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ABSTRACT Machine learning in real-world scenarios is often challenged by concept drift and class 
imbalance. This paper proposes a Resample-based Ensemble Framework for Drifting Imbalanced Stream 
(RE-DI). The ensemble framework consists of a long-term static classifier to handle gradual and multiple 
dynamic classifiers to handle sudden concept drift. The weights of the ensemble classifier are adjusted from 
two aspects. First, a time-decayed strategy decreases the weights of the dynamic classifiers to make the 
ensemble classifier focus more on the new concept of the data stream. Second, a novel reinforcement 
mechanism is proposed to increase the weights of the base classifiers that perform better on the minority class 
and decrease the weights of the classifiers that perform worse. A resampling buffer is used for storing 
instances of the minority class to balance the imbalanced distribution over time. In our experiment, we 
compare the proposed method with other state-of-the-art algorithms on both real-world and synthetic data 
streams. The results show that the proposed method achieves the best performance in terms of both the 
Prequential AUC and accuracy. 

INDEX TERMS online ensemble learning; resample learning; reinforcement; concept drift; class 
imbalance 

I. INTRODUCTION 
With the wide application of machine learning, online learning 
with concept drift and class imbalance has received increased 
research attention. Practical applications in software 
engineering, risk management, traffic flows, sensor networks 
and social media mining face challenges of both concept drift 
and class imbalance [1, 2]. 

In a data stream, instances are generated over time based on 
an underlying probability distribution Pt(x,yi) [3]. If the 
probability distribution changes at time t, concept drift will 
occur. According to Bayes’ theorem [4], such drift can be 
divided into real concept drift and virtual concept drift. First, 
changes to the posterior distribution Pt(y|x) without affecting 
Pt(y) will lead to real concept drift, which could change the 
decision boundary and decrease the performance of the 
classification model. Variation of the prior probability Pt(y) 
without affecting Pt(y|x) will lead to virtual concept drift, 
which changes the proportions of instances in different 
categories and is related to the class imbalance phenomenon. 

Moreover, concept drift can be divided into sudden concept 
drift and gradual concept drift [5]. Sudden drift changes from 
an old concept to a new concept immediately, leading to a 
sharp decline in the classification performance. Gradual drift 
slowly affects the data concept, so that the classification model 
has an adjustment period for adapting to the new concept. If 
the learning algorithm focuses on only the latest instances, it 
will show rapid adaptability to sudden concept drift. A 
learning model trained by long-term instances is more 
conducive to handling gradual concept drift [6].  

Class imbalance learning always faces the challenge that the 
minority class is underrepresented [7]. Classification models 
without any imbalance handling mechanism tend to be biased 
towards the majority categories and ignore the minority 
categories. Therefore, even if a classification model achieves 
high overall accuracy, it could perform poorly on the minority 
categories. In the scenario where the minority classes are 
especially important, such as spam filtering and risk 
management, the performance evaluation method should 
focus on the minority classes. Moreover, the conditions are 
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more challenging when concept drift and class imbalance 
occur simultaneously. 

Researchers have proposed many methods to solve the joint 
problem of concept drift and class imbalance. According to the 
manner of instance arrival, the methods can be divided into 
block-based methods and online learning methods. Gao et al. 
[8, 9] first proposed Uncorrelated Bagging (UCB), which uses 
an ensemble method with a series of classifiers trained by a 
more balanced set by means of resampling the minority class 
and undersampling the majority class. Chen et al. [10] 
proposed the Selectively Recursive Approach (SERA) 
algorithm, which selects minority instances that are similar to 
those in recent data blocks. The algorithm also discards 
instances that are not related to the current processing block 
according to a distance metric. Then, the Recursive Ensemble 
Approach (REA) was proposed; this approach modified 
SERA into an ensemble approach [11]. Ditzler et al. [12] 
proposed Learn++.CDS and Learn++.NIE for concept drift and 
class imbalance. Learn++.CDS combines the concept drift 
processing algorithm Learn++.NSE [13] with the Synthetic 
Minority class Oversampling TEchnique (SMOTE), which 
generates instances of the minority class [14]. Learn++.NIE 
modifies Learn++.NSE and replaces SMOTE with bagging-
based sub-ensemble methods to address class imbalance. All 
the above methods are block-based algorithms which require 
instances to arrive in batches at each time step. 

Different from block-based methods, online learning is 
more challenging, because only one instance is available at 
each time step. Online learning methods can be categorized 
into two main types: active handling methods that employ a 
drift detection mechanism [15-18] and passive methods [19, 
20]. The Drift Detection Method for Online Class Imbalance 
(DDM-OCI) [16] is an active detection method that uses 
minority-class recall (i.e., true positive rate) as the indicator 
for concept drift. Linear Four Rates (LFR) [15] was further 
proposed to use the confusion matrix of the minority-class 
recall and precision and the majority-class recall and precision 
for drift detection. Additionally, many studies have evaluated 
indicators of classification performance. Brzezinski et al. [21, 
22] modified the AUC for the online learning condition and 
proposed the Prequential AUC (PAUC), which can reflect the 
real classification performance of the minority classes, as an 
evaluation index. Furthermore, the Page-Hinkley test [23] uses 
the PAUC as the indicator and forms PAUC-PH, which can 
integrate other classification algorithms and actively detect 
drift and imbalance. However, PAUC-PH will reset and 
retrain the model when drift or imbalance occurs and will 
discard all previous knowledge. 

Conversely, passive methods do not detect concept drift and 
class imbalance but continuously evolve the classifiers with 
the data stream. Many passive methods use ensemble-based 
methods or sampling-based methods [19, 20]. Wang et al. [20] 
modified the ensemble learning algorithm Online Bagging 
(OB) [24] and proposed Oversampling Online Bagging (OOB) 
and Undersampling Online Bagging (UOB). These methods 

calculate the real-time size of classes to evaluate the current 
imbalance degree for determining the sampling times of 
instances. Moreover, a time decay factor is used to decrease 
the impact of historical data. DDM-OCI, LRF, PAUC-PH, 
OOB and UOB are designed for binary classification, which 
defines two classes: minority and majority. 

Generally, block-based learning methods learn fixed-size 
data blocks and respond inefficiently to sudden concept drift 
which happens within a data block. Although reducing the size 
of the data blocks can help to address sudden drift, this change 
increases the computational cost and degrades the 
performance in the stable state [6]. In contrast to the block-
based methods, online learning models are dynamically 
updated by new arriving instances and can rapidly adapt to 
sudden concept drift. However, they may perform quite poorly 
at the initial stage of training compared to block-based ones, 
because only one instance is used at each time step. Therefore, 
in this proposal, we are motivated to combine the advantages 
of block-based and online learning. The component classifiers 
in our ensemble method are created by a block-based method 
and the instances are processed in an online manner. 

