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Abstract 

Predicting reptile species distributions and biogeographic 

patterns within Kruger National Park 

J.M Barends 

MSc. Thesis, Department of Biodiversity and Conservation Biology, University of the 

Western Cape.  

Knowledge of global reptile ecology is limited and there remains much to understand in 

terms of detailed reptile species information, including that of their distributions. In South 

Africa, despite being one of SANParks best-studied reserves, surprisingly little is known 

about the distributions and spatial ecology of reptiles within Kruger National Park (KNP). 

Management within KNP follows a strategic adaptive management strategy which monitors 

the statuses of animals using species or group specific indicators. Indicators are given 

predetermined upper and lower ranges of acceptable fluctuation before actions are taken. 

These ranges are referred to as thresholds of potential concern (TPCs), and for reptiles these 

are based on changes to their distributions across the landscape of KNP. 

An apparent lack of high-quality reptile distribution data inhibits the effective monitoring of 

the statuses of these animals within KNP, which in turn limits management and conservation 

options. In this study, I use several methods to quantify available reptile occurrence data 

which formed the foundations for predicting the distributions of these species across KNP by 

means of species distribution modelling, with a view to gaining novel insight into reptile 

assemblage structure across the landscape of KNP. 
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I collated 7118 locality records representing 127 reptile species occurring within KNP. In 

quantifying these, I effectively performed a gap analysis of KNP and found that large areas of 

the park were poorly-sampled, with nearly 68 % of all records occurring within 2 km of 

infrastructure. Despite challenges relating to spatial scale and data bias, using an ecological 

niche modelling approach I predicted the geographical distributions of 119 reptile species 

across KNP at a resolution of 1 km x 1 km. I used these distributions to infer species’ 

presence or absence at any given 1 km x 1 km grid cell across KNP and to subsequently 

quantify assemblage membership via hierarchical cluster analyses. I predicted that at least 

nine taxonomically distinct, spatially-segregated reptile assemblages are present within KNP, 

with each appearing to be correlated with changes in landscape features across the park. 

My work has identified important gaps in our understanding of the distributions of reptiles in 

KNP that will drive future sampling efforts. Moreover, my modelled predictions offer 

multiple testable hypotheses in terms of species’ presences and absences that will direct 

future research efforts in KNP, and potentially aid in the monitoring of reptiles more 

generally across protected areas within South Africa. 
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Preface 

The core of this thesis involved predicting the distributions of all reptile species occurring 

within Kruger National Park in order to assess the viability of using a predictive framework 

as an alternative to on-site sampling as a means of monitoring changes in the populations of 

these animals. This primarily involved the use of species distribution modelling to not only 

predict where each individual reptile species occurs within and across Kruger National Park, 

but also identify reptile assemblages within this same geographical space. Whilst I was able 

to successfully make these predictions, I found that the models I produced were not to as high 

a standard as expected. Each species distribution model was evaluated individually and 

although I deemed overall model performance across all species as acceptable, several of 

these were unlikely to be accurate representations of those species true distributions as they 

did not appear to make biological sense in accordance to what would be expected in reality. 

As such, the results I obtained here relating to reptile species distributions and the subsequent 

analyses thereof were interpreted with the knowledge that they represented probable rather 

than true distributional patterns of reptiles within Kruger National Park.
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Chapter 1: General introduction 

1.1 Biodiversity loss and its management in South Africa 

Biodiversity loss is an ongoing global problem (Myers et al. 2000; Butchart et al. 2010; 

Cardinale 2012). Even within areas specifically designated to protect and conserve 

biodiversity, species loss still occurs, and the management thereof remains a complex and 

challenging issue (Jackson and Gaston 2008). To prevent loss of species within protected 

areas, governing authorities have developed a range of tools, policies, and strategies which 

aim to combat species loss and maintain biological diversity within their jurisdictions (Martin 

et al. 2009). However, since each protected area has unique conservation goals and objectives 

these approaches vary across the global protected area network (Chape et al. 2005).  

In South Africa, the majority of protected areas are managed by South African National Parks 

(SANParks), an organization that makes use of a strategic adaptive management (SAM) 

strategy to achieve their conservation objectives (Parr et al. 2009; Roux and Foxcroft 2011). 

This strategy involves a ‘learn by doing’ approach that functions on specific informational 

needs to ensure that their key mandate of maintaining maximum biological diversity within 

their borders is met (Ferreira et al. 2011). This approach heavily relies on monitoring 

biodiversity to assess whether any predetermined thresholds of potential concern (TPCs) are 

crossed (Venter et al. 2008). TPCs are ranges of upper and lower limits of variables which are 

used to monitor the statuses of taxonomic groups and other variable environmental conditions 

within protected areas (Gillson and Duffin 2007; Parr et al. 2009). In the event of a TPC 

being crossed, SANParks undertakes necessary action to attempt to mitigate any undesired 

effects like loss of species.  
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1.2 Reptile monitoring and TPCs 

TPCs are taxon-specific, with monitoring of some groups being easier than others. For 

reptiles as a group, TPCs are based on monitoring changes in reptile populations at given 

sites at three year intervals (Ferreira et al. 2011), but this difficult to achieve. As a group, 

reptiles are generally difficult to study and monitor because of the low and variable detection 

rates that these animals possess, especially at local scales (Durso et al. 2011). Detectability 

for many reptile species is so low that they could remain undetected within intensively 

sampled areas for years at a time (Mazerolle et al. 2007). Moreover, reptiles have low 

dispersal capabilities in general and are unlikely to leave suitable habitats (Sahlean et al. 

2014). As such, these animals are therefore likely to remain present within sites for long 

periods of time but may not always be detected during sampling. This presents a potential 

flaw within current monitoring protocols as animals could be incorrectly deemed absent from 

sites, and as detecting these animals is of critical importance towards observing changes in 

TPCs these inaccuracies could inhibit assessments.  

Ecologists have tried to statistically account for the low detection rates of various groups of 

animals, including reptiles (Thomas et al. 2010). For example, the field of occupancy 

modelling was developed to account for imperfect detectability of species during sampling 

due to low detection rates (Kery 2011). These types of models allow us to estimate true 

populations and determine the probability of detecting a species at a given site within a given 

detection event. This could then be used to infer the presence or absence of a species within 

said site even if it is not detected during sampling, and this approach has been successful in 

previous studies (for example: Mcgrath et al. 2015). However, the detectability of many 

reptile species is so low that an occupancy modelling approach would not be feasible for 

monitoring as it requires extensive presence/absence data from multiple sampling events that 

the current monitoring protocol simply does not allow for. 
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Reptile data is often limited or poor (Lee and Jetz 2010; Bates et al. 2014; Jetz and Freckleton 

2015), and poor data hinders the TPC approach within the SAM strategy (Ferreira et al. 

2011). Low detectability of reptile species is the number one reason why the currently 

defined idea of monitoring changes to reptile populations to assess TPCs will not be 

successful. In addition, issues relating to spatial scale also hinders these approaches. Reptile 

occurrence data are often collected at a relatively fine-scale, but most reptile species are 

broadly distributed across KNP. This mismatch can potentially cause confusion and inhibit 

analyses that rely on these data as spatial scale is an important factor to consider in the 

application of species occurrence data. 

1.3 Problem statement 

The management and monitoring of reptile populations in protected areas in South Africa is 

hindered by a lack of high quality data as a result of reptiles possessing extremely low 

detection probabilities. The absence of such data hinders our ability to assess the distributions 

of reptile species, monitoring protocols, and predict reptile communities. To fix this, here I 

attempt to quantify available reptile occurrence data, assess its biases, and develop a 

framework for predicting reptile species distributions and community assemblages.  

1.4 Study area 

My study focussed on Kruger National Park (KNP), the largest protected area in South 

Africa. KNP spans an area of approximately 20 000 km2 across the Limpopo and 

Mpumalanga provinces (Figure 1.1) and is home to a vast array of biodiversity. KNP is home 

to nearly 2000 floral species and more than 850 faunal species (Parr et al. 2009). Of these, 

there are approximately 34 amphibian species (Du Toit et al. 2003), 505 bird species 

(Harrison et al. 1997), 49 fish species (Skelton et al. 2001), 147 mammal species (Du Toit et 

al. 2003), and 120 reptile species (Branch 1998; Bates et al. 2014).  
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The high diversity and richness of biodiversity within KNP is largely due to the 

heterogeneous savanna ecosystem encompassing the park (Venter et al. 2008). KNP is 

primarily dominated by large areas of subtropical woodlands with an assortment of 

vegetation types present that provides suitable habitats for numerous species (Scholtz et al. 

2014). Furthermore, KNP has a range of differing geologies with several substrate types 

being present throughout. This includes basaltic and granite rocks which weather into clay-

rich and sandy soils respectively (Kulmatiski et al. 2017). In terms of climate, KNP is 

classified as a summer-rainfall region and experiences an average of 300 – 500 mm, and 500 

– 700 mm of rainfall annually within the northern and southern regions of the park 

respectively (Du Toit et al. 2003; Kulmatiski et al. 2017).  

 

Figure 1.1: Geographical location and aerial view of Kruger National park, highlighting 

riverine and infrastructural areas. 
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1.5 Approach 

1.5.1 Data: 

Reptiles are often difficult to study as data are not always readily available for these animals 

(Powney et al. 2010; Bohm et al. 2013). This is largely because these taxa tend to have highly 

cryptic lifestyles which makes them difficult to detect (Maritz et al. 2007; Mcgrath et al. 

2015). This creates particular challenges relating to our knowledge of their distributions, 

especially at localized scales (Bates et al. 2014). To properly understand and conserve a 

species it is important to know where that species occurs, and this largely requires species 

occurrence data. This type of data provides information relating to where individuals were 

observed, usually in the form of GPS co-ordinates with locality descriptions. Reptile species 

occurrence data formed the foundation of this study. 

1.5.2 Spatial scale: 

Choosing an appropriate spatial scale for data analyses is an important consideration for 

studies relating to the application of species occurrence data (Hurlbert and Jetz 2007). The 

scale at which data are assessed directly impacts on observable patterns and trends, and 

therefore selecting an appropriate spatial scale is critical to testing different hypotheses. 

Choice in spatial scale may be selected based on several criteria, including: the scale at which 

data were collected, the scale of additional variables (such as climate data), the extent of the 

area of the study site, the ecology of the species in question, or the specific hypotheses to be 

tested (Atkinson and Tate 2000; Rahbek 2005). As such, there is no universally accepted 

appropriate scale, with resolutions varying per study. For example, South African atlas 

projects such as FrogMAP and SABAP have operated at relatively broad resolutions of 

quarter degree grid cells (approximately 15 km x 15 km; Minter et al. 2004; Underhill and 
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Brooks 2016) whereas studies relating to species distribution modelling tend to operate at 

severely finer resolutions of 1 km x 1 km (For example, Pearson et al. 2007).  

Here, I opted for a spatial scale of 1 km x 1 km for several reasons. Primarily, I chose this 

resolution as I aimed to predict reptile distributions as finely-scaled as possible and this scale 

represented the finest resolution at which reliable climate data, which is critical for species 

distribution modelling, was available (Hijmans et al. 2005). Secondly, KNP is significantly 

smaller in area than the study sites of the above mentioned atlas projects which operated at a 

national scale. For this study, operating at as broad a spatial scale as used in those studies 

would be detrimental to assessing trends in reptile occurrences within the context of localized 

sites within KNP and so it made sense to use a smaller spatial scale. Lastly, A fine-scale 

resolution offers more precise outputs than broader datasets and are ideal for quantifying 

biological patterns like distributions and regionalization (Kreft and Jetz 2010).  

1.5.3 Chapter focus: 

In this thesis, chapter 2 directly investigates trends in currently available reptile occurrence 

data. By collating and geospatially filtering all available records of reptile occurrences from 

numerous sources at a scale of 1 km x 1 km I was able to gauge patterns of known reptile 

species richness across KNP using GIS techniques. Additionally, I was able to assess the 

extent of data gaps within the park where reptile occurrences were few or not available and 

infer patterns of biases in reptile sampling. I then discuss the implications of the limited 

nature of these occurrence data and its use within species distribution modelling.  

Chapter 3 focuses on predicting reptile species distributions across KNP using an ecological 

niche modelling approach via Maximum Entropy (MaxEnt) software. In this chapter I 

produce models predicting distributional ranges for nearly all known reptile species occurring 

within KNP, from which I then estimated reptile species richness across KNP at a spatial 
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scale of 1 km x 1 km. This approach is recommended as a potential alternative to on-site 

sampling for the purposes of monitoring changes in reptile populations (Ferreira et al. 2011), 

and I discuss the potential implementation of such an approach including the limitations and 

drawbacks. In addition, I provide insight into potential reptile spatial ecology across KNP. 

In chapter 4 I describe the process and results of empirically evaluating the predictions of 

reptile species distributions I made in chapter 3 via ground-truthing on-site within KNP. This 

involved the use of standardized reptile sampling techniques to capture reptiles to produce a 

testable dataset to compare model predictions against.  

In chapter 5 I use the predictions of reptile species distributions made in chapter 3 as a 

baseline to infer reptile assemblages across KNP. Using clustering techniques, I provide 

insight into biogeographical patterns of reptiles in KNP by delineating the park into spatially 

segregated biogeographic units based on compositional similarity between grid cells. In this 

chapter I address the benefits and challenges of dividing KNP into separate units for 

conservation purposes.  

In chapter 6, I provide a synthesis of my findings and summarize the major conclusions of 

this thesis. I conclude with recommendations for future studies.  

1.6 Major limitations  

Major analyses within this thesis were dependent on reptile species occurrence data and these 

data were limited. Occurrence data were collated from several sources and data quality was 

not uniform amongst these. A large portion of recorded reptile occurrences were not provided 

with accurate GPS co-ordinates, and required estimates based on locality descriptions which 

were not always unambiguous. Given that the core of this project was modelling based, this 

was not a major constraint as the software I used (MaxEnt) is not overtly affected by subtle 

changes in GPS co-ordinates (Baldwin 2009), but other analyses may have been affected, 
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such as assessments of the spatial arrangements of reptiles across KNP, and geographical 

biases of data in relation to environmental factors. More importantly however, these data 

were biased (described in further chapters) and although I took steps to mitigate the effects of 

these biases it is unlikely that the results of all analyses were completely unaffected. 
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Chapter 2: A gap analysis of KNP reptile occurrence data 

2.1 Introduction 

Mapping the distributions of species is an important tool in biodiversity conservation and 

management. Not only are maps of the actual or potential distributions of species important 

for ecological research (Storch et al. 2003; Franklin 2010), they are also useful in furthering 

our understanding of the formations of biological assemblages. By knowing where each 

species occurs within a given area, we are able to identify which of these occur together 

spatially to form localized biological communities or assemblages (Feria and Peterson 2002; 

Kreft and Jetz 2010). Moreover, insight into the spatial arrangements of species within 

protected areas could inform conservation or management decisions (Ferrier and Guisan 

2006). In the absence of intensive sampling, quantifying species arrangements are usually 

dependent on high quality species distribution maps, but these are often unavailable. 

Species distribution maps are usually constructed based on recorded occurrences of 

individuals within a given area. This often involves plotting species locality data onto a given 

map and creating polygons that encompass all occurrence points (for example, see Branch 

1998). Each polygon is referred to as the extent of occurrence for that particular species 

(Sardo-Palamera et al. 2012). In cases where occurrence data are limited, this may result in 

maps which do not adequately represent a species true distributional range. Furthermore, 

species occurrence data are often biased. The presence of geographical, spatial, and 

taxonomic bias within occurrence data is a persisting issue (Newbold 2010), particularly for 

species with low detection rates such as reptiles where occurrences are infrequently recorded 

(Durso et al. 2011). Available data are often limited or biased and this can result in 

distribution maps which do not reflect reality, thereby hindering their effectiveness (Botts et 

al. 2011).  
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An alternative means of estimating a species distribution is that of plotting its area of 

occupancy. The area of occupancy differs from the extent of occurrences in that it employs 

the use of grid cells rather than polygons to map out the presence of a species (Burgman and 

Fox 2002). The resolution of grid cells will affect the accuracy of the estimated distribution, 

with broader resolutions predicting larger areas of occupancy than fine scale resolutions 

(Barbosa et al. 2010; Sardo-Palamera et al. 2012). Generally, distributions based on areas of 

occupancy contain fewer commission errors than those based extents of occurrence (Gaston 

and He 2011) but contain higher omission rates as a result of incomplete sampling.  

