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ASBRACT  

Title: Investigation of the role of AtNOGC1, a guanylyl cyclase in response 

to abiotic and biotic stresses. 

 

Agricultural production is one of the most important sectors which provide food for the 

growing world population which is estimated to reach 9.7 billion by 2050, thus there is a need 

to produce more food. Climate change, on the other hand, is negatively affecting major global 

crops such as maize, sorghum, wheat and barley. Environmental factors such as salinity, 

drought, high temperatures and pathogens affect plant production by oxidatively damaging the 

physiological processes in plants, leading to plant death. Poor irrigation used to combat drought 

result in salinasation, which is estimated to affect 50% of arable land by 2050. Plants have 

developed several mechanisms that protect them against stress and these include 

overexpression of stress responsive genes and altered signal transduction to change the 

expression of stress responsive genes, among others. Cyclic 3’5’ guanosine monophosphate 

(cGMP), a second messenger that is synthesised by guanylyl cyclase (GC), transmit signals to 

various cellular functions in plants during plant development, growth and response to abiotic 

and biotic stresses. Arabidopsis thaliana nitric oxide guanylyl cyclase 1 (AtNOGC1) is a 

guanylyl cyclase which upon activation by nitric oxide (NO) leads to the production of more 

cGMP. Cyclic GMP further activates protein kinases, ion gated channels and 

phosphodiesterase which mediate response to various stresses. 

 In this project the role of AtNOGC1 was investigated in response to abiotic and biotic stresses 

through analysis of its evolutionary relationships, promoter, gene expression and functional 

analysis via the viability assays in Escherichia coli (E.coli). Phylogenetic tree, exon-intron 

structure and conserved motifs were analysed using the Molecular Evolutionary Genetics 

Analysis (MEGA V.7), Gene Structure Display Server 2.0 (GSDS 2.0), and Multiple 

Expectation Maximisation for Motif Elicitation (MEME) tools respectively. AtNOGC1’s gene 
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expression was analysed by the Real-Time Quantitative Reverse Transcription Polymerase 

Reaction (qRT-PCR), whereas functional analysis was carried out using the cell viability 

(liquid and spot) assays to determine its ability to confer stress tolerance to E. coli.  

The phylogenetic tree showed the presence of an NOGC1 isoform, which might be due to 

splicing. Among the different species, AtNOGC1 share a very close relationship with soluble 

guanylyl cyclase (sGC) from insects indicating that they evolve from the same ancestor. Hence 

they might share the same function. Analysis of gene structure indicated that the genes from 

different species have different distribution of exon-intron structure. However AtNOGC1 and 

the NOGC1-like are closely related. The AtNOGC1 promoter is enriched with cis-regulatory 

elements that are responsive for development, response to abiotic stress and defence against 

pathogen attack. These results were supported by the expression analysis, which revealed that 

AtNOGC1 transcript is induced by salinity, drought, hormones (ABA, MeJA, and SA) and NO 

treatments, suggesting that AtNOGC1 might be required for protection during stress attack. To 

demonstrate its ability to protect cells against the effects of stress and oxidative damage, 

viability (spot and liquid) assays were conducted in E. coli cells that were transformed with an 

empty pET SUMO vector (control cells) and pET SUMO-AtNOGC1 (recombinant cells). 

Recombinant cells overexpressing AtNOGC1 were able to grow better under different stresses 

as compared to control cells overexpressing empty vector, thus demonstrating the ability of 

AtNOGC1 to protect cells against stresses. This study successfully demonstrated that 

AtNOGC1 shares a common ancestor with sGC from insects and is a multiple stress responsive 

protein especially during pathogen attacks and has the ability to protect E.coli cells against 

stress damage. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction  

Agriculture is the most important sector that contributes about 2.8% of the world economy and 

supports to the lives of many people (Alston et al., 2016). There are two different types of the 

agriculture, namely, crop and animal production. Crop production is arguably the most 

important sector that both animals and humans depend on for food. However the production 

of this sector is negatively affected by abiotic and biotic stresses and this is further exacerbated 

by climate change. Climate change leads to extreme weather that imposes stress on plants 

(Pereira, 2016). Abiotic and biotic stresses are the most severe factors causing detrimental 

effects on the plant’s life cycle, growth and development by disrupting their metabolic 

processes (Micco and Aronne, 2012).  

Salinity, drought, low and high temperatures are some of the abiotic stresses that mediate 

severe damage in plants, whereas biotic stresses are induced by pathogens (viral, fungal, 

bacteria and insects), and mechanical damage caused by the interaction of plants with other 

living organisms. The most abiotic stresses occur in the semi-arid and arid areas, with drought 

and salinity stresses being the most frequent stress conditions. It has been estimated that about 

50% of the arable land will be affected by salinisation by 2050 (Wang W, 2001), and together, 

the combination of both abiotic and biotic stresses can reduce crop yield by as much as 50% 

(Bray, 2000), thus affecting food security. 

The United Nations (UN) have reported that the current world population of 7.3 billion is 

expected to reach 8.5 billion by 2030 and 9.7 billion by 2050 (UN, 2015). High population 

growth leads to an increased demand for food, and together with the lack of arable land, these 

factors lead to food insecurity. The global hunger index map shows that comparatively most 
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African countries have been affected by hunger to a greater extent (Fig 1.1). Although South 

Africa is shown to be moderately affected, the projection reported by the Inter-governmental 

Panel on Climate Change (IPCC) found that crop production will be reduced by 50% in African 

countries by the year 2020 (IPCC, 2007) which calls for African countries to come up with  

strategies to manage hunger. 

 

Fig 1.1: Global Hunger Index map. In this map the world hunger is illustrated, which clearly shows that the 

African continent is the most affected region, with Zambia and central Africa at extreme alarming score as shown 

in ruby red and South Africa at moderate level shown in light orange (Adapted from Weltungerhilfe, 2017).  

 

Plants usually face the simultaneous effects of both abiotic and biotic stress conditions, which 

result in the production of potentially toxic or damaging substances that hinder their 

production, thus reducing crop production (Rejeb et al., 2014). Several strategies have been 

implemented to improve food security. One of the most important plans is the improvement of 

crop production. This relates primarily to the continuous development of crops, including 

breeding, screening and selection of existing germplasm, application of osmoprotectants and 

genetic engineering (Athar and Ashraf, 2009). For one to develop crops that can grow and 

produce under the harsh conditions, there is a need to understand the effects of stress on plants 

http://etd.uwc.ac.za/



3 
 

and their mechanism of stress tolerance and these will be discussed in this review with a focus 

on signalling abiotic and biotic stress responses. 

 

1.2 Abiotic stress 

Abiotic stresses are environmental factors that are unfavourable to the growth and 

development of plants such as drought, salinity, temperature and heavy metals amongst others 

(Zhu, 2017). 

1.2.1 Drought 

The stress imposed by drought on plants has resulted on major losses in agricultural production 

and is considered the most detrimental stress, which affects crop productivity by reducing the 

available water that is required by plants for their growth and development. A lack of water 

reduces cell division and expasion, differentiation and nutrient absorption which makes it 

difficult for plants to complete their life cycle. Lack of energy is caused by stomatal closure 

that impairs photosynthesis and this in turn causes overreduction of the electron transport chain 

which produces reactive oxygen species (ROS) that impair enzyme activity (Fathi and Tari, 

2016). Drought stress can affect crop yield by inducing phenology which shortens crop growth 

cycles. Short cycle is triggered by lack of water and results in early maturation of plant crops 

from the vegetative to mature phase (Desclaux and Roumet, 1996). Thus, if drought occurs at 

an early stage of plant development crop yield is reduced thus affecting food production 

(Farooq et al., 2012). 
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1.2.2 Salinity 

Soil salinisation is increasing due increased use of poor quality water for irrigation and is 

another factor reducing crop production (Zhang et al., 2010). Salinity stress induces both 

primary and secondary effects on plants. Primary effects include osmotic and ionic effects 

which hinder the plant’s ability to absorb moisture (Zhang et al., 2010) while secondary effects 

include nutrient deficiency, ion imbalance and oxidative stress. Primary effects are the first 

stage of salinity stress and osmotic stress that initiates various changes in physiological 

processes (secondary effects) such as disruption of membranes, nutrient imbalance, reduction 

in photosynthetic activity and an increase in ROS. ROS damages the normal metabolism of 

plant cells which include lipid peroxidation and damage to nucleic acids (Evelin et al., 2009). 

Excessive salt in plants results in high level of sodium (Na+) and chloride (CI -) ions which are 

absorbed into the cells and cause disorder. Na+ ions lower potassium (K+) content by inhibiting 

the uptake of K+ ions by cells. Thus affecting growth and development of plants (Gupta and 

Huang, 2015). The inhibition of  K+ ions leads to K+ starvation in plants and uptake because 

Na+ ions compete with K+ for binding sites on enzymes, which eventually leads to senescence 

(Blumwald et al., 2000). 

1.2.3 Temperature 

1.2.3.1 High temperature 

Plants can either be affected by low or high temperature, and as with drought and salinity 

stresses, extreme temperature results in physiological, morphological and biochemical changes 

in plants, affecting their production. High temperatures impose heat stress on plants which in 

combination with other abiotic stresses such drought results in metabolic changes in plants. 

Different changes have been reported on plants as a results of high temperature, such as 

reduced root assimilation rates, short life cycle, impaired defence mechanism and decrease in 
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production of proteins that are required for survival such as heat shock proteins (Wahid et al., 

2007; Barnabás et al., 2008; Bita and Gerats, 2013). 

1.2.3.2 Low temperature 

 Normally, most plants survive at temperature ranges between 10° C - 35° C and they can 

photosythesise and grow as low as 10° C. At temperatures below 10° C, photosynthesis is 

inhibited for tropical and subtropical plants. There are two major types of low temperature, 

including freezing and chilling (Oquist et al., 1983). The freezing and chilling of plants 

damages thylakoid membranes, and thylakoid membranes contain chlorophyll, which absorbs 

the light used for photosynthesis. Damage to the thylakoid membrane inhibits processes such 

as the electron transport chain and Adenosine triphosphate (ATP) synthesis, which are 

essential for photosynthesis. In addition, the stomata get blocked by chilling stress and 

responds to water deficits in plants is prevented (Simpson and Von Wettstein, 1989; Allen and 

Ort, 2001). 

 

1.2.4 Heavy metals 

Plants require certain heavy metals for their growth and development such as iron (Fe), copper 

(Cu) and Zinc (Zn). Excessive amounts of non-essential elements, including cadmium (Cd), 

chromium (Cr), nickel (Ni), and lead (Pb) can be toxic to plants and this directly or indirectly 

affects agricultural crop production (Shin et al., 2013). The direct toxic effects result in 

oxidative damage which impairs enzymes and damages to cell structure. Indirect toxic effects 

occur when heavy metals replace the essential elements required for plant development 

(Assche and Centrum, 1990). A high concentration of heavy metals in the plant reduces 

absorption and transportation of essential elements which impact growth and development. 

High levels of Cd have been reported to reduce germination rate, growth and photosynthesis 
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of barley and rice respectively and imposed negative effects on plant cell division (Cheng, 

2003). Both the direct and indirect toxic effects lead to the inhibition of plant growth and hence 

plant death (Asati et al., 2016). 

1.3 Biotic stress 

Biotic stress causes additional challenges in plant crops through changes in plant physiology 

and defence responses. Biotic stress, is usually caused by pathogens (viruses, fungi, and 

bacteria) while mechanical wounding is caused by the interaction of plants with other living 

organisms (Pandey et al., 2017). 

1.3.1 Pathogens 

Stress imposed by pathogens affects plant development and production by altering primary 

metabolism (Mcconville, 2014). Microorganisms become virulent as a result of the production 

of effector molecules, leading to virulence, for example, by inhibiting plant defense 

mechanisms that prevent the spread of virulent pathogen within plants (Jones and Dangl, 

2006). Pathogens alter plant carbohydrate metabolism and use them as their own source of 

energy and nutrients and this alteration increases the demand for assimilation by plants. 

Pathogens furthermore, cause chlorosis and necrosis as a result of pre-mature cell death in 

plants, probably because pathogens and plants compete for carbohydrates and this effect 

decreases photosynthetic assimalate (Berger et al., 2007). Several pathogens of concern to crop 

plants include fusarium species, tobacco mosaic and tomato spotted viruses amongst others. 

Fusarium species affect yield and quality of important crops such as maize by producing 

mycotoxins including zearalenone (ZON) and deoxynivalenol (DON) that contaminate crops 

(Czembor et al., 2015), whereas viruses cause necrotic local lesion on plants which hinder 

their growth and production (Scholthof et al., 2011) . 
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1.3.2 Wounding 

Plants wounding is another biotic factor that imposes negative effects on plant growth and 

metabolism. Plants are continuously exposed to mechanical damage as a result of injuries 

caused by insects, herbivores or abiotic stress such as heavy rain and wind. Injuries cause 

opening that allow pathogen invasion. Upon the entry of pathogens, the wounded tissue 

provides nutrient to the pathogens as a result of the chemical changes to the damaged area 

(Gimenez et al., 2018). During feeding, insects or herbivores  act as carrier of other pathogens 

such as virus, transmitting them into the plants. Wounding results in ion imbalance and 

production of ROS which in excess amount can damage the plants or cells (Caverzan et al., 

2012). 

 

1.4 Signalling as defence mechanism 

 One of the fundamental processes in cell biology is the ability of cells to interact with and 

adapt to their environment. This response is mainly achieved by expressing a variety of specific 

receptors sensitive to the composition of the surrounding environment on the cell surface. The 

receptors then transmit extracellular signals across membranes and provide the appropriate 

functional response through the activation of intracellular signalling pathways. In addition, 

cells have developed complex systems for integrating signals (Uings and Farrow, 2000). 

1.4.1 Hormonal responses 

During plant response to stress stimuli, signalling pathways are initiated that interact with 

various hormones including auxins, gibberellins (GA), abscisic acid (ABA), ethylene (ET), 

jasmonate (JA) and salicylic acid (SA) amongst others (Verma et al., 2016). ABA is known to 

play a key role in abiotic stress responses while SA, JA, and ET are associated with defense 

responses during pathogen and insect attack (Zhang et al., 1987; Bari and Jones, 2009).  
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1.4.1.1 Abscisic acid 

The role of ABA in plants has been well studied and it is shown to be associated with the 

maintenance of water balance by stimulating stomatal closure during salinity and drought 

conditions. The role of ABA was first observed when wilty tomato flacca mutant was deficient 

in ABA and its phenotype was rescued through exogenous ABA treatment which suggested a 

role for ABA in water relationships and its application on Xanthium resulted in stomatal 

closure (Jones and Mansfield, 1970; Tal et al., 1974). Several genes have been reported to be 

up-regulated by ABA, including zeaxanthin epoxidase and molybdenum cofactor sulfurase 

genes. Analysis of the promoters of an ABA-inducible genes the revealed multiple cis-

regulatory elements such as the well-known ABA-responsive elements (ABREs) and binding 

sites for basic leucine zipper transcription factors (Zhang et al., 1987; Zhu, 2011). In addition, 

ABA has been associated with pathogen responses; its effects range from resistance by 

inhibiting the entry of pathogen via the stomata to increasing susceptibility by interfering with 

defense responses mediated by other signalling pathways (Ton et al., 2009). 

1.4.1.2 Salicylic acid 

SA is a plant hormone that has been well studied in the biotic stress response (Vlot et al., 

2009). SA protects plant tissues against biotrophic and hemi-trophic pathogens such as 

Pseudomonas syringae and plants increase the accumulation of endogenous SA in necrotic 

lesions and surrounding tissues following infection with biotrophic pathogens. Accumulation 

of SA increases the level of pathogenesis related (PR) genes which are diverse and contain 

antimicrobial activity against pathogens (Loon et al., 2006). At optimal concentration, SA was 

reported to play a role in abiotic stress responses through its involvement in redox regulation. 