In this paper, we propose a novel resample-based ensemble 
framework for a drifting data stream with class imbalance 
(RE-DI). The novelty lies in the following aspect. First, we 
proposed a novel ensemble framework that includes a long-
term static classifier and multiple dynamic classifiers using a 
sliding window. The static classifier is maintained and updated 
throughout the entire learning procedure to handle gradual 
changes in the data stream. The dynamic classifiers learn only 
recently received data and are more suitable for addressing 
sudden concept drift. Second, the classifier weights are 
dynamically adjusted by two approaches. A novel 
reinforcement mechanism dynamically adjusts the predictive 
weights of the base classifiers and improves the classification 
performance for the minority class. Older dynamic classifiers 
have their weights periodically decreased, so that the final 
ensemble model can focus on the latest concept of the data 
stream. Third, to balance the imbalance ratio of training 
samples, a resample-based initialization method for base 
classifiers is proposed. It uses a resampling buffer group to 
store and supply instances of the minority class. 

The rest of this paper is organized as follows. The resample-
based ensemble framework for drifting imbalance stream is 
proposed in Section 2. Section 3 present the experimental 
results and analysis, and the conclusions are presented in 
Section 4. 

II. METHODS 
In this section, a novel resample-based ensemble framework 
for drifting imbalanced data streams is proposed. In section A, 
the learning procedure of the resample-based ensemble 
framework, which combines block-based and online 
incremental techniques, is introduced. Then, in section B, we 
propose the ensemble classifiers and the weight adjusting 
mechanism. At last, section C presents a novel resample-based 
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initialization procedure for a base classifier that aims at 
solving the learning problem posed by class imbalance. First, 
we introduce the structure of the resample-based ensemble 
framework. 
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Figure 1.  Structure of resample-based ensemble framework 

As shown in Figure 1, the ensemble classifier E consists of 
a static classifier Cs and D dynamic classifiers Cd (d = 1, 2, …, 
D). The D dynamic classifiers are periodically created and 
replaced. Additionally, the resampling buffer group is used for 
supplying training samples of the minority class. As the class 
imbalance ratio could vary and the minority class can change 
into the majority class, all L categories have a corresponding 
resampling buffer. 

A. ENSEMBLE LEARNING PROCEDURE 
Tradition block-based learning algorithms create base 
classifiers and make predictions in the units of a fixed-size 
data block. The classifiers are trained on the current data 
blocks and make predictions on subsequent data blocks. 
However, concept drift can occur at any point in the data 
stream. Therefore, if concept drift occurs within a data block, 
block-based learning methods will have a delay in adapting to 
concept drift. Online learning addresses the newly arriving 
instances one by one and can rapidly respond to the changes 
in data stream. However, the block-based learning algorithm 
will have more training samples for initializing a new 
classifier. Additionally, in the resample-based ensemble 
framework, dynamic classifiers are dynamically created and 
replaced. Each dynamic classifier only exists for a period. 
Therefore, the component classifiers in the ensemble 
framework are created by a block-based method, and instances 
in the data stream are processed in an online learning manner. 

Let S be an infinite data stream …, xi, xi+1, xi+2, …. At time 
t, the arriving instance is xt and the class label of xt is yt. A 
circular cache array B is used to cache instances from the data 
stream and form data blocks. In addition, the length of the 
circular cache array B is I. Therefore, the data stream can be 
regarded as a consequent data block queue B1, B2, … Bn, 
Bn+1 …. Algorithm 1 shows the ensemble learning procedure 
of the proposed methods. 

 
Algorithm 1 
Ensemble Learning Procedure 
Inputs:  
1. S: data stream with unknown label 
2. L: number of classes 
3. I: size of the data blocks 
4. D: number of dynamic classifiers 
5. ɛ: instance selection ratio of the classifier initialization. 
Output: Ensemble Classifier E 
Initialization: 
1. B: circular cache array, initialized as an empty array  
2. U[l]: resampling buffer for storing instances 
3. p=0: counter of processed instances  
4. i=0: indicator of current position in circular cache array  
5. k=0: indicator of the dynamic classifiers 
Process: 
1. while (S. hasNext()) do 
2.   xnew=S. nextInstance() 
3.   p=p+1 
4.   if (p<I) then    // Before B is fully filled for the first time 
5.     B[p-1]=xnew 
6.   else if (p==I) then    // Fill the array for the first time 
7.     B[p-1]=xnew 
8.     Cs=CreateNewBaseClassifier(ε,U,I,L,D,wd,ws,DCIR[l]) 
//Create static classifier 
9.     k=1 
10.     C1=Cs // Create the first dynamic classifier 
11.   else // (p>I) has more instances than I 
12.     i=(p-1)%I                // i is the current index for A 
13.     TrainOnInstance (xnew,i,L,D,wd,ws,DCIR[l]) 
14.     i=(i+1)%I               // i moves circularly 
15.     if (i==0) then           // The array is filled again 
16.       k=k+1 
17.       Ck=CreateNewBaseClassifier(ε,U,I,L,D,wd,ws,DCIR[l]) 
//create new dynamic classifier 
18.       if (k>D) then 
19.         Cd Cd+1 (d=1, …, D-1) 
20.         CD Ck 
21.       end if 
22.       Update the predictive weight of classifiers by (3) 
23.       Calculate damped class imbalance ratio by (5) 
24.     end if 
25.   end if 
26. end while 
27. for i=0 to I-1 do   // Address remaining instances 
28.   xnew=B[i] 
29.   TrainOnInstance (xnew,i,L,D,wd,ws,DCIR[l]) 
30. end for 
After the learning process begins, the circular array B 

continuously caches arriving instances from the data stream 
until it is filled for the first time. When the circular array is 
filled for the first time, the first data block B1 is used to create 
the static classifier Cs, which is copied as the first dynamic 
classifier C1 following the process in Algorithm 4. Then, the 
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instances in the circular array are learned one by one. The 
learning process starts from the first position in the circular 
cache array, and an indicator i is used to represent the current 
processing position. The procedure for training on an instance 
is shown in Algorithm 2.  

Algorithm 2  
TrainOnInstance(xnew,i,L,D,wd,ws,DCIR[l]) 
Inputs: 
1. xnew: new instance from data stream 
2. i: current processing position of the data block 
3. L: number of classes 
4. D: number of dynamic classifiers 
5. ws: weight of static classifier 
6. wd: weights of dynamic classifiers (d=1, …, D) 
7. DCIR[l]: damped class imbalance ratio 
Output: Adjusted weights ws and wd (d=1, …, D) 
Process: 
1. xi=B[i]  //get instance from  the circular cache array 
2. ReinforcementWeightAdjustment(xi,L,D,wd,ws,DCIR[l]) 
3. update the static classifier and dynamic classifiers with xi 
4. B[i]= xnew //cache the new instance xnew 
First, instance xi is obtained from the circular cache array 

B[i]. Then, the reinforcement weight adjustment mechanism 
(Algorithm 3) is used to improve the classification 
performance of the ensemble framework for the minority class. 
Then, the static classifier and dynamic classifiers are trained 
using xi. Once the instance in position i is learned, the instance 
is replaced by the newly arriving instance xnew, and the 
indicator moves to the next position in the circular cache array. 
When indicator i reaches the last position, all the instances in 
the cache array have been replaced, meaning that a new data 
block is formed. Then, the indicator moves to the first place 
and the algorithm will learns from the new data block from the 
beginning. 