To create high-quality, fine-scale distribution maps of reptile species occurring in KNP, 

detailed species occurrence information would be required, but these data are sparse, largely 

due to the general difficulties associated with studying reptiles. For example, many reptiles 

have low detection rates and are thus not often observed within their natural habitats (Durso 

et al. 2011), but moreover, a general lack of reptile focused research within the recent past 

has directly contributed to the persistence of the limited availability of such data (Bohm et al. 

2013; Tolley et al. 2016). Available distribution data of reptiles within KNP are therefore 

either potentially outdated (Pienaar 1978) or spatially too broad to be useful within a 

localized management context (Branch 1998; Bates et al. 2014).  

Available occurrence data could be used to construct distribution maps for reptiles within 

KNP, but these data may be biased. In this chapter I therefore aim to a) collate and synthesize 

available KNP reptile occurrence data from museum and literature sources, b) critically 

assess geographical, spatial, and taxonomic biases within these data, and c) discuss the 

potential effects of these biases in the application of these data for use within a species 

distribution modelling framework. I further aim to assess the degree to which biases in 

sampling represent the full environmental niche space of the park. This will aid in identifying 

knowledge gaps within KNP.  
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2.2 Methods 

2.2.1 Species occurrence data: 

I compiled a database of records of reptile occurrences in KNP. To build this database, I 

collated locality data of reptile species from published literature (Pienaar 1978; Branch 1998; 

Bates et al. 2014), museum records (Ditsong National Museum of Natural History), field data 

(obtained from Organization for Tropical Studies), and a virtual museum platform (Reptile 

map project; http://vmus.adu.org.za). Additionally, I provided novel records from my own 

sampling (explained in section 2.2.2). All reptile occurrences consisted of presence-only data 

which I georeferenced as accurately as I was able based on provided locality descriptions. 

Some records did not include sufficient locality information, thereby casting uncertainties on 

their accuracies. I omitted all records which did not contain GPS co-ordinates and had 

dubious locality descriptions. Additionally, I found several duplicates of records across the 

various data sources. For example, occurrences reported within Pienaar (1978) were also 

included within museum databases. In these instances, I filtered my database to only include 

the original occurrence record and eliminated repetition of records. Overall, this process 

resulted in my database consisting of 7118 geospatially unique occurrences representing 127 

reptile species. To prevent ambiguity within species classifications, I taxonomically updated 

each record to align with those presented in Bates et al. (2014). I summarized my database to 

identify taxonomic biases in sampling. To test the hypothesis that representation was not even 

among families, I counted the numbers of records and numbers of species per family and 

performed a linear regression analysis to test if a relationship was present between those.  

2.2.2 Field work: 

For ten days in April 2017, I searched for reptiles within KNP. Whilst limited, and far from a 

complete survey of reptiles due to the short sampling period, this survey allowed me to 
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supplement available reptile occurrence data with a minor amount of novel records. 

Surveying consisted of incidentally searching for individual reptiles within publically 

accessible infrastructural areas such as campsites and along the major roads of KNP. I 

recorded the GPS co-ordinates of all reptiles that I observed, identified to the species level 

(using field guides and expert opinion). Additionally, I assisted with biodiversity surveys 

carried out by the Organization for Tropical Studies at three publically inaccessible sites 

within the park (Site 1: 22° 43” 35’ S, 31° 22” 40’ E; Site 2: 22° 42” 31’ S, 31° 02” 57’ E; 

Site 3: 22° 40” 0’ S, 30° 59” 03’ E), where I collected additional reptile occurrence data. 

2.2.3 Spatial arrangement analyses: 

To assess and identify sampling bias within reptile occurrence data, I divided KNP into equal 

sized grid cells of 1 km x 1 km (30 arc seconds) each. To determine the proportion of KNP 

for which reptile occurrence data exists and quantify the extent of unsampled areas at this 

resolution, I plotted all reptile occurrences from my database of occurrence records into those 

1 km x 1 km grid cells within GIS software (QGIS version 3.2.3). I then counted the number 

of grid cells which contained at least one reptile occurrence record via the ‘points per 

polygon’ tool and used those numbers to create a heatmap of reptile occurrences across KNP. 

To identify spatial patterns of sampling bias within grid cells where occurrence records were 

present, I tested the hypothesis that the numbers of reptile occurrences were unevenly 

distributed across those cells. To do this, I counted the frequencies of the numbers of reptile 

occurrence records per grid cell. Furthermore, to test the effects of spatial scale on these 

patterns, I resampled the data at the following resolutions: 2 km x 2 km, 4 km x 4 km, and 9 

km x 9 km (pentad scale). These resolutions allowed me to better identify patterns of 

sampling bias within KNP and operating at the pentad scale also provided a means of 
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comparison to previous studies (For example, South African bird atlas project 2; SABAP2; 

Underhill and Brooks 2016).  

To identify if geographical bias in sampling of reptile occurrences was present, I tested the 

hypothesis that reptile occurrences were biased towards infrastructure. To do this, I 

performed a linear regression analysis to test if a relationship exists between the number of 

recorded reptile occurrences within each grid cell, and the proximity of each grid cell to the 

infrastructure network of KNP. The infrastructure network consisted of any grid cell which 

contained a campsite, picnic spot, or road. For this analysis I assigned the log (distance to 

infrastructure per grid cell) as the independent variable, and the log (number of recorded 

occurrences per grid cell) as the dependent variable, and I used a significance level of 5 % to 

test if there was an increase or decrease in reptile occurrences as the distance to infrastructure 

increased. I carried out all analyses using SPSS statistics software version 23.  

2.2.4 Climate and environmental data: 

I obtained several climatic, environmental, and infrastructural data layers from a variety of 

sources to act as predictor variables regarding the environmental variability of KNP. In total, 

I produced 27 individual layers (Appendix 1), each at a resolution of 30 arc seconds (1 km x 

1 km). Of these, I obtained the 20 climatic variables relating to temperature, precipitation, 

and altitude from the Worldclim database (Hijmans et al. 2005; http://www.worldclim.org). 

Using those I generated ‘slope’ and ‘aspect’ layers based on the ‘altitude’ layer via the 

‘spatial analyst toolbox’ within ArcGIS software version 10.4. I obtained environmental 

layers in the form of a ‘vegetation type’ layer from the South African National Biodiversity 

Institute (bgis.sanbi.org) and a ‘soil type’ layer from the Soil and Terrain database (SOTER; 

www.isric.org). Finally, I acquired additional data layers from SANParks relating to the 

infrastructure and water networks of KNP. Using those layers, I then produced a ‘distance to 
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water’ (km) layer using ‘Euclidean distance’ tool within ArcGIS, with water including all 

rivers, dams, and lakes within KNP. 

I chose these 27 layers as each of these could play a role in affecting reptile distributions 

across KNP based on the ecology of each species in question. For example, reptiles are 

ectotherms that require external temperature sources to regulate their body temperature 

(Branch 1998) and because these requirements differ per species (Brown et al. 2014), I 

therefore chose to include multiple temperature and precipitation variables of differing time 

periods and intensities. Similarly, because there is such a wide variety of reptiles within KNP 

(Pienaar 1976), including terrestrial, arboreal, fossorial, and aquatic species (Bates et al. 

2014), I included variables to represent the habitats of these animals. These layers included 

the presence of and distance to water bodies, human infrastructure, vegetation type, soil type, 

altitude, slope, and aspect.  

2.2.5 Summarizing climate and environmental data: 

Climate and environmental layers, particularly those obtained from Worldclim, are usually 

highly correlated with one another (Demsar et al. 2013). To reduce the effects of correlation 

between layers, I performed a principal component analysis to summarize these layers into a 

number of new, uncorrelated representatives of overall environmental variability of KNP. I 

performed this within R software version 3.4 via the ‘rasterPCA’ function of the ‘rstoolbox’ 

package (Leutner and Horning 2016). This analysis produced 27 new, uncorrelated principal 

components that summarized the variability of the original 27 layers. Following this, I 

compared the proportions of environmental variance each principal component contributed 

towards overall environmental variability. Based on Jackson (1993), I used a cumulative 

proportion of variance of 85 % as a stopping rule. Once components cumulatively reached 
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this percentage, I deemed those as sufficient in representing overall environmental variability 

of KNP and omitted the remaining components from further analyses. 

The results of my analysis (explained below) showed that reptile occurrences were biased 

towards infrastructure. I therefore tested the hypothesis that the environmental range of the 

infrastructure network of KNP did not represent overall environmental variability across the 

entirety of the park. To do this, I separated each principal component layer into two new 

layers, one representing infrastructure, and the other non-infrastructure. Infrastructure layers 

contained only those grid cells associated with the infrastructure network of KNP, and non-

infrastructure layers contained all grid cells except those. I then determined kernel density 

estimates for these separated layers using the ‘density’ function within the ‘raster’ package 

(Hijmans and van Etten 2016) in R software and compared the distributions of environmental 

variability of these via two sample Kolmogorov-Smirnov tests for each of the six principal 

components. 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



16 
 

2.3 Results 

2.3.1 Summary of recorded reptile occurrences: 

The 7118 reptile occurrences within my database varied taxonomically (Table 2.1). The 

majority of occurrences records belonged to 61 lizard species (with a combined 3434 

recorded occurrences, 48 % of all records), and 59 snake species (with a combined 2944 

records, 41 % of all records). The remaining records belonged to six species of chelonians 

and one species of crocodilian, with these making up a low proportion of total records (8 % 

and 3 % respectively). 

Table 2.1: Summary of records of reptile occurrences within Kruger National Park. 

Group 
No. of  

species 

No. of  

records 

Percentage of  

total records (%) 

Lizards 61 3434 48 

Agamidae 3 214 3 

Amphisbaenidae 8 195 3 

Chamaeleonidae 1 154 2 

Cordylidae 9 206 3 

Gekkonidae 14 708 10 

Gerrhosauridae 4 344 5 

Lacertidae 6 272 4 

Scincidae 14 1096 15 

Varanidae 2 245 3 

Snakes 59 2944 41 

Colubridae 10 621 9 

Elapidae 7 403 6 

Lamprophiidae 29 1233 17 

Leptotyphlopidae 5 221 3 

Pythonidae 1 125 2 

Typhlopidae 3 130 2 

Viperidae 4 211 3 

Chelonians 6 530 8 

Pelomedusidae 3 230 3 

Testudinidae 3 300 4 

Crocodylians 1 210 3 

Crocodylidae 1 210 3 

Σ 127 7118 100 
  

http://etd.uwc.ac.za/



17 
 

Records were unevenly distributed amongst reptile families. I found a significant relationship 

between the number of species and the number of records per reptile family (Linear 

regression analysis: F1, 17 = 27.71, P < 0.01, r = 0.78; Figure 2.1), with the trend being that 

families with more species had more records available. As such, representation amongst 

families was not equal with the Lamprophiidae family (29 species) having had the most 

recorded occurrences and Pythonidae (one species) the fewest. Whilst expected for these 

families, others had greater numbers of records than what would be expected based on their 

species diversity assuming all species occur throughout the park (Figure 2.2). This suggested 

the presence of taxonomic bias at the family level for reptile sampling within KNP. 

 

Figure 2.1: Log numbers of occurrences versus log numbers of species per reptile family. 
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Figure 2.2: Residuals of numbers of occurrences versus numbers of species per reptile family. 

2.3.2 Spatial arrangement of occurrence data: 

When dividing KNP into separate 1 km x 1 km grid cells, I produced a total of 21761 grid 

cells (n = 21761). In plotting my dataset of reptile occurrences within these, I found that only 

1751 of these grid cells contained at least one occurrence record. These grid cells made up 

approximately 8 % of KNP, with the remaining 92 % (20010 cells) representing a noticeably 

severe gap of data deficient areas (Figure 2.3). As the majority of the park contained no data, 

this suggested that there have been strong sampling biases within KNP in terms of sampling 

locations. In addition, of the 1751 grid cells containing data, the majority of these had 

relatively few recorded reptile occurrences (< 10 records). Additionally, the frequencies of 

reptile occurrence records were not evenly distributed across these cells, with the number of 

occurrence records per cell ranging from 1 – 118 (Figure 2.4).  
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Figure 2.3: Heatmap of reptile occurrences within KNP. Green triangles represent major 

campsites within the park. 
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Figure 2.4: Numbers of recorded reptile occurrences per 1 km x 1 km grid cells within KNP 

(n = 21761), with emphasis on the southern region of the park. White areas represent grid 

cells containing no data. 

At a scale of 1 km x 1 km most grid cells contained few reptile occurrence records. I 

observed a pattern which showed that as the number of records per cells increased, the 

number of those cells decreased (Linear regression analysis: F1, 114 = 9.34, P < 0.01, r = 0.08). 

I found that the majority of grid cells contained only a single record (911 cells, 52 % of cells; 

Figure 2.5a). This pattern held true at resolutions of 2 km x 2 km and 4 km x 4 km 

respectively (Figure 2.5b and 2.5c) but was not present at the pentad scale (9 km x 9 km; 

Figure 2.5d). Records at the pentad scale were relatively evenly spread across the different 

frequencies of grid cells. This suggests that spatial sampling bias is more apparent at fine 

scale resolutions than at broader levels. This was likely due to factors such as human 

presence being more impactful at finer spatial scales as these scales offer a more precise 

summation of reptile occurrences at specific sites.  
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Figure 2.5: Distributions of the numbers of records of reptile occurrences within different 

sized grids cells within Kruger National Park: a.) 1 x 1 km, b.) 2 x 2 km, c.) 4 x 4 km, and d.) 

9 x 9 km (pentad) grid cells. 
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The infrastructure network of KNP was not evenly distributed across the park. Of the 21761 

grids cells making up KNP, 3048 (14 %) of these contains some form of human 

infrastructure. Based on a linear regression analysis I found that a relationship exists between 

the number of records of reptile occurrences per grid cell, and the proximity of each cell to 

the human infrastructure network (F1, 1749 = 6.75, P < 0.01; Figure 2.6), thereby confirming 

the hypothesis that occurrences were biased towards infrastructure. This relationship was 

relatively weak (r = 0.07), likely due to the fact that the majority of grid cells containing data 

possessed only a single recorded reptile occurrence, but the overall trend was clear. As 

distance to infrastructure increased, the number of recorded reptile occurrences per grid cell 

decreased, suggesting the presence of geographical sampling bias towards infrastructure. 

Additionally, I found that 28 % of all grid cells containing infrastructure possessed at least 

one recorded reptile occurrence, whereas only 4 % of grid cells not associated with 

infrastructure contained data, thus further providing evidence of this bias. 

 

Figure 2.6: Distances of grid cells with reptile occurrences from grid cells containing human 

infrastructure. 
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2.3.3 Summary of climate and environmental data: 

Using a principal component analysis, I produced 27 new, uncorrelated environmental 

predictor variables in the form of principal components, each consisting of different 

proportions of the original 27 variables (Appendix 2). Each of these principal components 

contributed independently towards overall environmental variability across KNP, and the first 

six of these cumulatively represented approximately 85 % of total environmental variability 

(Table 2.2). The remaining 21 components cumulatively represented only 15 % of 

environmental variability and I omitted these from further analyses. 

Table 2.2: Contributions of variance per component for the first six components produced via 

principal component analysis, cumulatively representing over 85 % of environmental 

variance within Kruger National Park. 

Principal 

component 

Proportion 

of 

variance 

Cumulative 

proportion 

of variance 

Standard  

deviation 

Largest contributing  

variable 

Component 1 0.46 0.46 3.58 Annual mean temperature 

Component 2 0.20 0.66 2.37 Isothermality 

Component 3 0.07 0.72 1.35 Altitude 

Component 4 0.05 0.77 1.17 Water: presence/absence 

Component 5 0.04 0.81 1.07 Infrastructure: presence/absence 

Component 6 0.04 0.85 1.02 Aspect 

Within the six principal components included in my analyses, despite high percentages of 

overlap, I found evidence of geographical bias in the distributions of their climatic and 

environmental variability between the infrastructure network and the rest of the KNP (Figure 

2.7). The results of Kolmogorov-Smirnoff tests showed that there were significant differences 
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in climatic variation between grid cells containing infrastructure and all grid cells excluding 

those within all six principal components (P < 0.01 in all cases; Table 2.3). This showed that 

heavily sampled areas within KNP (i.e. those in close proximity to infrastructure) were not 

representative of the entire park in terms of overall environmental and climatic variability. 

