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Abstract

The thesis explores the interaction of factorizations of two structures: graphs
and groups. We show that the simplicity of a group has a bearing on the
primarity of vertex-transitive graphs. As a consequence, we show that fac-
torizations in both structures in the existence of high symmetry are mutually
interdependent.

It also explores the geometry of the projective spaces and the vector spaces
in order to discuss some other interesting properties of a graph, Γ[n,n−m],
defined on subgeometries satisfying some conditions. More specifically, the
well known rank-nullity theorem of vector spaces is extended to projective
spaces thereby showing that the block intersection graph of a set of subspaces
of the same dimension is isomorphic to the block intersection graph of the
set of their null spaces. In other words, a projective space of dimension n,
the result holds whenever the union of the subspaces V n−m+1 and V m is a
direct sum.

One of the classes of graphs of major interest in this study are strongly
regular. We explore some fundamental local structures of combinatorial de-
sign theory from which we construct strongly regular graphs as well as non-
strongly regular graphs. This study identifies designs having the same com-
binatorial symmetry as the Steiner triple systems from projective geometry
and in some cases also identify some graphs having the same combinatorial
symmetry as the block intersection graphs of Steiner triple systems from
projective geometry.

Goethals and Seidel [19] proved that any 2-design with just 2 intersection
numbers has an inherent strongly regular graph.

In this study, we echo the result of Goethals and Seidel thereby showing
that a block intersection graph of a tactical configuration on such a 2-design

ii

http://etd.uwc.ac.za/



with just 2 intersection numbers (quasi-symmetric design) produces an in-
herent strongly regular graph. Precisely, we show that the block intersection
graph of tactical configurations on

1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, 7, (2n−1 − 1)

)
designs are isomorphic to

the block intersection graphs of Steiner triple systems obtained from projec-
tive geometry and are hence strongly regular.

June 2018.
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Chapter 1

Introduction

1.1 Introduction and background

A tactical configuration consists of a finite set V of points, a finite set B of
blocks and an incidence relation between them, so that all blocks are incident
with the same number k points, and all points are incident with the same
number r of blocks (See [14] for example ). If v := |V | and b := |B|, then
v, k, b, r are known as the parameters of the configuration. Counting incident
point-block pairs, one sees that vr = bk.

In this thesis, we generalize tactical configurations on Steiner triple systems
obtained from projective geometry. Our objects are subgeometries as blocks.
These subgeometries are collected into systems and we study them as designs
and graphs. Considered recursively is a further tactical configuration on some
of the designs obtained and in what follows, we obtain similar structures as
the Steiner triple systems from projective geometry. We also study these
subgeometries as factorizations and examine the automorphism group of the
new structures.

These tactical configurations at first sight do not form interesting struc-
tures. However, as will be shown, they offer some level of intriguing sym-
metries. It will be shown that they inherit the automorphism group of the
parent geometry.

The block intersection graphs of the designs obtained are highly symmet-
rical graphs. They also inherit the automorphism group of the parent geom-
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etry.

A factor of a graph Γ is just a spanning subgraph and a graph factorization
of Γ is a partition of the edges of Γ into factors. The process can also be
reversed; that is, a product can be defined on the factors to produce the
resultant graph Γ. One of the challenges in doing this is to determine the
exact product.

A graph product is a relational structure built on the relations of the factor
graphs. While there are 26−1 artificial possibilities of products of graphs on
two given graphs, howbeit, under reasonable and natural restrictions (such
as associativity), the number of different products is actually quite limited.
For instance, Imrich and Izbicki showed that there are exactly 20 associative
graph products. [27]

There are three main products that have been studied in the literature: the
Cartesian product, the direct product, and the strong product. Associativity
allows for the easy extension of these products to arbitrarily many factors.

Specifically, a graph product is a relational structure that takes two graphs
(factors) Γ1 and Γ2 to produce a graph Γ. The vertex set of the product is
the Cartesian product V (Γ1)× V (Γ2). That is;

V (Γ1 ∗ Γ2) = {(u1, v1)|u1 ∈ V (Γ1) and v1 ∈ V (Γ2)}.

However, each product has different rules for adjacency of the vertices. The
actions of automorphisms on some products of graphs have been well devel-
oped in [21].

We understudy these actions of automorphisms on the standard products
of graphs as discussed in [21]. In addition, we investigate the automorphism
groups of the block intersection graphs of the tactical configurations of this
study and having found that the automorphism group is nontrivial and its
only normal subgroups are the trivial group and the group itself, we show
that any vertex-transitive graph Γ with such algebraic properties cannot be
factorized with respect to the standard products of graphs. We therefore
show that the block intersection graphs of the tactical configurations as well
as that of the Steiner triple systems from projective geometry are primes.

We now provide a brief background to this study.

A Steiner system is an important type of block design that has been studied
extensively. A Steiner triple system of order v is a collection of subsets of
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size three from a set of v−elements such that every pair of the elements
of the set is contained in exactly one 3-subset. Many variations of block
designs have been studied, but the most intensely studied are the balanced
incomplete block designs (BIBDs or 2-designs) which are historically related
to statistical issues in the design of experiments.

Steiner systems were defined through a posed problem for the first time
by W.S.B. Woolhouse in 1844 [40]. The posed problem on Steiner triple
systems was solved by Thomas Kirkman in 1847 [29]. In 1850, Kirkman
introduced a variation of the problem now known as Kirkman’s schoolgirl
problem, which included an additional property called resolvability to triple
systems. Oblivious of Kirkman’s work, Jakob Steiner (1853) re-established
triple systems. His extensive study on this subject matter made it more
popular and it is not surprising that they are named after him.

Kirkman [29] established the fact that a Steiner triple system of order
v exists if and only if v ≡ 1 or 3 (mod 6) in 1847. Bose [5] constructed
such systems in 1939 for v ≡ 3 (mod 6). Two decades later, Skolem [33]
constructed triple systems for which v ≡ 1 (mod 6).

Several studies have shown that Steiner triple systems exist in projective
geometry and their automorphisms are well known ([8],[12],[26],[28]).

Strongly regular graphs are well known to be rooted in Steiner triple sys-
tems. Strongly regular graphs constitute one of the many highly charac-
terized classes of graphs. As Cameron has noted, this important family of
regular graphs appear between the highly structured and the apparently ran-
dom. Strongly regular graphs have a lot of interesting properties for even
a brief description here. See [9], [32] for a useful survey on strongly regular
graphs.

In 1963, Bose [6] initiated the theory in the context of partial geometries
and 2-class association schemes. This gave rise to the many combinatorial
concepts of strongly regular graphs such as orthogonal arrays, conference
matrices, Latin squares, geometric graphs and designs. A year later, Higman
[23] introduced the study of the rank 3 permutation groups through strongly
regular graphs. In 1975, Smith [34] considered the problem of permutation
groups whose rank and subrank is 3. This result was generalized to strongly
regular graphs satisfying local conditions such that the subconstituents with
respect to some vertices are also strongly regular [10].
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Over the years, the algebraic and the combinatorial aspects of strongly
regular graphs have been well developed. In this study, we examine sub-
structures of both the combinatorial and algebraic views of strongly regular
graphs as well as the links between these two points of view.

In this study, we consider finite structures only.

1.2 Overview of the thesis

In the course of introducing the preliminaries of this study, we introduced
our fundamental object of study. After giving the necessary preliminaries, we
generalize tactical configurations from the fundamental object of study and
in what follows, we consider the block intersections and intersection numbers
of our tactical configurations. In addition, we introduce the concept of a
recursive tactical configuration on our generalized configurations.

In Chapter 4 of this study, we construct block intersection graphs of the
generalized tactical configurations as well as compare and contrast them to
the block intersection graphs of their Steiner triple systems from projec-
tive geometries. Thereafter, we further investigate the properties of the new
graphs thereby showing that in some cases, the graphs are isomorphic. We
conclude the chapter by considering a specific graph from a recursive config-
uration of our tactical configuration.

In Chapter 5, having known that the automorphism group of the Steiner
triple systems from projective geometry is isomorphic to the automorphism
group of the block intersection graph of the Steiner triple systems, we investi-
gate the automorphism groups of block intersection graphs of our generalized
tactical configurations.

We also consider the actions of automorphisms on some products of graphs
and having studied some algebraic properties of the block intersection graphs
of our generalized tactical configurations, we conclude that the graphs are
primes with respect to the standard product of graphs. As a result, we
also conclude that factorizations in vertex-transitive graphs and groups are
mutually interdependent.

In Chapter 6, we summarize the study and discuss various straddles of
further studies.
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Chapter 2

Preliminaries and notations

In undertaking this study, various algebraic structures, notations and def-
initions are called into action. We therefore introduce these concepts and
present some basic definitions of the structures. We also present some fun-
damental results and mathematical concepts used in discussions throughout
this study. As far as possible, we adhere to the commonly used notation and
terminology.

We begin by introducing fundamental group theoretic concepts used in this
study.

2.1 Group theoretic definitions

A very basic but pertinent notion of groups used in this study is that a
nontrivial group G is simple if its only normal subgroups are the trivial
group and the group itself. A group that is not simple can be broken into
two smaller groups, a normal subgroup and the quotient group, and the
process can be repeated.

Every action of a group decomposes the set into orbits. An action of a
group on a set is called transitive when the set is nonempty and there is
exactly one orbit.

The automorphism groups of the block intersection graphs of the tactical
configurations of this study, the further tactical configurations as well as the
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Steiner triple systems from projective geometrys are finite simple groups.

We now provide a brief background to simple groups. This is essential
because the main result of this thesis has a direct application on the classifi-
cation of finite simple groups to graphs. This is also important because it will
serve as caveat to factorizations on graphs having these subgroup structures.

The classification of finite simple groups is a landmark result of modern
mathematics. It was a monumental task. The project spans well over 110
years. The original proof is spread over scores of articles by dozens of re-
searchers.

We now present the classification theorem.

2.1.1 The Classification Theorem

According to [38], the classification theorem for finite simple groups states
that every finite simple group is isomorphic to one of the following:

1. a cyclic group Cp of prime order p;

2. an alternating group An, for n ≥ 5;

3. a classical group:

linear: PSLn(q), n ≥ 2, except PSL2(2) and PSL2(3);

unitary: PSUn(q), n ≥ 3, except PSU3(2);

symplectic: PSp2n(q), n ≥ 2, except PSp4(2);

orthogonal: PΩ2n+1(q), n ≥ 3, q odd;

PΩ+
2n(q), n ≥ 4;

PΩ2n(q), n ≥ 4

where q is a power of prime p ;

4. an exceptional group of Lie type:

G2(q), q ≥ 3;F4(q);E6(q); 2E6(q); 3D4(q);E7(q);E8(q)

where q is a prime power, or

2B2(22n+1), n ≥ 1; 2G2(32n+1), n ≥ 1; 2F4(22n+1), n ≥ 1

or the Tits group 2F4(2)′;
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5. one of 26 sporadic simple groups:

• the five Mathieu groups M11,M12,M22,M23,M24;

• the seven Leech lattice groups Co1, Co2, Co3, McL, HS, Suz, J2;

• the three Fischer groups Fi22, Fi23, Fi′24;

• the five Monstrous groups M,B, Th, HN, He;

• the six pariahs J1, J3, J4, O’N, Ly, Ru.

Conversely, every group in this list is simple, and the only repetitions in this
list are:

PSL2(4) ∼= PSL2(5) ∼= A5;

PSL2(7) ∼= PSL3(2);

PSL2(9) ∼= A6;

PSL4(2) ∼= A8;

PSU4(2) ∼= PSp4(3). (2.1)

The actions of these groups on various natural geometrical or combinatorial
objects to the point where much of the subgroup structure is revealed is well
documented in [38].

One of the main results of this study considers factorizations of some block
intersection graphs through their automorphism groups. The graphs in this
regard are the block intersection graphs of 2-(v, 3, 1) designs from projective
geometry. It is well known that the automorphism group of these graphs
are isomorphic to the projective general linear group ([26], [28]). Hence, we
introduce the concept.

Definition 2.1. Let F be a field. Then the general linear group GL(n,F)
is the group of invertible n × n matrices with entries in F under matrix
multiplication.

If F is a finite field of order q, then it is written GL(n, q) instead of GL(n,F).
It is a well known fact [37] that the order of the group GL(n, q) is

|GL(n, q)| =
n−1∏
m=0

(qn − qm). (2.2)
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We now discuss the projective general linear group.

The quotient of GL(n,F) by its center Z(GL(n,F)) is called the projective
linear group.

A Galois group is a group of field automorphisms under composition. It is
denoted Gal(F). The Galois group acts on GL(n,F) by the Galois action on
its entries.

A semilinear transformation is a transformation which is linear up to a
field automorphism under scalar multiplication. The general semilinear group
ΓL(n,F) is the group of all invertible semilinear transformations. The general
semilinear group contains GL(n,F). It is conveniently written as a semidirect
product:

ΓL(n,F) = Gal(F) o GL(n,F)

where Gal(F) is the Galois group over its prime field F.
The general semilinear group ΓL(n,F) is of important interest in this study

because the associated projective semilinear group PΓL(n,F), which contains
PGL(n,F) is the collineation group of projective space, for n > 2. This is as
a result of the fundamental theorem of the projective geometry which is in
the following terms.

Theorem 2.1. [1] Any isomorphism between projective spaces of dimension
at least 2 is induced by a semi-linear transformation between the underlying
vector spaces, unique up to scalar multiplication.

For more details on linear groups, see [13].

We now turn to a very fundamental concept crucial to this study.

2.2 Basics of design theory

We introduce designs in order to explore the subconstituents of strongly
regular graphs which are very essential to the construction of the class of
graphs of consideration in this study. Most of the concepts used here can be
found in [2] and [35].

The most basic notion of the theory is that of an incidence structure. An
incidence structure is a triple D = (V,B, I) where V and B are any two
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disjoint sets and I is a binary relation between V and B, that is I ⊆ V ×B.
The elements of V are called points, those of B blocks and those of I flags.
It will always be clear from the context whether a given object is a point or
a block. If the ordered pair (p,B) ∈ I, it is said that p is incident with B,
B is said to contain the point p, or p is on B. If p is any point, (p) denotes
the set of blocks incident with p, that is, (p) := {B ∈ B : (p,B) ∈ I}. |(p)| is
said to be the point degree while |B| is said to be the block degree.

An incidence structure can also be considered as a t-design or a block design.
This is made precise in the following manner.

An incidence structure D = (V,B, I) in which a set V of v points and a
family B of b subsets (blocks) containing k points each in such a way that
any two points determine λ blocks, and each point is contained in r different
blocks is called a block design with parameters (v, k, λ, b, r).

In this study, we consider simple, regular and uniform designs. A block
design in which all the blocks have the same size is called uniform. Two
identical blocks in a design are said to be repeated blocks. A design is said
to be simple if it does not contain repeated blocks. A design is regular if
every point occurs equally often in the design. A block design is said to be
an incomplete block design, if k < v. It is called a balanced block design if
every pair of distinct points in the design is contained in exactly λ blocks. A
block design which is incomplete and balanced is called a balanced incomplete
block design; simply, a BIBD.

We now discuss an incidence structure as a t-design.

Let V be a set with cardinality v and B is a collection of subsets (blocks) of
size k selected from V. Let t, v and λ be positive integers such that 1 < k < v,
and any set of t points appears as a subset of exactly λ blocks. Then (V,B)
is called a t−design with parameters (v, k, λ).

A t−design with parameters (v, k, λ) or a t−(v, k, λ) design is usually de-
noted Sλ(t, k, v). Precisely, a block design or a t−design with t ≥ 2 and λ = 1
is called a Steiner system. Should k = 3, t = 2 and λ = 1; then, we have a
2−design with parameters (v, 3, 1) denoted S(2, 3, v) or a 2-(v, 3, 1) design.
These designs are called Steiner triple systems. As the name implies, we also
refer to blocks of 2-(v, 3, 1) designs in this study as triples. The substructures
of these designs are of a major interest in the study.

The parameters b and r of a block design satisfy the following combinatorial
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identities.

Theorem 2.2. [2] Let D = (V,B, I) be an Sλ(t, k; v). Then we have

(a) |(p)| = λ(v − 1)/(k − 1) := r for all points p ∈ V ;

(b) |B| = λv(v − 1)/k(k − 1) := b.

Proof, see ([2], Theorem 2.10).

Corollary 2.1. Let D = (V,B, I) be an Sλ(t, k; v) such that v, k, λ ∈ N.
Then the necessary conditions for the existence of an Sλ(t, k; v) are

(a) λ(v − 1) ≡ 0 mod (k − 1);

(b) λv(v − 1) ≡ 0 mod k(k − 1).

We now consider the notion of an induced substructure of a design.

Let D = (V,B, I) be an incidence structure and V ′ ⊆ V and B′ ⊆ B. Then
the incidence structure induced by D on V ′ and B′ is D′ = (V ′,B′, I|V ′×B′),
and D′ is called an induced substructure of D.

In order to consider induced substructures of 2-(v, 3, 1) designs, we now
introduce 1−designs.

1−designs are simple structures where the only requirement other than
constant block size is that each point appears in the same number of blocks.
Generalized Quadrangles are examples of 1−designs.

The fundamental object of this study in the following terms.

A 1-(v, k, r = λ) design is called a tactical configuration (or simply a con-
figuration ) with parameters v, k, r, and b = vr/k.

Theorem 2.3. [4] A 1-(v, k, r) design with b blocks exists if and only if

vr = bk and b ≤
(
v

k

)
.

Theorem 2.4. [2] Let D be a t-design and let s < t be a positive integer.
Then D is also an s−design. More specifically, if D has parameters v, k and
λt where (λt is the number of blocks through a t-set), then the parameter λs
(the number of blocks through an s-set) is given by

λs = λt

(
v − s
t− s

)
/

(
k − s
t− s

)
.

10

http://etd.uwc.ac.za/



A special case of Theorem 2.4 is the fact that every 2−design is a configu-
ration.

In what follows, we consider a further tactical configuration of the tactical
configuration discussed in this study. Hence, there is need to describe the
concept.

In this consideration, the blocks of the parent 2-(v, 3, 1) designs, (V,B)
are taken to be the set of points of a our tactical configuration and we use
suggestive set-theoretic notation correspondingly. Starting from (V,B), we
define B to be a new set of points and the new blocks obtained to be B such
that (B,B) is a tactical configuration of (V,B). The tactical configuration of
interest here excludes repeated blocks.

Another important concept in design theory considered in this study is
quasi-symmetric design. First, we introduce the notion of a symmetric
design.

A balanced incomplete block design, BIBD in which b = v ( or, equivalently,
r = k or λ(v − 1) = k2 − k) is called a symmetric BIBD. A symmetric
2−design has b = v, and every two blocks intersect in exactly λ points.

A number x, for 0 ≤ x < k, is called an intersection number of a design,
D = (V,B) if there exist blocks, B,B′ ∈ B such that |B ∩ B′| = x. Hence,
for any block design, the intersection numbers are the cardinalities of the
intersections of any two distinct blocks. k is not an intersection number in
this study because we do not allow repeated blocks. It is well known that a 2-
(v, k, λ) design, D is symmetric if and only if D has precisely one intersection
number (λ).

Let x and y be non-negative integers with x ≤ y. A design D is called quasi-
symmetric with intersection numbers x and y if any two distinct blocks of D
intersect in either x or y points, and both intersection numbers are realized.
A quasi-symmetric design is called proper if x 6= y and improper otherwise.
Clearly, symmetric designs are improper quasi-symmetric designs and any 2-
(v, k, 1) design with b > v is a proper quasi-symmetric design with x = 0
and y = 1. Thus linear spaces ( 2-(v, k, 1) designs) provide examples of
proper and improper quasi-symmetric designs. In general, the parameters
(v, b, r, k, λ;x, y) are called the standard parameters of a quasi-symmetric
design.