When a new data block is formed, the algorithm creates a 
new dynamic classifier Cnew in the ensemble. As the learning 
procedure proceeds, the number of classifiers in the ensemble 
framework continues to grow. If the number of classifiers 
exceeds D, the earliest dynamic classifier C1 is dropped. Then, 
the subsequent classifier will replace the former classifiers one 
by one Cd←Cd+1 (d = 1, …, D−1) to ensure that there are 
always D classifiers in the ensemble framework. Next, the 
weights of the dynamic classifiers are updated according to (3), 
and the damped class imbalance ratio is calculated by (5). 
Finally, when no more instance can be obtained from the data 
stream, the algorithm learns the remaining instances in the 
cache array. 

B. ENSEMBLE FRAMEWORK WITH REINFORCEMENT 
ADJUSTED AND TIME-DECAYED WEIGHT 
In this section, the ensemble framework with reinforcement-
adjusted weight is introduced. The ensemble classifier consists 
of a static classifier and a dynamic classifier sliding window. 
To handle the long-term tendency of the data stream, the static 
classifier Cs learns the whole data stream while the dynamic 

classifiers Cd learn only a part of the data stream, which is 
defined as: 

⎩
⎪
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Suppose the current processed data block is Bn, the data 
stream learned by the static classifier is Ss and the parts learned 
by the dynamic classifier are Sd. The dynamic classifier Cd, 
learns only the most recent D-d+1 data blocks of the data 
stream. Each dynamic classifier exists for only a period of time 
and is replaced by the newly created dynamic classifier. The 
joint prediction of the ensemble classifier is the weighted 
combination of the static classifier and dynamic classifiers, is 
calculated as follows: 

f l
E(x)=ωsf l

Cs(x)+ ෍ ωdf l
Cd(x)

D

d=1

,l=1,…L (2) 

f l
E(x) is the ensemble prediction that instance x belongs to 

class l. ws and wd (d = 1, …, D) are the predictive weights of 
the static classifier and dynamic classifiers. The weight of the 
static classifier ws is initialized to 0.5, and the weights of the 
dynamic classifiers wd decrease over time. Whenever a new 
dynamic classifier is created, its initial weight is set to 1/D, and 
the weights of the old dynamic classifiers are reduced 
repeatedly over time, as shown in Equation (3). Then, the 
weights of all the classifiers are normalized 
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Through dynamic weight attenuation, the newly created 
dynamic classifier is given more weight than the older 
classifiers in the joint prediction. Therefore, the algorithm will 
focus more on the latest instances, which will help to adapt to 
concept changes in the data stream. Additionally, in the class 
imbalanced learning condition, the classification performance 
on the minority class should be given more attention. The data 
stream learned by each dynamic classifier is different, so the 
classification capacity for the minority category of the 
dynamic classifiers is different. Therefore, to improve the joint 
prediction accuracy of the ensemble classifier for the minority 
class, a reinforcement weight adjustment mechanism is 
proposed in Algorithm 3. 

Algorithm 3  
ReinforcementWeightAdjustment(x,L,D,wd,ws,DCIR[l]) 
Inputs: 
1. x: processed instance of label y 
2. L: number of classes 
3. D: number of dynamic classifiers 
4. ws: weight of static classifier 
5. wd: weights of dynamic classifiers (d=1, …, D) 
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6. DCIR[l]: damped class imbalance ratio 
Output: Adjusted weights ws and wd (d=1, …, D) 
Process: 
1. if (DCIR[y]<1/L) then // if instance x belongs to the 
minority class 
2.   for d=1 to D do: 
3.     if (Predictright(x, Cd)==True) then //Cd  predicts right 
4.       wd= wd*(1+1/D) // increase weight of Cd 
5.     else 
6.       wd= wd*(1-1/D) // decrease weight of Cd 
7.     end if 
8.   end for 
9.   if (Predictright(x, Cs)==True) then //Cs  predicts right 
10.     ws= ws*(1+1/D) // increase weight of Cs 
11.   else 
12.     ws= ws*(1-1/D) // decrease weight of Cs 
13.   end if 
14. end if 
First, for arrival instance x of class y, the algorithm 

determines whether instance x belongs to the minority class 
according to the Damped Class Imbalance Ratio (DCIR). 
Then, if x is in the minority class, the prediction results of the 
static classifier and dynamic classifiers are used as the 
foundation for adjusting the weights. That is, if a classifier 
correctly predicts the class label of x, the weight of this 
classifier is increased by (1+1/D). Otherwise, weight wd is 
decreased by (1-1/D). Therefore, classifiers that perform better 
on the minority class are given more weight in the ensemble 
prediction. 

In sum, the ensemble classifier with reinforcement-adjusted 
weight makes the following efforts to address concept drift 
and class imbalance. To deal with the different types of 
concept drift, the ensemble framework includes a long-term 
static classifier and multiple dynamic classifiers. The static 
classifier in the ensemble framework is used throughout the 
entire learning procedure, which helps to handle gradual 
concept change. Then, the dynamic classifiers use a sliding 
window [25]  structure to learn partial data streams and enable 
rapid adaptability to sudden concept drift. The weight 
adjustment strategy contributes in two aspects. On the one 
hand, the weights of the dynamic classifiers are decreased over 
time to make the ensemble classifier focus more on the new 
concept of the data stream. On the other hand, the 
reinforcement mechanism selectively adjusts the weights of 
the static classifier and dynamic classifiers, improving the 
overall classification performance of the ensemble classifier E 
for the minority class. 

C. RESAMPLE-BASED INITIALIZATION FOR BASE 
CLASSIFIER 
In the scenario where the data stream is class imbalanced, the 
learning model will lack training samples of the minority class 
because of the biased class distribution. Many block-based 
methods [9, 10, 12] apply random sampling or smart sampling 
techniques to form class-balanced training sets. However, if 

concept drift occurs, these sampling methods could select 
instances of the old concepts that will lower the classification 
performance. These sampling methods thus cannot be used in 
online learning conditions. OOB and UOB [20] integrate 
oversampling and undersampling methods into online bagging 
which train more times with the minority class or train fewer 
times with the majority class. The component classifiers in 
online bagging address all the instances throughout the entire 
learning procedure, but in our proposed ensemble, the 
dynamic classifier only exists for a certain period and learns a 
partial data stream. There is no guarantee that the dynamic 
classifier can obtain enough instances of the minority class in 
its corresponding partial data stream. Therefore, in this section, 
a resample-based initialization method for base classifiers is 
proposed to solve this problem by improving the classification 
capacity for the minority class during the initialization process 
of the base classifiers. 

As the class imbalance condition of the data stream could 
change over time, the minority class and majority class may 
transform into each other. Therefore, for each category l, a 
resampling buffer U[l] (l = 1, …, L) (pink rectangle) is used to 
cache instances of this class. Whenever the ensemble classifier 
addresses an instance, it stores the instance in the 
corresponding resampling buffer by class label. Instances are 
stored in order and the later arriving instances are used first. In 
addition, the length of the resampling buffer is periodically 
reduced to save memory and discard old instances. The 
resample-based initialization procedure for the base classifiers 
is shown in Algorithm 4. 

