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Abstract

Here we show a method of directing the edges of the connectomes, prepared from HARDI

datasets from the human brain. Before the present work, no high-definition directed brain-

graphs were published, because the tractography methods in use are not capable of assign-

ing directions to the neural tracts discovered. Previous work on the functional connectomes

applied low-resolution functional MRI-detected statistical causality for the assignment of

directions of connectomes of typically several dozens of vertices. Our method is based on

the phenomenon of the “Consensus Connectome Dynamics”, described earlier by our

research group. In this contribution, we apply the method to the 423 braingraphs, each with

1015 vertices, computed from the public release of the Human Connectome Project, and we

also made the directed connectomes publicly available at the site http://braingraph.org. We

also show the robustness of our edge directing method in four independently chosen con-

nectome datasets: we have found that 86% of the edges, which were present in all four data-

sets, get the same directions in all datasets; therefore the direction method is robust. While

our new edge-directing method still needs more empirical validation, we think that our pres-

ent contribution opens up new possibilities in the analysis of the high-definition human

connectome.

Introduction

High-angular resolution diffusion imaging (HARDI) datasets are widely used today for the

construction of connectomes or braingraphs. The nodes (or vertices) of these graphs corre-

spond to anatomically identified [1, 2], small (1-1.5 cm2) areas of the gray matter, and two

nodes are connected by an undirected edge if neural fiber tracts are discovered, connecting the

gray matter areas, corresponding to the two nodes [3, 4].

The considerable advantage of the graph approach to the analysis of the human brain is that

the graphs retain the relevant anatomical connection information from the MRI data, but they

do not contain the—mostly irrelevant—data on the exact trajectories of the neural tracts in the

white matter.
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Connectome Project’s MRI data that were applied

in the present work is available at: http://www.

humanconnectome.org/documentation/S500 [5].

The graphs (both undirected and directed) that

were prepared by us from the HCP data can be

downloaded at the site http://braingraph.org/

download-pit-group-connectomes/. The Budapest

Reference Connectome Server [36, 37] is available

at http://connectome.pitgroup.org. On that site, the

reader can independently verify the phenomenon of

the Consensus Connectome Dynamics by (i)

choosing \Show options" (ii) and moving from right
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One of the most frequently used and largest diffusion MRI datasets are the public releases

of the Human Connectome Project (HCP) [5]. Numerous publications are applying HCP data

in different contexts, e.g., [6–12].

Directing the connectome: The problem statement

High-angular resolution diffusion imaging methods cannot assign directions to the fiber

tracts, and, consequently, to the edges of the connectomes mapped. Tractography methods

can discover the trajectories, that is, the geometric curves of the fiber tracts in the white matter,

but—presently—cannot determine the correct one from the two possible directions of any

given fiber tract. Consequently, the connectomes of braingraphs that are prepared from the

diffusion MR imaging data are undirected graphs.
There are enormous differences between the directed and undirected graphs. In undirected

graphs, if we consider some walks, or paths, or signal propagations on the edges, all of these

are allowed in both directions in all the edges. In directed graphs the edges carry unique direc-

tions, and the walks or signal propagations are allowed only in this assigned direction of the

edges. Obviously, the difference is clear for everyone who has driven a car in the jungle of the

one-way streets of a modern city.

Mathematically, there are also very significant differences: many graph-tasks are easy (or

just trivial) for undirected graphs and hard for directed ones [13, 14]. As an easy example, let

us consider an undirected, connected simple graph on n vertices with n − 1 + ℓ edges, and sup-

pose we want to determine the minimum number of edges that needs to be deleted in order to

make the graph cycle-free. Without even looking at the graph, we know that ℓ edges need to be

deleted, since any connected graphs with more than n − 1 edges on n vertices contain a cycle

[13, 14]. However, if we consider directed graphs and we want to get rid of all the directed

cycles with the deletion of the minimum number edges, the problem becomes hard (more

exactly, NP-hard, this is the famous “minimum feedback arc” problem [15]). As another exam-

ple, the conditions for convergence of random walks on undirected graphs are well-under-

stood [16–18], while they have numerous open problems on directed graphs [19].