A high concentration of SA can reduce stress tolerance by disturbing the redox potential and 

its role in stomatal closure via the production of ROS has also been reported (Dong, 2001). 
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1.4.1.3 Jasmonates  

Methyl jasmonate (MeJA) and its free-acid ‘jasmonic acid’ (JA), collectively referred to as 

jasmonates, are important cellular regulators involved in various processes of development, 

such as germination of seeds, root growth, fertility, fruit ripening and senescence (Wasternack 

and Hause, 2002). In addition, these hormones have been associated with activation of defence 

mechanisms against necrotrophic pathogens and insects, and environmental stress such as 

salinity and drought (Cheong and Choi, 2003). Accumulation of MeJA in plants, results in the 

up-regulation of genes involved in jasmonate biosynthesis, cell-wall formation, photosynthesis 

and stress defences. Regulation of the JA responsive genes are mainly mediated by the MYC2 

transcription factor and it’s Defensin 1.2, marker genes that provides resistance to necrophic 

pathogens. (Solano et al., 1998).  

 

1.4.2 Nitric oxide  

Nitric oxide (NO) is a colourless, gaseous intra and extracellular messenger that is used as a 

signalling molecule in both plants and animals. NO transmit signals to cell signalling pathways 

that are known to play a vital role in physiological processes. It is highly diffusible with a low 

density (4.8 × 10-5 cm2 s–1 in H2O) and can pass freely through the hydrophilic and lipid phase 

of the cell membrane. NO has a half-life of about ˂ 6 sec (Bethke, 2004) and it can act as a 

physiological messenger that can react with other molecules rapidly including superoxide 

anions, metalloenzyme, and oxygen, which later produce nitrate and nitrite in aqueous 

environments. It reacts directly with complex metals and other radicals and indirectly with 

DNA, proteins and lipids as reactive nitrogen species (Wink and Mitchell, 1998). Free radicals 

are molecules that have unpaired electrons and are thus highly reactive. About three forms of 

NO are responsible for electron transfer namely the highly reactive (NO˙), the nitrosonium 
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cation (NO+) and nitroxyl anion (NO). NO interacts with O2 to produce NO2 which is later 

broken down to form both nitrite and nitrate in the aqueous solution (Cevahir et al., 2007). 

1.4.2.1 Nitric oxide synthesis  

In animal cells, NO is enzymatically produced by nitric oxide synthases (NOS) in an NADPH-

dependent oxidation manner that is well characterised. (Forstermann & Sessa, 2012). In plants, 

NO is synthesised either enzymatically or non-enzymatically in the cytosol, nucleus, 

peroxisome matrix and chloroplasts. NO can be produced by several non-enzymatic reactions 

(Wojtaszek, 2000), under acidic conditions. At low pH, nitrite (NO-
2) reacts with a proton to 

form nitrous acid (HNO2) and two molecules of  HNO2 which can then produce  NO and Nitrate 

Dioxide (NO2), which is later  converted into NO and oxygen (O2) as shown in equation 1 

(Environ et al., 2014).  

2NO2 + 2 H+ ↔ 2 HNO2 ↔ NO + NO2 + H2O ↔ ↔ 2 NO + ½……….1 

NO is also produced non-enzymatically through the reaction of ascorbate and HNO2 to produce 

dehydroascorbic acid and NO under acidic conditions (Bethke, 2004). NO synthesis can also 

occur via biological nitrification and denitrification, where under aerobic condition ammonia 

is converted into nitrate (nitrification), N2O and nitrogen gas under anoxic conditions. NO 

synthesis can also occur enzymatically through the production of L-citrulline from L-arginine 

catalysed by NOS-like enzymes. These enzymes are located in the chloroplasts and 

peroxisomes. Lastly, nitrate reductase (NR) is also known to synthesise NO, from nitrate and 

arginine. NR catalyses the conversion of nitrate to nitrite in higher plants and produces NO 

from nitrite using NAD(P)H both in vitro and in vivo (Cevahir et al., 2007). Figure 1.2 shows 

different pathways for the production of NO (Wojtaszek, 2000) 
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Fig 1.2: Production of NO in plants. The Fig illustrates the possible sources of NO. NO is synthesised by the 

action of NOS. From L-arginine in a reaction requiring O2 and NADPH and also from citrulline in an NADP+ 

dependent reaction. Other sources of NO are produced non-enzymatically from NO2
- either at acidic pH or using 

the energy of light absorbed by the presence of carotenoids, and enzymatically is catalysed by NAP (P) H 

dependent NR or NiR reductase. NO can also produce as a by-product of denitrification and nitrification 

(Wojtaszek, 2000). 

 

1.4.2.2 Biological roles of nitric oxide in plants  

1.4.2.2.1 Plant growth and development 

 

Nitric oxide (NO) is also a signalling molecule that initiates various responses to stimuli. NO 

functions as a growth regulator during plant development by promoting germination, leaf 

development, root growth and delaying the final stage of fruit maturation and transmission of 

signaling molecules. Itinteracts with plant hormones for example by inducing auxin synthesis 

during root development and influences the mature stage of senescence through ethylene 

biosynthesis. Exogenous application of an NO donor was reported to induce light dependent 

germination in Arabidopsis thaliana and lettuce (Beligni and Lamattina, 2000; Batak et al., 

2018). NO also promotes initiation of root tip expansion on lupine and maize (Kopyra and 

Gwóz, 2003; Quaggiotti, 2016). In addition NO initiated indole-3-acetic acid (IAA) induction 

of Mitogen-activated protein kinase (MAPK) cascades, which participate in adventitious root 

development (Lanteri et al., 2004). 
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1.4.2.2.2. The plant defence response against pathogens 

In plants, the defence response are classified into an innate and systemic response. The innate 

response is further divided into specific and non-specific. Non-specific is not well 

characterised, but it includes constitutive barriers such as morphological and structural 

barriers, chemical compounds and various enzymes that may be present or produced prior to 

infection. Innate and induced immune hypersensitive response (HR) is mostly used for 

pathogen and herbivorous insect attacks. NO causes cell death around the affected area of the 

leaf, thus preventing pathogens from multiplying. NO also plays an important role in response 

to pathogen attacks (Ferreira and Cataneo, 2010) by activating the expression of defence genes 

which leads to resistance required by plant (Romero-Puertas et al., 2004). Another stress which 

can rise as a result of both abiotic and biotic include mechanical damage through herbivores, 

wind, or flood. There are several studies which have reported high accumulation of NO during 

mechanical injury or wounding which was linked with the jasmonic acid defence responses 

(Huang et al., 2004). 

1.4.2.2.3. Abiotic stress 

 

NO as a signalling molecule plays a significant role in plants tolerance to abiotic stresses with 

the help of other signalling molecules such as cGMP and Ca2+ amongst others (Fig 1.3). NO 

plays a significant role in drought tolerance in plants through the induction of stomatal closure 

and reduction of oxidative stress. During water deficit NO can interact with other plant 

hormones including ABA, SA and Auxin. ABA is an important hormone that causes stomatal 

closure during stress by stimulating the production of NO which in turn initiates stomatal 

closure (Adimulam et al., 2017). Various studies have been performed to show the relationship 

between drought stress and NO. Based on the study reported by Gar cia-Mata and Lamattina 

(2001), exogenous application of NO on wheat leaves and seedlings increased stress tolerance. 
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NO was reported to interact with ROS during abiotic stress and in turn initiates stomatal 

closure through the synthesis of 8-nitro-cGMP (Joudoi et al., 2013). 

NO also plays a crucial role in salt stress tolerance and its biological role was demonstrated in 

Arabidopsis thaliana using Atnoa1 mutants (Zhao et al., 2007). Exogenous application of a 

NO donor (S-nitroso-N-acetylpenicillamine) to salinity stressed chickpea was able to mitigate 

the detrimental effects of salinity stress by regulating the synthesis of osmolytes and 

antioxidant enzymes (Ahmad et al., 2016). The activity of antioxidant enzymes was also 

induced in salinity stressed sour orange plants (Citrus aurantium L), which were treated with 

NO (Tanou et al., 2012).  

 

Fig 1.3 Schematic presentation of the relationship between NO and other signalling molecules during 

abiotic stresses. Via its interaction with other molecules, NO leads to cellular protection, against the effects of 

abiotic and biotic Stresses (adapted from Farnese, 2016). 
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1.5 NO induced downstream signalling pathways during stress responses in plants.  

There are different downstream signalling pathways employed by NO in response to 

environmental stresses. These include cGMP, calcium ion (Ca2+) and MAPKs and their 

interplay is well demonstrated in Fig 1.3. In both animals and plants, NO regulates Ca2+ 

channels which facilitates Ca2+ flux, whereas MAPK cascades are crucial in eukaryotes for 

transducing the perception of environmental stimuli into internal signalling pathways 

(Rodriguez et al., 2010). NO also regulates cGMP signalling by inducing the production of 

cGMP from guanosine triphosphate (GTP) catalysed by guanylyl cyclase enzymes which 

functions in signal cascade (Denninger and Marletta, 1999). 

1.6 Cyclic nucleotides 

Cyclic nucleotides (cNMPs) were discovered in the 1950s (Isner, Nu and Maathuis, 2012) and 

they are some of the most well characterised signalling systems which transport signals to the 

cytosol in response to environmental or hormonal stimuli. There are two well studied cNMPs 

identified that act as second messengers, namely 3’, 5’-cyclic adenosine monophosphate 

(cAMP) and cyclic 3’5’ guanosine monophosphate (cGMP) (Newton & Smith, 2004). cytidine 

3’, 5’-cyclic monophosphate (cCMP) and cyclic 2',3' uridine phosphate (cUMP) are  less 

studied (Gomelsky, 2011). The cNMP's are sythesised from nucleotide-5′-triphosphates, in the 

reaction catalysed by various enzymes including guanylyl cyclases and adenylyl cyclases. 

Once they have been synthesized and the message transduced, they are metabolized by 

phosphodiesterases (PDEs) that hydrolyses cyclic nucleotides to nucleotide 5′-

monophosphates and a variety of cyclic nucleotide receptor proteins (Linder and Schultz, 

2010).  
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1.6.1 Guanylyl and Adenylyl cyclases  

Guanylyl cyclases (GCs) and Adenylyl cyclases (ACs) are enzymes that catalyse the synthesis 

of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) 

from guanosine 5’ triphosphate (GTP) and adenosine triphosphate (ATP), respectively. Both 

enzymes play important roles in signalling pathways (Gehring et al., 2017). These enzymes 

are divided into different groups which form the nucleotide cyclase family, these include 

soluble guanylyl cyclase (sGC), particulate guanylyl cyclase (pGC) and adenylyl cyclase (AC), 

all which are involved in wide range of signal transduction mediated by cyclic nucleotides 

(Denninger and Marletta, 1999). Soluble GC is a heterodimeric, hemoprotein that can bind to 

NO and result in the increased production of cGMP (see Fig 1.4). Unlike sGC, ACs are 

heterotrimeric G-proteins and monomeric and are activated by a small isoform of diterpene. 

There are two types of AC’s which are either transmembrane helices or intracellular enzymes. 

Particulate GC is a membrane-bound enzymes and plays a role in the development of the 

structure and function of sGC. pGC’s are characterised by having two domains, extracellular 

peptide receptor and also an intracellular catalytic domain. Although different, the mechanism 

of activation of pGC and sGC is known to be the same (John, 1994). Among the three enzymes, 

sGC is the only conclusively proven receptor for NO which triggers many physiological 

responses by producing cGMP (Denninger and Marletta, 1999). 

1.6.2 cAMP 

cAMP is a second messenger and plays the important roles in signalling pathways in both 

animals and plants. cAMP synthesis occurs when adenylate cyclases (ACs) catalyse the 

convention of ATP to cAMP. In higher plants cAMP’s function is in conclusive because its 

levels in plants were reported to be far lower than that in animals. Nevertheless, there are data 

to support a role for cAMP in plants for example, Vicia faba which revealed that the outward 

http://etd.uwc.ac.za/



16 
 

potassium (k+) current increase depend on the intracellular application of cAMP and it was 

said to occur through cAMP-regulated protein kinase (Li, 1994).  

1.6.3 cGMP 

Another second messenger is the cGMP that was discovered in the 1960s in both prokaryotes 

and eukaryotes. In plants it plays an important role in signalling, plant development and 

responses to abiotic and biotic stress (Gross and Durner, 2016). Similar to NO the role of 

cGMP in plants is not well demonstrated. Cyclic GMP is synthesised from guanosine 

triphosphate (GTP) through the action of guanylyl cyclases (GCs) in response to stimuli. It is 

involved in many cellular responses,  including protein kinase activity, cyclic nucleotide-gated 

ion channels and cGMP regulated cyclic nucleotide phosphodiesterase (Denninger and 

Marletta, 1999; Gehring et al., 2017). 

 

 Fig 1.4. Nitric Oxide signalling transduction pathway. NO binds to the sGC heme which leads to cGMP 

synthesis and to downstream signalling cascade adapted from (Denninger and Marletta, 1999).  

 

1.7 The NO/cGMP signalling pathway 

The NO/cGMP pathway was first discovered in the 1980’s, and there are several systems that 

provided concrete evidence that cGMP is a NO signalling intermediate (Neill et al., 2003). This 
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signalling pathway is well studied in animals, playing major roles in smooth muscle relaxation 

and blood pressure regulation (Archer et al., 1994; Mergia and Stegbauer, 2016). The pathway 

is initiated when NO binds to the sGC resulting in the production of high levels of cGMP from 

guanosine triphosphate (GTP). This increase in cGMP allows the sGC to transport NO the 

signal to the downstream elements of signalling cascades (see Fig 1.4) that stimulate or initiate 

various responses. The signal generated can normally be terminated by PDEs enzymes 

(Denninger and Marletta, 1999).  

In plants this pathway is also known to occur and it plays an important role during root 

development, gene expression regulation, stomatal closure and the defence response against 

pathogens (Durner et al.,1998; Neill et al., 2008; Xuan et al., 2012). The relationship between 

NO and cGMP in plants was first reported by Durner et al 1998 where Nicotiana tabacum was 

treated with NO donors that triggered the expression of defence genes including phenylalanine 

ammonia lyase (PAL) and pathogenesis related 1 (Durner et al., 1998). The NO-cGMP 

pathway was also reported to be involved in the development of adventitious roots in cucumber 

(Xuan et al., 2012). After several studies on the interplay between NO and cGMP in plants, it 

was concluded that essential NO signalling players also exist in plants such as cGMP, but that 

metabolism is not really understood (Gross and Durner, 2016). 

1.7.1 Identification of enzymes involved in plant cGMP biosynthesis 

Towards the search of enzymes that are involved in the synthesis of cGMP in plants, several 

studies were conducted using motifs searches, which resulted in the identification of proteins 

that were subsequently demonstrated to have GC’s activity in vitro (Ludidi and Gehring, 2003; 

Kwezi et al., 2007, 2011; Meier et al., 2010; Mulaudzi et al., 2011). Several GC enzymes in 

higher plants were identified based on the strategy that the catalytic centre of the GCs was in 

part conserved across different kingdoms. Search motifs were designed and tested based on 
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various functional amino acids present in the GC catalytic sites from animals and lower 

eukaryotes. About four molecules were identified in higher plants and confirmed to have GC 

activities, these include the Arabidopsis thaliana guanylate cyclase1 (AtGC1) a soluble protein 

with a GC domain in the N terminus but it does not contain a heme binding domain that is 

important for NO binding (Ludidi and Gehring, 2003). The Brassinosteroid receptor (AtBRII), 

a leucine-rich repeat receptor like kinase (LRR-RLK) GC identified using the initial search 

motif [RKS][YFW][GCTH][VIL][FV]X[DNA]X[VIL]X{4}[KR]. It contains a GC domain 

which is found within the intracellular kinase domain and showed GC functional activity in 

vitro (Kwezi et al., 2007). Wall-associated kinase-like10 (AtWAKL10) was confirmed to 

contain GC activity and respond to biotic stress (Meier et al., 2010). The phytosulfokine 

receptor (PSK) is known to stimulate growth of the plant and it has GC activity both in vitro 

and in vivo (Kwezi et al., 2011). A novel Arabidopsis thaliana nitric oxide binding guanylyl 

cyclase protein (AtNOGC1) annotated as a flavin-containing monooxygenase (At1g62580) 

was identified by searching the Arabidopsis thaliana sequence database for the key residues in 

the GC catalytic center and the heme-binding (HNOX), is the only proven protein that have 

GC activity and has ability to bind NO through the heme binding domain as shown 

electrochemically (Mulaudzi et al., 2011).  