Algorithm 4 
CreateNewBaseClassifier(ε,U,I,L,D,wd,ws,DCIR[l]) 
Input:  
1. ε: instance selection ratio 
2. U: resampling buffer 
3. I: size of data block 
4. L: number of classes 
5. D: number of dynamic classifiers 
6. wd: weights of dynamic classifiers (d=1, …, D) 
7. DCIR[l]: damped class imbalance ratio 
Output: A new classifier Cnew 
Process 
1. Select the top εI instances of current block Bn to form the 
initialization set Rn 
2. for i=0 to Iε-1 do: 
3.   xi=Rn[i] 
4.   ReinforcementWeightAdjustment(xi,L,D,wd,ws,DCIR[l])   
5. end for 
6. Calculate instance numbers Hn[l] of different classes in 
Rn 
7. Create the classifier Cnew 
8. For each class l, if Hn[l] < I*ε/L, use the most recent I*ε/L 
- Hn[l] instance in U[l] to train Cnew 
9. Use Rn to train Cnew 
10. Store the instances from Rn to the corresponding 
resampling buffer by class label 
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11. Reduce the length of all resampling buffers U[l] to I*ε/L 
12. Return Cnew 
Whenever a new data block arrives, a new classifier is 

created. Assume that the current processing data block is Bn. 
First, the algorithm uses the top εI instances of the current 
block Bn and forms an initialized dataset Rn. Then, for each 
instance in Rn, the reinforcement mechanism is used to adjust 
the predictive weights of the classifiers in the ensemble 
framework. Then, the numbers of instances in different 
categories Hn[l] in the initialized dataset Rn are calculated. To 
balance the training samples of the different classes, instances 
in the resampling buffer are used according to (4). 

൞
𝐻௡(𝑙) <

𝜀𝐼

𝐿
, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒  

𝐻௡(𝑙) ≥
𝜀𝐼

𝐿
, 𝐸𝑛𝑜𝑢𝑔ℎ    

(4) 

Define ɛ as the instance selection ratio. I is the size of the 
data block, and L is the number of classes. To ensure that the 
classifier can obtain enough instances of the minority class, set 
ɛI/L as the minimum quantity of instances for each category to 
initialize the new classifier. For each class l, if Hn(l) is smaller 
than ɛI/L, the new classifier Cnew will be updated by the most 
recent I*ε/L - Hn[l] instances from the resampling buffer U[l], 
otherwise, Cnew has trained on enough instances of class l. 
Finally, use Rn to update Cnew. Furthermore, instances from Rn 
are stored in the corresponding resampling buffer by class 
label. Finally, the length of all the resampling buffers is 
reduced to ɛI/L, which is the maximum quantity needed by the 
resampling procedure. 

To evaluate the class imbalance degree of the data stream, 
the damped class imbalance ratio (DCIR) is proposed. For all 
the dynamic classifiers that exist in the ensemble classifier, 
each classifier has a corresponding initialization dataset Rd. 
The class distribution Hd(l) of Rd is also calculated. Then the 
damped class imbalance ratio is: 

DCIR(l)=
∑ Hd[l]wdD

d=1

∑ ∑ Hd[l]wdD
d=1

1
l=0

(5)     

wd is the predictive weight of classifier Cd calculated in (3). 
For each class l, the weighted summation of the instances 
including all the initialization dataset Rd is calculated. DCIR(l) 
is the ratio of category l to the summation of all the categories. 
As wd decays with time, the older class distribution 
information has less effect in calculating DCIR, which helps 
the algorithm focus on the most recent class imbalance ratio of 
the data stream. 

III. EXPERIMENTS 
In this section, the performance of RE-DI is compared with 
that of the other state-of-the-art methods, including OOB, 
UOB, LB and ARF. First are three modification methods of 
online bagging. OOB and UOB [20] integrate sampling 
methods in online bagging for class imbalance learning. 
Leveraging Bagging (LB) [26] which modifies online bagging 
by adding more randomization in the ensemble is also 
compared. In addition, the most recent learning method for an 

evolving data stream, Adaptive Random Forests (ARF) [27] is 
also included.  

All the algorithms are implemented in the MOA data stream 
software suite [28]. All the algorithms will first test on the 
arriving instance and then train on it. Particularly, RE-DI has 
its own task function to realize the special learning procedure 
that combines the block-based and online learning methods, 
and the other methods use the prequential evaluation settings 
in MOA. To maintain the consistent performance of the base 
classifier, all the comparative methods except ARF, apply the 
Hoeffding Tree as the base classifier. The Hoeffding Tree is 
an incremental, anytime decision tree induction algorithm that 
is capable of learning from massive data streams. And it was 
wildly used as base classifier in researches of online data 
stream learning. ARF uses ARFHoeffding which is 
specifically designed for this algorithm as the base classifier. 
It is worth mentioning that RE-DI can use other classifiers 
provided by MOA as the base classifier of the ensemble. 
Moreover, all the experiments are carried out on a machine 
with an eight-core Intel i7-6700 CPU, 3.4 GHz processor, and 
32 GB of RAM. 

Section A to E present the results of comparing RE-DI with 
other state-of-the-art methods. In section F, a verification 
experiment is designed and carried out to prove the effect of 
the static classifier and dynamic classifiers in the ensemble 
framework. 

A. DATA STREAMS 
In the experimental evaluation, we used both synthetic data 
streams and real data streams to compare the performance of 
the algorithms in different situations. The default parameters 
of RE-DI are D=10, I=500, and ε=0.20. For each dataset, we 
conducted five parallel experiments on all the data streams. To 
evaluate the performance of algorithms in a specific condition 
of a data stream, we chose the synthetic generators in MOA, 
Agrawal and HYP to generate synthetic datasets. In addition, 
to verify the practicability in real-word applications, we also 
used real-world data streams. 

Agrawal is used to generate data streams with sudden 
concept drift and class imbalance. The different functions of 
the generators simulate various concepts of data streams. 
When a sudden concept drift occurs, the generation function 
changes within 25 instances. First, data streams with a fixed 
class imbalance ratio and sudden concept drift (Agrawal37, 
Agrawal28, Agrawal19) are generated. Then, a data stream with 
virtual drift and real sudden drift (AgrawalRS) is generated. The 
class imbalance ratio changes with the concept drift 
(3/7,2/8,1/9,3/7) at the 1/4, 2/4 and 3/4 position of the data 
stream. HYP is used for simulating data streams with gradual 
drift and class imbalance. First, data streams with gradual 
concept drift and a fixed class imbalance ratio are generated 
(HYP37, HYP28, HYP19). HYPRG is a data stream with gradual 
concept drift and a class imbalance ratio that varies from 1/1 
to 1/9. All the synthetic data streams have 100k instances. 
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For the real data streams, we chose four commonly used 
data streams as benchmarks, PAKDD [21], Give Me Some 
Credit (GMSC), Forest Covertype (Covtype) [27] and poker. 
PAKDD predicts credit card fraud cases from a large amount 
of transaction records. GMSC is a credit scoring data stream 
which is used for risk assessment in loan. PAKDD and GMSC 
are binary data streams which can be used directly. For the 
multi-class data streams, the same approach in [9] which 
selects one category as the majority and another as the 
minority, is applied to convert the data streams to binary 
streams. Covtype contains the forest cover type for 30x30 

meter cells obtained from US Forest Service (USFS) Region 
2 Resource Information System (RIS) data. Covtype contains 
581, 012 instances, 54 predictive attributes and 7 classes from 
1 to 7. In covtype36, class 3 is used as the majority and class 
6 is the minority. Poker consists of 10 predictive attributes and 
10 classes. Each record of Poker is an example of a hand 
consisting of five playing cards drawn from a standard deck. 
Poker23 selects class 2 as the majority and class 3 as the 
minority. Table I summarizes the main characteristics of the 
experimental data streams. 