2-(v, k, 1) designs have only two intersection numbers since, no two blocks
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can meet in more than one point. An analogous design to this is a block
design, D = (V,B) such that for any two B,B′ ∈ B, |B ∩ B′| ∈ {0, y}, 1 ≤
x < · · · < y < k, x, y ∈ N. That is, a design such that if any two blocks meet,
they do so in more than one point. These designs mostly arise from designs
as a result of subspaces of a vector space. In fact, this is the case of our
tactical configrations in Chapter 3. We consider block intersection graphs
from these designs in Chapter 4.

In Chapter 3 of this study, we consider a generalized tactical configurations
of Steiner triple systems ( 2-(v, 3, 1) designs) from projective geometry. We
now introduce the design.

Proposition 2.1. [8] Let V be the set of all non-zero vectors of Fn+1
2 , and

let B = {{v1, v2, v3} : {v1, v2, v3} is distinct, v1 + v2 + v3 = 0}. Then (V,B)
is a Steiner triple system of order 2(n+1) − 1.

This design is from a projective plane of dimension n over a finite field
of order 2, that is, PG(n, 2). In this study, the design above is known as
the projective Steiner triple system of order 2(n+1) − 1 and it is denoted
(PG(n, 2),B) .

The case n = 2 is the well known Fano plane.

As indicated above, PG(n, 2) are realized from the non-zero vectors of a
vector space, V = Fn+1

2 of a dimension higher than the projective plane. The
projective plane PG(n, 2) is of dimension n and not (n+ 1). This is because
in projective geometry, lines through the origin consist of just two points
of which the origin is one. Hence, lines through the origin are identified as
points and any point of PG(n, 2) can be identified as the non-zero vector
spanning the corresponding line.

A necessary condition for the existence of a Steiner triple system of order
v is in the following:

Proposition 2.2. [29] Let (V,B) be a Steiner triple system of order v. Then
v ≡ 1 or 3 (mod 6).

Corollary 2.2. Let (V,B) be a Steiner triple system of order v. A point

x ∈ V is in exactly
v − 1

2
blocks.

As a result of Proposition 2.2, we have that the total number of blocks in
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a projective Steiner triple system of order 2(n+1) − 1 is

|B| = (2n+1 − 1)(2n − 1)

3
.

As a result of our interest in tactical configurations from (PG(n, 2),B) ,
there is the need to discuss the subspaces of the underlying vector space.

For any (n −m) = 0, 1, 2, . . . , n − 1, a subspace of dimension (n −m), or
(n−m)-space, of a PG(n, 2) is a set of points all of whose representing vectors
form, together with the zero in V = Fn+1

2 , form a subspace of dimension
(n−m+1). The 1-dimensional (2-dimensional, 3-dimensional, n-dimensional)
subspaces of V are called points (lines, planes, hyperplanes); in general, the
(n−m+1)-dimensional subspaces are called (n−m)-flats. To avoid confusion,
we denote PG((n−m), 2) as an (n−m)-flat of PG(n, 2).

The number of points of an (n−m)-flat in PG(n, 2) is (2n−m+1 − 1) ([24],
See [ Theorem 3.1]) and the number of distinct (n−m)-flats in PG(n, 2) is

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

([15], See [A.4.3]). In fact, the points of PG(n, 2) together with PG((n −
m), 2) as blocks and incidence by natural containment form an incidence
structure denoted by PG(n−m)(n, 2) ([2], [See Definition 2.15]). More so,
PG(n−m)(n, 2) is a block design with parameters v = 2n+1−1, k = 2n−m+1−1,

r =

(n−m)∏
i=1

(2n−i+1 − 1)

(n−m−1)∏
i=0

(2i+1 − 1)

, λ =

(n−m+2)∏
i=2

(2n−i+1 − 1)

(n−m−2)∏
i=0

(2i+1 − 1)

and

b =

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)
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([2], [See Proposition 2.16]).

The designs obtained in this study are from tactical configurations of
(PG(n, 2),B) and differs from the design, PG(n−m)(n, 2) in terms of param-
eters and structure.

The automorphism groups of the structures at hand is another aspect of
the discussion in consideration that recurs in this thesis.

In discrete structures generally, it is very pertinent to determine the group
of automorphisms of a given structure in order to understand the symmetry
of such a structure. We now present the notion of an automorphism group
of a design.

Let (V,B) and (V ′,B′) be any two designs. An isomorphism is a map
φ : V → V ′ such that φ is a bijection and φ(B) ∈ B′ whenever B ∈ B.

If two designs (V,B) and (V ′,B′) are isomorphic, it is denoted (V,B) ∼=
(V ′,B′). Should (V,B) and (V ′,B′) coincide then φ is said to be an automor-
phism.

Composing two automorphisms produces an automorphism. The identity
is always an automorphism and the inverse of an automorphism is also an
automorphism. Hence, the set of all automorphisms forms a permutation
group under composition, which is called the automorphism group of the
design.

The automorphism group of a design is always a subgroup of the symmetric
group on v letters where v is the number of points of the design. For a design
D, the automorphism group is denoted Aut D.

We now turn our attention to some fundamentals of graph theory discussed
in this study.

2.3 Graph theoretic definitions

In this section, we briefly introduce some relevant concepts of graph theory.
Furthermore, we present the fundamental class of graphs of importance to
this study. Most of the concepts discussed here are found in [39].

The graphs of interest in this thesis are finite simple graphs.

Let V be a set and R a relation defined on V. Then D = (V,R) is called
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a digraph if R is irreflexive, i.e., (v, v) /∈ R for all v ∈ V. The elements of V
are called vertices and the elements of R are called arcs. The out-degree of
a vertex x is the size of the set {y ∈ V : (x, y) ∈ R}. The in-degree of x is
similarly defined as the size of the set {y ∈ V : (y, x) ∈ R}.

A graph Γ = (V,E) is a digraph with the additional property that E is
symmetric. In other words, a graph Γ = (V,E) consists of a set of vertices
V and a relation E which is irreflexive and symmetric. If it is not clear from
the context, we will denote V by V (Γ) and E by E(Γ).

The arcs (x, y) and (y, x) are identified into a single edge and denoted [x, y].
Let V be a set and denote V {2} the family of all 2-subsets of V. Edges of the
graph Γ = (V,E) can be identified as subsets of V {2}.

Two vertices x and y of a graph Γ are adjacent if there is an edge, e = [x, y]
joining them. The vertices x and y are said to be incident with e. If x and y
are adjacent, it is said that they are neighbours. Similarly, two distinct edges
e and e′ are adjacent if they have a vertex in common.

Let Γ be a graph. The neighbourhood NΓ(v) of a vertex v ∈ V(Γ) is the
set of vertices that are adjacent to v. The closed neighbourhood NΓ[v] of v
is then the union NΓ[v]∪ {v}. The degree deg(v) of a vertex, v ∈ V(Γ) is the
number of edges incident on v, that is, the size of its neighbourhood, |NΓ(v)|.

One of the foundational results commonly used in graph theory is the hand
shaking lemma (See [3]), which is given in the following:

Let Γ = (V,E) be a graph. Then∑
v∈V

deg(v) = 2|E|.

A graph in which each vertex has the same degree is said to be regular.
If each vertex has degree r, the graph is regular of degree r or r-regular. A
complete graph is the one in which every two distinct vertices are adjacent.
The complete graph on n vertices is denoted Kn. A graph having no edges is
called a null graph.

A bipartite graph, also called a bigraph, is a set of graph vertices decom-
posed into two disjoint sets such that no two graph vertices within the same
set are adjacent.

A sequence x0, x1, . . . , xk of distinct vertices of a graph Γ is a path if
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[xi, xi+1] ∈ E(Γ) for all i = 0, . . . , k− 1. A graph Γ is said to be connected if
for every pair of vertices, there is a path joining them.

Let u, v be vertices in a graph Γ. The distance from u to v is the length of
a shortest path from u to v in Γ and is denoted d(u, v). This is also known
as the geodesic distance. The eccentricity of a vertex u ∈ V (Γ) denoted
e(u) is defined to be the maximum distance between u and any other vertex
v ∈ V (Γ); that is,

e(u) = max{d(u, v)|v ∈ V (Γ)}.
The diameter of a graph Γ denoted diam(Γ) is defined to be maximum ec-
centricity of the graph, that is,

diam(Γ) = max{e(y)|y ∈ V (Γ)}.

A graph Γ′ = (V ′, E ′) is called a subgraph of Γ = (V,E) if V ′ ⊂ V and
E ′ ⊂ E. Let Γ = (V,E) be a graph and Γ′ be a subgraph of Γ. Then Γ′ is an

induced subgraph on V ′ if E ′ = E ∩ V ′{2}. A spanning subgraph of a graph Γ
is a subgraph Γ′ with V (Γ) = V (Γ′), that is, Γ′ and Γ have exactly the same
vertex set.

Let Γ = (V,E) be a graph and V ′ ⊆ V. Then the induced subgraph Γ[V ′]
is a clique (independent set) if it is a complete graph (null graph).

The size of a clique is the number of vertices in the clique. A maximal
clique (maximal independent set) is a clique (independent set) that cannot
be extended by an additional vertex. That is, a maximal clique (maximal
independent set) is one which is not contained in a larger clique (indepen-
dent set). A maximum clique (maximum independent set) is the clique
(independent set) of the largest possible size in a given graph Γ. The clique
number ω(Γ) (independence number ω′(Γ)) of a graph Γ is the number of
vertices in the maximum clique (maximum independent set ) of Γ.

In the following concepts, we now introduce some classes of graphs of in-
terest in this study.

Definition 2.2. Given an incidence structure D, the point graph of D is
the graph Γ such that the vertex set of Γ has the same point set as D. Any
two vertices u and v of V(Γ) are adjacent whenever there is a block of D
containing both u and v.

Definition 2.3. Given a combinatorial design, D = (V,B).
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(a) The block-intersection graph of D is the graph having B as its vertex
set, and in which two vertices B and B′ are adjacent if and only if
B ∩B′ 6= ∅.

(b) The i-block-intersection graph of D is the graph having B as its vertex
set, and in which two vertices B and B′ are adjacent if and only if
|B ∩B′| = i, for some i ∈ N.

For a combinatorial design, D = (V,B) such that for any two B,B′ ∈
B, |B ∩ B′| ∈ {0, y}, 1 ≤ x < · · · < y < k, that is, a design such that if any
two blocks meet, they do so in more than one point. The block-intersection
graph of D is the graph having B as its vertex set, and in which two vertices
B and B′ are adjacent if and only if B ∩ B′ = y. An example of such a
block intersection graph is the Grassmann graph. This graph is considered
in Chapter 4 of this study and hence we now define it.

Definition 2.4. Let F be a field, let V be a vector space of dimension n ≥ 2
over F, and let e be an integer satisfying 1 ≤ e ≤ n − 1. The Grassmann
graph Γ(n, e) is the graph whose vertices are the e-dimensional subspaces of
V and two vertices are adjacent if and only if they meet in a subspace of
dimension e− 1.

The block intersection graphs of the tactical configurations in this study
have similar considerations in terms of edges.

It is well known that the block intersection graphs of 2-(v, 3, 1) designs are
strongly regular. These graphs are fundamental to this study. We now turn
to them.

Definition 2.5. A strongly regular graph Γ with parameters (n, k, λ, µ) is
a graph on n vertices which is regular with degree k and has the following
properties:

(i) any two adjacent vertices have exactly λ common neighbors;

(ii) any two non-adjacent vertices have exactly µ common neighbors.

The parameters λ and µ respectively are undefined for complete and null
graphs. The two classes are vacuously strongly regular. The parameters are
not independent but a complete characterization of the parameter sets of
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strongly regular graphs is not known. The reader is referred to Cameron [9]
and Seidel [32] for more basic properties of strongly regular graphs.

In Chapter 5 of this study, we discuss the factorizations of the block in-
tersection graphs of our tactical configurations. Our major approach here
is to consider the automorphism groups of the graphs. We now define the
concept.

Definition 2.6. (a) Let Γ1, Γ2 be graphs. A homomorphism from Γ1 to
Γ2 is a map α : V (Γ1) → V (Γ2) that preserves adjacency; that is,
[α(x), α(y)] ∈ V (Γ2) whenever [x, y] ∈ V (Γ1).

(b) A homomorphism α : V (Γ1)→ V (Γ2) is an isomorphism if

(i) α is a bijection;

(ii) α−1 is also a homomorphism.

In this case, it is said that Γ1 is isomorphic to Γ2 and written Γ1
∼= Γ2.

(c) A homomorphism α : V(Γ1) → V(Γ2) for which Γ1 and Γ2 coincide is
called an endomorphism. If in addition, α is a permutation, then it is
an automorphism.

In other words, an automorphism α of a graph Γ is a permutation of
the vertex set with the property that α(x) and α(y) are adjacent if and
only if x and y are.

The set of all automorphisms forms a permutation group under composition
and is denoted by Aut Γ.

Having discussed the automorphism group of a graph we now consider some
actions of automorphisms on the vertex set of graphs under consideration in
this study.

A graph Γ is said to be vertex transitive if for any two vertices v1, v2 ∈ V (Γ),
there exists an automorphism α : V (Γ)→ V (Γ) such that

α(v1) = v2.

As alluded to in Section 2.1, every action of a group on a set decomposes the
set into orbits. Hence, a graph Γ is said to be vertex transitive if Aut Γ has
a single orbit on the vertex set of Γ.
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A graph Γ is said to be distance transitive if Aut Γ has a single orbit on
each of the sets {(v, w)|d(v, w) = k} for k = 0, 1, 2, . . . , diam(Γ).

In order to fully discuss one of the major results of this study, we consider
the idea of graph products and their unique factorizations. We now discuss
these concepts. Most of these concepts are found in [21].

2.3.1 Standard products of graphs and their unique
factorizations

We begin with the introduction of the graph products which are important
to this study.

Let Γ1 and Γ2 be graphs. Then a graph product Γ1 ∗ Γ2 is any operation
for which V (Γ1 ∗ Γ2) = V (Γ1) × V (Γ2) and the adjacency of two vertices in
Γ1 ∗ Γ2 depends only on the adjacencies of the corresponding vertices in the
factors.

The four classical products are defined as follows.

(a) The Cartesian product of Γ1 and Γ2 is a graph denoted as Γ12Γ2.
Two vertices (u1, v1) and (u2, v2) are adjacent precisely if u1 = u2 and
[v1, v2] ∈ E(Γ2), or v1 = v2 and [u1, u2] ∈ E(Γ1).

(b) The direct product of Γ1 and Γ2 is the graph denoted as Γ1 × Γ2, and
for which vertices (u1, v1) and (u2, v2) are adjacent precisely if [u1, u2] ∈
E(Γ1) and [v1, v2] ∈ E(Γ2).

(c) The strong product of Γ1 and Γ2 is the graph denoted as Γ1 � Γ2, and
adjacency defined by E(Γ1 � Γ2) = E(Γ12Γ2) ∪ E(Γ1 × Γ2).

(d) The lexicographic product of Γ1 and Γ2 is the graph denoted as Γ1 ◦Γ2,
two vertices (u1, v1) and (u2, v2) being adjacent whenever [u1, u2] ∈
E(Γ1) or u1 = u2 and [v1, v2] ∈ E(Γ2).

In all of the products above, Γ1 and Γ2 are considered as factors of the
products.

According to the classification in [21], the cartesian product, direct product
and the strong product are called the fundamental products of graphs
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while the classical products above constitute the standard products of
graphs.

In Chapter 5 of this thesis, we show that the block intersection graphs of
our tactical configurations are primes. We now introduce the concept.

The finite graph with one vertex and no edges, that is, a single point, is
called the trivial graph.

Definition 2.7. A graph is prime with respect to a given graph product if
it is nontrivial and cannot be represented as the product of two nontrivial
graphs.

For instance, the cartesian product of a nontrivial graph Γ is prime if
Γ = Γ12Γ2 implies that Γ1 or Γ2 is K1.

Having introduced prime graphs, we now turn our attention to the auto-
morphism groups of the prime factors of a graph. This is introduced in order
to understand the role of the automorphisms of the factors of a graph on the
graph itself.

2.3.2 Automorphism group of a graph with respect to
its prime factors

The automorphism group of a graph is sometimes determined by the au-
tomorphism groups of its prime factors [21]. Hence the need to recall the
following important results on prime factors.

Proposition 2.3. ([21], See Proposition 6.1) Every nontrivial graph Γ has
a prime factor decomposition with respect to the Cartesian product. The
number of prime factors is at most log2|V (Γ)|.

In fact, this argument holds for all standard products of graphs [21].

This implies that every nontrivial graph has a prime factorization with
respect to any of the standard products, because a graph on n vertices cannot
have more than log2 n nontrivial factors, and so any factorization into a
product of nontrivial graphs with a maximal number of factors is a prime
factorization.
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Theorem 2.5. (Sabidussi-Vizing, [31], [36]) Every connected graph has a
unique representation as a cartesian product of prime graphs, up to isomor-
phism and the order of the factors.

There exists an analogous result for the strong product of graphs following
the approach of Dörfler and Imrich (1970). ([21], See Chapter 7)

It is also well known that connected non-bipartite graphs factor uniquely
into primes over the direct product. ([21], See Chapter 8).

In the case of the lexicographic product, prime factorization is not unique
but there is a strong and predictable connection between different prime
factorizations of the same graph. ([21], See Chapter 10).

We now discuss automorphisms of composites as a result of the cartesian
product as well as their actions on Aut Γ.

Theorem 2.6. ([21], [ Theorem 6.10]) Suppose ϕ is an automorphism of a
connected graph Γ with prime factor decomposition Γ12Γ22 · · ·2Γk. Then
there is a permutation π of {1, 2, . . . , k} and isomorphisms ϕi : Γπ(i) → Γi
for which ϕ(x1, x2, . . . , xk) =

(
ϕ1(xπ(1)), ϕ2(xπ(2)), · · · , ϕk(xπ(k))

)
. There are

two possibilites in this regard:

(a) The permutation π is the identity. Then every ϕi is an automorphism
of Γi. We say ϕ is generated by automorphisms of the factors Γi. If
all factors are pairwise nonisomorphic, these automorphisms already
generate the full automorphism group of Γ.

(b) At least two prime factors Γr and Γs are isomorphic. Let π be the
transposition (r, s), and ϕr, ϕs a pair of isomorphisms from Γs onto
Γr, respectively from Γr onto Γs. Furthermore, for indices i other than
r or s, let ϕi be the identity on V (Γi). Then the map ϕ correspond-
ing to π, ϕr, ϕs and the ϕi for i 6= r, s is an automorphism. It is the
transposition of two isomorphic prime factors of Γ.

Theorem 2.7. ([21], [Corollary 6.11]) The automorphism group of a con-
nected graph with prime factor decomposition Γ12Γ22 · · ·2Γk is generated
by automorphisms and transpositions of the prime factors.

The following corollary on relatively prime graphs is as a result of the fact
that transposition can only occur between isomorphic factors.
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Corollary 2.3. ([21], [Corollary 6.12]) Let Γ be the Cartesian product
Γ12Γ22 · · ·2Γk of connected, relatively prime graphs. Then every automor-
phism ϕ of Γ preserves the layer structure of Γ with respect to the given
product decomposition and can be written in the form ϕ(x1, x2, . . . , xk) =
(ϕ1(x1), ϕ2(x2), . . . , ϕk(xk)) , where the ϕi are automorphisms of Γi. In this
case, Aut Γ is the direct product of the automorphism groups of the factors.

