

1 VOLUME XX, 2018

Date of publication 00, 0000, date of current version 00, 0000.

Digital Object Identifier

Resample-based Ensemble Framework for
Drifting Imbalanced Data Streams
HANG ZHANG1, WEIKE LIU2, SHUO WANG3, JICHENG SHAN1, QINGBAO LIU1
1Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China
2College of Atmospheric Sciences, Lanzhou University, Lanzhou 730107, China
3School of Computing and Digital Technology, Birmingham City University

Corresponding author: Q. Liu (liuqingbao@nudt.edu.cn)

This study is supported by the China Advance Research Fund under Grant No. 9140C830304150C83352.

ABSTRACT Machine learning in real-world scenarios is often challenged by concept drift and class
imbalance. This paper proposes a Resample-based Ensemble Framework for Drifting Imbalanced Stream
(RE-DI). The ensemble framework consists of a long-term static classifier to handle gradual and multiple
dynamic classifiers to handle sudden concept drift. The weights of the ensemble classifier are adjusted from
two aspects. First, a time-decayed strategy decreases the weights of the dynamic classifiers to make the
ensemble classifier focus more on the new concept of the data stream. Second, a novel reinforcement
mechanism is proposed to increase the weights of the base classifiers that perform better on the minority class
and decrease the weights of the classifiers that perform worse. A resampling buffer is used for storing
instances of the minority class to balance the imbalanced distribution over time. In our experiment, we
compare the proposed method with other state-of-the-art algorithms on both real-world and synthetic data
streams. The results show that the proposed method achieves the best performance in terms of both the
Prequential AUC and accuracy.

INDEX TERMS online ensemble learning; resample learning; reinforcement; concept drift; class
imbalance

I. INTRODUCTION
With the wide application of machine learning, online learning
with concept drift and class imbalance has received increased
research attention. Practical applications in software
engineering, risk management, traffic flows, sensor networks
and social media mining face challenges of both concept drift
and class imbalance [1, 2].

In a data stream, instances are generated over time based on
an underlying probability distribution Pt(x,yi) [3]. If the
probability distribution changes at time t, concept drift will
occur. According to Bayes’ theorem [4], such drift can be
divided into real concept drift and virtual concept drift. First,
changes to the posterior distribution Pt(y|x) without affecting
Pt(y) will lead to real concept drift, which could change the
decision boundary and decrease the performance of the
classification model. Variation of the prior probability Pt(y)
without affecting Pt(y|x) will lead to virtual concept drift,
which changes the proportions of instances in different
categories and is related to the class imbalance phenomenon.

Moreover, concept drift can be divided into sudden concept
drift and gradual concept drift [5]. Sudden drift changes from
an old concept to a new concept immediately, leading to a
sharp decline in the classification performance. Gradual drift
slowly affects the data concept, so that the classification model
has an adjustment period for adapting to the new concept. If
the learning algorithm focuses on only the latest instances, it
will show rapid adaptability to sudden concept drift. A
learning model trained by long-term instances is more
conducive to handling gradual concept drift [6].

Class imbalance learning always faces the challenge that the
minority class is underrepresented [7]. Classification models
without any imbalance handling mechanism tend to be biased
towards the majority categories and ignore the minority
categories. Therefore, even if a classification model achieves
high overall accuracy, it could perform poorly on the minority
categories. In the scenario where the minority classes are
especially important, such as spam filtering and risk
management, the performance evaluation method should
focus on the minority classes. Moreover, the conditions are

、

more challenging when concept drift and class imbalance
occur simultaneously.

Researchers have proposed many methods to solve the joint
problem of concept drift and class imbalance. According to the
manner of instance arrival, the methods can be divided into
block-based methods and online learning methods. Gao et al.
[8, 9] first proposed Uncorrelated Bagging (UCB), which uses
an ensemble method with a series of classifiers trained by a
more balanced set by means of resampling the minority class
and undersampling the majority class. Chen et al. [10]
proposed the Selectively Recursive Approach (SERA)
algorithm, which selects minority instances that are similar to
those in recent data blocks. The algorithm also discards
instances that are not related to the current processing block
according to a distance metric. Then, the Recursive Ensemble
Approach (REA) was proposed; this approach modified
SERA into an ensemble approach [11]. Ditzler et al. [12]
proposed Learn++.CDS and Learn++.NIE for concept drift and
class imbalance. Learn++.CDS combines the concept drift
processing algorithm Learn++.NSE [13] with the Synthetic
Minority class Oversampling TEchnique (SMOTE), which
generates instances of the minority class [14]. Learn++.NIE
modifies Learn++.NSE and replaces SMOTE with bagging-
based sub-ensemble methods to address class imbalance. All
the above methods are block-based algorithms which require
instances to arrive in batches at each time step.

Different from block-based methods, online learning is
more challenging, because only one instance is available at
each time step. Online learning methods can be categorized
into two main types: active handling methods that employ a
drift detection mechanism [15-18] and passive methods [19,
20]. The Drift Detection Method for Online Class Imbalance
(DDM-OCI) [16] is an active detection method that uses
minority-class recall (i.e., true positive rate) as the indicator
for concept drift. Linear Four Rates (LFR) [15] was further
proposed to use the confusion matrix of the minority-class
recall and precision and the majority-class recall and precision
for drift detection. Additionally, many studies have evaluated
indicators of classification performance. Brzezinski et al. [21,
22] modified the AUC for the online learning condition and
proposed the Prequential AUC (PAUC), which can reflect the
real classification performance of the minority classes, as an
evaluation index. Furthermore, the Page-Hinkley test [23] uses
the PAUC as the indicator and forms PAUC-PH, which can
integrate other classification algorithms and actively detect
drift and imbalance. However, PAUC-PH will reset and
retrain the model when drift or imbalance occurs and will
discard all previous knowledge.

Conversely, passive methods do not detect concept drift and
class imbalance but continuously evolve the classifiers with
the data stream. Many passive methods use ensemble-based
methods or sampling-based methods [19, 20]. Wang et al. [20]
modified the ensemble learning algorithm Online Bagging
(OB) [24] and proposed Oversampling Online Bagging (OOB)
and Undersampling Online Bagging (UOB). These methods

calculate the real-time size of classes to evaluate the current
imbalance degree for determining the sampling times of
instances. Moreover, a time decay factor is used to decrease
the impact of historical data. DDM-OCI, LRF, PAUC-PH,
OOB and UOB are designed for binary classification, which
defines two classes: minority and majority.

Generally, block-based learning methods learn fixed-size
data blocks and respond inefficiently to sudden concept drift
which happens within a data block. Although reducing the size
of the data blocks can help to address sudden drift, this change
increases the computational cost and degrades the
performance in the stable state [6]. In contrast to the block-
based methods, online learning models are dynamically
updated by new arriving instances and can rapidly adapt to
sudden concept drift. However, they may perform quite poorly
at the initial stage of training compared to block-based ones,
because only one instance is used at each time step. Therefore,
in this proposal, we are motivated to combine the advantages
of block-based and online learning. The component classifiers
in our ensemble method are created by a block-based method
and the instances are processed in an online manner.