TABLE I 
CHARACTERISTIC OF DATA STREAMS 

Data stream No. Inst No. Attrs Class Class ratio Drift Type No. Drifts 
covtype36 53 k 54 2 1/2 - - 
PAKDD 50 k 28 2 1/4 - - 
poker23 390 k 10 2 1/9 - - 
GMSC 150 k 10 2 1/14 - - 

Agrawal37 100 k 9 2 3/7 sudden 3 
Agrawal28 100 k 9 2 2/8 sudden 3 
Agrawal19 100 k 9 2 1/9 sudden 3 
AgrawalRS 100 k 9 2 3/7,2/8,1/9,3/7 sudden 3 

HYP37 100 k 5 2 3/7 gradual 1 
HYP28 100 k 5 2 2/8 gradual 1 
HYP19 100 k 5 2 1/9 gradual 1 
HYPRG 100 k 5 2 1/1,1/9 gradual 1 

TABLE Ⅱ 
AVERAGE AUC (%) WITH DIFFERENT NUMBER OF DYNAMIC CLASSIFIERS, BLOCK SIZE AND INSTANCE SELECTION RATIO 

Data stream 
D I ε 

1 5 10 15 20 100 250 500 750 1000 0.05 0.1 0.15 0.2 0.25 
covtype36 96.7 98.4 98.6 98.6 98.6 98.3 98.6 98.6 98.5 98.2 97.9 98.3 98.5 98.6 98.7 
PAKDD 60.0 63.9 65.8 66.5 67.0 65.4 65.4 65.8 65.4 65.8 63.0 63.9 64.9 65.8 66.7 
poker23 95.5 97.3 97.9 98.2 98.4 95.9 96.6 97.9 97.1 97.9 96.7 96.8 98.0 97.9 97.7 
GMSC 77.2 83.5 85.2 85.8 86.1 83.4 84.6 85.2 85.3 85.1 83.6 83.9 84.6 85.2 85.9 

Agrawal37 85.0 93.7 94.6 94.7 94.7 91.7 89.1 94.6 93.7 93.6 90.3 89.2 91.0 94.6 94.9 
Agrawal28 76.8 88.6 90.3 90.8 91.0 86.3 88.0 90.3 91.1 90.7 88.6 88.2 90.1 90.3 91.0 
Agrawal19 70.0 84.1 86.9 87.9 88.5 81.9 85.1 86.9 86.8 86.8 85.2 84.6 85.2 86.9 87.8 
AgrawalRS 87.0 93.0 94.0 94.2 94.2 91.5 88.6 94.0 92.8 93.4 89.1 88.5 90.0 94.0 93.5 

HYP37 98.5 99.3 99.4 99.5 99.5 99.2 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 
HYP28 97.3 98.9 99.1 99.1 99.2 98.7 99.0 99.1 99.1 99.1 99.0 99.0 99.0 99.1 99.1 
HYP19 95.8 98.0 98.4 98.5 98.6 97.8 98.4 98.4 98.6 98.5 98.2 98.3 98.3 98.4 98.5 
HYPRG 96.5 98.3 98.5 98.5 98.5 98.1 98.4 98.5 98.5 98.3 98.3 98.3 98.5 98.5 98.6 

B. EVALUATION INDICATOR 
Traditional classification performance evaluation methods use 
accuracy as the indicator. However, accuracy reflects only the 
overall performance on all categories, when the accuracy of 
the minority class is poor, the overall accuracy is still high. 
AUC calculates the area under the ROC curve and is a suitable 
metric for evaluating class imbalance learning. However, 
AUC can be used in only offline learning condition. Recently, 
many works [21, 22] have modified AUC for online learning 
conditions and propose Prequential AUC (PAUC). Therefore, 
we applied Prequential AUC as the experimental evaluation 
indicator. Additionally, we compared the PAUC indicator 
with the traditional accuracy indicator. 

C. PARAMETER SENSITIVITY 
In this section, to verify the parameter sensitivity of RE-DI, 
we performed parameter comparison experiments on the main 

setting parameters, including the number of dynamic 
classifiers D, the size of the data blocks I, and the instance 
selection ratio ε. The default values are D=10, I=500, and 
ε=0.20. For each parameter, we conducted five parallel 
experiments on all the data streams. 

From Table Ⅱ, we can see that all the parameters have an 
impaction on the classification performance of RE-DI. First, 
within the parameters selected for the experiments, the number 
of dynamic classifiers is positively correlated with the 
classification performance. Second, RE-DI performs better at 
block sizes of 500 and 750, which shows that the best optimal 
block size parameter is determined by the experimental data 
stream. At last, the classification performance is improved 
when the algorithm uses more instances during the 
initialization process. Intuitively, the higher instance selection 
ratio can help the new classifier acquire a more detailed 
understanding of the current data stream. 

TABLE Ⅲ 
AVERAGE AUC (%) AND ACCURACY (%) OF DIFFERENT ALGORITHMS 
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 Data stream 
RE-DI PAUC-OOB PAUC-UOB PAUC-LB PAUC-ARF 
AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. 

1 covtype36 98.6 95.1 69.9 68.0 74.2 69.1 98.5 95.1 97.7 92.5 
2 PAKDD 65.8 80.3 63.5 70.7 60.7 42.4 62.6 79.9 63.2 80.1 
3 poker23 97.9 95.1 71.7 87.6 68.4 58.9 98.0 96.7 93.5 93.5 
4 GMSC 85.2 93.6 84.9 89.7 71.2 93.0 81.9 93.5 80.4 93.5 
5 Real Avg 86.9 91.0 72.5 79.0 68.6 65.6 85.3 91.3 83.7 89.9 
6 Real Avg Rank 1.25 1.38 4.50 4.50 4.75 4.50 2.50 2.00 3.25 2.62 
7 Agrawal37 94.6 88.7 84.2 71.5 74.1 67.1 85.7 81.6 87.5 81.3 
8 Agrawal28 90.3 87.2 85.4 76.4 73.6 66.9 81.7 84.8 87.0 84.3 
9 Agrawal19 86.9 91.4 84.8 84.9 73.1 67.3 77.0 91.0 82.3 90.4 
10 AgrawalRS 94.0 89.5 84.2 72.2 74.4 65.3 82.0 83.5 85.6 84.1 
11 HYP37 99.4 96.5 99.1 95.1 97.4 90.7 99.1 95.4 98.9 95.0 
12 HYP28 99.1 95.8 98.6 94.3 95.8 87.2 98.5 94.9 98.4 94.5 
13 HYP19 98.4 96.9 96.1 92.4 90.9 82.1 97.5 96.4 97.3 95.9 
14 HYPRG 98.5 95.2 95.3 89.1 83.9 75.0 97.0 93.4 96.9 93.1 
15 Synthetic Avg 91.5 92.7 85.8 84.5 80.4 75.2 83.1 90.1 88.7 89.8 
16 Synthetic Avg Rank 1.00 1.00 3.00 3.88 5.00 5.00 3.12 2.12 2.88 3.00 
17 Overall Avg 92.4 92.1 84.8 82.7 78.2 72.1 88.3 90.5 89.1 89.9 
18 Overall Avg Rank 1.08 1.12 3.08 4.08 4.92 4.83 2.92 2.08 3.00 2.88 