These results imply a simple theorem, which helps visualize the structure
of the automorphism group of a product of prime graphs.

Theorem 2.8. ([21], [Theorem 6.13]) The automorphism group of the Carte-
sian product of connected prime graphs is isomorphic to the automorphism
group of the disjoint union of the factors.

In order to discuss the automorphism group of the the strong, direct and
the lexicographic products, the concepts of relations and thin graphs are used
to discuss their prime factorisations. we now briefly introduce them.

Given a vertex x of Γ, the S-equivalence class containing x is denoted as

[x] = {x′ ∈ V (Γ)|NΓ[x′] = NΓ[x]}.

Vertices x, y of a graph Γ are in the relation S, written xSy, provided that
N [x] = N [y]. (We write SΓ if there is a chance of ambiguity.)

The existence of vertices with identical neighborhoods complicates the dis-
cussion of prime factorizations over the direct product. To overcome this
difficulty, a relation R is introduced on the vertices of a graph.

Given x ∈ V (Γ), the set [x] = {x′ ∈ V (Γ)|NΓ(x′) = NΓ(x)} denote the
R-equivalence class containing x.

Two vertices x and x′ of a graph Γ are in relation R, written xRx′, precisely
if NΓ(x) = NΓ(x′). (For clarity, we write RΓ for R.)

To obtain an analogous of Theorem 2.6, the concept of S-prime graphs has
been used by many authors (See [21]) to describe the unique prime factori-
sation of strong products of graphs. We now introduce it.

First, given a graph product ∗, it is natural to ask which graphs are non-
trivial subgraphs of ∗-products.
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Now, if Γ1 and Γ2 are graphs on at least two vertices, then a subgraph Γ
of Γ1 ∗Γ2 is called nontrivial if each of the projections, pΓ1(Γ) and pΓ2(Γ) has
at least two vertices.

A graph Γ is called ∗-S-prime if it cannot be represented as a nontrivial
subgraph of a ∗-product graph. Graphs that are not ∗-S-prime are called
∗-S-composite. Clearly, ∗-S-prime graphs are prime with respect to ∗.

Another related concept here is the thinness of a graph.

A graph is called R-thin if all of its R-equivalence classes contain just one
vertex. A graph is called S-thin if no two vertices are in the relation S.

In the case of the lexicographic and direct products, the concepts of S-thin
and R-thin graphs are used in order to obtain an analogous of Theorem 2.6
and to express prime factorisations of the products.

We now present the automorphsm group of the strong product of graphs.

Theorem 2.9. ([21], [Theorem 7.18]) The automorphism group of the strong
product of connected, S-thin prime graphs is isomorphic to the automorphism
group of the disjoint union of the factors.

Analogously, the automorphism group of direct product of graphs is in the
following terms.

Theorem 2.10. ([21], [Theorem 8.18]) Suppose ϕ is an automorphism of
a connected non-bipartite R-thin graph Γ that has a prime factorization
Γ = Γ1 × Γ2 × · · · × Γk. Then there exists a permutation π of {1, 2, . . . , k},
together with isomorphisms ϕi : Γπ(i) −→ Γi, such that ϕ(x1, x2, . . . , xk) =
(ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

Thus Aut Γ is generated by the automorphisms of the prime factors and
transpositions of isomorphic factors. Consequently, Aut Γ is isomorphic to
the automorphism group of the disjoint union of the prime factors of Γ in
this special case.

Theorem 2.11. ([21], [Theorem 10.13]) Let Γ1◦Γ2 be the lexicographic prod-
uct of simple nontrivial graphs. Then Aut (Γ1 ◦Γ2) = Aut Γ1 ◦Aut Γ2 if and
only if Γ2 is connected in case RΓ1 is nontrivial and Γ2 is connected in case
SΓ1 is nontrivial.
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In all of the standard graph products described in this study, it is very
important to note that the automorphisms of a given graph with respect to
any of the graph products are generated by the automorphisms of the prime
factors.

Having given the necessary preliminaries, we now turn to the fundamental
object of our study.
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Chapter 3

Generalized tactical
configurations from Steiner
triple systems emanating from
projective geometry

In this chapter we introduce systematically the fundamental concepts of this
study and generalize them through an induction process. At the core, we
present designs of interest and establish their intersection arrays as well as
their intersection numbers.

Further, we explore the richness in symmetry and substructures of 2-designs
from projective geometry and this leads us to the notion of a recursive tactical
configurations.

Further tactical configurations obtained from the case n − m = 2 of our
tactical configurations on Steiner triple systems from projective geometry
yields an interesting result. This turns out to be quasi symmetric designs.
We will study this separately in Subsection 3.3.1 of this Chapter. In Chapter
4, we will also consider its block intersection graphs. As alluded to, they
turn out to be isomorphic to the block intersection graphs of Steiner triple
systems from projective geometry.

We now present the fundamental object of this study.
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3.1 Tactical configurations

In this section, we are particularly interested in configurations induced by
(n−m)-flats on (PG(n, 2),B) because we desire to identify substructures that
inherit the combinatorial symmetry of the parent structure,(PG(n, 2),B) .

The configurations of interest in this study differs from that of ([2], [See
Proposition 2.16 ]) in the sense that, we consider the point set of our con-
figurations to be a family B of all triples from (PG(n, 2),B) and blocks are
defined to be a collection of triples induced by a given flat, V (n−m).

In order to avoid ambiguities, fix notation and more importantly because
of our interest in uniform block designs in this study, we begin with the
introduction of the following crucial concepts.

Definition 3.1. Let V = Fn+1
2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 +

v2 + v3 = 0} such that D = (V,B) is a 2−(2n+1 − 1, 3, 1) design. Let V (n−m)

be an (n−m)-flat of V, m ∈ N. We define the following:

(i) For any given v ∈ V, by X(v) we mean

X(v) = {B ∈ B : v ∈ B}.

That is, the set of triples of B containing v;

(ii) By B(n−m), we mean

B(n−m) = {B ∈ B : B ∩ V (n−m) = B}.

That is, the set of triples of B induced by V (n−m). This is also denoted〈
V (n−m)

〉
;

(iii) For a given v ∈ V (n−m), by B(n−m)
v we mean

B(n−m)
v = {B ∈ B(n−m) : v ∈ B}.

That is, a subset of the set of triples of B induced by V (n−m) containing
v.

We now begin to explore the relationships of the sets described above in
order to introduce some elementary properties of our configurations.
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Proposition 3.1. Let m ∈ N and let V = Fn+1
2 \{0},B = {{v1, v2, v3} : v1 6=

v2 6= v3, v1 + v2 + v3 = 0} such that D = (V,B) is a 2−(2n+1− 1, 3, 1) design.
For all (n−m)-flats, V (n−m) of V, let B be the collection of all B(n−m). Then

(i) |B(n−m)| = (2n−m+1 − 1)(2n−m − 1)

3
;

(ii) |B| =

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

Proof. (i) V (n−m) is a flat of V.

(ii) By [15](See Equation A.4.3), the number of distinct (n − m)-flats of

PG(n, 2) is

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

.

Lemma 3.1. Let n,m ∈ N, n > 2,m ≥ 1 and let V = Fn+1
2 \ {0},B =

{{v1, v2, v3} : v1 6= v2 6= v3, v1 + v2 + v3 = 0} such that D = (V,B) is a
2−(2n+1 − 1, 3, 1) design. For any v ∈ V, consider X(v) and let X ⊂ X(v)
such that |X| = (2n−m − 1). Then

(i)

∣∣∣∣∣ ⋃
B∈X

B

∣∣∣∣∣ = 2n−m+1 − 1;

(ii)

(⋃
B∈X

B

)
defines an (n − m)-flat, V (n−m) of V and |

〈
V (n−m)

〉
| =

(2n−m+1 − 1)(2(n−m) − 1)

3
.

Proof. (i) Let B,B′ ∈ X. If B 6= B′ then, B \{v}∩B′ \{v} = ∅, since v ∈ B
for all B ∈ X. The result therefore follows by inclusion-exclusion principle.
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(ii) First, we show that

(⋃
B∈X

B

)
together with {0} ∈ Fn+1

2 is closed under

vector addition.

Let x, y ∈

(⋃
B∈X

B

)
. By definition of B, and since X ⊂ X(v), we have

that x, y is in exactly one block B ∈ B. So, let B = {x, y, v} ∈ X. It follows

that v ∈

(⋃
B∈X

B

)
and that x+ y + v = 0 and hence; x+ y = v.

In addition,

(⋃
B∈X

B

)
is closed under scalar multiplication, since Char(F2)

is 2.

Having shown that

(⋃
B∈X

B

)
together with {0} ∈ Fn+1

2 is closed under

vector addition and also closed under scalar multiplication, it follows that(⋃
B∈X

B

)
together with {0} ∈ Fn+1

2 defines a subspace of Fn+1
2 and hence;(⋃

B∈X

B

)
= V (n−m) defines an (n−m)-flat of V.

We now show that |
〈
V (n−m)

〉
| = (2n−m+1 − 1)(2(n−m) − 1)

3
.

V (n−m) together with {0} ∈ Fn+1
2 is an (n−m + 1)-dimensional subspace

of Fn+1
2 , since V (n−m) defines an (n −m)-flat of V. Hence, we have from (i)

that ∣∣V (n−m)
∣∣ = 2n−m+1 − 1.

Therefore, the result follows.

Lemma 3.2. Let V (n−m) be an (n−m)-flat of V and let B(n−m) be as defined
in Definition 3.1. Then

(i) For every v ∈ V (n−m),

|B(n−m)
v | = 2n−m − 1,

and v partitions the set V (n−m) \ {v} into 2-element subsets;
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(ii) For each vi ∈ V (n−m), i = 1, · · · , |V (n−m)|, ⋃
B∈B(n−m)

vi

B

 = V (n−m).

Proof. (i) By Corollary 2.2, every v ∈ V is in exactly
|V | − 1

2
triples of

B. By hypothesis, V (n−m) is an (n − m)-flat of V. It therefore follows that

any v ∈ V (n−m) is also in exactly
2n−m+1 − 2

2
triples of

〈
V (n−m)

〉
, since〈

V (n−m)
〉
⊂ B. Hence,

|B(n−m)
v | = 2n−m − 1.

Now, we have that the set V (n−m)\{v} is partitioned into 2-element subsets
because |B| = 3 for any B ∈ B, v ∈ B for any B ∈ B(n−m)

v and in addition,
|B(n−m)

v | = 2n−m − 1.

(ii) By the arguments of (i) above, we have that any vi ∈ V (n−m), i =
1, · · · , |V (n−m)|, partitions the set V (n−m) \ {vi} into 2-element subsets. The
result immediately follows, since B(n−m)

vi
= {B ∈ B(n−m) : vi ∈ B}.

Having discussed Lemma 3.1 and Lemma 3.2, we are now in a position
to discuss the parameters of our tactical configurations. We will begin with
the point degrees of the configurations, that is, the number of times a triple
B ∈ B appears in the blocks of the tactical configurations.

As alluded to, a tactical configuration is simply a 1-(v, k, r = λ) design
with parameters v, k, r, and b = vr/k. In view of this, we have that v = |B|,
that is, the triples of PG(n, 2), and b is the total number of elements of the
collection of all

〈
V (n−m)

〉
. The block degrees, k, is the content of Lemma

3.1(ii), while the point degrees, r, constitutes a greater part of the remainder
of this section. The set of all blocks in a tactical configuration is denoted as
B. Hence, we have the tactical configuration (B,B).

We now focus on the point degrees.

In order to establish the degree of each point B ∈ B, we employ mathemat-
ical induction. In the base case of this induction, each block of B contains 7
triples as points. Each of the blocks of B is also well known as a Fano plane.

The point degree of the base case is in the following terms.
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Lemma 3.3. For n,m ∈ N, n > 2,m ≥ 1, let V = Fn+1
2 \ {0},B =

{{v1, v2, v3} : v1 6= v2 6= v3, v1 + v2 + v3 = 0} such that D = (V,B) is a
2−(2n+1 − 1, 3, 1) design. For all (2)-flats, V (2) of V, let B be the collection
of all B(2). Then, every B ∈ B is in exactly (2n−1 − 1) blocks of B.

Proof. Let B = {v1, v2, v3} be any triple in B. By Corollary 2.2, we have that

each of the elements v1, v2, v3 ∈ V is in exactly
|V | − 1

2
= 2n− 1 triples of B.

So, consider the sets X(v1), X(v2) and X(v3). Clearly,

X(v1) ∩X(v2) ∩X(v3) = B.

By Lemma 3.1 (i), we have that the number of points of an (n −m)-flat
is (2n−m+1 − 1). Hence for any 2-flat, |V (2)| = 7 and by Lemma 3.1 (ii),
|B(2)| = 7.

Now, let B ∈ B(2) for some 2-flats of V. By Lemma 3.2, there exist
B(2)
v1
,B(2)

v2
,B(2)

v3
⊂ B(2) such that

|B(2)
v1
| = |B(2)

v2
| = |B(2)

v3
| = 22 − 1

and V (2) =

 ⋃
B∈B(2)vi

B

 , for each i ∈ {1, 2, 3}. In addition, B(2)
v1
∩B(2)

v2
∩B(2)

v3
=

B.

Hence, it follows that any B(2) containingB can be identified as

( ⋃
i=1,2,3

B(2)
vi

)
such that B(2)

v1
∩ B(2)

v2
∩ B(2)

v3
= B.

Clearly, B(2)
v1
⊂ X(v1),B(2)

v2
⊂ X(v2) and B(2)

v3
⊂ X(v3). In addition,

X(v1) ∩X(v2) ∩X(v3) = B(2)
v1
∩ B(2)

v2
∩ B(2)

v3
= B, and

|B(2)
v1
| = |B(2)

v2
| = |B(2)

v3
| = 3.

Now, consider partitions of the (2n − 2) elements of X(vi) \ B, for any i ∈
{1, 2, 3} into

2n − 2

2
subsets, each of size 2.

Each of the partitions together with B defines a subset B(2) of B. Hence,
the result.
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In order to facilitate the discussion of the induction process, there is need
to properly describe k-element subsets of X(v) that define a flat of V. We
now put this in the right context.

Definition 3.2. Let X(v) = {B ∈ B : v ∈ B} and let X be a k-element

subset of X(v) such that

(⋃
B∈X

B

)
defines a (k− 1)-flat of V. By Xk(v), we

mean a collection of all such X.

In view of the above definition and Lemma 3.3, we have the following.

Corollary 3.1. For n ≥ 3, and for a given v ∈ V, consider the set X3(v).
Then

(i) for any B ∈ X(v), every B′ ∈ X(v) \B is in exactly one X ∈ X3(v);

(ii) every B ∈ X(v) is in exactly (2n−1 − 1) elements of X3(v).

Proof. (i) For Xi, Xj ∈ X3(v), i 6= j,Xi ∩Xj = B. Now, consider a partition

of the 2n − 2 elements of X(v) \ B into
2n − 2

2
subsets, each of size 2. The

result therefore follows.

(ii) By Corollary 2.2, |X(v)| = 2n − 1. Now, considering the partitions in
(i) above, each of the partitions together with B defines an X ∈ X3(v).

As a result of Corollary 3.1 and in order to establish a correspondence
between the elements, B(2) of B and the elements, X of X3

v , we have the
following.

Lemma 3.4. Let V = Fn+1
2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 + v2 +

v3 = 0} such that (V,B) is a 2−(2n+1− 1, 3, 1) design. For all (2)-flats, V (2)

of V, let B be a collection of all B(2). Then, for any v ∈ V, each Xi ∈ X3
v

determines a unique B(2) ∈ B.

Proof. Let B1, B2, B3 be distinct triples in X. Then, B1 ∩ B2 ∩ B3 = {v}.
Now consider

⋃
B∈X

B. By definition,
⋃
B∈X

B defines a 2-flat of V and hence,

〈⋃
B∈X

B

〉
= B(2).
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By Lemma 3.1, we have that

∣∣∣∣∣ ⋃
B∈X

B

∣∣∣∣∣ = 7 and

∣∣∣∣∣
〈 ⋃
B∈X

B

〉∣∣∣∣∣ = 7.

We now consider the uniqueness of B(2).

Let B1 = {v1, v2, v3}, B2 = {v1, v4, v5}, and B3 = {v1, v6, v7}. By definition,
we have that

v2 + v3 = v4 + v5 = v6 + v7 = v1.

Adding v2 and v3 to all sides, we have

0 = v4 + v5 + v2 + v3 = v6 + v7 + v2 + v3 = v1 + v2 + v3.

Hence,

0 = v4 + v5 + v2 + v3 = v6 + v7 + v2 + v3 = 0, (3.1)

since B1 = {v1, v2, v3}.

Eliminating v3 from Equation (3.1), we obtain

0 = v2 + v4 + v5 = v2 + v6 + v7 = 0. (3.2)

Eliminating v2 from Equation (3.1), we also have

0 = v3 + v4 + v5 = v3 + v6 + v7 = 0. (3.3)

Clearly, v4, v5 ∈ B2 and v6, v7 ∈ B3. Hence, it follows without loss of general-
ity that Equations (3.2) and (3.3) can be re-arranged respectively as follows.

0 = v2 + v4 + v6 = v2 + v5 + v7 = 0;

0 = v3 + v4 + v7 = v3 + v5 + v6 = 0.

Hence, the triples {v2, v4, v6}, {v2, v5, v7}, {v3, v4, v7} and {v3, v5, v6} are iden-
tified as B4, · · · , B7 respectively.

We now show that B1, B2, B3 cannot be extended to a B(2) distinct from
that containing B4, · · · , B7.

Now, suppose to the contrary that Equations (3.2) and (3.3) can be re-
arranged respectively as

0 = v2 + v4 + v7 = v2 + v5 + v6 = 0;

0 = v3 + v4 + v6 = v3 + v5 + v7 = 0.
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Then, it follows that there exist

{v2, v4, v7}, {v2, v5, v6}, {v3, v4, v6}, {v3, v5, v7} ∈ B

identified as B8, · · · , B11 respectively such that

B1 ∪B2 ∪B3

11⋃
i=8

Bi = {v1, · · · , v7}.

Now consider B4 ∩ B8 = {v2, v4}, B5 ∩ B9 = {v2, v5}, B6 ∩ B10 = {v3, v4}
and B7∩B11 = {v3, v5}. This contradicts the fact that every pair of elements
of V is in exactly one triple in B.

Consequently, 3 distinct triples define a unique B(2) in the following.

Corollary 3.2. Let V = Fn+1
2 \{0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 +v2 +

v3 = 0}. Let V (2) be a 2-flat of V,B(2) =
〈
V (2)

〉
= {B ∈ B : B ∩ V (2) = B},

and let B be a collection of all B(2). Then, any 3 triples B1,B2,B3 ∈ B, such
that B1 ∩ B2 ∩ B3 6= ∅ is in exactly one unique B(2) ∈ B.

Having considered the base case, we now generalize point degrees of our
tactical configurations by induction. Again as alluded to, in this general case,
points of our tactical configurations just like in the base case are triples, while
blocks are also defined to be sets of triples generated by flats.

We now extend the results of Lemma 3.3, Corollary 3.1, Lemma 3.4, Corol-
lary 3.2, and Definition 3.2 to the point degrees of our configurations.

Theorem 3.1. Let n,m ∈ N and (n−m) ∈ {2, 3, . . . , (n− 2), (n− 1)}. Let
V = Fn+1

2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 + v2 + v3 = 0} such that
D = (V,B) is a 2−(2n+1− 1, 3, 1) design. For all (n−m)-flats, V (n−m) of V,
let B be the collection of all B(n−m). Then every B ∈ B is in exactly

(n−m−1)∏
i=1

(2n−i − 1)

(n−m−2)∏
i=0

(2i+1 − 1)

blocks of B.
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Proof. We will prove by induction on (n−m).

