattice constant

b = 3
√

2π/3a (a the liquid WS radius) we find that when kb = 2π, ka = 4.9 close
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to the minimum in the plots. The presence of the roton minimum in these mix-

ture further corroborates that the roton minimum is a feature of strongly coupled

liquid and not only a quantum effects (Kalman, Kyrkos, et al., 2012). At short

wavelengths, around ka = 8, the QLCA and MD start to deviate from each other.

As described before the QLCA modes approach the nominal Einstein frequencies

of each species with almost flat dispersion. The MD dispersions, instead, bend

upward suggesting that the modes enter the “single particle continuum”. This

behaviour is less evident in the plots of Z2 = 0.5, m2 = 0.02, and c = 0.90 and it

is likely due to the larger concentration of species 1 and the higher Γ value. The

most important feature of these plots is the qualitatively good agreement of the

QLCA calculations. This is unexpected because, as mentioned in the appendix of

(Kalman and Golden, 1990), the QLC formalism can be justified for kaω1/ω < 1.

Finally we look at the dispersion of the SK frequencies. We recall that both SK

frequencies are the zeros of S12(k, ω) and L12(k, ω) therefore, both their dispersion

will be evident in color maps of —L12(k, ω)|. In Fig. 3.27–3.29 we show color maps

of |L12(k, ω)|, for three asymmetry parameters. The zeroes of these functions are

represented by black regions. The low frequency anti–resonance is clearly visible

in all Figures and very good agreement is found between Collisional QLCA and

MD up to ka = 3. This is somewhat surprising since the SK dispersion is calcu-

lated with the assumption RAB(k) = RAB(0), i.e. neglecting k-dependent effects

of the collisional damping. The high frequency SK anti–resonance, instead, does

not show the same good agreement. In fact, the large black region at high frequen-

cies masks its exact location and it appears to have a positive k dispersion. This

is somewhat expected since the high frequencies SK anti–resonance appears as a

wide minimum in plots of LAB(k, ω) and not as sharp as the low frequency one.

Furthermore, MD data for L12(k, ω) becomes very small and noisy at high frequen-

cies and low values are indistinguishable from zero in this color code. However,
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the presence of the high frequency SK anti–resonance is visible at much higher ka

where we notice an alternating pattern between colored and dark regions. This is

especially evident in Fig. 3.27. This oscillating behaviour is an interesting feature

as it represents sign oscillations of L12(k, ω). To better investigate this feature we

show line plots of L12(k, ω) in Fig. 3.30. Similar to the weak coupling regime the

low frequency mode is associated with an out–of–phase motion of the two particle

species, while the high-frequency mode with an in-phase motion. As ka increases

the peaks of L12(k, ω) at ω = ω± change sign. Furthermore, the ka values at which

L12(k, ω) changes sign are to be the crossing points between the collective modes

and SK anti–resonances.
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Figure 3.10:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.11:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.12:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.13:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.14:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.15:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.16:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.17:
Comparison between the QLCA and MD SAB(ka, ω) for the asym-
metry parameters shown in the title. Solid black lines represent MD
data, dashed blue lines Collisional QLCA calculations.
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Figure 3.18:
Plot the Real (top) and Imaginary (bottom) part of det ε(k, ω) for
the simulation parameters of Fig. 3.12 for three |ν| values
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Figure 3.19:
Comparison between the QLCA and MD SAB(kamin, ω) for the asym-
metry parameters shown in the titles. Solid black lines represent MD
data, dashed blue lines QLCA calculations
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Figure 3.20:
Comparison between the QLCA and MD SAB(kamin, ω) for the asym-
metry parameters shown in the titles. Solid black lines represent MD
data, dashed blue lines QLCA calculations

91



Figure 3.21:
Comparison between the QLCA and MD SAB(kamin, ω) for the asym-
metry parameters shown in the titles. Solid black lines represent MD
data, dashed blue lines QLCA calculations
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Figure 3.22:
Plots of MD LAB(k, ω) for a set of strongly coupled Γ values at the
lowest ka obtainable from simulations. The QLCA collective modes
and the Silvestri-Kalman frequencies are shown.
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Figure 3.23: Intensity plots of MD LAB(k, ω) to show the mode dispersion.
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Figure 3.24:
Intensity plots of MD LAB(k, ω) for a binary mixture with a high
concentration of heavy particles.
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Figure 3.25:
Intensity plots of MD LAB(k, ω) for a binary mixture with a high
concentration of light particles.
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Figure 3.26:
Line plots of SAB(k, ω) for the first few ka values indicating the ab-
sence of an acoustic–like mode.
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Figure 3.27:
Density Plot of L129k, ω) to show the dispersion of the SK frequencies
indicated by dashed white lines

3.4 Weak to Strong Coupling Transition

Before concluding this chapter few words on the transition from weak to strong

coupling are needed. In Fig. 3.31 we show line plots of SZZ(k, ω) at the lowest

ka value for the available range of Γ . The frequencies of interest are indicated in

the plots. We notice that as Γ increases the RPA plasmon peak ω0 widens and

shifts to lower frequencies, indicating a decrease in the temperature dependent

k2–term of the dispersion. The region between 1 < Γ < 20 seems to be a “no

man’s land” with no signatures of a plasmon mode, but only a very wide shoulder.

At around Γ = 10 (yellow line) the high frequency tail starts to decay much faster

suggesting the presence of the high frequency QLCA plasmon, which becomes

evident at Γ > 40 (blue line). At low frequencies instead, we notice the faint

presence of the “ion–acoustic” mode only for Γ < 1. As mentioned before this is
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Figure 3.28:
Density Plot of L129k, ω) to show the dispersion of the SK frequencies
indicated by dashed white lines

not a plasmon mode as it disappears at T = 0. At intermediate Γ we find again

no sign of a collective mode and only at Γ = 20 we start noticing a low frequency

peak at ω = ω−. The left most peak at Γ = 200 is the low frequency phonon

mode of a fcc lattice. In fact, the MD simulation for Γ = 200 was initialized with

particle distributed on a fcc lattice and no melting was observed for the entire

simulation time. The “no man’s land” at 1 < Γ < 20 suggests a non continuous

transition from weak to strong coupling. A possible interpretation of this behavior

is that the system becomes more and more collisional with increasing Γ leading

to a maximum damping at Γ > 5. As Γ increases further particles become quasi–

localized leading to the appearance of two QLCA plasmons for Γ > 20. The set

of parameters shown in Fig. 3.31 is the only set available at this time, due to the

very long relaxation time required for low Γ . We expect that with advancement
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Figure 3.29:
Density Plot of L129k, ω) to show the dispersion of the SK frequencies
indicated by dashed white lines

in computer technology a large set of simulations will be able to show a clearer

transition of the modes from weak to high coupling. In order to reach a more

conclusive description of the transition more simulations are in need.

In the mean time, though, Kalman et al. investigated the origin of the second

plasmon from another perspective (Kalman, Donkó, et al., 2014). In their paper

they argue that ω− originates from the acoustic mode of a Yukawa binary mixture

by means of the Anderson–Higgs mechanism (Anderson, 1963), while ω+ from the

optic mode. This is true only partially as we will see in the later Chapters. As

a teaser we leave with the following question. In an OCP there exists only one

longitudinal excitation at k = 0. This represents the oscillation of the positive

ions with respect to the negative electronic background. When the interaction

becomes short range, as in the case of a Yukawa OCP (YOCP), the plasmon
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Figure 3.30:
Plot of L12 at four different ka values showing how the sign change
after the collective mode has intersected with the anti-resonance

mode becomes acoustic, i.e. vanishes as ω ≈ sk as k → 0 with sound speed s. In

a binary mixture we have showed that the high frequency plasmon ω+ is the binary

mixture counterpart of the OCP plasmon, in which both positive ions species are

in–phase with each other and oscillate out–of–phase with the negative background.

The low frequency plasmon ω−, instead, is an entirely new correlational–dependent

plasmon representative of out–of–phase oscillations between the two ion species.

In a Yukawa mixture we will find again two modes: an acoustic mode, typical

of in–phase motion, and an optic mode, typical of out–of–phase motion. The

question then is: if it is true that the low frequency plasmon comes from the

acoustic mode, how do you explain the different polarization?
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Figure 3.31: From top to bottom Γ = {0.2, 0.5, 1, 2, 5, 10, 20, 40, 80, 120, 200}

3.5 Computer Experiment

We conclude this chapter with a computer experiment. In order to see how the

classical Fano effect manifests itself in the binary ionic mixture we investigate the

response of the system to an external pertubation. We performed MD simulations

of a bcc lattice of N = 2000 point-like particles of species 1 and 2 and thermalized

to Γ = 10 000. An external electric field acting along the x direction only on species

A is applied in the form of EA(xi, t) = sin(ωxt) sin(2π xi/L). The amplitude

of this field is chosen to be small (linear response regime), while the excitation

frequency is linearly increased in time starting from ωx = 0.4ω1 up to ωx = 4ω1.
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c = c1 ω−(0) ω+(0) ω∗1(0) ω∗2(0) Ω12 Ω21 ωp ωvaa

0.1 1.6199 4.8675 2.7019 5.0547 1.5599 2.9183 4.8010 4.3626
0.25 1.1182 2.9944 1.7607 3.2939 1.0165 1.9017 2.8896 2.4508
0.5 0.9171 2.0022 1.3038 2.4393 0.7528 1.4083 1.8574 1.5519
0.75 0.8814 1.5114 1.1106 2.0777 0.6412 1.1995 1.3478 1.1942
0.9 0.9099 1.2794 1.0382 1.9422 0.5994 1.1213 1.1279 1.0660

Table 3.3:
Tabulated values of all the frequencies of the system (in units of ω1).
Z1 = m1 = 1. Γ = 100, Z2 = 0.7, m2 = 0.2

During the simulation a small friction term, −fv, is added to the equation of

motion to compensate for the heating due to the external field. The friction

coefficient f is continuously adjusted to provide stable temperature (Γ ≈ const).

The time evolution of the x component of the velocities is recorded to obtain

〈vx〉B =
∑

i v
B
i,x sin(2π xi/L) of species B: this measures Re{χBA}. In Fig. 3.32

we report 〈vx〉2 when only the second species is perturbed (Re{χ22}). The peaks

in Fig. 3.32 are at the poles of χ̂22 which, for the chosen parameters values, are

in the vicinity of ω− = 0.917ω1 and ω+ = 2.002ω1. A significant decrease in the

oscillation is evident around ω01 = 1.11ω1, which corresponds to the zero of the

numerator,
√
C11 = 1.1106ω1, thus confirming the consistency of the model (the

zeros of Re{D} are masked by the nearby zeros of the denominator). Tabulated

values of all the relevant frequencies are shown in Table 3.3.

3.6 Extra: 2D Binary Coulomb Mixtures

In the above we have investigated 3D Coulomb mixtures only, meanwhile the

QLCA was formulated for the description of the collective modes of Coulomb liq-

uids also in 2D (Kalman and Golden, 1990; Golden and Kalman, 2000; Golden

and Kalman, 2001). Therefore, in this section we present preliminary results of

the Collisional QLCA applied to the case of a binary 2D mixtures of particles

interacting via the Coulomb potential. The collisional extension also in this case

103



Figure 3.32:
Amplitude of the oscillations of the longitudinal velocity of species
2 plotted against the excitation frequency of the fictitious driving
force acting on the same species. The insets are magnification of the
oscillations showing a decrease in amplitude at ω02 =

√
C11. Γ =

10 000, Z = 0.7, m = 0.2, c = 0.5.

predicts the existence of the Silvestri-Kalman frequencies. This is somewhat ex-

pected since the expressions of the SK frequencies arise from algebraic properties

of complex symmetric matrices. Without going into the details of the calculations

of the QLCA 2D dynamical matrix we show in Figs. 3.33-3.34 we show intensity

plots of LAB(k, ω) of a 2D Binary Ionic Mixtures. Plots of L11(k, ω) and L22(k, ω)

show the collective modes dispersion while the plot of |L12(k, ω)| is meant to show

the dispersion of the SK frequencies. We find good agreement also in this case.

This further supports the fact that anti-resonances in asymmetric binary mixtures

are due only to asymmetry in the mass/charge of the components. These results

are presented here, but are meant to be compared with results in Chap. VI.
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3.7 Conclusions

In this Chapter we have investigated a plasma mixture composed by two species

of charged ions in a negative neutralizing background. The particles interacted

via the long–range Coulomb potential. We have investigated both the weak and

strong coupling limits. In the former the dynamics have been studied via the

RPA formalism while the Collisional QLCA has been used in the latter. The main

result of this chapter is the discovery of anti–resonances in the partial DSF of

these mixtures and the excellent agreement with MD simulations. It was shown

that the weak coupling anti–resonances are different from their strong coupling

counterparts, which have been named as Silvestri–Kalman frequencies. MD sim-

ulations have been used to support theoretical predictions. We have shown that

the SK frequencies do not depend on the strength of the damping, but they rely

on the existence of interspecies damping. The strength of the damping appears

to affect only the collective modes. Large damping leads to the broadening and

disappearance of one of the two modes. Preliminary results on the calculation of

det ε(k, ω) have supported this picture. More discussion on this phenomenon is

investigated in the next Chapter. It was also shown that the SK frequencies are

also coupling independent, while still relying on the underlying assumption of the

quasi–localization of the particles. A computer experiment has been presented in

order to confirm the physical mechanism behind the SK frequencies. We conclude

this chapter arguing that the Collisional QLCA captures the main features of the

dynamics of Strongly Coupled Binary Ionic Mixtures: collective modes and anti–

resonances. In addition, the Collisional QLCA allows for the study of the complex

dielectric function and a more accurate collisional frequency will lead to an exact

calculation of the damping of the modes.

As a reference for future research we list the new features found at strong coupling

(vs. weak coupling)
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• Two entirely correlational dependent plasmon modes (vs. one single plasmon

at weak coupling)

• Negative dispersion at finite ka (vs. positive at weak coupling)

• Roton Minimum

• Silvestri–Kalman frequencies (vs. Fano frequencies at weak coupling)

• The role of ωvaa in the mode dispersion

• Collisional Damping (vs. Landau Damping)

The above features have been investigated in this Chapter, but many more remain

to be investigated, just to mention a few

• Behavior of SAB(k, ω) at ω = 0

• Behavior of SAB(k, ω) as ω →∞

• Collective Mode structure dependence on the charge asymmetry parameter

Z

• Transverse Collective Modes
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Figure 3.33:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom) for a 2D
Binary Coulomb Mixture
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Figure 3.34: Intensity plot of |L12(k, ω)| for a 2D Binary Coulomb Mixture
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CHAPTER IV

Yukawa Binary Mixtures

In the previous Chapter we have investigated mixtures of charges interacting

via the long-range Coulomb potential. Here we extend our results to mixtures

with short range interaction which we name Yukawa Binary Mixtures (YBM).

This model gives a more accurate representation of real physical systems since

the negative background is not rigid anymore, but it interacts with the positive

ions by effectively screening the Coulomb potential. The most notable system

that can be modeled as one component Yukawa plasma is called a dusty plasma.

The name dusty comes from the semiconductor industry. In the 80’s the semicon-

ductor industry was spending large amount of money on clean room facilities in

order to remove dirt and other impurities on the chip in the manufacturing pro-

cess. Until one day by pure luck (Selwyn, Singh, and Bennett, 1989; Merlino and

Goree, 2004) showed that impurities or “dust” in a plasma chamber was getting

deposited on the chip. In practice when a plasma is created inside a chamber neu-

tral micron-sized particles become charged due to the high mobility of electrons.

The particles acquire large amount of charge, of the order of 104 e, and the low

kinetic energy makes the particles strongly coupled. Other systems that can be

modeled as YOCP are ultracold atoms, colloids, and more recently Warm Dense

Matter (Murillo, 2010). The dynamics of strongly coupled YOCP has been exten-
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sively studied. Salin (Salin, 2007) derived an expression for the dynamic structure

factor (DSF) S(k, ω) from linearized hydrodynamics equations. Salin showed that

S(k, ω) is given by the sum of three lorentzian centered at ω = 0, ω = ±csk,

representing the diffusive peak and two propagating acoustic mode with sound

speed cs respectively. Mithen et al. (Mithen, Daligault, and Gregori, 2011) have

shown that such description well reproduces the DSF of YOCP for wavelength

k < 0.43κ, while at higher wavenumbers a more sophisticated approach, based

on memory functions, is needed (Mithen, Daligault, Crowley, et al., 2011). These

works, as stated said, have focused on the Dynamic Structure Function of the

YOCP and relied on different formulas for the calculation of the sound speed.

Recently, Khrapak and Thomas (Khrapak and Thomas, 2015) have shown how a

simple fluid description complemented with a sufficiently general equation of state

valid across coupling regimes is sufficient to provide a good estimate for the sound

speed. From a fundamental point of view, a substantial amount of work has been

done on the collective mode structure of the YOCP using the Quasi-Localized

Charge Approximation (QLCA) (Rosenberg and Kalman, 1997; Kalman, Rosen-

berg, and DeWitt, 2000).