In this paper, we propose a novel resample-based ensemble
framework for a drifting data stream with class imbalance
(RE-DI). The novelty lies in the following aspect. First, we
proposed a novel ensemble framework that includes a long-
term static classifier and multiple dynamic classifiers using a
sliding window. The static classifier is maintained and updated
throughout the entire learning procedure to handle gradual
changes in the data stream. The dynamic classifiers learn only
recently received data and are more suitable for addressing
sudden concept drift. Second, the classifier weights are
dynamically adjusted by two approaches. A novel
reinforcement mechanism dynamically adjusts the predictive
weights of the base classifiers and improves the classification
performance for the minority class. Older dynamic classifiers
have their weights periodically decreased, so that the final
ensemble model can focus on the latest concept of the data
stream. Third, to balance the imbalance ratio of training
samples, a resample-based initialization method for base
classifiers is proposed. It uses a resampling buffer group to
store and supply instances of the minority class.

The rest of this paper is organized as follows. The resample-
based ensemble framework for drifting imbalance stream is
proposed in Section 2. Section 3 present the experimental
results and analysis, and the conclusions are presented in
Section 4.

II. METHODS
In this section, a novel resample-based ensemble framework
for drifting imbalanced data streams is proposed. In section A,
the learning procedure of the resample-based ensemble
framework, which combines block-based and online
incremental techniques, is introduced. Then, in section B, we
propose the ensemble classifiers and the weight adjusting
mechanism. At last, section C presents a novel resample-based

、

initialization procedure for a base classifier that aims at
solving the learning problem posed by class imbalance. First,
we introduce the structure of the resample-based ensemble
framework.

Cs C1 CD-1 CD

……

……

Dynamic Classifier Sliding Window

Ensemble Classifier E

Supply training samples

Resampling Buffer Group U

……… ……

U[1]

Data Stream

………… …… ……
……

I instances
2I instances

…… …………
……
……

The whole stream

BnBn-1B1

U[2] U[L]

Static Classifier

Figure 1. Structure of resample-based ensemble framework

As shown in Figure 1, the ensemble classifier E consists of
a static classifier Cs and D dynamic classifiers Cd (d = 1, 2, …,
D). The D dynamic classifiers are periodically created and
replaced. Additionally, the resampling buffer group is used for
supplying training samples of the minority class. As the class
imbalance ratio could vary and the minority class can change
into the majority class, all L categories have a corresponding
resampling buffer.

A. ENSEMBLE LEARNING PROCEDURE
Tradition block-based learning algorithms create base
classifiers and make predictions in the units of a fixed-size
data block. The classifiers are trained on the current data
blocks and make predictions on subsequent data blocks.
However, concept drift can occur at any point in the data
stream. Therefore, if concept drift occurs within a data block,
block-based learning methods will have a delay in adapting to
concept drift. Online learning addresses the newly arriving
instances one by one and can rapidly respond to the changes
in data stream. However, the block-based learning algorithm
will have more training samples for initializing a new
classifier. Additionally, in the resample-based ensemble
framework, dynamic classifiers are dynamically created and
replaced. Each dynamic classifier only exists for a period.
Therefore, the component classifiers in the ensemble
framework are created by a block-based method, and instances
in the data stream are processed in an online learning manner.

Let S be an infinite data stream …, xi, xi+1, xi+2, …. At time
t, the arriving instance is xt and the class label of xt is yt. A
circular cache array B is used to cache instances from the data
stream and form data blocks. In addition, the length of the
circular cache array B is I. Therefore, the data stream can be
regarded as a consequent data block queue B1, B2, … Bn,
Bn+1 …. Algorithm 1 shows the ensemble learning procedure
of the proposed methods.

Algorithm 1
Ensemble Learning Procedure
Inputs:
1. S: data stream with unknown label
2. L: number of classes
3. I: size of the data blocks
4. D: number of dynamic classifiers
5. ɛ: instance selection ratio of the classifier initialization.
Output: Ensemble Classifier E
Initialization:
1. B: circular cache array, initialized as an empty array
2. U[l]: resampling buffer for storing instances
3. p=0: counter of processed instances
4. i=0: indicator of current position in circular cache array
5. k=0: indicator of the dynamic classifiers
Process:
1. while (S. hasNext()) do
2. xnew=S. nextInstance()
3. p=p+1
4. if (p<I) then // Before B is fully filled for the first time
5. B[p-1]=xnew
6. else if (p==I) then // Fill the array for the first time
7. B[p-1]=xnew
8. Cs=CreateNewBaseClassifier(ε,U,I,L,D,wd,ws,DCIR[l])
//Create static classifier
9. k=1
10. C1=Cs // Create the first dynamic classifier
11. else // (p>I) has more instances than I
12. i=(p-1)%I // i is the current index for A
13. TrainOnInstance (xnew,i,L,D,wd,ws,DCIR[l])
14. i=(i+1)%I // i moves circularly
15. if (i==0) then // The array is filled again
16. k=k+1
17. Ck=CreateNewBaseClassifier(ε,U,I,L,D,wd,ws,DCIR[l])
//create new dynamic classifier
18. if (k>D) then
19. Cd Cd+1 (d=1, …, D-1)
20. CD Ck
21. end if
22. Update the predictive weight of classifiers by (3)
23. Calculate damped class imbalance ratio by (5)
24. end if
25. end if
26. end while
27. for i=0 to I-1 do // Address remaining instances
28. xnew=B[i]
29. TrainOnInstance (xnew,i,L,D,wd,ws,DCIR[l])
30. end for
After the learning process begins, the circular array B

continuously caches arriving instances from the data stream
until it is filled for the first time. When the circular array is
filled for the first time, the first data block B1 is used to create
the static classifier Cs, which is copied as the first dynamic
classifier C1 following the process in Algorithm 4. Then, the

、

instances in the circular array are learned one by one. The
learning process starts from the first position in the circular
cache array, and an indicator i is used to represent the current
processing position. The procedure for training on an instance
is shown in Algorithm 2.

Algorithm 2
TrainOnInstance(xnew,i,L,D,wd,ws,DCIR[l])
Inputs:
1. xnew: new instance from data stream
2. i: current processing position of the data block
3. L: number of classes
4. D: number of dynamic classifiers
5. ws: weight of static classifier
6. wd: weights of dynamic classifiers (d=1, …, D)
7. DCIR[l]: damped class imbalance ratio
Output: Adjusted weights ws and wd (d=1, …, D)
Process:
1. xi=B[i] //get instance from the circular cache array
2. ReinforcementWeightAdjustment(xi,L,D,wd,ws,DCIR[l])
3. update the static classifier and dynamic classifiers with xi
4. B[i]= xnew //cache the new instance xnew
First, instance xi is obtained from the circular cache array

B[i]. Then, the reinforcement weight adjustment mechanism
(Algorithm 3) is used to improve the classification
performance of the ensemble framework for the minority class.
Then, the static classifier and dynamic classifiers are trained
using xi. Once the instance in position i is learned, the instance
is replaced by the newly arriving instance xnew, and the
indicator moves to the next position in the circular cache array.
When indicator i reaches the last position, all the instances in
the cache array have been replaced, meaning that a new data
block is formed. Then, the indicator moves to the first place
and the algorithm will learns from the new data block from the
beginning.

