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The acoustic diffusion equation model has shown to be a versatile alternative model for certain types

of scenarios where the classical geometrical methods have been demonstrated to be inefficient or

even inaccurate. In certain scenarios, the transmission loss plays a fundamental role for accounting,

i.e., noise levels and sound propagation between rooms. This paper presents an extension of the

absorption boundary conditions known as modified that unifies previously proposed boundary condi-

tions in one equation, including transmission of energy between coupled rooms by both openings

and enclosures. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5095883

[NX] Pages: 2718–2723

I. INTRODUCTION

A diffusion equation for room acoustics modeling was

proposed to model enclosures with low absorption and total

diffuse reflection surfaces.1 During the last years, a consider-

able progress in this research line has been done, increasing

the number of scenarios where the acoustic diffusion equa-

tion model can be applied. An important step forward has

been the derivation of a diffusion equation model from the

acoustic radiative transfer method,2 allowing a deeper under-

standing of the diffusion equation model and offering an

interesting tool to work on extending the model for further

applications. In Ref. 3, the acoustic radiative transfer method

is used to extend the diffusion model to be applied with

absorption boundary conditions, combining a proportion of

specular and diffuse reflections. Moreover, another energetic

wave equation model in room acoustics has been proposed

from the propagation equation of radiative transfer.4

In this paper, a mixed boundary condition for account-

ing both energy absorption and transmission in a diffusion

equation model is derived from the acoustic radiative trans-

fer equation, resulting in an extension of the well-known

modified boundary condition.5 This extension unifies previ-

ously proposed boundary conditions5–8 in one equation,

including the effect of sound transmission through enclo-

sures and openings.9,10

II. ACOUSTIC DIFFUSION EQUATION MODEL

The diffusion equation model for the sound energy den-

sity wðr; tÞ at position r and time t, defined on a domain V,

with a sound source term P(t) located at position rs, consist-

ing of a partial differential equation with mixed boundary

conditions1,7 is fully described by

@w r; tð Þ
@t

� Dr2w r; tð Þ ¼ P tð Þd r� rsð Þ in V; (1)

�D
@w r; tð Þ
@n

¼ ca rð Þ
2 2� a rð Þ½ �w r; tð Þ on @V; (2)

where r2 is the Laplace operator, and D¼ 4Vc/3St is the so-

called diffusion coefficient where c is the speed of sound,

with volume V and total interior area St.

Equation (2) is an absorption boundary condition that

models the local effects on the sound field induced by differ-

ent degrees of attenuation on surfaces. This boundary condi-

tion has different equations in technical literature.7 In this

paper, the modified absorption factor is adopted to perform

the simulations because it has shown the widest range of

applicability,7 being a(r) the absorption coefficient of the

surface at position r.

With regard to the transmission loss modeling, Billon

et al.8 proposed a modification of the diffusion model equa-

tion to account for sound transmission between two rooms.

It consists of adding another boundary condition to the

model to consider the room coupling through a partition wall

with a term that represents the transmission of energy.

Therefore, the following equation was enunciated:

D1rw1 r; tð Þ � n̂ þ ca rð Þ
2 2� a rð Þ½ �w1 r; tð Þ

¼ csw2 r; tð Þ
4

on S12 ; (3)

where D1 is the diffusion coefficient of room 1, w1 and w2

are the corresponding energy densities at both rooms, and s
is the transmission coefficient of the partition wall with the

S12 area. Another similar equation appears for taking into

account the energy transfer from room 2 to room 1.

The main goal of this paper is to propose a new

approach to extend the diffusion model equation with ana)Electronic mail: jmnavarro@ucam.edu
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expansion of the modified boundary condition5 that includes

both transmission and absorption effects in a unified model.

This model is formally derived from the acoustic radiative

transfer equation and it allows simulating sound energy

attenuation due to absorption of the surfaces together with

sound energy propagation between different rooms of the

same scenario.

III. PROPOSED ENERGY ABSORPTION AND
TRANSMISSION BOUNDARY CONDITION

The diffusion equation model has been demonstrated to be

an approach of the acoustic radiative transfer equation. When

the sound radiance term is approached by using first order

spherical harmonics, the diffusion equation model is obtained.2

To express the boundary conditions in the acoustic radi-

ative transfer equation, the S2 space, i.e., the unit sphere

space, is partitioned into two hemispheres at each boundary

point, designating the hemisphere where (n̂ � ŝ) > 0 the pos-

itive hemisphere by Xþ, and the negative hemisphere by X–

analogously. The boundary conditions are also expressed in

terms of the sound radiance Lðr; ŝ; tÞ, which is defined as the

energy flow at position r per unit normal area per unit solid

angle per unit time t, where the normal area is perpendicular

to the flow direction ŝ. In the absence of sources at bound-

aries, see Fig. 1, the reflected sound radiance in a direction ŝ

as a consequence of a sound particle traveling from direction

ŝ
0 and striking over a surface at position rb is expressed as

Lðrb; ŝ; tÞ ¼
ð

X�
rðrb; ŝ

0; ŝÞLðrb; ŝ
0; tÞðŝ0 � n̂ÞdX0; (4)