Thus, it is logical to extend the merit of the QLCA to binary mixtures of particles

interacting via a Yukawa potential. Kalman et al. (Kalman, Hartmann, Donkó,

Golden, and Kyrkos, 2013) studied the collective mode structure of 2D Yukawa bi-

nary mixtures comparing theoretical predictions with Molecular Dynamics (MD)

simulations. In this chapter, I will expand their work on to 3D Yukawa binary

mixtures. In Sec. 4.1 I will introduce the parameters that define YBM, in Sec. 4.2

will review and expand on the weak coupling regime, while in Sec. 4.3 will look at

the strong coupling regime, and finally compare with MD simulations in Sec. 4.4.
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4.1 Model and definitions

We consider a 3D plasmas composed N = N1 +N2 particles of two species with

charges, ZA, masses, mA, and concentrations cA = NA/N . The particles interact

via the Yukawa potential

φ(r) =
ZAZBe

2

r
er/λY (4.1)

where λY is the screening length. The entire system is characterized by two

parameters: the screening length

κ = a/λY , (4.2)

and the coupling parameter

Γ =
βe2

a
(4.3)

where a is the interparticle distance defined by the Wigner–Seitz radius of each

species

a =
√
a1a2, a3

A =
3

4π

1

nA
(4.4)

with nA the number density of species A. Notice that a has been defined differently

than the Binary Coulomb Mixtures. Furthermore, we define the charge Z =

Z2/Z1, mass m = m2/m1 and density ratio n = n2/n1 = c2/c1 which are cast

together in the two parameters

p2 = Zn, q2 =
Z

m
. (4.5)

4.2 Weak Coupling

Following the structure of the BIM chapter we calculate the collective modes in

the weakly coupled regime using the Vlasov equation and in the strongly coupled
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regime the QLCA. While the validity of the Vlasov equation in the weak coupled

regime is tacitly assumed, it has been shown that for the Yukawa OCP (YOCP)

this assumption is valid with some limitations (Golden, Kalman, and Silvestri,

2018). Depending on the values of Γ and κ and w = s/vth (i.e. the ratio between

the phase velocity of the wave and thermal speed of the particles) we have identified

five different domains in the (κ, Γ ) parameter space in which the physical behavior

of the YOCP exhibits different features.

Generalizing the formalism of (Golden, Kalman, and Silvestri, 2018) we find, at

Γ � 1, the collective modes from the (complex) solutions of

ε(k, ω) = 1−
∑
A

φA(k)χ̄A(k, ω) (4.6)

φA(k) =
4π(ZAe)

2

k2 + κ2
, (4.7)

where χ̄A is the usual Vlasov polarization function

χ̄A(k, ω) = − 1

mA

∫
d3v

k · ∂vfM(v)

k · v − (ω + iδ)
, (4.8)

fM(v) the Maxwell-Boltzmann distribution

fM(v) = nA

(
mA

2πTA

)3/2

exp

(
−mv

2

2TA

)
(4.9)

which gives

χ̄A(k, ω) = − nA
mA

mA

TA
[1 + ζAZ(ζA)] , ζA =

ω

k

√
mA

2TA
(4.10)
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where Z(ζ) is the Plasma Dispersion Function defined in the previous Chapter.

We can rescale φA(k)χ̄A(k, ω) by their Debye wavelengths

µ2
1 = 4πe2Z2

1n1β =
3Γ

a2
√
n
Z2

1 , µ2
2 = 4πe2Z2

2n2β =
3Γ

a2
√
n
Z2

2n (4.11)

where
√
n =

√
n2/n1 in the denominator is due to the fact that a =

√
a1a2. Thus,

the dielectric function becomes

ε(k, ω) = 1− 3Γ√
n

1

(ka)2 + κ2

{
Z2

1 [1 + ζ1Z(ζ1)] + Z2
2n [1 + ζ2Z(ζ2)]

}
(4.12)

= 1− 3Γ√
n

Z2
1 + Z2

2n

(ka)2 + κ2
Π(ζ1) (4.13)

The dispersion relation, assuming small damping, then reads

ReΠ(ζ1) =
k2 + κ2

3Γ

√
c1c2

〈Z2〉
(4.14)

In Figs. 4.2–4.2 we show plots of Re{Π(ζ1)} for different values of the asymmetry

parameters. The RHS of eq. (4.14) will appear as a horizontal line on the same

plot. The intersection points are the collective modes and the propagating mode

will be the intersection point on the right of the maximum. Thus, only those values

of κ and Γ for which the horizontal line is below the maximum of Re{Π(ζ1)} allow

for the existence of an acoustic mode. The largest maximum value of Re{Π} is

Πmax = 0.2848 at m = 1 for any concentration and charge ratio (since it has been

normalized to 1). Using this value we can find the sufficient condition

Γ >
κ2

3Πmax

〈Z2〉
√
c1c2

= 1.17κ2 〈Z2〉
√
c1c2

. (4.15)

which, as one would expect, is closely related to the YOCP condition, see eq. (12)

in (Golden, Kalman, and Silvestri, 2018). For the sake of completeness we report
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Figure 4.1:
Plot of Re{Π(ζ1)} with Z1 = Z2 = 1 for different mass ratios at four
different concentrations and Γ = 0.3. The black line indicates the
maximum value reached at m = 1. Note that c = c1.

the maximum values of Re{Π}(ζ1) for the plotted mass ratios in Table 4.1. In

Figs. 4.2–4.4 we show contour maps of the quantity

Yc(κ, Γ ) =
κ2

3Γ

√
c1c2

〈Z2〉
(4.16)

The color indicates the value of Yc(κ, Γ ). The color code has been limited to

Yc = 0.5 for better viewing. The black lines indicate specific contours of Yc. The

contour line in between 0.1 < Yc < 0.5 indicate the maximum value Yc(m = 1)

and Yc(m = 0.2). Comparing this with Table 4.1 we see that the allowed values

of Γ and κ are those below the line Yc = 0.2848 in the green-blue region.
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Figure 4.2:
Plot of Re{Π(ζ1)} with Z1 = Z2 = 1 for different mass ratios at four
different concentrations and Γ = 0.3. The black line indicates the
maximum value reached at m = 1. Note that c = c1.

The collective mode can be calculate using the ζ1 →∞ expansion of Z(ζ1)

Z(x) ≈ −1

x

[
1 +

1

2x2
+

3

4

1

x4
+

15

8

1

x6
+ ...

]
+ iπe−x

2

, (4.17)

to find

ε = 1 +
1

k2 + κ2

[
µ2

1v
2
1

k2

ω2
+ 3µ2

1v
4
1

k4

ω4
+ µ2

2v
2
2

k2

ω2
+ 3

k4

ω4
µ2

2v
4
2

]
= 1 +

ω2
p

k2 + κ2

[
k2

ω2
+ 3

ω2
1v

2
1 + ω2

2v
2
2

ω2
p

k4

ω4

]
(4.18)
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m 0.1 0.2 0.5 0.7 1.0
c = 0.25 0.2196 0.2269 0.2614 0.2776 0.2848
c = 0.4 0.1805 0.1927 0.2519 0.2753 0.2848
c = 0.5 0.1546 0.1704 0.2487 0.2747 0.2848
c = 0.6 0.1287 0.1490 0.2487 0.2749 0.2848
c = 0.75 0.0904 0.1508 0.2555 0.2769 0.2848
c = 0.9 0.1962 0.2258 0.2706 0.2809 0.2848
c = 0.95 0.2402 0.2547 0.2773 0.2827 0.2848

Table 4.1:
Table of the maximum value of Re{Π}(ζ1) for the different concentra-
tion and mass ratios.

whose solution is an acoustic mode

ω0(k) = sk (4.19)

with the sound speed

s2
Th,RPA =

c2
0√
2

[
1 +

√
1 + 12

ω2
1v

2
1 + ω2

2v
2
2

ω4
p

κ2

]

=
s2

0

2

[
1 +

√
1 + 12

κ2

3Γ/
√
n

(
1 +

q2p2

m

)
(1 + q2p2)−4

]
, (4.20)

s0 = ωp/κ is the T = 0 sound speed. In the last passage we have expressed it in

terms of the asymmetry parameters Z = Z2/Z1, n = n2/n1, m = m2/m1.

At the same time we can calculate the sound speed following the procedure in

(Golden, Kalman, and Silvestri, 2018). Using the expansion (4.17) again we can

write Π as

Π(w) =
1

1 + Z2n

{
w

2
+

3w2

4
+

15w3

8
+ Z2n

[
w

2m
+

3w2

4m2
+

15w3

8m3

]
+O(w4)

}
.

(4.21)

w =
1

ζ2
1

=
k2

ω2

2

βm1

=
2

s2βm1

. (4.22)
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Inverting the series for y = Yc gives

w =
2my

m+ nZ2
− 6y2 (m (m2 + nZ2))

(m+ nZ2)3

+
6y (2m4 + 5m3nZ2 − 12m2nZ2 + 5mnZ2 + 2n2Z4)

m (m+ nZ2)3 (4.23)

Finally the sound speed s2
asym = 2/w(y � 1)

s2
asym =

ω2
p

κ2
+ 3

ω2
1v

2
1 + ω2

2v
2
2

ω2
p

+ 6
κ2

ω6
p

[(
ω2

1v
2
1 + ω2

2v
2
2

)2
+

5

2
ω2

1ω
2
2

(
v2

1 − v2
2

)2
]

(4.24)

which in units of s0 is

s2
asym = s2

0

{
1 + 3

κ2

3Γ/
√
n

[
1 + q2p2/m

(1 + q2p2)2

]
+6

(
κ2

3Γ/
√
n

)2
[

(1 + q2p2/m)
2

(1 + q2p2)4
+

5

2

q2p2(1− 1/m)2

(1 + q2p2)4

]}
. (4.25)

As expected both formulas give s0 in the T = 0 (Γ → ∞) limit. An important

feature, that will become evident later on, is that the total plasma frequency

ωp ∝
√
n1/m1 + n2/m2 and as such is largely determined by the light species.

In (Golden, Kalman, and Silvestri, 2018) it was shown that the first expression,

eq. (4.20), agreed better than the second with MD simulation As we will see later

this is the case here too. In Figs. 4.5-4.7 we show intensity maps of SAB(k, ω)

for three Γ values for three different regions on the κ, Γ phase space of Fig. 4.4.

The first plots correspond to a point in the red region, the second to a point in

between the contours Yc = 0.2848 and Yc = 0.1508, and the last plots to a point

in the dark blue region. Notice how the acoustic mode becomes sharper with

increasing Γ . In the plots the black line indicates the mode given by the sound

speed sTh,RPA calculated from eq. (4.20). The red line, instead, is the solution of

the 1 − φ1(k)χ̄1(k, ω) == 0 i.e. the acoustic mode of an YOCP created entirely
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by species 1. Similarly to the Coulomb case this acoustic frequency corresponds

to the anti-resonance observable in S22(k, ω).

4.3 Strong Coupling

In the strongly coupled regime the QLCA has proved to be successfull in the

predition of the collective mode spectrum for similar systems; 2D binary yukawa

mixture and yukawa one component plasma (Kalman, Hartmann, Donkó, Golden,

and Kyrkos, 2013). In the case of a 3D Binary Yukawa Mixture we have that the

longitudinal dynamical matrix elements are (see Appendix C.2 for details)

C11(k) = ω2
1

[
k2

k2 + κ2
− 1

2
D11(k, κ) +

p2

3
W (κ)

]
(4.26a)

C12(k) = ω2
1qp

[
k2

k2 + κ2
− 1

2
D12(k, κ)− 1

3
W (κ)

]
(4.26b)

C22(k) = ω2
1

[
q2p2 k2

k2 + κ2
− q2p2 1

2
D22(k, κ) +

q2

3
W (κ)

]
(4.26c)

where

DAB(k, κ) =

∫
dr

r
[K(kr, κr)−K(0, κr)]hAB(r), (4.27)

W (κ) = 1 + κ2

∫
drre−κrh12(r). (4.28)

The K(k, κr) are integrals of the interaction potential over the solid angle (see

eq. (C.19)). Notice that by taking the limit κ → 0 one recovers the dynamical

elements of a Binary Coulomb Mixture. As in BIM the first term is the RPA

contribution to the mean field and the second and third terms represent (explicit)

correlational effect. We stress again that the näıve substitution hAB(k) = 0 in

eq. (B.19) appears to recover the high-frequency RPA result. However, this sub-

stitution does not translate in hAB(r) = 0 since this would not cancel the constant
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term in W (κ, h12 = 0) = 1. This is easily seen in the expression of χ̄AB

χ̄11(k, ω) =
n1

m1

k2 ω
2 −H22

|ω2I−H|
, (4.29)

χ̄12(k, ω) =

√
n1n2

m1m2

k2 H12

|ω2I−H|
, (4.30)

χ̄22(k, ω) =
n2

m2

k2 ω
2 −H11

|ω2I−H|
, (4.31)

where

HAB = CAB(k)− ωAωB
k2

k2 + κ2
− iωRAB. (4.32)

For hAB(r) = 0 χ̄12 6= 0 while in the RPA χ̄12 = 0.

4.3.1 The longitudinal dielectric function

Using the above expressions we can calculate the dielectric matrix elements

ε11(k, ω) = 1− 4πe2φ(k)
[
Z2

1 χ̄11 + Z1Z2χ̄21

]
(4.33)

ε12(k, ω) = −4πe2φ(k)
[
Z2

1 χ̄12 + Z1Z2χ̄22

]
(4.34)

ε21(k, ω) = −4πe2φ(k)
[
Z2

2 χ̄21 + Z1Z2χ̄11

]
(4.35)

ε22(k, ω) = 1− 4πe2φ(k)
[
Z2

2 χ̄22 + Z1Z2χ̄12

]
(4.36)

where φ(k) = 1/(k2 + κ2). The collective modes of the system are given by the

zeros of the determinant which is given by

det ε(k, ω) =
det{ω2I−G(k, ω)}
det{ω2I−H(k, ω)}

, (4.37)
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Further simplification leads to

det{ε(k, ω)} =
(ω2 − ω2

+)(ω2 − ω2
−)− iω (R11 +R22) (ω2 − ω2

im)

(ω2 − δ2
+)(ω2 − δ2

−)− iω (R11 +R22) (ω2 −D+(k))
(4.38)

=
(ω2 − ω2

+)(ω2 − ω2
−)− iωνω1 (n+ 1/m) (ω2 − ω2

im)

(ω2 − δ2
+)(ω2 − δ2

−)− iνωω1 (n+ 1/m) [ω2 −D+(k)]
(4.39)

where ν is the nominal collisional frequency, ω± are the QLCA modes, ωim is

given by eq. (2.41), and δ±(k) are the zeros of the real part of the denominator

and D+(k) the zero of the imaginary part.

Considering at first the case of negligible damping, we notice that the collective

modes correspond to ω±. In the long wavelength limit these are (details of the

calculation are given in App. C.2)

ω2
+(k → 0) = ω2

vaa

[
1− U+

(1 + p2)2

]
k2

κ2
(4.40)

ω2
−(k → 0) =

(
Ω2

12 +Ω2
21

3

)
W (κ) +

(
ω2
p − ω2

vaa

) [
1− U−

(1− q2)2

]
k2

κ2
(4.41)

U+ = U11 + 2p2U12 + p4U22, U− = U11 − 2q2U12 + q4U22 (4.42)

where UAB are the long wavelength limit of the DAB(k) correlational terms (pre-

cisely limk→0DAB = 2UABk
2/κ2 ). The subscripts “±” indicate the polarization

of the eigenvectors of C(k); “+(−)” the two species are in-phase (out-of-phase).

As expected, in a system with short range interaction, the strongly coupled phase

continues to be characterized by an acoustic mode with a linear dispersion for

k → 0. The difference with the weak coupling phase is in the sound speed of

this mode. The sound speed in the strongly coupled phase is lower than the weak

coupling. The lowering is twofold. First, the RPA plasma frequency ω0 is replaced

with the hydrodynamics frequency ωvaa < ω0. Second, the sound speed is further

reduced by correlations, see the term U+. This is a further indication that one
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does not recover the RPA when hAB = 0. The transition from weak to strong

coupling is further investigated in Sec. 4.5.1.

The other major feature of the strongly coupled phase is the existence of a new

gapped mode, ω−(k), with gap frequency

ω2
−(0) =

(
Ω2

12 +Ω2
21

3

)
W (κ). (4.43)

which depends entirely on the inter-particles correlations. In fact, the term

Ω2
AB

3
W (κ) =

Ω2
AB

4π

∫
d3rψL(r) [1 + hAB(r)] (4.44)

represents the average field that a particle of species A experiences in a frozen

environment of species B particles. It is important to clarify that these are not

the Einstein frequencies which instead are given by

Ω2
E1 =

ω2
1 +Ω2

12

3
W (κ), Ω2

E2 =
ω2

2 +Ω2
21

3
W (κ). (4.45)

Furthermore, it is easy to verify that these frequencies correspond to the short

wavelength limit of the collective modes

ω2
±(k →∞) = Ω2

E1,2. (4.46)

Looking now at the denominator, in the long wavelength limit we find

δ+(k → 0) = −ω2
vaa

U+

(1 + p2)2

k2

κ2
, (4.47)

δ−(k → 0) =

(
Ω2

12 +Ω2
21

3

)
W (κ)−

(
ω2
p − ω2

vaa

) U−
(1− q2)2

k2

κ2
(4.48)

121



which are none other than the correlational correction to the QLCA modes.