When a new data block is formed, the algorithm creates a
new dynamic classifier Cnew in the ensemble. As the learning
procedure proceeds, the number of classifiers in the ensemble
framework continues to grow. If the number of classifiers
exceeds D, the earliest dynamic classifier C1 is dropped. Then,
the subsequent classifier will replace the former classifiers one
by one Cd←Cd+1 (d = 1, …, D−1) to ensure that there are
always D classifiers in the ensemble framework. Next, the
weights of the dynamic classifiers are updated according to (3),
and the damped class imbalance ratio is calculated by (5).
Finally, when no more instance can be obtained from the data
stream, the algorithm learns the remaining instances in the
cache array.

B. ENSEMBLE FRAMEWORK WITH REINFORCEMENT
ADJUSTED AND TIME-DECAYED WEIGHT
In this section, the ensemble framework with reinforcement-
adjusted weight is introduced. The ensemble classifier consists
of a static classifier and a dynamic classifier sliding window.
To handle the long-term tendency of the data stream, the static
classifier Cs learns the whole data stream while the dynamic

classifiers Cd learn only a part of the data stream, which is
defined as:

⎩
⎪
⎨

⎪
⎧Ss= ෍ Bk

n

k=1

Sd= ෍ Bn-D+k

D

k=d

 , d=1, 2,… D

(1)

Suppose the current processed data block is Bn, the data
stream learned by the static classifier is Ss and the parts learned
by the dynamic classifier are Sd. The dynamic classifier Cd,
learns only the most recent D-d+1 data blocks of the data
stream. Each dynamic classifier exists for only a period of time
and is replaced by the newly created dynamic classifier. The
joint prediction of the ensemble classifier is the weighted
combination of the static classifier and dynamic classifiers, is
calculated as follows:

f l
E(x)=ωsf l

Cs(x)+ ෍ ωdf l
Cd(x)

D

d=1

,l=1,…L (2)

f l
E(x) is the ensemble prediction that instance x belongs to

class l. ws and wd (d = 1, …, D) are the predictive weights of
the static classifier and dynamic classifiers. The weight of the
static classifier ws is initialized to 0.5, and the weights of the
dynamic classifiers wd decrease over time. Whenever a new
dynamic classifier is created, its initial weight is set to 1/D, and
the weights of the old dynamic classifiers are reduced
repeatedly over time, as shown in Equation (3). Then, the
weights of all the classifiers are normalized

⎩
⎪
⎨

⎪
⎧ωs←

1

2

ωd←ωd(1-
1

D
)

ωD←
1

D

,d=1, 2,… D-1 (3)

Through dynamic weight attenuation, the newly created
dynamic classifier is given more weight than the older
classifiers in the joint prediction. Therefore, the algorithm will
focus more on the latest instances, which will help to adapt to
concept changes in the data stream. Additionally, in the class
imbalanced learning condition, the classification performance
on the minority class should be given more attention. The data
stream learned by each dynamic classifier is different, so the
classification capacity for the minority category of the
dynamic classifiers is different. Therefore, to improve the joint
prediction accuracy of the ensemble classifier for the minority
class, a reinforcement weight adjustment mechanism is
proposed in Algorithm 3.

Algorithm 3
ReinforcementWeightAdjustment(x,L,D,wd,ws,DCIR[l])
Inputs:
1. x: processed instance of label y
2. L: number of classes
3. D: number of dynamic classifiers
4. ws: weight of static classifier
5. wd: weights of dynamic classifiers (d=1, …, D)

、

6. DCIR[l]: damped class imbalance ratio
Output: Adjusted weights ws and wd (d=1, …, D)
Process:
1. if (DCIR[y]<1/L) then // if instance x belongs to the
minority class
2. for d=1 to D do:
3. if (Predictright(x, Cd)==True) then //Cd predicts right
4. wd= wd*(1+1/D) // increase weight of Cd
5. else
6. wd= wd*(1-1/D) // decrease weight of Cd
7. end if
8. end for
9. if (Predictright(x, Cs)==True) then //Cs predicts right
10. ws= ws*(1+1/D) // increase weight of Cs
11. else
12. ws= ws*(1-1/D) // decrease weight of Cs
13. end if
14. end if
First, for arrival instance x of class y, the algorithm

determines whether instance x belongs to the minority class
according to the Damped Class Imbalance Ratio (DCIR).
Then, if x is in the minority class, the prediction results of the
static classifier and dynamic classifiers are used as the
foundation for adjusting the weights. That is, if a classifier
correctly predicts the class label of x, the weight of this
classifier is increased by (1+1/D). Otherwise, weight wd is
decreased by (1-1/D). Therefore, classifiers that perform better
on the minority class are given more weight in the ensemble
prediction.

In sum, the ensemble classifier with reinforcement-adjusted
weight makes the following efforts to address concept drift
and class imbalance. To deal with the different types of
concept drift, the ensemble framework includes a long-term
static classifier and multiple dynamic classifiers. The static
classifier in the ensemble framework is used throughout the
entire learning procedure, which helps to handle gradual
concept change. Then, the dynamic classifiers use a sliding
window [25] structure to learn partial data streams and enable
rapid adaptability to sudden concept drift. The weight
adjustment strategy contributes in two aspects. On the one
hand, the weights of the dynamic classifiers are decreased over
time to make the ensemble classifier focus more on the new
concept of the data stream. On the other hand, the
reinforcement mechanism selectively adjusts the weights of
the static classifier and dynamic classifiers, improving the
overall classification performance of the ensemble classifier E
for the minority class.

C. RESAMPLE-BASED INITIALIZATION FOR BASE
CLASSIFIER
In the scenario where the data stream is class imbalanced, the
learning model will lack training samples of the minority class
because of the biased class distribution. Many block-based
methods [9, 10, 12] apply random sampling or smart sampling
techniques to form class-balanced training sets. However, if

concept drift occurs, these sampling methods could select
instances of the old concepts that will lower the classification
performance. These sampling methods thus cannot be used in
online learning conditions. OOB and UOB [20] integrate
oversampling and undersampling methods into online bagging
which train more times with the minority class or train fewer
times with the majority class. The component classifiers in
online bagging address all the instances throughout the entire
learning procedure, but in our proposed ensemble, the
dynamic classifier only exists for a certain period and learns a
partial data stream. There is no guarantee that the dynamic
classifier can obtain enough instances of the minority class in
its corresponding partial data stream. Therefore, in this section,
a resample-based initialization method for base classifiers is
proposed to solve this problem by improving the classification
capacity for the minority class during the initialization process
of the base classifiers.