Overall, this suggests that the climatic and environmental conditions of KNP are biased 

against the human infrastructure network. 

   

   

   

Figure 2.7: Kernel density plots showing differences in environmental variability within six 

principal components, comparing infrastructure (blue) and non-infrastructure (red). 
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Table 2.3: Geographical environmental bias of six principal components between 

infrastructural and non-infrastructural areas within KNP. 

Principal component Overlap percentage (%) P value D value 

Component 1 87 < 0.01 0.22 

Component 2 88 < 0.01 0.16 

Component 3 62 < 0.01 0.47 

Component 4 81 < 0.01 0.18 

Component 5 24 < 0.01 0.96 

Component 6 94 < 0.01 0.05 
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2.4 Discussion 

My results showed that reptile occurrence data for KNP were taxonomically, spatially, and 

geographically biased. Reptile families with high detectability (for example: Scincidae) had 

notably higher representation within my dataset than those with typically low detection rates. 

As a result, some families had more records than expected whereas others were poorly 

represented due to overall data deficiency across the park. The majority of occurrence data 

were strongly linked towards the infrastructure network, which itself did not represent the 

overall environmental space of KNP. With approximately 68 % of all records having been in 

close proximity (< 2 km) to publically accessible areas, the severe bias in sampling associated 

with infrastructure meant that regions of the park comprised of unique environmental space 

were not represented in the majority of currently available data. 

Bias in species occurrence data is a well-documented constraint of sampling. Human 

presence and infrastructure typically have a strong correlation with high densities of species 

occurrence records, particularly within museum collection data (Newbold 2010). The 

presence of these biases inhibits assessments of true biological distributions of species as 

infrastructural areas may not adequately represent the biological and climatic conditions that 

determines a species’ range (Kadmon et al. 2004). For example, in assessing occurrence data 

of frogs within South Africa, Botts et al. (2011) encountered similar issues relating to data 

bias to those observed here. They concluded that due to sparse sampling efforts in areas away 

from infrastructure, and the complications that this may have had on determining real 

biological patterns (Reddy and Davalos 2003), that their database of records was unlikely to 

have been a true reflection of frog distributions across South Africa. In the same way, due to 

the biases present here I can conclude that my dataset of reptile occurrences was unlikely to 

truly reflect real-world distributions of those species across KNP. 
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Species occurrence records are often associated with human infrastructure, yet human 

infrastructure is unlikely to be distributed in a biological manner. Species distributions are 

determined by several factors, including environmental and climatic variation across the 

landscape (Tolley et al. 2016). Factors such as temperature, altitude, substrate, or vegetation 

type are likely to be the primary drivers that determine where species occur (Franklin 2010), 

and these conditions are unlikely to be restricted to human infrastructure. Kadmon et al. 

(2004) found that roadside bias in occurrence data can result in climatic bias of species 

distributions. In their study, Kadmon et al. (2004) found that the road network of Israel is 

biased in terms of climatic variation among some variables (such as precipitation) when 

compared to the rest of the country. This matches what I have observed here as there were 

significant differences in environmental variation between the infrastructure network and the 

rest of KNP.  

Given the prevalence of biases present and the limitations of availability of occurrence data, 

producing distribution maps inferred solely from those data (for example, by drawing a 

polygon around those points on a map) would be ill advised. However, this dataset does lend 

itself towards species distribution modelling. This would have to be approached with caution 

however as the biases present will affect the accuracies of produced models if unaccounted 

for (Radosavljevic and Anderson 2014). Species distribution modelling is typically most 

effective when using unbiased data and usually requires an abundance of occurrences to be 

successful (Bahn and McGill 2013). Despite its limitations this dataset could form the basis 

of a predictive framework for mapping reptile distributions across KNP if the effects of the 

associated biases can be mitigated.  

In order to successfully develop SDMs for reptiles within KNP using this dataset, the biases 

present will need to be accounted for. Species distribution models are fundamentally reliant 

on species occurrence data as these data, in conjunction with environmental or climate data, 
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forms the basis of predictions (Pineda and Lobo 2009). Here, where occurrence data for 

several species are relatively sparse, meaningful models for some of these may be impossible 

to produce with what is currently available as a minimum of at least four occurrences are 

required for most algorithms (Hernandez et al. 2006). Additionally, since the majority of 

occurrences are closely clustered together near infrastructural areas, the effects of spatial 

autocorrelation will have to be accounted for as well (Elith et al. 2006) but this can be dealt 

with by rarefying records to remove the effects of such clustering. By accounting for the 

biases and limitations present, an SDM approach using this dataset could help to fill in the 

gaps within data deficient areas of KNP and produce high-quality maps of where each reptile 

species occurs within the park. 

Whilst overall bias may be unavoidable in the absence of greater sampling efforts, it is 

possible to work around these limitations. Most modern SDM applications offers a variety of 

options and settings and these will be pivotal in producing maps that reflect on species true 

distributions. This was explored further in chapter 3, where this prior knowledge of bias plays 

an important role. 
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Chapter 3: Modelling the distributions of reptiles in KNP 

3.1 Introduction 

KNP is an area of high reptile diversity within South Africa, hosting at least 120 different 

reptile taxa within its borders (Pienaar 1978; Branch 1998; Parr et al. 2009). Because of this, 

KNP is considered as a reptile diversity hotspot within South Africa albeit with relatively low 

levels of reptile endemism (Bates et al. 2014). The high reptile diversity present within KNP 

can be attributed to the wide variety of heterogeneous vegetation and microhabitat structures 

that are spatially distributed across the park, as well as suitable climatic conditions (Price et 

al. 2010). It is also influenced by the proximity of KNP to the tropical African biogeographic 

centre (Jetz et al. 2004). Whilst we have a relatively good understanding of which species 

occurs within KNP, and we broadly know that some species only occur within certain areas 

within the park (Bates et al. 2014), little is known about how these animals are spatially 

distributed across the entire landscape of KNP at fine spatial scales.  

Understanding fine-scale reptile distributions across KNP is critically important for 

monitoring changes to these species’ statuses with regards to TPCs but exact distributions of 

most of these animals are unknown. Although broad-scale attempts at mapping reptile 

distributions have been made (Branch 1998; Bates et al. 2014), these have limited 

management applications as broad scale data are not informative for the current monitoring 

protocols which largely focus on specific sites (Ferreira et al. 2011). Knowledge of fine scale 

reptile distributional patterns within KNP remains limited, and one method in which this can 

be quantified is via species distribution modelling. 

Species distribution models are capable of producing probable distributions or ranges of a 

species based on occurrence data and environmental or climatic variables (Ferrier and Guisan 

2006). Importantly, the likelihood of a species occurring in a particular grid cell on a map can 
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be predicted with some measure of statistical certainty on the basis of a range of 

environmental or climatic predictor variables. As suggested by Ferreira et al. (2011), a 

predictive framework could be used as an alternative to current monitoring protocols which 

involves on-site sampling. By using environmental variables to predict the occurrences of 

reptiles at relatively fine spatial scales this could provide informative data that is not limited 

by the difficulties associated with on-site sampling such as low detection and other logistical 

constraints. 

Various species distribution modelling approaches are available via several software and GIS 

programs, with the most commonly used approach being that of ecological niche modelling 

(Raxworthy et al. 2003; Guisan and Thuiller 2005). Ecological niche modelling allows for the 

prediction of a species’ fundamental niche/distribution within a given map, with the extents 

of recorded occurrences acting as the realized niche/distribution. Ideally, in conjunction with 

predictor variables, these models would be based on a combination of species’ presence and 

absence data for a given area. However, since it is usually difficult to obtain reliable absence 

data (Pineda and Lobo 2009), most modern SDM applications only require presence data to 

produce hypothesized distributions of species that can be statistically and empirically tested.  

One SDM application that has gained in popularity over the last decade is that of Maximum 

Entropy (MaxEnt; Phillips et al. 2006). MaxEnt requires species presence data, and 

environmental or climatic variables to model distributions based on machine learning 

algorithms. MaxEnt has fared well against similar programs (Elith et al. 2006; Hernandez et 

al. 2006) and is currently the preferred platform for many species’ distribution studies 

(Merow et al. 2013), including studies of reptiles in South Africa (For example: Tolley et al. 

2009; Barlow et al. 2013). In comparison to similar programs such as GARP, MaxEnt was 

found to outperform it in terms of predictive ability (Elith et al. 2006). Similarly, MaxEnt 

also outperforms more established methods such as BIOCLIM or ENSA. This is largely 
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because MaxEnt has a high level of flexibility in both its model building procedure and cross 

validation methods (Elith et al. 2006). For instance, MaxEnt offers various adjustable settings 

and parameters (for example, adjustable regularization) that allow users to limit the effects of 

biases in presence data, spatial autocorrelation, and model complexity (Phillips et al. 2006; 

Phillips and Dudik 2008) that its competitors do not.  

Here, I aim to predict the distributions of all reptile species occurring within KNP at a 

relatively fine spatial scale of 1 km x 1 km using MaxEnt. In addition, I aim to predict reptile 

species richness across the park and evaluate the success of model predictions using typical 

model statistical evaluation methods. This could allow for the accurate depiction of reptile 

distributions across KNP which will be useful for monitoring purposes with regards to TPCS.  
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3.2 Methods 

3.2.1 Species distribution modelling: 

I predicted the distributions of 119 reptile species across KNP using MaxEnt version 3.3.4 at 

a spatial resolution of 1 km x 1 km. These predictions were based on presence-only 

occurrence data, and six principal component layers which acted as environmental predictor 

variables. These principal components were summarized layers that represented the overall 

environmental and climatic variability of KNP based on temperature, precipitation, 

vegetation, soil type, altitude, distance to water, and infrastructure variables (see chapter 2) 

and were obtained from Worldclim, SANParks, SANBI, and SOTER.  

I tested if reptile occurrences across KNP were randomly clustered by calculating the Morans 

I value of the dataset within ArcGIS software. The Morans I value is a correlation coefficient 

that measures the overall similarity of clustering within a dataset (Eviritt and Hothorn 2011). 

Thereafter, to limit the effects of clustering, and thus spatial autocorrelation, within reptile 

occurrence records I rarefied my dataset by removing records within 1 km of each other on a 

species by species basis (i.e. within each 1 km x 1 km grid cell the same species would not be 

represented more than once). In carrying out the above mentioned process, I aimed to limit 

the effects of species clustering and sampling bias whilst still preserving broad coverage 

across KNP. Additionally, I omitted eight species (Amplorhinus multimaculatus, Bitis 

caudalis, Duberria lutrix lutrix, Lamprophis guttatus, Leptotyphlops scutifrons conjunctus, 

Monopeltis leonhardi, Naja melanoleuca, and Psammophis trinasalis) from modelling as I 

did not have sufficient records of occurrence for all those species (less than four records). My 

final tally of occurrences used to produce models was 5859 records, representing 82 % of my 

initial dataset. 
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I modelled the distributions of each species using the same set of parameters within MaxEnt 

to account for the similar biases present across all data. This meant that across the range of all 

produced models, the effects of shared biases were mitigated to the same degree for each 

species. However, because parameters were not species-specific it is possible that model 

performances of some species may have been inhibited (Hernandez et al. 2006). Since the 

numbers of occurrence records varied per species, I ran all models using linear, hinge, 

product, and quadratic features to account for these differences (Phillips et al. 2006). For all 

models, I used a random test percentage of 25 % of occurrences to act as a test of model 

performance within a maximum of 10000 background points. I also applied a regularization 

multiplier of three for each model to account for model over-fitting (Radosavljevic and 

Anderson 2014) and minimize model complexity (Galante et al. 2018).  

To further account for geographical sampling biases in occurrence data, I included a bias file 

within the production of each model. Within MaxEnt, the inclusion of a bias file allows for 

species occurrences to be unequally weighted within the modelling algorithm in order to 

place greater emphasis on some occurrences depending on the bias selected. Since 

infrastructural bias was so prevalent in my occurrence data (see chapter 2), I included a bias 

file that was based on the distance of each occurrence record to grid cells containing 

infrastructure (created within ArcGIS; Figure 3.1). This allowed for records further away 

from well-sampled, infrastructural areas to receive a greater weighting than those in close 

proximity to infrastructure, resulting in the effects of sampling bias having less of an impact 

on model predictions and depicted distributions (Phillips and Dudik 2008). Finally, I ran all 

models using a bootstrapping approach, with 100 replicates for each species as recommended 

by Radosavljevic and Anderson (2014). 
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C  

Figure 3.1: Distance of grid cells to infrastructure within KNP, used as a bias file within 

MaxEnt. Areas in close proximity to roads are black, with those far away being white. 

3.2.2 Model selection and evaluation: 

I evaluated the predictive strength of all models I produced based on area under the receiver 

operating curve (AUC) scores obtained for each. AUC scores represent the most widely used 

evaluation measure for SDM predictions based on presence-only data (Stockwell and Peters 

1999; Pearce and Ferrier 2000). These scores offer a discriminative value of a fitted model’s 

predictive performance, ranging from zero to one, with scores closer to one representing 

greater predictive power (Phillips et al. 2006). MaxEnt automatically provides AUC scores as 

one of several outputs when producing models, and I used those values as indicators of the 

performances of each of the models I produced. Since I produced 100 replicate models for 

each species, I took the average AUC score across replicates to obtain a measure for each of 

the 119 species. Similarly, to obtain final predictive distributions for each species I used the 
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average predicted distribution from all of the replicate models to eliminate biases in models 

in terms of predictive strength. 

3.2.3 Model performance analyses: 

In order to determine potential factors that influenced the predictive strength of each model at 

both the species and family levels, I compared species-specific input data to their respective 

model AUC scores. I tested the hypothesis that variances in the numbers of occurrence 

records would affect model performance by using a linear regression analysis to assess if a 

relationship exists between the numbers of occurrences used in model production and the 

respective AUC scores of the outputs. I also tested the hypothesis that a relationship exists 

between the extents of the areas surrounding occurrences (determined via the ‘convex hull’ 

tool within QGIS software version 3.2.3), and the AUC scores obtained per species. These 

areas surrounding occurrences represented estimates of the species range based on the 

locations of each point, analogous to IUCN’s extent of occurrences. Lastly, I tested if a 

statistical relationship exists between the number of occurrences and the extents of areas 

around these occurrences per species. I repeated these comparisons at the family level, using 

the averages across species for all three variables.  

3.2.4 Environmental variable importance: 

To quantify which variables had the largest influence on the models produced for all species, 

I compared the percentage contributions and permutation importance of each of the six 

principal components across all taxa. For each model, MaxEnt employs a specific algorithm 

to obtain a final prediction, but multiple algorithms could result in the same final prediction 

(Phillips and Dudik 2008). The percentage contribution is a measure of how much each of the 

six principal components contributed towards the final prediction based on the specific 

algorithm used for that exact model (Phillips et al. 2006). Conversely, the permutation 
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importance depends on the final model rather than the algorithm and measures how heavily 

that model depended on each variable. Both measures offer insight into identifying which 

components were most important for each model, and I hypothesized that different reptile 

species and families would be associated with different principal components. To test this 

hypothesis, I used separate one-way ANOVA tests to determine if differences existed 

between percentage contributions, and permutation importance of the six principal 

components across all models. I carried out all analyses using SPSS software version 23.  

3.2.5 Estimating species richness: 

Models output from MaxEnt are continuous and required a cut-off threshold (a percentage or 

probability) to be converted into a dichotomous, binary classifications of a species’ presence 

or absence within each grid cell. There is no strict rule for determining an appropriate cut-off 

threshold, but the selected value should not be arbitrarily chosen (Wilson et al. 2005; 

Hernandez et al. 2006). As recommended by Phillips et al. (2006) I used the 10th percentile of 

training data for each model as estimated by MaxEnt as the cut-off threshold for each species. 

Cut-off thresholds were thus species-specific, and I used these values to convert all models 

into binary presence/absence maps representing the distributions of all 119 reptile species.  