After the discovery and characterisation of AtNOGC1, to date only one study indicated the 

involvement of a sGC “NOGC” in the plant process of stomatal closure (Joudoi et al., 2013). 

This study supported that indeed AtNOGC1 is an NO-mediated protein and without its 

presence ABA cannot activate stomatal closure as shown in Fig 1.5. Thus ABA induces NO 

production through binding to sGC that mediates the cGMP pathway. cGMP induces 8-nitro- 

cGMP by reacting with reactive nitrogen species( RNS) that activate SLOW ANION 

CHANNEL 1(SLAC1).This review chapter indicated the need for research into abiotic and 

biotic stress responses mediated through the NO/cGMP signalling pathway. But for that to 
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occur, a functional characterisation of AtNOGC1 needs to be thoroughly conducted in order to 

understand its biological role in plants.  

 

Fig 1.5. Proposed model of stomatal closure under light stress. ABA induces the production of NO which 

mediate cGMP pathway by binding to sGC. cGMP induces 8-nitro-cGMP by reacting with RNS which activate 

production of SLAC1, thus activating stomata closure adapted from (Joudoi et al., 2013). 
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1.8. Hypothesis and Aim 

NO together with cGMP are known to be involved in many metabolic processes involving plant 

growth, development and stress responses (Domingos et al., 2015). AtNOGC1 is required in 

the NO/cGMP pathway during plant development, abiotic and biotic stresses. But minimum 

information regarding its role in plants is available. Although for some years the synthesis of 

cGMP via the NO activated manner was not yet reported. Hence Mulaudzi et al., (2011) 

reported the presence of a sGC that has an HNOX motif followed by its role in stomatal closure 

confirmed in planta (Joudoi et al., 2013), thus linking AtNOGC1’s role in drought stress. 

However, the biological role of AtNOGC1 relative to other stress alleviation is not yet 

elucidated. The aim of this study was to investigate the biological role of AtNOGC1 in response 

to abiotic and biotic stresses. 

1.10 Objectives of the study 

 To conduct evolutionary relationships and promoter analysis of AtNOGC1 

 To analyse the expression of AtNOGC1 gene in response to abiotic stresses, hormones 

and NO treatments. 

 To study the ability of AtNOGC1 to confer stress tolerance to Escherichia coli cells.  
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CHAPTER 2 

CHARACTERISATION OF AtNOGC1 USING AN IN SILICO 

APPROACH 

ABSTRACT: AtNOGC1 is the first plant protein containing a guanylyl cyclase (GC) activity 

and an HNOX motif that senses nitric oxide (NO) with higher affinity than oxygen (O2) from 

higher plants. Unlike other soluble guanylyl cyclases (sGC) from mammals, insects and 

nematodes, which synthesise a 100 fold excess of cyclic 3’,5 guanosine triphosphate (cGMP), 

AtNOGC1 only synthesised 2 fold excess of cGMP upon NO activation. Additionally 

AtNOGC1 was demonstrated to be involved in stomatal closure, however evolutionary history 

with other GC’s and the cis-regulatory elements associated with this gene have not been 

reported to date. In this study phylogenetic tree, gene structures, conserved motifs and the cis-

regulatory elements of AtNOGC1 were analysed using the Molecular Evolutionary Genetics 

Analysis (MEGA V.7), Gene Structure Display Server (GSDS), and Multiple Expectation 

Maximisation for Motif Elicitation (MEME) and PlantCARE tools respectively. Phylogenetic 

tree analysis revealed that AtNOGC1 has a common ancestor with other GC’s from plants, 

nematode, and mammals, with the closest observed to be an insect sGC “AGAP010398-PA”. 

The tree also showed that AtNOGC1 and NOGC1-like are isoforms, probably due to splicing. 

The gene structure displayed that exon-intron structures within genes of the same organisms 

were similarly distributed. The AtNOGC1 promoter sequence is enriched with cis-acting 

regulatory elements required for development, stress response and defence against diseases. 

These results suggested the potential of further characterising AtNOGC1 towards crop 

improvement under different stress conditions through generation of transgenic plants.  

Keywords: In silico, Cis-regulatory elements, Phylogenetic analysis, Guanylyl Cyclase, Gene 

structure
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2.1 Introduction 

Bioinformatics is an advanced technology that is currently being used in research to analyse 

biological data. This is as a result of large amount of data generated from genomic and 

proteomic studies (Raza, 2012). Genomic data is the most essential information used to study 

plant genetic variation at molecular level. The genome of various plants have been sequenced, 

including Arabidopsis thaliana (Thale cress), Zea mays (Maize), Sorghum bicolor (Sorghum), 

and Oryza sativa (rice) amongst others (The Arabidopsis Genome Initiative, 2000; Bedell et 

al., 2005; Yuan, 2005; Pereira, 2016). Bioinformatics has been used in vast biological scientific 

areas, including transcriptomics, microarray, regulatory sequence and computational 

proteomics (Rhee and Dickerson, 2006). Computational analysis include gene expression, 

protein-protein interaction, gene classification and evolutionary history, predictions of 

structures and functions of unknown genes (Raza, 2012). 

Evolutionary relationships provide the foundation to conduct many gene comparison research, 

by studying the gene or protein sequences of genetically related organisms (Green et al., 2010). 

The DNA sequence of different organisms has a genetic marker that is used to report the 

evolutionary relationships and phylogenetic positions. The evolutionary relationship is 

concluded from phylogenetic analysis and is represented as a tree-like diagram. The tree has 

estimated pedigree which shows the scale on how organisms are closely related (Waikagul and 

Thaenkham, 2014). The statistical analysis of molecular history and construction of 

phylogenetic tree are done by the use of software’s such as phylogeny inference package 

(PHYLIP), MEGA and phylogenetic analysis using parsimony (PAUP) (Swofford, 2002; 

Ropelewski et al, 2010; Kumar et al, 2016). However, phylogenetic analysis does not take 

consideration of all information provided by genomic sequences especially the exon-intron 

structure and conserved motifs. An exon is a specific region of the nucleic acid sequence 

referred to as a gene coding region and contains protein synthesis information. Between exons 
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are introns which do not code for proteins and they are removed by RNA splicing. The exon-

intron structure is generally known to be conserved in homologous organisms, therefore 

comparison of the exon-intron position on the sequence can also provide clarity on the 

evolutionary history (Pavesi et al., 2008). 

During the plant’s life cycle, its growth and development are controlled by expression of genes 

which mediate various responses by activating signalling pathways that activate proteins 

required for plant development. The expression of genes under different conditions is 

controlled and regulated by promoters. Plant promoters are categorised in groups as 

constitutive, inducible and tissue-specific promoters. Constitutive promoters induce the 

expression of genes during the development of transgenic plants, while inducible promoter 

initiate gene expression in response to stress. Tissue-specific related promoters initiate gene 

expression based on the type of tissue (Saranya and Kanchana, 2016). 

The AtNOGC1 gene as discussed in chapter 1, is the first nitric oxide binding guanylyl cyclase 

protein from a higher plant “Arabidopsis thaliana”. It was identified using both the GC and 

heme nitric oxide/oxygen-binding domain (H-NOX) search motifs. The protein was annotated 

as a flavin-containing monooxygenase, and this was confirmed electrochemically and 

biochemically (Mulaudzi et al., 2011). Studies on evolutionary history between the AtNOGC1 

and other GC’s related proteins together with its promoter sequence analysis have not yet been 

reported to date. In this study we report for the first time the evolutionary history of AtNOGC1 

and identified cis-regulatory elements responsible for AtNOGC1’s gene expression. 
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2.2 Material and Methods 

2.2.1 Evolutionary relationship of AtNOGC1 

To study the evolutional relationship of AtNOGC1 protein, the phylogenetic analysis was 

performed. The analysis was performed by comparing GC’s from different species including 

mammals, nematodes, insects and plants. Accession numbers of GC’s from different species 

were selected from publicly available data. Sequences were retrieved from the National Center 

for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/ ) in FASTA format. 

Blast search using AtNOGC1 (NP_176446.1) as query sequence was also performed and only 

Flavin-containing monooxygenase protein families with high similarity to AtNOGC1 were 

selected (93% - 82%). Multiple sequence alignment of selected protein sequences was 

performed using ClustalW (Thompson, Higgins and Gibson, 1994). The Molecular 

Evolutionary Genetics Analysis (MEGA V.7) was used for phylogenetic and molecular 

evolution analysis. The evolutionary history was interfered using the Neighbor-joining method 

and the distance was measured using poisson correction method (Kumar et al., 2016).  

2.2.2. Analysis of gene structure and motifs 

The gene structure of GC’s from mammals, nematodes, insects, lower (chlamydomonas) and 

higher (Arabidopsis) plants and a few selected Flavin - containing monooxygenase proteins 

were analysed using the Gene Structure Display Server 2.0 (GSDS 2.0) 

(http://gsds.cbi.pku.edu.cn/). To determine for the presence of exons and introns, the 

corresponding genomic and coding sequences were submitted to the GSDS server (Hu et al., 

2015). To analyse conserved motifs, the Multiple Expectation Maximisation for Motif 

Elicitation (MEME) was used with parameter settings: maximum number of motifs, 10; and  

maximum width, 100 (Bailey et al., 2009) 

 

http://etd.uwc.ac.za/

https://www.ncbi.nlm.nih.gov/
http://gsds.cbi.pku.edu.cn/


25 
 

2.2.3 Analysis of AtNOGC1 promoter sequence  

2.2.3.1 Germination of Arabidopsis thaliana  

Arabidopsis thaliana Columbia-0 ecotype seeds were collected from Dr Lara Donaldson, 

University of Cape Town (UCT). Seeds were surface sterilised in 95% ethanol for 5 min and 

rinsed with autoclaved double distilled water (ddH20). Surface sterilisation was further 

performed using freshly prepared bleach solution (20% bleach and 0.1% tween) for 5 min 

followed by rinsing with autoclaved ddH2O2. Seeds were then incubated at 4°C to synchronise 

germination for 24 hrs. Seeds were then germinated on half strength Murashige and Skoog 

(MS) media containing 3% sucrose and 1% plant tissue culture agar at pH 5.7. The germination 

was incubated in the growth room at 22°C under standard controlled light conditions (16 hrs 

light, 8 hrs dark cycle; 100-150 µmol.m-2 .s-1) for 18 days. Seedlings were constantly monitored 

for any irregularities and contamination. 

2.2.3.2 Genomic DNA isolation  

Genomic DNA was isolated from 100 mg 18 days old Arabidopsis thaliana seedling using the 

plant genomic DNA extraction mini kit (Cat# FAPGK 001-1, Favorgen Biotech Corp, Ping-

Ting, Taiwan) following the manufacture’s protocols. The presence of the DNA was confirmed 

by analysing on a 1% agarose gel and quantification using the Nanodrop™ 2000c 

Spectrophotometer (Thermo Scientific, USA). 

2.2.3.3 Polymerase Chain Reaction (PCR) amplification 

To isolate AtNOGC1 promoter (pAtNOGC1), approximately 1.3 Kb promoter region up 

stream of the AtNOGC1 sequence containing 200 bp sequences overlapping AtNOGC1 

sequence was amplified from the genomic DNA using Polymerase Chain Reaction (PCR). The 

PCR was conducted in a total reaction volume of 25 µL containing 12.5 µL 2x Dream Taq Hot 

Start green master mix (Cat# EP1713, Thermo scientific, USA), 0.5 µL (10 µM) of each 

http://etd.uwc.ac.za/



26 
 

forward (5’CTGTTGATACATATGTTTGGCTTTTTGATTCTTTTATTGG 3’) and reverse 

(5’TTCAGAATTGTCGACCCTCACGGCGGAGCTCTC 3’) primers and 1 µg of template 

genomic DNA. The following PCR conditions were used: 95°C initial denaturation for 2 min 

(1x cycle), 35 cycles of : 95°C denaturation for 30 sec, 60°C annealing for 1 min, 72°C 

extension for 1 min. Final extension at 72°C for 10 min followed by cooling at 4°C. The PCR 

product was analysed on a 1% agarose gel and viewed using the ENDURO™ GDS Gel 

Documentation System (Labnet international, USA, Edison). 

2.2.3.4 The pAtNOGC1 purification and DNA sequencing 

The PCR products were excised from the agarose gel under a UV trans-illuminator lamp and 

purified using the Gene JET Gel Extraction Kit (Cat# K0691, Thermo scientific, USA) 

following the manufacture’s protocol. The purified DNA product was quantified using 

NanoDropTM 2000c Spectrophotometers (Thermo Scientific, USA) and sent to Inqaba 

Biotechnical Industries (Pty) Ltd (South Africa, Pretoria) for sequencing. Sequencing was 

carried out using gene specific primers to obtain the full length nucleotide sequence. 

2.2.3.5 Insilico analysis of AtNOGC1 promoter  

The pAtNOGC1 sequence, which is the sequence upstream of the AtNOGC1 locus number 

“Atlg62580” was retrieved from The Arabidopsis Information Resource (TAIR) center 

(Lamesch et al., 2012) and used as an input for the publicity available plant cis-regulatory 

elements (PlantCARE) tool (Lescot, 2002). The same sequence was used to design forward 

and reverse primers and amplified using PCR as described in section 2.2.3.3. The amplified 

and sequenced pAtNOGC1 was also analysed on PlantCARE. 

2.2.4 Agarose gel electrophoresis  

DNA was analysed by electrophoresis on 1% agarose gels. The agarose gel was prepared by 

adding 1 g of SeaKem® LE Agarose to 100 ml 1X TBE buffer and boiled using microwave 
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followed by pouring into a gel casting tray. About 1 µL GelRed® Nucleic Acid Gel Stain (Cat# 

S11494, Thermo scientific, USA) was added to the loading buffer and 2 µL of the loading 

buffer was mixed with 10 µL of the sample DNA and loaded onto the gel. The DNA ladder 

(Cat# A610141, Ampliqon, Denmark) was loaded on the first lane of the gel. The agarose gel 

was analysed using the ENDURO™ GDS Gel Documentation System (Labnet international, 

USA, Edison). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



28 
 

2.3 Results 

In order to demonstrate the biological role of AtNOGC1 in plants, characterisation of its 

molecular evolutionary relationships, gene structure (exon-intron), motifs and promoter 

analysis were conducted. 