where r is the surface scattering or reflecting function with

units of sr�1, defined as the probability that a particle at rb

moving in the ŝ
0 direction will be reflected into a new direc-

tion ŝ. The sound radiance leaving the surface is determined

by solving the incoming sound radiation integral over the

positive hemisphere Xþ. When no transmission is consid-

ered, Eq. (2) can be mathematically approximated from Eq.

(4), implicitly including the modified absorption factor.2

In order to expand these boundary conditions to include

energy transmission and the consequent transmission losses,

the following energy balance needs to be considered:

r þ sþ d ¼ 1; (5)

where r is the reflection coefficient and d accounts for the

dissipation losses. The absorption coefficient is defined by

a¼ s þ d and therefore, 0 � d � a.

Then, following the scheme in Fig. 1, let us consider

that a particle with sound radiance Lðr; ŝ0; tÞ is traveling

toward the direction ŝ
0 and it reaches a boundary surface at

point rb. Part of the radiance is reflected with a reflection

factor r in the direction ŝ, whereas some other part of the

radiance, with a proportion factor of s, passes through the

boundary with direction ŝ
00. In terms of the acoustic radiative

transfer model, it is expressed as follows:ð
Xþ

Lðrb; ŝ; tÞðŝ � n̂ÞdX ¼
ð

Xþ
rLðrb; ŝ

0; tÞðŝ0 � n̂ÞdX0

þ
ð

X�
sLðrb; ŝ

00; tÞðŝ00 � n̂ÞdX00;

(6)

which denotes the energy conservation where the incident

energy is divided into reflective and transmitted sound radi-

ance. It should be noted that the dissipation losses have been

considered to be negligible. Also, since the diffusion equa-

tion model assumes completely diffuse surfaces, the reflect-

ing factor (and then implicitly, the absorption and

transmission coefficients) is no longer directional dependent.

After integration, the diffusion approximation renders

an expression for the sound radiation function (see Ref. 2 for

details) and the boundary condition becomes

w1 rþb ; t
� �

4
�

J1 rþb ; t
� �
2c

� n̂

¼
sw2 r�b ; tð Þ

4
�

sJ2 r�b ; tð Þ
2c

� n̂ þ
rw1 rþb ; t
� �
4

þ
rJ1 rþb ; t
� �
2c

� n̂; (7)

where w1; J1 2 Xþ represents the energy density and energy

flow at the boundary in the source or emitter room, while

w2; J2 2 X� represents the adjacent or receiver room. The

points rþb 2 Xþ and r�b 2 X� are situated over both sides of

the boundary surface. It should be noted that despite the use

of the subindex for labeling rooms may be redundant, it has

been keep in order to be compared with Eq. (3).

By using the Fick’s law (J ¼ �Drx) and expressing

the reflection factor in terms of absorption coefficients

(r ¼ 1� a), it results in

D1rw1 rþb ; t
� �

� n̂ þ
caw1 rþb ; t

� �
2 2� að Þ

¼
csw2 r�b ; tð Þ
2 2� að Þ þ

s

2� að ÞD2rw2 r�b ; tð Þ � n̂: (8)FIG. 1. The surface partitions with the set of directions S3 at each point rb. ŝ 0

is the incidence angle, ŝ is the reflection angle, and ŝ
00 is the transmission angle.
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This equation accounts for both energy absorption and

transmission effects in a single equation. In order to validate

the versatility of the model, let us present several extreme

cases. If s¼ 0, meaning that only scattering effects are con-

sidered with no transmission, Eq. (8) becomes the modified

boundary condition [see Eq. (2)]. In the opposite case, when

an opening is modelled, meaning that the entire energy is

transmitted, e.g., s¼ a¼ 1, if an energy continuity is

assumed, w1ðrþb ; tÞ ¼ w2ðrþb ; tÞ, the equation becomes

D1rw1ðrþb ; tÞ � n̂ � D2rw2ðr�b ; tÞ � n̂ ¼ 0; (9)

that corresponds to an opening boundary condition,12 indi-

cating there is a flux discontinuity (or equivalently, energy

flow continuity) condition that accounts for the effects of

having a different diffusion coefficient in each room. The

validation of flux discontinuity equation for the acoustic dif-

fusion equation model can be found in Ref. 12.