I overlaid all 119 predicted reptile presence/absence layers onto one another within QGIS 

software version 3.2.3 and used the ‘point sampling tool’ to extract their attribute 

information. Attribute information refers to the geographic features of each layer, which here 

was the presence or absence of each reptile species within each grid cell. The ‘point sampling 

tool’ allows for the collection of attribute information from multiple layers simultaneously, 

which allowed me to estimate the number of reptile species predicted to occur within each 

grid cell of the park and thus create a predicted species richness map of KNP at a 1 km x 1 

km resolution.  
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3.3 Results 

3.3.1 MaxEnt models: 

My overall dataset showed evidence of clustering (Morans I = 0.17). Thus, using my rarefied 

occurrence records and six principal components I produced predicted distribution models for 

119 reptile species across KNP. These models displayed the probability of each species’ 

occurrence within each grid cell, ranging from zero to one, with one representing the highest 

probability and zero representing the lowest (Phillips et al. 2006). Using species-specific 10th 

percentiles of training presences as cut-off thresholds, I converted all models into 

presence/absence maps, thereby predicting the ranges of reptile species present within KNP 

(Appendix 3). The predictive strength of these models varied per species with several models 

performing relatively well (< 0.90 AUC) and others decidedly poorly (> 0.60 AUC). 

3.3.2 Model evaluation: 

I evaluated the predictive strength of each model based on their respective AUC scores. I 

found that the average AUC score across all 119 species was approximately 0.75, indicating 

relatively good predicative performance that can be considered as informative (Phillips et al. 

2006; Phillips and Dudik 2008). However, AUC scores varied per species with some models 

performing notably better than others (Appendix 4). Models that obtained higher AUC scores 

were likely to represent truer estimates of distributions for those species than those that 

performed poorly. For example, it would generally be considered that a model with an AUC 

score as low as 0.53, as was the case for Prosymna lineata (Figure 3.2a), is not much greater 

than a random prediction (Merow et al. 2013). Conversely, models that achieved higher AUC 

scores (such as that of Varanus niloticus or Pachydactylus affinis; Figures 3.2b and 3.2c 

respectively), could be considered as probable representations of those species’ actual 

distributions within KNP. 
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Figure 3.2: Predicted distribution maps of a) Prosymna lineata, b) Varanus niloticus, and c) 

Pachydactylus affinis representing MaxEnt models that obtained low, median, and high AUC 

scores respectively. Black dots represent rarefied species occurrences and white dots 

represent test data. Map colours represent probability of occurrence within each grid cell. 

3.3.3 Model performance: 

Model performance varied across the range of all taxa. I found that due to a combination of 

variances in the numbers of occurrence records, and the extents of areas encompassing those, 

models for each species obtained different AUC scores. I found a significant relationship 

exists between the AUC scores obtained for each model, and the number of occurrence 

records used to produce each model within MaxEnt. As the number of occurrence records 

used to create a model increased, the AUC score of the resulting model decreased (Figure 

3.3a; Table 3.1). As such, species whose models performed best thus had very low numbers 

of occurrences, confirming the hypothesis that the number of occurrences used affected 

a.) Prosymna lineata b.) Varanus niloticus c.) Pachydactylus affinis 

AUC = 0.99 AUC = 0.53 AUC = 0.70 

Probability of 

occurrence: 
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model performance. However, in terms of biological interpretations, despite achieving high 

AUC scores it was unlikely that these models were depicting real-world distributions as the 

few occurrences used in model creation would not represent complete environmental space.  

Similarly, I found that there was also a significant relationship between the AUC scores of 

each model and the extents of areas encompassing occurrence points of each species. I found 

that species which had smaller areas of occurrences produced models with higher AUC 

scores than those with relatively large areas (Figure 3.3b; Table 3.1). This suggested that 

rather than the number of occurrences used for model creation, the spread of these 

occurrences across the KNP was more influential in the strength of the resulting models. 

Table 3.1: Results of four separate linear regression analyses comparing model performance 

across 119 reptile species. 

Comparison F value P value df R2 

Log AUC score vs. log number of occurrences 89.19 < 0.001 1, 117 0.43 

Log AUC score vs. log area of occurrences 201.37 < 0.001 1, 117 0.63 

Log AUC score vs. log density of occurrences 85.70 < 0.001 1, 117 0.42 

I also found that species that had low numbers of occurrences tended to cover smaller areas 

geographically across KNP and so densities of occurrences were high. Often, when 

occurrences were few, I found that they clustered closely together geographically, and this 

was typical for species with small distributional ranges within KNP. Conversely, widespread 

species tended to have higher numbers of occurrences available, and as a result, these covered 

larger areas across KNP. I found a significant relationship exists between AUC scores 

obtained for each model and the density of occurrences per area (Figure 3.3c; Table 3.1), 

suggesting that the spread of occurrences across geographical space rather than the numbers 

of occurrences used was more important in affecting AUC scores.  
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Figure 3.3: Scatter plots comparing input variables and model scores for 119 reptile species. 

Further analyses revealed that the average predictive strength of distributional models 

produced via MaxEnt also varied at the family level (Table 3.2). The Amphisbaenidae family 

produced the strongest models, achieving an average AUC score of 0.88, across an average of 

23 occurrence records per species (158 occurrences in total). The weakest performing family, 

the Viperidae, achieved an average AUC score of 0.61 with an average of 58 occurrence 

records per species. Differences in model performance across reptile families were clearly 

apparent. 
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Table 3.2: Summary of average model performance of reptile families within KNP. 

Family 
Number 

of species 

Average number 

of occurrence 

records  

Total number of 

occurrence 

records  

Average 

test 

AUC 

Agamidae 3 51 152 0.74 

Amphisbaenidae 7 23 158 0.88 

Chamaeleonidae 1 125 125 0.64 

Colubridae 10 55 545 0.70 

Cordylidae 9 19 170 0.84 

Crocodylidae 1 143 143 0.74 

Elapidae 6 57 339 0.70 

Gekkonidae 14 40 558 0.85 

Gerrhosauridae 4 73 291 0.64 

Lacertidae 6 39 234 0.73 

Lamprophiidae 25 42 1048 0.70 

Leptotyphlopidae 4 49 197 0.71 

Pelomedusidae 3 68 203 0.64 

Pythonidae 1 112 112 0.68 

Scincidae 14 58 818 0.78 

Testudinidae 3 87 261 0.77 

Typhlopidae 3 39 116 0.70 

Varanidae 2 99 197 0.65 

Viperidae 3 58 174 0.61 

Similar to the comparisons made at species level, I found that families with higher numbers 

of occurrence records produced models with weaker predictive strength than models with 

relatively few occurrence points. The results of a linear regression analysis showed that a 

significant relationship existed between the average numbers of occurrences and average 

AUC scores across reptile families (Figure 3.4a; Table 3.3). I found a significant relationship 

between AUC values and the numbers of occurrence records at the family level.  
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Figure 3.4: Scatter plots comparing input variables and model scores for 19 reptile families. 

I found that the number of occurrences was not the only factor affecting AUC scores of 

reptile families, with the areas around those occurrences being important contributors. Via 

linear regression analysis I found that on average the test AUC scores of each reptile family 

was higher when the average area of occurrences for said family was lower. This was likely 

due to smaller areas of occurrence having less environmental and climatic variance, thus 

resulting in less complex and therefore stronger predictive models. This relationship was 

statistically significant (Figure 3.4b; Table 3.3). This showed that the average area 

encompassing occurrences also affected the AUC scores obtained at the family level. 
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However, I found that there was no significant relationship between average AUC scores and 

densities of records at the family level (Figure 3.4c; Table 3.3). This showed that similar 

patterns are true for reptile species and families when using input occurrence data, except 

when assessing densities of records. 

Table 3.3: Results of four separate linear regression analyses comparing model performance 

across 19 reptile families. 

Comparison F value P value df R2 

Average AUC score vs.  

average number of occurrences 

5.47  0.03 1, 17 0.24 

Average AUC score vs. 

 average area of occurrences 

21.91 < 0.001 1, 17 0.56 

Average AUC score vs. average 

density of records 

0.285 0.600 1, 17 0.02 

3.3.4 Environmental variable importance: 

Environmental predictor variables varied across taxa in both their contributions, and 

importance to models. Across all 119 species, in terms of percentage contribution towards 

model creation, I found a significant difference amongst the six principal components (one-

way ANOVA test: F5, 708 = 55.64, P < 0.01). Similarly, the same differences were present for 

permutation importance across components (one-way ANOVA test: F5, 708 = 39.51, P < 0.01). 

On average, I found that the first and second principal components had significantly greater 

influence towards predicting distributions of reptile species across KNP than the remaining 

four components (Figure 3.5) and were the primary drivers determining suitable areas within 

the park for the majority of models.  
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Figure 3.5: Average percentage contributions and permutation importance of six principal 

summarising overall environmental variability of KNP components towards distribution 

models of 119 reptile species across KNP. 

At the family level, I found the same patterns to be present. I found that there was a 

significant difference between principal components in terms of both percentage contribution 

(one-way ANOVA test: F5, 108 = 14.32, P < 0.01), and permutation importance (one-way 

ANOVA test: F5, 108 = 13.82, P < 0.01) towards models. On average, at the family level I 

again found that the first and second principal components had the most influence across 

model production, with the fifth and sixth components contributing least (Figure 3.6). 

 

Figure 3.6: Average percentage contributions and permutation importance of six principal 

components summarising overall environmental variability of KNP towards distribution 

models of 19 reptile families across KNP. 
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Whilst on average the first two principal components had the largest impact on all models 

across families, for individual families this was not always the case. Some models were 

influenced more by the other four principal components (Figure 3.7), likely due to the unique 

ecologies of those particular species. For example, I found that the predicted distribution of 

the Crocodylidae was most influenced by principal components three and four. This made 

sense biologically as those two components were closely associated with the presence of, and 

distance to water across KNP (see chapter 2), which are undoubtedly the limiting 

environmental factors for aquatic species such as Crocodylus niloticus. The same can be seen 

within the Varanidae family, where principal components associated with water again 

contributed most towards model production. Overall, principal components one and two 

influenced models most, followed by components three and four, with components five and 

six having had very little influence across reptile families.  

 

Figure 3.7: 100 percent stacked columns displaying average percentage contributions (left 

columns), and average permutation importance (right columns) of six principal components 

towards distribution models of 19 reptile families within KNP.
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3.3.5 Predicted species richness: 

Based on my modelled distributions of reptiles within KNP, I predicted reptile species 

richness across the landscape of the park. Species richness was unevenly spread across KNP, 

with several areas having considerably higher predicted richness than others (Figure 3.8). The 

northern most regions of the park, particularly along the eastern and western borders near 

Punda Maria and the Nyandu sandveld regions respectively appeared to have the highest 

predicted richness within the park. The central most region of KNP, such as those areas 

dominated by Mopaneveld, were predicted to have the lowest numbers of reptile species 

present (with the exception of the riverine regions that maintained relatively high species 

richness throughout KNP). Overall, I predicted that every grid cell within the KNP had a 

minimum of at least six species occupying it.  

 

Figure 3.8: Predicted reptile species richness across KNP at a 1 km x 1 km spatial scale. 

Number of species: 
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3.4 Discussion 

Understanding species distributions is fundamentally important in assisting with their 

conservation. Here, I have provided the first fine-scale attempt at predicting distributions for 

119 reptile species within KNP. Using an ecological niche modelling approach via MaxEnt 

machine learning, I predicted distributions for each of these species with varying degrees of 

model performance, achieving an average AUC score of 0.75 across all models. Instances of 

poor performance within some models highlighted the flaws within my predictions and most 

likely occurred as a result of the inherent biases within input occurrence data. As a result, 

models for some species may have been fatally flawed and were unlikely to accurately 

represent true distributions of those species across KNP. That said I have learnt that variances 

in model strength were strongly affected by differences in the numbers and densities of 

occurrence records used to produce each model, as well as the extents of the areas 

encompassing those occurrences.  

Model performances, in the form of AUC scores, were affected by several factors. Several of 

the species that I aimed to model distributions for had very few occurrence data available. 

One of the major drawbacks associated with MaxEnt is that it is sensitive to sample size 

(Phillips et al. 2006; Anadon et al. 2012). For reptiles, particularly cryptic species, occurrence 

records are not always readily available (Pearson et al. 2007) and this was indeed the case 

here. In addition, the majority of occurrence records I obtained were from museum databases. 

Whilst extremely valuable due to the overall scarcity of reptile occurrence records, museum 

data are not particularly ideal in the use of SDMs as these collections are highly likely to be 

inherently biased towards infrastructural and other frequently sampled areas (Newbold 2010). 

Input occurrence data was thus both limited and biased, and undoubtedly inhibited model 

performance to some degree, but this was not the major limiting factor. 
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I found that the spatial extent and clustering of occurrences across geographical and 

environmental space within KNP was likely to have affected model performance the most. 

Species with few occurrences produced stronger performing models than those with greater 

numbers, matching the results of previous studies (Stockwell and Peterson 2002; Hernandez 

et al. 2006). This was however not due to low numbers of occurrences but rather due to the 

limited spread of the extents of these. In these instances, occurrences were so closely 

clustered together that there were little changes in environmental variability between them. 

Therefore, the machine-learning algorithm employed by MaxEnt would not be overly 

complex and this resulted in stronger models being produced (Phillips et al. 2006). 

Conversely, species which had higher numbers of available occurrence records tended to 

cover larger geographical spaces, causing an in increase in complexity as environmental 

variability was therefore greater and weaker models were produced as a result. 

In addition to biases and limitations in occurrence data, my choice in spatial scale may also 

have affected model performance. A resolution of 1 km x 1 km offered the finer most 

resolution at which I could operate due to the limited availability of reliable climate and 

environmental data, although broader options were available. By opting to produce models at 

such a fine spatial scale across such a large area, and with limited occurrence data, there is 

little doubt that these choices will have affected model performance. Whilst many SDM 

focussed studies opt for a fine scale approach (Hurlbert and Jetz 2007), it may not always be 

the most effective choice. For the purposes of monitoring changes to reptile populations 

across KNP it made biological sense to use as fine a spatial scale as reasonably possible since 

monitoring is related to the scale at which those animals select microhabitats (Ferreira et al. 

2011), but as evidenced here this approach may not be the most effective at yielding strong 

performing models.  

http://etd.uwc.ac.za/



49 
 

The large variances in model performance amongst reptile species, and reptile families 

remain difficult to explain. Usually, differences in AUC scores obtained per species could be 

explained by some species being inherently better suited to SDM predictions than others 

(Elith et al. 2006; Radosavljevic and Anderson 2014). In the models I produced, since species 

had differing numbers of occurrences and these occurrences were directly linked to model 

performance, I cannot state that some reptile species or families had better modelability than 

others as there were clear biases present (Kery 2011). Species with lower numbers of 

occurrences produced the best models, largely because in those cases the densities of 

occurrences clustered closely together geographically (Stockwell and Peterson 2002; Pearson 

et al. 2007). This means that the environmental variability was likely to be relatively similar 

at each occurrence, and the resulting model thus performed well. This suggests that 

environmental variability across points rather than the number of, or area encompassing 

points is most likely the cause of varying AUC scores. 

Alternatively, it may be that some of the reptile species within KNP are not suitable for 

climate modelling and required a greater number of environmental variables to produce 

meaningful models. Hernandez et al. (2006) found that in modelling the distributions of 18 

taxa across California, variances in model performance was likely due to models for some 

species requiring additional variables relating to those species’ actual distributional patterns. 

Hernandez et al. (2006) concluded that to produce stronger models they required additional 

environmental data rather than climate information. This may have been the case here in my 

study, where models for several species may have benefitted from the inclusion of additional, 

species-specific variables. Whilst this was included to some degree in the form of water 

layers, which undoubtedly benefited models for aquatic species (Pineda and Lobo 2009; Kery 

2011), models for most species did not receive the same benefits. For example, individuals of 

Broadleysaurus major are known to sometimes inhabit unused termite mounds (Branch 1998; 
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Bates et al. 2014), and an inclusion of a variable representing this would likely have affected 

model performance for this species. However, since all species were modelled here using the 

same layers and parameters, species-specific benefits were largely absent from models.  

Given that my aim was to produce distribution maps for all reptiles within KNP with the 

purpose of overlaying these, my approach here matched that of Overton et al. (2002) as a 

‘predict first, assemble later’ strategy. This strategy allows for the observation of bigger 

picture patterns of reptile species richness despite potential inaccuracies within individual 

models (Feria and Peterson 2002). Some of my models did not obtain particularly high AUC 

scores and so the predictive ability for those species were unreliable (Merow et al. 2013). 