2.3. 1. Phylogenetic analysis 

The analysis were done by searching the literature and database to retrieve protein sequences 

that contain GC activity and proteins from the Flavin-containing monooxygenases family 

specifically those with high sequence similarities (93% - 82%) to AtNOGC1. About 28 protein 

sequences were retrieved from NCBI database using protein accession numbers, with about 5 

protein sequences from each group (mammals, nematodes, insects, and higher plants) whereas 

only 3 protein sequences from lower plants (Chlamydomonas) that contain GC activity were 

used. In addition about 5 protein sequences from the Flavin-containing monooxygenases 

family were also retrieved from BLASTP, due to their highest sequence similarity with 

AtNOGC1(82% - 93%). The retrieved protein sequences were aligned using ClustalW 

followed by construction of the phylogenetic tree. The phylogenetic tree was constructed based 

on 28 protein sequences as shown in Fig 2.1. The multiple sequence alignment revealed no 

conserved motif in all protein sequences (Fig 6.1, See appendix I). The phylogenetic tree 

revealed that AtNOGC1 evolved from the same ancestral origin with Flavin-containing 

monooxygenase (FMO) and GC proteins presented in this study (Fig 2.1). Looking at the 

pattern of the branching, AtNOGC1 shared a closely common ancestral origin with organisms 

in branch E (Insects) and D (GC in higher plants). It was also shown that AtNOGC1 share the 

same branch (branch F) with AtGC1 and AgapAGAP010398 “an uncharacterised protein” 

from plants and insects respectively. There was also a close correlation between AtNOGC1 
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and the uncharacterized "NOGC- like" protein with approximately 93% similarities.

 

Fig 2.1 Phylogenetic analysis of AtNOGC1 protein with other GC and FMOs as reported from MEGA V7. 
The inferred phylogeny tree was derived from the protein amino acid sequences aligned by ClustalW using 

Neighbor-joining method and the distance was done by poisson correction method. (A) H. sapanies 

(NP_00089.3), B. taurus (NP_001179680.1), Musculus NPR2 isoform 2 (NP_001342395.1), Musculus NPR2 

isoform 1 (NP_001179680.1), D. noveangliae (XP_015431590.1), (B) R. gucy1a1 (AA41206.1), CYG12 

(XP_001700847), CYG11 (XP_001700546.1), CYG15 (XP_001701038.1), (C) CBR-Gcy-31(XP_002643872.1), 

Partial Gcy31 (NP_001024890.1), Partial Gcy31 (NP_001317860.1), C. elegas (NP_001024888.1), (D) LRRLK 

(NP_001236710.2), AtWAK10 (NP_178086.1), PSK1 (NP_178330.1) AtBR11 (NP_178330.1), (E) 

BetaT5ub56D (NP_523795.2), Dana1gf12619 (XP_001958879.1), A. aegypti Tubulin beta1 (XP_001656025.1), 

M. domestica Tubulin beta1 (XP_00587425.1), (F) AtGC1 (AAM51559.1), AGAP010398-PA (XP_311551.4), 

E. salgugineum FMO (XP_024005062.1), C. sativa FMO (XP_010418250.1), A. thaliana (NP_176523.4), 

NOGC-like (NP_001321123.1), AtNOGC1 (NP_176446.1).  
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2.3.2 Exon-intron structure and motifs analysis 

To analyse the exon-intron structures of the AtNOGC1 gene, GC’s proteins from mammals, 

nematodes, insects and plants including a few selected Flavin-containing monooxygenases 

(FMO’s) were analysed by submitting coding sequences and their corresponding genomic 

DNA sequences to the GSDS online tool (Fig 2.2). GSDS revealed that out of 28 enquiries 

only 3 (C. sativa, AtBRII, and PSKR1) lack introns and the rest of genes have several exons 

and introns. The analysis also revealed that these genes have different exon-intron structures 

including their position and size but genes from the same organisms have similar number of 

exons and introns. About 4 genes from the FMO’s family including AtNOGC1 have 7 exons 

and 6 introns, however the FMO from C. sativa only have 1 exon. Genes such as AtBRII, LRR-

RLK and AtWAK10 from plants have a few number of exons and introns, nevertheless AtGC1 

have 9 exons. CYG and GCY genes from nematodes and Chlamydomonas have high number 

of exons ranging from 10 to 14. In addition betaT5ub56d and Agap-AGAp0101398 from 

insects have 2 exons, but other genes from mammals including musculus NPR2, B. taurus and 

H. sapiens NPR1 were reported to have the highest number of exons. 
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Fig 2.2. Exon-intron structure of GC and FMOs proteins. The genomic and coding region on the sequences 

were visualised using the Gene Structure Display Server. The accession numbers of the genes used in this analysis 

were the same as those represented in figure 2.1.  
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Table 2.1: Summary of exon and intron gene structure numbers  
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As shown in Fig 2.3 the MEME online tool was used to analyse conserved motifs within 

AtNOGC1, FMO’s and GC’s from different organisms. A maximum of 10 motifs were 

analysed within the protein sequences. Motif analysis revealed that AtGC1, AtBRII, LRR-RLK 

and AtWAK10 did not contain any conserved motif. In this study only motif 5, which encodes 

for K-oxygenase super family domain was identified and in AtNOGC1, other FMO’s , PSKR1 

and Agap_AGAp0101398 protein sequences. Motif 2 and 8 were almost conserved across all 

proteins except in BetaT5ub56D, Tubulin beta-1, and Dana1gf12619 protein sequences but 

they did not encode for any domain. Other motifs were only conserved in specific members 

including motif 7 which was only conserved in FMOs, mammals and chlamydomonas. 

 

 

Fig 2.3 Representation of 10 conserved motifs between AtNOGC1, plants FMOs, GC’s from 

Chlamydomonas, nematodes, insects and mammals. Conserved motifs were analysed using MEME online tool 

on 28 protein sequences using the following parameters, maximum 10 motifs and 100 length. The colour blocks 

represent different motifs identified and their positions. 
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2.3.2 Isolation of AtNOGC1 promoter and cis-regulatory elements analysis 

Based on the study that was recently conducted demonstrating the role of AtNOGC1 in ABA 

and NO-induced stomatal closure (Joudoi et al., 2013), in addition to its role in sensing NO 

(Mulaudzi et al., 2011), to date, not much has been reported about the functional role of 

AtNOGC1 especially its response to stress. In this study approximately 1.5 Kb fragments that 

include 200 bp sequence upstream of the promoter was isolated from Arabidopsis thaliana 

seedlings and successfully amplified using PCR as shown in lane 3 by the band at 

approximately 1.5 Kb in Fig 2.4.  

 

Fig 2.4 Germination of A. thaliana seedlings and analysis of the AtNOGC1 promoter. (A) 18 days A. thaliana 

seedlings growing on the MS medium and (B) 1% agarose gel showing PCR amplication of pAtNOGC1. Lane 2: 

negative control, Lane 3: pAtNOGC1 at ∼ 1.5 Kb, M: 10 kb DNA ladder.  

 

The isolated fragment was sent for sequencing and successfully aligned with the AtNOGC1 

promoter sequence from TAIR showing 98% similarity using the nucleotide BLAST (Fig 

6.2Appendix I). Using PlantCARE online tool, both the raw and experimental pAtNOGC1 

sequences were analysed for the presence of cis-regulatory elements. About 16 cis-regulatory 

elements were identified and are summarised in table 2.2, but major investigation indicates that 

pAtNOGC1 is induced in response to light, drought, pathogen and during plant development, 

as indicated by the presence of cis-regulatory elements such as  3-AF1, ABRE, MBS, Box-W1, 

TCA, TGACG-motif and P-box. 
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Table 2.2: The detected Cis-regulatory elements from AtNOGC1 promoter with their position 

and corresponding functions. 
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2.4 Discussions 

Since the discovery of GC’s in plants, AtNOGC1 is currently the only GC with the HNOX 

motif that binds NO with higher affinity than O2 (Mulaudzi et al., 2011). In another study done 

to prove the existence of NO dependent GC protein in plants, AtNOGC1 was shown to be 

involved in stomatal closure in an NO-dependent manner (Joudoi et al., 2013). To emphasise 

more on the role of sGC in planta, over expression of rat sGC in A. thaliana resulted in 

increased cGMP levels and improved the response to pathogen treatment (Hussain et al., 2016). 

Thus elucidation of the biological role of AtNOGC1 in response to stress is important and may 

be beneficial towards crop improvement.   

2.4.1 Phylogenetic analysis 

The existence of the GC activity in plants is reported to be low as compared to animal, which 

has raised questions on its physiological relevance in plants (Ashton, 2011). The evolutionary 

history, gene structure and motifs analysis of the latest identified plant GC (AtNOGC1) in 

comparison to other organisms was studied using the MEGA V.7, GSDS and MEME tools 

respectively. In addition, promoter analysis was also investigated in this study using the 

PlantCARE online server. 

Phylogenetic analysis revealed that AtNOGC1 has evolved from the same common ancestors 

with all GCs analysed in this study (Fig 2.1), as evidenced by AtNOGC1 sharing the same 

branch with other GC from mammals, nematodes, insects, lower (chlamydomonas) and higher 

plants (Arabidopsis). The relationship might suggest that these proteins are from closely related 

ancestral origin and may have the same activity with some similar functions although belonging 

to different family groups. Analysis also revealed that AtNOGC1 and NOGC1-like proteins 

are paralogous isoforms since they share about 93% sequence similarities and diverge within 

the same species. The reference protein sequence NOGC-like (NP_001321123) was confirmed 

by searching on NCBI and is currently annotated as a Flavin-containing monooxygenase (FMO 
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GS-OX-like) protein with the same gene name as AtNOGC1. Both proteins are from the same 

A. thaliana chromosome 1 (NC_003070.9), thus the paralogous isoform of AtNOGC1 maybe 

as a results of alternate splicing that arise from cellular mechanism removing all the introns 

and combining all the exons. A eukaryotic cell can produce different proteins from one gene 

by combining the exons in different arrangements (Nilsen and Graveley, 2010). Apart from the 

isoform identified, phylogenetic tree revealed that AtNOGC1 also share a close relationship 

(88% similarities) with the partial sGC protein AGAP010398-PA from Anopheles gambiae, 

suggesting an evolutionary history with insects.  

2.4.2 Gene structure and conserved motifs 

Evolutionary history does not consider all information from the sequence such as exon-intron 

structures. Analysis of exon-intron structure provides clarity in unresolved phylogenetic 

relationships (Pavesi et al., 2008). In this study, the exon-intron structure of AtNOGC1 in 

comparison with other genes was analysed by submitting their coding and corresponding 

genomic sequences to GSDS for structure and motifs analysis. Similar distribution of exon-

intron structure within genes of the same organisms was observed suggesting the similar role 

that these genes might play. Motif 5 was only conserved in AtNOGC1 and in the 

uncharacterised “AGAP010398-PA” protein from Anopheles gambiae. These results support 

the phylogenetic tree analysis which showed that AtNOGC1 share a close relationship with 

AGAP01398-PA. The shared motif between AtNOGC1 and AGAP01398-PA may suggest 

similar function during binding of dinucleotides such as Flavin adenine dinucleotide (FAD), 

Nicotinamide adenine dinucleotide (NAD) and NADP (Hanukoglu, 2015). In addition, other 

motifs including 2 and 3 were conserved across most proteins. Although they did not encode 

for any characterised domain, it might suggest their similarities. The comparison between the 

two protein AtNOGC1 and NOGC-like as in Fig 2.2, indicated that they have the same exon-

intron distribution and same number, but the first exon on NOGC-like protein started at a 
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different size of approximately 100 bp. These findings suggest the need to characterise NOGC-

like proteins in order to understand their similarities, towards the identification of other novel 

GC’s in higher plants.  

2.4.3 Cis-regulatory elements 

Analysis of cis-regulatory elements of AtNOGC1 gene provided insights toward elucidating 

and undestanding its function in plants. In silico promoter sequence analysis performed in this 

study revealed the presence of well known cis-regulatory elements which play vital roles in 

plant stress defense and development.  

For example, light responsive elements (3-AFI, BoxI, BoxII, Box4 and GATA-motif ) which 

plays a significant role in determining the characteristics of light responsive promoter in plants 

were identified (Chattopadhyay et al., 1998). AtNOGC1 promoter is enriched with ABRE 

elements which are responsible for abscisic acid responsiveness. Since ABA is a plant 

regulatory hormone that is involved in regulating many physiological processes such as 

stomatal closure thus providing adaptation of plants to stress (Sah et al., 2016).These support 

the role of AtNOGC1 in stomatal closure as demonstrated previously (Joudoi et al., 2013). 

These cis-regulatory elements suggest that  the ABA pathway in response to stress drives the 

expression of AtNOGC1 during stomatal closure. The presence of MeJA responsiveness 

elements (CGTCA and TGACG-motif) also suggest the role of AtNOGC1 during jasmonic 

acid responses to regulate growth, development and responses to abiotic and biotic stress 

(Munemasa et al., 2007). The presence of MYB site which is responsible for driving the 

expression of plant genes during dehydration also revealed that AtNOGC1 might be required 

during drought stress (Milena et al., 2014). The presence of fungal elicitor (Box-WI) and 

salicylic acid (Box-W1 and TCA-element) elements also suggest that AtNOGC1’s expression 

might be elevated during pathogen attacks and other stress responses (Vlot et al., 2009). In 

addition, the presence of gibberenllin-responsive (P-box) elements which regulate key aspect 
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for plant growth and development may also suggest the involvement of AtNOGC1 during plant 

growth and development (Daviere and Achard, 2013). In general these results suggest a role of 

AtNOGC1 in stress response, growth and development. 

The phylogenetic, exon-intron structure and motifs analysis of AtNOGC1 provided an insight 

into understanding its function and evolutionary history. The phylogenetic analysis revealed 

that AtNOGC1 shares the common ancestors with mammals, insects, nematodes, 

chlamydomonas and other plant GC’s from higher plants, although their exon-intron structures 

are different. AtNOGC1 share a close relationship and K-oxygenase super family motif with 

the AGAP010398-PA protein from insects. These results also indicated that AtNOGC1 is the 

multiple stress inducible gene with about 16 cis-regulatory elements that are known to 

influence responses to abiotic and biotic stresses and hence plant growth and development. 

Therefore it remains important to characterise AtNOGC1 gene in response to abiotic and biotic 

stresses and demonstrate its role in plant growth and development.  
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CHAPTER 3 

Expression patterns of AtNOGC1 gene in response to salinity, drought 

stress, hormonal and nitric oxide treatment. 

Abstract: Multiple stresses, both abiotic and biotic result in oxidative stress which damages 

the plant’s physiological and metabolic processes. However plants use several mechanisms to 

reduce the effects of stress and adapt to those harsh conditions. Cellular signalling through the 

action of guanylyl cyclases (GC) is one of the most important systems known to mediate 

physiological and metabolic processes. However in plants its mechanism is not well 

understood. Cyclic 3’, 5’ guanosine monophosphate (cGMP), a second messenger that is 

synthesised by GC’s is involved in cellular signalling growth, development and response to 

abiotic and biotic stresses. In this study the expression pattern of AtNOGC1 was analysed in 

response to salinity, drought, hormone and nitric oxide (NO) treatments, on Arabidopsis 

thaliana tissues using the Real-Time Quantitative Reverse Transcription Polymerase Reaction 

(qRT-PCR). Expression pattern analysis revealed that AtNOGC1 is expressed in both roots 

and shoots, but its expression is highly elevated under several stress treatments. The highest 

level of expression was observed when seedlings were treated with both abscisic acid and 

methyl jasmonate (BA+MeJA), followed by salicylic acid (SA), ABA, NO and then abiotic 

stress treatment. The increased expression of AtNOGC1 gene in response to several stresses 

suggesting that it might be required for a protective role when plants are attacked by multiple 

stresses through the NO/cGMP pathway.  