IV. SIMULATIONS AND RESULTS

In order to validate the proposed model, several simula-

tions and comparisons have been conducted for this purpose.

To measure the transmission loss effect, the standardized

level difference DnT is used as Ref. 13,

DnT ¼ L1 � L2 þ 10 logðT2=T0Þ; (10)

where L1 and L2 are the sound pressure levels, expressed in

dB, measured in the primary/source and secondary/adjacent

room, respectively, T2 is the reverberation time of the sec-

ondary room and T0¼ 0.5 s is a reference reverberation time.

The insertion loss does not take into account the absorption

conditions of the rooms. Therefore, the authors propose to

use the DnT because it incorporates reverberation time

dependency and it is being applied in international stand-

ards13 for room isolation measurements and predictions. It is

demonstrated that if the total acoustic absorption area of the

secondary room equals 10 m2, the parameter DnT can be the-

oretically estimated as,

DnT ¼ Rþ 10 logð0:32V2=SsÞ; (11)

where R is the sound reduction index or transmission loss

that can be theoretically calculated as �10 log s, V2 is the

volume of the secondary room, and Ss is the surface of the

wall partition.

An implementation of the diffusion equation model

using a finite-difference time-domain model has been

applied for the simulations. The Dufort–Frankel scheme has

been chosen due to its unconditionally stable feature. In

order to provide accurate results, the spatial sampling fre-

quency in each direction has been set to Dfx; y; zg¼ 0.25 m

and the sampling frequency fs has been set to 20 kHz,

according to Ref. 11. The diffusion equation method models

the time-dependent propagation of the sound energy density

w(r,t) in a room. Using an impulse function as input, the

room impulse response is estimated. From the room impulse

response, it is possible to calculate the sound pressure level

and the reverberation time in both source and receiver

rooms.14

First, the rooms are both proportional and equidimen-

sional (4� 4� 4 m) to be in accordance with the statistical

approach. The separating surface has dimensions 4� 4 m.

The norm EN-12354,13 with regard to the primary room,

establishes that it needs to be highly reverberant; for that rea-

son the absorption coefficient in the primary room is set to

a1¼ 0.1. The source and receiver are situated in the central

point of their corresponding room.

In this test, the transmission loss R varies from 0.25 to

30 dB. Figure 2(a) plots the standardized level difference by

using the statistical theory [Eq. (11)], the proposed model

[Eq. (8)], and Billon’s approach [Eq. (3)]. The depicted

graphs in Fig. 2(a) show how both models show similar

behaviour to the statistical model for those values above

5 dB. However, it can be observed that there is an observable

difference between both numerical approaches due princi-

pally to the boundary conditions used in each model.

Although this difference is not very significant, it is expected

when using the modified boundary conditions, as stated in

Ref. 7.

An additional analysis has been conducted by altering

the secondary room dimensions to have 20 m on the y axis

[see Fig. 2(b)]. Despite the fact the results from both simu-

lation models present small differences as mentioned

above, for the scenario depicted in Fig. 2(b), the difference

between both simulation models and the statistical theory

increases when increasing volume. However, it has to be

noticed that this difference is mostly caused by the fact

that one of the dimensions is significantly larger than the

rest, becoming a so-called disproportionate room. It has

been demonstrated that the statistical theory does not

apply to this scenario whereas the diffusion equation

model does.15 The differences of the proposed model

when compared to Billon’s approach are mainly noticiable

when s tends to 1 and when the volume of the secondary

room becomes comparatively bigger than the primary

room. Again, these differences are in accordance with the

differences between the use of a modified boundary condi-

tion and Sabine’s formula. Therefore, the proposed model

allows to incorporate both the modified boundary condi-

tion and a transmission coefficient in an unified manner,

adding accuracy to the model for those scenarios where

the modified boundary condition provides significant

advantages, as reported by Ref. 7.

Another interesting scenario is to compare results from

both diffusion-based simulation methods when the coupling

surface has some opening area, which is the extreme case

when s¼ 1, and the rest is a closed area with absorption and

transmission losses. To test this situation, a second batch of

simulations has been carried out using the coupled-volume

system scenario in Ref. 12. In that paper, a model scaled

coupled volume is used to compare with the performance of

the diffusion equation model. The scope of that work was to

validate the diffusion equation model to predict the double

slope decay by varying the aperture width.

