
Abstract
The performance of an IDS is significantly improved when the features are more discriminative and representative. This research effort is able to reduce the CICIDS2017 dataset’s feature
dimensions from 81 to 10, while maintaining a high accuracy of 99.6% in multi-class and binary classification. Furthermore, we propose a Multi-Class Combined performance metric CombinedMc
with respect to class distribution to compare various multi-class and binary classification systems through incorporating FAR, DR, Accuracy, and class distribution parameters. In addition, we
developed a uniform distribution based balancing approach to handle the imbalanced distribution of the minority class instances in the CICIDS 2017 network intrusion dataset.

Department of Computer Science and Engineering
University of Bridgeport, Bridgeport, CT

.

Towards Efficient Features Dimensionality Reduction for 
Network Intrusion Detection on Highly Imbalanced Traffic

Features Dimensionality Reduction Framework
The procedure of our proposed framework, as presented in Figure 1, mainly includes Preprocessing, Unity-Based Normalization, Dimensionality reduction, Classification and Evaluation and 
finally, combating imbalanced class distributions using  the uniform distribution based balance approach. 
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Highly Imbalanced CICIDS2017 Dataset
The CICIDS2017 [1] covers various attack scenarios that represent common attack families. The attacks include Brute Force Attack, HeartBleed Attack, Botnet, DoS Attack, Distributed DoS
(DDoS) Attack, Web Attack, and Infiltration Attack. CICIDS2017 was collected based on real traces of benign and malicious activities of the network traffic. The total number of records in the
dataset is 2,830,108. The benign traffic encompasses 2,358,036 records (83.3% of the data), while the malicious records are 471,454 (16.7% of the data). CICIDS2017 is one of the unique datasets
that includes up-to-date 14 types of attacks. Furthermore, the features are exclusive and matchless in comparison with other datasets such as AWID[2,3], and CIDD-001 [4]. For this reason,
CICIDS2017 was selected as the most comprehensive IDS benchmark to test and validate the proposed ideas.

Figure 1. Proposed Framework

Calculate CombinedMc with respect to Class Distribution
Feed Confusion Matrix CM

For i =1 to C
Calculate the total number of FP for Ci as the sum of values in the ith column excluding TP

Calculate the total number of FN for Ci as the sum of values in the ith row excluding TP

Calculate the total number of TN for Ci as the sum of all columns and rows excluding the ith row and column

Calculate the total number of TP for Ci as the diagonal of the ith cell of CM

Calculate the total number of instances for Ci as the sum of the ith row
Calculate the total number of instances in the dataset as the sum of all rows

Calculate Acc , DR . FAR for each class
Ci Calculate the distribution of each Ci using Eq. 1

i ++
Calculate CombinedMC using Eq 2

Reference Classifier name F-measure Feature selection/extraction (Features Count)

[1] MLP 0.948 Payload related features
[6] SVM 0.921 DBN
[7] KNN 0.997 Fisher Scoring (30)
[8] XGBoost for DoS Attacks 0.995 (80)
[9] Deep Learning for Port Scan Attacks Accuracy 97.80 (80)

SVM for Port Scan Attacks Accuracy 69.79 (80)
[10] XGBoost Accuracy 98.93 DDR Features Selections (36)
[11] Deep Multi Layer Perceptron 

(DMLP) for DDoS Attacks
Accuracy 91.00 Recursive feature  elimination with Random Forest

Proposed Framework Random Forest 0.995 Auto-encoder (59)
Proposed Framework Random Forest 0.996 PCA with Original Distribution (10)
Proposed Framework Random Forest 0.988 PCA With UDBB(10)
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Figure 2. 2 D Visualization After Applying UBBD

Figure 3. 2 D Visualization Before Applying UBBD

Proposed CombinedMc Pseudo Code Calculation

Figure 4. Confusion Matrix for ( PC A− RF ) Mc−10   After Applying UDBB Approach

Table 2 Comparison with previous work

Figure 6. Binary Class Classification: Detection Rate in terms of number of 
features using Auto-Encoder

Figure 8 Multi Class Classification: Accuracy in terms of number of features using Auto-Encoder

Figure 5. Binary Class Classification: Detection Rate in terms of number of 
components using PCA

Figure 7. Multi Class Classification: Accuracy in terms of number of components using PCA

Input Training Set: DTrain
Set Distribution to Uniform
C : Number of Classes
FT : Total number of features in DTrain Training Set
Iold : Total number of Instances in DTrain
Calculate the required number of Instances in each class: IResample

Training Set DTrainnew =∅
For each class Ci Do

While i ≠ IResample

For each feature F1,..., FT
Generate new sample using uniform distribution 

Assign Class label
Return DTrainnew

Table 1 UDBB Approach Pseudo Code

Classifier Time to Build the Model (Sec.) Time to Test the Model (Sec.)
Binary-class Classification

LDA 12.16 5.56
QDA 12.84 6.57
RF 752.67 21.52
BN 199.17 11.07

Multi-class Classification
LDA 17.5 2.96
QDA 15.35 3.16
RF 502.81 41.66
BN 175.17 10.07

Table 3 Time to build and test the models

Conclusions and Future work
As exemplified from the obtained results, the PCA approach is able to preserve important information in CICIDS2017, while efficiently reducing the features dimensions in the used dataset, as 
well as presenting a reasonable visualization model of the data. These findings provide insights for extended future research work  including: fault tolerance, model resilience, quality of 
Experience , and Adaption to non stationary
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