When (n−m) = 2, by Lemma 3.3, the result holds.

Now, suppose the result is true for (n−m) = k ≥ 2. That is, for n ≥ k+ 1
and for any v ∈ V, every B ∈ X(v) is in exactly

(2n−1 − 1)(2n−2 − 1) · · · (2n−k+1 − 1)

1× 3× 7× · · · × (2k−1 − 1)
,

(2k − 1)-element subsets, X(2k−1)(v) of X(v) such that

 ⋃
B∈X(2k−1)(v)

B

 de-

fines a k-flat. We need to show that it is also true for (n−m) = k + 1.

Let B = {v1, v2, v3} ∈ B such that B ∈ B(k+1), for some (k + 1)-flat
of V. By Lemma 3.2, there exist B(k+1)

v1
,B(k+1)

v2
,B(k+1)

v3
⊂ B(k+1) such that

|B(k+1)
v1
| = |B(k+1)

v2
| = |B(k+1)

v3
| = 2k+1− 1 and V (k+1) =

 ⋃
B∈B(k+1)

vi

B

 , for any

i ∈ {1, 2, 3}. In addition, B(k+1)
v1

∩ B(k+1)
v2

∩ B(k+1)
v3

= B.

Now, let V (k) = {v1, v2, · · · , v2k+1−1} be a (k)-flat of V in V (k+1). It follows
that B(k+1)

v1
,B(k+1)

v2
, · · · ,B(k+1)

v
2k+1−1

⊂ B(k+1) such that

|B(k+1)
v1
| = |B(k+1)

v2
| = · · · = |B(k+1)

2k+1−1
| = 2k+1 − 1,

since the result is true for (n−m) = k.

In addition, V (k+1) =

 ⋃
B∈B(k+1)

vi

B

 , for any i ∈ {1, 2, · · · , 2k+1 − 1} and

B(k+1)
v1

∩ B(k+1)
v2

∩ · · · ∩ B(k+1)

2k+1−1
=
〈
V (k)

〉
= B(k).

In other words, any B(k+1) ∈ B containing B can be identified as ⋃
i=1,2,··· ,2k+1−1

B(k+1)
vi

 such that

B(k+1)
v1

∩ B(k+1)
v2

∩ · · · ∩ B(k+1)

2k+1−1
= B(k) =

〈
V (k)

〉
.
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Now, consider an incidence structure on the (2n−2) elements of X(vi)\B,
for any i ∈ {1, 2, 3} into subsets of size, |B(k+1)

vi
\ B| = 2k+1 − 2, such that

each B′ ∈ X(vi) \ B is in exactly r′ blocks and the total number of blocks
from such an incidence structure is b′, since B = {v1, v2, v3} ∈ B(k+1), for
some B(k+1) ∈ B.

By Theorem 2.3, we have that (2n − 2)r′ = b′(2k+1 − 2).

Furthermore, for each B(k+1)
vi

\ B, let B(k)
vi
,B′(k)

vi
be partitions of B(k+1)

vi
\ B

into (2k − 1)-element subsets, each of size 2k − 1.

Without loss of generality, and by Lemma 3.1, we have that ⋃
B∈B(k)vi

B

 = V (k) and thus
〈
V (k)

〉
= B(k).

Hence, we have that for each B(k+1)
vi

\B =

 ⋃
B∈

(
B(k)vi
∪B′(k)vi

)B
 ,

|B(k)
vi
| = |B′(k)

vi
| = 2k − 1,B(k)

vi
∩ B′(k)

vi
= ∅

and B(k)
vi
,B′(k)

vi
⊂ B(k+1)

vi
, since |B(k+1)

vi
\B| = 2k+1 − 2.

Therefore, |B(k+1)
vi

\B| = 2|B(k)
vi
| or 2|B′(k)

vi
| and hence

(2n − 2)r′ = b′[2(2k − 1)].

Now, consider a collection of all B(k)
vi

for each B(k+1)
vi

. It follows that the

collection of all B(k)
vi

partitions the set X(vi) \ B into (2n−1 − 1) element

subsets, each of size (2n−1 − 1), since the elements of B(k)
vi

and B′(k)
vi

are also
elements of X(vi) \B. Hence, we have that

(2n−1 − 1)r′ = b′|B(k)
vi
| or (2n−1 − 1)r′ = b′|B′(k)

vi
|.

In either case, we have (2n−1 − 1)r′ = b′(2k − 1).

By induction hypothesis, we have that n−m = k+ 1 and this implies that
n ≥ (k + 2). In addition, the result holds for n−m = k.
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Now, consider (2k−1)-element subsets, B(k)
vi

or B′(k)
vi

from (2n−1−1) elements

of X(vi) \ B, for any i ∈ {1, 2, 3} such that
⋃

B′∈B(k)vi

B′ or
⋃

B′∈B′(k)vi

B′ defines a

k-flat.

We therefore have that

r′ =
(2n−2 − 1)(2n−3 − 1) · · · (2n−k − 1)

1× 3× 7× · · · × (2k−1 − 1)

and hence,

b′ =
(2n−1 − 1)(2n−2 − 1) · · · (2n−k − 1)

1× 3× 7× · · · × (2k−1 − 1)(2k − 1)
.

Each of the (2k+1−2)-element subsets together with B defines B(k+1)
vi

. This

implies that V (k+1) =

 ⋃
B∈B(k+1)

vi

B

 , for any i ∈ {1, 2, 3}.

By defiinition, each V (k+1) defines a B(k+1) ⊂ B and hence, the result.

Up to this point, we have only discussed the points set and its total number
of points, the points degree, and the block size of our tactical configurations.

The case of the total number of blocks has been discussed in [15] (see
Equation A.4.3) already. We only summarize in the following, since the
blocks of our tactical configurations are generated by flats.

Lemma 3.5. [15] The number of distinct (n−m)-flats of PG(n, 2) is

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

.

In view of Lemma 3.5, we have the following.
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Corollary 3.3. For all (n−m)-flats, V (n−m) of V such that B is the collection
of all B(n−m),

|B| =

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

.

The stage is now set for the introduction of the generalized tactical config-
urations of this study.

By the proof of Lemma 2.2, we have that |B| = (2n+1 − 1)(2n+1 − 2)

6
for a

2−(2n+1− 1, 3, 1) design, D = (V,B). Hence, the size of the points set of our

generalized tactical configuration is
(2n+1 − 1)(2n − 1)

3
. Again by Lemma 3.1

(ii), we also have that

(⋃
B∈X

B

)
defines an (n − m)-flat, V (n−m) of V and

|
〈
V (n−m)

〉
| =

(2n−m+1 − 1)(2(n−m) − 1)

3
. Hence the size of a block of our

generalized tactical configuration is
(2n−m+1 − 1)(2(n−m) − 1)

3
.

In view of the above together with Corollary 3.3, Theorem 2.3 and Theorem
3.1, we have the following.

Theorem 3.2. Let n,m ∈ N, (n −m) ∈ {2, 3, . . . , (n − 2), (n − 1)}, and let
D = (V,B) be the design (PG(n, 2),B) . For all (n −m)-flats, V (n−m) of V,
let B be the collection of all B(n−m). Then,

(
B,B

)
is a

1−


(2n+1 − 1)(2n − 1)

3
,
(2n−m+1 − 1)(2n−m − 1)

3
,

(n−m−1)∏
i=1

(2n−i − 1)

(n−m−2)∏
i=0

(2i+1 − 1)
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design with the number of blocks equal to

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

.

Having discussed the parameters of our generalized tactical configurations,
we now turn to block intersections and the numbers of triples in any inter-
section.

3.2 Block intersections and intersection num-

bers

In order to discuss block intersections and their intersection numbers, we
employ some elementary linear algebra techniques in exploring the blocks of
our configurations.

Due to the nature of blocks in the generalized tactical configurations dis-
cussed in the previous section, there are arrays of intersections between any
two distinct blocks. We now discuss these intersection arrays beginning with
the dimensions of the intersecting subflats.

Lemma 3.6. The dimensions of the intersections of all two distinct (n−m)-
flats of V = Fn+1

2 \ {0} are elements of {(n−m− 1), (n−m− 2), · · · , 0}.

Proof. To prove the result, we first observe the well-known dimensionality
formular, dim(U1 + U2) = dim(U1) + dim(U2) − dim(U1 ∩ U2) for subspaces
U1 and U2 of a vector space V.

Now, for all 2 distinct (n−m)-flats, V n−m
1 , V n−m

2 of V, we have that

dim(V n−m
1 + V n−m

2 ) = dim(V n−m
1 ) + dim(V n−m

2 )− dim(V n−m
1 ∩ V n−m

2 )
(3.4)

We have essentially from Equation (3.4) that
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(i) dim(V n−m
1 + V n−m

2 ) ≤ dim(V n−m
1 ) + dim(V n−m

2 ) with equality when
V n−m

1 ∩ V n−m
2 = ∅;

(ii) dim(V n−m
1 +V n−m

2 ) + dim(V n−m
1 ∩V n−m

2 )−dim(V n−m
2 ) = dim(V n−m

1 ).

This is by virtue of V n−m
1 and V n−m

2 being distinct (n−m)-flats of V.

From (ii) above, if (V n−m
1 ∩ V n−m

2 ) 6= ∅, we have that

dim(V n−m
1 ∩ V n−m

2 ) < dim(V n−m
2 )

hence,
dim(V n−m

1 ∩ V n−m
2 )− dim(V n−m

2 ) < 0.

It therefore follows that

dim(V n−m
1 + V n−m

2 ) > dim(V n−m
1 ) = dim(V n−m

2 ).

This implies dim(V n−m
1 + V n−m

2 ) ≥ (n−m+ 1).

Again, from (ii) above, consider the case (V n−m
1 ∩ V n−m

2 ) = ∅.
Clearly,

dim(V n−m
1 + V n−m

2 ) > dim(V n−m
1 ) = dim(V n−m

2 ).

This also implies that dim(V n−m
1 + V n−m

2 ) ≥ (n−m+ 1).

It therefore follows that

dim(V n−m
2 ) < dim(V n−m

1 + V n−m
2 ) ≤ dim(V n−m

1 ) + dim(V n−m
2 ).

This implies that

dim(V n−m
1 + V n−m

2 ) ∈ {(n−m+ 1), (n−m+ 2), · · · , 2(n−m)}

since dim(V n−m
1 ) = dim(V n−m

2 ) = (n−m).

Finally, Equation (3.4) can be re-arranged as follows:

dim(V n−m
1 ∩ V n−m

2 ) = dim(V n−m
1 ) + dim(V n−m

2 )− dim(V n−m
1 + V n−m

2 ).

Hence,

dim(V n−m
1 ∩ V n−m

2 ) ∈ {2(n−m)− (n−m+ 1), 2(n−m)− (n−m+ 2), · · · ,
2(n−m)− 2(n−m)},

since dim(V n−m
1 + V n−m

2 ) = {(n−m+ 1), (n−m+ 2), · · · , 2(n−m)}.
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As for the number of triples in the intersection of any two flats, that is,
the intersection numbers of our configurations, we have the following.

Lemma 3.7. Let n,m ∈ N, n > 2,m ≥ 1 and let D = (V,B) be the design
(PG(n, 2),B) . For all (n −m)-flats, V (n−m) of V, let B be the collection of
all B(n−m). Then, the intersection numbers of any 2 distinct blocks of B are
elements of{

(2n−m − 1)(2n−m−1 − 1)

3
,
(2n−m−1 − 1)(2n−m−2 − 1)

3
, · · · , 1

}
.

Proof. Let V n−m
1 and V n−m

2 be distinct (n−m)-flats of V,B(n−m) =
〈
V

(n−m)
1

〉
,

and B′(n−m) =
〈
V

(n−m)
2

〉
. By Lemma 3.6, we have that dim(V n−m

1 ∩V n−m
2 ) ∈

{(n−m− 1), (n−m− 2), · · · , 0}. Hence we have that

|(V n−m
1 ∩ V n−m

2 )| ∈ {2(n−m) − 1, 2(n−m−1) − 1, · · · , 20+1 − 1}

since, (V n−m
1 ∩ V n−m

2 ) is also a flat of V = Fn+1
2 \ {0}. The result therefore

follows since,

B(n−m)∩B′(n−m)
=
〈
(V n−m

1 ∩ V n−m
2 )

〉
= {B ∈ B : B∩ (V n−m

1 ∩V n−m
2 ) = B}.

The case for n−m = 2 is a special one. We obtain a configuration not with
many intersections. As a result of Lemma 3.7, we have that the intersection
of any two blocks when n −m = 2 is an element of the set {0, 1}. Thus, as
a result of Lemma 3.7 and Theorem 3.2, we obtain the following.

Corollary 3.4. Let V (2) be a 2-flat of V,B(2) =
〈
V (2)

〉
= {B ∈ B : B∩V (2) =

B}, and let B be a collection of all B(2). Then
(
B,B

)
is a quasi-symmetric

design with the standard parameters,(
(2n+1 − 1)(2n − 1)

3
,
(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7, (2n−1 − 1);

0, 1
)
.
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As alluded to in the introduction of this chapter, the design in Corollary
3.4 is of special attention in this study. In the next section, we shall consider
a further tactical configuration on the design. In the interim, we consider
the following further property of the design, since the intersection of any two
blocks is an element of the set {0, 1}. This is required later in Chapter 4 to
discuss isomorphism between the block intersection graphs from further tac-
tical configurations of the design and the block intersection graph of Steiner
triple systems from projective geometry.

Corollary 3.5. Let V (2) be a 2-flat of V,B(2) =
〈
V (2)

〉
= {B ∈ B : B∩V (2) =

B}, and let B be a collection of all B(2). Then for any B1,B2 ∈ B such that
B1 ∩ B2 6= ∅. The pair (B1,B2) exists in a unique B(2) ∈ B.

Proof. By Lemma 3.3, every B ∈ B is in exactly (2n−1 − 1) blocks of B.
In addition by Lemma 3.7, for all B(2),B′(2) ∈ B̄, |B(2) ∩ B′(2)| = {0, 1},
since n − m = 2. Hence for B(2),B′(2) ∈ B̄ such that B(2) ∩ B′(2) 6= ∅,
B(2) ∩ B′(2) = B ∈ B.

Now, consider a partition of the (2n−1 − 2) other triples containing B into
(2n−1 − 2)

2
subsets, each of size 2. By Lemma 3.4, we have that B together

with each partition defines a unique B(2) ∈ B.
Hence, the result follows.

Having considered intersections between any two blocks, we now count the
exact number of intersections of all 2 distinct blocks in B.

Theorem 3.3. Let n,m ∈ N, (n −m) ∈ {2, 3, . . . , (n − 2), (n − 1)}, and let
D = (V,B) be the design (PG(n, 2),B) . For all (n −m)-flats, V (n−m) of V,
let B be the collection of all B(n−m). Then, there are exactly (n−m) possible
intersections between the blocks of B.

Proof. LetV n−m
1 and V n−m

2 be distinct (n−m)-flats of V, B(n−m) =
〈
V

(n−m)
1

〉
,

and B′(n−m) =
〈
V

(n−m)
2

〉
. By Lemma 3.6, we have that the dimensions of

the intersection array of all distinct (n − m)-flats of V = Fn+1
2 \ {0} is

{(n−m− 1), (n−m− 2), · · · , 0}.
Now, consider the following, since n = n−m+m.
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(i) if n−m > m then, n = 2m+ k, k > 0.

This implies n−m = m+ k and hence,

{(n−m− 1), (n−m− 2), · · · , 0}
= {(2m+ k −m− 1), (2m+ k −m− 2), · · · , 0}
= {(m+ k − 1), (m+ k − 2), (m+ k − 3), · · · , ((m+ k)− (m+ k))}
= {m+ k − i}, i = 1, · · · ,m+ k = n−m;

(ii) if n−m < m then, n = 2m− k, k > 0.

This also implies (n−m) = (m− k). Hence,

{(n−m− 1), (n−m− 2), · · · , 0}
= {(2m− k −m− 1), (2m− k −m− 2), · · · , 0}
= {(m− k − 1), (m− k − 2), (m− k − 3), · · · , ((m− k)− (m− k))}
= {m− k − i}, i = 1, · · · , (m− k) = (n−m).

(iii) if n−m = m then, n = 2m. Hence,

{(n−m− 1), (n−m− 2), · · · , 0}
= {(2m−m− 1), (2m−m− 2), · · · , 0}
= {(m− 1), (m− 2), (m− 3), · · · , (m−m)}
= {m− i}, i = 1, · · · ,m = (n−m).

The exact intersection numbers of the configurations for any given n and
m can then be obtained by Lemma 3.7, another important straddle of our
study.

As alluded to, we now discuss further tactical configurations from Corollary
3.4.

3.3 Further tactical configurations

We present an example of a further tactical configuration from the original
tactical configurations,

(
B,B

)
. We pay specific attention to the case n−m =
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2 from the original tactical configurations. In Section 4.4 of the next chapter,
we shall consider block intersection graphs of the given example as well as
establish that the block intersection graphs of the given example is isomorphic
to the block intersection graphs of Steiner triple systems from projective
geometry.

As is obvious now, the configurations of Theorem 3.2, that is, the design(
B,B

)
has as its points set, the set B of triples from PG(n, 2), while blocks

are the set of triples induced by an (n−m)-flat of V = Fn+1
2 \ {0}.

Further, we extend the previous consideration in the sense that our points
are now the blocks of the previous tactical configuration, that is, the set B,
and a block is defined to be a collection of all the blocks in the previous
tactical configuration with a common intersection.

This process over the original tactical configurations,
(
B,B

)
could be re-

cursive but that is not our focus here.

We now introduce the new tactical configurations on
(
B,B

)
specifically

when n−m = 2.

3.3.1 1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
design

Let
(
B,B

)
be the design of Theorem 3.2, particularly when n − m = 2.

We have that
(
B,B

)
is a 1-

(
(2n+1 − 1)(2n − 1)

3
, 7, 2n−1 − 1

)
design with

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
blocks.

Now, let V = Fn+1
2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 + v2 + v3 = 0}

such that D = (V,B) is a 2−(2n+1 − 1, 3, 1) design. Let V (2) be a 2-flat of
V,B(2) =

〈
V (2)

〉
, and let B be a collection of all B(2).

As alluded to, each V (2) is a Fano plane and hence, the total number of

Fano planes is
(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
.

By Lemma 3.3, every B ∈ B is in exactly (2n−1 − 1) blocks of B.
Now, for each B ∈ B, let FB = {B(2) ∈ B : B ∈ B(2)}. Clearly, |FB| =

(2n−1 − 1). For clarity and easy identification, we will call such a structure
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FB, a Fano block.

Now, let F be a collection of all FB ⊂ B that is, the total collection

of all Fano blocks from a 1-

(
(2n+1 − 1)(2n − 1)

3
, 7, (2n−1 − 1)

)
design. By

definition, (B,F) is an induced substructure of the

1-

(
(2n+1 − 1)(2n − 1)

3
, 7, (2n−1 − 1)

)
design since, each B(2) ⊂ B and each

FB ⊂ B.

In view of the consideration above, each of the
(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7

blocks of the 1-

(
(2n+1 − 1)(2n − 1)

3
, 7, (2n−1 − 1)

)
design is regarded as a

point of the new tactical configurations, that is, a Fano plane is a point.
Blocks are then described as the Fano blocks.

We now discuss other parameters of (B,F) beginning with the point degree.