However, despite achieving less than ideal AUC scores, in several cases the predicted 

distributional ranges of species appeared to make reasonable biological sense. For example, 

the model for the primarily aquatic species Varanus niloticus achieved a relatively modest 

AUC score of only 0.70 (Baldwin 2009), but its predicted distribution closely followed 

riverine areas across KNP which is where this species would likely be present in reality 

(Pienaar 1976). As such, for some of my models AUC scores may not have been a 

meaningful measure of model performance or accuracy. 

I found that principal components influenced models differently across reptile species and 

families. Whilst knowing which variables correlates most with the distributions of each 

reptile species and family is informative (Raxworthy et al. 2003), this knowledge in itself 

does not explain the variances in model performance across these taxa. Instead, these 

environmental correlates indicate the degree to which species are limited in their distributions 

(Guisan and Thuiller 2005; Brown et al. 2014), thereby influencing probabilities of 

occurrences within each grid cell rather than overall model performance. In reality, reptile 

species are limited in their ranges by different environmental factors (for example: crocodiles 
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are limited by the presences of rivers and other large water bodies; Branch 1998; Tolley et al. 

2009) and my models have largely shown this despite less than ideal performance.  

In the context of reptile management within KNP, distributional data is of considerable 

importance. Currently, TPC statuses of reptiles are assessed by monitoring changes to reptile 

populations at given sites every three years (Ferreira et al. 2011). Due to the low detectability 

of reptiles, on site-sampling is unlikely to yield true reptile richness patterns (Mazerolle et al. 

2007), and as such the current system is inherently flawed. As suggested by Ferreira et al. 

(2011), a predictive inventory approach could better suit monitoring needs than on-site 

sampling for this group of animals. Here, my models explicitly predict where 119 reptile 

species are likely to occur within KNP at a 1 km x 1 km resolution. This is the first step 

towards testing the effectiveness of a predictive inventory approach, but it requires extensive 

ground-truthing to determine how these predictions fare within the real-world. 

The approach of overlaying species distributions on top of each other to obtain species 

inventories and assemblage patterns has been successfully employed in previous studies. 

Feria and Petersen (2002) modelled and predicted the distributions of 89 bird species across 

south western Mexico using a similar ‘predict first, assemble later’ strategy as I used here. In 

the above mentioned study, Feria and Petersen (2002) empirically tested their predicted 

hypotheses via inventory sampling across several localities within their study site in order to 

compare their predictions with reality, and they found that their predictions were statistically 

accurate. This shows that using models to predict distributions for several species 

simultaneously is possible despite the difficulties associated with SDMS. 

The predictions I have made here concerning the presences and absences of reptile species 

within and across KNP at a 1 km x 1 km resolution could potentially be used as an alternative 

means of monitoring to that of on-site sampling. However, model performance was variable 
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across species, and although AUC scores may have been a misleading measure in some cases, 

extensive testing of all models are required to properly and empirically assess their accuracies 

and potential use within the TPC and SAM framework. 
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Chapter 4: Ground-truthing model predictions 

4.1 Introduction 

The predicted distributions of reptiles occurring in KNP that I produced in chapter 3 were 

variable. The majority of models achieved passable AUC scores and would be deemed as 

meaningful attempts at accurately estimating the distributions of reptiles across KNP (Phillips 

et al. 2006; Phillips and Dudik 2008), but this was not the case for each model individually. 

Because there are always likely to be discrepancies between model predictions and reality 

(Stockman et al. 2006; Sarquis et al. 2018), even for those models that obtained AUC scores 

close to one (Lobo et al. 2008), it is important to test these predictions within the context of 

the real world (Bahn and McGill 2013). To empirically test the accuracies of my model 

predictions and assess how these translated into reality, ground-truthing efforts involving on-

site trapping and sampling within KNP were necessary. 

Effective trapping and sampling of reptiles can be done in several ways, the most efficient of 

which involves trap arrays combining pitfall traps, funnel traps, and drift fences (Maritz et al. 

2007). This has become the standardized method for capturing lizards, snakes, and 

amphibians as it generally yields high rates of positive captures (Campbell and Christman 

1982; Greene et al. 1999; Kuhnz et al. 2005). Used in conjunction with incidental and 

opportunistic observations of reptiles, this offers a relatively simple method of building up a 

dataset of reptile occurrences to test against predicted distributions.  

In this chapter, I aim to empirically assess the accuracies of my model predictions of reptile 

distributions within KNP. Using Y-shaped trap arrays consisting of pitfall traps, funnel traps, 

and drift fences to trap reptiles, I built up a dataset in which to test my model predictions 

against. Whilst limited in terms of sampling time and the number of sample sites, this 

allowed for me to determine the degree of accuracy of some of my model predictions.  
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4.2 Methods 

4.2.1 Site selection: 

I trapped individual reptiles at six different sites within KNP. Each of these six sites were 

situated within the Skukuza granite super-site in the southern region of KNP (Figure 4.1) and 

consisted of upland and lowland locations. These sites were selected because: 1) they 

represented grid cells in which reptile occurrence data were absent or sparse (chapter 2), and 

so sampling here was not only useful for testing predictions but also for filling in a deficiency 

gap, 2) ease of accessibility in terms of safety and time constraints, and 3) permission to 

sample as required from SANParks. Ground-truthing were performed as a component of the 

Reptile Diversity in African Savannas field course (RDAS; www.studyafricanreptiles.org), 

with ethical clearance approved by the University of the Western Cape under permit number 

AR17/10/1. Ideally, ground-truthing should have taken place across a larger area of KNP but 

I was logistically limited and could not sample more extensively.  

 

Figure 4.1: Locations of six ground-truthing sampling sites (indicated by red dots) within the 

greater Skukuza area of KNP. 
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4.2.2 Sampling design: 

Together with a team of volunteers, at each site I installed a Y-shaped trap array. In similar 

fashion to Maritz et al. (2007), each of these trap arrays consisted of a combination of four 

pitfall traps, six mesh-entrance funnel traps, and three drift fences each 10 metres in length, 

arranged together in a ‘Y-shape’ (Figure 4.2). I constructed drift fences by stapling black 

plastic sheeting to wooden stakes that we buried into the ground at a standardized height of 

300 mm. I stapled funnel traps to these wooden stakes towards the centre of the drift fences 

and I covered these with vegetation to provide shelter for potential individuals caught within. 

I also shaded each pitfall trap with black plastic sheeting and placed Petri dishes filled with 

water within each pitfall to limit the possibility of dehydration of individuals caught within. 

Together with volunteers, I checked traps twice a day from 04 December 2017 to 14 

December 2017. In instances where we captured a reptile, we safely removed the individual 

from the trap before identifying and releasing it. In cases where other taxa were caught within 

traps, we safely removed and released those without recording. 

4.2.3 Incidental searching: 

In addition to sampling via traps, the volunteers and I also incidentally searched for reptiles 

within the greater Skukuza area throughout the same 10-day period. These searches consisted 

of game drives, on-foot searches within publically accessible areas such as campsites and 

picnic spots, and on-foot searching within typically non-accessible areas when game guards 

were available. I photographed all reptiles found and observed during these searches and 

identified individuals to the species level using field guides and expert opinion. In each case I 

recorded the GPS co-ordinates and locality where each individual reptile was observed.  

http://etd.uwc.ac.za/



56 
 

4.2.4 Summarizing ground-truthed data: 

For all analyses relating to ground-truthing efforts, I combined my trap data and incidental 

search data into one dataset. I categorized all reptiles found within the 10-day period in terms 

of group (chelonian, crocodylian, lizard, or snake), as well as their taxonomic family. In order 

to test whether I caught an even representation of reptiles across taxonomic groups, I 

compared the counts of species, and the counts of individuals caught based on reptile type 

and reptile family using four separate one-factor chi-square tests within SPSS software 

version 23.  

 

Figure 4.2: Y-shape trap array design consisting of funnel traps, pitfall traps, and drift fences 

used to capture reptiles. 
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4.2.5 Model testing: 

I used my combined dataset of reptiles caught in trap arrays and reptiles observed incidentally 

(Figure 4.3) to evaluate the accuracies of model predictions. Given that this dataset consisted 

of presence-only observations, it was important to use an evaluation method that did not 

require absence data. Following Hernandez et al. (2006), I used prediction success as a 

measure of evaluating my model predictions. Prediction success was defined as the 

percentage of observations for each species that were correctly classified within models as 

being present within a grid cell. This evaluation method tests models for omission errors or 

false-absences, thereby giving an estimate of the number of true-presence predictions.  

Since the evaluation dataset only contained observations of 36 reptile species, I only tested 

the models of those species. To test prediction success of each of these, I plotted all 

observations within the evaluation dataset (n = 151) within QGIS software version 3.2.3 and 

overlaid these upon their respective presence/absence maps (see chapter 3). For example, the 

locations of the four observations made of Trachylepis striata during trapping were overlaid 

onto the presence/absence map of this species. For each species I then counted the numbers 

of observations which occurred within grid cells where the species was predicted as present 

(true-presences), and the numbers of observations which occurred within grid cells where the 

species was predicted as absent (false-absences) and used these to estimate a percentage of 

prediction success. I then calculated average prediction success across all 36 species. 

I then tested the hypothesis that models with higher AUC scores would have greater 

prediction success than those with lower AUC scores. To do this I used a linear regression 

analysis comparing AUC scores and prediction success of all 36 models. Similarly, I also 

performed a separate linear regression analysis to test the hypothesis that the numbers of 

observations used to evaluate models affected prediction success. 
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4.3 Results 

4.3.1 Summary of ground-truthed data: 

I recorded 151 occurrences of individual reptiles, comprising 36 species and 17 families 

(Table 4.1). These occurrences were not evenly distributed taxonomically and significantly 

differed amongst reptile groups, with the majority of observations being of individual lizards 

(Chi-Square test: X2
df = 3 = 138.04, P < 0.01; Figure 4.4a). The numbers of species observed 

per group also varied (Chi-Square test: X2
df = 3 = 24.43, P < 0.01; Figure 4.4b), with more 

lizard species being observed than species of any other reptile group. I also found family 

level taxonomic biases in the reptiles observed. I found significant differences in the numbers 

of observations of individuals per family (One-factor Chi-Square test: X2
df = 11 = 126.11, P < 

0.00), with most observations belonging to members of the Testudinidae. Conversely, I found 

no significant differences present in the number of species observed per family (One-factor 

Chi-Square test: X2
df = 5 = 5.67, P = 0.34) as most families only had single representatives. 

 

 

 

 

 

 

 

Figure 4.3: Examples of reptiles incidentally observed within the greater Skukuza area: a) 

Acanthocercus atricollis atricollis, b) Telescopus semiannulatus semiannulatus, c) Kinixys 

spekii, d) Chondrodactylus turneri, e) Amblyodipsas polylepis, and f) Crocodylus niloticus. 

a.) b.) c.) d.) 

e.) f.) 
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Table 4.1: Reptile species observed and caught in trap arrays during 10 days of sampling 

within the greater Skukuza area of KNP.  

Species 
Number of 

observations 

Test  

AUC 

Acanthocercus atricollis atricollis 3 0.64 

Acontias plumbeus 1 0.69 

Afrotyphlops schlegelii 4 0.68 

Amblyodipsas polylepis polylepis 1 0.71 

Bitis arietans arietans 2 0.61 

Broadleysaurus major 2 0.65 

Chamaeleo dilepis dilepis 3 0.64 

Chondrodactylus turneri 3 0.65 

Cordylus jonesii 1 0.54 

Crocodylus niloticus 3 0.74 

Dendroaspis polylepis  1 0.65 

Dispholidus typus typus 1 0.61 

Gerrhosaurus intermedius 5 0.69 

Hemidactylus mabouia  2 0.66 

Hemirhagerrhis nototaenia 1 0.58 

Homopholis wahlbergii 1 0.64 

Kinixys spekii 14 0.78 

Leptotyphlops incognitus 1 0.77 

Lygodactylus capensis capensis 5 0.68 

Matobosaurus Validus 5 0.61 

Mochlus sundevallii sundevallii 4 0.68 

Nucras holubi 19 0.74 

Panaspis wahlbergii 4 0.71 

Pelusios sinuatus 3 0.65 

Philothamnus semivariegatus  2 0.65 

Prosymna stuhlmannii 1 0.65 

Psammophis subtaeniatus 1 0.67 

Psammophylax tritaeniatus 3 0.58 

Stigmochelys pardalis 13 0.67 

Telescopus semiannulatus semiannulatus 1 0.57 

Thelotornis capensis 1 0.65 

Trachylepis margaritifer 8 0.70 

Trachylepis striata 4 0.70 

Trachylepis varia 22 0.69 

Varanus albigularis albigularis 4 0.61 

Varanus niloticus  2 0.70 

Average 4 0.66 
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Figure 4.4: Numbers of observations of a) individual reptiles and b) reptile species per reptile 

group. 
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4.3.2 Model testing: 

In empirically testing the accuracies of my model predictions, I found that the models I 

produced did not accurately predict species’ presences and absences in all cases. In total, of 

the 151 observations of reptile occurrences, only 103 (68 %) of these occurred within grid 

cells where the models predicted those species should occur. Of the 36 models I specifically 

tested, 19 of these had 100 % prediction success but the remaining 17 models all had varying 

numbers of omission errors (Figure 4.5). Several reptiles were observed in reality within grid 

cells where I predicted them as being absent. For example, during sampling I observed three 

individuals of Chamaeleo dilepis dilepis at three different locations, but only two of those 

observations occurred within grid cells where my modelled distributions predicted the species 

as being present. These types of omission error rates varied across these 17 flawed models, 

with some having only a single false-absence whereas others consisted entirely of false-

absences and having 0 % prediction success. I found that average prediction success across 

all 36 tested models was 65 %, with the remaining 35 % being attributed to false-absences. 
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Figure 4.5: Prediction success of 36 reptile species distribution models. 
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In testing if there were any relationships between AUC scores and prediction success 

obtained for each model, I found that this relationship was not present within these 36 models 

(F1, 35 = 0.02, P = 0.88). Models that obtained higher AUC scores did not obtain higher 

prediction success and there was no apparent trend (Figure 4.6a). Similarly, I also found no 

relationship between the number of observations used to evaluate models and the prediction 

success obtained (F1, 35 = 0.12, P = 0.73). Again, there was no apparent trend as models which 

had higher numbers of observations to test against did not achieve statistically higher or 

lower prediction success than those with fewer observations (Figure 4.6b). 

 

 

Figure 4.6: Comparisons between prediction success of 36 reptile species distribution models 

and a) AUC scores of each model, and b) numbers of observations used to test each model.  
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4.4 Discussion: 

The predicted reptile species distribution models I produced in chapter 3 achieved good AUC 

scores (average AUC = 0.75), but in terms of their real world performance they had variable 

rates of prediction success. On-site trapping and ground-truthing within KNP allowed me to 

build up a dataset of 151 individual reptile observations to test against modelled distributions 

of 36 species, the results of which showed that these models had an average prediction 

success of approximately 65 %. The remaining 35 % was attributed to false absences 

(omission errors) in model predictions as I observed several individual reptiles in areas where 

those species were not predicted to occur.  

As my ground-truthing efforts were limited in terms of both locations and time, there are several 

implications to consider. Firstly, all of my trapping took place within the Greater Skukuza area, which 

whilst spatially diverse is not a true representative of KNP as a whole. My trapping efforts were 

therefore more akin to an extensive sampling of this particular area as opposed to ground-truthing of 

KNP. It is possible that trapping success could vary across the landscape of KNP and so by limiting 

my trapping to one location this means that we still do not know how prediction success of my 

distribution models would fare across the rest of KNP. Secondly, because trapping was confined to so 

few days my trapping cannot be deemed as being a thorough measure of reptile diversity within those 

sites. Intensive sampling via trapping can take months or years to yield true reptile species richness 

patterns (Maritz et al. 2007). Because my sampling was constrained logistically it undoubtedly had an 

effect on the available data to test against model predictions.  

Since my sampling was limited, I did not expect to obtain complete inventories of reptile 

species at each sampling site, and more broadly, the grid cells where sampling took place. 

