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Abstract

We provide an axiomatic characterization of the Logarithmic Least Squares
Method (sometimes called row geometric mean), used for deriving a preference
vector from a pairwise comparison matrix. This procedure is shown to be the only
one satisfying two properties, correctness in the consistent case, which requires the
reproduction of the inducing vector for any consistent matrix, and invariance to a
specific transformation on a triad, that is, the weight vector is not influenced by an
arbitrary multiplication of matrix elements along a 3-cycle by a positive scalar.
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1 Introduction

Pairwise comparisons are a fundamental tool in many decision-analysis methods such as
the Analytic Hierarchy Process (AHP) (Saaty, 1980). However, in real-world applications
the judgements of decision-makers may be inconsistent: for example, alternative A is two
times better than alternative B, alternative B is three times better than alternative C,
but alternative A is not six times better than alternative C. Inconsistency can also be an
inherent feature of the data, for example, on the field of sports (Csató, 2013; Bozóki et al.,
2016; Chao et al., 2018).

Therefore, a lot of methods have been suggested in the literature for deriving prefer-
ence values from pairwise comparison matrices. In such cases, it seems to be fruitful to
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follow an axiomatic approach: the introduction and justification of reasonable properties
may help to narrow the set of appropriate weighting methods and reveal some crucial fea-
tures of them. The most important contribution of similar analyses can be an axiomatic
characterization, when a set of properties uniquely determine a preference vector.

Characterization of different methods is a standard tool in social choice theory, for
instance, in the case of the Shapley value in game theory (see e.g. Shapley (1953);
van den Brink and Pintér (2015)), or for the Hirsch index in scientometrics (see e.g. Woeginger
(2008); Bouyssou and Marchant (2014)). This approach has been applied recently for in-
consistency indices of pairwise comparison matrices (Csató, 2018a,b).

Fichtner (1984), presumably the first work on the axiomatizations of weighting meth-
ods, characterized the Logarithmic Least Squares Method (Rabinowitz, 1976; Crawford and Williams,
1980, 1985; De Graan, 1980) by using four requirements, correctness in the consistent case,
comparison order invariance, smoothness, and power invariance. Fichtner (1986) showed
that substituting power invariance with rank preservation leads to the Eigenvector Method
suggested by Saaty (1980).

From this set of axioms, correctness in the consistent case and comparison order invari-
ance are almost impossible to debate. However, according to Bryson (1995), there exists
a goal-programming method satisfying power invariance and a slightly modified version
of smoothness, which possesses the additional property that the presence of a single
outlier cannot prevent the identification of the correct priority vector. While Fichtner
(1984) introduces smoothness in terms of differentiable functions and continuous derivat-
ives, the interpretation of Bryson (1995) – a small change in the input does not lead to
a large change in the output – seems to be more natural for us. Cook and Kress (1988)
approached the problem by focusing on distance measures in order to get another goal
programming method on an axiomatic basis.

Smoothness and power invariance can be entirely left out from the characterization
of the Logarithmic Least Squares Method. Barzilai et al. (1987) exchange them for a
consistency-like axiom by considering two procedures: (1) some pairwise comparison
matrices are aggregated to one matrix and the solution is computed for this matrix;
(2) the priorities are derived separately for each matrix and combined by the geometric
mean; which are required to result in the same preference vector. We think it is not a
simple condition immediately to adopt. Barzilai (1997) managed to replace this axiom
and comparison order invariance with essentially demanding that each individual weight
is a function of the entries in the corresponding row of the pairwise comparison matrix
only. Joining to Dijkstra (2013), we are also somewhat uncomfortable with this premise.

To summarize, the problem of weight derivation does not seem to be finally settled by
the axiomatic approach. Consequently, it may not be futile to provide another character-
ization of the Logarithmic Least Squares Method, which hopefully highlights some new
aspects of the procedure. This is the main aim of the current paper.

Presenting an axiomatic characterization does not mean that we accept all properties
involved as wholly justified and unquestionable or we reject the axioms proposed by previ-
ous works. To consider an example from a related topic, although most axiomatic analysis
of inconsistency (Brunelli and Fedrizzi, 2011; Brunelli, 2016, 2017; Brunelli and Fedrizzi,
2015, 2018; Cavallo and D’Apuzzo, 2012; Koczkodaj and Szwarc, 2014; Koczkodaj and Szybowski,
2015; Koczkodaj and Urban, 2018) look for well-motivated axioms that should be satisfied
by any reasonable measure, Csató (2018b) does not deal with the appropriate motivation
of his axioms, the issue to be investigated is only how they can narrow the set of incon-
sistency indices.
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This paper strictly follows the latter direction, therefore, we only say that if one agrees
with our axioms, then the geometric mean remains the only choice. The importance of
an axiomatic characterization does not depend on a convincing explanation for the de-
sirability of the properties suggested. For example, Arrow’s impossibility theorem (Arrow,
1950) can also be interpreted as an axiomatization of the dictatorial rule by universality,
Pareto efficiency, and independence of irrelevant alternatives, however, it does not mean
that the dictatorial rule is good.