D.  COMPARATIVE STUDY ON DATA STREAMS 
In this section, the performance of the algorithms on different 
data streams is compared. RE-DI was compared with PAUC-
OOB, PAUC-UOB, PAUC-LB and PAUC-ARF. All the 
comparison methods are ensemble methods, and the 
experiments were conducted 5 times independently. Table Ⅲ 
shows the average AUC (%) and average Accuracy (%) of the 
algorithms on all data streams. 

First, the performance of the data streams with sudden 
concept drift and class imbalance, which are generated by 
Agrawal (Agrawal37, Agrawal28, Agrawal19, AgrawalRS) are 
compared. RE-DI achieves the highest AUC and accuracy 
value compared with the other methods on these data streams. 
As the class imbalance ratio increases, the AUC value 
decreases because of the growing classification difficulty on 
the minority class. However, the classification accuracy on 
Agrawal19 is higher than that on Agrawal37, Agrawal28 or 
AgrawalRS. This phenomenon agrees with the previous 
analysis of class imbalance learning, as even when the overall 
classification accuracy is high, the classification performance 
on the minority class could be poor. The AUC indicator, 
however, can reflect the real classification performance on the 
minority class. 

Figure 2 shows the average AUC curve and average 
accuracy curve of Agrawal37 and the dotted lines divide the 
concepts and imbalance ratios at different stages in the data 
stream. When concept drift occurs, the AUC curve of RE-DI 
first decreases and then tends to be stable or rise. When the 
learning procedure ends, RE-DI has a clear lead over the other 
algorithms. Additionally, when the learning procedure begins, 
RE-DI and PAUC-UOB show a high initial AUC values, 
reflecting the fast adaptability of the algorithms. However, the 
AUC value of PAUC-UOB rapidly decreases at the first and 
second concept drifts, and it performs the worst at the end. 
Conversely, PAUC-ARF and PAUC-LB have better drift 
adaptive capacities than PAUC-UOB. Therefore, they 
perform better than PAUC-UOB at the end. In general, it can 

be concluded from the analysis of the curve that RE-DI has the 
best overall adaptability among all the algorithms. 

 
Figure 2. Classification AUC (%) and Accuracy (%) on Agrawal37   

Then, the performance of the data streams with gradual 
concept drift and class imbalance that are generated by HYP 
are analyzed (HYP37, HYP28, HYP19, HYPRG). RE-DI 
achieves the best classification AUC and classification 
accuracy on all data streams. For the data streams with a fixed 
class imbalance ratio, the classification AUC decreases as the 
class imbalance ratio increases. 

Figure 3 shows the average AUC curve and average 
accuracy curve on HYPRG. RE-DI obtains the best 
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performance on both the classification AUC and classification 
accuracy during the whole learning process. As opposed to 
with the data stream with sudden concept drift, there is no 
upward or downward trend on the data stream with gradual 
concept drift. The classification AUC curves of most 
algorithms except for PAUC-UOB keep rising since the 
beginning of the learning procedure and remain stable in the 
second half of the learning process.  

 
Figure 3. Classification AUC (%) and Accuracy (%) on HYPRG 

At last, a comparative experiment is performed on real-
world data streams whose concept drift condition is 
unknown.RE-DI achieves the best AUC performance on most 
of the real-world data streams. For poker23, RE-DI takes the 
second place on the AUC and accuracy indicators and PAUC-
LB achieves the first place. Although accuracy of RE-DI is 1.6% 
lower than that of PAUC-LB, the difference in AUC value is 
only 0.1%. It can be concluded that RE-DI has better 
classification capacity on the minority class than PAUC-LB. 
Figure 4 shows the average AUC curve and average accuracy 
curve of the real-word data stream PAKDD. Although the 
classification accuracies of RE-DI, PAUC-LB and PAUC-
ARF are approximatively equal, the AUC of RE-DI is higher 
than that of PAUC- LB or PAUC- ARF. The accuracy of 
PAUC-OOB is much lower than that of PAUC-LB or PAUC-
ARF, but it still has a higher AUC value because of the better 
performance on the minority class.  

  
Figure 4. Classification AUC (%) and Accuracy (%) on PAKDD 

In addition, a statistical test [29] on the classification AUC 
and accuracy of different methods on all the data streams is 
carried out. Concretely, the statistical test is conducted on both 
real-world data streams (Line 6 in Table Ⅲ) and synthetic data 
streams (Line 16 in Table Ⅲ). And the overall results on both 
synthetic and real-world data streams are shown in Line 18 in 
Table Ⅲ. RE-DI achieves the first place in the ranking for both 
AUC and accuracy indicators. Then, the Nemenyi post-hoc 
test is used to identify the difference between the algorithms, 
and the results are plotted in Figure 5 and Figure 6. The 
statistical test on the accuracy value indicates that there is no 
significant difference between RE-DI, PAUC-LB, and PAUC-
ARF. However, in the statistical tests on the AUC indicator, 
RE-DI is better than the other methods.  

 
Figure 5. Nemenyi test with 95% confidence level on AUC 

 
Figure 6. Nemenyi test with 95% confidence level on accuracy  
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 TABLE Ⅳ 
AVERAGE TIME (CPU-SECONDS) AND RAM (RAM-HOURS) OF DIFFERENT ALGORITHMS 