The SK frequencies of a YBM are

ω2
∗1(k) =

(
ω2

1 +Ω2
12

) k2

k2 + κ2
− ω2

1

2

[
D11(k) + p2D12(k)

]
, (4.49a)

ω2
∗2(k) =

(
ω2

2 +Ω2
21

) k2

k2 + κ2
− ω2

2

2

[
D22(k) +

1

p2
D12(k)

]
. (4.49b)

Using these we can calculate the zero of the imaginary part of the numerator of

det ε(k, ω), ωim(k). Using eq. (2.41) we find

ω2
im(k) =

q2ω2
∗1(k) + p2ω2

∗2(k)

q2 + p2
,

= ω2
vaa

k2

k2 + κ2
− ω2

vaa

2

D11(k) + 2p2D12(k) + p4D22(k)

(1 + p2)2
,

= ω2
vaa

[
k2

k2 + κ2
− 1

2

D+(k)

(1 + p2)2

]
. (4.50)

The important point to notice is that in the long wavelength limit ω2
im(k → 0) =

ω2
+(k → 0), which leads to

det{ε(k, ω)} ∝ (ω2 − ω2
+)

(ω2 − ω2
−)− iωνω1 (n+ 1/m)

(ω2 − δ2
+)(ω2 − ω2

−)− iνωω1 (n+ 1/m) (ω2 − U+(k))
,

(4.51)

where we also used the fact that δ−(k → 0) ≈ ω−(0). This shows that only the gap

mode is affected by collisional damping while the acoustic mode is likely damped

by thermal effects (Landau damping). This simplification was not found in the

Binary Coulomb Mixture, and was showed only with plots of det ε(k, ω). In order

to consider also thermal effect we use the Extended QLCA formalism as presented

in Sec. 2.2.3.

In the following we study the behavior of det{ε(k, ω)} as a function of the system

parameters.

In Figs. 4.8-4.9 we show plots of the real and imaginary part of det ε(k, ω) as
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a function of the dimensionless frequency ω/ω1 at different values of the coupling

parameters Γ and collisional frequency ν. det ε(k, ω) is calculated using the Ex-

tended Collisional QLCA, plots of the collisional QLCA are not shown for the

sake of clarity. In fact, the only differences between the two models are explained

below. All the plots are at the smallest ka value reached by simulations. Starting

from Fig. 4.8, we notice that det ε(kamin, ω = 0) is positive for Γ ≤ 1 and becomes

negative for larger values of Γ . This is due to the change in sign of the isothermal

compressibility which becomes negative at strong coupling. This feature is only

observable in the Extended Collisional QLCA and not in the collisional QLCA.

In fact, one of the main differences between the two models is that the Extended

QLCA satisfies the compressibility sum rule while the Collisional QLCA does not.

A further difference can be seen in the plot of the imaginary part of det ε(k, ω). At

low values of ω we find a peak that gets sharper and close to ω = 0 as Γ increases.

This is due to Landau damping that vanishes at T = 0 (Γ → ∞). At higher

frequencies Landau damping decays exponentially fast, thus the only damping

contribution comes from the R collisional matrix. The discontinuity encountered

at high frequencies is at the gap frequency ω−(0), since δ−(k → 0) ≈ ω−(0) as

seen from eq. (4.48). At stronger Γ the discontinuity moves to the left indicating

the stronger correlational effect of U−. The frequency δ+ does not appear as a

discontinuity to the fact that δ2
+ < 0 (U+ > 0).

The collective modes are the frequencies at which det ε(k, ω) = 0. However,

since det{ε(k, ω)} is a complex function one searches for the zeros of the real part

assuming a negligible imaginary part. From the plots we find that the propagating

modes are those for which Re{} det ε changes from negative to positive. This

excludes the first zero in the plots of Γ ≤ 1 because of the large Landau at those

frequencies. The acoustic mode is the first (second) zero for Γ > 1(Γ < 1) and

the gap mode the zero to the right of the discontinuity. Furthermore, Fig. 4.8
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shows that at long wavelength collisional damping affects only the gap mode.

This is further confirmed by the plots of Fig. 4.9. As the collisional frequency ν

increases in magnitude the discontinuity disappears and thus, removing the gap

mode. Finally, in Fig. 4.10 we show plots of the behavior of det{ε(k, ω)} as a

function of ka. The first zero to the left of the discontinuity agrees with the linear

dispersion of the QLCA acoustic mode ω+(k) indicated by the dashed vertical

lines. However, the gap frequency ω−(0) disappears due to the denominator of

eq. (4.51).

4.4 Comparison with MD simulations

4.4.1 Weak Coupling

The partial dynamic structure functions are calculated via the FDT from the

partial external response χAB. In addition, to the species partial SAB we con-

sider also the total density DSF SNN and total concentration DSF SCC defined in

eqs. (1.33)– (1.34) and reproduced here for simplicity

SNN(k, ω) = c1S11(k, ω) + 2
√
c1c2S12(k, ω) + c2S22(k, ω), (4.52)

and

Scc(k, ω) = c1c2 [c2S11(k, ω)− 2
√
c1c2S12(k, ω) + c1S22(k, ω)] . (4.53)

In Figs. 4.11-4.16 we show plots comparing the four DSF’s from MD simulations

with RPA calculations. The six figures are for Γ = 0.1, 0.3, 0.5, respectively,

corresponding to three different regions of the κ–Γ phase space shown in Figs. 4.2–

4.4. At the lowest Γ no clear peak is visible in the DSF’s, but only a broad

shoulder around ω ≈ ω1 in S22 and SNN . The acoustic peak becomes evident at
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the intermediate value Γ = 0.3, shown in Figs. 4.13-4.14 and gets more defined

at higher Γ (see Figs. 4.15-4.16). In all six figures the RPA appears to be give

a good reproduction of SAB(k, ω) around the peak. Disagreement is found in

the high frequency tail of SAB(k, ω) at the lowest ka (blue lines) which however,

appears to improve at higher values. Qualitative disagreement is found especially

at Γ = 0.5 with the RPA predicting a sharp well defined acoustic peak in S22

and SNN while MD shows a broader peak to a slightly lower frequency. Such

disagreement is somewhat expected since the RPA is exact only in the limit Γ → 0.

Furthermore, for finite Γ , collisional damping prevails over Landau causing a shift

of the mode to lower frequencies. In the past, a great deal of work focused on

calculating the collisional damping at long wavelengths and it was shown that

for any measurable small ka collisional damping would prevail over Landau. The

inverse situation, instead, would appear at much smaller ka. This work was done

for a One Component Plasma (DuBois, Gilinsky, and Kivelson, 1962; Coste, 1965a;

Coste, 1965b), but the arguments remain valid also for a YOCP. In a binary

mixture however, the collisional damping remains finite even at k = 0 and thus will

always prevail over Landau. The interesting point to learn out of this investigation

is that the RPA appears to give a good description for κ− Γ values in the lower

regions of phase space. Furthermore, the RPA shows good agreement with MD in

reproducing the location of the anti-resonance at the ion-acoustic frequency ω1(k).

4.4.2 Strong Coupling

In the strong coupling regime we compare the simulations with the Extended

Collisional QLCA and Collisional QLCA. As shown before at long wavelengths

ωim ≈ ω+ which simplifies the denominator of both χ̂AB and SAB. Using the

collisional QLCA expressions of Im{χAB(k, ω)} of eqs. (2.56)–(2.57), we find that
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the expressions for SAB

S11(k, ω) =
k2n

πβm1

1

(ω2 − ω2
+)

2

νn(ω2 − ω2
∗2)2

(ω2 − ω2
−)

2
+ (ωνn)2 (1 + q2/p2)2

, (4.54)

S22(k, ω) =
k2

πβm2

1

m

1

(ω2 − ω2
+)

2

ν/m(ω2 − ω2
∗1)2

(ω2 − ω2
−)

2
+ (ωνn)2 (1 + q2/p2)2

, (4.55)

S12(k, ω) = − k2

πβ
√
m1m2

√
1

m

1

(ω2 − ω2
+)

2

ν(ω2 − ω2
∗2)(ω2 − ω2

∗1)

(ω2 − ω2
−)

2
+ (ωνn)2 (1 + q2/p2)2

.

(4.56)

Using these to calculate the total dynamic structure factors we find, apart from

the β−1 constant factor

SNN(k, ω) ∝ ν(1− 1/m)2k2

|D|2

(
ω2 − ω2

∗2 − ω2
∗1/m

1− 1/m

)2

, (4.57)

and

Scc(k, ω) ≈ ν(1 + q2/p2)2k2

|D|2
(
ω2 − ω2

im

)2
. (4.58)

Contrary to BIM, we now have anti-resonances in the total DSF’s. The anti-

resonance in SNN , however, appears only when Z2 6= Z1, since for Z2 = Z1 ω
2
∗2 =

q2ω2
∗1 = ω2

∗1/m. The anti-resonance of SCC , instead, is equal to ωim thus it might

be cancelled by the acoustic mode at long wavelengths. Comparison with MD

simulation is shown in Figs. 4.17-4.18. In these plots the black line represents

the MD simulation data, the blue dashed line SAB calculated using the collisional

QLCA, and the red dashed line SAB using the extended collisional QLCA. In the

partial S11 and S22 we again find minima at the locations of the SK-frequencies.

The first peak at low ω is the acoustic mode while the very broad peak centered

around ω ≈ 2.9ω1 is the gap mode. Notice the large difference between the two

widths. As shown before ω− is primarily affected by collisional damping. Moving

to the total DSF SNN and SCC we notice the main discrepancies between the two
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QLCA models. It appears that the Collisional QLCA gives a qualitatively better

description than the Extended QLCA which wrongly predicts the anti-resonances

in SNN and SCC . Furthermore, we notice that the SCC MD line does not show

a resonant peak at ω+, but only a sharp minimum. This is likely due to the fact

that the ka value shown in the plot is not small enough so that ωim(k) = ω+(k).

Plots at smaller ka values will definitely show no feature. The other important

feature to notice is a wide shoulder centered around ω−. In fact, dispersion plots

of the LCC clearly show the presence of the gap mode.

4.4.3 Dispersion

The dispersion of the modes is studied using intensity maps of LAB(k, ω).

These are shown in Figs. 4.19-4.20. Peaks in LAB are indicated by colored regions

(yellow-red-white) while dark regions indicate very small values of LAB. Similar

to previous figures We show plots for L11, L22, LNN , LCC . The chosen asymme-

try parameters represent a mixture with a high concentration of heavy particles

(species 1). The solid white lines correspond to the QLCA modes ω±(k). In L11

and L22 the dashed lines represent the SK-frequencies while in the plot of LCC

the dispersion of ωim(k). In L22 and LCC a high frequency mode that approaches

the gap frequency ω−(0) is evident. Similarly, an acoustic mode is visible in the

plots of L11 and LNN . Overall we notice qualitative good agreement with the

QLCA modes ω±(k) over the entire ka regime. At long wavelengths especially

we find that the QLCA correctly identifies the sound speed of the acoustic mode

(s = ωvaa/κ). This suggests a physical picture in which the system behaves like

an YOCP with charge and mass given by an average created by the charges and

masses of the two components. Additionally, the low ka behaviour of the gap

mode is also well reproduced by the QLCA, thus, indicating the existence of a gap

at ka = 0.
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For shorter wavelengths the QLCA correctly reproduce the oscillatory behaviour.

In particular, we point out that the existence of a roton minimum around ka 6.

As in the case of BIM this has been a long debated issues as many researchers con-

sidered the roton minimum an entirely quantum effect. Instead, it appears that it

is a feature of strongly coupled liquid, both classical and quantum, caused by the

formation of randomly oriented micro-crystals whose averaged dispersion repro-

duces the minimum (Kalman, Hartmann, Golden, et al., 2010; Kalman, Kyrkos,

et al., 2012). Finally, we notice that the MD dispersion approaches the nominal

Einstein frequencies of each component at short wavelengths. This was not visible

in 2D Yukawa mixtures (Kalman, Hartmann, Donkó, Golden, and Kyrkos, 2013).

As per the SK frequencies, excellent agreement is also evident at long wave-

lengths, indicated by the black regions in the MD intensity maps. The dark regions

in the intensity maps of the heavy species and LCC extend well in ka = 2 indicat-

ing that the assumption of RAB ∝ ν is valid for finite ka as well. The agreement

of the SK-frequencies is not evident in intensity maps of the light species, but

it is confirmed in intensity maps of |L12| shown in Fig. 4.21. We recall that the

SK-frequencies correspond to the zeros of L12(k, ω), thus, in a plot of the absolute

value this will appear as the lowest possible value. The region in which L12(k, ω)

is positive is the region in between the two zeros, that is the region between the

two black dispersion in Fig. 4.21. We point out that similarly to BIM, although

not as evident, we find an oscillatory behavior and the intersection of the QLCA

modes and SK frequencies corresponds to dark regions between two colored region

at the same ω.
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4.5 Transition from Weak to Strong Coupling:

4.5.1 Sound Speed and Effective Mass

We have seen that the longitudinal collective mode spectrum is characterized

by a longitudinal acoustic mode both in the weakly and strongly coupled phase. At

weak coupling the sound speed is primarily characterized by the T = 0 RPA sound

s0 = ω0/κ, while at strong coupling it reduces to cs = ωvaa

√
1− U+(Γ )/κ. Even

though the QLCA has shown that the transition happens in a non-perturbative

way, we can nonethless follow the behavior of the sound speed as function of Γ in

order to identify a critical Γ value. In order to reduce the number of parameters

we consider a mixture with equal charges Z2 = Z1, but with different masses and

concentration. This simplification further removes the correlational dependence

that arises from the difference between h11(r), h22(r), h12(r) – all of them being

equal in the case Z2 = Z1. The sound speed at this point depends only one

parameter: the effective mass. Borrowing from a model of two coupled oscillators,

or better two coupled LC circuits, we can portray the weak coupling regime as the

parallel connection between the two oscillators, while the strong coupling regime

as the series connection. In the weak coupling regime we have

ω2
0 = ω2

1 + ω2
2 ∝

1

m0

, m0 =

[
c1

m1

+
c2

m2

]−1

. (4.59)

At strong coupling

ω2
vaa ∝

1

mvaa

, mvaa =
c1m1 + c2m2

n1 + n2

(4.60)

with mvaa > m0. These two expressions can be considered as the lower and upper

limit of an effective mass, m0 < meff (Γ ) < mvaa. This quantity and the sound

speed s will be used to track the transition from weak to strong coupling.
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Kalman and collaborators investigated this for a 2D binary Yukawa mixture

(Kalman, Hartmann, Donkó, Golden, and Kyrkos, 2013) and in some extent for

a 3D mixtures too (Kalman, Donkó, et al., 2011). However, the lowest coupling

reached by simulations was still larger than 1 and that did not allow for the ex-

ploitation of the “parallel” connection. Advancement in the simulation code have

allowed us to reach smaller coupling and this is what we present in this section.

Kalman et al. showed that the sound speed decreases monotonically, with no ev-

ident discontinuity, as coupling increases. This is somewhat surprising inasmuch

that correlations appear only as a subtraction term in the QLCA expression and

ωvaa is the primary factor for the softening of the sound speed. In the following we

will describe first the method used for the extrapolation of the sound speed and

effective mass from MD data and then show the results.

4.5.2 Method

The sound speed is calculated from the acoustic peak of SNN(k, ω). This

choice is due to the vicinity of SK-frequencies to the acoustic peak in S22(k, ω).

Furthermore, SNN(k, ω) is the only measurable quantity in a realistic experiment.

The peak of SNN(k, ω) is located by fitting a model function from which the center

and FWHM are extrapolated. The fit is performed using the lmfit package for

Python. For Γ < 1 we chose to fit a Voigt profile

f(x;A, µ, σ, γ) = A
ReW(z)

σ
√

2π
(4.61)

where

W(z) = e−z
2

erfc(−iz), z =
x− µ+ iγ

σ
√

2π
(4.62)

is the Faddeeva function whose FWHM is is given by 3.6013σ. The parameters

to be fitted are the amplitude A, the center of the peak µ, σ and γ. The choice
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of this function is motivated by the fact that is the one that closely resembles the

SNN(k, ω) profile from an RPA description. At strong coupling instead we use a

Lorentzian profile

f(x;A, µ, σ) =
A

π

σ

(x− µ)2 + σ2
(4.63)

with A, µ, and σ as the fitting parameters. The FWHM is 2σ. The peak’s centers

are calculated for the three lowest values of ka and then a cubic function of the

form

f(x; d1, d3) = d1x+ d3x
3 (4.64)

is fitted from which we extrapolate the sound speed as the coefficient c1. This

specific form is chosen to prevent underestimates of the sound speed due to the

large ka regime on which it is fitted. Finally, the effective mass meff is calculated

using the following formula (Kalman, Donkó, et al., 2011; Kalman, Hartmann,

Donkó, Golden, and Kyrkos, 2013)

meff

m1

=
n1 + n2

n1

(
1 + p2

1 + n

)2
1− U+

κ2s2
. (4.65)

The first fraction renormalizes the total density with respect to n1. The second

fraction is to remove effects due different charges for different species and in the

case of Z2 = Z1 the entire fraction is equal to 1. The last fraction is to remove

the correlational dependent term from the sound speed expression s

4.5.3 Results and Discussion

In Figs. 4.22-4.23 we show plots of the sound speed as a function of Γ compared

with the weak coupling and QLCA formulas. The lowest Γ is the lowest value for

which SNN shows a well defined peak. The vertical lines indicate 5% error bars.