Individual axons clearly have a well-defined direction of signal propagation from the soma

to the end of the axon. Therefore, the directionality of the cerebral connections is a very rele-

vant field of study.

Directing the connectome: fMRI-based methods

Functional MRI, on the other hand, is capable of mapping the temporal sequences of the activ-

ity of larger brain areas. Therefore, it seems to be possible to assign directions to these func-

tional or effective connections between those larger areas of the gray matter. Several authors

have attempted assigning directions to the edges of the connectomes using temporal sequences

of activity changes, mostly on resting state fMRI or electro-physiology data, by applying a

broad spectrum of statistical causality detection methods and models (e.g., [20–31]). The gen-

eral approach of the articles listed can be described as follows: the temporal sequence of cere-

bral activity changes are translated to causality relations by statistical methods, and these

causality relations are used to direct the connections between brain regions.

Some works criticize the feasibility of directing the functional connectomes through tempo-

ral hemodynamic sequences. The article [32] questions the inference of edge direction based

on temporal precedence in these studies since the hemodynamics varies between brain

regions.

Since both the fMRI data and the non-invasive electro-physiological measurements have

poor spatial resolution, usually the goal of these methods is not directing the edges of the
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to left the \Minimum edge confidence" slider (iii)

and observing the buildup of the edges on the

visualization panel. If graphics problems appear

then it is suggested to use another browser, e.g.,

Chrome. The Consensus Connectome Dynamics is

visualized on a video animation on https://youtu.be/

yxlyudPaVUE for the whole brain and on https://

youtu.be/wBciB2eW6_8 for the frontal lobe only.

The individual braingraphs with directed edges can

be accessed at the site http://braingraph.org/

download-pit-group-connectomes/. Each graph

refers to the original HCP ID in its filename. The

source code of the computer program that

generated the directed connectomes is enclosed as

an on-line supplementary material.
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HARDI-based, high-definition anatomical connectomes, but rather the functional connec-

tomes on several dozens of vertices, corresponding to large areas of the gray matter, where hae-

modynamic activity changes were observed.

By the best of our knowledge, no significant attempts were made to direct the edges of

structural connectomes (i.e., connectomes measured by HARDI) with hundreds of vertices by

these methods. One possible reason is due to the poor resolution of the fMRI: it is impossible

to decide that if a causality is very probable between two cortical areas A and B in the direction

from A to B, then which of the hundreds of the edges, running between A and B should be

directed from A to B: theoretically, even one such connection may trigger the observed haemo-

dynamic activity in B.

Consensus connectomes

It is unusual in graph theory that hundreds of different graphs on the very same set of vertices

are encountered. When we are working on braingraphs constructed from HARDI data, this is

the usual scenario: the cerebral areas of the different human subjects can be corresponded to

the same reference brain map [1, 2], and, consequently, the graph edges in the connectome

can be compared between subjects, since the vertices or nodes are named in each subject

according to the very same anatomical brain map. This process is, in fact, a non-trivial refine-

ment of the assignment of anatomical nomenclature to cerebral areas in printed brain anatomy

atlases that appeared in the last several hundred years (e.g., [33–35]).

Consensus Connectome Dynamics (CCD) is a surprising phenomenon that was observed

after our construction of the Budapest Reference Connectome Server [36–38]. For the descrip-

tion of the CCD phenomenon, we need to clarify some functions of the Budapest Reference

Connectome Server.

The webserver at the address http://connectome.pitgroup.org is capable of finding and visu-

alizing connectome edges that are present in more than a pre-defined number of connectomes.

More exactly, let n denote the number of all connectomes processed by the server (n = 6 in ver-

sion 1.0, n = 96 in version 2.0 and n = 418 or n = 476 or n = 477—depending on other settings—

in version 3.0). For any k: 0� k� n, we say that the frequency of an edge is k if the edge is pres-

ent in exactly k connectomes out of the n ones [39]. Clearly, if we have n connectomes then the

frequency of any edge is between 0 and n: it is 0 if the edge does not appear in any connectome

at all; and it is n if it appears in all the n connectomes. The k-consensus connectome contains all

the edges with a frequency greater than or equal to k: that is, each edge in the k-consensus con-
nectome is present in at least k individual connectomes.