Each trap array was limited in terms of placement as they required habitats which allowed for 

digging holes in the ground. As such, I did not place arrays in close proximity to several 

typically suitable reptile habitats such as rocky outcrops or riverine areas (Branch 1998; 
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Bates et al. 2014) and I was therefore unlikely to capture species associated with those 

habitats. Additionally, my modelled predictions were made at a spatial scale of 1 km x 1 km, 

but each trap array only covered a fraction of that area. Since all trap arrays were situated 

within separate grid cells, this meant that in each case the species caught would only 

represent a subset of reptile species richness within said grid cell. These limitations coupled 

with the low detectability of reptiles and limited sampling time meant that several other 

reptile species were undoubtedly present within those areas but remained undetected. 

In terms of trapping, my approach matched that of Maritz et al. (2007) in which pitfall traps, 

funnel traps, and drift fences used in conjunction were employed in Y-shaped arrays to 

capture reptiles. This is generally accepted as the preferred method of reptile sampling 

(McDiarmid et al. 2012) and proved successful here where I caught 55 individual reptiles (in 

addition to a further 96 incidental observations) within a limited sampling period of only 10 

days. Model testing was therefore limited to comparing the observed occurrences of reptiles 

against predicted distributions for only 36 species to assess omission errors (false-absences) 

rather than commission errors (false-presences) which I was unable to test. Nevertheless, 

each individual captured or observed offered useable information for testing my predictive 

hypotheses of reptile distributions. 

Prediction success of tested models varied per species and was unconvincing overall. As 

discussed in chapter 3, model performances in terms of AUC scores were good but less than 

ideal, and this translated into reality as nearly half of all tested models contained omission 

errors. However, I found that for those 36 tested models there was no relationship between 

AUC scores and model performance, suggesting that for these models, and likely the untested 

models as well, AUC scores may not have been the correct indicators of model strength 

(Lobo et al. 2008).  

http://etd.uwc.ac.za/



66 
 

Empirical testing of SDMs in previous studies have met greater success that what I observed 

here. In testing the prediction success of models representing 18 different taxa across 

California, Hernandez et al. (2006) reported an average success rate of approximately 90 % 

for MaxEnt models that they developed using 100 occurrence records for each species. 

However, they also produced models using only five occurrences per species and these 

models had an overall lower prediction success (approximate average = 60 %) that was more 

line with what I observed here. In a separate study, using an alternative approach to 

prediction success, Sarquis et al. (2018) tested the predicted distribution of Bothrops 

alternatus in Argentina by comparing SDMs against the known empirical distribution of this 

species. They found that each of the different models they produced either over-estimated or 

sub-estimated the distribution of this species, but that the MaxEnt models were among those 

that most closely resembled its empirical distribution. These examples show that SDMs can, 

and have, been reasonably accurate when they are empirically tested, but that even with high 

success rates they are unlikely to perfectly predict species’ true distributions as there will 

always be elements of overestimation or under-estimation present.  

Since prediction success varied across the 36 models I tested, it is reasonable to assume that it 

would also vary across the remaining, untested models and that several of those would also 

contain errors. As such, the usage of all 119 models in further analyses and applications 

should be employed with caution. Although the models of some species achieved 100 % 

prediction success, several others were undeniably flawed. However, all 119 models provide 

valuable baseline data as the errors found here were present at a 1 km x 1 km spatial scale 

and might not be present at broader resolutions. Overall, it is clear that the models I produced 

require refinement if they are to obtain high AUC scores (> 0.9), and high prediction success, 

but it is unclear if that requires higher quality input data or different modelling approaches as 

both of these could potentially solve the issues present here. 
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Chapter 5: Reptile assemblage structure of KNP 

5.1 Introduction 

A central aim of biogeography is the classification of organisms into meaningful groupings in 

the form of biogeographical units (Mackey et al. 2008; Kreft and Jetz 2010). These units are 

an important component of biogeography as they allow for analyses of the geographical 

organization of the world’s biota (Linder et al. 2012), which in turn allows for the 

development of a spatially explicit framework (Moura et al. 2017) that can be used to answer 

ecological questions and assist in conservation management (Kreft and Jetz 2010). These 

questions include those relating to dispersals, and distributions of species (Carstensen et al. 

2013). By delineating a region into biogeographic units on the basis of its unique biota, we 

can identify areas which are most in need of conservation. This highlights the need to 

delineate regions as this process can prove inform conservation planning. 

Delineating a region into biogeographic units based on compositional dissimilarity is known 

as biogeographical regionalization (Kreft and Jetz 2010; Moura et al. 2017). This procedure 

aims to separate a geographical area into spatially segregated units in which species 

compositions are broadly similar within units, but significantly differs across them (Mackey 

et al. 2008). In this way, important community ecology and biogeographical questions can be 

answered relating to monitoring, managing and conservation of organisms within a given 

area (Morrone 2009; Brown et al. 2014). For example, the boundaries at which biogeographic 

units are separated may be related to underlying ecological factors and may be informative in 

identifying physical barriers or other features that restricts a species’ distributional range. 

Identifying these boundaries could be an important consideration in affecting conservation 

decisions within protected areas but this is largely dependent on the extent of the area in 

question as well as the spatial scale at which biogeographical regionalization is undertaken. 
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Studies focussing on biogeographical regionalization have most often operated at 

considerably broad scales. The majority of studies aiming to delineate areas into spatially 

segregated biogeographic units have been performed at national, continental, and even global 

scales (For example: Minter et al. 2004; Linder et al. 2012; Moura et al. 2017). Whilst 

informative, studies such as those do not offer much value in terms of management and 

conservation decisions at the localized scale of a national park where this information would 

be beneficial (Whittaker et al. 2005). This brings about the need for biogeographical 

regionalization at smaller scales (Moura et al. 2017), particularly for those groups of 

organisms whose biogeographic patterns are largely unknown.  

Although covered briefly by Pienaar (1978), the biogeography of reptiles within KNP has not 

been extensively studied. KNP could be delineated into several biogeographic units, 

including individual assemblages, based on the compositions of reptile species within grid 

cells across its landscape (Minter et al. 2004). Reptile monitoring within KNP is largely 

dependent on knowing where each species occurs within the park and subsequently observing 

changes to the distributions of populations over a given period (Ferreira et al. 2011). By 

defining assemblages across KNP, this could facilitate the identification of factors which 

drives or inhibits reptile distributions within and across the park (Mackey et al. 2008; Moura 

et al. 2017). This requires specific distributional information for each reptile species as all 

methods of delineation requiring knowledge of species’ presences and absences (Kreft and 

Jetz 2010). 

Several methods are available for delineating a region into biogeographic units. This 

generally involves the use of cluster analysis techniques, of which there are several, and 

species dissimilarity matrices (Kreft and Jetz 2010). A cluster analysis assesses compositional 

dissimilarity between sites and uses this to classify similar sites together into meaningful 

groupings (Everitt 1993). This is usually carried out via K-means partitioning or 
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agglomerative hierarchical clustering (Kaufman and Rousseeouw 1990; Legendre and 

Legendre 1998; Linder et al. 2012). The K-means partitioning method allows for a user to 

specify a number of desired clusters, and partitions data based on their means around a set of 

stopping points (Macqueen 1967; Linder et al. 2012). Conversely, agglomerative hierarchical 

clustering does not require the user to specify a desired number of clusters, but instead 

produces a hierarchy of clusters at various stopping points. As mentioned by Kreft and Jetz 

(2010), hierarchical clustering is usually the more informative choice for biogeographical 

regionalization as biogeographic regions tend to be hierarchically arranged in nature.  

In this chapter I aim to perform biogeographic regionalization of KNP at a spatial resolution 

of 1 km x 1 km based on the distributions of 119 reptile species so as to delineate the park 

into spatially segregated reptile assemblages. I opted for the hierarchical clustering approach 

as this would allow for the development of meaningful groupings without a priori providing 

a desired number of clusters before analyses, which allowed me to infer groupings based on 

produced outputs. I hypothesize that based on predicted presences and absences of reptile 

species across KNP, several distinct and meaningful assemblages will be present, with 

numerous significant splits occurring at broader levels. At the finer most level I predict that 

species richness, diversity, and endemism across assemblages will statistically vary across 

biogeographic units. 
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5.2 Methods 

5.2.1 Protocol: 

The protocol of biogeographic regionalization requires several multivariate steps. These steps 

(Figure 5.1) are outlined further below where applicable as some have been completed within 

previous chapters. 

 

Figure 5.1: Conceptual diagram displaying the multivariate steps required for the protocol of 

delineating a region into biogeographic units. 

5.2.2 Ordination: 

A key component of assigning grid cells to biogeographic units is that of ordination. 

Ordination allows for the identification of clean breaks among units within geographical 

space or grid cells (Storch et al. 2003; Kent 2006) and can be used to show transitions 
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between them. To test the hypothesis that reptile species were not randomly assembled across 

KNP, I used non-metric multidimensional scaling (NMDS) ordination to produce projections 

of geographical relationships among grid cell compositions within two-dimensional space. 

NMDS ordination is widely regarded as the most appropriate method of ordination as it is 

relatively unconstrained (Minchin 1987; McCune et al. 2002; Kreft and Jetz 2010). I 

performed NMDS ordinations at both the species and family levels using the ‘metaMDS’ 

function of the ‘vegan’ package (Oksanen et al. 2007) in R software version 3.4. To find the 

best possible ordination solution, I used a Bray-Curtis index to calculate pairwise distances 

between grid cell compositions with 100 random starts to limit errors (Kreft and Jetz 2010). I 

then rescaled the ordination axes to fit between zero and one to better visualize the spread of 

data across two-dimensional space.  

5.2.3 Cluster analysis: 

To test the hypothesis that assemblages of reptile species across KNP were not random in 

geographical space, I performed an agglomerative hierarchical cluster analysis. To do this, I 

first compiled a matrix of reptile species presence/absence per grid cell for the entirety of the 

park (n = 21761; see section 3.3.5). I then used a Bray-Curtis similarity index to calculate 

pairwise differences between grid cells and create a similarity matrix. Using hierarchical 

agglomerative clustering I then performed a multivariate cluster analysis on this similarity 

matrix to cluster all 21761 grid cells into biogeographic units based on their species 

compositions. Essentially, each biogeographic unit would represent a different composition 

of reptile species occurrences over several grid cells across KNP (Minter et al. 2004). To do 

this, I used the R package ‘cluster’ (Maechler et al. 2016) to create the Bray-Curtis similarity 

matrix and produce a dendrogram showcasing compositional dissimilarity between grid cells, 

which allowed for comparisons between species lists at multiple levels. As recommended by 
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Legendre and Legendre (1998), I used Ward’s minimum variance linkage method to prevent 

potential errors occurring within the multivariate analysis  

Since hierarchical clustering produces clusters at several levels without any definition of 

when to cease (number of clusters = total number of grid cells - 1), I needed to assign a 

stopping point within the splitting of hierarchies where biogeographic clusters would be 

defined (Eviritt 1993). Currently, there is no standardized, objective method to determine 

which clusters are defined as the ‘best set’ (Minter et al. 2004). Despite this lack of a rule, it 

is also important to note that final clustering should make biogeographic sense and therefore 

any arbitrary stopping rules should be employed with caution (Everitt and Hothorn 2011).  

To ensure my groupings would make sense, I used the ‘dendextend’ R package. This package 

allows for assemblage stopping points to be made based on either a user-input desired 

number of clusters or at a specific tree height (Galili 2015). Based on the visualization of the 

produced dendrogram, I used three separate stopping points to group grid cells into two, five, 

and nine clusters respectively as these appeared to make the most sense biogeographically. 

Further partitioning into a higher number of clusters ran the risk of producing unidentifiable 

biogeographic units, especially since there were limitations to my input data. I therefore did 

not opt to include additional stopping points.  

5.2.4 Assemblage biogeography: 

In order to visually map out the cluster arrangements, I used QGIS software version 3.2.3 to 

geographically arrange clusters into biogeographic regions across KNP. My hierarchical 

cluster analysis categorized each grid cell as belonging to a particular biogeographical unit at 

each stopping point. To represent this visually, I used these categorizations to assign a 

specific classification of each grid cell within QGIS. I did this using the ‘join’ function to 
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merge the categorizations with their respective grid cells at each stopping point to produce 

maps of reptile biogeographic units across KNP. 

5.2.5 Indicator species: 

At each stopping point, the various reptile biogeographic units present across KNP were 

comprised of spatially unique compositions of species predicted to occur in those locations. 

As such, each biogeographic unit could be exemplified by certain indicator species which 

acted as representatives of that particular unit. Usually, indicator species are those which are 

typical of a cluster with their distributions approximately matching the spatial boundaries of 

the assemblage as a whole (Minter et al. 2014). To find the indicator species of each 

predicted assemblage, I used the ‘labdsv’ package (Roberts 2016) in R software version 3.4 

to identify which species best represented each unit. This package follows the methods 

suggested by Dufrene and Legendre (1997) in which each species is ranked according to an 

indicator value index. This index is expressed as a value between 0 – 100 % with higher 

values representing greater importance towards a group. This package calculates the mean 

abundance of each species per site compared to all other sites, by the relative frequency of the 

occurrence of each species in each site, and thereby classifies the best representative species.  

5.2.6 Co-occurrence: 

Species predicted as being indicators of a particular biogeographic unit may be those with 

low detection rates (for example, any of several burrowing species) and may prove to be 

unfavourable targets for empirical testing. To compensate for this, I performed a species co-

occurrence analysis using the R package ‘cooccur’ (Griffith et al. 2016) to determine the 

probabilities of each species to occur within the same grid cell as each other. Those predicted 

to co-occur with indicator species could thus be treated as proxies, thereby aiding in sampling 

as these species could be more suitable as targets in instances where indicators were cryptic.  
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5.3 Results 

5.3.1 Ordination: 

My NMDS ordination analysis produced a projection of compositional dissimilarity between 

grid cells within two-dimensional space (Figure 5.2). I obtained a low stress value of 0.2327, 

indicating good, but not perfect representation. My ordination showed that grid cells with 

similar reptile species compositions were grouped closer together than those with vastly 

differing compositions, and showed clear, continuous transitions between them. The 

ordination showed clear separations between grid cell assemblages within two-dimentional 

space, and overall, the NMDS plot showed distinct relationships amongst grid cells which 

indicated the presence of various biogeographic units across KNP. 

 

Figure 5.2: Non-metric multidimensional scaling (NMDS) of predicted reptile compositions 

within 1 km x 1 km grid cells across KNP based on a Bray-Curtis dissimilarity matrix. Each 

dot represents a specific grid cell, with colours indicating similarity. 
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5.3.2 Cluster analysis and assemblage biogeography: 

In hierarchically clustering grid cell compositions of reptile species across KNP, I found that 

distinct biogeographic units were present at different stopping points along the produced 

dendrogram, culminating in a total of nine geographically distinct reptile assemblages. The 

initial split at the first stopping point produced two distinct clusters. These clusters were 

separated geographically between the northern and southern regions of KNP (Figure 5.3) and 

would best be described as being separate sub-regions of KNP as they were only 30 % 

dissimilar and had limited differentiation in species richness, diversity, and endemism (Table 

5.1; One-factor Chi Square Test: P > 0.05 in all cases). Representatives of all 19 reptile 

families were present within both sub-regions, but the Northern sub-region had more endemic 

species than the Southern sub-region.

 

Figure 5.3: Dendrogram and map of predicted reptile sub-regions across KNP resulting from 

agglomerative hierarchical clustering based on Bray-Curtis dissimilarity. 

Dissimilarity (%) 
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The next major splits occurred within the Northern sub-region, which separated into four 

major districts before the Southern sub-region experienced any further splits. This resulted in 

a total of 5 sub-regions and districts (Figure 5.4). These biogeographic units were 

approximately 18 % dissimilar, with species diversity remaining relatively similar across the 

various districts (Table 5.1; One-factor Chi Square Test: X2
df = 4 = 1.86, P = 0.76). Species 

richness was also statistically similar across units (One-Factor Chi Square Test: X2
df = 4 = 

8.41, P = 0.08), but had notably large differences (as high as 20 species) between them. The 

Northern sandveld district had the highest number of reptile species predicted to occur within 

that unit and the Mopani district had the least. Again I found that endemism was not 

significantly different across these units (One-Factor Chi Square Test: X2
df = 4 = 0.33, P = 

0.56). 