At low couplings, Γ < 1, we notice that the sound speed approaches the cold

plasma RPA value s0 while the RPA expressions, obtained in Sec. 4.2, drastically
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overestimate the sound speed. The discrepancy increases with higher κ values.

The steep increase at low Γ of the RPA formulas is due to thermal effects. This

disagreement suggests that the collisionless description is not valid. As a matter

of fact comparison of SNN(k, ω), shown in the top panel of Figs. 4.14 - 4.16, the

MD peak is to the left and much wider than the RPA peak. The sound speed

values at Γ = 0.2 in the case of κ = 0.5 are very likely to be considered outliers,

since a closer look at SAB(k, ω) shows very noisy simulations in which is difficult

to identify the real peak. Further simulations at lower kamin with a smaller ∆ω

are needed in order to better investigate this low coupling values. It would be

interesting if these new simulations were to confirm the results shown here as this

sudden lowering of the sound speed is completely unexpected at weak coupling.

For Γ > 1 we observe an apparent monotonic decay of the sound speed. A

closer look, though shows a slight change in slope once the reaches the VAA sound

speed svaa = ωvaa/κ (dashed gold line) at Γ = 10 suggesting a possible boundary

between the moderate and strongly coupled regime. Once in the strongly coupled

regime one would expect a change in the slope of the sound speed, due only to

the correlational term U+, shown in Fig. 4.24, which being very small and slowly

increasing lead to a flatter slope. This behavior is obvious in the QLCA (red) line,

but not in the MD data, nonetheless the QLCA prediction remains within the

error bars. A possible reason for this disagreement is that the ka values chosen

are not small enough. In order to see this we have performed new simulations

with Γ = 120 and an increased number of particles N = 221, 148 leading to

kamin = 0.0852, much smaller than kamin = 0.1704 of the other simulations. The

sound speed obtained from this run is the data point indicated by the arrow in

the plots of κ = 0.5. Notice how this data point is almost at the same level as

that at Γ = 20.

Fig. 4.25 shows plots of the effective mass as a function of Γ with 5% error bars.
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The effective mass follows the behavior of the sound speed. At small couplings it

approaches the RPA value m0 and mvaa at strong couplings. As explained above

the reason for the overshooting of meff for Γ > 10 is due to the large kamin of the

simulations. The data point obtained from simulations with a much larger particle

number is again indicate by an arrow.

The final step is to study the damping mechanism. In Fig. 4.26–4.27 we show

plots of the HWHM (FWHM/2) of the MD acoustic peak for the three lowest

ka values. The arrows indicate again data point from MD simulations with N =

221, 184. Different decay slopes are evident in the three regions: Γ < 1, 1 <

Γ < 10 and Γ > 10. The decay is somewhat surprising as one would expect

that in the weakly and moderately coupled regime the system becomes more and

more collisional, thus, leading to an increasing HWHM with larger Γ . At strong

coupling, Γ > 10, we notice a somewhat flat slope in the decay, especially at the

lowest ka. This behavior is in agreement with the physical picture proposed by

the QLCA in which the particles become quasi-localized and therefore reaching

the minimum collisional damping. The black lines in the plots indicate a power

law fit in the strongly coupled regime Γ > 10. In the same plot we indicate also

the HWHM obtained from simulations with a larger number of particles.

4.6 Fast Sound

Before concluding this chapter, we present the latest results on an interesting

feature. In a YBM with a high concentration of light particles we find no trace of

a gap mode, but we notice the existence of a single acoustic mode with a sound

speed greater than svaa. This is clearly visible in intensity maps of LNN(k, ω) and

LCC(k, ω) shown in Fig. 4.28. We notice that this “fast” acoustic mode approaches

the acoustic QLCA mode at the lowest ka but after a few values it matches the

dispersion of the gap mode. We recall that peaks in LCC(k, ω) represent the dis-
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persion of the gap mode.

This new mode can be understood if we look at the dielectric function again.

As seen from eq. (4.51), at long wavelengths, the collisional damping influences

only the gap mode indicating also that for large ν the discontinuity and thus, the

gap mode disappear. This behavior, however, does not hold for finite ka, where

ωim(k) 6= ω+(k) as shown in the plots of Fig. 4.29. These plots show again the real

and imaginary part of det ε(k, ω), calculated using the Collisional QLCA with a

strong collisional frequency, at four different ka values. We notice that at the low-

est ka value the real part has one zero at low frequencies, which as explained before

corresponds to the acoustic mode. Furthermore, no discontinuity is observed at

the gap frequency and consequently no second zero and the function approaches

its high frequency limit. At larger ka values, instead, the low frequency zero dis-

appears and a softened λ-shape feature appears at around the gap frequency. As

seen from the lower plot, the λ feature is due to the broad peak of the imaginary

part of det ε(k, ω−). In the top plot we also indicate the location of the peaks of

LNN(k, ω) by vertical dashed lines with the same color of det ε(k, ω). The very

good agreement therefore suggest that the apparent “fast” acoustic mode is due

to a large collisional frequency.
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4.7 Conclusion

In this Chapter we have investigated a binary mixture of ions interacting via

a Yukawa potential. We have investigated both the weakly and strongly coupled

regime and supported theoretical predictions with MD simulations. The primary

focus of the investigation was the collective mode structure and the Silvestri–

Kalman frequencies. The weakly coupled regime has been investigated using the

RPA formalism adapted to a Yukawa potential. We have shown that contrary to

the Coulomb mixture there exists a κ–dependent lower limit in Γ below which the

system cannot support an acoustic excitation. MD simulations have confirmed this

picture. While an acoustic mode has been found for coupling parameters Γ < 1,

its sound speed is in disagreement with the RPA predictions, thus indicating that

the mixture is more akin to a liquid mixtures, where the particles interact via

short–range binary collisions, in contrast to a Coulomb liquid characterized by

long–range interactions.

In the strongly coupled regime the system is characterized by an acoustic and a gap

mode whose dispersion are in agreement with the Collisional QLCA. Furthermore,

by studying the complex dielectric function we were able to better under the

appearance of a single “fast” acoustic mode in mixtures with a high concentration

of light particles.

The presence of an acoustic mode both in the weakly and strongly coupled regime

provided an important quantity for the study of the transition from weak to strong

coupling. The sound speed decays from its RPA value s0 = ω0/κ, dominated by the

total plasma frequency, to its strong coupling value svaa = ωvaa/κ, corresponding

to the sound speed of an effective YOCP. Preliminary results on the damping of

the acoustic mode have been presented also. The damping of the mode was defined

as the HWHM of the acoustic peak. The most important thing was the lack of any

distinctive feature in the behavior of the relative HWHM as a function of Γ . The
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damping appear to continuously decay from the weak to the moderately coupled

regime and to become almost Γ independent in the strongly coupled regime. This

Γ independent behavior is somewhat expected since the particles become quasi–

localized at high Γ . The continuous decay is the surprising feature as one expects

the mixture to become more and more collisional with increasing Γ . Further work

on the damping of these modes is needed.

As a reference for future research we list the new features found at strong coupling

(vs. weak coupling)

• An entirely correlational dependent gap modes

• An acoustic mode with a different sound speed than at weak coupling

• The appearance of ωvaa as the dominant frequency (vs. ω0)

• Roton Minimum

• Silvestri–Kalman frequencies (vs. Fano frequencies at weak coupling)

• Γ -dependent effective mass

• “Fast-sound” mode

The above features have been investigated in this Chapter, but many more remain

to be investigated, just to mention a few

• Behavior of SAB(k, ω) as ω →∞

• Collective Mode structure dependence on the charge asymmetry parameter

Z

• Transverse Collective Modes

• Relation of FWHM of SAB(k, ω) with transport properties
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Figure 4.3:
Color - Contour maps of Yc. Blue (red) indicates low (high) val-
ues. The maximum color value has been set to Yc = 0.5 for better
viewing. In addition, the contours Yc[Πmax(m = 1)] = 0.2848 and
Yc = Πmax(m = 0.2) are indicated.

137



Figure 4.4: Same as in Fig. 4.2 but for c = {0.6, 0.75, 0.9, 0.95}
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Figure 4.5:
Intensity map of RPA SAB(k, ω). The black lines indicate the mode
given by sound speed cs calculated from eq. (4.20) while the red line
is the acoustic mode of a YOCP created by species 1.
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Figure 4.6:
Intensity map of RPA S11(k, ω) (top) and S22(k, ω) (bottom). The
black lines indicates the mode given by sound speed sTh, RPA calculated
from eq. (4.20) while the red line indicates the anti–resonant frequency
given by the acoustic mode of an YOCP composed only of species 1.
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Figure 4.7:
Intensity map of RPA S11(k, ω) (top) and S22(k, ω) (bottom). The
black lines indicates the mode given by sound speed sTh, RPA calculated
from eq. (4.20) while the red line indicates the anti–resonant frequency
given by the acoustic mode of an YOCP composed only of species 1.
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Figure 4.8:
Plots of the Real (top) and Imaginary part (bottom) of det ε(k, ω) cal-
culated from the Extended Collisional QLCA at the lowest ka reached
in simulation (ka = 0.170). Different lines represent different coupling
parameter Γ .
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Figure 4.9:
Plots of the real (top) and imaginary part (bottom) of det ε(k, ω) cal-
culated from the Extended Collisional QLCA at the lowest ka reached
in simulation (ka = 0.170). Different lines represent different colli-
sional frequencies ν.
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Figure 4.10:
Plots of the Real (top) and Imaginary part (bottom) of det ε(k, ω)
calculated from the Extended Collisional QLCA. The dashed vertical
lines indicate the values of ω+(k). Different lines represent different
ka values.
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Figure 4.11:
Plots of S11(k, ω) (top) and S22(k, ω) (bottom) comparing the RPA
with MD simulations at the three lowest ka values for Γ = 0.1. Note
that the second (third) ka lines have been shifted upwards by 10
(100) for easier viewing.
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Figure 4.12:
Plots of SCC(k, ω) (top) and SNN(k, ω) (bottom) comparing the RPA
with MD simulations at the three lowest ka values for Γ = 0.1. Note
that the second (third) ka lines have been shifted upwards by 10
(100) for easier viewing.
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Figure 4.13:
Plots of S11(k, ω) (top) and S22(k, ω) (bottom) comparing the RPA
with MD simulations at the three lowest ka values for Γ = 0.3. Note
that the second (third) ka lines have been shifted upwards by 10
(100) for easier viewing.
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Figure 4.14:
Plots of SCC(k, ω) (top) and SNN(k, ω) (bottom) comparing the RPA
with MD simulations at the three lowest ka values for Γ = 0.3. Note
that the second (third) ka lines have been shifted upwards by 10
(100) for easier viewing.
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Figure 4.15:
Plots of S11(k, ω) (top) and S22(k, ω) (bottom) comparing the RPA
with MD simulations at the three lowest ka values for Γ = 0.5. Note
that the second (third) ka lines have been shifted upwards by 10
(100) for easier viewing.
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Figure 4.16:
Plots of SCC(k, ω) (top) and SNN(k, ω) (bottom) comparing the RPA
with MD simulations at the three lowest ka values for Γ = 0.5. Note
that the second (third) ka lines have been shifted upwards by 10
(100) for easier viewing.
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Figure 4.17:
Plot comparing the Extended Collisional QLCA and Collisional
QLCA with MD Simulations at the lowest ka value. The QLCA
models have been shifted upwards and downwards for better view-
ing.
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Figure 4.18:
Plot comparing the Extended Collisional QLCA and Collisional
QLCA with MD Simulations at the lowest ka value. The QLCA
models have been shifted upwards and downwards for better view-
ing.
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Figure 4.19:
Intensity plot of L11(k, ω) (top) and L22(k, ω) (bottom) to show
the collective mode dispersion. Solid white line identify the QLCA
modes, while dashed lines the SK-frequencies.
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Figure 4.20:
Intensity map of LAB to show the collective mode dispersion. Solid
white line identify the QLCA modes, while dashed lines the SK-
frequencies.
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Figure 4.21:
Intensity map of LAB to show the collective mode dispersion. Dashed
lines represent the SK-frequencies’ dispersions.
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Figure 4.22:
Plots of sound speed as a function of Γ for two values of κ. RPA cs1
corresponds to eq. (4.25) and RPA cs2 to eq. (4.20).
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Figure 4.23:
Plots of sound speed as a function of Γ for two values of κ. RPA cs1
corresponds to eq. (4.25) and RPA cs2 to eq. (4.20).
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Figure 4.24:
Plot of the correlation correction U+ as a function of Γ for two dif-
ferent mixtures.
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Figure 4.25: Effective Mass calculated using eq. (4.65) for two values of κ.
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Figure 4.26: Plots of the relative HWHM as a function of Γ for two values of κ.
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Figure 4.27: Plots of the relative HWHM as a function of Γ for two values of κ.
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Figure 4.28:
Intensity map of LNN(k, ω) (top) and LCC(k, ω) (bottom) for a mix-
ture with a high concentration of light particles. Solid white line
identify the QLCA modes, while dashed lines ωvaa.

162



Figure 4.29:
Plots of the real (top) and imaginary part (bottom) of det ε(k, ω)
calculated using the Collisional QLCA. The dashed vertical lines in-
dicate the position of the peak in LNN(k, ω) extrapolated from MD
data.
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CHAPTER V

Yukawa to Coulomb

In this chapter we investigate the collective mode spectrum as a function of κ.

In this Chapter as in the entirety of this Thesis we have referred to the polarization

of the eigenvector of the QLCA dynamical matrix C(k). This eigenvectors are the

eigenvectors of the matrix of external response functions and as such indicated the

“polarization” of the displacement fields ¸A. On the other hand, the polarization

of the eigenvectors of the dielectric matrix are associated with the polarization of

the Electric Field. Are the two sets of eigenvectors the same at strong coupling? A

first look indicates that they should not be since the dielectric matrix is the product

of the external χAB matrix and the singular interaction matrix φAB. At the same

time a physical picture suggests that an Electric Field should be proportional

to a displacement field. Leaving the answer to this question as future work we

investigate the behavior of the polarization of the eigenvectors of C.

A Binary Coulomb Mixture (BIM) is characterized by two plasmon modes while

a Yukawa Binary Mixture (YBM) by an acoustic and a gap mode. In the case of

BIM looking at the sign of L12 we established that the high frequency plasmon

corresponds to an in-phase motion of both positive ions while the second plasmon

represents an out-of-phase motion between the two ionic species. In a Yukawa

mixture, instead, we find the opposite: the high frequency gap mode represents
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out-of-phase oscillations and the low frequency acoustic mode in-phase oscillations

between the two species. This is shown in plots of L12(k, ω) at specific values of

ka in Fig. 5.1 where the top panel corresponds to BIM and the bottom panel to

YBM. Looking at L12(k, ω) of a Binary Yukawa Mixture, we notice, at the lowest

ka value, a large positive acoustic peak at low frequencies and a negative broad

peak, representing the gap mode, at higher frequencies. This is in contrast with

the top panel where the situation is reversed.

This appears somewhat confusing since one expects that, as κ→ 0, the acous-

tic Yukawa mode transforms into the low frequency Coulomb plasmon, by means

of the Anderson-Higgs mechanism, while the gap Yukawa mode goes into the high

frequency Coulomb plasmon. In fact, this is what is argued in Ref. (Kalman,

Donkó, et al., 2014) by Kalman et al.. Fig. (5) in Ref. (Kalman, Donkó, et al.,

2014) shows a dispersion plot for a series of κ values indicating how the Yukawa

mode dispersion approaches that of the Coulomb plasmons. Although, that plot

represents lattice modes of a Yukawa crystal the same picture remains valid in the

strongly coupled liquid regime.

In Fig. 5.2 we show dispersions of the QLCA Yukawa modes ω±(k) for three

values of κ. The horizontal black lines indicate the frequencies of the Coulomb

plasmons at k = 0 (for the same asymmetry parameters), and the dashed lines,

instead, indicate the nominal Einstein frequencies. As expected the Yukawa dis-

persions approach the Coulomb plasmons as κ → 0. These plots, however, need

to be compared with the one in Fig. 5.3 where we show the eigenvectors obtained

from the diagonalization of the QLCA dynamical matrix C(k). We plot these

eigenvectors in species space, where the horizontal axis indicate species 1 and the

vertical axis species 2. The high frequency Coulomb plasmon is in the first quad-

rant indicating that the two species are in-phase, while the second plasmon is in

the third quadrant representative of the two species being out-of-phase. From the
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Figure 5.1:
Plot of L12 at different ka values showing how the sign change after the
collective modes interesect the anti-resonances. Top panel L12(k, ω)
for a Binary Coulomb Mixture. Bottom panel for a Binary Yukawa
Mixture.
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Figure 5.2:
Dispersion of the QLCA Yukawa collective modes for three values of
screening parameter κ for a mixture with Z2 = 1.0, m2 = 5.0, and
c = 0.75. The black lines indicate the frequencies of the Coulomb
plasmons for a mixture with similar asymmetry parameters.
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plot in Fig. 5.2 one would expect to find the Yukawa acoustic eigenvectors in the

third quadrant and the Yukawa gap eigenvectors in the first quadrant, but this is

not the case. Hence, the question how does one reconcile the dispersion plot with

the polarization of the modes?

Figure 5.3:
Eigenvectors of the dynamical matrix C(k) in species space at the
lowest ka values of Yukawa MD simulations.