The Budapest Reference Connectome Server is capable of generating k-consensus connec-
tomes in CSV and GraphML formats for further processing and independent visualization,

and on the website, users can also quickly view the resulting consensus connectomes. We note

that subsequent to our work on Budapest Reference Connectome Server in 2015 and 2017

[36–38], the article [40] also covers consensus connectomes with applications in connectome

error correction.

Consensus Connectome Dynamics

After the publication of the article describing the Budapest Reference Connectome Server [36],

a surprising property of the server was recognized [38, 41]: when we generate k-consensus con-

nectomes for k = n, next for k = n − 1, k = n − 2, . . ., and last for k = 1, then, naturally, more and

more edges appear in the graphs (since the inclusion condition is weakened in every step). The

surprising phenomenon is that the new edges do not appear randomly in the graph, but new

edges are mostly connected to the already existing edges, forming a growing, tree-like structure
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as it is shown on the video https://youtu.be/yxlyudPaVUE, [38, 41]. This “dynamical” observa-

tion is quantified on Fig 2 of [38], and it is statically visualized on a very large component-tree

at the address http://pitgroup.org/static/graphmlviewer/index.html?src=connectome_

dynamics_component_tree.graphml (for the detailed—and not entirely obvious—description

of the component-tree we refer to [38]).

In [38] we called this phenomenon “Consensus Connectome Dynamics”, and hypothesized

that the particular order of the appearance of the graph edges describes the order of growth of

the axonal fibers of these connections in the individual brain development.

If the newly formed edges—i.e., fibers of axons—almost always are connected to the already

developed edges—i.e., fibers of axons—then this hypothesis satisfyingly explains the Consen-

sus Connectome Dynamics phenomenon, visualized on Fig 1 or at the video https://youtu.be/

yxlyudPaVUE:

• Connections, represented by the graph edges that are present in most connectomes were

grown first (e.g., edges in the n- or n − 1-consensus connectomes).

• Next, the newer and newer edges were grown to be connected to the vertices of the older

edges of the growing, tree-like structure, forming the k-consensus connectomes, for decreas-

ing k values.

The newer and newer edges have gradually larger deviation, since small differences in the

edge frequencies are added up in the growing structure: Clearly, if an edge e is not present in,

say, 20% of the graphs, then for another edge, say f, which connects to e, will hold that the e, f
edge-pair cannot be present in at least 20% of the graphs, and most probably, the e, f pair will

Fig 1. Four snapshots of the growing-tree-like object, prepared by the Budapest Reference Connectome Server

https://connectome.pitgroup.org. From the upper left panel, clockwise: edges, present in at least 389 graphs; edges

present in at least 322 graphs, in 230 graphs and in at least 122 graphs. (Settings for image generation: 20 k fibers,

minimum edge weight 0, sagittal view).

https://doi.org/10.1371/journal.pone.0215473.g001
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be missing from much more than 20% of all graphs, since f will be missing in some graphs,

containing e. Consequently, the frequencies of the newer edges will be less than the frequencies

of older edges. Therefore, we believe that the visualization at https://youtu.be/yxlyudPaVUE,

describes not only the edges with gradually smaller frequencies, but also the order of growth of

the connections in the human brain.

Results and discussion

In the present work, we are assigning directions to some of the edges of braingraphs, depend-

ing on the appearance of that edge in the CCD.

The edge-directing method was first described in [38]; here we clarify the method, and

make the 423 directed-edge connectomes publicly available at the site http://braingraph.org.