The study is structured as follows. Section 2 presents some definitions on the field of
pairwise comparison matrices. Two properties of weighting methods are defined in Sec-
tion 3, which will provide the characterization of the Logarithmic Least Squares Method
in Section 4. Section 5 summarizes our findings.

2 Preliminaries

Assume that n alternatives should be measured with respect to a given criterion on the
basis of pairwise comparisons such that ai,j is an assessment of the relative importance of
alternative i with respect to alternative j.

Let R
n
+ and R

n×n
+ denote the set of positive (with all elements greater than zero)

vectors of size n and matrices of size n × n, respectively.

Definition 2.1. Pairwise comparison matrix: Matrix A = [ai,j] ∈ R
n×n
+ is a pairwise

comparison matrix if aj,i = 1/ai,j for all 1 ≤ i, j ≤ n.

Any pairwise comparison matrix is well-defined by its elements above the diagonal
since we discuss only multiplicative pairwise comparison matrices with the reciprocal
property throughout the paper. Let An×n be the set of pairwise comparison matrices of
size n × n.

A pairwise comparison matrix A ∈ An×n is called consistent if ai,k = ai,jaj,k for all
1 ≤ i, j, k ≤ n. Otherwise, it is said to be inconsistent. Any pairwise comparison matrix
is allowed to be inconsistent unless its consistency is explicitly stated.

Definition 2.2. Weight vector : Vector w = [wi] ∈ R
n
+ is a weight vector if

∑n
i=1 wi = 1.

Let Rn be the set of weight vectors of size n.

Definition 2.3. Weighting method : Function f : An×n → Rn is a weighting method.

A weighting method associates a weight vector to any pairwise comparison matrix A

such that fi(A) is the weight of alternative i.
Several weighting methods have been suggested in the literature, see Choo and Wedley

(2004) for an overview. This paper discusses two of them, which are among the most
popular.

Definition 2.4. Eigenvector Method (EM) (Saaty, 1980): The Eigenvector Method is
the function A → wEM(A) such that

AwEM(A) = λmaxwEM(A) and
n
∑

i=1

wEM
i = 1,

where λmax denotes the maximal eigenvalue, also known as principal or Perron eigenvalue,
of matrix A.
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Definition 2.5. Logarithmic Least Squares Method (LLSM) (Crawford and Williams,
1980, 1985; De Graan, 1980): The Logarithmic Least Squares Method is the function
A → wLLSM(A) such that the weight vector wLLSM(A) is the optimal solution of the
problem:

min
w∈Rn

n
∑

i=1

n
∑

j=1

[

log ai,j − log

(

wi

wj

)]2

. (1)

LLSM is sometimes called (row) geometric mean because the solution of (1) can be
computed as

wLLSM
i (A) =

∏n
j=1 a

1/n
i,j

∑n
k=1

∏n
j=1 a

1/n
k,j

. (2)

3 Axioms

In this section, two properties of weighting methods will be discussed.

Axiom 3.1. Correctness (CO): Let A ∈ An×n be a consistent pairwise comparison
matrix. Weighting method f : An×n → Rn is correct if fi(A)/fj(A) = ai,j for all
1 ≤ i, j ≤ n.

CO requires the reproduction of the inducing vector for any consistent pairwise com-
parison matrix. It was introduced by Fichtner (1984) under the name correct result in
the consistent case and was used by Fichtner (1986), Barzilai et al. (1987) and Barzilai
(1997), among others.

Proposition 3.1. The Eigenvector Method and the Logarithmic Least Squares Method
satisfy correctness.

Definition 3.1. α-transformation on a triad: Let A ∈ An×n be a pairwise comparison
matrix and 1 ≤ i, j, k ≤ n be three different alternatives. An α-transformation on the
triad (i, j, k) – which is determined by the three alternatives i, j, and k – provides the
pairwise comparison matrix Â ∈ An×n such that α > 0, âi,j = αai,j (âj,i = aj,i/α),
âj,k = αaj,k (âk,j = ak,j/α), âk,i = αak,i (âi,k = ai,k/α) and âℓ,m = aℓ,m for all other
elements.