 

Figure 5.4: Dendrogram and map of predicted reptile districts across KNP resulting from 

agglomerative hierarchical clustering based on Bray-Curtis dissimilarity. 

Dissimilarity (%) 
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The final significant split within the dendrogram resulted in a total of nine geographical 

assemblages across KNP (Figure 5.5). The Southern sub-region split into three separate 

assemblages, namely the South Western assemblage, the Skukuza assemblage, and the Lower 

Sabie assemblage. Additiontally, the Northern sandveld district split into the North Eastern 

assemblage, the Riverine assemblage, and the Northern assemblage. The Satara, 

Olifants/Letaba, and Mopani districts all remained intact. These nine units were 

approximately 13 % dissimilar with species diversity (Table 5.1; One-Factor Chi Square test: 

X2
df = 7 = 389.59, P < 0.01) and species richness both significantly differing across 

assemblages (One-Factor Chi Square test: X2
df = 7 = 114.81, P < 0.01). I found that Endemism 

across assemblages did not differ statistically (One-Factor Chi Square test: X2
df = 7 = 3.25, P = 

0.19), with only the northern assemblage having a comparitively high level of endemism. 

 

Figure 5.5: Dendrogram and map of predicted reptile assemblages across KNP resulting from 

agglomerative hierarchical clustering based on Bray-Curtis dissimilarity. 

Dissimilarity (%) 
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Table 5.1: Quantities of reptile species richness, endemism, and diversity across 

biogeographic units within KNP. 

Biogeographic unit 

Species  

richness 

Endemic 

species 

Species 

diversity (H') 

Southern sub-region 108 5 4.68 

South-western assemblage 96 2 4.56 

Skukuza assemblage 86 0 4.45 

Lower Sabie assemblage 101 1 4.61 

Northern sub-region 114 11 4.74 

Mopani district 85 0 4.44 

Olifants/Letaba district 83 0 4.42 

Satara district 87 0 4.47 

Northern sandveld district 113 7 4.73 

Northern assemblage 107 5 4.67 

North-eastern assemblage 101 0 4.61 

Riverine assemblage 77 0 4.34 

Average 91 1 4.51 
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5.3.3 Indicator and co-occurring species: 

In attempting to identify indicator species for each biogeographic unit I produced lists 

containing the three species which best represented each unit. However, these lists were 

dubious as the identified indicator species did not appear to make reasonable biological sense. 

For example, widespread, commonly occurring species that are present throughout KNP such 

as Chondrodactylus turneri or Lygodactylus capensis capensis were identified as being 

indicators for certain units. Commonly occurring species such as these could not feasibly be 

considered as indicators as they represent multiple units as opposed to specific, individual 

ones. As a result, I therefore opted not to include the results of this analysis. I also produced 

lists of species with the highest probabilities of co-occurring with identified indicator species, 

however, since I omitted those results, I therefore omitted the co-occurring species results as 

well. 
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5.4 Discussion 

Global habitats, including those within protected areas may be spatially segregated or 

delineated and thus the distributions of species within them are unlikely to be uniform 

(Minter et al. 2004). Rare and endangered species may be linked to certain habitats or 

biogeographic units and so the identification of these units as well as which species occupies 

them could play a critical role in assisting with managing these species. Here, I have 

developed a protocol for delineating KNP into an assortment of biogeographic units at 

different hierarchies based on predicted reptile distributions. This process involved 

agglomerative clustering of predicted presences and absences of reptile species across within 

grid cells KNP into spatially segregated units within the park. At the finer-most level I 

delineated KNP into nine reptile assemblages, spatially and geographically arranged across 

the park.  

The protocol I have developed here provided a good foundation for delineating KNP into 

different biogeographic units based on reptile assemblage structure. Using the predicted 

presences and absences of 119 reptile species as modelled by MaxEnt in previous chapters, I 

characterised a range of meaningful, spatially segregated biogeographic units within KNP at 

differing hierarchies. This included two sub-regions, five districts, and nine assemblages. 

These delineations appeared to make biological sense at broad scales, but at finer scales they 

became less reliable. This was evident via my attempt at identifying indicator species for 

each unit, where in some instances the species identified as being indicators represented more 

than one assemblage or unit, which should not be the case (Dufrene and Legendre 1997). 

Whilst the protocol was carried out as intended, the outputs were not always completely 

reliable.  
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My work here provided a novel view of reptile assemblage structure and distributional 

patterns within and across KNP. Whilst it was previously evident that several reptile species 

only occur within certain regions of KNP (Pienaar 1978; Bates et al. 2014), I was able to 

show here that there are clear patterns of spatial segregation across the landscape of the park. 

Despite equally high levels of species diversity and a large degree of overlap of species 

compositions between them, the northern and southern sub-regions of KNP were vastly 

dissimilar in their respective reptile species compositions. The same was true at finer 

divisions, with the various districts and assemblages also having large amounts of overlap in 

species present but with higher levels of endemism. Whilst indicator species were intended to 

represent each of these units at each hierarchical level, the identified indicators did not make 

biological sense, particularly at the assemblage level. Instead, each of these units may better 

be characterized by rare or endemic species.  

The patterns I observed within these delineated biogeographic units match what I observed 

when predicting reptile species richness across KNP. As seen in chapter 3, reptile species 

richness was predicted as being highest within the northern sandveld regions of the park. 

Here, I found that the northern most region of KNP was indeed spatially segregated into its 

own assemblage (i.e. the northern assemblage) that had high levels of predicted species 

richness and endemism. Species richness thus appeared to be linked to segregations within 

biogeographic units, which makes biological sense as these segregations matches up with 

changes in the landscape of KNP. Additionally, I found that species richness and diversity 

significantly differed amongst assemblages, which is what would be expected given the 

heterogeneity of landscape features across KNP. 

Similar studies which have identified biogeographic units within specific areas have been 

largely successful within the literature. Within southern Africa, a similar approach to the 

protocol I employed here was used to delineate southern Africa into spatially segregated units 
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based on frog species distributions (Minter et al. 2004). In their study they operated at a much 

broader spatial scale and used larger sized grid cells (15 km by 15 km). This approach proved 

successful as they were able to identify and define several frog assemblages across southern 

Africa, albeit with some limitations since in their case they did not use predicted presences or 

absences of species but instead worked directly with actual frog occurrence data. As a 

consequence, there were gaps in their results, but these were attributed to sampling biases 

rather than poor predictions which were likely to have been the cause of the issues present 

here. 

One recurring problem throughout this study here has been that of spatial scale and the sizes 

of my grid cells, which has proven to be challenging with regards to the geographical extent 

of KNP. Finding the optimal size grid cells in which to operate remains an issue as this 

decision is inherently linked to predicting the presences and absences of reptiles at specific 

locations, which forms the basis of the delineation protocol. As a result, the biogeographic 

clusters I produced here may not perfectly represent reptile assemblages within reality at such 

a fine spatial scale, however, these could be reasonably accurate at a broader resolution. The 

various biogeographic units I defined appeared to make biological and geographical sense, 

but due to inconsistencies with my model predictions there remains an element of uncertainty 

within these predictions.  

For future attempts at quantifying reptile assemblage structure within KNP I would 

recommend several adjustments to the protocol applied here. For many species of reptile, a 

spatial scale of 1 km x 1 km is too coarse to accurately represent their distributions. 

Therefore, should additional occurrence data become available I would advise that finer grid 

cells of 250 m x 250 m be used. However, should no significant additions to the numbers of 

reptile occurrences become available I would then suggest performing analyses at a broader 

scale. This will ensure that there are fewer errors in predictions and that reptile 
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presence/absence matrices are more accurate (Moura et al. 2017), thus limiting the effects of 

biases within input data and the cascading effects thereof. Ideally, these matrices would be 

based on actual occurrences rather than predictions so as to obtain better insight into real 

world patterns but in the absence of sufficient data, adjustments to spatial scale would 

provide one means of an alternative solution. 

In classifying reptile assemblages within KNP, I have successfully provided a proof of 

concept and protocol for determining biogeographic patterns of reptile distributions across 

the park. I am confident that at broad scales the patterns produced here are representative of 

real-world reptile assemblage patterns across KNP. At finer scales, individual grid cells may 

have been incorrectly labelled as belonging to certain assemblage groupings and requires 

empirical testing. Overall, the patterns and hypotheses produced here offers a foundation for 

future studies.  
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Chapter 6: Main Conclusions 

6.1 Data collection biases and limitations 

In collating and quantifying available reptile locality data for KNP, I learnt several aspects 

relating to the inherent bias present within this dataset. For species such as reptiles which 

generally have low detectability, not only are records of their occurrences within KNP 

limited, they are also subject to multiple, unavoidable sampling biases. These biases included 

1) taxonomical bias in that representation of taxa was not evenly spread amongst occurrence 

records, with some species and families having significantly more representation than others, 

2) geographical bias in that most of KNP was data deficient with the majority of 1 km x 1 km 

grid cells lacking even a single occurrence record, and 3) spatial bias in that most occurrence 

records were strongly associated with the presence of human infrastructure.  

The presence of these biases stemmed from the inherent limitations of data collection in 

KNP. The majority of occurrence records were obtained from museum collection databases 

and we know from previous studies that museum data are generally limited and do not 

adequately reflect on species’ true occurrences within a given area. This was indeed the case 

here. Additionally, several occurrence records were lacking in information and did not 

contain accurate GPS co-ordinates. Instead, several of these merely contained centroid 

positions or locality descriptions without latitude or longitude positions and required 

estimates of their true positions. These uncertainties further added to a general lack of 

accurate occurrence information and compounded on the inherent biases already present. To 

alleviate some of these biases, sampling should be undertaken within data deficient areas as 

well as those where reptile species richness is predicted to be high but available data is 

lacking (Figure 6.1). 
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These biases highlight several gaps within current understanding of fine-scale reptile species 

distributions across the park. Moreover, these gaps present challenges towards monitoring the 

statuses of these species within the context of TPCs that requires this missing information for 

maximum efficiency. The recommended approach of a predictive framework offers a 

promising potential solution but may not be feasible for every species given the data 

limitations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Actual detected reptile species richness vs predicted reptile species richness 

across KNP within 1 km x 1 km grid cells. White spaces represent grid cells with no data. 

Number of species: 

1 
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6.2 SDM and ground-truthing 

Predicting distributions of reptiles at a spatial scale of 1 km x 1 km within as large an area as 

KNP produced variable and unreliable models. For most species, the distribution models I 

produced performed well in terms of their predictive strength via AUC scores, but several 

performed noticeably poorly. The inherent biases present within input reptile occurrence data 

and issues regarding the spatial scale at which I produced models severely affected the 

predicted ranges of these species. A clear mismatch between model performance and spatial 

scale was present, resulting in models performing poorly at fine spatial resolutions. However, 

AUC scores were not always a good indicator of model strength as several models appeared 

to make sense despite obtaining less than ideal scores. To achieve more reliable models, it is 

clear that additional occurrence data are needed for several species. This was a major limiting 

factor here, to the extent that eight species were excluded from modelling due to insufficient 

data. Nevertheless, despite variable model performance and limited occurrence data I was 

able to depict distributions of 119 reptile species across KNP thereby providing testable 

hypotheses. 

Ground-truthing of my model predictions showed that within the context of the real-world, 

my predictions were accurate to some degree but were lacking overall. Whilst limited, my on-

site sampling efforts within the greater Skukuza area of KNP revealed several flaws within 

some of my model predictions in the form of falsely predicting species absences. Nearly half 

of all tested models contained omission errors as several reptiles were observed in areas 

where they were not predicted to occur, thus suggesting that these models were flawed. 

Overall, my models require refinement in terms of spatial scale selection and predictor 

variables to obtain better prediction success and predictive strength. Predicting at a broader 

spatial scale, along with including species specific environmental variables, could produce 

more reliable models that contain fewer omission errors and greater prediction success. 
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6.3 Reptile biogeography and assemblage structure 

Defining reptile biogeography and delineating KNP into spatially segregated biogeographic 

units based on their distributions offers valuable insight into spatial ecology and structure 

within the park. Whilst my underlying matrix of reptile species presences and absences across 

KNP was doubtful in its accuracy, I nevertheless identified meaningful patterns of reptile 

clusters across the landscape of KNP with clear distinctions being present between 

biogeographic units. My groupings remain to be empirically tested, but they appeared to 

make biological sense as several species associated with specific environmental conditions 

were associated with groupings occurring in those habitats. For example, aquatic species 

were grouped together within biogeographical units associated with riverine areas. As a 

concept these biogeographic groupings have provided evidence that it is indeed possible to 

identify reptile assemblages across KNP. The issue of spatial scale again played a major 

limiting role here, as at broad scales my delineations appeared reasonable but were less clear 

at finer scales. This was also clearly observable within identified indicator species which did 

not appear to make sense, suggesting that refinement to the selection process is required.  

6.4 In the context of TPCs 

Monitoring changes in reptile distributions within KNP as a measure of species performance 

remains challenging. On-site sampling is unlikely to yield complete inventories of reptile 

species present within a given area due to the difficulties associated with these animals in 

terms of detection. As recommended, a predictive framework could potentially offer an 

alternative approach to such sampling, but as demonstrated here in chapters 3 and 4, it is 

currently unfeasible. Simply put, given the large area of KNP and the extremely fine spatial 

scale at which predictions are required to be produced, currently available data are 

insufficient. However, predictive modelling remains a promising solution as a measure of 
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quantifying reptile species distributions for use within TPC monitoring, but resolutions to the 

issues I faced here are first required before such an approach is implemented within the SAM 

strategy. Ideally, on-site sampling and predictive measures should be used in conjunction 

with each other to measure changes in reptile populations as thoroughly as possible, but this 

will only be an option once predictions become more reliable. 

6.5 Take-home messages 

Using a predictive approach to estimate reptile distributions across KNP offers a viable 

alternative to on-site sampling as a mechanism for monitoring TPCs and remains promising, 

but it is not without its challenges. Here, I have successfully laid the foundations of a protocol 

for such a predictive framework. Whilst viable, this process was hindered by unresolved 

issues relating to spatial scale, as well as biases and limitations in species occurrence data. A 

mismatch between real-world reptile communities assembling at fine-scales but predictive 

models working best at broad scales highlighted the need for a refinement of the process as 

well as additional data. Whilst progress was made, additional attempts are required before 

implementing this framework into the current monitoring system employed by SANParks. 

Importantly, several refinements to this approach can be made. Limitations in species 

occurrence data is a major constraint towards producing strong performing distribution 

models at a fine spatial scale across such a large area. While there is little to be done about a 

lack of data, apart from extensively sampling, several avenues remain available towards 

improving model performance. Different approaches towards predictor variables should be 

encouraged, with a particular focus being on attempting to produce models on a species-by-

species basis. Alternative climate and environmental variables could offer more towards 

models than the variables I employed here. For instance, a variable representing solar 

radiation may offer advantages to those representing temperature.  
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6.6 Recommendations 

Future attempts at predicting reptile distributions across KNP should be performed at a 

spatial scale more in line with available data. The finest possible spatial resolution should 

produce the most accurate results, but this is only possible if occurrence data supplements 

this option. Ideally, I would recommend a spatial scale of 250 m x 250 m, but in the absence 

of sufficient occurrence data further attempts would best be carried out at a broader scale to 

ensure meaningful results. Additionally, modelling parameters should operate on a species by 

species basis as opposed to here where each species’ distribution was modelled identically. In 

addition, empirical testing and ground-truthing should aim to be less restricted (for example, 

limited number of sites) and incorporate additional sampling techniques such as artificial 

cover board arrays to enhance reptile capture success.  
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Appendices 

Appendix 1: List of 27 predictor variables and their sources.  