As the class imbalance condition of the data stream could
change over time, the minority class and majority class may
transform into each other. Therefore, for each category l, a
resampling buffer U[l] (l = 1, …, L) (pink rectangle) is used to
cache instances of this class. Whenever the ensemble classifier
addresses an instance, it stores the instance in the
corresponding resampling buffer by class label. Instances are
stored in order and the later arriving instances are used first. In
addition, the length of the resampling buffer is periodically
reduced to save memory and discard old instances. The
resample-based initialization procedure for the base classifiers
is shown in Algorithm 4.

Algorithm 4
CreateNewBaseClassifier(ε,U,I,L,D,wd,ws,DCIR[l])
Input:
1. ε: instance selection ratio
2. U: resampling buffer
3. I: size of data block
4. L: number of classes
5. D: number of dynamic classifiers
6. wd: weights of dynamic classifiers (d=1, …, D)
7. DCIR[l]: damped class imbalance ratio
Output: A new classifier Cnew
Process
1. Select the top εI instances of current block Bn to form the
initialization set Rn
2. for i=0 to Iε-1 do:
3. xi=Rn[i]
4. ReinforcementWeightAdjustment(xi,L,D,wd,ws,DCIR[l])
5. end for
6. Calculate instance numbers Hn[l] of different classes in
Rn
7. Create the classifier Cnew
8. For each class l, if Hn[l] < I*ε/L, use the most recent I*ε/L
- Hn[l] instance in U[l] to train Cnew
9. Use Rn to train Cnew
10. Store the instances from Rn to the corresponding
resampling buffer by class label

、

11. Reduce the length of all resampling buffers U[l] to I*ε/L
12. Return Cnew
Whenever a new data block arrives, a new classifier is

created. Assume that the current processing data block is Bn.
First, the algorithm uses the top εI instances of the current
block Bn and forms an initialized dataset Rn. Then, for each
instance in Rn, the reinforcement mechanism is used to adjust
the predictive weights of the classifiers in the ensemble
framework. Then, the numbers of instances in different
categories Hn[l] in the initialized dataset Rn are calculated. To
balance the training samples of the different classes, instances
in the resampling buffer are used according to (4).

൞
𝐻௡(𝑙) <

𝜀𝐼

𝐿
, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒

𝐻௡(𝑙) ≥
𝜀𝐼

𝐿
, 𝐸𝑛𝑜𝑢𝑔ℎ

(4)

Define ɛ as the instance selection ratio. I is the size of the
data block, and L is the number of classes. To ensure that the
classifier can obtain enough instances of the minority class, set
ɛI/L as the minimum quantity of instances for each category to
initialize the new classifier. For each class l, if Hn(l) is smaller
than ɛI/L, the new classifier Cnew will be updated by the most
recent I*ε/L - Hn[l] instances from the resampling buffer U[l],
otherwise, Cnew has trained on enough instances of class l.
Finally, use Rn to update Cnew. Furthermore, instances from Rn
are stored in the corresponding resampling buffer by class
label. Finally, the length of all the resampling buffers is
reduced to ɛI/L, which is the maximum quantity needed by the
resampling procedure.

To evaluate the class imbalance degree of the data stream,
the damped class imbalance ratio (DCIR) is proposed. For all
the dynamic classifiers that exist in the ensemble classifier,
each classifier has a corresponding initialization dataset Rd.
The class distribution Hd(l) of Rd is also calculated. Then the
damped class imbalance ratio is:

DCIR(l)=
∑ Hd[l]wdD

d=1

∑ ∑ Hd[l]wdD
d=1

1
l=0

(5)

wd is the predictive weight of classifier Cd calculated in (3).
For each class l, the weighted summation of the instances
including all the initialization dataset Rd is calculated. DCIR(l)
is the ratio of category l to the summation of all the categories.
As wd decays with time, the older class distribution
information has less effect in calculating DCIR, which helps
the algorithm focus on the most recent class imbalance ratio of
the data stream.

III. EXPERIMENTS
In this section, the performance of RE-DI is compared with
that of the other state-of-the-art methods, including OOB,
UOB, LB and ARF. First are three modification methods of
online bagging. OOB and UOB [20] integrate sampling
methods in online bagging for class imbalance learning.
Leveraging Bagging (LB) [26] which modifies online bagging
by adding more randomization in the ensemble is also
compared. In addition, the most recent learning method for an

evolving data stream, Adaptive Random Forests (ARF) [27] is
also included.

All the algorithms are implemented in the MOA data stream
software suite [28]. All the algorithms will first test on the
arriving instance and then train on it. Particularly, RE-DI has
its own task function to realize the special learning procedure
that combines the block-based and online learning methods,
and the other methods use the prequential evaluation settings
in MOA. To maintain the consistent performance of the base
classifier, all the comparative methods except ARF, apply the
Hoeffding Tree as the base classifier. The Hoeffding Tree is
an incremental, anytime decision tree induction algorithm that
is capable of learning from massive data streams. And it was
wildly used as base classifier in researches of online data
stream learning. ARF uses ARFHoeffding which is
specifically designed for this algorithm as the base classifier.
It is worth mentioning that RE-DI can use other classifiers
provided by MOA as the base classifier of the ensemble.
Moreover, all the experiments are carried out on a machine
with an eight-core Intel i7-6700 CPU, 3.4 GHz processor, and
32 GB of RAM.

Section A to E present the results of comparing RE-DI with
other state-of-the-art methods. In section F, a verification
experiment is designed and carried out to prove the effect of
the static classifier and dynamic classifiers in the ensemble
framework.

A. DATA STREAMS
In the experimental evaluation, we used both synthetic data
streams and real data streams to compare the performance of
the algorithms in different situations. The default parameters
of RE-DI are D=10, I=500, and ε=0.20. For each dataset, we
conducted five parallel experiments on all the data streams. To
evaluate the performance of algorithms in a specific condition
of a data stream, we chose the synthetic generators in MOA,
Agrawal and HYP to generate synthetic datasets. In addition,
to verify the practicability in real-word applications, we also
used real-world data streams.

Agrawal is used to generate data streams with sudden
concept drift and class imbalance. The different functions of
the generators simulate various concepts of data streams.
When a sudden concept drift occurs, the generation function
changes within 25 instances. First, data streams with a fixed
class imbalance ratio and sudden concept drift (Agrawal37,
Agrawal28, Agrawal19) are generated. Then, a data stream with
virtual drift and real sudden drift (AgrawalRS) is generated. The
class imbalance ratio changes with the concept drift
(3/7,2/8,1/9,3/7) at the 1/4, 2/4 and 3/4 position of the data
stream. HYP is used for simulating data streams with gradual
drift and class imbalance. First, data streams with gradual
concept drift and a fixed class imbalance ratio are generated
(HYP37, HYP28, HYP19). HYPRG is a data stream with gradual
concept drift and a class imbalance ratio that varies from 1/1
to 1/9. All the synthetic data streams have 100k instances.