 
Data stream 

RE-DI PAUC-OOB PAUC-UOB PAUC-LB PAUC-ARF 
 Time RAM Time RAM Time RAM Time RAM Time RAM 
1 covtype36 16.9  4.9E-06 4.7  3.1E-07 3.9  2.6E-07 43.4  1.1E-04 11.3  4.4E-06 
2 PAKDD 9.2  2.0E-06 6.5  4.0E-06 2.7  1.3E-07 102.7  1.4E-03 28.9  1.3E-04 
3 poker23 44.1  3.0E-06 21.7  7.0E-07 17.0  5.5E-07 132.7  2.0E-04 60.5  2.2E-05 
4 GMSC 13.2  1.3E-06 14.6  1.1E-05 4.9  1.6E-07 157.9  1.3E-03 68.7  3.4E-04 
5 Real Avg 20.9 2.8E-06 11.9 4.0E-06 7.7 2.8E-07 109.2 7.5E-04 42.4 1.3E-04 
6 Real Avg Rank 3.00 2.75 2.25 2.50 1.00 1.00 5.00 5.00 3.75 3.75 
7 Agrawal37 11.5  2.2E-06 22.1  5.1E-05 3.4  1.1E-07 61.9  2.4E-04 56.7  2.4E-04 
8 Agrawal28 10.9  1.9E-06 27.5  7.9E-05 3.2  9.8E-08 67.3  2.9E-04 49.0  1.8E-04 
9 Agrawal19 9.9  1.6E-06 25.4  6.0E-05 3.1  9.3E-08 55.4  1.8E-04 65.1  3.5E-04 
10 AgrawalRS 11.1  2.1E-06 24.5  6.3E-05 3.3  1.0E-07 71.2  3.4E-04 53.8  2.2E-04 
11 HYP37 6.3  3.8E-07 5.4  1.3E-06 2.6  6.7E-08 37.9  1.0E-04 13.9  1.2E-05 
12 HYP28 6.9  4.4E-07 7.7  3.5E-06 2.6  6.5E-08 43.3  1.4E-04 17.5  2.0E-05 
13 HYP19 6.4  3.7E-07 6.9  2.6E-06 2.4  6.1E-08 25.8  4.3E-05 15.6  1.8E-05 
14 HYPRG 6.8  4.2E-07 7.2  2.8E-06 2.5  6.4E-08 36.5  8.7E-05 16.2  1.6E-05 
15 Synthetic Avg 8.7 1.2E-06 15.9 3.3E-05 2.9 8.2E-08 49.9 1.8E-04 36.0 1.3E-04 
16 Synthetic Avg Rank 2.12 2.00 2.88 3.00 1.00 1.00 4.88 4.75 4.12 4.25 
17 Overall Avg 12.8 1.7E-06 14.5   2.3E-05 4.3 1.5E-07 69.7 3.7E-04 38.1 1.3E-04 
18 Overall Avg Rank 2.42 2.25 2.67 2.83 1.00 1.00 4.92 4.83 4.00 4.08 

 
Figure 7. AUC curves of RE-DI and RE-DINS on comparative data streams 

E.  RESOURCES COMPARISON 
In this section, the average memory and processing time of the 
comparative algorithms on all data streams are compared. 
Table 4 shows the average time (CPU-seconds) and RAM 

(RAM-hours) cost of the algorithms on all data streams. And 
the statistical test is also carried out.  

In general, RE-DI gets the second place and PAUC-UOB 
performs best. Compared with PAUC-LB and PAUC-ARF, 
RE-DI, PAUC-OOB and PAUC-UOB significantly cost less 
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time and memory. Analysis from the algorithm level, PAUC-
OOB resample the instances of the minority class but PAUC-
UOB undersampling the instances of the majority class. As the 
class imbalance ratio increases, PAUC-UOB will cost less 
resource on instances of the majority class and PAUC-OOB 
will cost more resource on instances of the minority class. RE-
DI solves the class imbalance problem by supplying limited 
number of the minority instances, so the changing in class 
imbalance ratio will not obviously influence its resource 
consuming. 

F. VERIFICATION OF THE PROPOSED FRAMEWORK 
To deal with different types of concept drift, RE-DI includes a 
static classifier and multiple dynamic classifiers. The static 
classifier learns the entire data stream throughout the learning 
process, which is more suitable for handing gradual drift. 
However, dynamic classifiers only exist for a certain period 
and learn only part of the data stream. If sudden drift occurs, 
the dynamic classifiers can more easily adapt to the changes. 
In addition, the static classifier contains more historical 
knowledge of the data stream compared with the dynamic 
classifier. For data streams with a cyclic concept drift in which 
an old concept shows up again, the static classifier with 
historical knowledge will easily adapt to the reoccurring 
concept. 

TABLE Ⅴ 
AVERAGE AUC (%) AND ACCURACY (%) OF RE-DI AND RE-DINS  

Data stream 
RE-DI RE-DINS 
AUC Acc. AUC Acc. 

AgrawalSudden 86.5 91.4 83.9 91.1 
AgrawalSuddenCycle 86.7 91.0 82.4 90.6 
AgrawalGradual 81.7 90.8 78.3 90.7 
AgrawalGradualCycle 82.0 90.5 76.0 90.3 
Avg 84.5 90.9 80.2 90.7 

In this section, to verify the rationality and necessity of the 
static classifier, comparative experiments between the original 
RE-DI and RE-DINS are carried out. RE-DINS only has 
dynamic classifiers in the ensemble framework. The Agrawal 
generator is used to generate four types of data streams 
AgrawalSudden, AgrawalSuddenCycle, AgrawalGradual, 
AgrawalGradualCycle. All these data streams have concept drifts 
that occur at the 1/4, 2/4 and 3/4 positions of the data stream. 
For the data stream with subscript Sudden, the width of 
concept change is set to 1, while the width of Gradual stream 
is 10000. The Agrawal generator has ten functions for 
producing instances and each function is used to represent a 
concept. Concretely, the data streams with subscript Cycle use 
two functions and have cyclic concept drift (Functions: 
1/2/1/2), while the data streams without subscript Cycle use 
four functions (Functions: 1/2/3/4). Table Ⅴ shows the 
experimental results of RE-DI and RE-DINS. On all the data 
streams, RE-DI is better than RE-DINS. Furthermore, to reflect 
the adaptive ability of the static classifier to the cyclic concept 
drift and gradual concept drift, the types of concept drift are 
used as the control variables to paint Figure 7. 

In Figure 7, each color represents the result on a data stream 
(red: AgrawalSudden, blue: AgrawalSuddenCycle, gold: 

AgrawalGradual, green: AgrawalGradualCycle). The solid lines 
represent the results of RE-DI, and the dotted lines represent 
the results of RE-DINS. First, a comparison using the cyclic 
concept drift as the control variable is conducted to determine 
how the cyclic concept influences the performance of RE-DI 
and RE-DINS. Figure 7(A) shows the AUC curves of 
AgrawalSudden and AgrawalSuddenCycle, and Figure 7 (B) presents 
the AUC curves of AgrawalGradual and AgrawalGradualCycle. It 
can be concluded that the cyclic concept drift will improve the 
performance of RE-DI but damage the performance of RE-
DINS. Taking Figure 7 (A) as an example, RE-DI attains a 
higher AUC value on AgrawalSuddenCycle (blue solid line) than 
on AgrawalSudden (red solid line). However, the AUC value of 
RE-DINS on AgrawalSuddenCycle (blue dotted line) is lower than 
that on AgrawalSudden (red dotted line). Therefore, we can say 
that the ensemble framework with a static classifier can handle 
the cyclic concept drift better.  

Then, the concept drift altering speed is used as the control 
variable. Figure 7(C) shows the AUC curves of AgrawalSudden 
and AgrawalGradual, and Figure 7 (D) presents the AUC curves 
of AgrawalSuddenCycle and AgrawalGradualCycle. In general, both 
RE-DI and RE-DINS perform worse on the gradual drift data 
stream than on the sudden drift data stream, but the falling 
range of RE-DINS is larger. As shown in Figure 7 (D), the 
difference of RE-DI in AUC value between AgrawalSuddenCycle 
(blue solid line) and AgrawalGradualCycle (green solid line) is 
4.7%, and the difference of RE-DINS between 
AgrawalSuddenCycle (blue dotted line) and AgrawalGradualCycle 
(green dotted line) is 6.4%. In conclusion, the static classifier 
can improve the performance of the ensemble framework on a 
data stream with gradual concept drift. 