Variable Source Type 

Altitude Wordlclim Continuous 

Annual Mean Temperature Wordlclim Continuous 

Annual Precipitation Wordlclim Continuous 

Aspect Calculated from Altitude Continuous 

Distance to Water Calculated from Water p/a Continuous 

Infrastructure presence/absence (p/a) SANParks Categorical 

Isothermality Wordlclim Continuous 

Max Temperature of Warmest Month Wordlclim Continuous 

Mean Diurnal Range Wordlclim Continuous 

Mean Temperature of Coldest Quarter Wordlclim Continuous 

Mean Temperature of Driest Quarter Wordlclim Continuous 

Mean Temperature of Warmest Quarter Wordlclim Continuous 

Mean Temperature of Wettest Quarter Wordlclim Continuous 

Min Temperature of Coldest Month Wordlclim Continuous 

Precipitation of Coldest Quarter Wordlclim Continuous 

Precipitation of Driest Month Wordlclim Continuous 

Precipitation of Driest Quarter Wordlclim Continuous 

Precipitation of Warmest Quarter Wordlclim Continuous 

Precipitation of Wettest Month Wordlclim Continuous 

Precipitation of Wettest Quarter Wordlclim Continuous 

Precipitation Seasonality Wordlclim Continuous 

Slope Calculated from Altitude Continuous 

Soils SOTER Categorical 

Temperature Annual Range Wordlclim Continuous 

Temperature Seasonality Wordlclim Continuous 

Vegetation SANBI Categorical 

Water presence/absence (p/a) SANParks Categorical 
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Appendix 2: Percentages of variable contributions towards compositions of six principal 

components. 

Variable PC 1 PC 2  PC 3 PC 4 PC 5 PC 6 

Altitude 1.47 6.77 7.58 2.69 10.70 4.48 

Annual Mean Temperature 5.78 0.74 4.51 1.68 2.12 2.55 

Annual Precipitation 5.93 0.81 3.29 1.95 1.18 0.83 

Aspect 0.22 0.38 0.68 7.94 2.70 35.84 

Distance to Water 0.35 0.97 6.92 16.88 5.51 0.60 

Infrastructure presence/absence (p/a) 1.27 6.07 5.68 5.26 21.99 1.71 

Isothermality 0.79 8.55 4.75 2.89 0.56 0.66 

Max Temperature of Warmest Month 5.78 2.21 2.19 1.17 1.83 1.59 

Mean Diurnal Range 5.24 2.50 3.96 3.93 0.90 0.84 

Mean Temperature of Coldest Quarter 4.73 5.07 5.80 1.21 1.81 2.51 

Mean Temperature of Driest Quarter 4.73 5.07 5.74 1.21 1.81 2.51 

Mean Temperature of Warmest Quarter 5.61 3.15 2.76 1.24 2.78 2.16 

Mean Temperature of Wettest Quarter 5.60 3.18 2.82 1.28 2.70 2.15 

Min Temperature of Coldest Month 2.46 8.34 2.34 0.52 0.88 1.87 

Precipitation of Coldest Quarter 5.27 3.21 4.58 4.10 3.05 0.33 

Precipitation of Driest Month 5.54 2.03 4.33 2.98 3.13 0.94 

Precipitation of Driest Quarter 5.27 3.21 4.52 4.10 3.05 0.33 

Precipitation of Warmest Quarter 5.41 2.88 4.06 1.47 0.95 2.47 

Precipitation of Wettest Month 5.26 3.48 3.65 0.21 1.99 3.24 

Precipitation of Wettest Quarter 5.41 2.88 4.06 1.47 0.95 2.47 

Precipitation Seasonality 0.41 0.31 0.46 4.44 15.66 2.05 

Slope 4.93 4.68 1.98 2.92 1.75 1.43 

Soils 2.20 2.51 2.91 6.11 0.40 12.02 

Temperature Annual Range 3.76 7.36 0.53 1.41 1.13 0.28 

Temperature Seasonality 2.32 8.72 1.31 0.47 0.94 0.13 

Vegetation 4.09 3.78 2.43 4.10 6.92 0.28 

Water presence/absence (p/a) 0.16 1.12 6.18 16.37 2.61 13.72 

∑ 100 100 100 100 100 100 
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Appendix 3: Predicted distributions maps of 119 reptile species across KNP. 
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Afroedura marleyi 

Afroedura pienaari Afroedura multiporis haackei 

Afrotyphlops bibronii Afroedura transvaalica 

Afroedura langi 
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Agama aculeata distanti 

Amblyodipsas concolor Agama armata 

Amblyodipsas microphthalma nigra Amblyodipsas m. microphthalma 

Afrtotyphlops schlegelii 
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Aparralactus capensis 

 

Aspidelaps scutatus intermedius 

 

Aparralactus lunulatus lunulatus 

 

Bitis arietans arietans Atractaspis bibronii 

 

Amblyodipsas polylepis polylepis 
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Broadleysaurus major 

Causus rhombeatus Causus defilippii 

Chirindia langi langi Chamaeleo dilepis dilepis 

Boaedon capensis 

http://etd.uwc.ac.za/
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Cordylus jonesii 

Crocodylus niloticus Cordylus vittifer 

Dasypeltis scabra Crotaphopeltis hotamboeia 

Chondrodactylus turneri 

http://etd.uwc.ac.za/
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Dipsadoboa aulica 

Elapsoidea boulengeri Dispholidus typus typus 

Gerrhosaurus flavigularis Elapsoidea sundevallii  

Dendroaspis polylepis 

http://etd.uwc.ac.za/
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Gonionotophis capensis capensis 

Heliobolus lugubris Gonionotophis nyassae 

Hemirhagerrhis nototaenia Hemidactylus mabouia  

Gerrhosaurus intermedius 

http://etd.uwc.ac.za/
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Kinixys natalensis 

Leptotyphlops distanti Kinixys spekii 

Leptotyphlops scutifrons  Leptotyphlops incognitus 

Homopholis wahlbergii 

http://etd.uwc.ac.za/
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Lycodonomorphus rufulus 

Lycophidion variegatum Lycophidion capense capense 

Lygodactylus stevensoni Lygodactylus capensis capensis 

Lycodonomorphus obscuriventris  
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Meizodon semiornatus semiornatus 

Mochlus sundevallii sundevallii Meroles squamulosus 

Monopeltis decosteri Monopeltis capensis 

Matobosaurus validus 

http://etd.uwc.ac.za/
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Monopeltis sphenorhynchus 

Naja annulifera  Myriopholis longicauda 

Nucras caesicaudata Naja mossambica 

Monopeltis infuscata 
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Nucras intertexta 

Pachydactylus affinis Nucras ornata 

Pachydactylus tigrinus Pachydactylus punctatus  

Nucras holubi 

http://etd.uwc.ac.za/
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Panaspis wahlbergii 

Pelusios sinuatus Pelomedusa subrufa 

Philothamnus hoplogaster Pelusios subniger subniger 

Pachydactylus vansoni 

http://etd.uwc.ac.za/
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Philothamnus semivariegatus 

Platysaurus intermedius rhodesianus Platysaurus intermedius intermedius 

Prosymna bivittata Platysaurus intermedius wilhelmi 

Philothamnus natalensis natalensis 
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Prosymna stuhlmannii 

Psammophis mossambicus Psammophis angolensis 

Psammophylax tritaeniatus Psammophis subtaeniatus 

Prosymna lineata 
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Python natalensis 

Rhinotyphlops lalandei Rhamphiophis rostratus 

Scelotes limpopoensis limpopoensis Scelotes bidigttatus 

Pseudaspis cana 

http://etd.uwc.ac.za/
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Scelotes mossambicus 

Smaug warreni barbertonensis Smaug vandami 

Smaug warreni warreni Smaug warreni depressus 

Scelotes mirus 

http://etd.uwc.ac.za/



123 
 

 

 

 

  

Telescopus s. semiannulatus 

Trachylepis depressa Thelotornis capensis capensis 

Trachylepis striata Trachylepis margaritfer 

Stigmochelys pardalis 

http://etd.uwc.ac.za/
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Varanus albigularis albigularis 

Xenocalamus bicolor lineatus Varanus niloticus 

Zygaspis vandami Zygaspis quadrifrons 

Trachylepis varia 

http://etd.uwc.ac.za/
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Appendix 4: Species distribution model information. 

Species 

Training 

AUC 

Test 

AUC 

10th percentile 

training presence 

threshold 

Number 

of 

records 

Acanthocercus atricollis atricollis  0.71 0.64 0.32 92 

Acontias aurantiacus fitzsimonsi  0.94 0.90 0.37 29 

Acontias cregoi  0.97 0.98 0.32 12 

Acontias plumbeus  0.78 0.69 0.32 45 

Afroablepharus maculicollis  0.92 0.87 0.27 26 

Afroedura langi  0.95 0.90 0.33 12 

Afroedura marleyi  0.99 0.99 0.46 5 

Afroedura multiporis haackei  0.98 0.96 0.63 5 

Afroedura pienaari  0.98 0.98 0.64 10 

Afroedura transvaalica  0.97 0.96 0.54 12 

Afrotyphlops bibronii  0.85 0.76 0.47 5 

Afrotyphlops schlegelii  0.73 0.68 0.40 89 

Agama aculeata distanti  0.71 0.62 0.34 48 

Agama armata  0.96 0.95 0.54 12 

Amblyodipsas concolor  0.95 0.93 0.55 4 

Amblyodipsas m. microphthalma  0.96 0.94 0.50 12 

Amblyodipsas microphthalma nigra  0.98 0.97 0.65 6 

Amblyodipsas polylepis polylepis  0.80 0.71 0.41 34 

Aparallactus capensis  0.71 0.64 0.35 100 

Aparallactus lunulatus lunulatus  0.75 0.67 0.42 33 

http://etd.uwc.ac.za/
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Aspidelaps scutatus intermedius  0.70 0.62 0.38 53 

Atractaspis bibronii  0.71 0.62 0.43 52 

Bitis arietans arietans  0.68 0.61 0.36 120 

Boaedon capensis  0.66 0.60 0.38 97 

Broadleysaurus major  0.71 0.65 0.41 55 

Causus defilippii  0.77 0.68 0.47 50 

Causus rhombeatus  0.68 0.54 0.44 4 

Chamaeleo dilepis dilepis  0.69 0.64 0.36 125 

Chirindia langi langi  0.98 0.98 0.32 43 

Chondrodactylus turneri  0.69 0.65 0.37 104 

Cordylus jonesii  0.64 0.54 0.39 42 

Cordylus vittifer  0.85 0.75 0.51 5 

Crocodylus niloticus  0.79 0.74 0.31 143 

Crotaphopeltis hotamboeia  0.70 0.61 0.46 75 

Dasypeltis scabra  0.69 0.63 0.41 82 

Dendroaspis polylepis  0.70 0.65 0.44 100 

Dipsadoboa aulica  0.78 0.66 0.45 32 

Dispholidus typus typus  0.67 0.61 0.42 102 

Elapsoidea boulengeri  0.82 0.76 0.41 27 

Elapsoidea sundevallii  0.93 0.90 0.44 17 

Gerrhosaurus flavigularis  0.68 0.61 0.43 70 

Gerrhosaurus intermedius  0.76 0.69 0.44 68 

Gonionotophis capensis capensis  0.84 0.76 0.41 20 

Gonionotophis nyassae  0.76 0.62 0.49 17 

Heliobolus lugubris  0.71 0.65 0.35 63 

http://etd.uwc.ac.za/
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Hemidactylus mabouia  0.70 0.66 0.28 115 

Hemirhagerrhis nototaenia  0.68 0.58 0.42 64 

Homopholis wahlbergii  0.76 0.64 0.45 39 

Kinixys natalensis  0.90 0.87 0.60 7 

Kinixys spekii  0.84 0.78 0.41 56 

Leptotyphlops distanti  0.71 0.61 0.42 58 

Leptotyphlops incognitus  0.83 0.77 0.33 57 

Leptotyphlops scutifrons  0.84 0.78 0.31 32 

Lycodonomorphus obscuriventris  0.83 0.75 0.50 9 

Lycodonomorphus rufulus  0.73 0.63 0.50 13 

Lycophidion capense capense  0.71 0.63 0.40 67 

Lycophidion variegatum  0.86 0.83 0.50 9 

Lygodactylus capensis capensis  0.71 0.68 0.31 131 

Lygodactylus stevensoni  0.97 0.97 0.65 11 

Matobosaurus validus  0.67 0.61 0.40 98 

Meizodon semiornatus semiornatus  0.93 0.88 0.60 5 

Meroles squamulosus  0.70 0.65 0.35 90 

Mochlus sundevallii sundevallii  0.71 0.68 0.36 97 

Monopeltis capensis  0.92 0.85 0.44 18 

Monopeltis decosteri  0.84 0.76 0.47 16 

Monopeltis infuscata  0.89 0.84 0.48 14 

Monopeltis sphenorhynchus  0.96 0.94 0.36 27 

Myriopholis longicauda  0.77 0.66 0.47 50 

Naja annulifera  0.70 0.60 0.42 54 

Naja mossambica  0.72 0.64 0.45 88 

http://etd.uwc.ac.za/
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Nucras caesicaudata  0.95 0.95 0.42 9 

Nucras holubi  0.80 0.74 0.49 14 

Nucras intertexta  0.73 0.64 0.39 36 

Nucras ornata  0.82 0.77 0.37 22 

Pachydactylus affinis  0.99 0.99 0.72 7 

Pachydactylus punctatus 0.79 0.75 0.32 75 

Pachydactylus tigrinus  0.98 0.97 0.66 5 

Pachydactylus vansoni  0.83 0.75 0.34 27 

Panaspis wahlbergii  0.75 0.71 0.30 60 

Pelomedusa subrufa  0.70 0.56 0.46 42 

Pelusios sinuatus  0.72 0.65 0.39 153 

Pelusios subniger subniger 0.84 0.71 0.50 8 

Philothamnus hoplogaster  0.83 0.75 0.40 32 

Philothamnus natalensis natalensis  0.96 0.93 0.60 10 

Philothamnus semivariegatus  0.72 0.65 0.40 78 

Platysaurus intermedius intermedius  0.80 0.71 0.29 32 

Platysaurus intermedius rhodesianus  0.98 0.95 0.62 14 

Platysaurus intermedius wilhelmi  0.93 0.90 0.34 28 

Prosymna bivittata  0.76 0.67 0.49 17 

Prosymna lineata  0.64 0.53 0.50 11 

Prosymna stuhlmannii  0.72 0.65 0.38 68 

Psammophis angolensis  0.71 0.58 0.44 42 

Psammophis mossambicus  0.67 0.61 0.44 112 

Psammophis subtaeniatus  0.73 0.67 0.38 97 

Psammophylax tritaeniatus  0.66 0.58 0.46 86 

http://etd.uwc.ac.za/
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Pseudaspis cana  0.82 0.81 0.51 16 

Python natalensis  0.73 0.68 0.40 112 

Rhamphiophis rostratus  0.74 0.65 0.42 45 

Rhinotyphlops lalandei  0.76 0.67 0.46 22 

Scelotes bidigittatus  0.74 0.68 0.34 47 

Scelotes limpopoensis limpopoensis  0.97 0.94 0.60 4 

Scelotes mirus  0.88 0.94 0.51 4 

Scelotes mossambicus  0.92 0.87 0.48 15 

Smaug vandami  0.83 0.76 0.42 16 

Smaug warreni barbertonensis  0.99 0.98 0.71 4 

Smaug warreni depressus  0.98 0.98 0.35 25 

Smaug warreni warreni  0.99 0.99 0.67 4 

Stigmochelys pardalis  0.73 0.67 0.37 198 

Telescopus s. semiannulatus  0.66 0.57 0.44 64 

Thelotornis capensis capensis  0.73 0.65 0.38 65 

Trachylepis depressa  0.89 0.83 0.35 21 

Trachylepis margaritifer  0.74 0.70 0.34 176 

Trachylepis striata  0.72 0.70 0.28 116 

Trachylepis varia  0.75 0.69 0.29 166 

Varanus albigularis albigularis  0.70 0.61 0.45 81 

Varanus niloticus  0.73 0.70 0.33 116 

Xenocalamus bicolor lineatus  0.86 0.80 0.43 17 

Zygaspis quadrifrons  0.97 0.96 0.39 20 

Zygaspis vandami  0.87 0.82 0.36 20 

 

http://etd.uwc.ac.za/


	Title Page: Predicting reptile species distributions and biogeographic patterns within Kruger National Park
	Keywords
	Abstract
	Contents
	Chapter 1: General introduction
	Chapter 2: A gap analysis of KNP reptile occurrence data
	Chapter 3: Modelling the distributions of reptiles in KNP
	Chapter 4: Ground-truthing model predictions
	Chapter 5: Reptile assemblage structure of KNP
	Chapter 6: Main Conclusions
	References
	Appendices