、

For the real data streams, we chose four commonly used
data streams as benchmarks, PAKDD [21], Give Me Some
Credit (GMSC), Forest Covertype (Covtype) [27] and poker.
PAKDD predicts credit card fraud cases from a large amount
of transaction records. GMSC is a credit scoring data stream
which is used for risk assessment in loan. PAKDD and GMSC
are binary data streams which can be used directly. For the
multi-class data streams, the same approach in [9] which
selects one category as the majority and another as the
minority, is applied to convert the data streams to binary
streams. Covtype contains the forest cover type for 30x30

meter cells obtained from US Forest Service (USFS) Region
2 Resource Information System (RIS) data. Covtype contains
581, 012 instances, 54 predictive attributes and 7 classes from
1 to 7. In covtype36, class 3 is used as the majority and class
6 is the minority. Poker consists of 10 predictive attributes and
10 classes. Each record of Poker is an example of a hand
consisting of five playing cards drawn from a standard deck.
Poker23 selects class 2 as the majority and class 3 as the
minority. Table I summarizes the main characteristics of the
experimental data streams.

TABLE I
CHARACTERISTIC OF DATA STREAMS

Data stream No. Inst No. Attrs Class Class ratio Drift Type No. Drifts
covtype36 53 k 54 2 1/2 - -
PAKDD 50 k 28 2 1/4 - -
poker23 390 k 10 2 1/9 - -
GMSC 150 k 10 2 1/14 - -

Agrawal37 100 k 9 2 3/7 sudden 3
Agrawal28 100 k 9 2 2/8 sudden 3
Agrawal19 100 k 9 2 1/9 sudden 3
AgrawalRS 100 k 9 2 3/7,2/8,1/9,3/7 sudden 3

HYP37 100 k 5 2 3/7 gradual 1
HYP28 100 k 5 2 2/8 gradual 1
HYP19 100 k 5 2 1/9 gradual 1
HYPRG 100 k 5 2 1/1,1/9 gradual 1

TABLE Ⅱ
AVERAGE AUC (%) WITH DIFFERENT NUMBER OF DYNAMIC CLASSIFIERS, BLOCK SIZE AND INSTANCE SELECTION RATIO

Data stream
D I ε

1 5 10 15 20 100 250 500 750 1000 0.05 0.1 0.15 0.2 0.25
covtype36 96.7 98.4 98.6 98.6 98.6 98.3 98.6 98.6 98.5 98.2 97.9 98.3 98.5 98.6 98.7
PAKDD 60.0 63.9 65.8 66.5 67.0 65.4 65.4 65.8 65.4 65.8 63.0 63.9 64.9 65.8 66.7
poker23 95.5 97.3 97.9 98.2 98.4 95.9 96.6 97.9 97.1 97.9 96.7 96.8 98.0 97.9 97.7
GMSC 77.2 83.5 85.2 85.8 86.1 83.4 84.6 85.2 85.3 85.1 83.6 83.9 84.6 85.2 85.9

Agrawal37 85.0 93.7 94.6 94.7 94.7 91.7 89.1 94.6 93.7 93.6 90.3 89.2 91.0 94.6 94.9
Agrawal28 76.8 88.6 90.3 90.8 91.0 86.3 88.0 90.3 91.1 90.7 88.6 88.2 90.1 90.3 91.0
Agrawal19 70.0 84.1 86.9 87.9 88.5 81.9 85.1 86.9 86.8 86.8 85.2 84.6 85.2 86.9 87.8
AgrawalRS 87.0 93.0 94.0 94.2 94.2 91.5 88.6 94.0 92.8 93.4 89.1 88.5 90.0 94.0 93.5

HYP37 98.5 99.3 99.4 99.5 99.5 99.2 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
HYP28 97.3 98.9 99.1 99.1 99.2 98.7 99.0 99.1 99.1 99.1 99.0 99.0 99.0 99.1 99.1
HYP19 95.8 98.0 98.4 98.5 98.6 97.8 98.4 98.4 98.6 98.5 98.2 98.3 98.3 98.4 98.5
HYPRG 96.5 98.3 98.5 98.5 98.5 98.1 98.4 98.5 98.5 98.3 98.3 98.3 98.5 98.5 98.6

B. EVALUATION INDICATOR
Traditional classification performance evaluation methods use
accuracy as the indicator. However, accuracy reflects only the
overall performance on all categories, when the accuracy of
the minority class is poor, the overall accuracy is still high.
AUC calculates the area under the ROC curve and is a suitable
metric for evaluating class imbalance learning. However,
AUC can be used in only offline learning condition. Recently,
many works [21, 22] have modified AUC for online learning
conditions and propose Prequential AUC (PAUC). Therefore,
we applied Prequential AUC as the experimental evaluation
indicator. Additionally, we compared the PAUC indicator
with the traditional accuracy indicator.

C. PARAMETER SENSITIVITY
In this section, to verify the parameter sensitivity of RE-DI,
we performed parameter comparison experiments on the main

setting parameters, including the number of dynamic
classifiers D, the size of the data blocks I, and the instance
selection ratio ε. The default values are D=10, I=500, and
ε=0.20. For each parameter, we conducted five parallel
experiments on all the data streams.

From Table Ⅱ, we can see that all the parameters have an
impaction on the classification performance of RE-DI. First,
within the parameters selected for the experiments, the number
of dynamic classifiers is positively correlated with the
classification performance. Second, RE-DI performs better at
block sizes of 500 and 750, which shows that the best optimal
block size parameter is determined by the experimental data
stream. At last, the classification performance is improved
when the algorithm uses more instances during the
initialization process. Intuitively, the higher instance selection
ratio can help the new classifier acquire a more detailed
understanding of the current data stream.

TABLE Ⅲ
AVERAGE AUC (%) AND ACCURACY (%) OF DIFFERENT ALGORITHMS

、

 Data stream
RE-DI PAUC-OOB PAUC-UOB PAUC-LB PAUC-ARF
AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc.