Keywords: AtNOGC1, abiotic and biotic stress, expression pattern, hormones, signalling, and 

tolerance. 
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3.1 Introduction 

Plants are constantly attacked by abiotic and biotic stresses simultaneously, which severely 

affect their growth and production (Pandey et al., 2015). These stresses include, drought, 

salinity, extreme temperature and heavy metals, and they affect physiological and metabolic 

processes in plants through the overproduction of reactive oxygen species (ROS) resulting in 

oxidative damage to cells. Due to the results of stress, plants have developed various protective 

mechanisms against the effects of stress and some are mediated by secondary messengers, 

signalling cascades and chemical responses (Huber and Bauerle, 2016). These mechanisms 

activate ion channels, protein kinases, ion gated channels, plant hormones, signalling molecules 

such as the regulation of ROS and reactive nitrogen species (RNS) during stress. 

Phytohormones such as SA, ABA and MeJA amongst others are activated and minimise the 

effects caused by stress (Rejeb et al., 2014) though inducing the expression of numerous stress 

responsive-genes. The response of ABA is necessary to maintain water balance during drought 

and salinity stress through stomatal closure, whereas SA and MeJA play a role during 

pathogenic attack (Jones and Mansfield, 1970; Bari and Jones, 2009; Vlot et al., 2009). MeJA 

is also related to plant developmental stages such as germination and growth (Wasternack and 

Hause, 2002).  

RNS including nitric oxide (NO) and peroxynitrite (ONOO-), amongst them NO is the most 

widely studied (Squadrito and Pryor, 1998). NO is an important secondary messenger that 

influences many physiological processes in plants including development, germination, 

responses to abiotic and biotic stresses (Krasylenko et al., 2010). NO is a well-known for its 

role in activating the soluble guanylyl cyclase (sGC) which leads to an increased production of 

Cyclic 3’, 5’ guanosine monophosphate (cGMP) from GTP. cGMP is an important signalling 

molecule and a second messenger that controls several cellular functions in prokaryotes and 

eukaryotes. In plants cGMP signalling pathways are involved in many cellular responses 
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including light transduction, plant development, defense and hormone responses. In higher 

plants cGMP was associated with the role in stomatal opening and closure in the presence of 

NO. In plants the recent identification of NO-dependent guanylyl cyclase (GC) candidate, 

AtNOGC1 (Mulaudzi et al., 2011) has paved a way in understanding the mechanisms between 

NO and cGMP in plants. Some of the developments include the role of AtNOGC1 in stomatal 

closure (Joudoi et al., 2013). However, characterisation of this gene in response to several 

stresses has not been demonstrated. In this chapter, the expression of AtNOGC1 in response to 

salinity, drought, hormone and NO treatments was demonstrated.  
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3.2 Material and Methods 

The expression pattern of AtNOGC1 was determined in Arabidopsis thaliana seedlings that 

were treated with salt, mannitol, hormones (SA, ABA, MeJA) and NO using the Quantitative 

Real- Time Polymerase Chain Reaction (qRT-PCR). Sodium chloride (NaCl), forms part of 

the main salts in the soil and for drought treatment, mannitol which induces water stress was 

used to mimic droughts stress. ABA was used since AtNOGC1 was associated with ABA 

induced stomatal closure, while SA and MeJA were used to mimic biotic stresses.  

3.2.1 Germination and treatment of Arabidopsis thaliana  

The germination and growth conditions were carried out as described in chapter 2, section 2.2. 

3.2.1.1 Stress treatments 

 Eighteen day (18) old A. thaliana seedlings were transferred into a newly prepared half 

strength MS media supplemented with 250 mM NaCl and 300 mM mannitol followed by 

harvesting the root and shoot materials at different time intervals of 0, 3, 12 and 24 hrs. 

3.2.1.2 Hormone treatments 

Hormonal treatment was done by transferring 18 day old seedlings to the half strength MS 

media supplemented with 10 µM ABA, 10 µM MeJA and 0.5 µM SA. The effect of hormonal 

combination was studied by transferring seedlings into the MS media that was supplemented 

with 25 µM ABA, 300 µM SA and 100 µM MeJA as it was previously described (Axelos et 

al.,1992) and treated at different time points of 0, 3, 12 and 24 hrs.  

3.2.1.3 NO treatment 

About 50 µM of sodium nitroprusside dehydrate (SNP) (Cat# 13451, Sigma Aldrich, SA) was 

added to the MS media and 18 day old seedlings were exposed to the SNP treatment for 24 hrs.  
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3.2.1.4 Preservation of plant material 

After treatment, all plant tissues (roots and shoots) were quickly frozen using liquid nitrogen 

and stored at -80°C until needed. 

3.2.2 RNA isolation and cDNA synthesis 

Total RNA was isolated from both treated and untreated (control) Arabidopsis tissues using 

the FavorPrep™ Plant Total RNA Purification Mini Kit (Cat# FAPRK001-1, Favorgen Biotech 

Corp, Ping-Ting, Taiwan) and about 1 µg of total RNA was complementary DNA (cDNA) 

synthesised using the superscript IV reverse transcriptase kit (Cat# 18090050, Invitrogen, SA). 

Quantification of both the RNA and cDNA was done using the Nanodrop 2000c 

spectrophotometer (Thermo Scientific™, USA). All products were used according to the 

manufacturer’s instructions. 

3.2.4 Transcript analysis of AtNOGC1 under different stress conditions 

To study the expression pattern of AtNOGC1 transcript, qRT-PCR was performed on the 

LightCycler® 480 Real time PCR Instrument II using the LightCycler® 480 SYBR Green I 

Master kit (Roche Diagnostics, South Africa) according to the manufacturer’s protocol. The 

reaction volume was adjusted to 10 µL containing 1 µL cDNA (diluted 1:10), 5 µL SYBR 

green mix, 0.2 µL of each 10 µM forward and reverse primer (0.2 µM final concentration) and 

RNase free water to a final volume of 10 µL. Three biological and technical replicates were 

performed on each treatment and expression levels were normalised using ACTIN2 and SAND 

as reference genes. Primers were designed using  Primer 3 (V.0.4.0) online tool (Koressaar and 

Remm, 2007) and primer information is shown in table 3.1. PCR cycling conditions set on the 

LightCycler® 480 are listed in table 3.2.  
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Table 3.1 List of primers used for qRT-PCR analysis 

Primer  Forward sequence Reverse sequence Accession 

number 

AtNOGC1 GGCCACTCTGTCGTTGTTTT TTGTGGATGATGGTTCGGA NM_001334040.1 

 

 

ACTIN2 GAAATCACAGCACTTGCACC AAGCCTTTGATCTTGAGAGC NM_00133858.1 

SAND CAGACAAGGCGATGGCGGATA GCTTTCTCTCAAGGGTTTCTGGGT NM_128399.4 

 

Table 3.2 The PCR cycling conditions 

Program Name Target (°C) Hold Cycles 

Pre-incubation 95 °C 10 min 1X 

Amplification 95 °C 10 sec  

AtNOGC1 and SAND 55 °C  10 sec  

ACTIN2 57 °C 10 sec 45X 

 72 °C 20 sec  

Melting (Default conditions)  1X 

Cooling (Default conditions)  1X 

 

3.2.5 Data analysis 

All the values were reported on the bar graph, which represents an average of the mean from 

the three independent biological replicates. To check for any significant differences between 

the mean of samples, student t-test was performed between the control samples (0 hr.) and 

treated samples and the p-values were calculated by GraphPad Prism (available online at 

http://www.graphpad.com). The p-value of less than 0.05 (p < 0.05) was regarded as 

http://etd.uwc.ac.za/

http://www.graphpad.com/


46 
 

significant. In order to understand how much AtNOGC1 gene was up-regulated or down-

regulated under stresses, as compared to the control. Fold change (log2) ratio was calculated 

between the control and treated samples. The log2 of down-regulated genes had values between 

0 and 1, whereas overexpressed genes had a value of 1 and above. 
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3.3 Results 

In order to study the expression pattern of AtNOGC1 under different stress conditions (salinity, 

drought, hormonal and NO), transcript analysis were conducted using the qRT-PCR. The 

transcriptional analysis were done in tissue specific to include roots and shoots at different time 

points, fold changes and the p-value were calculated to understand the significance in the data 

(appendix table 6.1). 

3.3.1 AtNOGC1 expression pattern analysis 

After treatment of the 18 day old seedlings, RNA was successfully isolated and reverse 

transcribed into cDNA. The threshold cycle (Ct) of all three technical replicates was generated 

automatically by the LightCycler® 480.SW 1.5.1 software. The quantity of each experimental 

DNA samples was extrapolated from standard curves generated by Microsoft Office Excel 

2013 from gene specific PCR correlation coefficient (R2) from 7 fold series dilution of cDNA. 

Expression pattern of AtNOGC1 under normal condition and after treatments was analysed 

and graphically represented by the graphpad. Under control conditions, AtNOGC1 was 

expressed in both the root and shoot tissues as shown in Fig 3.1.  

 

Fig 3.1 Expression pattern of AtNOGC1 transcript. Expression in the roots and shoots under normal 

conditions. ACTIN2 and SAND were used as reference genes to normalise the data. Error bars represent the 

standard deviation (SD) calculated from three biological replicates. 
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3.3.1.1 Expression pattern of AtNOGC1 in response to abiotic stresses 

To determine whether abiotic stress induces AtNOGC1 gene, the transcriptional responses 

were analysed from seedlings that were treated with 250 mM NaCl and 300 mM mannitol for 

salinity and drought stress respectively. Expression of AtNOGC1 on both salinity and drought 

treated plants was either upregulated or downregulated differently in both roots and shoots at 

different time points (Fig 3.2). The expression of AtNOGC1 significantly increased at 3 hrs in 

the roots of 250 mM NaCl treated seedlings as indicated by a log2 = 1.82 (p = 0.005) (Fig 3.2. 

A), followed by a significant decrease at 3 hrs in the shoots (log2=0.43; p = 0.0106), both tissues 

at 12 hrs (p < 0.0010; 0.0010) and the roots at 24 hrs (p < 0.0010; 0.0093). Overally statistically 

significant difference was observed in mannitol treated plants. However shoots at 3 hrs  and 

roots at 12 and 24 hrs roots there was an increase in the AtNOGC1 transcript as indicated by 

log2 = 1.92, 0.2270 and 0.08 (p > 0.05) respectively (Fig 3.2. B). 

 

 

Fig 3.2. Expression pattern of AtNOGC1 transcript in the roots and shoots under salinity and drought 

induced treatments at different time points (0, 3, 12, 12 hrs). (A) Salinity stress induced by 250 mM NaCl, (B) 

Drought stress induced by 300 mM Mannitol at different time points. ACTIN2 and SAND were used as reference 

genes to normalise the data. Error bars represent the SD calculated from three biological replicates and 

significance differences between control and treated samples were determined using the t-test shown as*** = p ≤ 

0.0001, ** = p ≤ 0.001 and * = p ≤ 0.01. 
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3.3.1.2 Expression pattern of AtNOGC1 in response to hormonal treatments 

To determine whether hormones induce the expression of AtNOGC1 gene, the transcriptional 

responses was analysed from seedlings that were treated with 10 µM ABA, 10 µM MeJA and 

0.5 µM SA (Fig 3.3). Upon treatment of A. thaliana seedlings with 10 µM ABA, AtNOGC1 

transcript levels increased significantly from log2 = 0.5 to log2 = 2.5 and 2.0 at 3 hrs (p < 

0.0001) in the roots and shoots respectively, followed by down regulation at 12 and 24 hrs (p 

< 0.0001). Significant decrease in AtNOGC1 transcript was observed at 3 hrs roots (p = 0.0004) 

and 24 hrs (p = 0.0003) shoots upon treatment with MeJA, however log2 = 1.82 showed a slight 

increase in the expression at 12 hrs shoots. A significant increase in AtNOGC1 expression was 

observed when seedlings were treated with 0.5 µM SA, at 3 hrs as indicated by a change in 

log2 = 0.5 to approximately 3 (p = 0.004; p < 0.0001), followed by a significant down regulation 

at 12 hrs (p < 0.0001; p = 0.0004) and finally a significant increase at 24 hrs (p = 0.0194; p = 

0.0009) in both tissues. The influence of the hormone combination on AtNOGC1 gene 

expression was also analysed (25 µM ABA and 300 µM SA, and 25 µM ABA and 100 µM 

MeJA) (Fig 3.4). ABA + MeJA resulted in the down regulation of AtNOGC1 at 3 hrs roots, 12 

hrs and 24 hrs shoots. However a significant increase was observed for the shoots (p = 0.0003) 

and roots (p = 0.0475) at 12 and 24 hrs respectively as shown by a log2 = 0.5 which change to 

7.5 expression level. But ABA+SA resulted in a significant increase in expression at 3 hr roots 

and 12 hrs from log2 = 0.5 to 2 (p = 0.0004), but slight decrease at 24 hrs in both tissues. 
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Fig 3.3. Expression pattern of AtNOGC1 transcript in the roots and shoots under different hormonal 

treatments at different time point (0, 3, 12, 12 hrs). (A) 10 µM ABA, (B) 10 µM MeJA, (C) 0.5 µM SA 

treatment of A. thaliana seedlings at different time points respectively. ACTIN2 and SAND were used as 

references genes to normalise the data. Error bars represent the SD calculated from three biological replicates and 

significance differences between control and treated samples were determined using t-test shown as *** = p ≤ 

0.0001, ** = p ≤ 0.001, and * = p ≤ 0.01. 
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Fig 3.4. Expression pattern of AtNOGC1 transcript in the roots and shoots under different hormone 

combination at different time points (0, 3, 12, 12 hrs). (A) MeJA+ABA (100 µM and 25 µM), (B) ABA+SA 

(25 µM and 300 µM) at indicated time respectively. ACTIN2 and SAND were used as reference genes to 

normalise the data. Error bars represent the SD calculated from three biological replicates and significance 

differences between control and treated samples were determined using t-test shown as *** = p ≤ 0.0001, ** = p 

≤ 0.001, and * = p ≤ 0.01 .  

 

3.3.1.3 Expression pattern of AtNOGC1 in response to NO treatment 

In order to study the expression pattern of AtNOGC1 in response to NO, 50 µM SNP was 

exogenously applied to MS media as the NO donor. The transcriptional analysis was done on 

50 µM SNP treated seedlings on roots and shoots. A significant increase on the roots was 

observed with log2 = ~ 8.87 (p = 0.0003) as compared to the control and down-regulation on 

the shoots (Fig 3.5).  

 

Fig 3.5. Expression pattern of AtNOGC1 transcript in the roots and shoots under NO treatments. ACTIN2 

and SAND were used as reference genes to normalise the data. Error bars represent the SD calculated from three 

biological replicates and significance differences between control and treated samples were determined using t-

test shown *** = p ≤ 0.0001, ** = p ≤ 0.001, and * = p ≤ 0.01.  
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3.4 Discussions 

The NO/cGMP pathway in plants transmits a signal to the elements of signalling cascades, 

which activates various processes such as protein kinases, cyclic nucleotide channels and 

activation of phosphodiesterases. This pathway plays the major roles during stomatal closure, 

root development and gene expression regulation (Durner et al., 1998; Neill et al., 2008; Xuan 

et al., 2012; Joudi et al., 2013). AtNOGC1 is an enzyme that has a GC activity and synthesise 

high levels of cGMP from GTP upon activating by NO as known with soluble GC’s, 

additionally AtNOGC1 has the ability to promote stomatal closure in an NO dependent manner 

(Joudoi et al., 2013). As the NO/cGMP pathway is involved in various physiological processes 

including plant developments and stress responses. It is therefore important to study the 

expression of the genes that are related to this pathway in response to abiotic and biotic stresses. 

In this study the transcriptional pattern of AtNOGC1 was studied in response to abiotic (salinity 

and drought), hormone and NO treatments. Whereas, NaCl and mannitol were used to induce 

salinity and drought stress in plants respectively. Various plant hormones play the major roles 

in plant development and response to stresses. Thus in this study only stress related hormones 

were used especially biotic stress related including ABA, MeJA and SA. The expression 

patterns were analysed by looking at the fold change (log2) between control and treated 

samples.  