The transformation changes three elements of a pairwise comparison matrix along

a 3-cycle. It can reproduce local consistency: the choice α = 3

√

ai,k/(ai,jaj,k) leads to

âi,jâj,k = α2ai,jaj,k = ai,k/α = âi,k.
Naturally, this process modifies all values of the triad, while maybe two of the compar-

isons are accurate and one contains all the inaccuracy. However, if no further information
is available, then our assumption seems to be reasonable.

Axiom 3.2. Invariance to α-transformation on a triad (IT ): Let A, Â ∈ An×n be
any two pairwise comparison matrices such that Â can be obtained from A through
an α-transformation on a triad. Weighting method f : An×n → Rn is invariant to α-
transformation on a triad if f(A) = f(Â).

IT means that the weights of the alternatives are not influenced by α-transformations
on triads. It has been inspired by the axiom independence of circuits in Bouyssou (1992).
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A motivation for invariance to α-transformation on a triad can be the following. Con-
sider a sports competition where player i has defeated player j, player j has defeated
player k, while player k has defeated player i, and suppose that the three wins are equi-
valent. Then the final ranking is not allowed to change if the margins of victories are
modified by the same amount. In particular, the three results can be reversed (j beats
i, k beats j, and i beats k), or all comparisons can become a draw. IT is practically a
generalization of this idea.

Proposition 3.2. The Eigenvector Method violates invariance to α-transformation on a
triad.

Proof. Consider the following pairwise comparison matrices:

A =











1 1 1 8
1 1 1 1
1 1 1 1

1/8 1 1 1











and Â =











1 2 1 4
1/2 1 1 2
1 1 1 1

1/4 1/2 1 1











.

Â can be obtained from A through an α-transformation on the triad (1, 2, 4) by α = 2 as
â1,2 = 2a1,2, â1,4 = a1,4/2, and â2,4 = 2a2,4. The corresponding weight vectors are

wEM(A) ≈
[

0.4269 0.2182 0.2182 0.1367
]⊤

6=

6=
[

0.3941 0.2256 0.2389 0.1413
]⊤

≈ wEM(Â),

which shows the violation of the axiom IT .

Proposition 3.3. The Logarithmic Least Squares Method satisfies invariance to α-transformation
on a triad.

Proof. Take two pairwise comparison matrices A, Â ∈ An×n such that Â is obtained
from A through an α-transformation on a triad, namely, they are identical except for
âi,j = αai,j (âj,i = aj,i/α), âj,k = αaj,k (âk,j = ak,j/α), and âk,i = αak,i (âi,k = ai,k/α).

The product of row elements does not change, so wLLSM(A) = wLLSM(Â) according to
(2).

Corollary 3.1. The counterexample concerning the Eigenvector Method and IT in Pro-
position 3.2 is minimal with respect to the number of alternatives as in the case of n = 3,
EM and LLSM yield the same result (Crawford and Williams, 1985).

4 Characterization of the Logarithmic Least Squares

Method

Theorem 4.1. The Logarithmic Least Squares Method is the unique weighting method
satisfying correctness and invariance to α-transformation on a triad.

Proof. LLSM satisfies both axioms according to Propositions 3.1 and 3.3.
For uniqueness, consider an arbitrary pairwise comparison matrix A ∈ An×n and

a weighting method f : An×n → R
n, which meets correctness and invariance to α-

transformation on a triad. Denote by Pi = n

√

∏n
k=1 ai,k the geometric mean of row elements
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for alternative i. In order to prove that f is equivalent to the Logarithmic Least Squares
Method, it is enough to show that fi(A)/fj(A) = Pi/Pj.

The proof will present that every pairwise comparison matrix can be transformed into
a consistent matrix by a sequence of α-transformations on a triad carried out over an
appropriately chosen set of triads: the triads to be modified always contain the first al-
ternative, while the two others are considered according to the sequence (n − 1, n),(n −

2, n),(n − 2, n − 1),(n − 3, n),(n − 3, n − 1),. . . , (2, n),(2, n − 1),. . . ,(2, 3). Since the Log-
arithmic Least Squares Method satisfies invariance to α-transformation on a triad, each
matrix of the sequence shares the same geometric mean weight vector. The procedure will
stop after (maximally) (n−1)(n−2)/2 steps, which is the number of triads not containing
the first alternative.