The answer lies in the sign of the off-diagonal element of the dynamical matrix,

C12. A negative sign of C12 leads to an in-phase mode with a lower frequency than
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the out-of-phase mode. This is also found in the toy model of two coupled harmonic

oscillators (see eq. (2.68). The higher frequency of the out-of-phase mode is due

to the sum of the natural frequencies and the coupling frequency. Undergraduate

texts often give the following reasoning: in order for the two oscillator to move

opposite of each other the system requires energy to overcome the coupling and

thus a finite frequency at k = 0. If C12 is positive, instead, the out-of-phase mode

will have a lower frequency than the in-phase one since the coupling between the

two oscillators creates an effective attraction.

In Fig. 5.4 we show plots of the dispersion of all the relevant frequencies of a

BIM (top plot) and a YBM (bottom plot) for a sample set of asymmetry param-

eters. The top plot is the same in Fig. 3.3, reproduced here for the sake of clarity.

The first thing to notice is the opposite signs of C12 at low ka which is negative in

the case of YBM and positive in BIM. Similar to the BIM case the SK frequencies

are found above and below the in-phase mode, ω+(k). In addtion, in both plots we

notice that the SK frequencies intersect the collective modes whenever C12(k) = 0.

This happens at much lower frequencies in YBM than in BIM.

To further prove that the sign of C12 determines the polarization of the modes,

we show plots of the dispersion with the corresponding eigenvectors in Figs. 5.5

– 5.6. As expected as the sign of C12 changes the eigenvectors start to rotate

counter-clockwise. As ka increases further the eigenvectors oscillate around the

species axis until the finally settle on {−1, 0} {0,−1} at k →∞ where C12 = 0.
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Figure 5.4:
Dispersions of the relevant QLCA frequencies in units of ω1. The
collective mode are indicated by solid lines, Silvestri–Kalman frequen-
cies by dashed lines, QLCA Dynamical matrix elements by dashed-dot
lines.
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Figure 5.5:
Dispersions of the relevant QLCA frequencies in units of ω1. (Left)
Collective modes are indicated by solid lines (Yukawa: red and blue,
Coulomb: black and yellow), Silvestri–Kalman frequencies by dashed
lines (Yukawa: red and blue, Coulomb: balck and green). (Right)
Eigenvectors in species space corresponding to the last ka values shown
in the left panel. Color code is kept the same between the two panels.
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Figure 5.6:
Dispersions of the relevant QLCA frequencies in units of ω1. (Left)
Collective modes are indicated by solid lines (Yukawa: red and blue,
Coulomb: black and yellow), Silvestri–Kalman frequencies by dashed
lines (Yukawa: red and blue, Coulomb: balck and green). (Right)
Eigenvectors in species space corresponding to the last ka values shown
in the left panel. Color code is kept the same between the two panels.
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CHAPTER VI

Bilayer

Charged particle bilayers are parallel conducting planes separated by a dis-

tance, d, comparable to the inter-particle distance within the layers, a. These

systems can be viewed as a binary system, where the two species are distinguished

from each other, not by different parameters, but by the difference between the

intra–layer and inter–layer potentials. In this chapter we will refer to symmetric

bilayers as those systems in which the charged particles have equal mass and con-

centrations and as asymmetric bilayers as those in which the particle mass and/or

number density of one layer is different than the other. For example, systems in

which both layers are populated by electrons (e− e) with the same effective mass,

or one layer by electrons and the other by holes (e− h) and same effective mass,

are considered symmetric.

The literature on this topic is vast due to the promising technological applications

of such layered devices. Originally the interest stemmed from the ability to create

low dimensional (1D and 2D) electron liquids using a combination of metal and

semiconductors layered structures (Giuliani and Vignale, 2005). Nowadays simi-

lar 2D electron liquids can be created using graphene or van-der Walls materials

(Basov, Averitt, and Hsieh, 2017). Research on these systems has been mostly

directed towards transport properties, in particular, on the Coulomb drag effect
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(Rojo, 1999; Narozhny and Levchenko, 2016) mentioned in Chap. I.

The creation of low dimensional electron liquids had also attracted the attention

of the strongly coupled plasma community as these systems are able to reach the

strong coupling regime rs ∼ 20. Early works focused on the collective excitations

of these systems and the problem was studied within the STLS formalism. The

latter predicted only correlational corrections to order k2 to the weak coupling

spectrum, constituted by a quasi-acoustic (ω ∼
√
k) and acoustic (ω ∼ k) modes

(Neilson et al., 1993; Świerkowski, Neilson, and Szymański, 1993; Szyma ński,

Świerkowski, and Neilson, 1994; Liu et al., 1996). Kalman and collaborators, us-

ing the QLCA formalism, instead, suggested that at strong coupling the acoustic

mode be replaced by gap (Kalman and Golden, 1998; Kalman, Valtchinov, and

Golden, 1999; Kalman, Valtchinov, and Golden, 2003). Subsequent MD simula-

tions have confirmed the existence of a gap but at higher frequency than the one

predicted by the QLCA (Donkó, Hartmann, Kalman, and Golden, 2003; Donkó,

Kalman, Hartmann, et al., 2003; Ranganathan and Johnson, 2004; Golden, Ma-

hassen, Kalman, et al., 2005; Golden, Mahassen, Senatore, et al., 2006; Kalman,

Hartmann, Donkó, and Golden, 2007). Later on, strongly coupled bilayers were

created using dusty plasmas experiments (Hartmann, Donkó, et al., 2009). This

did not unequivocally confirmed the existence of the gap, but gave strong proof

of its existence. As per the case of asymmetric bilayers, preliminary theoretical

work was conducted by Golden and collaborators (Mahassen et al., 2006; Golden,

Kalman, Hartmann, et al., 2012) predicting the existence of gap also in this case.

MD simulations were carried out for bilayers with different densities, but focused

primarily on static properties and transport (Ranganathan and Johnson, 2008).

An interesting finding of Ref. (Ranganathan and Johnson, 2008) was no evidence

of a fluid-solid phase transition at Γ > 80 as it was found in the case of symmetric

bilayers (Ranganathan and Johnson, 2006).
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In this Chapter we extend the theoretical work and present computer simulations

on mass asymmetric e−e bilayers. We will show that also in this case the collective

spectrum of the strongly coupled regime consists of a longitudinal quasi-acoustic

in-phase and a gap out-of-phase mode. The latter appears around Γ ∼ 10 and its

value at k = 0 does not seem to change at higher coupling values. The computer

simulations cover a large range of the coupling parameter extending into the mod-

erately to weakly coupled regime. In this case simulation results do not show the

presence of an acoustic mode even in the absence of the gapped excitation. The

effect of the asymmetry appears in the lowest order (in k) correlation-independent

contribution to the quasi-acoustic mode. Charge particle asymmetric bilayers can

provide a confirmation on the existence of the SK frequencies since in such exper-

iments it is possible to probe only one of the layers and thus providing the partial

SAB(k, ω)

6.1 Model and Definitions

The system under consideration is composed of two 2D layers of classical

charged particles, exchange and other quantum effects are neglected. The du-

ality of the system is due to the different interaction between particles on different

layers

φ11(r) =
Z2

1e
2

r
, φ12(r) =

Z1Z2e
2

√
r2 + d2

(6.1)

and respective Fourier transforms

φ11(k) =
2πZ2

1e
2

k
, φ12(k) =

2πZ1Z2e
2

k
e−kd. (6.2)

Note that the subscripts indicate the layer, r is the projected 2D distance be-

tween particles in the same layer, and d the distance between the two layers. The

charge number ZA indicates the sign of the charges, whether we are considering
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an electron-electron (Z1 = Z2 = −1) or an electron-hole (Z2 = 1 = −Z1) bilayer.

In either case the sign is incorporated in the asymmetry parameters

p2 =
Z2n2

Z1n1

, q2 =
Z2

m2

m1

Z1

. (6.3)

The plasma and nominal Einstein frequencies are defined as

ω2
AB =

2πe2

a

ZAZB
√
nAnB√

mAmB

, Ω2
AB =

2πe2

a

ZA
mA

ZBnB (6.4)

where a is the Wigner-Seitz radius given by

πa2 =
1

√
n1n2

(6.5)

Finally, the coupling parameter is defined as

Γ =
e2

akBT
. (6.6)

6.2 Collective Modes

6.2.1 Weak Coupling

The long wavelength limit of the dielectric response, using the RPA (Das Sarma

and Madhukar, 1981), is

ε(k, ω) = 1−
[
ω2

1 + ω2
2

ω2
ka+ 3

ω2
1v

2
1 + ω2

2v
2
2

ω4a2
(ka)3

]
+
ω2

1ω
2
2

ω4
(ka)2

(
1− e−2kd

)
, (6.7)

whose solutions are

ω2
± =

ω2
1 + ω2

2

2
ka

1±

√
1− 4

(
ω1ω2

ω2
1 + ω2

2

)2
1− e−2kd

ka
+ 12

ω2
1v

2
1 + ω2

2v
2
2

(ω2
1 + ω2

2)2

ka

a2

 .
(6.8)
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To first order in d these become: (i) a quasi-acoustic mode

ω2
+(k) =

(
ω2

1 + ω2
2

)
ka

[
1− 2

(
ω2

1ω
2
2

ω4
p

d

a
− 3

ω2
1v

2
1 + ω2

2v
2
2

ω4
pa

2

)
(ka)

]
, (6.9)

in which particles on different layers move in-phase, and (ii) an acoustic out-of-

phase mode

ω2
− = 2

(
ω2

1ω
2
2

ω2
p

)
k2d− 3

(
ω2

1v
2
1 + ω2

2v
2
2

ω2
pa

2

)
(ka)2, (6.10)

where we have defined ω2
p = ω2

1 +ω2
2 and vA the thermal speed of the particles. We

verify that in the limit d→∞, when the two layers are completely separated, the

collective modes are simply the quasi-acoustic plasmons of a 2D classical electron

liquid

ω2
+ = ω2

1ka, ω2
− = ω2

2ka. (6.11)

At the same time, in the opposite limit d→ 0 we recover

ω2
+(k) =

(
ω2

1 + ω2
2

)
ka (6.12)

6.2.2 Strong Coupling

In the strongly coupled regime we again use the QLCA longitudinal dynamical

matrix whose elements are

C11(k) = ω2
1

[
ka+D11(ka) + p2W

]
, (6.13)

C22(k) = ω2
1

{
q2p2 [ka+D22(ka)] + q2W

}
, (6.14)

C12(k) = qpω2
1

[
kae−kd +D12(ka)−W

]
(6.15)

where

D11(ka) =
a

2

∫
dr

r2
h11(r) [1− J0(kr) + 3J2(kr)] , (6.16)
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D12(ka) =
a

2

∫
dr r h12(r)

(r2 + d2)3/2
{1− J0(kr) + 3J2(kr)

− 3d2

r2 + d2
[1− J0(kr) + J2(kr)]

}
, (6.17)

W = a

∫
dr rh12(r)

(r2 + d2)3/2

(
3

2

r2

r2 + d2
− 1

)
=
a

2

∫
dr rh12(r)

(r2 + d2)3/2

(
1− 3

d2

r2 + d2

)
,

(6.18)

Jν(x) are Bessel functions of the first kind. Details of the derivation of these

formulas are reported in Appendix C.3. Notice that the CAB elements have been

divided into the mean-field RPA (the first terms) and correlational terms (second

and third terms). Contrary to the case of a Binary Yukawa Mixture, setting

hAB(r) = 0 one does recover the RPA expressions. Furthermore, we verify that in

the limit d → 0 we recover the case of a 2D Coulomb liquid and for d → ∞ the

entire C12(k) term vanishes indicating two separated 2D layers.

The collective modes are calculated from the zeros of |ω2I−C(k)| = 0 which in

units of ω2
1 are

ω2
+(k → 0) = ω2

1

q2(1 + p2)2

q2 + p2
ka

−ω2
1

2q2p2

p2 + q2

[
d

a
+

(1 + p2)
2

(1− q2)
2

2W (p2 + q2)2 − U+

]
(ka)2 (6.19)

ω2
−(k → 0) = ω2

1

(
p2 + q2

)
W + ω2

1

p2(1− q2)2

q2 + p2
ka

+ω2
1

2q2p2

p2 + q2

[
d

a
+

(1 + p2)
2

(1− q2)
2

2W (p2 + q2)2 + U−

]
(ka)2. (6.20)

U+ =
U11 + 2p2U12 + p4U22

2p2
, U− =

U11 − 2q2U12 + q4U22

2q2
(6.21)

UAB are the k → 0 limits of the DAB terms. The collective modes become: (i) an

in-phase quasi-acoustic mode

ω2
+(k → 0) = ω2

vaaka−Π(d, U+)(ka)2, (6.22)
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and (ii) an out-of-phase gap mode

ω2
−(k → 0) =

(
ω2

1 + ω2
2

)
W +

(
ω2
p − ω2

vaa

)
ka+Π(d, U−)(ka)2. (6.23)

where

Π(d, U±) =
2ω2

1ω
2
2

ω2
1 + ω2

2

[
d

a
+

1

2W

ω2
vaa

(
ω2
p − ω2

vaa

)
ω2

1ω
2
2

∓ U±

]
. (6.24)

The above equations have been derived by making use of the identity (Hansen,

McDonald, and Vieillefosse, 1979)

ω2
1

p2(1− q2)2

q2 + p2
= ω2

p − ω2
vaa > 0. (6.25)

We point out that this spectrum resembles that of a binary Yukawa mixture. The

similarity are: (i) the softening of the quasi-acoustic sound speed by the exchange

ω2
p → ω2

vaa, (ii) the existence of an entirely correlational dependent gap frequency

ω−(k = 0), already predicted in the symmetric bilayer.

The Silvestri–Kalman frequencies are

ω2
∗1(k) = ω2

1

(
1 + p2e−kd

)
ka+ ω2

1

[
D11 + p2D12

]
, (6.26)

ω2
∗2(k) = ω2

1

(
q2p2 + q2e−kd

)
ka+ ω2

1

[
q2p2D11 + q2D12

]
, (6.27)

which in the long wavelength limit become

ω2
∗1(k → 0) = ω2

1

(
2k − dk2

)
+ ω2

1 [U11 + U12] (ka)2, (6.28)

ω2
∗2(k → 0) = ω2

2

(
2k − dk2

)
+ ω2

2 [U11 + U12] (ka)2 (6.29)
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We again find similarities with a Binary Yukawa mixture with the SK frequencies

surrounding the quasi-acoustic mode at small ka, leading to

ωim(k → 0) = ω+(k → 0). (6.30)

In the symmetric case q2 = 1, ω∗1 = ω∗2 = ω+ and thus, no anti-resonance can be

observed.

6.3 Results and Discussion

In this section we show preliminary results on the ongoing work on asymmetric

bilayers. Similarly, to the previous chapters the dispersion relations are portrayed

via intensity maps of LAB(k, ω). In addition, to L11(k, ω) and L22(k, ω) we define

the total LAB(k, ω) as

L+(k, ω) = L11(k, ω) + L22(k, ω) + 2L12(k, ω) (6.31)

L−(k, ω) = L11(k, ω) + L22(k, ω)− 2L12(k, ω) (6.32)

These two functions, albeit not real physical quantities, are used to highlight

the dispersion of modes. The collective mode representative of an in-phase os-

cillations between particles of different layers will be visible in L+(k, ω) since

L12(k, ωin-phase) > 0. On the other hand the collective mode representative of an

out-of-phase oscillations, instead, would be visible in L−(k, ω), L12(k, ωout-phase) <

0. Furthermore, given that L12(k, ωout-phase) < 0 a sharp minimum will be visible

in L+(k, ωout-phase) indicative of L+(k, ωout-phase) = 0. Note that these functions

are similar to LNN(k, ω) and LCC(k, ω) of a Binary Yukawa Mixture with equal

concentrations.

We start by looking at dispersion plots in the weakly coupled regime. Figs. 6.1–6.2
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shows intensity plots of LAB(k, ω) for a sample set of system parameters. The yel-

low dashed lines indicate the RPA modes eq. (6.9)–(6.10) while the white dashed

lines are the RPA modes without thermal effects (second term in the equations).

The important thing to notice is that the plots are missing the acoustic mode inclu-

sive of the thermal term, ω−(k, Γ ). This is due to the fact that the second term is

greater than the d/a term, thus, leading to an imaginary frequency, ω2
−(k, Γ ) < 0.

The white dashed line, ω−(k), is plotted instead. Although, the intensity plot of

L−(k, ω), bottom plot of Fig. 6.2, shows good agreement with the acoustic mode,

we cannot make a conclusive argument on its existence. The blue region observed

in this plot is likely due to the proportionality factor ω2/k2 between LAB(k, ω) and

SAB(k, ω). This is further confirmed by looking at line plots of S±(k, ω) shown in

Fig. 6.3. In these plots the vertical dashed lines indicate, the quasi-acoustic mode,

ω+(k, Γ ), in the top panel and acoustic mode ω−(k) (without the Γ–term) in the

bottom panel. The quasi-acoustic peak is evident while, although hints of a peak

are visible, the claim of this being a peak is far–fetched because of the large ∆ω

between two consecutive data points. In other words the peak is given only by

three data point stretched over a relatively large ω range. Further simulations are

needed.

Moving to the strongly coupled regime, Figs. 6.4–6.11 show intensity plots

of LAB(k, ω) for two sets of system parameter. As usual the solid white lines

represent the QLCA modes ω±(k) while the dashed white lines the SK frequencies.