In order to facilitate this discussion, and bearing in mind that a Fano
plane contains 7 triples of B, there is the need to know the number of times
a given Fano plane appears in the entire set, F of Fano blocks, that is, given
a B(2) ∈ B, we are interested in the number of times B(2) appears in F . This
we discuss below.

Lemma 3.8. Let V = Fn+1
2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 + v2 +

v3 = 0} such that D = (V,B) is a 2−(2n+1 − 1, 3, 1) design.

Let V (2) be a 2-flat of V,B(2) :=
〈
V (2)

〉
, and let B be a collection of all B(2)

such that
(
B,B

)
is a 1-

(
(2n+1 − 1)(2n − 1)

3
, 7, (2n−1 − 1)

)
design, and let F

be the total collection of all Fano blocks from
(
B,B

)
. Then, any given B(2)

is in exactly 7 Fano blocks.

Proof. Let V (2) be a 2-flat of V such that B(2) =
〈
V (2)

〉
, and |B(2)| = 7.

Now, for each Bi ∈ B(2), i = 1, · · · , 7 consider the set FBi
= {B(2) : Bi ∈

B(2)}. The result therefore follows since each FBi
is generated by the elements

of B(2).

At this end, we have the points set and its total number of points, the
block size, and the points degree of our tactical configurations. We will now
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consider the total number of blocks of F .

Lemma 3.9. Let V = Fn+1
2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 +

v2 + v3 = 0} such that D = (V,B) is a 2−(2n+1 − 1, 3, 1) design. Let V (2)

be a 2-flat of V,B(2) :=
〈
V (2)

〉
, and let B be a collection of all B(2) such that(

B,B
)

is a 1-

(
(2n+1 − 1)(2n − 1)

3
, 7, (2n−1 − 1)

)
design, and let F be the

total collection of all Fano blocks from
(
B,B

)
. Then,

|F| = (2n+1 − 1)(2n − 1)

3
.

Proof. By Theorem 3.2, we have that |B| = (2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
.

By Lemma 3.8, any given
〈
V (2)

〉
is in exactly 7 Fano blocks, and |FB| =

(2n−1 − 1).

In addition, we have that (B,F) is an induced substructure of the

1-

(
(2n+1 − 1)(2n − 1)

3
, 7, (2n−1 − 1)

)
design by definition, since each B(2) ⊂

B and each FB ⊂ B. It therefore follows as an incidence structure that

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
× 7 = |F| × (2n−1 − 1).

Clearly, the number of blocks of Steiner triple systems from projective
geometry is the same as the number of blocks of the design (B,F). Hence,
we are now in a position to generalize the parameters of further tactical
configuration (B,F).

In view of the proofs of Lemma 3.8 and Lemma 3.9, we have the following:

Theorem 3.4. Let V = Fn+1
2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 +

v2 + v3 = 0} such that D = (V,B) is a 2−(2n+1 − 1, 3, 1) design. Let V (2)

be a 2-flat of V,B(2) :=
〈
V (2)

〉
, and let B be a collection of all B(2) such that(

B,B
)

is a

1-

(
(2n+1 − 1)(2n − 1)

3
, 7, (2n−1 − 1)

)
design, and let F be the total collec-

tion of all Fano blocks from
(
B,B

)
. Then,

(
B,F

)
is a
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1-

(
(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
design with

(2n+1 − 1)(2n − 1)

3
blocks.

The design
(
B,F

)
above differs from Steiner triple systems from projective

geometry, that is, the 2-(v, 3, 1) designs, in the sense that in 2-(v, 3, 1) designs,
any two meet in exactly one point. There exist no two triples that do not
meet. In the design

(
B,F

)
, we have from Lemma 3.7 that the intersection

of any two blocks when n−m = 2 is an element of the set, {0, 1}.
However, it will be shown later that the block intersection graphs of these

designs are isomorphic.

In order to conclude the results of this section, we summarize in the fol-
lowing:

Theorem 3.5. Let (V,B) be a 1-design such that (V,B) is also a quasi-
symmetric design with parameters (v, k, λ; 0, 1) with b blocks. Then, the tac-
tical configuration of (V,B) is a 1-(b, λ, k) design with v blocks.

Proof. Let (V ′,B′) be a tactical configuration of (V,B), and let k′ be the
block size of (V ′,B′). Clearly, any block B ∈ B is a point of (V ′,B′). Hence,
the block size, k′ of (V ′,B′) is λ since, any B′ ∈ B′ can be considered to be
the set of all λ blocks of b containing B.

Now, we need to show that any B′ ∈ B′ is in k blocks of B′.
Let X ∈ B′ be the set of all the λ blocks of b containing B. It follows that

B /∈ B′ \ X. Hence, for each B′ ∈ B′, we have k blocks of B′ containing B,
since |B| = k.

Hence as an incident structure, the result follows .

46

http://etd.uwc.ac.za/



Chapter 4

Block intersection graphs of the
generalized tactical
configurations and their
extensions

4.1 Introduction

In this chapter, we consider block intersection graphs of tactical configu-
rations defined in Chapter 3 and examine their properties. These graphs
are relations on the block intersection graphs from 2−(v, 3, 1) designs from
projective geometry; hence, we will compare and contrast them.

As alluded to in Chapter 2 of this thesis, the block intersection graphs of
the generalized tactical configurations are by definition similar to Grassmann
graphs. The difference is that the vertex set of the block intersection graphs
of these generalized tactical configurations are blocks generated by the pro-
jective subspace, V (n−m). That is, the set of triples generated by the subspace
V (n−m) constitute a vertex. In addition, the geometry of a projective space
differs from that of a vector space.

We further explore the relationship between the Grassmann graphs and
the block intersection graphs of the tactical configurations of Chapter 3 in
order to fully characterize the block intersection graphs of our tactical con-
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figurations. In some cases, it will be shown that we obtain similar results in
terms of the Grassmann graphs of some specific subspaces.

Lastly, we consider the block intersection graphs of the tactical configura-
tions discussed in Section 3.3.

We now define the graphs of our tactical configurations.

Definition 4.1. Let n,m ∈ N and (n − m) ∈ {2, 3, . . . , (n − 2), (n − 1)}.
Let V = Fn+1

2 \ {0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 + v2 + v3 = 0} such
that (V,B) is a 2−(2n+1 − 1, 3, 1) design. For all (n − m)-flats, V (n−m) of
V, let B be the collection of all B(n−m) such that D =

(
B,B

)
is a tactical

configuration of (V,B).

The block intersection graph Γ = (B, E) of D is the graph with

V (Γ) := B;

E(Γ) := {[B(n−m)
1 ,B(n−m)

2 ] : B(n−m)
1 ∩ B(n−m)

2 = B(n−m−1)}.

We denote such graphs by Γ[n,n−m].

In view of the definition above and as a result of Theorem 3.2, we have
that

|V (Γ[n,n−m])| =

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

.

We now begin to explore the properties of Γ[n,n−m].

4.2 Properties of Γ[n,n−m]

In this section we consider the parameters of the block intersection graphs
of our tactical configurations in Chapter 3 and explore the properties of the
graphs in order to compare and contrast them with the block intersection
graphs of Steiner triple systems from projective geometry.

We begin with the degree of Γ[n,n−m].
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Lemma 4.1. For each B(n−m) ∈ B, the degree of B(n−m),

deg(B(n−m)) = (2n−m+1 − 1)(2m+1 − 2).

Proof. First we recall from Lemma 3.1 that every B(n−m) ∈ V (Γ[n,n−m]) has

a corresponding (n−m)-flat, V (n−m) with (2n−m+1 − 1) points of V, and by

Corollary 3.3, |B(n−m)| = (2n−m+1 − 1)(2n−m − 1)

3
.

Now, let B(n−m)
1 ,B(n−m)

2 ∈ V (Γ[n,n−m]) such that [B(n−m)
1 ,B(n−m)

2 ] ∈ E(Γ[n,n−m]).

By definintion, B(n−m)
1 ∩B(n−m)

2 = B(n−m−1). This again implies from Lemma

3.1 that
(
B(n−m)

1 ∩ B(n−m)
2

)
belongs to a corresponding (n−m−1)-flat, V (n−m−1)

with (2n−m − 1) points of V. Hence, there is the need to consider the total
number of B(n−m−1) in a given B(n−m) ∈ V (Γ[n,n−m]).

Now, consider an incidence structure on the
(2n−m+1 − 1)(2n−m − 1)

3
triples

of B(n−m) into subsets of size, |B(n−m) ∩ B′(n−m)| =
(2n−m − 1)(2n−m−1 − 1)

3
such that each triple B is in exactly r blocks with a total of b blocks.

By Theorem 3.1, every triple B is in exactly

(n−m−1)∏
i=1

(2n−i − 1)

(n−m−2)∏
i=0

(2i+1 − 1)

blocks of B

for an (n−m)-flat of V. Hence, we have that every triple B is in exactly

r =

(n−m−2)∏
i=1

(2n−m−i − 1)

(n−m−3)∏
i=0

(2i+1 − 1)

blocks of size B(n−m−1), since we consider an (n−m− 1)-flat V (n−m−1) from
an (n−m)-flat, V (n−m).

49

http://etd.uwc.ac.za/



As an incidence structure, it follows that

b =
(2n−m+1 − 1)

(2n−m−1 − 1)

(n−m−2)∏
i=1

(2n−m−i − 1)

(n−m−3)∏
i=0

(2i+1 − 1)

=
(2n−m+1 − 1)(2n−m−1 − 1)(2n−m−2 − 1) · · · (22 − 1)

(2n−m−1 − 1)(1)(3) · · · (2n−m−2 − 1)

= (2n−m+1 − 1).

In other words, there are (2n−m+1− 1) triples of size |B(n−m−1)| to decide the
edges of a given vertex B(n−m) ∈ V (Γ[n,n−m]).

Next, for a given B(n−m−1) ⊂ B(n−m), we consider the number of other
vertices V (Γ[n,n−m]) \ B(n−m) containing B(n−m−1).

For a given V (n−m−1) ⊂ V (n−m), consider partitions of the set V \V (n−m−1)

into
|V \ V (n−m−1)|

|V (n−m) \ V (n−m−1)|
subsets, each of size, |V (n−m) \ V (n−m−1)|.

Each of the set V (n−m)\V (n−m−1) and V (n−m−1) defines a V (n−m) and hence,
a B(n−m) ∈ V (Γ[n,n−m]).

It therefore follows that there are
2n+1 − 2n−m

2n−m
= (2m+1 − 1) vertices in

V (Γ[n,n−m]) containing B(n−m−1).

Hence, we have that there are (2n−m+1 − 1) B(n−m−1) in each B(n−m) ∈
V (Γ[n,n−m]) and each B(n−m−1) is in (2m+1 − 2) other vertices. The result
therefore follows.

In view of the arguments of the proof of Lemma 4.1, every vertex has
equal degree. Therefore the block intersection graphs are regular with degree
(2n−m+1 − 1)(2m+1 − 2).

Now, considering the results of Theorem 3.2, and in addition, having shown
that the block intersection graphs are regular with degree (2n−m+1−1)(2m+1−
2), it is imperative to point out at this instance, a special case of the consid-
erations of graphs in this Chapter. This is summarized in the following.
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Theorem 4.1. Γ[n,n−1] is a complete graph on 2n+1 − 1 vertices.

Proof. By hypothesis, m = 1. In this case, it follows from Theorem 3.2 that

|V (Γ[n,n−1])| =

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

. Hence, we have that

|V (Γ[n,n−1])| =
(2n+1 − 1)(2n − 1)(2n−1 − 1)× · · · × 3

1× 3× · · · × (2n−1 − 1)(2n − 1)
= (2n+1 − 1).

The result therefore follows from Lemma 4.1, since the degree of a given
vertex B(n−1) ∈ V (Γ[n,n−1]) is (2n−m+1 − 1)(2m+1 − 2) = (2n − 1)(22 − 2) =
(2n − 1)(2) = (2n+1 − 2).

The total number of edges, |E(Γ[n,n−m])| is easily calculated by the hand
shaking lemma. We have

2|E(Γ[n,n−m])| =
∑

B(n−m)∈V (Γ[n,n−m])

deg(B(n−m)).

Hence,

|E(Γ[n,n−m])| =

(n−m)∏
i=0

(2n−i+1 − 1)

(n−m)∏
i=0

(2i+1 − 1)

(2n−m+1 − 1)(2m − 1).

In order to compare and contrast these graphs with the strongly regular
graphs of the block intersection graphs of 2−(2n+1 − 1, 3, 1) designs, we now
discuss some adjacency parameters of Γ[n,n−m].

Let Γ[n,n−m] be a block intersection graph ofD. Given any 3 distinct vertices

B(n−m)
1 ,B(n−m)

2 ,B(n−m)
3 ∈ V (Γ[n,n−m]), we distinguish the following adjacency

between any three.

Case 1: ([B(n−m)
1 ,B(n−m)

2 ], [B(n−m)
1 ,B(n−m)

3 ], [B(n−m)
2 ,B(n−m)

3 ] ∈ E(Γ[n,n−m])

and B(n−m)
1 ∩ B(n−m)

2 ∩ B(n−m)
3 = B(n−m−1);
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Case 2: ([B(n−m)
1 ,B(n−m)

2 ], [B(n−m)
1 ,B(n−m)

3 ], [B(n−m)
2 ,B(n−m)

3 ] ∈ E(Γ[n,n−m])

and B(n−m)
1 ∩ B(n−m)

2 ∩ B(n−m)
3 6= B(n−m−1). As an illustration,

B(n−m)
1 ∩ B(n−m)

2 = B(n−m−1),

B(n−m)
2 ∩ B(n−m)

3 = B′(n−m−1)
and

B(n−m)
1 ∩ B(n−m)

3 = B′′(n−m−1)
.

In view of the two possibilities above, we classify adjacency in this study in
the following:

Definition 4.2. For any 3 distinct vertices B(n−m)
1 ,B(n−m)

2 ,B(n−m)
3 ∈ V (Γ[n,n−m]),

(i) an adjacency of the form of Case 1 above is called Type I adjacency,
that is, the three vertices share a common B(n−m−1);

(ii) an adjacency of the form of Case 2 above is called Type II adjacency.

We now discuss the number of common neighbours of any two vertices of
Γ[n,n−m] as a result of Type I adjacency.

Lemma 4.2. Given Γ[n,n−m] = (B, E) such that m > 1. Any two adjacent
vertices have (2m+1 − 3) common neighbours of Type I adjacency.

Proof. Let B(n−m),B′(n−m) be any two adjacent vertices of Γ[n,n−m]. By def-

inition, B(n−m) ∩ B′(n−m) = B(n−m−1). By the proof of Lemma 4.1, B(n−m−1)

is in (2m+1 − 1) vertices of V (Γ[n,n−m]). It therefore follows that B(n−m) and

B′(n−m)
are incident to (2m+1 − 3) other vertices of Type I adjacency.

Corollary 4.1. For m > 1, any set of adjacent vertices of Type I adjacency
forms a clique of size (2m+1 − 1).

It will be made evident shortly after the discussion of common neighbours
as a result of Type II adjacencies that the cliques of Corollary 4.1 are not
maximum cliques if n ≥ 2m.

Before we consider the number of common neighbours of any two vertices of
Γ[n,n−m] as a result of Type II adjacencies, more importantly, because Γ[n,n−m]

is defined on flats, it may help to consider variations in n = (n −m) + m.

52

http://etd.uwc.ac.za/



The following are possibilities of the right hand side of the equation n =
(n−m) +m.

Case 1: n−m = m; (4.1)

Case 2: n−m < m =⇒ n−m = m− k, k > 0 =⇒ n = 2m− k; (4.2)

Case 3: n−m > m =⇒ n−m = m+ k, k > 0 =⇒ n = 2m+ k. (4.3)

In view of the possibilities above, given a fixed n = n−m+m, there exists
a fixed k > 0 such that the following holds.

n = (n−m) + (m) = (n−m− k) + (m+ k)

= (m− k) + (n−m+ k) (4.4)

Hence,

(n−m− k) + (m+ k) = (m− k) + (n−m+ k). (4.5)

Now considering Equation 4.5, we have that (n −m − k) = (m − k), since
(n−m−k) 6= (n−m+k) and (m+k) 6= (m−k). Moreover, k is fixed. This
implies that n−m = m.

Taking the above considerations into account, we have the following.

Lemma 4.3. For a fixed n and k > 0 such that Equation 4.4 holds,

n−m = m.

We are now in a position to discuss the number of common neighbours of
any two vertices of Γ[n,n−m] as a result of Type II adjacencies.

Lemma 4.4. For m > 2, let Γ[n,n−m] = (B, E) be a block intersection graph of
D = (B,B). Any two adjacent vertices are mutually adjacent to (2n−m+2− 4)
vertices of Type II adjacency.

Proof. Let B(n−m) =
〈
V (n−m)

〉
,B′(n−m) =

〈
V ′(n−m)

〉
and B′′(n−m) =

〈
V ′′(n−m)

〉
such that B(n−m),B′(n−m),B′′(n−m) ∈ V (Γ[n,n−m]) and

[B(n−m),B′(n−m)] ∈ E(Γ[n,n−m]). By definition, we have that B(n−m)∩B′(n−m) =

B(n−m−1).

Now for a B(n−m−2) ⊂ B(n−m−1), let B(n−m−2) =
〈
V (n−m−2)

〉
.
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By Lemma 3.2(ii), we have that for any vi ∈ V (n−m−2), i = 1, · · · , |V (n−m−2)|, ⋃
B∈B(n−m−2)

vi

B

 = V (n−m−2). Hence, B(n−m−2) can be identified as B(n−m−2)
vi

.

By the same argument, B(n−m) and B′(n−m) can equally be identified as

B(n−m)
vi

and B′(n−m)
vi

respectively since, vi ∈ V (n−m) and vi is also an element

of V ′(n−m).

In addition, B(n−m−1) can as well be identified as B(n−m−1)
vi

, and finally, the
set B of all triples is also identified as Xvi = {B ∈ B : vi ∈ B}.

By Lemma 3.2(i), |B(n−m)
vi

| = |B′(n−m)
vi

| = 2n−m − 1 and

|B(n−m−2)
vi

| = 2n−m−2 − 1.

Furthermore, we have that

|B(n−m)
vi

\ B(n−m−1)
vi

| = |B′(n−m)
vi

\ B(n−m−1)
vi

|
= 2n−m − 1− (2n−m−1 − 1)

= 2n−m−1,

and

|B(n−m−1)
vi

\ B(n−m−2)
vi

| = 2n−m−1 − 1− (2n−m−2 − 1) = 2(n−m−2).

In addition,

|B(n−m)
vi

∪ B′(n−m)
vi

| = |B(n−m)
vi

|+ |B′(n−m)
vi

| − |B(n−m)
vi

∩ B′(n−m)
vi

|
= 2(2n−m − 1)− (2n−m−1 − 1) = 3(2n−m−1)− 1.

Hence, it follows that there are 2n − 1 − [3(2n−m−1) − 1] = 2n − 3(2n−m−1)

triples of the set, Xvi \
(
B(n−m)
vi

∪ B′(n−m)
vi

)
.

We now consider other vertices of Γ[n,n−m] adjacent to B(n−m) and B′(n−m)

as a result of the set, Xvi \
(
B(n−m)
vi

∪ B′(n−m)
vi

)
and the subset, B(n−m−2)

vi
of

B(n−m−1)
vi

.

First, consider the sets, B(n−m)
vi

\B(n−m−1)
vi

and B′(n−m)
vi

\B(n−m−1)
vi

. We have
that there are exactly

|B(n−m)
vi \ B(n−m−1)

vi |
2n−m−2

=
|B′(n−m)

vi
\ B(n−m−1)

vi |
2n−m−2

= 2
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distinct subsets, each of size, 2(n−m−2) in each of the sets, B(n−m)
vi

\ B(n−m−1)
vi

and B′(n−m)
vi

\ B(n−m−1)
vi

.