To model an aperture in a diffusion equation model, a

flux discontinuity condition is used, the same as that
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obtained in Eq. (9). The coupled volume scenario consists of

two rooms with highly diffuse walls and which dimensions,

absorption, and natural reverberation times are summarized

at Table I. In this particular case, two aperture widths have

been arranged of 40 and 60 cm, having in both cases a height

of 7.20 m, the same as the rooms. Sound source finds itself

in the lower-left corner of the primary room, the farthest

away from the coupling aperture. For the receiver positions,

a grid of three rows and ten columns is defined toward the

upper left corner of the primary room. More details about

the model setup and the finite difference implementation can

be found in Ref. 12.

Both diffusion-based simulation methods have been

implemented in the same model. In order to check if the pro-

posed boundary conditions meet the flow continuity, Fig. 3

plots the spatial variation of sound pressure level normalized

along the x axis (length) in two lines; one crossing the aper-

ture (y¼ 6.1 m and z¼ 3.6 m) and one crossing the wall

(y¼ 3.1 m and z¼ 3.6 m). It is observed in the solid curve

how the energy density gradually continues when the open-

ing is crossed. However, a discontinuity in the energy den-

sity is shown in the dashed curve due to the losses in the

wall as expected.16,

In Fig. 4, sound level energy decay responses of the

receiver situated at row 2 of column 1 for aperture width of

40 and 60 cm are shown comparing both models. Using the

energy decay profiles of both approaches, the parameters of

these temporal decays, reverberation times of both room T1

and T2, level differences DL, and turning point time can be

estimated. From the comparison of both numerical models

with respect to the measurement calculated parameters, see

Table II, several conclusions can be drawn. Regarding rever-

beration times, no significant differences are observed

between both models and the measurements. Moreover, both

approaches are significantly accurate and no observable dif-

ferences exist between both models. However, in terms of

DL and turning point time, there exists a remarkable differ-

ence between both numerical models and the measurements,

where the proposed model is discernibly more accurate,

whereas Billon’s approach tends to noticeably overestimate

both variables, with a bigger difference between experimen-

tal and estimated values. From the results, it is evidenced

that there is a strong resemblance in terms of decay times;

however, there is a significant difference in terms of level

difference and turning point,17 therefore the proposed model

provides better estimations for couple volumes analysis.

FIG. 2. The standardized level difference calculated by using the statistical

theory, the proposed model, and Billon’s approach where R varies from 0.25

to 30 dB and secondary room dimensions are (a) 4� 4� 4 m and (b)

4� 20� 4 m.

TABLE I. Dimensions, absorption, and natural reverberation times of the

coupled rooms model in Ref. 12.

Feature Primary Room Secondary Room

Dimensions 4.88� 6.32� 7.20 m 7.60� 9.76� 7.20 m

Volume 222.06 m3 534.07 m3

Absorption 0.41 0.22

Natural RT 0.47 s 1.17 s

FIG. 3. Spatial variation of sound pres-

sure level normalized calculated with

the proposed model along the x axis

(length) in two lines; one crossing the

aperture and one crossing the wall.
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V. CONCLUSIONS

In this work a mixed boundary condition for the diffu-

sion equation model for accounting energy transmission

between rooms has been presented. This new boundary con-

dition allows integrating both the absorption coefficients and

the transmission loss properties of the materials in a single

expression and it extends the application of the diffusion

model to complex scenarios. Moreover, this proposed model

takes advantage of the modified boundary condition, as a

more accurate alternative to Sabine or Eyring’s formulas. At

the same time, it incorporates the effects due to energy trans-

mission across openings and enclosures between different

domains or volumes.

The proposed boundary condition for sound energy

transmission has been derived using the radiative transfer

approach. Sound radiance allows to define, assuming

completely diffuse reflection, a new boundary condition that

includes reflection, absorption, and transmission of sound

energy.

Several simulations have been carried out to support the

proposed model. In the first scenario with coupled rooms by

a wall, results have been compared with previous Billon’s

boundary conditions approach and statistical theory.

Simulations have shown great agreement of both boundary

models with statistical theory when the dimensions of the

receiver room are proportionate. A negligible difference has

appeared for low transmission coefficients that is more pro-

nounced for a disproportionate room-shape.

The second set of simulations proposed a complex sce-

nario with coupled rooms by an aperture and an enclosure.

Spatial variation of energy density across the aperture and

across the wall gave validation to the energy continuity and

discontinuity, respectively, in the proposed boundary condi-

tion. Moreover, temporal energy room responses show that

there is a strong resemblance with experimental data in terms

of decay times between both boundary models. However,

the proposed model has provided a better estimation in terms

of level difference and turning point compared to experimen-

tal data.
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