As mentioned above, the quasi-acoustic mode corresponds to in–phase oscillations

between particles of different layers, therefore it is visible in L+(k, ω), while the gap

mode, representative of out–of–phase oscillations, instead, is be visible in L−(k, ω).

In all these plots we notice the presence of a quasi–acoustic mode and its good

agreement with QLCA predictions at low ka. As per the gap mode we notice some

discrepancies in the case of m = 0.5 and d = 0.1, while excellent agreement for
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Figure 6.1:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Yellow
(White) dashed lines indicate the RPA modes with (without) the ther-
mal term.
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Figure 6.2:
Intensity plots of L+(k, ω) (top) and L−(k, ω) (bottom). Yellow
(White) dashed lines indicate the RPA modes with (without) the ther-
mal term.

183



Figure 6.3:
Line plot of S+(k, ω) (top) and S−(k, ω) (bottom) for the first four
ka values. The vertical dashed lines indicate the location of the RPA
quasi-acoustic mode (top) and acoustic mode (bottom).
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m = 5 and d = 0.7. The higher gap frequency found in the former is a well known

issue of the QLCA as it was found also in symmetric bilayers (Donkó, Hartmann,

Kalman, and Golden, 2003; Donkó, Kalman, Hartmann, et al., 2003; Hartmann,

Donkó, et al., 2009). Recent findings, however, have shown that at d = 0.1 the

two layers are so close to each other that the system is effectively a single 2D layer.

This does not preclude the existence of a gap since the system is still composed

by two species and for this we refer the reader to compare Fig. 6.8 with Fig. 3.33

in Sec. 3.6 where we talk of 2D Binary Coulomb Mixtures.

The gap frequency is certainly evidence of strong coupling effects therefore we

investigated its behaviour as a function of Γ . In Fig. 6.12 we show a plot of the

gap frequency as a function of Γ . The value of the gap was obtained from MD

simulations by fitting a Lorentzian profile to S−(k, ω). The vertical error bars

represent FWHM obtained from the fit. The interesting feature is the lack of a

gap mode for Γ < 10, it appears at Γ = 10 and its value does not change over

the entire regime. This is in agreement with the QLCA calculations, shown as

solid lines in the plot. The integral W , eq. (6.18) does not vary appreciably as a

function of Γ .

The behavior of the gap frequency as a function of the interlayer distance is shown

in Fig. 6.13 for two different mass ratios. We notice that the largest disagreement

between the QLCA and the MD at d/a = 0.1.

We conclude this section with a comparison between MD and collisional QLCA.

In Fig. 6.14 we show plots of SAB(k, ω) obtained from MD and Collisional QLCA

calculations for various values of the nominal collisional frequency ν. We notice

a similar behavior as that of Binary Yukawa Mixture. We find again the low

frequency mode unaffected by the different ν values while the gap mode widens

with increasing ν.
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Figure 6.4:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.5:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.6:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.7:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.8:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.9:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.10:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.11:
Intensity plots of L11(k, ω) (top) and L22(k, ω) (bottom). Solid black
lines indicate the QLCA collective modes and dashed black lines the
SK frequencies.
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Figure 6.12: Plots of the gap frequency at ka = 0 as a function of Γ .

6.4 Conclusion

In this chapter we have presented preliminary results on the asymmetric bilay-

ers. At small coupling we find that MD simulations showed good agreement with

the RPA quasi–acoustic mode while no evidence of the presence of the acoustic

mode is found. We mention, though, that the lowest Γ investigated in our simula-

tions is still greater than 1, therefore, no conclusive argument can be made on the

existence of the acoustic mode. Furthermore, finite Γ effects lead to imaginary

frequencies according to eq. (6.10).

The collective mode spectrum in the strongly coupled regime is correctly pre-

dicted by the QLCA. The quasi-acoustic mode shows a reduced speed from that

of the weak coupling regime primarily due to a different dominant frequency in

the system; ωp at weak coupling and ωvaa at strong coupling. Furthermore, MD

simulations show the existence of the QLCA predicted gap mode at high frequen-

cies. This mode appears at Γ = 10 and its frequency does not vary with Γ . As

in the case of symmetric bilayers the QLCA disagrees with MD in the location of

the gap frequency at small d/a. In light of recent results we argue that for small
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Figure 6.13: Plots of the gap frequency at ka = 0 as a function of d/a.

inter–layer separation, d/a ∼ 0.1, the system is to be considered as a single 2D

Coulomb liquid.
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Figure 6.14:
Line plot of S11(k, ω) (top) and S22(k, ω) (bottom) at the lowest ka
value. The vertical dashed lines indicate the location of the SK fre-
quencies.
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CHAPTER VII

Conclusion and Future Directions

In this thesis I have investigated the dynamics of classical many–body systems

composed of two species of positively charged particles. The investigation was

carried both on the theoretical and computational level. The theoretical study

involved the calculation of plasma response functions via the Collisional Quasi–

Localized Charge Approximation, in the strongly coupled regime, and via the

Random Phase Approximation, in the weakly coupled regime. Three systems

were studied in particular: a binary mixtures of ions interacting via the long–

range Coulomb potential, a binary mixture of charged particles interacting via the

short–range Yukawa potential, and a mass–asymmetric electronic bilayer.

The main scope of this study was to discover and explain new physical behav-

iors of strongly coupled binary plasmas. The most important discovery are the

Silvestri–Kalman frequencies which are new characteristic frequencies that appear

as anti–resonances in the partial dynamic structure functions. They arise from a

drag force proportional to the relative microscopic current between the two species.

A simple toy model of driven coupled harmonic oscillators has been presented for

a better understanding. The Silvestri–Kalman are novel inasmuch they represent

the zeros of the imaginary part of partial response functions and not of their real

part. Furthermore, they do not depend on strength of inter–species damping nor
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on the strength of the coupling parameter, despite being contigent on their ex-

istence. As a matter of fact, in the weakly coupled regime, in which particles’

correlations are entirely neglected, the zeros of the imaginary and real part coin-

cide and are exactly the well known plasma frequencies of each species.

The introduction of damping in the QLC formalism not only allowed for the ex-

plicit calculation of partial dynamic structure function, but also led to a better

description of the collective modes of binary plasma mixtures. As expected a rela-

tively large damping dramatically changes the collective mode spectrum predicted

by the QLCA. In the case of a binary Yukawa mixture with a large concentration

of light particles we find that a single acoustic–like mode, instead, of a gap and an

acoustic mode. The Collisional QLCA has showed that the large damping cancels

the gap mode at small k leaving only the acoustic mode, while for larger k the

opposite situation is true, with only the gap mode surviving.

As in the case of any research, the discovery of a new phenomenon opens up a lot

more questions than it answers. Below I list some of the few topics that arised

from this thesis and should be investigated

• Electron–Ion Plasma: Such a system is of particular importance, not

only in statistical physics, but also in laboratory experiments. The recent

advances in laser technologies allows for the investigation of a new state of

matter: Warm Dense Matter (WDM). In these systems the high tempera-

tures prohibit the use of well known condensed matter techniques, while the

high number densities prevent the use of weak coupling plasma physics. The

application of the YOCP model to WDM as already shown its limitation.

So to what extent can we apply the Collisional QLCA formalism to the case

of an electron–ion plasma? A first modification would be to substitute the

Coulomb potential with a pseudo-potential with a repulsive core. This leads

to different equations for response functions since many of the simplifications
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found in BIM and YBM are no more valid.

• Mixtures with more than two species: Obviously there is no need to

stop at mixtures with only two components. The QLCA is easily extendable

to N species. However, questions arise concerning the existence of anti-

resonances N -component mixtures. Preliminary work on three component

mixtures continues to show the existence of anti-resonances in the equilib-

rium spectrum and suggests their existence for any number of species. The

anti-resonances are created due to inter-species interaction; therefore, their

existence in mixtures of N species is not surprising. However, an exact

calculation and a general formula for their identification is still missing.

• A derivation of the collisional damping from first principles: Even

though the anti-resonances do not depend on the strength of damping be-

tween particles, their existence is rooted in the presence of collisions between

particles of different species. An interesting project would be to derive the

anti–resonances from a kinetic description using the Velocity Average Ap-

proximation.

• Electron Liquid: A particular interesting project that emerged from this

Thesis, is to apply the Collisional QLCA to a strongly coupled electron liq-

uid. This system can be considered to be composed by two components with

different spins, but equal charge and mass. Preliminary work shows that in

addition to the well known high frequency plasmon mode, such a binary

system, in the strongly coupled phase, supports a second plasmon mode at a

low non–zero frequency. This excitation is maintained by the out–of–phase

oscillations of the spin-up and spin-down densities of the electron liquid,

but governed solely by the Coulomb interaction between the particles. The

frequency square of this mode is proportional to the overlap (r = 0) (abso-
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lute) value of the spin–up/spin–down correlation function, and thus slightly

affected by the degree of polarization of the electron liquid. From its disper-

sion and its satisfaction of the 3rd frequency sum rule this mode is identified

with the conjectured magnetic excitation in the homogeneous electron gas

(Goodman and Sjölander, 1973). The Collisional QLCA, thus, give a first

principle derivation of such a mode, and a compelling argument could be

made once the quantum exchange–correlation effects are incorporated in the

model.

• Behavior of SAB(k, ω) at ω = 0 and ω → ∞: An important topic not

covered in this Thesis is conductivity of the plasma. In an OCP it can be

shown that S(k, ω = 0) is directly proportional to the DC conductivity σ.

In a BIM such relation involves SZZ(k, ω). The Collisional QLCA predicts

a SZZ
ω→0−−→ 0 while MD simulation show that it reaches a finite value. MD

simulations show also a very fast power law decay, ω−p (p > 10) not predicted

by any theoretical model. These shortcomings of the QLCA are somewhat

expected since the Collisional QLCA represents SAB(k, ω) as a product of

Lorentzians, therefore, new ideas are needed. An interesting new tool that

became available only recently is the reconstruction of the entire real and

imaginary part of the dielectric and total response functions from MD data

of SAB(k, ω). This was done in the case of an OCP by using the FDT

to convert S(k, ω) into Im{ε−1(k, ω)} and then applying Kramers–Kronig

relations to obtain Re{ε(k, ω)}. An extension of this procedure to binary

mixtures will help provide new insights for the study of SAB(k, ω).

• Computer Simulations: Finally, one very important aspect is the data.

The investigation of binary mixtures (especially in the case of Coulomb in-

teraction) remain incomplete due to a lack of data. For example, the investi-
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gation of the weak to strong coupling transition of binary Coulomb mixtures

could be improved by more simulations. In fact, MD simulations spanning

a large set of Γ values was available only for one set of asymmetry parame-

ters. More asymmetry parameters are needed in order to reach a conclusive

picture of the transition. Furthermore, the available high Γ MD simula-

tions showed that a certain class of asymmetry parameters did not show the

presence of the low frequency plasmon predicted by the QLCA. Is Γ large

enough for the mixture to be considered strongly coupled? Does the mode

really exists or is it masked by damping as in the case of a binary Yukawa

mixture? All of the above and more are some of the questions that a larger

set of MD simulations could help answer.
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APPENDIX A

Real and Imaginary part of Matrices

In this appendix we show the calculation of the real and imaginary part of the

inverse of a matrix with complex elements. Take the matrix

Z =

z11 z12

z12 z22

 , (A.1)

with zjk ∈ C, zjk = ajk + ibjk and the inverse is

χ = Z−1 =
1

det Z

 z22 −z12

−z21 z11

 . (A.2)

The determinant can be written in the following forms

det Z = a11a22 − a2
12 − (b11b22 − b12b21) + i (a11b22 + b11a22 − a12b21 − a21b12)

= det A− det B + i

[
b11

(
a22 −

b12

b11

a21

)
+ b22

(
a11 −

b21

b22

a12

)]
(A.3)

= det A− det B + i
∑
m,n

(−1)m+nam,nbmn (A.4)

= Re{det Z}+ i Im{det Z}. (A.5)
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Considering the case z12 = z21, the real part of the diagonal element, say χ22, can

be expressed in the following forms

Re{χ22} =
1

| det Z|2
[a11 Re{det Z}+ b11 Im{det Z}] (A.6)

∝ a22

(
a2

11 + b2
11

)
− a21b11b12 − a12b11b21 + a11 (b12b21 − a12a21)

= a11 det A + b2
11

(
a22 −

b12

b11

a21

)
+ b12b21

(
a11 −

b11

b12

a12

)
(A.7)

and its imaginary part

Im{χ22} =
1

| det Z|2
[b11 Re{det Z} − a11 Im{det Z}] (A.8)

∝ b11

[
a11a22 − a2

12 − (b11b22 − b2
12)
]

−a11

[
b11

(
a22 −

b12

b11

a12

)
+ b22

(
a11 −

b12

b22

a12

)]
= −b22

(
a11 −

b12

b22

a12

)2

−
(
a2

12

b22

+ b11

)
det B (A.9)

The real part of the off diagonal elements is

Re{χ12} = − 1

| det Z|2
[a21 Re{det Z}+ b21 Im{det Z}] (A.10)

∝ a12

(
a2

21 + b2
21

)
+ b11 (a21b22 − a22b21)

−a11 (a21a22 + b21b22)

= −a21 det A− b11b21

(
a22 −

b22

b21

a21

)
−b12b22

(
a11 −

b21

b22

a12

)
(A.11)
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and the imaginary part

Im{χ12} = − 1

| det Z|2
[b12 Re{det Z} − a12 Im{det Z}] (A.12)

∝ −b12

[
a11a22 − a2

12 − (b11b22 − b2
12)
]

+a12

[
b11

(
a22 −

b12

b11

a12

)
+ b22

(
a11 −

b12

b22

a12

)]
= −b12

[
a2

12 − a12

(
b11

b12

a22 +
b22

b12

a11

)
+ a11a22 − det B

]
= −b12

[(
a12 −

b11

b12

a22

)(
a12 −

b22

b12

a11

)
− b11b22

b2
12

a11a22 + a11a22 − det B

]
= −b11b22

b12

(
a11 −

b12

b22

a12

)(
a22 −

b12

b11

a12

)
+ det B

(
b12 +

a11a22

b12

)
.(A.13)

The above result can be extended to the case of a 3x3 matrix

Z =


z11 z12 z13

z12 z22 z23

z13 z23 z33

 . (A.14)

The determinant is expressed as

det Z = Re{det Z}+ i Im{det Z} (A.15)

= det A−
∑
m,n

(−1)m+namnbm,n

+i

[∑
m,n

(−1)m+nam,nbmn − det B

]
(A.16)

where cm,n represent the absolute value of the (m,n)-minor.
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APPENDIX B

QLCA Dynamical Matrix Derivation

In this appendix, we provide a detailed derivation of QLCA dynamical matrix C. The starting point for the calculation is

eq.(38) in (Golden and Kalman, 2000). The microscopic equation of motion for the i-th particle of species A:

−mω2ξαA,i(ω) +
∑
B

∑
j

Kαβ
AB,ijξ

β
B,j(ω) = ZAeÊ

α(xA,i, ω) (B.1)

where ξαA,i(t) is the perturbed amplitude of the particle’s small excursion about its equilibrium site xA,i; Ê
α(xA,i, t) is the full

external electric field perturbation originating from external vector and scalar potential sources. Indices i, j, l enumerate particles,
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A,B,C designate different species, α, β (µ, ν in (Golden and Kalman, 2000)) are the 3D vector indices. We note that there is a

slight change in the notation. In (Golden and Kalman, 2000) the indices A,B,C (α, β) are used as superscript (subscript) while

in this supplemental material are used as subscript (superscript). The reason for the change is so this supplemental material is

consistent with the notation used in this work. The interaction term Kαβ
AB,ij, see eq. (39) of (Golden and Kalman, 2000), takes

account of the uniform neutralizing background contribution, nb, and can be divided into its diagonal (δABδij) and off-diagonal

(1− δABδij) contributions, as follows

Kαβ
AB,ij = (1− δABδij)

∂2

∂xαA,i∂x
β
B,j

φAB (|xA,i − xB,j|)

−δABδij

{∑
l

∑
C

(1− δACδil)
∂2

∂xαA,i∂x
β
C,l

φAC (|xA,i − xC,l|) + nb

∫
d3yb

∂2

∂xαA,i∂y
β
b

φAb (|xA,i − yb|)

}
. (B.2)

The diagonal terms originates from the displacement of a particle in a fixed environment of the other particles, while the off-

diagonal from the fluctuating environment. In the first stage of the derivation, we introduce collective coordinates ξαA,q(ω) via

the Fourier representation

ξαA,i(ω) =
1√

NAmA

∑
q

eiq·xA,iξαA,q(ω) (B.3)

This is formally similar to the coordinates used in the harmonic approximation of lattice vibrations. We then substitute eq. (B.3)
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into eq. (B.1), multiply by e−ik·xA,i , and sum over the i particles comprising plasma species A to obtain

−mAω
2
∑
p

nA,k−pξ
α
A,p(ω) +

∑
B

√
mANA

mBNB

∑
p

∑
i,j

e−ik·xA,ieip·xB,jKαβ
AB,ijξ

β
B,p(ω) =

ZAe
√
mANA

V

∑
p

nA,k−pÊ
α(p, ω). (B.4)

where we recall

nA,k−p =
∑
i

e−i(k−p)·xA,i (B.5)

is the usual microscopic density in the present classical derivation. The second term in the first line of eq. (B.4) is calculated

as follows

∑
i,j

e−ik·xA,ieip·xB,jKαβ
AB,ij =

1

V

∑
ij

∑
q

qαqβ

{
(1− δABδij)φAB(q)e−i(k−q)·xA,ie−i(q−p)·xB,j

−δAB

[
δij
∑
C

φAC(q)e−i(k−q)·xA,ieip·xB,jnC,q − φAA(q)nA,k−p

]}

=
1

V

∑
q

qαqβ

{
φAB(q) [nA,k−qnB,q−p − δABnA,k−p]