So, let P
(n−m−2)
j , j = 1, 2 be the set of 2n−m−2 distinct subsets of B(n−m)

vi
\

B(n−m−1)
vi

and P ′
(n−m−2)
k , k = 1, 2 be the set of 2n−m−2 distinct subsets of

B′(n−m)
vi

\ B(n−m−1)
vi

. That is,⋃
j∈{1,2}

P
(n−m−2)
j = B(n−m)

vi
\ B(n−m−1)

vi

and ⋃
k∈{1,2}

P ′
(n−m−2)
k = B′(n−m)

vi
\ B(n−m−1)

vi
.

Now consider the set, Xvi \
(
B(n−m)
vi

∪ B′(n−m)
vi

)
.

We have that there are exactly

2n − 3(2n−m−1)

2n−m−2
=

2n

2n−m−2
− 3(2n−m−1)

2n−m−2

distinct subsets, each of size 2n−m−2 in the set Xvi \
(
B(n−m)
vi

∪ B′(n−m)
vi

)
.

Now, taking
2n

2n−m−2
into account for a fixed n, we have from Equation 4.4

that

n = (n−m) + (m) = (n−m− 2) + (m+ 2)

= (m− 2) + (n−m+ 2).

By Lemma 4.3, we have that n−m must be equal to m. Hence, we have that
2n

2n−m−2
= 2n−m+2.

It therefore follows that

2n

2n−m−2
− 3(2n−m−1)

2n−m−2
= 2n−m+2 − 3(2) = 2n−m+2 − 6.

Consequently, we have that there are exactly 2n−m+2 − 6 distinct subsets,

each of size 2n−m−2 in the set Xvi \
(
B(n−m)
vi

∪ B′(n−m)
vi

)
.
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So, let P
′′(n−m−2)
l , l ∈ {1, 2, · · · , (2n−m+2−6)}, be the set of 2n−m−2 distinct

subsets of Xvi \
(
B(n−m)
vi

∪ B′(n−m)
vi

)
.

Without loss of generality, let

P = P
(n−m−2)
1 ∪ P ′(n−m−2)

1 .

In addition, let Pl ∈ P
′′(n−m−2)
l . By Lemma 3.1, we have that the set,

P ∪ Pl ∪ B(n−m−2)
vi

defines a B′′(n−m)
vi

for each l ∈ {1, 2, · · · , (2n−m+2−6)} and hence a B′′(n−m) ∈
V (Γ[n,n−m]). Clearly, each B′′(n−m)

is incident to B(n−m) and B′(n−m)
.

We now look at vertices adjacent to B(n−m)
vi

and B′(n−m)
vi

as a result of the

set, (B(n−m)
vi

∪ B′(n−m)
vi

) \ B(n−m−1)
vi

and B(n−m−2)
vi

.

Now, let
P ∗ = P

(n−m−2)
1 ∪ P (n−m−2)

2 .

Again by Lemma 3.1 we have that each of the sets,

B(n−m−2)
vi

∪ P ∗ ∪ P ′(n−m−2)
1

and
B(n−m−2)
vi

∪ P ∗ ∪ P ′(n−m−2)
2

defines a B′′′(n−m)
vi

and hence a B′′′(n−m) ∈ V (Γ[n,n−m]). Clearly, each B′′′(n−m)

is also incident to B(n−m) and B′(n−m)
.

In addition, the set

B∗ = B(n−m−1)
vi

∪ P (n−m−2)
2 ∪ P ′(n−m−2)

2

also defines a B′′′′(n−m)
vi

and hence a B′′′′(n−m) ∈ V (Γ[n,n−m]). Clearly, B′′′′(n−m)

is also incident to B(n−m) and B′(n−m)
.

It is very clear that B∗ is a Type I adjacency. Hence, it follows that any
two adjacent vertices are commonly adjacent to

(2n−m+2 − 6) + 2 = (2n−m+2 − 4)
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vertices of Type II adjacency.

In order to complete the proof, we need to show that there is exactly one
B(n−m−2) ⊂ B(n−m−1) such that the result holds.

Suppose to the contrary that there exists a B′(n−m−2) ⊂ B(n−m−1) such that

B′′(n−m)
,B′′′(n−m)

,B′′′′(n−m) ∈ V (Γ[n,n−m]) and are incident to both B(n−m)

and B′(n−m)
.

Let B′(n−m−2)
= 〈V ′(n−m−2)〉. For any v′i ∈ V ′

(n−m−2)
, i = 1, · · · , |V ′(n−m−2)|,

similarly as in Lemma 3.2(ii), we have that

 ⋃
B∈B(n−m−2)

v′
i

B

 = V ′
(n−m−2)

.

Hence, B′(n−m−2)
can also be identified as B′(n−m−2)

v′i
.

Now, we have the following two possibilities, since V (n−m−2), V ′
(n−m−2) ⊂

V (n−m−1).

(i) V (n−m−2) ∩ V ′(n−m−2) 6= ∅

This implies that there is at least a v′′i ∈ V (n−m−2)∩V ′(n−m−2)
such that

B(n−m−2) and B′(n−m−2)
can be identified as B(n−m−2)

v′′i
and B′(n−m−2)

v′′i

respectively. By definition, we have that B(n−m−2)

v
′′
i

= B′(n−m−2)

v
′′
i

. Conse-

quently, we have that B(n−m−2) = B′(n−m−2)
. Hence we have a contra-

diction.

(ii) V (n−m−2) ∩ V ′(n−m−2)
= ∅

In this case,

V (n−m−2) ∪ V ′(n−m−2)
= V (n−m−1),

since dim(V (n−m−1)) = n − m − 1. This implies that there exists a

vi ∈ V (n−m−2) and a v′i ∈ V ′
(n−m−2)

such that B(n−m−2) and B′(n−m−2)

can be identified as B(n−m−2)
vi

and B′(n−m−2)

v
′
i

respectively.

We now show that this possibility cannot arise.

By the definition of B, there exists a B ∈ B, and a v′′i ∈ V such that
vi + v

′

i + v
′′

i = 0, since any two elements of V are in exactly one block

B of B. Hence, it follows that {vi, v
′

i, v
′′

i } ∈ (B(n−m−2)
vi

∩ B′(n−m−2)

v
′
i

).
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Now, it follows that {vi, v
′

i, v
′′

i } ⊂ (V (n−m−2) ∩ V ′(n−m−2)
) since,

V (n−m−2) =

 ⋃
B∈B(n−m−2)

vi

B

 , and V ′
(n−m−2)

=

 ⋃
B∈B(n−m−2)

v
′
i

B

 .

Hence we have a contradiction and the result therefore follows.

Corollary 4.2. Any set of adjacent vertices of Type II adjacency forms a
clique of size (2n−m+2 − 1).

Proof. By the arguments of the proof of Lemma 4.4, it is clear that B(n−m−1)
vi

∩
Pl = ∅, for any Pl ∈ P

′′(n−m−2)
l . This implies that B(n−m−1)

vi
6⊂ B′′l , for all

Pl ∈ P
′′(n−m−2)
l , where B′′l = (P ∪Pl∪B(n−m−2)

vi
), l ∈ {1, 2, · · · , (2n−m+2−6)}.

Hence any clique {B(n−m)
vi

,B′(n−m)
vi

,B′′l }, l = 1, 2, · · · , (2n−m+2 − 6) has no

other vertices common to B(n−m), B′(n−m)
and B′′.

Having discussed the clique sizes as a result of Type I and Type II adja-
cencies, we are now in a better position to discuss the nature of the cliques.

In consideration of Corollaries 4.1 and 4.2, we have that

(2m+1 − 1)− (2n−m+2 − 1) = 2m+1(1− 2n−2m+1)

and hence it follows that

2m+1(1− 2n−2m+1) < 0, if (n+ 1) ≥ 2m,

and
2m+1(1− 2n−2m+1) > 0, if (n+ 1) < 2m.

In view of the above consideration and since we also have clearly from the
proofs of Corollaries 4.1 and 4.2 that neither the cliques as a result of Type
I adjacency nor the cliques as a result of Type II adjacency can be extended
by an additional vertex of Γ[n,n−m], we therefore have the following corollary.

Corollary 4.3. Γ[n,n−m] has a maximum clique of size{
2n−m+2 − 1, if (n+ 1) ≥ 2m;

2m+1 − 1, if (n+ 1) < 2m.
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As a direct implication of Lemmas 4.2 and 4.4, we now give the total
number of all common neighbours of any two adjacent vertices.

Theorem 4.2. For m > 1, let Γ[n,n−m] = (B, E) be a block intersection
graph of D. The total number of all common neighbours of any two adjacent
vertices, that is, of Type I and Type II adjacency is (2n−m+2 + 2m+1 − 7).

In view of Corollary 4.3, we also have the following.

Corollary 4.4. Γ[n,n−m] is a non-bipartite graph.

Proof. The size of the cliques of Γ[n,n−m] is greater than 2.

Having discussed the common neighbours and the total number of common
neighbours of any two adjacent vertices,we now turn to the question of the
common neighbours and the total number of common neighbours of any two
non-adjacent vertices.

First, we recall from Lemma 3.7 that for any two blocks, B(n−m),B′(n−m) ∈
B,

B(n−m) ∩ B′(n−m) = B(n−m−j), where |B(n−m−j)| ∈{
(2n−m − 1)(2n−m−1 − 1)

3
,
(2n−m−1 − 1)(2n−m−2 − 1)

3
, · · · , 1

}
.

In view of the above, we now discuss the common neighbours and the total
number of common neighbours of any two non-adjacent vertices.

Lemma 4.5. Let Γ[n,n−m] = (B, E) be a block intersection graph of D and

let B(n−m) and B′(n−m) be any two non-adjacent vertices, such that B(n−m) ∩
B′(n−m) = B(n−m−j), j ∈ {2, · · · , (n−m)}.

(i) If j = 2 then, B(n−m) and B′(n−m) have 9 common adjacent vertices.

(ii) If j > 2 then, there is no B′′(n−m) ∈ V (Γ[n,n−m]) such that

[B(n−m),B′′(n−m)], [B′(n−m),B′′(n−m)] ∈ E(Γ[n,n−m]).
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Proof. (i) Let B(n−m) =
〈
V (n−m)

〉
,B′(n−m) =

〈
V ′(n−m)

〉
and B′′(n−m) =〈

V ′′(n−m)
〉

such that B(n−m),B′(n−m),B′′(n−m) ∈ V (Γ[n,n−m]) and

[B(n−m),B′′(n−m)], [B′(n−m),B′′(n−m)] ∈ E(Γ[n,n−m]).

By definition, we have that there exists a B(n−m−1) ⊂ B(n−m) and a
B′(n−m−1) ⊂ B′(n−m) such that B(n−m−1),B′(n−m−1) ⊂ B′′(n−m).

By hypothesis, we also have that B(n−m) ∩ B′(n−m) = B(n−m−2),
since [B(n−m),B′(n−m)] /∈ E(Γ[n,n−m]).

Now, let B(n−m−2) =
〈
V (n−m−2)

〉
.

By Lemma 3.2(ii), for any vi ∈ V (n−m−2), i = 1, · · · , |V (n−m−2)|, ⋃
B∈B(n−m−2)

vi

B

 = V (n−m−2). Hence, B(n−m−2) can be identified as B(n−m−2)
vi

.

By the same argument, B(n−m) and B′(n−m) can equally be identified as

B(n−m)
vi

and B′(n−m)
vi

respectively since, vi ∈ V (n−m) and vi is also an element

of V ′(n−m).

In addition the sets, B(n−m−1) and B′(n−m−1) can also be represented as

B(n−m−1)
vi

and B′(n−m−1)
vi

respectively.

We now complete the proof of (i) by considering all other vertices of
V (Γ[n,n−m]) incident to both B(n−m) and B′(n−m) due to B(n−m−2).

Now consider the sets B(n−m)
vi

\ B(n−m−2)
vi

,B′(n−m)
vi

\ B(n−m−2)
vi

, and the sets

B(n−m−1)
vi

\ B(n−m−2)
vi

,B′(n−m−1)
vi

\ B(n−m−2)
vi

.

Clearly, |B(n−m)
vi

\ B(n−m−2)
vi

| = |B′(n−m)
vi

\ B(n−m−2)
vi

|
= (3)2(n−m−2)

and

|B(n−m−1)
vi

\ B(n−m−2)
vi

| = |B′(n−m−1)
vi

\ B(n−m−2)
vi

|
= 2(n−m−2).

Hence, it follows that there are 3 distinct subsets, each of size, 2(n−m−2) in

each of the sets B(n−m)
vi

\ B(n−m−2)
vi

and B′(n−m)
vi

\ B(n−m−2)
vi

.

By Lemma 3.1, any pair of the subsets from B(n−m)
vi

\B(n−m−2)
vi

and B′(n−m)
vi

\
B(n−m−2)
vi

together with B(n−m−2)
vi

defines a B′′′(n−m) ∈ V (Γ[n,n−m]) which is
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incident to both B(n−m) and B′(n−m). Hence we have the result.

(ii) By hypothesis, B(n−m) ∩ B′(n−m) = B(n−m−j), j = 3, · · · , (n−m).

Now, suppose to the contrary that there exists a B′′′(n−m) ∈ V (Γ[n,n−m])

incident to both B(n−m) and B′(n−m), whenever B(n−m) ∩B′(n−m) = B(n−m−j).
That is, [B(n−m),B′′′(n−m)], [B′(n−m),B′′′(n−m)] ∈ E(Γ[n,n−m]), whenever

B(n−m) ∩ B′(n−m) = B(n−m−j).

Let B(n−m−j) =
〈
V (n−m−j)〉 . By a similar argument in (i) above, we have

that there exists a B(n−m−1) ⊂ B(n−m) and a B′(n−m−1) ⊂ B′(n−m) such that
B(n−m−1),B′(n−m−1) ⊂ B′′′(n−m).

In addition, there exists a vi ∈ V (n−m−j) such that

|B(n−m)
vi

\ B(n−m−j)
vi

| = |B′(n−m)
vi

\ B(n−m−j)
vi

|
= (2j − 1)2(n−m−j),

and

|B(n−m−1)
vi

\ B(n−m−j)
vi

| = |B′(n−m−1)
vi

\ B(n−m−j)
vi

|
= 2(n−m−j)(2j−1 − 1).

Again by a similar argument as in (i) above, we have that there are
(2j − 1)

(2j−1 − 1)
distinct subsets, each of size, 2(n−m−j) in each of the sets B(n−m)

vi
\ B(n−m−j)

vi

and B′(n−m)
vi

\ B(n−m−j)
vi

.

We now complete the proof by showing that
2j − 1

2j−1 − 1
/∈ N, for j > 2.

Now, suppose to the contrary that 2j−1 − 1 divides 2j − 1, for j > 2.

It follows that j = l + 2, l ∈ N, and
2j − 1

2j−1 − 1
= k, k ∈ N.

Hence,

(2j − 1) = k(2j−1 − 1)

2l+2 − 1 = k
(
2l+1 − 1

)
(substituting for j)

k =
(2l+2 − 1)

(2l+1 − 1)

=
2(2l+1 − 1) + 1

(2l+1 − 1)
.
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This contradicts the fact that k ∈ N, and hence we have the result.

From the proof of Lemma 4.5(i), it is clear that the path between each of
the 9 vertices B(n−m),B′′′(n−m),B′(n−m) is a minimal path. As a result, we
have the following.

Corollary 4.5. Let B(n−m),B′(n−m) ∈ V (Γ[n,n−m]), then B(n−m) and B′(n−m)

have distance 2 if B(n−m) ∩ B′(n−m) = B(n−m−2).

Considering the result of Corollary 4.5, it is essential to generalize the
discussion above to the distance between any two vertices B(n−m),B′(n−m) ∈
V (Γ[n,n−m]) given that B(n−m) ∩B′(n−m) = B(n−m−j), j ∈ {2, · · · , (n−m)}. A
direct consequence of this is that it will lead us to the diameter of Γ[n,n−m].

First, there is the need to consider some properties of paths between any
two vertices B(n−m) and B′(n−m) of V (Γ[n,n−m]) given that B(n−m)∩B′(n−m) =

B(n−m−j). We now discuss these properties in the following.

Lemma 4.6. Let B(n−m)
0 ,B(n−m)

1 , . . . ,B(n−m)
j be a geodesic distance in

V (Γ[n,n−m]), then

(i) B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
j = B(n−m)

0 ∩ B(n−m)
j ;

(ii) dim(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
j ) = dim(B(n−m)

0 )− j, where

j = d(B(n−m)
0 ,B(n−m)

j ).

Proof. The proofs are by induction on j.

(i) Given that j = 1. By hypothesis, we have that

[B(n−m)
0 ,B(n−m)

1 ] ∈ E(Γ[n,n−m]). Hence, B(n−m)
0 ∩ B(n−m)

1 = B(n−m−1).

Now, assume that (i) above holds for j = k, that is,

B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k = B(n−m)

0 ∩ B(n−m)
k .
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We need to show that the result is also true for j = k + 1.

B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k+1 =

(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) ∩ B(n−m)

k+1

= (B(n−m)
0 ∩ B(n−m)

k ) ∩ B(n−m)
k+1

= (B(n−m)
0 ∩ B(n−m)

k+1 ) ∩ (B(n−m)
k ∩ B(n−m)

k+1 )

= (B(n−m)
0 ∩ B(n−m)

k+1 ) since [B(n−m)
0 ∩ B(n−m)

k+1 ] /∈ E(Γ[n,n−m]).

Hence we have the result.

(ii) Given that j = 1. By definition of Γ[n,n−m], we have that

[B(n−m)
0 ,B(n−m)

1 ] ∈ E(Γ[n,n−m]). Hence B(n−m)
0 ∩ B(n−m)

1 = B(n−m−1) which

implies that dim(B(n−m)
0 ∩ B(n−m)

1 ) = n−m− d(B(n−m)
0 ,B(n−m)

1 ).

Now assume that (ii) above holds for j = k, that is,

dim(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) = n−m− k.

We need to show that the result is also true for j = k + 1.

Now, consider dim
(

(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) ∪ B(n−m)

k+1

)
. We have

that

dim
(

(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) ∪ B(n−m)

k+1

)
=

dim(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) + dim(B(n−m)

k+1 )

− dim
(

(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) ∩ B(n−m)

k+1

)
.

By (i) above, we have that

B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k = B(n−m)

0 ∩ B(n−m)
k .

Hence, we have that

dim
(

(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) ∪ B(n−m)

k+1

)
= n−m− k + n−m− dim

(
(B(n−m)

0 ∩ B(n−m)
k ) ∩ B(n−m)

k+1

)
= 2(n−m)− k − dim

(
(B(n−m)

0 ∩ B(n−m)
k+1 ) ∩ (B(n−m)

k ∩ B(n−m)
k+1 )

)
= 2(n−m)− k − dim(B(n−m)

0 ∩ B(n−m)
k+1 ) since

[B(n−m)
0 ∩ B(n−m)

k+1 ] /∈ E(Γ[n,n−m]). (4.6)
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Again, consider dim
(

(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) ∪ B(n−m)

k+1

)
. We also

have that

dim
(

(B(n−m)
0 ∩ B(n−m)

1 ∩ . . . ∩ B(n−m)
k ) ∪ B(n−m)

k+1

)
= dim

(
(B(n−m)

0 ∪ B(n−m)
k+1 ) ∩ . . . ∩ (B(n−m)

k ∪ B(n−m)
k+1 )

)
= dim(B(n−m)

k ∪ B(n−m)
k+1 ) since [B(n−m)

k ∩ B(n−m)
k+1 ] ∈ E(Γ[n,n−m])

= dim(B(n−m)
k ) + dim(B(n−m)

k+1 )− dim(B(n−m)
k ∩ B(n−m)

k+1 )

= 2(n−m)− (n−m− 1) ([B(n−m)
k ∩ B(n−m)

k+1 ] ∈ E(Γ[n,n−m])

= n−m+ 1. (4.7)

Combining Equations (4.6) and (4.7), we have that

n−m+ 1 = 2(n−m)− k − dim(B(n−m)
0 ∩ B(n−m)

k+1 ).