3.4.1 Effects of abiotic stresses on the expression pattern of AtNOGC1 

Salinity and drought stress induce osmotic and ionic stresses which result in oxidative damage, 

but there are several genes that play roles in signalling networks that induce stress tolerance 

through minimising oxidative damage (Neto et.al., 2004; Parihar et al., 2015). AtNOGC1 a 

novel gene that was characterised in this study to determine its ability to minimise oxidative 

damage caused by stress in Arabidopsis thaliana. At the entire tissue level, cGMP has been 

associated with reducing Na+ influx in several species. Thus relieves salt stress, while direct 
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cellular measurement of cGMP showed a rapid increase in cellular cGMP following salt and 

osmotic stress (Donaldson et.al., 2004; Maathuis et al., 2001). In this study, the expression 

analysis of AtNOGC1 revealed that it was expressed in both tissues under normal conditions, 

but was slightly induced at 3 hrs in the roots (log2 = 1.82) and 24 hrs in the shoots (log2 = 1.3) 

that were treated with NaCl. A significant decrease in expression pattern was observed at 12 

hrs for the NaCl treated roots and shoots (Fig 3.1 A). Early up-regulation in AtNOGC1 

expression pattern in roots may suggest AtNOGC1’s involvement in controlling ion absorption 

and transport to shoots, thus regulating homeostasis and water status of the root ion. While 

gene activity changes over time, with increased expression in the shoots at 24 hrs suggesting 

its role in preventing Na+ toxicity during turgor maintenance (Munns, 2005).  

Mannitol lowers the water potential of the medium, inhibiting water absorption by plants 

(Claeys et al., 2014). In this study, AtNOGC1 was associated with maintaining water potential 

of A. thaliana seedlings that were treated with mannitol as shown by its early induction in the 

shoots after 3 hrs (log2 = 1.92) and down-regulation in the roots. Up-regulation of AtNOGC1 

in shoots might be due to the maintenance of water since this is the most sensitive indicator for 

stress and water maintenance through stomatal closure (Munns, 2005). This study support the 

involvement of AtNOGC1 during stomatal closure (Joudoi et al., 2013), thus maintaining water 

during drought stress. Although no statistically significant difference was observed between 

the control and experiment (p > 0.05), this could be because of the outlier number that results 

in larger error bars (Cumming et al., 2007). Taken together, these results are in agreement with 

the promoter analysis which showed the presence of abiotic stress responsive cis-regulatory 

elements including myeloblastosis (MBY) binding site and TC-rich repeats. Up-regulation of 

AtNOGC1 during NaCl and mannitol treated samples suggest the protective role played by 

AtNOGC1 in response to salinity and drought stresses. 
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3.4.2 Interaction of AtNOGC1 and hormones 

ABA is a multifunctional phytohormone that regulates various responses in plant growth, 

development and abiotic stress responses (Bücker et al., 2017). The second messenger cGMP 

is involved in the ABA pathway which initiate stomatal closure during stress responses 

(Dubovskaya et al., 2011). The functional relationship between NO production and ABA 

during drought stress was reported by various studies indicating that ABA stimulates the high 

production of NO (Adimulam et al., 2017; Freschi, 2013; Santisree et al., 2015) .Hence 

regulate NO-stomatal closure through AtNOGC1 (Joudoi et al., 2013). In this study, the 

exogenous application of ABA significantly induced the expression pattern of AtNOGC1 in 

both roots and shoots as indicated by log2 ratio of 6.4 and 3.6 respectively at 3 hrs (p < 0.01) 

(Fig 3.2 B). A decrease in the expression pattern of AtNOGC1 was observed at 12 and 24 hrs 

in the ABA treated seedlings for both tissues. These results correlate with the study done on 

the rice stress-responsive protein phosphate 2C (PP2C) [OsPP108] when seedlings were treated 

with ABA (Singh et al., 2015). Thus indicating that the interaction between AtNOGC1 and 

ABA is required at early stages of plant growth and during stomatal closure for protection 

against drought stress. These results are in accordance with the previous study (Chapter 2) 

which showed the presence of ABRE element in the AtNOGC1 promoter suggesting a role for 

ABA in regulating AtNOGC1’s expression. 

MeJA is another important hormone that regulates the expression of various genes that are 

involved in plant growth, development, abiotic and biotic stresses responses (Creelman and 

Mullet, 1997), especially during necrotrophic pathogen and insects responses (Verma, 

Ravindran and Kumar, 2016). Based on the study reported by Isner et al., 2012, MeJA induces 

a change in the concentration of cytoplasmic cGMP levels (Isner et al., 2012). AtNOGC1 

promoter analysis indicated the presence of MeJA cis-regulatory element, suggesting the role 

of AtNOGC1 in necrotrophic pathogen and insects responses. In this study the exogenous 
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application of MeJA had a slight effect on the expression pattern of AtNOGC1 with the highest 

expression pattern at 12 hrs in shoots as indicated by a log2 ratio of 1.85. Although the fold 

change was not statistically significant (p > 5) across different time points, AtNOGC1 might 

be required during the MeJA/cGMP pathway (Cheong and Choi, 2003; Hossain et al., 2014).  

SA plays a critical role in activating plant defence responses following a pathogen attack 

(Verma, Ravindran and Kumar, 2016). Highly significant increase in the expression pattern of 

AtNOGC1 was recorded in both shoots and roots at 3 hrs with log2 = 7.12 and 6.41 (p < 0.01) 

respectively upon treatment of A. thaliana with SA (Fig 3.2) and a significant decreased in the 

expression was shown at 12 hrs (p < 0.01) and slightly decreased at 24 hrs for both tissues. 

These results correlate with the promoter analysis which revealed the presence of SA, fungal 

elicitor and defense responsive elements including TCA, Box-W1 and TC-rich repeats 

suggesting the important role of AtNOGC1 during pathogen attack. Additionally, the 

interaction between AtNOGC1 and SA is required to activate downstream processes at an early 

stage of pathogen attack as evidenced by the highest expression at 3 hr for both tissues.  

 

3.4.3 The effects of combined hormones on the transcript levels of AtNOGC1 

The response of plants to drought stress depends on highly controlled signal transduction 

pathways involving the interaction of multiple hormones. This complex crosstalk can result in 

physiological changes that can confer stress tolerance. ABA is the main mediator of these 

physiological changes through the regulation of stomatal closure, while other hormones like 

JA appear to regulate a small subset of plant responses to drought by regulating ABA 

biosynthesis (de Ollas and Dodd, 2016). To study the crosstalks between ABA+MeJA and 

AtNOGC1, the AtNOGC1 gene expression pattern was determined in the A. thaliana seedlings 

treated with ABA+MeJA. The expression of AtNOGC1 was significantly (p < 0.01) induced 

by the exogenous application of ABA+MeJA with the highest log2 ratio of ~ 17 in both shoots 
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and roots (Fig 3.3) at 12 hrs  and 24 hrs respectively, with no change observed at 3 hr. These 

results suggest that both ABA and MeJA are required to mediate protection after longer 

exposure to stress through the NO/cGMP pathway (Munemasa et al., 2007).  

The response of plants to pathogen infection depends on three phytohormones including, SA, 

JA, and ethylene (ET), and the defence is achieved in an antagonistic manner through a 

complex network that involves multiple hormones (Jiang et al., 2010). Upon treatment of A. 

thaliana with a combination of ABA+SA, the expression pattern of AtNOGC1 was reduced at 

3 hrs and 24 hrs (Figs 3.2 A and B). As observed in section 3.4.2, both ABA and SA when 

applied individually, had a positive effect on the expression pattern of AtNOGC1, which is 

different from the combination. These results revealed an antagonistic effect that a combination 

of ABA+SA at high concentration reduced the expression of AtNOGC1 from log2 = 7 and 4.65 

to log2 = 2 and 1 at 3 hrs and 24 hrs respectively.  These results correlate with the study done 

by Jiang et al.,(2010) on the ability of ABA to compromise the expression of WRKY45 and 

OsNPR1 which are components of the SA pathways (Jiang et al., 2010). Interestingly, a 

significant (p< 0.01) increase in the expression of AtNOGC1 at 12 hrs was observed as 

compared to single hormone treatment, suggesting the positive effect that ABA may have on 

the expression of SA-responsive genes. Thus suggesting a different role that ABA has on the 

expression of defence related genes, depending upon the infection time or stage and tissue 

(Mauch-Mani and Mauch, 2005; Melotto et al., 2006). The results also indicate that both 

ABA+SA are required to activate the protective role of AtNOGC1 in the roots and shoots at a 

longer stress exposure. 

 3.4.4 Exogenous application of NO induces AtNOGC1 expression 

NO participates in the great number of plant signalling pathways that mediate stress responses 

including salinity, drought, high temperature, pathogen attack and physiological processes 

including germination, growth and development. Exogenous application of NO donor induces 
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the endogenous level of NO (Pereira et al., 2011). NO alleviate the effects of oxidative stress 

caused by abiotic stresses including salinity, drought, and high temperature (Zhao et al., 2007; 

Lu et al., 2009; Tanou et al., 2012; Parankusam et al., 2017). NO rescue plants by inducing the 

expression of various genes that are necessary for development and defence (Grün et al., 2006). 

In this study, the exogenous application of NO donor (SNP) on the A. thaliana seedlings 

significantly increased the expression of AtNOGC1 especially on the roots with  a log2 = 7.71 

(p < 0.01), suggesting the protective role played by AtNOGC1 during plant development and 

stress responses, via NO to activate the NO/cGMP pathway.  

In conclusion, this study indicated that there is a relationship between AtNOGC1 expression 

pattern and various stresses, suggesting a protective role of AtNOGC1 and its involvement in 

growth and development in plants. An up-regulation and down-regulation of AtNOGC1 gene 

were observed in response to all the treatments in a time-dependent manner suggesting that 

AtNOGC1 is required to act at different stages of the plant upon exposure to stress. Highest 

expression pattern was recorded when A. thaliana was treated with MeJA+ABA with log2 ratio 

of ∼ 17 in both tissues followed by NO, SA, ABA, NaCl and then mannitol treatments and 

most of the different time points had a log2 of above 1. Small error bars in almost all the 

treatments were observed representing that the values of the experimental triplicates are not 

too different, although in some cases such as in mannitol and a combination of MeJA and ABA 

treatments large error bars were observed at different time points especially at 3 hrs shoots and 

24 hrs roots. Gene expression at different times was statistically significantly up-regulated and 

down-regulated (p < 0.01; p < 0.05) which shows the reliability of these predictions but 

mannitol treatment showed no significance due to high variances between triplicates. These 

results together revealed the multifunction role played by AtNOGC1 during salinity, drought, 

pathogen and plant development especially during pathogen attack and stomatal closure. 
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CHAPTER 4 

AtNOGC1 CONFERS STRESS TOLERANCE TO E.COLI CELLS 

ABSTRACT: AtNOGC1 is the first plant guanylyl cyclase (GC) to be identified as a nitric 

oxide sensing protein. Unlike other GC’s from higher plants which synthesise cGMP from 

GTP, AtNOGC1 when activated by NO it synthesises excess cGMP (~2 fold). This makes it 

special since NO and cGMP are known to mediate various physiological and metabolic 

processes in plants including growth, development and response to abiotic and biotic stresses. 

Biologically AtNOGC1 has been confirmed to be involved in stomatal closure, however its 

biological role to confer stress tolerance has not yet been demonstrated. This study is the first 

to demonstrate that a plant GC have a protective role against stress and this was elucidated 

using E. coli viability assays under abiotic stresses. Protein expression indicated that the 

recombinant AtNOGC1 was overexpressed in E. coli under IPTG induction as confirmed by a 

band at an expected size of 67.7 kDa, which was only observed in the induced E. coli cells 

overexpressing recombinant vector. Overexpression of AtNOGC1 improved the growth of E. 

coli under salinity, oxidative and dehydration stress as compared to control cells. Enhancement 

in the growth of recombinant cells (E. coli overexpressing AtNOGC1) indicated that tolerance 

to stress was conferred suggesting a protective role for AtNOGC1 against stress.  

Keywords: AtNOGC1, Escherichia coli, viability assays, stress, tolerance.  
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4.1 Introduction 

Climate change has led to the occurrence of abiotic and biotic stresses. These stresses affect 

plant growth and development, thus affecting food security globally. Since plants are prone to 

environmental stresses, they have developed different mechanisms to protect themselves 

against these stresses. When plants are stressed, ion channels, kinase cascades and signalling 

molecules are activated including the production of ROS and NO (Rejeb et al., 2014). Plants 

activate similar cell signalling pathways and cellular responses, including upregulation of 

different stress-responsive proteins such as heat shock proteins and ROS scavenging enzymes, 

amongst others. There are several plant proteins which have been identified and characterised 

to have GC activity, these include AtGC1, AtBRII, PSK1, LRR-RLK and AtWAKL10 (Ludidi 

and Gehring, 2003; Kwezi et al., 2007, 2011; Meier et al., 2010), but none of them can 

synthesise cGMP in a NO-dependent manner. AtNOGC1 is the first protein to be identified to 

have a GC’s activity and an HNOX motif that binds NO (Mulaudzi et al., 2011). NO plays an 

important role during root development, stomata closure, pathogen and stress responses. In 

animals the NO/cGMP pathway is well established, but in plants there are still a lot of gaps 

including its protective role against stress (Gross and Durner, 2016).  

Protein expression in Escherichia coli (E. coli) is one of the mostl preferred and widely used 

method to produce recombinant proteins from both plants and animals amongst other systems 

such as yeast, filamentous fungi, algae, mammalian and insects (Rosano and Ceccarelli, 2014). 

This is because the E. coli system is inexpensive, easily genetically manipulated, it has good 

growing kinetics doubling every 20 minutes and reaches the stationary phase in few hours 

(Sezonov et al., 2007). In addition, the T7 RNA polymerase system is one of the most popular 

approaches to produce recombinant proteins in E. coli. This is due to the small size (17 bp) that 

is easy to manipulate (Company, 2013). The gene of interest is either cloned in the expression 

vector upstream of the T7 promoter or placed under the control of the heat inducible promoter 
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(Tabor, 2001). The expression plasmids are normally chosen based on promoters, selection 

markers, and combinations of replicons, multiple cloning sites and removal strategies of the 

fusion protein (Rosano and Ceccarelli, 2014). The exogenous DNA that is cloned into 

expression vectors such as the commonly used pET series is followed by the production of the 

recombinant protein in E. coli using isopropyl-D-thio galactopyranoside (IPTG) inducible 

promoter. Promoters of expression usually depend on the RNA of the host cells or foreign 

polymerase from bacteriophage T7 (Rosano and Ceccarelli, 2014).  

They are various E. coli protein expression strains that are used, including BL21 (DE3), BL21 

(DE3) pLysS, BL21-AI, SI, Rosetta, C4i and BL21 Codon Plus amongst others. BL21 (DE3) 

is the mostly used during expression screening for the expression of very toxic proteins and the 

T7 promoter is recognised by RNA polymerase of this strain, BL21 (DE3) pLysS is used to 

express both toxic and non-toxic proteins. BL21 Codon Plus is a modified strain with high 

protein expression levels which eliminates codon bias (Carstens et al., 2001). This strain is 

derived from Agilent’s high performace BL21-Gold and rescues expression of proteins from 

organism containing AT- or GC-rich genomes and contain extra copies of minor tRNAs ( argU, 

ileY ) and tRNA (Kleber-Janke and Becker, 2000).  