1 covtype36 98.6 95.1 69.9 68.0 74.2 69.1 98.5 95.1 97.7 92.5
2 PAKDD 65.8 80.3 63.5 70.7 60.7 42.4 62.6 79.9 63.2 80.1
3 poker23 97.9 95.1 71.7 87.6 68.4 58.9 98.0 96.7 93.5 93.5
4 GMSC 85.2 93.6 84.9 89.7 71.2 93.0 81.9 93.5 80.4 93.5
5 Real Avg 86.9 91.0 72.5 79.0 68.6 65.6 85.3 91.3 83.7 89.9
6 Real Avg Rank 1.25 1.38 4.50 4.50 4.75 4.50 2.50 2.00 3.25 2.62
7 Agrawal37 94.6 88.7 84.2 71.5 74.1 67.1 85.7 81.6 87.5 81.3
8 Agrawal28 90.3 87.2 85.4 76.4 73.6 66.9 81.7 84.8 87.0 84.3
9 Agrawal19 86.9 91.4 84.8 84.9 73.1 67.3 77.0 91.0 82.3 90.4
10 AgrawalRS 94.0 89.5 84.2 72.2 74.4 65.3 82.0 83.5 85.6 84.1
11 HYP37 99.4 96.5 99.1 95.1 97.4 90.7 99.1 95.4 98.9 95.0
12 HYP28 99.1 95.8 98.6 94.3 95.8 87.2 98.5 94.9 98.4 94.5
13 HYP19 98.4 96.9 96.1 92.4 90.9 82.1 97.5 96.4 97.3 95.9
14 HYPRG 98.5 95.2 95.3 89.1 83.9 75.0 97.0 93.4 96.9 93.1
15 Synthetic Avg 91.5 92.7 85.8 84.5 80.4 75.2 83.1 90.1 88.7 89.8
16 Synthetic Avg Rank 1.00 1.00 3.00 3.88 5.00 5.00 3.12 2.12 2.88 3.00
17 Overall Avg 92.4 92.1 84.8 82.7 78.2 72.1 88.3 90.5 89.1 89.9
18 Overall Avg Rank 1.08 1.12 3.08 4.08 4.92 4.83 2.92 2.08 3.00 2.88

D. COMPARATIVE STUDY ON DATA STREAMS
In this section, the performance of the algorithms on different
data streams is compared. RE-DI was compared with PAUC-
OOB, PAUC-UOB, PAUC-LB and PAUC-ARF. All the
comparison methods are ensemble methods, and the
experiments were conducted 5 times independently. Table Ⅲ
shows the average AUC (%) and average Accuracy (%) of the
algorithms on all data streams.

First, the performance of the data streams with sudden
concept drift and class imbalance, which are generated by
Agrawal (Agrawal37, Agrawal28, Agrawal19, AgrawalRS) are
compared. RE-DI achieves the highest AUC and accuracy
value compared with the other methods on these data streams.
As the class imbalance ratio increases, the AUC value
decreases because of the growing classification difficulty on
the minority class. However, the classification accuracy on
Agrawal19 is higher than that on Agrawal37, Agrawal28 or
AgrawalRS. This phenomenon agrees with the previous
analysis of class imbalance learning, as even when the overall
classification accuracy is high, the classification performance
on the minority class could be poor. The AUC indicator,
however, can reflect the real classification performance on the
minority class.

Figure 2 shows the average AUC curve and average
accuracy curve of Agrawal37 and the dotted lines divide the
concepts and imbalance ratios at different stages in the data
stream. When concept drift occurs, the AUC curve of RE-DI
first decreases and then tends to be stable or rise. When the
learning procedure ends, RE-DI has a clear lead over the other
algorithms. Additionally, when the learning procedure begins,
RE-DI and PAUC-UOB show a high initial AUC values,
reflecting the fast adaptability of the algorithms. However, the
AUC value of PAUC-UOB rapidly decreases at the first and
second concept drifts, and it performs the worst at the end.
Conversely, PAUC-ARF and PAUC-LB have better drift
adaptive capacities than PAUC-UOB. Therefore, they
perform better than PAUC-UOB at the end. In general, it can

be concluded from the analysis of the curve that RE-DI has the
best overall adaptability among all the algorithms.

Figure 2. Classification AUC (%) and Accuracy (%) on Agrawal37

Then, the performance of the data streams with gradual
concept drift and class imbalance that are generated by HYP
are analyzed (HYP37, HYP28, HYP19, HYPRG). RE-DI
achieves the best classification AUC and classification
accuracy on all data streams. For the data streams with a fixed
class imbalance ratio, the classification AUC decreases as the
class imbalance ratio increases.

Figure 3 shows the average AUC curve and average
accuracy curve on HYPRG. RE-DI obtains the best

、

performance on both the classification AUC and classification
accuracy during the whole learning process. As opposed to
with the data stream with sudden concept drift, there is no
upward or downward trend on the data stream with gradual
concept drift. The classification AUC curves of most
algorithms except for PAUC-UOB keep rising since the
beginning of the learning procedure and remain stable in the
second half of the learning process.

Figure 3. Classification AUC (%) and Accuracy (%) on HYPRG

At last, a comparative experiment is performed on real-
world data streams whose concept drift condition is
unknown.RE-DI achieves the best AUC performance on most
of the real-world data streams. For poker23, RE-DI takes the
second place on the AUC and accuracy indicators and PAUC-
LB achieves the first place. Although accuracy of RE-DI is 1.6%
lower than that of PAUC-LB, the difference in AUC value is
only 0.1%. It can be concluded that RE-DI has better
classification capacity on the minority class than PAUC-LB.
Figure 4 shows the average AUC curve and average accuracy
curve of the real-word data stream PAKDD. Although the
classification accuracies of RE-DI, PAUC-LB and PAUC-
ARF are approximatively equal, the AUC of RE-DI is higher
than that of PAUC- LB or PAUC- ARF. The accuracy of
PAUC-OOB is much lower than that of PAUC-LB or PAUC-
ARF, but it still has a higher AUC value because of the better
performance on the minority class.

Figure 4. Classification AUC (%) and Accuracy (%) on PAKDD

In addition, a statistical test [29] on the classification AUC
and accuracy of different methods on all the data streams is
carried out. Concretely, the statistical test is conducted on both
real-world data streams (Line 6 in Table Ⅲ) and synthetic data
streams (Line 16 in Table Ⅲ). And the overall results on both
synthetic and real-world data streams are shown in Line 18 in
Table Ⅲ. RE-DI achieves the first place in the ranking for both
AUC and accuracy indicators. Then, the Nemenyi post-hoc
test is used to identify the difference between the algorithms,
and the results are plotted in Figure 5 and Figure 6. The
statistical test on the accuracy value indicates that there is no
significant difference between RE-DI, PAUC-LB, and PAUC-
ARF. However, in the statistical tests on the AUC indicator,
RE-DI is better than the other methods.