Hence,

dim(B(n−m)
0 ∩ B(n−m)

k+1 ) = 2(n−m)− k − (n−m+ 1)

= n−m− (k + 1).

Hence we also have this result.

An immediate implication of Lemma 4.6 is that we can find the distance
between any two vertices of Γ[n,n−m] which we discuss in the following.

Corollary 4.6. Let j ∈ {2, · · · , (n−m)}, and let B(n−m),B′(n−m) ∈ V (Γ[n,n−m]).

Then B(n−m) and B′(n−m) have distance j if B(n−m) ∩ B′(n−m) = B(n−m−j).

We are now in a position to discuss the diameter of Γ[n,n−m].

Theorem 4.3.

diam(Γ[n,n−m]) =

{
n−m, if 2m ≤ n;

m, otherwise.

Proof. (i) Let B(n−m),B′(n−m) ∈ V (Γ[n,n−m]) such that B(n−m) ∩ B′(n−m) =

B(n−m−j), j ∈ {2, · · · , (n−m)}. We have from Corollary 4.6 that
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d(B(n−m),B′(n−m)) = j, since B(n−m) ∩ B′(n−m) = B(n−m−j). Clearly j is at
most n−m.

We now conclude the proof by considering the possible values of j since we
have from Equations (4.1), (4.2) and (4.3) that for a fixed n, n−m has the
following possibilities:

(i) n−m = m;

(ii) n−m > m =⇒ n > 2m;

(iii) n−m < m =⇒ n < 2m.

It is clear from (i) and (ii) above that j is a maximum when j = n − m.
Therefore, n ≥ 2m.

In the case of (iii) above, we have that j is a maximum when j = m. Hence
we have the result.

At this point, we are now in a position to introduce one of the special
cases considered in this study. As alluded to, the following corollary is one of
the cases where the block intersection graphs of Steiner triple systems from
projective geometry have the same parameters as compared to Γ[n,n−m]. This
is as a result of Corollary 3.3 and Lemmas 4.1, 4.2 and 4.5.

Isomorphism between these two graphs is a corollary of Theorem 4.6 in the
next section. Hence in the interim, we discuss the parameters of this special
case.

Theorem 4.4. Let n > 2,m = 2 and Γ[n,n−m] be a block intersection graph
of D = (B,B). Then, Γ[n,n−m] is a strongly regular graph with parameters(

(2n+1 − 1)(2n − 1)

3
, 6(2n−1 − 1), (2n + 1), 9

)
.

Proof. m = 2 implies n−m = n− 2. Hence by Corollary 3.3,

(n−2)∏
i=0

(2n−i+1 − 1)

(n−2)∏
i=0

(2i+1 − 1)

=
(2n+1 − 1)(2n − 1)(2n−1 − 1)(2n−2 − 1)

(1)(3)(2n−2 − 1)(2n−1 − 1)

=
(2n+1 − 1)(2n − 1)

3
.
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Therefore, by Corollary 3.3 and Lemmas 4.1, 4.2 and 4.5, we have the result.

The following corollary as a result of Lemma 4.5(ii), specifically for m > 2 is
in contrast to the parameters of Γ[n,n−m] as compared to the block intersection
graphs of Steiner triple systems from projective geometry.

Corollary 4.7. Let Γ[n,n−m] = (B, E) be a block intersection graph of D
such that m > 2. Then, the number of common adjacent vertices to any two
non-adjacent vertices is an element of the set {0, 9}.

As a direct consequence of Cororllary 4.7,Theorem 4.1 and Theorem 4.4, we
have that the block intersection graphs of tactical configurations on Steiner
triple systems from projective geometry are strongly regular if m = 1, 2.
Otherwise, they not strongly regular.

In Chapter 2 of this study, we introduced the concepts of S-thin and R-thin
graphs. We now consider the thinness of Γ[n,n−m].

Lemma 4.7. Γ[n,n−m] is S-thin and R-thin if m > 1.

Proof. By Theorem 4.1, Γ[n,n−m] is a complete graph if m = 1. Hence, we do
not consider this case.

Now, let B(n−m),B′(n−m) ∈ V (Γ[n,n−m]). It follows that

(i) [B(n−m),B′(n−m)] ∈ E(Γ[n,n−m]);

(ii) [B(n−m),B′(n−m)] /∈ E(Γ[n,n−m]).

Now, if (i) above holds, it follows that B(n−m) ∩ B′(n−m) = B′(n−m−1). By the
arguments of the proof of Lemma 4.1, there are (2n−m+1− 2) other B(n−m−1)

in each of B(n−m) and B′(n−m). By Lemma 4.1 the degree of each of B(n−m)

and B′(n−m) is (2n−m+1 − 1)(2m+1 − 2). Hence, it follows that

NΓ[n,n−m]
[B(n−m)] 6= NΓ[n,n−m]

[B′(n−m)]

and

NΓ[n,n−m]
[B(n−m)] ∪ {B(n−m)} 6= NΓ[n,n−m]

[B′(n−m)] ∪ {B′(n−m)}.
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Hence, it follows that there are no two vertices in relations S and R.

We now consider (ii) above.

By Similar argument of (i) above, we have that each of the (2n−m+1 − 1)
B(n−m−1) in each of B(n−m) and B′(n−m) have different adjacencies. Hence, we
have that

NΓ[n,n−m]
[B(n−m)] 6= NΓ[n,n−m]

[B′(n−m)]

and

NΓ[n,n−m]
[B(n−m)] ∪ {B(n−m)} 6= NΓ[n,n−m]

[B′(n−m)] ∪ {B′(n−m)}

if [B(n−m),B′(n−m)] /∈ E(Γ[n,n−m]). Again, it follows that there are no two
vertices in relations S and R. Therefore, we have the result.

4.3 Isomorphism in Γ[n,n−m].

In this section, we further explore the geometry of the projective space and
the vector spaces in order to discuss some other interesting properties of
Γ[n,n−m].

More specifically, we extend the well known rank-nullity theorem of vector
spaces to the projective space thereby showing that the block intersection
graph of a set of subspaces of the same dimension is isomorphic to the block
intersection graph of the set of their null spaces. The result is the same for
projective spaces.

We now introduce some elementary but pertinent properties of subspaces
required in discussing this section.

It is well known that given a finite-dimensional vector space V and a sub-
space U of V, there exists a subspace W of V such that V = U ⊕W.

In the context of the notations of this study, it follows that given a subspace,
V m of V = Fn2 , there is a subspace, V n−m of V such that V = V n−m ⊕ V m.

We now further explore relationships between V n−m and V m.

Theorem 4.5. Let V m, V n−m be subspaces of V = Fn2 such that V n−m⊕V m =
V. Let f be a linear function on V m, g a linear function on V n−m and h a
linear function on V. Then for a given vi ∈ V m, there exist a vn−i ∈ V n−m

67

http://etd.uwc.ac.za/



such that
f(vi) = g(vn−i), 1 ≤ i ≤ m.

Hence there is a 1-1 correspondence between the sets V n−m and V m.

Proof. V m is finite-dimensional and hence there is a basis v1, v2, · · · , vm of
V m. Of course, v1, v2, · · · , vm is a linearly independent list of vectors in V.
Hence this list can be extended to a basis v1, v2, · · · , vm, vn−1, vn−2, · · · , vn−m
of V, where V n−m = span(vn−1, vn−2, · · · , vn−m).

Now,
V = V n−m ⊕ V m

implies that
V = V n−m + V m

and
V n−m ∩ V m = {0}.

Consequently, we have that for a given v ∈ V, there exist αi, βn−i ∈ Fn2 , i =
1, 2, · · · ,m such that

v =
m∑
i=1

αivi +
m∑
i=1

βn−ivn−i,

since v1, v2, · · · , vm, vn−1, vn−2, · · · , vn−m spans V.

Hence it follows that

h(v) = f(vi) + g(vn−i).

In addition, V n−m ∩ V m = {0} implies that given a v ∈ V n−m ∩ V m, v =
0 hence, there exist scalars αi, βn−i ∈ Fn2 , i = 1, 2, · · · ,m such that αi =
βn−i = 0, i = 1, 2, · · · ,m, since v1, v2, · · · , vm, vn−1, vn−2, · · · , vn−m is linearly
independent.

This implies,

v =
m∑
i=1

αivi −
m∑
i=1

βn−ivn−i = 0;

thus,

v =
m∑
i=1

αivi =
m∑
i=1

βn−ivn−i
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and hence we have the result.

Having seen that there exists a 1-1 correspondence between the sets V n−m

and V m, we now extend the result to projective spaces.

We recall that a subspace of dimension (n − m) or (n − m)-space of a
PG(n, 2) is a set of points all of whose representing vectors form, together
with the zero in V = Fn+1

2 , a subspace of dimension (n−m+ 1). In addition,
V (n−m) is an (n−m)-flat of V, m ∈ N.

Now given n = (n−m) +m, by Lemma 4.3, we have that for a fixed n and
k > 0 such that Equation 4.4 holds, n = (n−m) +m = m+ (n−m), where
(n−m) = m. Further, the following clarifications and definitions ensue, since
the dimension of a projective space is one higher than that of a vector space.

Given V = Fn+1
2 , and m > 0. By V<n−m> we mean the collection of all

V n−m+1 subspaces of V, that is, the set

V<n−m> = {V n−m+1 : V n−m+1 ⊂ V }, (4.8)

and hence by V<m−1> we mean the collection of all V m subspaces of V, that
is, the set,

V<m−1> = {V m : V m ⊂ V }. (4.9)

In the context of vertices of the block intersection graphs of consideration
in this chapter, given a V n−m+1 ∈ V<n−m>,〈

V n−m+1 \ {0}
〉

= B(n−m),

that is, V n−m+1 \ {0} is the flat V (n−m) and for any V m ∈ V<m−1>,

〈V m \ {0}〉 = B(m−1),

that is, V m \ {0} is the flat V (m−1).

Hence, we have that

B(n−m)
= {B(n−m) : B(n−m) =

〈
V n−m+1 \ {0}

〉
}, (4.10)
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and

B(m−1)
= {B(m−1) : B(m−1) = 〈V m \ {0}〉}. (4.11)

We now discuss isomorphisms between subspaces of Equations (4.8) and
(4.9) and the flats of Equations (4.10) and (4.11). The flats essentially gen-
erate the vertex set of Γ[n,n−m].

In order to facilitate this discussion, we introduce an essential map as
follows:

Consider the map φ : V<n−m> −→ V<m−1> defined by

φ(V n−m+1) = V m, whenever V n−m+1 ⊕ V m = V.

By Theorem 4.5, we have that there is a 1-1 correspondence between the
sets V n−m+1 and V m. Consequently, we have a 1-1 correspondence between
the sets V<n−m> and V<m−1>.

In addition, we have that the linear map φ induces a map φ∗ : B(n−m) −→
B(m−1)

defined as
φ∗(B(n−m)) = B(m−1).

That is,

φ∗
(〈
V n−m+1 \ {0}

〉)
= (〈V m \ {0}〉) , whenever n = (m− 1) + (n−m+ 1).

As alluded to, this is as a result of the fact that the dimension of a vector
space is one less than that of a projective space.

Consequently, φ∗ is a bijection.

At this stage, we are now well-equipped to discuss one of the main results
of this study. This result reveals isomorphic subgeometries of the geometry
producing the designs as well as the block intersection graphs of this study.

Theorem 4.6. For any m ∈ N,Γ[n,n−m]
∼= Γ[n,m−1].

Proof. Consider the map φ∗ : V (Γ[n,n−m]) −→ V (Γ[n,m−1]) defined as

φ∗(B(n−m)) = B(m−1).

Clearly, there is a 1-1 correspondence between the vertex sets V (Γ[n,n−m]) and
V (Γ[n,m−1]). Hence, it is sufficient to show that φ∗ preserves edges. That is,

70

http://etd.uwc.ac.za/



if [B1
(n−m),B2

(n−m)] ∈ E(Γ[n,n−m]), we need to show that [B1
(m−1),B2

(m−1)] ∈
E(Γ[n,m−1]).

First, we recall from Equation (4.4) of Lemma 4.3 that given n = (n −
m) + (m), we have that

n = (n−m) + (m) = (n−m− k) + (m+ k)

= (m− k) + (n−m+ k).

Should k = 1, then we have

n = (n−m) + (m) = (n−m− 1) + (m+ 1)

= (m− 1) + (n−m+ 1).

Now, let [B1
(n−m),B2

(n−m)] ∈ E(Γ[n,n−m]).

This implies that

B1
(n−m) ∩ B2

(n−m) = B(n−m−1) =
〈
V n−m \ {0}

〉
.

Therefore, 〈
V n−m+1

1 \ {0}
〉
∩
〈
V2

n−m+1 \ {0}
〉

=
〈
V n−m \ {0}

〉
.

By definition, we have that

V n−m+1
1 \ {0} ∩ V2

n−m+1 \ {0} = V n−m \ {0}.

It therefore follows that

V n−m+1
1 ∩ V2

n−m+1 = V n−m.

=⇒ (V \ V m
1 ) ∩ (V \ V2

m) = V n−m (V n−m+1 ⊕ V m = V = Fn+1
2 ).

=⇒ V ∩ (V m
1 )c ∩ V ∩ (V2

m)c = V n−m.

=⇒ (V m
1 )c ∩ (V2

m)c = V n−m (V is the whole space ),

=⇒ (V m
1 ∪ V2

m)c = V n−m (De Morgan’s Law).

By complementation, we have V m
1 ∪ V2

m = (V n−m)c.

Hence, V m
1 ∪ V2

m = V m+1 (V is the whole space ).
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Now as for dimensions, we have that

dim(V m
1 ∪ V2

m) = dim(V m
1 ) + dim(V2

m)

− dim(V m
1 ∩ V2

m)

= dim(V m+1).

=⇒ dim(V m
1 ∩ V2

m) = dim(V m
1 ) + dim(V2

m)− dim(V m+1),

=⇒ dim(V m
1 ∩ V2

m) = m+m− (m+ 1) = m− 1,

=⇒ V m
1 ∩ V2

m = V m−1.

It follows that
V m

1 \ {0} ∩ V2
m \ {0} = V m−1 \ {0}.

Again by definition, we have that

〈V m
1 \ {0}〉 ∩ 〈V2

m \ {0}〉 =
〈
V m−1 \ {0}

〉
.

Hence, B(m−1) ∩ B′(m−1)
= B(m−2).

Therefore, [B(m−1),B′(m−1)
] ∈ E(Γ[n,m−1]), and hence the result.

Although the considerations of the tactical configurations of this study does
not include the case n−m = 1, by definition, this case considers the points
of the set V = Fn+1

2 \{0} as blocks. Nevertheless, the following corollary as a
result of the proof of Theorem 4.6 further reveals isomorphisms between the
point intersection graphs of Steiner triple systems from projective geometry
and the block intersection graphs of one dimensional flats of V.

Corollary 4.8. Γ[n,n−m] is isomorphic to the point graph of Steiner triple
systems from projective geometry, if m = 1.

Proof. By Theorem 4.6, m = 1 implies Γ[n,n−1]
∼= Γ[n,0].

By Theorem 4.1, Γ[n,n−1] is a complete graph on 2n+1 − 1 vertices. Hence,

we have that |B(n−1)| = |B(n)| = |B(0)| = 2n+1 − 1.

By definition,

B(0)
= {B(0) : B(0) =

〈
V 1 \ {0}

〉
}.

Hence, B(0)
= {〈v〉 : v ∈ V = Fn+1

2 \ {0}} = {X(v) : v ∈ V }, where
X(v) = {B ∈ B : v ∈ B}.
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By Definition 2.2, the point graph of Steiner triple systems (V,B) from
projective geometry is the graph Γ = (V,E) with

V (Γ) := V ;

E(Γ) := {[u, v] : u, v ∈ B for some B ∈ B}.

By Proposition 2.1, we have that |V (Γ)| = 2(n+1) − 1.

Now, consider the map φ : V (Γ[n,0]) −→ V (Γ) defined as

φ(X(v)) = v.

Clearly there is a 1-1 correspondence between the set B(0)
and the set V of

the points set of Steiner triple systems from projective geometry. Hence, it
is sufficient to show that φ preserves edges.

Let [X(v), X(v′)] ∈ E(Γ[n,0]). It follows that there exists a B = {v, v′, v′′} ∈
X(v)∩X(v′), since we have from the definition of blocks (triples) of Steiner
triple systems as alluded to in Section 2.2, that given any two v, v′ ∈ V, there
exists a B ∈ B such that v and v′ are in exactly one block, {v, v′, v′′} ∈
B, v′′ ∈ B. Hence, by definition of Γ, we have that [v, v′] ∈ E(Γ).

The following result identifies flats inheriting the same combinatorial sym-
metry of the fundamental object from which we construct tactical configu-
rations.

Corollary 4.9. Γ[n,n−m] is isomorphic to the block intersection graph of
Steiner triple systems from projective geometry, if m = 2.

Proof. By Theorem 4.6, m = 2 implies Γ[n,n−2]
∼= Γ[n,1].

By Theorem 4.4, Γ[n,n−2] is a strongly regular graph with parameters(
(2n+1 − 1)(2n − 1)

3
, 6(2n−1 − 1), (2n + 1), 9

)
.

The parameters above are clearly the same parameters of the block inter-
section graph of Steiner triple systems from projective geometry. Hence we
need to show isomorphism between the block intersection graphs Γ of Steiner
triple systems from projective geometry and Γ[n,n−2].

Now, m = 2 implies

B(1)
= {B(1) : B(1) =

〈
V 2 \ {0}

〉
}.
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By definition, V 2 \ {0} = {v, v′, v′′}, v, v′, v′ ∈ V, since |V 2 \ {0}| = 22 − 1.
Hence,

〈
V 2 \ {0}

〉
= B, where B ∈ B, that is, a block of the set of triples of

Steiner triple systems from projective geometry.

Now, consider the map φ : V (Γ[n,1]) −→ V (Γ) defined as

φ(B(1)) = B.

In other words, the map φ is an identity map, and clearly there is a 1-1
correspondence between the vertex sets V (Γ[n,1]) and V (Γ). Therefore, it is
enough to show that φ preserves edges.

Let [B(1)
1 ,B(1)

2 ] ∈ V (Γ). We have that

B(1)
1 ∩ B

(1)
2 = v ∈ V

φ(B(1)
1 ) ∩ φ(B(1)

2 ) = B1 ∩B2 = v.( since B(1) =
〈
V 2 \ {0}

〉
= B)

Hence we have the result.

By similar argument of the proof of Theorem 4.6, we have the following on
Grassmann graphs.

Theorem 4.7. The Grassmann graph Gr(n,m) of the set of all m-dimensional
subspaces of a vector space V is isomorphic to the Grassmann graph Gr(n, n−
m) of the set of all (n−m)-dimensional subspaces of V.