−δAB

[∑
C

φAC(q)nA,k−p−qnC,q − φAA(q)nA,k−p

]}
(B.6)

with φAB(q) = 4πZAZBe
2/q2 being the 3D Fourier transform of the Coulomb interaction between species A and B. Further
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development of eq. (B.6) gives

∑
B

∑
p

∑
i,j

e−ik·xA,ieip·xB,jKαβ
AB,ijξ

β
B,p(ω) =

∑
B

∑
qp

qαqβ

V

{
φAB(q)nA,k−qnB,q−p − δAB

∑
C

φAC(q)nA,k−p−qnC,q

}
ξβB,p(ω). (B.7)

The principal assumption of the QLCA consists of replacing the nA,k−qnB,q−p and nA,k−p−qnC,q terms by their ensemble averages,

〈nA,k−p〉 = NAδk−p, (B.8)

〈nA,k−qnB,q−p〉 =
√
NANBSAB (|k− q|) δk−p +NANBδk−qδq−p, (B.9)

〈nA,k−q−pnC,q〉 =
√
NANCSAC (q) δk−p +NANCδk−pδq. (B.10)

Note that the product δk−p−qδq is equivalent to δk−pδq. Carrying out these operations amounts to replacing eq. (B.4) by

−mAω
2
∑
p

〈nA,k−p〉 ξαA,p(ω) +
∑
B

√
mANA

mBNB

∑
p

〈
∑
i,j

e−ik·xA,ieip·xB,jKαβ
AB,ij〉 ξ

β
B,p(ω) =

ZAe
√
mANA

V

∑
p

〈nA,k−p〉 Êα(p, ω)

(B.11)
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where

∑
p

〈
∑
i,j

e−ik·xA,ieip·xB,jKαβ
AB,ij〉 ξ

β
B,p(ω) =

1

V

∑
qp

qαqβ

{
φAB(q) 〈nA,k−qnB,q−p〉 − δAB

∑
C

φAC(q) 〈nA,k−p−qnC,q〉

}
ξβB,p(ω)

=
∑
q

qαqβ

{
φAB(q) [

√
nAnBSAB (|k− q|) + nANBδk−q]

−δAB
∑
C

φAC(q) [
√
nAnCSAC (q) + nANCδq]

}
ξβB,k(ω) (B.12)

=
∑
q

qαqβ

{
φAB(q) [nAnBhAB (|k− q|) +

√
nAnBδAB + nANBδk−q]

−δAB
∑
C

φAC(q) [nAnChAC (q) +
√
nAnCδAC + nANCδq]

}
ξβB,k(ω) (B.13)

=
∑
q

qαqβ

{
φAB(q) [nAnBhAB (|k− q|) + nANBδk−q]

−δAB
∑
C

φAC(q) [nAnChAC (q) + nANCδq]

}
ξβB,k(ω) (B.14)

In going from eq. (B.12) to eq. (B.14), the static structure function have been replaced by the notationally more convenient

equilibirum pair correlation functions via, e.g.

SAB (|k− q|) = δAB +
√
nAnBhAB (|k− q|) . (B.15)
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Note that in the first line of eq. (B.13) the term proportional to
√
nAnBδAB is cancelled by the term in the second line proportional

to −δAB
∑

C

√
nAnCδAC . The QLCA equation of motion readily follows from substituting eq. (B.14) into eq. (B.11):

∑
B

{
ω2δABδ

αβ − Cαβ
AB(k)

}
ξαB,k(ω) = − ZAenA√

mANA

Êα(k, ω) (B.16)

Cαβ
AB(k) =

√
nAnB
mAmB

1

V

∑
q

qαqβ

{
φAB(q) [hAB (|k− q|) + V δk−q]− δAB

∑
C

nC
nA
φAC(q)hAC(q)

}
(B.17)

=

√
nAnB
mAmB

kαkβφAB(k) +

√
nAnB
mAmB

1

V

∑
q

qαqβ

{
φAB(q)hAB (|k− q|)− δAB

∑
C

nC
nA
φAC(q)hAC(q)

}
(B.18)

=

√
nAnB
mAmB

kαkβφAB(k) +HAB(k) (B.19)

This is the principal element of the QLCA from which all the dynamical quantity will be calculated. The next stage of the

derivation consists in casting the dynamical matrix eq. (B.19) in a form where the equilibrium correlation functions are functions

of r since MD simulation provide the quantity gAB(r).
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r-conversion

The conversion proceeds as follows:

1

V

∑
q

qαqβφAB(q)hAB (|k− q|) =

∫
d3rφAB(r)

1

V

∑
q

qαqβhAB (|k− q|) e−iq·r

= −
∫
d3rφAB(r)

∂2

∂rα∂rβ
1

V

∑
q

hAB (|k− q|) e−iq·r

= −
∫
d3rφAB(r)

∂2

∂rα∂rβ

[
e−ik·r

1

V

∑
q

hAB (|k− q|) ei(k−q)·r

]

= −
∫
d3rφAB(r)

∂2

∂rα∂rβ
[
e−ik·rhAB(r)

]
=

∫
d3r

[
∂

∂rα
φAB(r)

]
∂

∂rβ
[
e−ik·rhAB(r)

]
= −

∫
d3r
[
e−ik·rhAB(r)

] ∂2

∂rα∂rβ
φAB(r) (B.20)

1

V

∑
q

qαqβφAC(q)hAC (q) = −
∫
d3rhAC(r)

∂2

∂rα∂rβ
φAC(r). (B.21)

In the first and last line of eq. (B.20), replacement of h (|k− q|) by V δk−q and hAB(r) by unity provides

∫
d3re−ik·r

∂2

∂rα∂rβ
φAB(r) = −kαkβφAB(k). (B.22)
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The final formula is then

Cαβ
AB(k) = −

√
nAnB
mAmB

∫
d3r

{
[1 + hAB(r)] e−ik·r

∂2

∂rα∂rβ
φAB(r)− δAB

∑
C

nC
nA

[1 + hAC(r)]
∂2

∂rα∂rβ
φAC(r)

}
+ δABδ

αβ
∑
C

Ω2
AC

3

= −
∫
d3r

4π

{
ω2
ABψ

αβ(r) [1 + hAB(r)] e−ik·r + δAB
∑
C

Ω2
ACψ

αβ(r) [1 + hAC(r)]

}
+ δABδ

αβ
∑
C

1

3
Ω2
AC , (B.23)

where

ψαβ(r) =
∂2

∂rα∂rβ
1

r
=

1

r3

(
3
rαrβ

r2
− δµν

)
− 4π

3
δαβδ(r), (B.24)

ω2
AB =

4πe2ZAZB
√
nAnB

m
, Ω2

AC =
4πe2ZAZCnC

mA

. (B.25)

The last δ(r) term in eq. (B.24) comes from the Poisson equation ∇2 1
r

= −4πδ(r). Further explanation on the way eq. (B.23) is

obtained is needed since the passages are not obvious. The first term ψαβ × e−ik·r comes from the mean field term −kαkβφ(k).

The addition of “1” in the [1 + hAC(r)] term gives, in the longitudinal elements,

Ω2
AC

4π

∫
d3r

[
−4π

3
δ(r)

]
= −Ω

2
AC

3
. (B.26)

The latter is cancelled by adding the equal opposite value, hence the last constant term in eq. (B.23).
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APPENDIX C

QLCA Dynamical Matrix Elements Calculation

In this appendix we show detailed derivation of the QLCA longitudinal dynamical matrix elements for all the systems

considered in the thesis.

C.1 3D Coulomb

In this appendix we give details on the calculation of the elements of the dynamical matrix. The starting point is

Cµν
AB(k) = −ω

2
AB

4π

∫
d3rψµν(r)e−ik·r [1 + hAB(r)] + δAB

∑
C

Ω2
AC

4π

∫
d3rψµν(r) [1 + hAC(r)] + δABδ

µν
∑
C

1

3
Ω2
AC (C.1)



215

where ψµν(r) is the harmonic approximation of the Coulomb potential given by eq. (B.24) and the frequencies ωAB and ΩAB

are given by eq. (B.25). The first two lines of (C.1) can be simplified as follows

−
∫
d3r

4π

{
ω2
AB

[
1

r3

(
3
rµrν

r2
− δµν

)
− 4π

3
δµνδ(r)

]
e−ik·r [1 + hAB(r)]− δAB

∑
C 6=A

Ω2
AC

[
1

r3

(
3
rµrν

r2
− δµν

)
− 4π

3
δµνδ(r)

]
[1 + hAC(r)]

}

= −ω
2
AB

4π

∫
d3r

r3

(
3
rµrν

r2
− δµν

)
[1 + hAB(r)] e−ik·r + δAB

∑
C=A

Ω2
AC

4π

∫
d3r

r3

(
3
rµrν

r2
− δµν

)
[1 + hAC(r)]

= −ω
2
AB

4π

∫
d3r

r3

(
3
rµrν

r2
− δµν

)
[1 + hAB(r)] e−ik·r. (C.2)

In the first step we made the fact that particles do not overlap, hAB(r → 0) = −1 while in the second, the k-independent

integrals vanish due to isotropy (see (D.2)). The dynamical matrix elements, thus, become

Cµν
AB(k) = −ω

2
AB

4π

∫
d3r

r3

{(
3
rµrν

r2
− δµν

)
[1 + hAB(r)] e−ik·r

}
+ δABδ

µν
∑
C=A

1

3
Ω2
AC , (C.3)

whose longitudinal components are

CL
AB(k) = −ω

2
AB

4π

∫
dr

r
gAB(r)

1∫
−1

dµ
(
3µ2 − 1

)
e−ikrµ

2π∫
0

dφ+ δAB
∑
C=A

Ω2
AC

3
(C.4)

= −ω
2
AB

2

∫
dr

r
[1 + hAB(r)]

[
4

sin(kr)

kr
+ 12

cos(kr)

(kr)2
− 12

sin(kr)

(kr)3

]
+ δAB

∑
C=A

Ω2
AC

3
. (C.5)
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Further integrating the hAB-independent parts we obtain

CL
AB(k) = 2ω2

AB

[
1

3
−DAB(k)

]
+ δAB

∑
C

Ω2
AC

3
(C.6)

DAB(k) =

∫
dr

r
hAB(r)

[
sin(kr)

kr
+ 3

cos(kr)

(kr)2
− 3

sin(kr)

(kr)3

]
. (C.7)

Writing out explicitly each matrix element in terms of the asymmetry parameter p, q we have

CL
11(k) = ω2

1

[
1 +

1

3
p2 − 2D11(k)

]
(C.8a)

CL
12(k) = ω2

1

[
2

3
pq − 2pqD12(k)

]
(C.8b)

CL
22(k) = ω2

1

[
q2p2 +

1

3
q2 − 2q2p2D22(k)

]
(C.8c)

Long wavelength limit

In the limit k → 0 the DAB(k) integrals become

DAB(k) ≈ −k
2

15

∫
drrhAB(r) = −k

2

15
IAB (C.9)
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which gives

CL
11(k → 0) = ω2

1

[
1 +

1

3
p2 +

2

15
k2I11

]
(C.10a)

CL
12(k → 0) = ω2

1

[
2

3
pq +

2

15
pqk2I12

]
(C.10b)

CL
22(k → 0) = ω2

1

[
p2q2 +

1

3
q2 +

2

15
p2q2k2I22

]
(C.10c)

Short wavelength limit

In the k →∞ limit we make the substitution r → x/k and recall that hAB(0) = −1

lim
k→∞

DAB(k) = lim
k→∞

∫
dx

x
hAB(x/k)

[
4

sinx

x
+ 12

cosx

x2
− 12

sinx

x3

]
=

1

3
(C.11)

CL
11(k →∞) = ω2

1

1 + p2

3
=
ω2

1 +Ω2
12

3
(C.12a)

CL
12(k →∞) = 0 (C.12b)

CL
22(k →∞) = ω2

1

q2p2 + q2

3
=
ω2

2 +Ω2
21

3
(C.12c)
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which are the Einstein frequencies of each component.

C.2 3D Yukawa

In the case of a Binary Yukawa Mixture the QLCA dynamical matrix elements are again obtained from the r-conversion of

eq. (B.19) which leads to

Cµν
AB(k) = −

∫
d3r

4π

{
ω2
ABψ

µν(r)e−ik·r [1 + hAB(r)]− δAB
∑
C

Ω2
ACψ

µν(r) [1 + hAC(r)]

}
(C.13)

where the frequencies ωAB and ΩAB are again given by eq. (B.25) and ψµν is now

ψµν(r) =
e−y

r3

[
3
rµrν

r2
a(y)− δµνb(y)

]
− 4π

3
δµνδ(r) (C.14)

a(y) = 1 + y +
y2

3
, b(y) = 1 + y, y = κr. (C.15)

The δ(r) term in ψµν is now due to the Helmholtz equation

(
∇2 − κ2

) e−κr
r

= −4πδ(r) (C.16)



219

Contrary to the 3D Coulomb case no additional term is needed to compensate the terms arising from δ(r), since

∫
d3r

4π
ψµµ =

∫
d3r

4π

[
e−y

r3
[3 cos θa(y)− b(y)]− 4π

3
δ(r)

]
=

[
1

3
− 1

3

]
= 0. (C.17)

The calculation of the longitudinal elements then proceeds as follows

CL
AB(k) = −ω

2
AB

4π

∫
d3r

e−κr

r3

[
3a(κr) cos2 θ − b(κr)

]
[1 + hAB(r)]

[
e−ikr cos θ − δAB

]
+δAB

∑
C 6=A

Ω2
AC

4π

∫
d3r

e−κr

r3

[
3a(κr) cos2 θ − b(κr)

]
[1 + hAC(r)] (C.18)

The angular integral are evaluated as follows

K(u, y) =

1∫
−1

dµ
[
3a(y)µ2 − b(y)

]
e−iuµe−y

= 2

{
[3a(y)− b(y)]

sinu

u
+ 6a(y)

cosu

u2
− 6a(y)

sinu

u3

}
e−y (C.19)

K(0, y) =

1∫
−1

dµ
[
3a(y)µ2 − b(y)

]
e−y = 2[a(y)− b(y)]e−y =

2

3
y2e−y. (C.20)
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Thus, eq. (C.18) becomes

CL
AB(k) = −ω

2
AB

2

∫
dr

r
[K(u, y)− δABK(0, y)] [1 + hAB(r)] + δAB

∑
C 6=A

Ω2
AC

2

∫
dr

r
K(0, y) [1 + hAC(r)] . (C.21)

The hAB-independent parts integrate to

∫
dr

r
K(u, y) = 2

(
1

3
− k2

k2 + κ2

)
,

∫
dr

r
K(0, y) =

2

3
κ2

∫
dr re−κr =

2

3
(C.22)

Notice that in the limit κ → 0 the first integral → −4/3 and the kernel K(0, y) → 0 which are the results found in the 3D

Coulomb case. Further defining

DAB(k, κ) =

∫
dr

r
[K(u, y)−K(0, y)]hAB(r), W (κ) = 1 + κ2

∫
drre−κrh12(r) (C.23)

the longitudinal elements can be rewritten as

CL
11(k) = ω2

11

[
k2

k2 + κ2
− 1

2
D11(k, κ) +

p2

3
W (κ)

]
(C.24a)

CL
12(k) = ω2

11qp

[
k2

k2 + κ2
− 1

2
D12(k, κ)− 1

3
W (κ)

]
(C.24b)

CL
22(k) = ω2

11

[
q2p2 k2

k2 + κ2
− q2p2 1

2
D22(k, κ) +

q2

3
W (κ)

]
(C.24c)
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The first term of each of these equation is the mean-field RPA term and while the last two terms contain all the correlational

dependence.

Long wavelength limit

In the long wavelength limit, k → 0, we have

K(u, y)−K(0, y) ≈ − 4

15
u2e−y

(
1 + y +

3

4
y2

)
+O(u4) (C.25)

DAB = − 4

15

k2

κ2

∫
dyy(1 + y +

3

4
y2)e−yhAB(y/κ) = 2UAB

k2

κ2
(C.26)

w which simplifies eq. (C.24)

CL
11(k → 0) = ω2

11

[
(1− U11)

k2

κ2
+
p2

3
W

]
(C.27a)

CL
12(k → 0) = ω2

11qp

[
(1− U12)

k2

κ2
− 1

3
W

]
(C.27b)

CL
22(k → 0) = ω2

11

[
q2p2 (1− U22)

k2

κ2
+
q2

3
W

]
(C.27c)
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Short wavelength limit

On the other hand, in the limit k →∞ the integral

∫
dr

r
K(kr, κr) [1 + hAB(r/k)]→ 0 (C.28)

due to the fact that [1 + hAB(x→ 0)]→ 0 fast enough. Thus,

CL
11(k →∞) = ω2

1

1 + p2

3
W =

ω2
11 +Ω2

12

3
W (C.29a)

CL
12(k →∞) = 0 (C.29b)

CL
22(k →∞) = ω2

1

q2(1 + p2)

3
W =

ω2
22 +Ω2

21

3
W (C.29c)

and we recover the Einstein frequencies of each species times a factor of W .