The use of E. coli model to functionally characterise plant genes has been widely applied and 

well reported (Yadav et al., 2014b; Rajan et al., 2015b). This model operates based on the 

knowledge that bacteria rapidly multiply when growing under favourable conditions and lose 

their ability when subjected to high toxicity due to environmental stresses such as high 

concentration of NaCl, H2O2, mannitol and high temperature (Pletnev et al., 2015). This study 

was performed to report on the protective role of AtNOGC1 in response to stress when 

heterologously expressed in E. coli BL21 Codon Plus cells that were subjected to different 

stress conditions. This was achieved through the analysis of the growth patterns of E.coli using 

viability assays. 
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Cell viability refers to cells, tissues, and organs that are capable of being alive before or after 

the change of event (Pegg, 1989). Assays are employed to study the viability of different cells 

under normal and stressed conditions. In functional characterisation, E. coli cells without 

stress-responsive gene are compared with the cells overexpressing the stress responsive 

protein. There are various methods used to analyse the viability of cells with or without the 

stress responsive proteins, these includes colony count, spot and liquid assays (Marathe et al., 

2018). The viability of cells can be measured by counting the number of colonies formed after 

incubation that are plotted as percentage of Colony Forming Units (CFUs) (Brugger et al., 

2012). Spot assay is a qualitative form of data representation that is represented as a spot, 

whereas liquid assay is a quantitative method that is represented as a growth curve in which 

the growth of culture is monitored by measuring the absorbance (OD) at 600 nm in a time 

dependent manner (Yilmaz, 2013).  

These assays allow researchers to conduct functional characterisation of the protein using 

convenient and efficient E.coli system. Heterologous expression of Stress-responsive protein 

from salvia miltiorrhiza (SmUSP) and late embryonesis of Cassava (MeLEA3) in E. coli was 

able to enhance tolerance to salt and heat stress as compared to control cells (Barros et al., 

2015; Xiao-fan Wang et al., 2017). The Ras-related protein (AIRab7) gene from aeluropus 

lagopoides was able to improve growth of cells when the growth medium was supplemented 

with NaCl, KCl and mannitol (Rajan et al., 2015a). The triticum aestivum late embryogenesis 

abundant (WRAB18) containing BL21 cells showed better growth under drought, salinity, 

heat, and cold as compared to control cells (Xiaoyu Wang et al., 2017). 
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4.2 Materials and Method  

4.2.1 Preparation of the AtNOGC1 construct 

An AtNOGC1 expression construct, pET SUMO-AtNOGC1 which was synthesised from 

previous study was used (Mulaudzi., 2011). Empty Champion™ pET SUMO vector was self-

religated using the DNA ligation kit (Cat # K1422, Thermo Scientific™, USA) and served as 

a control throughout the study. The pET SUMO vector (control cells) and pET SUMO-

AtNOGC1 (recombinant cells) were used to transform BL21 Codon Plus competent cells. 

About 2 µL of the DNA was added into 1.5 mL eppendorf tube with 50 µL of BL21 Codon 

Plus competent cells and incubated on ice for 30 min. Cells were heat shocked at 42°C for 45 

seconds using the dry bath (Dry Bath plus, Lasec, SA) followed by incubation on ice for 2 min. 

About 450 µL of nutrient broth (Cat# NUB20500, Biolab, Hungary) was added to the mixture, 

followed by incubation for an hour at 37°C with shaking. About 100 µL of transformed cells 

was plated on the nutrient agar plate containing 50 µg/ml kanamycin for antibiotic selection 

and incubated overnight at 37°C. 

4.2.2 Expression of the recombinant protein 

A single colony was taken from the plate containing cells that are transformed with pET SUMO 

vector only (control cells) and pET SUMO-AtNOGC1 (recombinant cells) and used to 

inoculate 2 ml nutrient broth (supplemented with 50 µg/ml kanamycin and 0.4% glucose) and 

grown at 37°C with shaking overnight at 180 rpm (Innova 4000, New Brunswick Scientific). 

The following morning the cultures were scaled up to 20 ml with the same nutrient constituents 

and allowed to grow until OD600 0.5. About 2 mM IPTG was added to both cultures and further 

grown at 30°C for 2.5 hrs as previously described (Mulaudzi et al., 2011). The expressed 

recombinant protein alongside with vector cells only were confirmed by analysing on the SDS 

polyacrylamide gel electrophoresis (SDS-PAGE) (Brunelle and Green, 2014). The SDS-PAGE 

gels were prepared as shown in Table 4.1 
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Table 4.1 Preparation of SDS-page gel electrophoresis 

Components 12% SDS-PAGE separating gel 6% Staking gel 

Acrylamide 30 % 2.4 ml 0.75 ml 

1.5 M Tris pH 8.8 2 ml 1.25 ml 

10 % SDS 80 µL 50 µL 

10 % APS 80 µL 50 µL 

dH2O 3.4 ml 2.9 ml 

TEMED 8 µL 5 µL 

 

4.2.3 Assays for stress tolerance of E. coli transformed with AtNOGC1 

Spot and liquid culture assays were conducted to investigate the role of AtNOGC1 on the 

growth of E. coli cells under stress conditions. Proteins were expressed as described in section 

4.2.2. After induction, the induced cultures were re-adjusted to an OD600 of 0.5. Spot assay was 

performed by further diluting the 0.5 OD600 culture to 10-1, 10-2 and 10-3 fold. About 10 µL 

from each dilution including undiluted (100) was spotted on the nutrient agar plates containing 

2 mM IPTG, 50 µg/ml kanamycin and supplemented with NaCl (400 mM, 500 mM and 600 

mM) for salinity stress and H2O2 (0.4 mM, 0.6 mM and 0.8 mM) for oxidative stress analysis. 

Plates were incubated at 37°C for 16 hrs. Liquid assay was conducted by taking 800 µL of the 

culture into a newly prepared 25 ml nutrient broth (control culture) with 2 mM IPTG, 50 µg/ml 

kanamycin and the medium was supplemented with NaCl and H2O2 (stress culture)  at the same 

concentration as that used for the spot assay. The culture was also added to a nutrient broth that 

was  supplemented with 10%, 15%, and 20% Polyethylene glycol 6000 (PEG6000) to induce 

drought stress. For liquid assay both bacterial suspensions (control and recombinant cells) were 

grown at 30°C at 180 rpm incubator shaker (Innova 4000, New Brunswick Scientific). Both 

cultures were harvested after every 2 hrs for 24 hrs to measure OD600 using a spectrophotometer 
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(Helios Epsilon, Thermo Scientific™). Each experiment was independently repeated three 

times and three technical replicates included (Rajan et al., 2015). 

 

Fig 4.1 Workflow diagram representing how E. coli viability assays were performed. pET SUMO vector 

(control) and pET SUMO-AtNOGC1 were separately transformed into BL21 Codon Plus cells, followed by 

protein expression. The presence of the protein was confirmed by SDS PAGE. Viability assays: For spot assay 10 

µL from each dilution was spotted on the nutrient agar plate supplemented with 2 mM IPTG, while for liquid 

assay 800 µL of the 0.5 OD600 culture was aliquoted into 25 ml of nutrient broth supplemented with different 

stress inducers, 2 mM IPTG and 50 µg/ml kanamycin. 

 

4.2.4 Statistical analysis 

All values reported on the growth measurements of E. coli on the liquid culture represent an 

average of the mean from the three independent biological replicates and error bars represent 

the SD calculated from three biological replicates. 
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4.3 RESULTS 

In order to study the ability of AtNOGC1 to confer stress tolerance to E. coli cells, viability 

assays including qualitative (spot assay) and quantitative (liquid assay) analysis were 

conducted. This was monitored by comparing the growth attributes of recombinant E. coli cells 

against control cells. The presence of the recombinant AtNOGC1 was first determined by 

expressing prior to stress treatments. 

4.3.1 Analysis of protein expression 

The recombinant (pET SUMO-AtNOGC1) and the empty (pET SUMO) vector were 

transformed into BL21 Codon Plus cells and expression was induced by the addition of 2 mM 

IPTG as described in section 4.2.2. AtNOGC1 is a 56.7 kDa protein which when overexpressed 

in E. coli using the pET SUMO vector system yielded a recombinant protein with a size of 67.7 

kDa. The induced fraction revealed the presence of recombinant AtNOGC1 (Fig 4.2, lane 4), 

which was not present in the uninduced (lane 3) and the control fractions (lane 1 and 2). In 

order to verify if the control cells are not expressing AtNOGC1, cells were also induced with 

IPTG (see lane 2) and the vector was confirmed to be empty. 

 

Fig 4.2 SDS-PAGE showing the expression analysis of the recombinant AtNOGC1 protein and the control 

plasmid. Lane 1 and 2 represent un-induced and induced control cells respectively. Lane 3 represent un-induced 

recombinant cells and lane 4 represent induced recombinant cells with the expected size of ~67.7 kDa. 
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4.3.2 Cell Viability Assay 

The viability of E. coli cells under different stress conditions including salt, oxidative and 

dehydration was analysed using the spot and liquid assays for qualitative and quantitative 

analysis. Upon successful expression of the AtNOGC1 protein in the BL21 E. coli recombinant 

cells (pET SUMO-AtNOGC1) and control cells (pET SUMO) their growth was assayed on the 

solid and liquid media containing different stress inducers. The viability of both cells was 

compared against each other by observing the growth enhancement and the change in 

absorbance (OD600) measured in a time dependent manner. 

In order to study the ability of AtNOGC1 to confer stress tolerance to E. coli cells, AtNOGC1 

was successfully expressed in E. coli by inducing with IPTG for 2.5 hours (Fig 4.2) as described 

in section 4.2.2. To elucidate the ability of AtNOGC1 in conferring stress tolerance to E. coli 

cells, the recombinant and control cells were analysed using the spot assay and liquid assays. 

Both the recombinant and control cells showed the same growth pattern under normal 

conditions (Fig 4.3). 

 

Fig 4.3. Growth analysis of recombinant E. coli expressing vector only and E. coli expressing AtNOGC1 

under normal condition. Spot (A) and liquid (B) assay of pET SUMO and pET SUMO-AtNOGC1/BL21 Codon 

Plus cells without stress. 
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The effect of salt stress on the growth of E. coli was monitored by growing cells in different 

NaCl concentrations of 400 mM, 500 mM and 600 mM. As shown in Fig 4.4 A, B, C the growth 

of recombinant cells is different when compared to control cells. Recombinant cells displayed 

better growth and number of colonies as observed in 100 (undiluted), 10-1 and 10-2 (diluted) 

cultures. A more enhanced growth pattern was displayed in the liquid assay (Fig 4.4 D, E and 

F), with the recombinant cells growing better than the control cells. All the liquid assay analysis 

indicate that statically the recombinant cells have better growth trends than the control cells. A 

huge difference is observed in the 600 mM NaCl treated cells (Fig 4.4 F). 

 

 

Fig 4.4 Growth analysis of recombinant E. coli expressing vector only (pET SUMO)  and E. coli expressing 

AtNOGC1 (pET SUMO-AtNOGC1) under salt stress. E. coli cells cultured in nutrient medium supplemented 

with 400 mM (A, D), 500 mM (B, E), 600 mM (C, F) NaCl for spot and liquid assays respectively. 

 

Under oxidative stress using H2O2 as the inducer, cells followed the same growth pattern, as 

observed under salt where recombinant cells displayed better growth than control cells (Fig 
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4.5). Growth patterns for both assays indicated that H2O2 hinders E. coli growth as observed 

by the spot and liquid assays (Fig 4.5 B, C, D, E, and F) with almost no growth for the control 

cells in the 0.8 mM H2O2 culture. 

Under dehydration stress, which was induced by adding PEG, the same pattern of growth was 

observed. Spot assay was attempted, but due to the inability of PEG to solidify in the media 

liquid assay were only conducted. Recombinant cells displayed better growth under PEG stress 

as compared to control cells with the growth at 20% PEG more reduced to OD600 of 0.3 (Fig 

4.5 A, B, C).  

 

 

Fig 4.5 Growth analysis of recombinant E. coli expressing vector only (pET SUMO) and E. coli expressing 

AtNOGC1 (pET SUMO-AtNOGC1) under oxidative stress. E. coli cells cultured in nutrient medium 

supplemented with 0.4 mM (A, D), 0.6 mM (B, E), 0.8 mM (C, F) H2O2 for spot and liquid assays respectively 
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Fig 4.6: Growth analysis of recombinant E. coli expressing vector only (pET SUMO) and E. coli expressing 

AtNOGC1 (pET SUMO-AtNOGC1) under dehydration or drought stress. E. coli cells cultured in nutrient 

medium supplemented with 10%, 15% and 20% PEG600 for only liquid assays. 
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4.4 DISCUSSION 

Environmental stress imposes negative effects on living organisms including plants, animals 

and bacteria. Such stress could be in a form of salinity, drought, extreme temperature and heavy 

metals amongst others. Organisms have to develop different mechanisms to survive under these 

stresses. Stress leads to an imbalanced production of certain metabolites including the 

overproduction of reactive oxygen species, causing oxidative damage to cells (Caverzan et al., 

2012). These stresses in turn affects the plant’s ability to absorb important minerals and 

nutrients, thus leading to impaired growth and development and hence death. However, plants 

use different mechanisms to survive these stresses, including overexpression of stress 

responsive proteins such as those involved in scavenging ROS, heat shock proteins among 

others and this is dependent on the type of stress imposed on them (Grene, 2002; Scarpeci et 

al., 2008; Caverzan et al., 2012). Since plants respond differently to various stresses and are 

constantly attacked by a combination of stresses (Rejeb et al., 2014), identification and 

functional characterisation of novel stress genes is important towards improving plants growth 

under several stress.  

In this study, the protective role of AtNOGC1 was studied by performing cell viability assays 

on E. coli cells, taking advantage that prokaryotic systems are convenient to work with (Li et 

al., 2005). Recombinant E. coli cells (pET SUMO-AtNOGC1) and control cells (pET SUMO) 

showed similar growth patterns under normal conditions. However, recombinant E. coli cells 

showed enhanced growth when subjected to NaCl, H2O2 and PEG. Similar to our study, several 

studies also demonstrated that heterologous expression of the plant stress-responsive genes 

enhance growth of E. coli cells under stress (Tan et al., 2013; Yadav et al., 2014b; Rajan et al., 

2015a). Spot assay is a qualitative way of assaying E. coli growth and as seen in Fig 4.4 (A-

C), recombinant cells showed more growth (as shown by colonies) as compared to the control 

cells under NaCl stress although the difference observed between recombinant and control cells 
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was not significant. This could probably be due to the fact that the stress imposed was not 

enough to inhibit the growth of both cells. Liquid assay represents a quantitative analysis of 

growth and as seen in Fig 4.4 (D-F), recombinant cells displayed more enhanced growth as 

compared to control cells. Even though for 400 mM and 500 mM there were no major 

differences. Both recombinant and control cells cultured in 600 mM NaCl had a long lag phase, 

due to the severity of the stress. Thus the growth was delayed since bacterial cells were trying 

to adjust in the stress environment. However, from 12 hrs, there was an increase in the growth 

of the recombinant cells as compared to the control cells. NaCl treatment clearly indicated that 

AtNOGCC1 has the ability to confer tolerance of salt stress to cells. These results are consistent 

with several studies done on the protective role of plant genes including vesicle trafficking 

gene isolated from salt excreting halophyte Aeluropus lagopoides (AIRab7), the stress 

responsive protein from Salvia mitiorrhiza (SmUSP), Late embryonesis of cassava (MeLEA3) 

and novel gene Salicornia brachiate salt-inducible-2 (SbSI-2). All these showed that 

recombinant cells displayed more colonies and enhanced growth under NaCl medium than the 

control cells (Yadav et al., 2014a; Barros et al., 2015; Rajan et al., 2015b; Wang et al., 2017).  