We have two requirements on the edge-directing method, based on Consensus Connec-

tome Dynamics:

• Feasibility: While our direct knowledge is very limited on the axonal development of the

human brain in general and the directions of fiber tracts in the connectome in particular

([42, 43]), we need to build onto the available biological observations in developing our

method;

• Robustness: The directions, assigned to the edges of the connectomes need to be as indepen-

dent as possible from the selected, specific sets of connectomes in the connectome sets in

CCD trials. In other words, the CCD phenomenon needs the data of dozens or hundreds of

connectomes; based on these connectomes and the CCD phenomenon, we assign directions

to some of the edges of the individual connectomes. However, we want these directions

assigned to the edges of the individual braingraphs as independent as possible from the par-
ticular choice of the several dozen or several hundred connectomes included in the CCD

probe.

Here we suggest an (a) Feasible and (b) Robust edge-directing method.

Feasibility

A large part of the axonal connections in the brain of mammals is developed in the embryonic

state or the first several weeks after birth [43]. Microscopic studies of developing rat brains

show that a considerable number of axons of the cortex (from layer V cortical neurons), in the

early brain development, grow in the direction of subcortical regions [42], strengthening our

CCD observation that neurons of the cortex are connected later to the subcortical structures

than the connections develop between those subcortical structures.

Another important observation that forms a base of our method of directing the axonal

fibers is the retrograde signaling of post-synaptic activation that stabilizes the newly formed

synapses, and, consequently, prevents the retraction of the newly formed axon branches: work

by numerous groups (e.g., [44–50]) witness this phenomenon.

Based on these observations, we make the following hypothesis: Neurons that are not con-

nected to any other neuron yet, grow axons to reach other neurons.

(i). If the branch of the axon reaches a neuron that is not connected to other neurons yet, it

retracts, since the post-synaptic activity of the un-networked neuron does not stabilize

the connection (i.e., the synapse).

(ii). If the branch of the axon reaches an already “networked” neuron, that is, a neuron with

connections to other neurons, then the post-synaptic activity of the “networked” neuron

stabilizes the synapse and, consequently, the new connection.
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Since the neuronal-level human braingraph with 80 billion neurons as vertices is unavail-

able today, we re-phrase the hypothesis above for the ROIs that form the 1015 vertices of our

braingraphs, as follows:

ROIs that are not connected to any other ROI yet, grow axonal fibers to reach other ROIs

as observed in the CCD phenomenon.

(iii). If the fiber reaches an ROI that is not connected to other ROIs yet, the fiber retracts,

since the post-synaptic activities of the un-networked neurons do not stabilize the neu-

ronal connections.

(iv). If the fiber reaches an already “networked” ROI, that is, an ROI with connections to

other ROIs, then the post-synaptic activities of the “networked” neurons stabilize the

synapses, and the new connection will survive.

We stress that—instead of the mainly unknown order or temporal sequence of axonal

development on the system level—we consider the phenomenon of the Consensus Connec-

tome Dynamics, and we direct the edges of the connectomes according to the hypotheses (iii)

and (iv) above.

Robustness

The robustness of the edge direction method is built into the edge direction algorithm, as it is

detailed in the “Methods” section.

Methods

The braingraphs in this study were constructed from the data of the Human Connectome

Project [5], using the workflow described in [36]. The undirected braingraphs have 1015 verti-

ces each; the whole set of 423 braingraphs can be downloaded from the site http://braingraph.

org/download-pit-group-connectomes/.

For verifying the robustness of the edge direction method, we first divided the braingraphs

of the 423 subjects into four groups, the first contained 105, the others 106 graphs each. The

graphs of each four groups were used—separately—to reproduce the CCD phenomenon,

and based on the order of the appearance of the edges in the four different CCD probes, we

assigned directions to some of the edges. Had the resulting directed graphs been radically dif-

ferent for the four groups, it would have indicated that our method is not a robust method of

directing the edges of braingraphs.

As we detail below, it turned out that the four directed braingraphs were very similar to

each other. After obtaining these four directed graphs, we used a majority-like approach to

direct the edges of the consensus brain graph for the whole population, and, in a next step, the

edges of the individual braingraphs.

Computing consensus braingraphs

For each group, for i = 1, 2, 3, 4, we defined the consensus braingraph Gi as the multi-union of

the individual connectomes. That is, for each possible graph edge we counted the subjects

whose connectomes contained the specific edge. This number ranges from 0 to Ni, where Ni =

106, is the number of subjects in the given group. We defined the consensus braingraph as a

simple graph containing all edges that were present in at least one of the subjects, where the

edges are labeled (weighted) with the number of individual connectomes containing them.