Collective Modes

The collective modes are obtained from the zeros of ||ω2 −CL||.

ω2
∓ =

C11 + C22

2
±

√(
C11 − C22

2

)2

+ C2
12 =

1

2

{
B(k, κ)±

√
[B(k, κ)]2 − 4∆(k, κ)

}
(C.30)
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B =
p2 + q2

3
W (κ) + (1 + q2p2)

k2

k2 + κ2
− 1

2

[
D11(k, κ) + q2p2D22(k, κ)

]
(C.31)

∆ =
q2(1 + p2)2

3
W

[
k2

k2 + κ2
− D11 + 2p2D12 + p4D22

(1 + p2)2

]
− 1

2
q2p2 k2

k2 + κ2
(D11 − 2D12 +D22) +

q2p2

4

(
D11D22 −D2

12

)
(C.32)

Long wavelength limit

ω2
∓ =

1

2

(
B ±

√
B2 − 4∆

)
(C.33)

with

B =

(
p2 + q2

3

)
W +

[(
1 + q2p2

)
−
(
U11 + p2q2U22

)] k2

κ2
(C.34)

∆ =
q2 (1 + p2)

2

3

[
1− U11 + 2p2U12 + p4U22

(1 + p2)2

]
k2

κ2
W − q2p2k

4

κ4

[
U11 − 2U12 + U22 − (U11U22 − U2

12)
]

(C.35)

You can see then that in the κ→ 0 limit the only term that survives in ∆ is q2(1 + p2)2 and obtain the Coulomb modes.

ω2
+(k) ≈ ω2

1

q2(1 + p2)2

q2 + p2

[
1− U11 + 2p2U12 + p4U22

(1 + p2)2

]
k2

κ2
(C.36)

ω2
−(k) ≈ ω2

1

(
p2 + q2

3

)
W + ω2

1

p2(1− q2)2

q2 + p2

k2

κ2

[
1− U11 − 2q2U12 + q4U22

(1− q2)2

]
(C.37)
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Notice that the subscript sign indicates whether the two components move in-phase (+) or out-of-phase (−).

Short wavelength limit

In this limit the collective modes become exactly

ω2
+ = ω2

1

1 + p2

3
W, ω2

− = ω2
1

q2(1 + p2)

3
W, (C.38)

C.3 Asymmetric e− e Bilayer

The elements of the longitudinal dynamical matrix are

CAB(k) = −
√

nAnB
mAmB

∫
dr

[(
k · ∇
k

)2

φAB(r)

] (
e−ik·r − δAB

)
gAB(r) + δAB

∑
C 6=A

√
nAnC
mAmB

∫
dr

[(
k · ∇
k

)2

φAC(r)

]
gAC(r)

(C.39)

where r is the 2D distance between two particles in a 2D layer and d is the (vertical) distance between the two layers. In the

following dr = rdrdθ indicate the 2D infinitesimal surface. The potential φAB is

φ11(r) =
(Z1e)

2

r
, φ12(r) = ± Z1Z2e

2

√
r2 + d2

(C.40)
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where the sign of φ12(r) is determined whether we are considering an electron-electron (+) or an electron-hole (−) bilayer. In

any case we can incorporate the sign in the asymmetry parameters

p2 = Zn, q2 = Z/m, ω2
22/ω

2
11 = Z2n/m = q2p2. (C.41)

Hence, p2 = −n and q2 = −1/m in the case of an electron-hole bilayer. Using

ω2
AB =

2πZAZBe
2√nAnB√

mAmBa
, Ω2

AB =
2πZAZBe

2nB
mAa

, πa2 = 1/
√
n1n2 (C.42)

We can rewrite eq. (C.39) as

CAB(k) = −ω2
AB

a

2π

∫
dr

[(
k · ∇
k

)2

φAB(r)

] (
e−ik·r − δAB

)
gAB(r)+δAB

∑
C 6=A

Ω2
AB

a

2π

∫
dr

[(
k · ∇
k

)2

φAC(r)

]
gAC(r), (C.43)

It is important to notice that the argument of g12 is the distance r not ρ =
√
r2 + d2 since this is what is computed in MD

simulations. The way is calculated is by counting the number of particles that fall into a circle of radius r and then dividing by

the total areal density. The calculations goes as follows. We start by evaluating the longitudinal projection of the potentials

[(
k · ∇
k

)2

φ11(r)

]
=
e2

r3

(
3 cos2 θ − 1

)
,

[(
k · ∇
k

)2

φ12(r)

]
=

e2

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)
. (C.44)
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Writing explicitly each element we have

C11(k) = −ω2
1

a

2π

∫
dr

r3

(
3 cos2 θ − 1

) (
e−ik·r − 1

)
g11(r) + ω2

1

p2a

2π

∫
dr

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)
g12(r), (C.45)

C22(k) = −ω2
1q

2p2 a

2π

∫
dr

r3

(
3 cos2 θ − 1

) (
e−ik·r − 1

)
g22(r) + ω2

1

q2a

2π

∫
dr

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)
g12(r), (C.46)

C12(k) = −ω2
1qp

a

2π

∫
dr g12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)
e−ik·r. (C.47)

Rewriting gAB(r) = 1 + hAB(r) and carrying out the calculation, using some useful integrals eqs. (D.6),(D.7),(D.9) and some

relations between the Bessel functions eq. (D.10), we obtain the diagonal element

C11(k) = ω2
1

{
ka+

a

2

∫
dr

r2
h11(r) [1− J0(kr) + 3J2(kr)] + p2a

∫
dr rh12(r)

(r2 + d2)3/2

(
3

2

r2

r2 + d2
− 1

)}
(C.48)

= ω2
1

{
ka+D11(ka) + p2W

}
(C.49)

where the first term comes from eq. (D.6) and is referred to as the RPA term and we have defined

D11(ka) =
a

2

∫
dr

r2
h11(r) [1− J0(kr) + 3J2(kr)] , (C.50)
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W = a

∫
dr rh12(r)

(r2 + d2)3/2

(
3

2

r2

r2 + d2
− 1

)
=
a

2

∫
dr rh12(r)

(r2 + d2)3/2

(
1− 3

d2

r2 + d2

)
(C.51)

Now onto the off-diagonal

C12(k) = −ω2
1qp

a

2π

∫
drg12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)
e−ik·r (C.52)

= −ω2
1qp

{
a

2π

∫
dr[1 + h12(r)]

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)(
e−ik·r − 1 + 1

)}
(C.53)

= ω2
1qp

{
kae−kd − a

2π

∫
drh12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)(
e−ik·r − 1

)
− a

2π

∫
drh12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)}
(C.54)

= ω2
1qp

{
kae−kd − a

2π

∫
drh12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)(
e−ik·r − 1

)
− a

∫
dr rh12(r)

(r2 + d2)3/2

(
3

2

r2

r2 + d2
− 1

)}
. (C.55)

At this point we make some remarks on the next steps. There are two ways for this to be solved. One is the easy way: plug

the second integral in the computer software Mathematica and simplify the Bessel functions to obtain

C12(k) = ω2
1qp

{
kae−kd − a

∫
dr rh12(r)

(r2 + d2)3/2

{
[1− J0(kr)] +

3

2

r2

r2 + d2
[1− J0(kr) + J2(kr)]

}
−W

}
(C.56)

= ω2
1qp
{
kae−kd − L12(ka)−W

}
(C.57)
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where we have defined

L12(ka) = a

∫
dr rh12(r)

(r2 + d2)3/2

{
[1− J0(kr)]− 3

2

r2

r2 + d2
[1− J0(kr) + J2(kr)]

}
. (C.58)

However, in the literature we find the expression

D12(ka) =
a

2

∫
dr

r h12(r)

(r2 + d2)3/2

{
1− J0(kr) + 3J2(kr)− 3d2

r2 + d2
[1− J0(kr) + J2(kr)]

}
. (C.59)

Therefore, in order to be consistent with the previous papers published by Golden and Kalman we will use the other more

difficult way which consist in making the substitution ρ2 = r2 + d2. This gives

dr r = dρ ρ,
dr r

r2 + d2
=
dρ

ρ2
, 3

r2 cos2 θ

r2 + d2
− 1 =

(
3 cos2 θ − 1

)
− 3

d2

ρ2
cos2 θ, (C.60)
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and the second term becomes

−
∫

drh12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)(
e−ik·r − 1

)
= −

∫
dρ

ρ2
h12(r)

2π∫
0

[(
3 cos2 θ − 1

)
− 3

d2

ρ2
cos2 θ

] (
e−ik·r − 1

)
(C.61)

= π

∫
dρ

ρ2
h12(r) [1− J0(kr) + 3J2(kr)]

+3d2

∫
dρ

ρ4
h12(r)

2π∫
0

dθ cos2 θ
(
e−ikr cos θ − 1

)
(C.62)

Calculating the second term with Mathematica again

3d2

∫
dρ

ρ4
h12(r)

2π∫
0

dθ cos2 θ
(
e−ikr cos θ − 1

)
= −3π

d2

ρ2

{
1 + 2J2(kr)−0 F1

[
; 2;−(kr)2/4

]
Γ (2)

}
(C.63)

where 0F1 (; 2;−x2/4)Γ (2) is the regularized confluent hypergeometric limit functions and it is related to the Bessel functions

by

Jα(x) =
(x/2)α

Γ (α + 1)
0F1

(
;α + 1;−1

4
x2
)
. (C.64)
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Eq. (C.63) thus, becomes

−3π
d2

ρ2

{
1 + 2J2(kr)−0 F1

[
; 2;−(kr)2/4

]
Γ (2)

}
= −3π

d2

ρ2
{1 + 2J2(kr)− 2J1(kr)} (C.65)

= −3π
d2

ρ2
[1− J0(kr) + J2(kr)] . (C.66)

The off-diagonal element C12(k) can now be rewritten as

C12(k) = ω2
1qp

{
kae−kd − a

2π

∫
drh12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)(
e−ik·r − 1

)
− a

2π

∫
d2r h12(r)

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)}
(C.67)

= ω2
1qp

{
kae−kd − a

∫
dr rh12(r)

(r2 + d2)3/2

(
3

2

r2

r2 + d2
− 1

)
+
a

2

∫
dρ

ρ2
h12(r) [1− J0(kr) + 3J2(kr)]− 3ad2

2

∫
dρ

ρ4
h12(r) [1− J0(kr) + J2(kr)]

}
(C.68)

= ω2
1qp
{
kae−kd +D12(ka)−W

}
, (C.69)

where we have defined

D12(ka) =
a

2

∫
dr

r h12(r)

(r2 + d2)3/2

{
1− J0(kr) + 3J2(kr)− 3d2

r2 + d2
[1− J0(kr) + J2(kr)]

}
. (C.70)
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Put everything in units of ω2
1 we rewrite

C11(k) = ka+D11(ka) + p2W, (C.71)

C22(k) = q2p2 [ka+D22(ka)] + q2W, (C.72)

C12(k) = qp
[
kae−kd +D12(ka)−W

]
(C.73)

where

D11(ka) =
a

2

∫
dr

r2
h11(r) [1− J0(kr) + 3J2(kr)] , (C.74)

D12(ka) =
a

2

∫
dr

r h12(r)

(r2 + d2)3/2

{
1− J0(kr) + 3J2(kr)− 3d2

r2 + d2
[1− J0(kr) + J2(kr)]

}
. (C.75)

W = a

∫
dr rh12(r)

(r2 + d2)3/2

(
3

2

r2

r2 + d2
− 1

)
=
a

2

∫
dr rh12(r)

(r2 + d2)3/2

(
1− 3

d2

r2 + d2

)
(C.76)

Long Wavelength limit

In this limit DAB(ka)→ IAB(ka)

I11(ka) =
5

8

a

2

∫
dr

r2
(kr)2h11(r) (C.77)

I12(ka) =
5

8

a

2

∫
dr
r (kr)2h12(r)

(r2 + d2)3/2

{
1− 9

5

d2

r2 + d2

}
. (C.78)
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Collective Modes

The collective modes are the solutions to the equation

∣∣ω2I−C(k)
∣∣ = 0 (C.79)

which are, expressed in units ω1

ω2
∓ =

C11 + C22

2
±

√(
C11 − C22

2

)2

+ C2
12 =

1

2

{
B(k, d)±

√
[B(k, d)]2 − 4∆(k, d)

}
(C.80)

B(k, d) =
(
p2 + q2

)
W +

(
1 + p2q2

)
k +D11(k) + p2q2D22(k) (C.81)

∆(k, d) =
{
q2
(
1 + 2p2e−kd + p4

)
W + q2p2

[
D11(k)− 2e−kdD12(k, d) +D22(k)

]}
ka+ q2p2

(
1− e−2kd

)
(ka)2

+q2p2
[
D11(k)D22(k)−D2

12(k, d)
]

+ q2
[
D11(k) + 2p2D12(k, d) + p4D22(k)

]
W (C.82)

= q2(1 + p2)2W

{[
1−

2p2
(
1− e−kd

)
(1 + p2)2

]
ka+

D11(k) + 2p2D12(k, d) + p4D22(k)

(1 + p2)2

}
+q2p2

{(
1− e−2kd

)
(ka)2 +

[
D11(k)− 2e−kdD12(k, d) +D22(k)

]
ka+D11(k)D22(k)−D2

12(k, d)
}

(C.83)

where the d-dependence in B(k, d) is in W = W (d).
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Long wavelength limit

B →
(
p2 + q2

)
W +

(
1 + p2q2

)
k + U11(ka)2 + p2q2U22(ka)2 (C.84)

∆→ q2(1 + p2)2W

[
ka+ 2

d

a
(ka)2 +

U11 + 2p2U12 + p4U22

(1 + p2)2
(ka)2

]
(C.85)

which gives

ω2
+(k) ≈ q2(1 + p2)2

q2 + p2
ka− 2q2p2

p2 + q2

[
d

a
+

(1 + p2)
2

(1− q2)
2

2W (p2 + q2)2 − U11 + 2p2U12 + p4U22

2p2

]
(ka)2 (C.86)

ω2
−(k) ≈

(
p2 + q2

)
W +

p2(1− q2)2

q2 + p2
ka+

2q2p2

p2 + q2

[
d

a
+

(1 + p2)
2

(1− q2)
2

2W (p2 + q2)2 +
U11 − 2q2U12 + q4U22

2q2

]
(ka)2 (C.87)

Notice that the subscript sign indicates whether the two components move in-phase (+) or out-of-phase (−).

Anti-resonances

The anti-resonances in the asymmetric bilayers are

ω2
∗1(k) = C11 +

p

q
C12 =

(
1 + p2e−kd

)
ka+D11(ka) + p2D12(ka) (C.88)

ω2
∗2(k) = C22 +

q

p
C12 = q2

(
e−kd + p2

)
ka+ q2p2D11(ka) + q2D12(ka) (C.89)
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APPENDIX D

Useful Relations

In this appendix we report useful integrals and formulas used in the thesis.

lim
k→0

∫
d3r

1

r3

(
3
rµrν

r2
− δµν

)
e−ik·r = −4π

3

(
3
kµkν

k2
− δµν

)
(D.1)

∫
d3r

1

r3

(
3
rµrν

r2
− δµν

)
=

∫
drr2

∫
dφ


1∫

−1

dµ(3µ2 − 1) = 0

 isotropy (D.2)
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1∫
−1

dµ(3µ2 − 1)e−ikrµ = 4
sin(kr)

kr
+ 12

cos(kr)

(kr)2
− 12

sin(kr)

(kr)3
(D.3)

∞∫
0

dx
1

x

[
4

sin(x)

x
+ 12

cos(x)

x2
− 12

sin(x)

x3

]
= −4

3
(D.4)

lim
k→0

[
4

sin(kr)

kr
+ 12

cos(kr)

(kr)2
− 12

sin(kr)

(kr)3

]
= − 4

15
k2r2 (D.5)

Asymmetric e− e Bilayer

∫
dr r

r3

2π∫
0

dθ
(
3 cos2 θ − 1

) (
e−ikr cos θ − 1

)
= −

∫
dr

r2
π

[
1− 4J0(kr) + 6

J1(kr)

kr

]
= −2πk (D.6)

∫
dr

r

(r2 + d2)3/2

2π∫
0

dθ

(
3

r2

r2 + d2
cos2 θ − 1

)
= 2π

∫
dr

r

(r2 + d2)3/2

(
3

2

r2

r2 + d2
− 1

)
= 0 (D.7)

∫
dr

(r2 + d2)3/2

(
3
r2 cos2 θ

r2 + d2
− 1

)(
e−ikr cos θ − 1

)
=

∫
dr2πr

(r2 + d2)3/2

[
1− 3

2

r2

r2 + d2
−
(

1− 3

2

r2

r2 + d2

)
J0(kr)− 3

2

r2

r2 + d2
J2(kr)

]
=

∫
dr2πr

(r2 + d2)3/2

{
[1− J0(kr)]− 3

2

r2

r2 + d2
[1− J0(kr) + J2(kr)]

}
(D.8)

= −2πke−kd (D.9)
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J1(kr)

kr
=

1

2
[J0(kr) + J2(kr)] , 1− 4J0(kr) + 6

J1(kr)

kr
= 1− J0(kr) + 3J2(kr). (D.10)
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