Oxidative stress is a component of many abiotic and biotic stresses in plants and they result in 

DNA, proteins and lipids damage (Krishnamurthy and Rathinasabapathi, 2013). Exposure of 

cells to H2O2 supplemented medium showed differences with the stress more severe on the 

control cells than recombinant cells as observed on both spot and liquid assays (Fig 4.5). 

Recombinant cells showed better cell size, the number of colonies and good growth rate. At 

0.8 mM H2O2, in the control cells growth was greatly slowed with recombinant cells showing 

enhanced growth. Based on the spot assay, H2O2 stress was severe to the point that no growth 

was observed for both the recombinant and control cells for the diluted cultures. In the liquid 

assays, the lag phase for all the concentration was increased for up to 10 hrs and 12-14 hrs for 

recombinant and control cells respectively as compared to E. coli cells grown under normal 
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conditions which had a lag phase of up to 8 hrs. For the 0.8 mM H2O2, control cells remained 

at a lag phase for the entire duration of growth. These results are consistent with the spot assay 

only 3 colonies observed in the undiluted culture (10°). Based on the liquid assay recombinant 

cells were able to grow up to OD600 0.5 for 18 hrs and reached a stationary phase. As compared 

to the control cells (cultured under normal conditions) (Fig 4.3) cells also reached a stationary 

phase at ±18 hrs, this may be due to nutrients depletion. These results suggest that AtNOGC1 

was able to confer tolerance to E. coli cells under oxidative stress. 

To further the understanding on the protective role of AtNOGC1 gene, PEG6000 was added to 

the medium to induce dehydration stress. PEG was chosen for this treatment since it reduces 

the water potential of the medium and reduces the water and nutrients absorption by cells 

(Lawlor, 1969). Several studies showed the ability of recombinant E. coli to have increased 

tolerance to PEG stress. These include the stress tolerant dirigent protein (DIR) from sugarcane, 

a novel Salicornia brachiate salt-inducible-2 (SbSI-2) protein from a halophyte and inositol 1, 

3, 4-trisphosphate 5/6 kinase-2 ( GmITPK2 ) from Glycine max (L.) Merr (Chaurasia et al., 

2008; Yadav et al., 2014a; Marathe et al., 2018). In this study, recombinant cells showed an 

enhanced growth as compared to control cells under PEG treatment but no significant 

difference was observed (Fig 4.6). Surprisingly, all concentrations (10%, 15%, and 20%) 

showed to have reduced lag phase (Fig 4.6), which is the same with the untreated culture (Fig 

4.3). At low PEG concentrations (10%), the absorbance continued to double over time, but at 

the end, the absorbance was reduced. PEG decreases the homogeneous solution by increasing 

the particle forming polymer viscosity in the solution and decreases the bacteria forming. 

Diffraction of dissolved polymers are also measured when reading the absorbance (Plisko et 

al., 2016) which explains the short lag phase. The lowest absorbance was observed at 24 hrs ~ 

0.35 and ~ 2.6 for the recombinant and control cells respectively, showing the severe effect 

caused by PEG on the cells, resulting in an early stationary phase. As observed from the liquid 
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assays, the recombinant cells displayed a more enhanced growth pattern than control cells, thus 

based on these results AtNOGC1 was able to confer tolerance to E. coli under osmotic or 

dehydration stress.  

In both spot and liquid assays, an increase in the concentration of NaCl, H2O2 and PEG 

treatments served as evidence that AtNOGC1 plays a role in conferring stress tolerance against 

salinity, oxidative and dehydration stress. As the concentration of stress increased, there was a 

decrease in growth as displayed by small size and less number of colonies (spot assay) and an 

increased lag phase (liquid assay). Different stresses result in similar responses, which is why 

in this study, cells cultured under salt, oxidative and dehydration stresses displayed similar 

patterns of growth. One of the major similarity in stress response include, increased lag phase 

and decrease in the absorbance reading from OD600 =1.4 for cells cultured under normal 

condition s to 0.7(recombinant cells) and 0.1 (control cells) for cells stressed with the highest 

salt concentration (600 mM), thus representing hindrance in growth. Whereas under oxidative 

stress the lowest absorbance for the highest H2O2 (0.8 mM) concentration was 0.6 and 0.0 for 

recombinant and control cells respectively. In the presence of 20% PEG, which was the highest 

concentration the absorbance decreased to 0.4 and 0.3 for recombinant and control cells 

respectively. Looking at the growth patterns, PEG indicate the most severe stress, followed by 

H2O2, and NaCl. However AtNOGC1 is a better protector of E. coli cells under oxidative stress, 

where the control displayed long lag phase for the entire 24 hrs of growth. Due to the presence 

of AtNOGC1 protein in E. coli, cells were able to survive the effect of stress imposed on them, 

thus suggesting the protective role of AtNOGC1 against salt, oxidative and dehydration stress 

in plants.  
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CHAPTER 5 

Conclusion and future prospects 

Food insecurity has become a global crisis following the global decrease of the world economy. 

This problem has led to high food prices due to high maintenance of crops on farms and the 

import of foods from other countries. According to the 2004 Food and Agriculture 

Organization (FAO) report on global food insecurity, more than 814 million people are 

undernourished in developing countries (FAO, 2004). Salinity, drought and pathogen are one 

of the factors that cause severe effects on plants. These factors usually occur in semi - arid and 

arid areas, mainly in developing countries. It has been estimated that by 2050, about 50% of 

the world’s arable land will be affected by salinasation. In addition, the world's population is 

projected to rise to 9.7 billion by 2050, increasing the global demand for resources and food 

(FAO, 2004). Therefore, appropriate strategies to tackle food insecurity issues such as the 

development of stress-resistant crops need to be implemented.  

Plant signalling is one of the key mechanisms by which plants respond to environmental 

stimuli, including secondary messengers, signalling cascades, and chemical reactions. Cyclic 

guanosine monophosphate (cGMP) is a second messenger that plays an important role in 

signalling during plant development as well as in response to abiotic and biotic stresses. Several 

studies have shown that cGMP is a NO signalling intermediate, and it is produced in excess 

amounts upon activation of guanylyl cyclase (GC) by NO thus triggering various physiological 

changes. In plants, various enzymes involved in the cGMP pathway have been identified to 

have the GC’s activity. These include AtGC1, AtBRII, LRRRLK, AtWAK10 and PSK, but 

none of them contain the heme motif that is important for NO binding. AtNOGC1 is the first 

identified enzyme with GC activity that has HNOX binding motif, which bind NO with high 

affinity than O2. Following this discovery, AtNOGC1 was also confirmed to be involved in 
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stomatal closure (Joudoi et al., 2013), however its role in response to other stress has not been 

reported. 

In this study in silico, gene expression and viability assays were used to demonstrate the 

functional role of AtNOGC1 in response to various stresses. In silico characterisations played 

an important role in the evolutionary relationship analysis of AtNOGC1 and other proteins. 

Phylogenetic tree revealed that AtNOGC1 has similar evolutionary history with other GC’s 

from different organisms, especially the uncharacterised Agap-AGAP010398-PA from 

Anopheles gambiae among other sGCs with a sequence similarity of 88%. Another interesting 

finding was that AtNOGC1 has an isoform, which is also annotated as NOGC1 suggesting 

possible splicing. Gene structure analysis revealed that the distribution of exon-intron 

structures in various proteins was different. However only proteins from the same species have 

the similar distributions. These findings provided a new knowledge into genetically relatedness 

of AtNOGC1 with insects (Anopheles gambiae) protein. The successfully isolated AtNOGC1 

promoter from Arabidopsis thaliana and the analysis of its cis-regulatory elements was 

important in order to understand its possible functional role in plants in response to certain 

stimuli. The promoter sequence analysis of AtNOGC1 revealed the presence of cis-regulatory 

elements that are important for plant development and defence related including elements 

responsive against light, fungus, pathogens and abiotic stresses. Therefore these results 

demonstrated the important role that AtNOGC1 might play during plant development, abiotic 

and biotic stress responses. 

In order to analyse AtNOGC1 gene expression under various stimuli including a selected 

abiotic stress, hormones and NO treatments transcriptional pattern was analysed, which 

revealed that AtNOGC1 is induced by multiple stresses. The transcript level of AtNOGC1 was 

dependent on time, and tissue specific in most treatments. AtNOGC1 was required at an early 

response as observed by high expression at 3 hr treatment for most stresses. The gene was up 
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regulated upon treatment with salt, mannitol, hormones and NO, which demonstrated the 

biological role of AtNOGC1 during development, abiotic and biotic stresses response in plants. 

Most importantly the role in pathogenic responses and plant development was evident as shown 

by its high expression profile when the plants were treated with SA, ABA and a combination 

of ABA + MeJA and SA + MeJA. The gene expression data on the crosstalk between combined 

hormones and AtNOGC1, brought some interesting insights with regard to understanding plant 

stress response mechanisms. The transcriptional analysis results were also in agreement with 

the promoter analysis outcomes, which indicated the presence of plant development and stress 

responsive elements. NO initiates various responses to stimuli during plant development, 

defence and abiotic stress responses thus the upregulation of AtNOGC1 in the presence of NO 

may also suggest its involvement in NO pathways. The response of AtNOGC1 to these 

treatments may suggest its novel role during plant development and stress responses via the 

NO/cGMP pathway. 

Gene expression analysis indicated that AtNOGC1 is responsive to different stress elicitors, 

therefore it was necessary to demonstrate whether it can confer stress tolerance to cells. Thus 

characterisation of AtNOGC1 in E. coli cells elucidated its protective role during salinity, 

oxidative and dehydration stresses using spot and liquid assays. Results indicated that the 

presence of AtNOGC1 in stressed cells provided protective effect as shown by enhanced 

growth, number and size of colonies as compared to the control cells, however the mechanism 

behind its protective role remains elusive. Although the protective role of AtNOGC1 was 

demonstrated on E. coli cells, these results suggest that AtNOGC1 might have the ability to 

play a protective role in stressed plants.  

In this study the role of AtNOGC1 was successfully investigated and demonstrated. AtNOGC1 

share close common ancestors and gene structure with FMO’s and GC’s from insects. It is 

therefore recommended to further characterise these FMO’s for the presence of GC activity 
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and HNOX motifs towards identification of more NO binding GC proteins in higher plants. It 

is also important to conduct comprehensive comparative studies between AtNOGC1 and 

insects GC’s since among other soluble GC’s the Agap-AGAP010398 GC from Anopheles 

gambiae was the only one that formed the branch within the FMO’s. According to promoter 

and transcriptional analysis, AtNOGC1 is more enriched with pathogenic and stomatal closure 

responsive elements amongst others, which was confirmed by high levels of gene expression 

when plants were treated with ABA and SA. This is true since SA pathway, has a downstream 

marker gene PR1, which is a pathogen induced gene. This is one area that has not received 

attention with AtNOGC1, since Joudoi et al., 2013 demonstrated its role in stomatal closure. 

Therefore, it is recommended to put more emphasis on studying the role of AtNOGC1 during 

pathogenic responses. Although the protective roles of AtNOGC1 in conferring stress tolerance 

to E. coli cells were performed. Therefore it will be important to overexpress AtNOGC1 in A. 

thaliana to further elucidate its protective role in plants. It is also important to develop 

transgenic plants that are mutant in AtNOGC1 through T-DNA genotyping, thus in order to 

phenotype both transgenic lines against the wild type for stress tolerance. 
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6. Appendices 

 

Appendix I Sequence alignments 

M57405.1                             ----------------------------------------------

---- 

XM_001700795.1                       

TGGCGATTGCAGCACGTGATCTAATGTGACGGCATAGCTAATGGAATATC 

XM_001700986.1                       ----------------------------------------------

---- 

XM_001700794.1                       ----------------------------------------------

---- 

NM_001355466.1                       ----------------------------------------------

---- 

NM_173788.4                          ----------------------------------------------

---- 

NM_000906.3                          ----------------------------------------------

---- 

NM_001192751.1                       ----------------------------------------------

---- 

XM_015576104.1                       ----------------------------------------------

---- 

XM_002643826.1                       ----------------------------------------------

---- 

NM_001029717.1                       ----------------------------------------------

---- 

NM_001330893.1                       ----------------------------------------------

---- 

NM_001029719.1                       ----------------------------------------------

---- 

NM_126282.3                          ------------------A---------------------------

---- 

NM_106617.4                          CATAGTTTACTTCT--TT----------------------------

---- 

AY118140.1                           ----------------------------------------------

---- 

NM_001249781.2                       -ATCGCATGTGCCA--TAA---------------------------

--AC 

NM_079071.3                          ----------------------------------------------

---- 

XM_001958843.2                       ----------------------------------------------

---- 

XM_005187368.3                       ----------------------------------------------

---- 

XM_001655975.2                       ----------------------------------------------

---- 

NM_120100.3                          TGGGGAAT--------------------------------------

---- 

XM_311551.4                          ----------------------------------------------

---- 

NW_006256414.1:c1645606-1642949      ----------------------------------------------

---- 

XM_024149294.1                       ----------------------------------------------

---- 

NM_105013.4                          ----------------------------------------------

---- 

NM_104936.2                          ----------------------------------------------

---- 

NM_001334039.1                       ----------------------------------------------

---- 

 

Fig 6.1: Multiple sequence alignment for GC’s from different species including mammals, nematodes, 

insects and plants and also FMO’s protein. The alignment was done using clastalW. 
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Sequence ID: Query_115451Length: 1230Number of Matches: 1 

Related Information 

 

Alignment statistics for match #1 

Score Expect Identities Gaps Sand 

654 bits(354) 0.0 363/371(98%) 0/371(0%)  

Query  29   aaraaTTTGACCGTTCCTCACATGGTTCTGCATCAAGTAGATTATACTAGAGATCAGGCC  88 

            || ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  57   AAGAATTTGACCGTTCCTCACATGGTTCTGCATCAAGTAGATTATACTAGAGATCAGGCC  116 

Query  89   CCGCTTAGAGGGAGTGCTCGTCCMCAtttttttCCAAATGATTTTAAGCTCCTAAGTTTT  148 

            ||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||| 

Sbjct  117  CCGCTTAGAGGGAGTGCTCGTCCACATTTTTTTCCAAATGATTTTAAGCTCCTAAGTTTT  176 

Query  149  TGATATTTTTGTAATAAAGGTCCTAAATTTTAATATTCTGATGATGAGACTGTAATTAGA  208 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  177  TGATATTTTTGTAATAAAGGTCCTAAATTTTAATATTCTGATGATGAGACTGTAATTAGA  236 

Query  209  TCAAGTATAGTGATAAAGGCCACSATTGTTCAAATGAAAATTTTGCATTTAACGTTTGKG  268 

            ||||||||||||||||||||||| |||||||||||||||||||||||||||||||||| | 

Sbjct  237  TCAAGTATAGTGATAAAGGCCACGATTGTTCAAATGAAAATTTTGCATTTAACGTTTGTG  296 

Query  269  KAGAATTATAAAATAATCTCAGTTTTCTTTATACAATTTTCAGGATGCTAACGTAAATGA  328 

             ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  297  TAGAATTATAAAATAATCTCAGTTTTCTTTATACAATTTTCAGGATGCTAACGTAAATGA  356 

Query  329  AAAAATAATAATAAGGaaaaaaaTGTAAAGGCCACGACTGCttttttttttttttttttt  388 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  357  AAAAATAATAATAAGGAAAAAAATGTAAAGGCCACGACTGCTTTTTTTTTTTTTTTTTTT  416 

Query  389  kktwaaaattt  399 

              | ||||||| 

Sbjct  417  GCTTAAAATTT  427 

 

Fig 6. 2:AtNOGC1 promoter Sequence alignment between public available sequence from TAIR and 

isolated sequence from Arabidopsis thaliana. The alignment was done using nucleotide BLAST.  
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Table 6.1: Calculated fold change and p-values from gene expression cp values 
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