High-resolution directed human connectomes and the Consensus Connectome Dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0215473 April 16, 2019 6 / 11

http://braingraph.org/download-pit-group-connectomes/
http://braingraph.org/download-pit-group-connectomes/
https://doi.org/10.1371/journal.pone.0215473


Directing the edges with BFS

We defined edge directions on this brain graph Gi as follows. For each k from Ni down to 1, we

defined Gik as the subgraph of Gi containing all edges with frequency at least k. This means all

the edges which were present in at least k subjects within the ith group. Suppose that Gik is

already processed, and we want to process the graph Gi(k−1), which is an augmentation of Gik

with precisely those edges which are present in exactly k − 1 individual graphs. Since Gik is

already processed, our task is now to direct these newly added edges only. To achieve this, we

launch a BFS (breadth-first search) in Gi(k−1), with Gik as the source. This means that, for each

node in Gi(k−1), we calculate the distance of this node from Gik within the graph Gi(k−1). This

distance is at least 0, is precisely 0 for the nodes of Gik, is finite for the nodes connected to Gik

with a path of edges, and is infinite for the nodes of Gi(k−1) not connected to Gik. Nodes with

infinite distance do exist because sometimes isolated edges or new, small graph components

appear in Gi(k−1).

After calculating the node distances, each edge in Gi(k−1) will connect either two nodes of

the same distance or two nodes with a distance differing by exactly 1. If an edge connects u
with v, and the distance of v is exactly 1 less than the distance of u, then we direct that edge

from u to v. If an edge connects two equidistant nodes, then we leave this edge undirected, and

it will not acquire a direction in this consensus brain graph, not even in the subsequent steps.

This way, when we reach frequency k = 1 and have processed Gi1 = Gi, we obtain a partially
directed version of Gi. Some of its edges will become directed, and the remaining will be left

undirected. As we do this for all four of the groups, we obtain four directed brain graphs on

the same set of nodes.

Directed consensus connectome

We unify these directed connectomes into one big directed consensus connectome as follows.

If an edge is directed in the same direction in at least 2 of the 4 consensus graphs, and is undi-

rected or directed in the other direction in at most 1 of the graphs, then the direction of this

edge is defined as the most common value. For example, if an edge is directed forward in 2

graphs, backward in 1 graph, and is absent from the remaining graph, then the edge will

become forward-directed in the result graph. On the other hand, if that edge is directed for-

ward in 2 graphs, backward in 1 graph, and is undirected in the remaining graph, then its

direction is considered ambiguous, and this edge will remain undirected in the result graph.

By running this algorithm, we could direct 48324 of the 71783 edges of the consensus brain

graph for the whole population. This means that we could assign a direction to 67% of all the

edges which were present in at least one of the braingraphs. We think that 67% as a very signif-

icant portion of the edges, since the edges include even those sporadic connections which were

present in only one brain graph and thus cannot be oriented reliably. If we count only those

edges which were present in all 4 consensus connectomes (there were 31873 such edges), then

we see that 26305 of them were directed the same way in all 4 groups. This means that 82% of

these 31873 edges acquired the same orientation in all 4 groups.

This proves the robustness of our method. Additionally, these numbers also show that the

CCD phenomenon is robust, too.

How can we direct the individual braingraphs?

In the previous subsection we have presented a CCD-based method to direct most of the edges

of the consensus connectome in a robust way. The edges of the individual braingraphs can be

directed by applying the directions of the edges of the (partially) directed consensus brain-

graph as follows:
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Let us consider an individual braingraph G and the directed consensus braingraph �G. If an

edge e of G is directed in �G, then let us direct e in the same way in G, too. If edge e of G is undi-

rected in �G, then e will remain to be undirected in G, too.

Supporting information

S1 Table. Table gives the source C# code of the program, which computes the directions of

the connectome edges.

(PDF)
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