IV. CONCLUSION 
In this paper, we proposed a resample-based ensemble 
framework for data stream learning with concept drift and 
class imbalance. The ensemble classifier consists of a static 
classifier and multiple dynamic classifiers sliding window. 
The weights of the classifiers are dynamically adjusted by a 
novel reinforcement weight adjustment mechanism and a 
time-decay method. Then, a novel resample-based 
initialization process for base classifiers is proposed to tackle 
the class imbalance. The experimental results show that the 
proposed method can handle concept drift and class imbalance 
well and obtains the best classification performance on both 
AUC and accuracy among compared approaches. For future 
work, we plan to improve the performance of the base 
classifiers. 

REFERENCES 
[1] M. R. Sousa, J. Gama, and E. Brandão, "A new dynamic modeling 

framework for credit risk assessment," Expert Systems with 
Applications, vol. 45, pp. 341-351, 2016/03/01/ 2016. 

[2] L. E. B. Ferreira, J. P. Barddal, F. Enembreck, and H. M. Gomes, 
"Improving Credit Risk Prediction in Online Peer-to-Peer (P2P) 
Lending Using Imbalanced Learning Techniques," in IEEE 
International Conference on Tools with Artificial Intelligence, 2017. 



 

、 

[3] L. Jie, L. Anjin, D. Fan, G. Feng, G. Jo˜ao, and Z. Guangquan, 
"Learning under Concept Drift: A Review," IEEE Transactions on 
Knowledge and Data Engineering, vol. 1, no. 1, 2018. 

[4] M. G. Kelly, D. J. Hand, and N. M. Adams, "The impact of changing 
populations on classifier performance," presented at the Proceedings 
of the fifth ACM SIGKDD international conference on Knowledge 
discovery and data mining, San Diego, California, USA, 1999.  

[5] N. Lu, J. Lu, G. Zhang, and R. L. D. Mantaras, "A concept drift-
tolerant case-base editing technique," Artificial Intelligence, vol. 230, 
no. C, pp. 108-133, 2016. 

[6] D. Brzezinski and J. Stefanowski, "Reacting to Different Types of 
Concept Drift: The Accuracy Updated Ensemble Algorithm," IEEE 
Transactions on Neural Networks and Learning Systems, vol. 25, no. 
1, pp. 81-94, 2014. 

[7] W. Feng, W. Huang, and J. Ren, "Class Imbalance Ensemble Learning 
Based on the Margin Theory," Applied Sciences, vol. 8, no. 5, pp. 815-
815, 2018. 

[8] J. Gao, W. Fan, J. Han, and P. S. Yu, "A general framework for mining 
concept-drifting data streams with skewed distributions," in 
Proceedings of SIAM ICDM, 2007, pp. 3-14. 

[9] G. Jing, B. Ding, F. Wei, J. Han, and P. S. Yu, "Classifying Data 
Streams with Skewed Class Distributions and Concept Drifts," IEEE 
Internet Computing, vol. 12, no. 6, pp. 37-49, 2008. 

[10] C. Sheng and H. He, "SERA: Selectively recursive approach towards 
nonstationary imbalanced stream data mining," in International Joint 
Conference on Neural Networks, 2009. 

[11] C. Sheng, "Towards incremental learning of nonstationary imbalanced 
data stream: a multiple selectively recursive approach," Evolving 
Systems, vol. 2, no. 1, pp. 35-50, 2011. 

[12] G. Ditzler and R. Polikar, "Incremental Learning of Concept Drift 
from Streaming Imbalanced Data," IEEE Transactions on Knowledge 
& Data Engineering, vol. 25, no. 10, pp. 2283-2301, 2013. 

[13] E. Ryan and P. Robi, "Incremental learning of concept drift in 
nonstationary environments," IEEE Transactions on Neural Networks, 
vol. 22, no. 10, pp. 1517-1531, 2011. 

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, 
"SMOTE: Synthetic Minority Over-sampling Technique," Journal of 
Artificial Intelligence Research, vol. 16, no. 1, pp. 321-357, 2002. 

[15] W. Heng and Z. Abraham, "Concept drift detection for streaming 
data," in 2015 International Joint Conference on Neural Networks 
(IJCNN), 2015, pp. 1-9. 

[16] S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and X. Yao, 
"Concept drift detection for online class imbalance learning," in The 
2013 International Joint Conference on Neural Networks (IJCNN), 
2013, pp. 1-10. 

[17] A. Liu, Y. Song, G. Zhang, and J. Lu, "Regional Concept Drift 
Detection and Density Synchronized Drift Adaptation," in Twenty-
sixth International Joint Conference on Artificial Intelligence, 2017. 

[18] A. Liu, J. Lu, F. Liu, and G. Zhang, "Accumulating regional density 
dissimilarity for concept drift detection in data streams," Pattern 
Recognition, vol. 76, 2017. 

[19] B. Mirza, Z. Lin, and N. Liu, "Ensemble of subset online sequential 
extreme learning machine for class imbalance and concept drift," 
Neurocomputing, vol. 149, no. Part A, pp. 316-329, 2015. 

[20] S. Wang, L. L. Minku, and X. Yao, "Resampling-Based Ensemble 
Methods for Online Class Imbalance Learning," IEEE Transactions 
on Knowledge and Data Engineering, vol. 27, no. 5, pp. 1356-1368, 
2015. 

[21] D. Brzezinski and J. Stefanowski, "Prequential AUC: properties of the 
area under the ROC curve for data streams with concept drift," 
Knowledge and Information Systems, vol. 52, no. 2, pp. 531-562, 
2017/08/01 2017. 

[22] D. Brzezinski and J. Stefanowski, "Prequential AUC for Classifier 
Evaluation and Drift Detection in Evolving Data Streams," in New 
Frontiers in Mining Complex Patterns, Cham, 2015, pp. 87-101: 
Springer International Publishing. 

[23] E. S. Page, "CONTINUOUS INSPECTION SCHEMES," Biometrika, 
vol. 41, pp. 100-115, 1954. 

[24] N. C. Oza, "Online bagging and boosting," in 2005 IEEE International 
Conference on Systems, Man and Cybernetics, 2005, vol. 3, pp. 2340-
2345 Vol. 3. 

[25] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, "A Survey 
on Ensemble Learning for Data Stream Classification," Acm 
Computing Surveys, vol. 50, no. 2, p. 23, 2017. 

[26] A. Bifet, G. Holmes, and B. Pfahringer, "Leveraging Bagging for 
Evolving Data Streams," in European Conference on Machine 
Learning & Knowledge Discovery in Databases, 2010. 

[27] H. M. Gomes et al., "Adaptive random forests for evolving data stream 
classification," Machine Learning, pp. 1-27, 2017. 

[28] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, "MOA: Massive 
Online Analysis," J. Mach. Learn. Res., vol. 11, pp. 1601-1604, 2010. 

[29] J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data 
Sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006. 

 