Figure 5. Nemenyi test with 95% confidence level on AUC

Figure 6. Nemenyi test with 95% confidence level on accuracy

、

 TABLE Ⅳ
AVERAGE TIME (CPU-SECONDS) AND RAM (RAM-HOURS) OF DIFFERENT ALGORITHMS

Data stream

RE-DI PAUC-OOB PAUC-UOB PAUC-LB PAUC-ARF
 Time RAM Time RAM Time RAM Time RAM Time RAM
1 covtype36 16.9 4.9E-06 4.7 3.1E-07 3.9 2.6E-07 43.4 1.1E-04 11.3 4.4E-06
2 PAKDD 9.2 2.0E-06 6.5 4.0E-06 2.7 1.3E-07 102.7 1.4E-03 28.9 1.3E-04
3 poker23 44.1 3.0E-06 21.7 7.0E-07 17.0 5.5E-07 132.7 2.0E-04 60.5 2.2E-05
4 GMSC 13.2 1.3E-06 14.6 1.1E-05 4.9 1.6E-07 157.9 1.3E-03 68.7 3.4E-04
5 Real Avg 20.9 2.8E-06 11.9 4.0E-06 7.7 2.8E-07 109.2 7.5E-04 42.4 1.3E-04
6 Real Avg Rank 3.00 2.75 2.25 2.50 1.00 1.00 5.00 5.00 3.75 3.75
7 Agrawal37 11.5 2.2E-06 22.1 5.1E-05 3.4 1.1E-07 61.9 2.4E-04 56.7 2.4E-04
8 Agrawal28 10.9 1.9E-06 27.5 7.9E-05 3.2 9.8E-08 67.3 2.9E-04 49.0 1.8E-04
9 Agrawal19 9.9 1.6E-06 25.4 6.0E-05 3.1 9.3E-08 55.4 1.8E-04 65.1 3.5E-04
10 AgrawalRS 11.1 2.1E-06 24.5 6.3E-05 3.3 1.0E-07 71.2 3.4E-04 53.8 2.2E-04
11 HYP37 6.3 3.8E-07 5.4 1.3E-06 2.6 6.7E-08 37.9 1.0E-04 13.9 1.2E-05
12 HYP28 6.9 4.4E-07 7.7 3.5E-06 2.6 6.5E-08 43.3 1.4E-04 17.5 2.0E-05
13 HYP19 6.4 3.7E-07 6.9 2.6E-06 2.4 6.1E-08 25.8 4.3E-05 15.6 1.8E-05
14 HYPRG 6.8 4.2E-07 7.2 2.8E-06 2.5 6.4E-08 36.5 8.7E-05 16.2 1.6E-05
15 Synthetic Avg 8.7 1.2E-06 15.9 3.3E-05 2.9 8.2E-08 49.9 1.8E-04 36.0 1.3E-04
16 Synthetic Avg Rank 2.12 2.00 2.88 3.00 1.00 1.00 4.88 4.75 4.12 4.25
17 Overall Avg 12.8 1.7E-06 14.5 2.3E-05 4.3 1.5E-07 69.7 3.7E-04 38.1 1.3E-04
18 Overall Avg Rank 2.42 2.25 2.67 2.83 1.00 1.00 4.92 4.83 4.00 4.08

Figure 7. AUC curves of RE-DI and RE-DINS on comparative data streams

E. RESOURCES COMPARISON
In this section, the average memory and processing time of the
comparative algorithms on all data streams are compared.
Table 4 shows the average time (CPU-seconds) and RAM

(RAM-hours) cost of the algorithms on all data streams. And
the statistical test is also carried out.

In general, RE-DI gets the second place and PAUC-UOB
performs best. Compared with PAUC-LB and PAUC-ARF,
RE-DI, PAUC-OOB and PAUC-UOB significantly cost less

、

time and memory. Analysis from the algorithm level, PAUC-
OOB resample the instances of the minority class but PAUC-
UOB undersampling the instances of the majority class. As the
class imbalance ratio increases, PAUC-UOB will cost less
resource on instances of the majority class and PAUC-OOB
will cost more resource on instances of the minority class. RE-
DI solves the class imbalance problem by supplying limited
number of the minority instances, so the changing in class
imbalance ratio will not obviously influence its resource
consuming.

F. VERIFICATION OF THE PROPOSED FRAMEWORK
To deal with different types of concept drift, RE-DI includes a
static classifier and multiple dynamic classifiers. The static
classifier learns the entire data stream throughout the learning
process, which is more suitable for handing gradual drift.
However, dynamic classifiers only exist for a certain period
and learn only part of the data stream. If sudden drift occurs,
the dynamic classifiers can more easily adapt to the changes.
In addition, the static classifier contains more historical
knowledge of the data stream compared with the dynamic
classifier. For data streams with a cyclic concept drift in which
an old concept shows up again, the static classifier with
historical knowledge will easily adapt to the reoccurring
concept.

TABLE Ⅴ
AVERAGE AUC (%) AND ACCURACY (%) OF RE-DI AND RE-DINS

Data stream
RE-DI RE-DINS
AUC Acc. AUC Acc.

AgrawalSudden 86.5 91.4 83.9 91.1
AgrawalSuddenCycle 86.7 91.0 82.4 90.6
AgrawalGradual 81.7 90.8 78.3 90.7
AgrawalGradualCycle 82.0 90.5 76.0 90.3
Avg 84.5 90.9 80.2 90.7

In this section, to verify the rationality and necessity of the
static classifier, comparative experiments between the original
RE-DI and RE-DINS are carried out. RE-DINS only has
dynamic classifiers in the ensemble framework. The Agrawal
generator is used to generate four types of data streams
AgrawalSudden, AgrawalSuddenCycle, AgrawalGradual,
AgrawalGradualCycle. All these data streams have concept drifts
that occur at the 1/4, 2/4 and 3/4 positions of the data stream.
For the data stream with subscript Sudden, the width of
concept change is set to 1, while the width of Gradual stream
is 10000. The Agrawal generator has ten functions for
producing instances and each function is used to represent a
concept. Concretely, the data streams with subscript Cycle use
two functions and have cyclic concept drift (Functions:
1/2/1/2), while the data streams without subscript Cycle use
four functions (Functions: 1/2/3/4). Table Ⅴ shows the
experimental results of RE-DI and RE-DINS. On all the data
streams, RE-DI is better than RE-DINS. Furthermore, to reflect
the adaptive ability of the static classifier to the cyclic concept
drift and gradual concept drift, the types of concept drift are
used as the control variables to paint Figure 7.

In Figure 7, each color represents the result on a data stream
(red: AgrawalSudden, blue: AgrawalSuddenCycle, gold:

AgrawalGradual, green: AgrawalGradualCycle). The solid lines
represent the results of RE-DI, and the dotted lines represent
the results of RE-DINS. First, a comparison using the cyclic
concept drift as the control variable is conducted to determine
how the cyclic concept influences the performance of RE-DI
and RE-DINS. Figure 7(A) shows the AUC curves of
AgrawalSudden and AgrawalSuddenCycle, and Figure 7 (B) presents
the AUC curves of AgrawalGradual and AgrawalGradualCycle. It
can be concluded that the cyclic concept drift will improve the
performance of RE-DI but damage the performance of RE-
DINS. Taking Figure 7 (A) as an example, RE-DI attains a
higher AUC value on AgrawalSuddenCycle (blue solid line) than
on AgrawalSudden (red solid line). However, the AUC value of
RE-DINS on AgrawalSuddenCycle (blue dotted line) is lower than
that on AgrawalSudden (red dotted line). Therefore, we can say
that the ensemble framework with a static classifier can handle
the cyclic concept drift better.