Given any two B(n−m),B′(n−m) ∈ V (Γ[n,n−m]), we hope to further study
i-block intersection graphs of our generalized tactical configurations of this

study. That is, graphs on the set B with edges defined to be [B(n−m),B′(n−m)
] ∈

E(Γ[n,n−m]), whenever B(n−m) ∩ B′(n−m)
= B(n−m−i), 2 ≤ i < (n−m− 3).

We now discuss another important class of graphs having similar param-
eters as the block intersection graphs of Steiner triple systems alluded to in
Section 3.3.

4.4 Graphs from a further configuration

As discussed earlier, we are interested in structures having similar properties
to their parent structures.
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In this section, we consider block intersection graphs of

1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
designs discussed in Chap-

ter 3, examine their properties as well as compare them to the block inter-
section graphs from 2−(2n+1 − 1, 3, 1) designs.

As indicated in Chapter 3, 1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
designs are quasi-symmetric.

Goethals and Seidel [19] proved that there is an inherent strongly regular
graph in any 2-design with just two intersection numbers.

In this section, we echo the result of Goethals and Seidel [19], thereby
showing that a block intersection graph of the tactical configuration on such
a quasi-symmetric design produces a strongly regular graph. Precisely in this
section, we show that block intersection graphs of our further tactical con-

figurations on 1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, 7, (2n−1 − 1)

)
designs are

isomorphic to the block intersection graphs of their Steiner triple systems
from projective geometry and hence, are strongly regular.

We now define the block intersection graphs of

1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
designs.

Definition 4.3. Let
(
B,F

)
be the design of Theorem 3.4.

The block intersection graph Γ = (F , E) of
(
B,F

)
is the graph with

V (Γ) := F ;

E(Γ) := {[FB, FB′ ] : FB ∩ FB′ 6= ∅}, FB ∈ F .

We now explore the properties of block intersection graphs of

1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
designs.

By definition, for every B ∈ B, FB = {B(2) ∈ B : B ∈ B(2)}. In addition,
the vertices of the block intersection graphs from

1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
designs, just like the block

intersection graphs from 2−(2n+1 − 1, 3, 1) designs are defined by the blocks
of their respective designs.
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Hence, by Lemma 3.9 and the proof of Lemma 2.2, we have that

|V (Γ)| = (2n+1 − 1)(2n − 1)

3
.

In order to avoid unnecessary repetitions, it is better to consider isomorphism
between the block intersection graphs of the 2−(2n+1 − 1, 3, 1) and

1−
(

(2n+1 − 1)(2n − 1)(2n−1 − 1)

1× 3× 7
, (2n−1 − 1), 7

)
designs. This we discuss in

the following.

Theorem 4.8. Let V = Fn+1
2 \{0},B = {{v1, v2, v3} : v1 6= v2 6= v3, v1 +v2 +

v3 = 0}. Let V (2) be a 2-flat of V,B(2) = {B ∈ B : B ∩ V (2) = B}, and let B
be a collection of all B(2). For every B ∈ B, let FB = {B(2) ∈ B : B ∈ B(2)},
and let F be the total collection of all FB, B ∈ B such that

(
B,F

)
is a

1-design. Then the block intersection graph of Γ = (B, E) and Γ′ = (F , E ′)
are isomorphic.

Proof. Consider σ : B −→ F defined by

σ(B) = FB.

By the proof of Theorem 4.8, it is clear that σ is a one-to-one correspondence.
Hence, it is enough to show that σ preserves edges.

Let [B,B′] ∈ E(Γ), we need to show that [σ(B), σ(B′)] ∈ E(Γ′).

Now without loss of generality, letB = {v1, v2, v3} andB′ = {v1, v4, v5}, vi 6=
vj, i 6= j.

By Corollary 3.5 (ii), (B,B′) exists in a unique B(2) ∈ B. Therefore, it
follows that B(2) ∈ FB ∩ FB′ and hence we have the result.

As alluded to at the end of Chapter 3, a further investigation on generalized
recursive tactical configurations of our generalized tactical configurations is
required. In what follows, the block intersection graphs of such generalized
recursive tactical configurations are also of importance.
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Chapter 5

Automorphism group and the
primarity of Γ[n,n−m]

In this chapter, we explore the symmetry of the block intersection graphs of
our tactical configurations in order to discuss its full automorphism groups.

It is not surprising that the automorphism group of the underlying vector
spaces of Steiner triple systems from projective geometry plays a major role
as it does in the automorphism group of the block intersection graphs of
Steiner triple systems from projective geometry.

It is well known that the projective general linear group acts on Steiner
triple systems from projective geometry as well as their block intersection
graphs [26].

In what follows, we explore the automorphism groups of Γ[n,n−m] as well
as some actions of the automorphism on the vertex set of Γ[n,n−m]. This au-
tomorphism group together with some properties of the standard product
of graphs discussed in Chapter 2 is then used to show that any block in-
tersection graph Γ having the subgroup structure of the class of groups of
Aut Γ[n,n−m] and satisfying vertex transitivity is a prime graph.

As a result, we further establish that factorizations in both graphs and
groups are mutually interdependent.

We begin with the automorphism group of Γ[n,n−m].
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5.1 Automorphism groups of Γ[n,n−m]

In this section, we use the fact that automorphism preserves the underlying
vector spaces of our configurations to discuss the full automorphism groups
of Γ[n,n−m].

The strategy employed here in determining the automorphism groups of
Γ[n,n−m] is similar to that used in the automorphism groups of Grassmann
graphs. Hence we begin by introducing the automorphism groups of Grass-
mann graphs.

Theorem 5.1. (Chow [11], cf. [[7] Theorem 9.31])

Let Γ(n, e) be a grassmann graph, and suppose that Γ(n, e) is not complete
(1 < e < n− 1). Then

Aut Γ ∼=

{
PGL(n, q) n 6= 2e

PGL(n, q)× C2 n = 2e

In view of Theorems 4.1, 4.6 and Theorem 4.7, we have that Aut Γ ∼=
Sym([n]q), if m ∈ {1, n− 1}, where V is an n-dimensional vector space over
a finite field of order q. Hence,

Aut Γ ∼=


PGL(n, q) n 6= 2e

PGL(n, q)× C2 n = 2e

Sym([n]q) e ∈ {1, n− 1}

We are now fully equipped to discuss the full automorphism group of
Γ[n,n−m].

Theorem 5.2.

Aut Γ[n,n−m]
∼=


PGL(n, 2) n+ 1 6= 2m

PGL(n, 2)× C2 n+ 1 = 2m

Sym([n]2) m = 1.

Proof. First, we show that Aut Γ[n,n−m]
∼= PGL(n, 2), if n + 1 6= 2m. This

will be done by induction on m.
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The base case is m = 2 and by Theorem 4.6, Γ[n,n−2]
∼= Γ[n,1]. In addition,

by Corollary 4.9 Γ[n,n−m] is isomorphic to the block intersection graph of
Steiner triple systems from projective geometry, if m = 2. Hence, the result
holds.

Now, we assume that result holds for m = k and show that the result holds
for m = k + 1.

First, we observe that n−m implies n−m = n− (k + 1).

Hence, by Corollary 4.1 for k > 2, any set of adjacent vertices of Type I
adjacency forms a clique of size (2k+2 − 1). Now, let C ′ be the set of cliques
as a result of Type I adjacency.

By Corollary 4.2, any set of adjacent vertices of Type II adjacency forms
a clique of size (2n−(k−1) − 1). Again, let C ′′ be the set of cliques as a result
of Type II adjacency.

By Corollary 4.3, Γ[n,n−(k+1)] has a maximum clique of size{
2n−k+1 − 1, if (n+ 1) ≥ 2(k + 1);

2k+2 − 1, if (n+ 1) < 2(k + 1).

Hence, it follows that Γ[n,n−(k+1)] has maximal cliques corresponding to the
(n−k)-flats containing a given (n−(k+1))-flat and the (k+1)-flats contained
in a given (n− (k + 1))-flat, respectively.

Now, let C = C ′ ∪ C ′′ and define the ΓC on C such that

V(ΓC) := C ′ ∪ C ′′;
E(ΓC) := {[C1, C2] : |C1 ∩ C2| = 1, C1, C2 ∈ C}.

It follows that ΓC has two connected components Γ1, and Γ2 associated with
the above partitioning of cliques into C ′ and C ′′ and Γ1

∼= Γ[n,n−m+1]. In
addition, Γ1

∼= Γ[n,n−k], and Γ2
∼= Γ[n,k+1].

Now, let G be the subgroup of Aut Γ[n,n−(k+1)] stabilizing Γ1, and Γ2 set-
wise. It follows that G is contained in the automorphism group of Γ[n,n−2],
and G permutes the points of the projective space V = Fn+1

2 \ {0}. By the
Fundamental Theorem of Projective Geometry we have that G ∼= PGL(n, 2)
and hence Aut Γ[n,n−(k+1)]

∼= PGL(n, 2).

Now, we show that Aut Γ[n,n−m]
∼= PGL(n, 2)× C2, if n+ 1 = 2m.

79

http://etd.uwc.ac.za/



Again, let C ′ be the set of cliques as a result of Type I adjacency and let C ′′
be the set of cliques as a result of Type II adjacency and let ΓC be as defined
above.

In view of Corollaries 4.1 and 4.2, we have that

(2m+1 − 1)− (2n−m+2 − 1) = 2m+1(1− 2n−2m+1) = 0, if n+ 1 = 2m.

It therefore follows that given a C ′ ∈ C ′ and a C ′′ ∈ C ′′, |C ′| = |C ′′|, if n+1 =
2m. Hence by similar argument above, ΓC has two connected components Γ1,
and Γ2 associated with the above partitioning of cliques into C ′ and C ′′. In
addition, Γ1

∼= Γ[n,n−m+1], and Γ2
∼= Γ[n,m].

By Theorem 4.6, we have that Γ[n,m]
∼= Γ[n,n−m+1], therefore Γ1

∼= Γ2. Hence
by [16], we have the result.

We now complete the proof by showing that if m = 1,Aut Γ[n,n−m]
∼=

Sym([n]2).

By Theorem 4.1, we have that Γ[n,n−1] is a complete graph on 2n+1 − 1
vertices. Hence, the result follows immediately.

Having determined that the automorphism groups of the graphs of the
tactical configurations of this study inherit the automorphism groups of the
block intersection graphs of Steiner triple systems from projective geometry,
we now turn to discussing an important action of the automorphism group on
the vertex set of Γ[n,n−m]. This property will be used in the next subsection
to finally characterize Γ[n,n−m].

Theorem 5.3. Γ[n,n−m] is distance transitive.

Proof. Let B(n−m),B′(n−m) ∈ V (Γ[n,n−m]).

By Corollary 4.6, B(n−m) and B′(n−m) have distance j if B(n−m)∩B′(n−m) =
B(n−m−j) and by Theorem 4.3, we have that

diam(Γ[n,n−m]) =

{
n−m, if 2m ≤ n;

m, otherwise.

By Theorem 5.2, we have that PGL(n, 2) is a subgroup of Aut Γ[n,n−m].
Hence, it follows that Γ[n,n−m] is distance transitive, since PGL(n, 2) is tran-
sitive on ordered bases.
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Having determined that the automorphism groups of the graphs of the
tactical configurations of this study inherit the automorphism groups of the
block intersection graphs of Steiner triple systems from projective geometry,
it is now imperative to discuss the properties of the underlying graphs having
such subgroup structures.

5.2 Γ[n,n−m] as prime graphs

In this section, we explore Aut Γ[n,n−m] as well as the properties of the stan-
dard products of graphs discussed in Chapter 2 to show that the block in-
tersection graphs of our generalized tactical configurations in Chapter 3 are
prime graphs.

As alluded to, PGL(n, 2) is a simple group ([26], [28]). Again, as discussed
in the introduction of this section, this group is the automorphism group of
the Steiner triple systems from projective geometry. By the results of the
previous section, this group also acts on the block intersection graphs of our
generalized tactical configurations of Chapter 3.

In addition, Γ[n,n−m] is vertex transitive since, PGL(n, 2) preserves the
underlying vector subspaces of V (Γ[n,n−m]).

Having discussed prime factorizations and the symmetry of graphs with
respect to the standard products in Chapter 2, in addition, in view of the
symmetry of Γ[n,n−m] discussed above, we are now better equipped to discuss
the results of this study in a broader view of factorizations in both graphs
and groups. This we summarize in the following.

Theorem 5.4. Let Γ be a connected graph with vertex transitive automor-
phism group, which is simple. Then Γ is prime with respect to the standard
products.

Proof. Suppose to the contrary that Γ = Γ1 ∗ Γ2 ∗ · · · ∗ Γk is a prime factor
decomposition of a graph Γ with respect to a standard product ∗. For each
i ∈ {1, . . . , k}, let Aut Γi be the automorphism group of Γi. Then consider

{gsg−1 : g ∈ Aut Γ, s ∈ Aut Γi} =
〈

(Aut Γi)
Aut Γ

〉
.

By [22],
〈

(Aut Γi)
Aut(Γ)

〉
/ Aut Γ.
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By hypothesis, Aut Γ is simple. Hence, it therefore follows that〈
(Aut Γi)

Aut Γ
〉

= {e,Aut Γ},

where e is the identity in Aut Γ.

The case
〈

(Aut Γi)
Aut Γ

〉
= e is not a possibility since Aut Γi is contained

in
〈

(Aut Γi)
Aut(Γ)

〉
.

Now, we consider the case
〈

(Aut Γi)
Aut Γ

〉
= Aut Γ.

By Theorems 2.8, 2.9, 2.10 and 2.11, Aut Γ is generated by the automor-
phisms of its prime factors and transpositions of isomorphic factors. Con-
sequently, Aut Γ is isomorphic to the automorphism group of the disjoint
union of isomorphic factors Γi, i ∈ {1, . . . , k}.

In view of the fact that Γ is connected vertex-transitive, it therefore follows
that all Γi, i ∈ {1, . . . , k} but one are K1.

The main result of this thesis is in the following terms.

Theorem 5.5. Γ[n,n−m] is prime with respect to the standard products of
graphs.

Proof. We consider each of the standard products in succession.

(a) Cartesian product

By Theorem 2.8, we have that the automorphism group of the Cartesian
product of connected prime graphs is isomorphic to the automorphism
group of the disjoint union of the factors. Hence, in view of the fact
that Aut Γ[n,n−m] is simple and that Γ[n,n−m] is vertex-transitive, the
result therefore holds by Theorem 5.4.

(b) Strong product

By Theorem 2.9 we have that the automorphism group of the strong
product of connected, S-thin prime graphs is isomorphic to the auto-
morphism group of the disjoint union of the factors.

By Lemma 4.7, Γ[n,n−m] is S-thin. Hence, in view of the fact that
Aut Γ[n,n−m] is simple and that Γ[n,n−m] is vertex-transitive, the result
therefore holds by Theorem 5.4.
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(c) Direct product

By Theorem 2.10, we have that if ϕ is an automorphism of a connected
non-bipartite R-thin graph Γ that has a prime factorization Γ = Γ1 ×
Γ2×· · ·×Γk. Then there exists a permutation π of {1, 2, . . . , k}, together
with isomorphisms ϕi : Γπ(i) −→ Γi, such that

ϕ(x1, x2, . . . , xk) =
(
ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))

)
.

It therefore follows that Aut Γ is generated by the automorphisms of the
prime factors and transpositions of isomorphic factors. Consequently,
Aut Γ is isomorphic to the automorphism group of the disjoint union
of the prime factors of Γ.

By Corollary 4.4, Γ[n,n−m] is non-bipartite and by Lemma 4.7, Γ[n,n−m] is
S-thin and R-thin if m > 1. Hence, in view of the fact that Aut Γ[n,n−m]

is simple and that Γ[n,n−m] is vertex-transitive, the result therefore holds
by Theorem 5.4.

(d) Lexicographic product

By Theorem 2.11, we have that if Γ1◦Γ2 is the lexicographic product of
simple nontrivial graphs. Then Aut (Γ1 ◦Γ2) = Aut Γ1 ◦Aut Γ2 if and
only if Γ2 is connected in case RΓ1 is nontrivial and Γ2 is connected in
case SΓ1 is nontrivial.

Clearly, Γ[n,n−m] is nontrivial and again by Lemma 4.7, Γ[n,n−m] is S-
thin and R-thin if m > 1. Hence, in view of the fact that Aut Γ[n,n−m] is
simple and that Γ[n,n−m] is vertex-transitive, the result therefore holds
by Theorem 5.4.

Clearly Γ[n,n−m] is a relation on the block intersection graph of Steiner triple
systems from projective geometry which are well known to have simple and
vertex-transitive automorphism groups [28]. Hence, by the same argument
of Theorem 5.4, we have the following.

Corollary 5.1. Let Γ be the block intersection graph of Steiner triple systems
from projective geometry. Then Γ is a prime with respect to the standard
product of graphs.
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Proof. By Corollary 4.9, we have that Γ ∼= Γ[n,n−m], if m = 2. The result
therefore follows.
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Chapter 6

Summary

In this chapter we give a brief summary of the main point of this study and
suggests avenues of extensions of this work.

We now briefly summarize in the following.

The proof of Theorem 5.4 shows clearly that if the automorphism group of
a vertex-transitive graph is simple, then it cannot be factorized with respect
to the standard products of graphs. This is because automorphisms are
generated by the automorphisms of the factors.

An implication of the above is that if the automorphism group of a graph
is not simple then, the graph may also be factorized. This is because every
connected graph has a unique representation as a product of prime graphs,
up to isomorphism and the order of the factors, and that the automorphism
group of the factors are normal subgroups of the automorphism of the graphs.

Hence, as alluded to in the abstract of this thesis, an immediate implication
of the proof of Theorem 5.4 is that given a graph Γ whose subgroup structure
is G, then factorizations in Γ are mutually interdependent on factorization
in G. This is because automorphisms are generated by the automorphisms of
the factors of Γ, and in addition, associativity allows for the easy extension
of the fundamental graph products to arbitrarily many factors.

In view of the classification theorem for finite simple groups, it therefore
follows that any vertex-transitive graph Γ with a subgroup structure of any
of the finite simple group is prime.

We now suggests ways to improve on this study.
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In Section 3.3, we explore the richness in symmetry and substructures of
2-designs from projective geometry and that leads us to more tactical config-
urations. Precisely, we produce an example of further tactical configurations
and in the next chapter, we compare their block intersection graphs to the
block intersection graphs of 2-(v, 3, 1) designs from projective geometry.

Prior to that, the points of our configurations were considered as triples,
while blocks are the set of triples induced by an (n−m)-flat of V = Fn+1

2 \{0}.
In that section, we extended the previous consideration in the sense that
points of the further tactical configurations were the blocks of the previous
tactical configurations and blocks were defined to be collection of all the
blocks in the previous tactical configurations with a common intersection.

Progressively in this manner, a recursive tactical configuration can be re-
alized and also generalized.

The notion of a recursive tactical configurations described above could lead
to so many questions. For instance, one may ask: (1) Does the process termi-
nate? If it does, at what point does this happen? (2) If it does terminate, one
may also ask how the final tactical configurations and its block intersection
graphs compare or contrast to the original design and its block intersection
graph respectively.

In addition, it will be interesting to see if the block intersection graphs of
the recursive tactical configurations will also produce recursive prime graphs,
since the block intersection graphs of Steiner triple systems from projective
geometry as well as Γ[n,n−m] are prime graphs.

Another interesting further study we also hope to consider is the notion
of i-block intersection graphs of our generalized tactical configurations with
the following definitions.

V (Γ) := B;

E(Γ) := {[B(n−m)
1 ,B(n−m)

2 ] : B(n−m)
1 ∩ B(n−m)

2 = B(n−m−j)},
2 ≤ j < (n−m− 3).

Our take is that this might further reveal some interesting results.
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