Then, the concept drift altering speed is used as the control
variable. Figure 7(C) shows the AUC curves of AgrawalSudden
and AgrawalGradual, and Figure 7 (D) presents the AUC curves
of AgrawalSuddenCycle and AgrawalGradualCycle. In general, both
RE-DI and RE-DINS perform worse on the gradual drift data
stream than on the sudden drift data stream, but the falling
range of RE-DINS is larger. As shown in Figure 7 (D), the
difference of RE-DI in AUC value between AgrawalSuddenCycle
(blue solid line) and AgrawalGradualCycle (green solid line) is
4.7%, and the difference of RE-DINS between
AgrawalSuddenCycle (blue dotted line) and AgrawalGradualCycle
(green dotted line) is 6.4%. In conclusion, the static classifier
can improve the performance of the ensemble framework on a
data stream with gradual concept drift.

IV. CONCLUSION
In this paper, we proposed a resample-based ensemble
framework for data stream learning with concept drift and
class imbalance. The ensemble classifier consists of a static
classifier and multiple dynamic classifiers sliding window.
The weights of the classifiers are dynamically adjusted by a
novel reinforcement weight adjustment mechanism and a
time-decay method. Then, a novel resample-based
initialization process for base classifiers is proposed to tackle
the class imbalance. The experimental results show that the
proposed method can handle concept drift and class imbalance
well and obtains the best classification performance on both
AUC and accuracy among compared approaches. For future
work, we plan to improve the performance of the base
classifiers.

REFERENCES
[1] M. R. Sousa, J. Gama, and E. Brandão, "A new dynamic modeling

framework for credit risk assessment," Expert Systems with
Applications, vol. 45, pp. 341-351, 2016/03/01/ 2016.

[2] L. E. B. Ferreira, J. P. Barddal, F. Enembreck, and H. M. Gomes,
"Improving Credit Risk Prediction in Online Peer-to-Peer (P2P)
Lending Using Imbalanced Learning Techniques," in IEEE
International Conference on Tools with Artificial Intelligence, 2017.

、

[3] L. Jie, L. Anjin, D. Fan, G. Feng, G. Jo˜ao, and Z. Guangquan,
"Learning under Concept Drift: A Review," IEEE Transactions on
Knowledge and Data Engineering, vol. 1, no. 1, 2018.

[4] M. G. Kelly, D. J. Hand, and N. M. Adams, "The impact of changing
populations on classifier performance," presented at the Proceedings
of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, San Diego, California, USA, 1999.

[5] N. Lu, J. Lu, G. Zhang, and R. L. D. Mantaras, "A concept drift-
tolerant case-base editing technique," Artificial Intelligence, vol. 230,
no. C, pp. 108-133, 2016.

[6] D. Brzezinski and J. Stefanowski, "Reacting to Different Types of
Concept Drift: The Accuracy Updated Ensemble Algorithm," IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no.
1, pp. 81-94, 2014.

[7] W. Feng, W. Huang, and J. Ren, "Class Imbalance Ensemble Learning
Based on the Margin Theory," Applied Sciences, vol. 8, no. 5, pp. 815-
815, 2018.

[8] J. Gao, W. Fan, J. Han, and P. S. Yu, "A general framework for mining
concept-drifting data streams with skewed distributions," in
Proceedings of SIAM ICDM, 2007, pp. 3-14.

[9] G. Jing, B. Ding, F. Wei, J. Han, and P. S. Yu, "Classifying Data
Streams with Skewed Class Distributions and Concept Drifts," IEEE
Internet Computing, vol. 12, no. 6, pp. 37-49, 2008.

[10] C. Sheng and H. He, "SERA: Selectively recursive approach towards
nonstationary imbalanced stream data mining," in International Joint
Conference on Neural Networks, 2009.

[11] C. Sheng, "Towards incremental learning of nonstationary imbalanced
data stream: a multiple selectively recursive approach," Evolving
Systems, vol. 2, no. 1, pp. 35-50, 2011.

[12] G. Ditzler and R. Polikar, "Incremental Learning of Concept Drift
from Streaming Imbalanced Data," IEEE Transactions on Knowledge
& Data Engineering, vol. 25, no. 10, pp. 2283-2301, 2013.

[13] E. Ryan and P. Robi, "Incremental learning of concept drift in
nonstationary environments," IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517-1531, 2011.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
"SMOTE: Synthetic Minority Over-sampling Technique," Journal of
Artificial Intelligence Research, vol. 16, no. 1, pp. 321-357, 2002.

[15] W. Heng and Z. Abraham, "Concept drift detection for streaming
data," in 2015 International Joint Conference on Neural Networks
(IJCNN), 2015, pp. 1-9.

[16] S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and X. Yao,
"Concept drift detection for online class imbalance learning," in The
2013 International Joint Conference on Neural Networks (IJCNN),
2013, pp. 1-10.

[17] A. Liu, Y. Song, G. Zhang, and J. Lu, "Regional Concept Drift
Detection and Density Synchronized Drift Adaptation," in Twenty-
sixth International Joint Conference on Artificial Intelligence, 2017.

[18] A. Liu, J. Lu, F. Liu, and G. Zhang, "Accumulating regional density
dissimilarity for concept drift detection in data streams," Pattern
Recognition, vol. 76, 2017.

[19] B. Mirza, Z. Lin, and N. Liu, "Ensemble of subset online sequential
extreme learning machine for class imbalance and concept drift,"
Neurocomputing, vol. 149, no. Part A, pp. 316-329, 2015.

[20] S. Wang, L. L. Minku, and X. Yao, "Resampling-Based Ensemble
Methods for Online Class Imbalance Learning," IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 5, pp. 1356-1368,
2015.

[21] D. Brzezinski and J. Stefanowski, "Prequential AUC: properties of the
area under the ROC curve for data streams with concept drift,"
Knowledge and Information Systems, vol. 52, no. 2, pp. 531-562,
2017/08/01 2017.

[22] D. Brzezinski and J. Stefanowski, "Prequential AUC for Classifier
Evaluation and Drift Detection in Evolving Data Streams," in New
Frontiers in Mining Complex Patterns, Cham, 2015, pp. 87-101:
Springer International Publishing.

[23] E. S. Page, "CONTINUOUS INSPECTION SCHEMES," Biometrika,
vol. 41, pp. 100-115, 1954.

[24] N. C. Oza, "Online bagging and boosting," in 2005 IEEE International
Conference on Systems, Man and Cybernetics, 2005, vol. 3, pp. 2340-
2345 Vol. 3.

[25] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, "A Survey
on Ensemble Learning for Data Stream Classification," Acm
Computing Surveys, vol. 50, no. 2, p. 23, 2017.

[26] A. Bifet, G. Holmes, and B. Pfahringer, "Leveraging Bagging for
Evolving Data Streams," in European Conference on Machine
Learning & Knowledge Discovery in Databases, 2010.

[27] H. M. Gomes et al., "Adaptive random forests for evolving data stream
classification," Machine Learning, pp. 1-27, 2017.

[28] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, "MOA: Massive
Online Analysis," J. Mach. Learn. Res., vol. 11, pp. 1601-1604, 2010.

[29] J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data
Sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.