Let us introduce the pairwise comparison matrix A(n−1,n) ∈ An×n such that a
(n−1,n)
1,n−1 :=

αn−1,nan−1,n; a
(n−1,n)
1,n := a1,n/αn−1,n; a

(n−1,n)
n−1,n := αn−1,na1,n

1 and ai,j := a
(n−1,n)
i,j for all

other elements, where αn−1,n = Pn−1/ (Pnan−1,n). Since A(n−1,n) is obtained from A

through an α-transformation on a triad, f(A) = f
(

A(n−1,n)
)

according to the assumption

that f satisfies the axiom IT . If n = 3, A(n−1,n) is consistent because a
(2,3)
1,2 = P1/P2,

a
(2,3)
1,3 = P1/P3, and a

(2,3)
2,3 = P2/P3, therefore correctness implies f(A) = wLLSM(A).

Otherwise, analogous α-transformations on a triad can be implemented until we get
A(i,j) ∈ An×n, where 1 < i < j and a

(i,j)
k,ℓ = Pk/Pℓ for all i ≤ k < ℓ. The next step of the

algorithm depends on the difference of i and j.

• If j > i + 1, then introduce the pairwise comparison matrix A(i,j−1) ∈ An×n

such that a
(i,j−1)
1,i := αi,j−1a

(i,j)
1,i ; a

(i,j−1)
1,j := a

(i,j)
1,j /αi,j−1; a

(i,j−1)
i,j−1 := αi,j−1a

(i,j)
i,j−1 and

a
(i,j−1)
k,ℓ := a

(i,j)
k,ℓ for all other elements, where αi,j−1 = Pi/

(

Pj−1a
(i,j)
i,j−1

)

. It can be

checked that a
(i,j−1)
k,ℓ = a

(i,j)
k,ℓ = Pk/Pℓ for all i ≤ k < ℓ, while a

(i,j−1)
i,j−1 = Pi/Pj−1.

• If j = i+1 and i > 2, then define the pairwise comparison matrix A(i−1,n) ∈ An×n

such that a
(i−1,n)
1,i−1 := αi−1,na

(i,n)
1,i−1; a

(i−1,n)
1,n := a

(i,n)
1,n /αi−1,n; a

(i−1,n)
i−1,n := αi−1,na

(i,n)
i−1,n

and a
(i,j−1)
k,ℓ := a

(i,j)
k,ℓ for all other elements, where αi−1,n = Pi−1/

(

Pna
(i,n)
i−1,n

)

. It

can be checked that a
(i−1,n)
k,ℓ = a

(i,n)
k,ℓ = Pk/Pℓ for all i ≤ k < ℓ, while a

(i−1,n)
i−1,n =

Pi−1/Pn.

Finally, A(2,3) ∈ An×n is obtained such that a
(2,3)
k,ℓ = Pk/Pℓ for all 2 ≤ k < ℓ. Furthermore,

a
(2,3)
1,j = a1,j

∏n
m=j+1 αj,m
∏j−1

m=2 αm,j

= a1,j





n
∏

m=j+1

Pj

Pm

1

aj,m









j−1
∏

m=2

Pj

Pm
am,j



 .2

However, am,j = 1/aj,m due to the reciprocity condition and
∏n

m=1 aj,m = P n
j , therefore

a
(2,3)
1,j =

P n−2
j

∏n
m=j+1 Pm

∏j−1
m=2 Pm

1

P n
j

=
1

Pj

1
∏n

m=2 Pm
.

It is clear that P1 = 1/ (
∏n

m=2 Pm) as the product of all elements of A gives one, which
leads to

a
(2,3)
1,j =

P1

Pj

1 For the sake of simplicity, only the elements above the diagonal are indicated.
2 Note that

∏j−1

m=2
αm,j = 1 if j = 2 and

∏n

m=j+1
αm,j = 1 if j = n.
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for all j ≥ 2. In other words, A(2,3) ∈ An×n is a consistent pairwise comparison mat-
rix such that a

(2,3)
i,j = Pi/Pj = wLLSM

i

(

A(2,3)
)

/wLLSM
j

(

A(2,3)
)

for all 1 ≤ i, j ≤ n.

Consequently, f
(

A(2,3)
)

= wLLSM
(

A(2,3)
)

due to correctness. Weighting method f is
invariant to α-transformation on a triad, hence

f
(

A(2,3)
)

= f
(

A(2,4)
)

= · · · = f
(

A(n−1,n)
)

= f (A) .

The Logarithmic Least Squares Method also satisfies IT according to Proposition 3.3,
verifying the claim that f (A) = wLLSM (A).

Example 4.1. As an illustration of the proof of Theorem 4.1, consider the following
pairwise comparison matrix:

A =











1 1 1 16
1 1 1 1
1 1 1 1

1/16 1 1 1











, which leads to wLLSM(A) =
1

9











4
2
2
1











.

Since a3,4 6= wLLSM
3 (A)/wLLSM

4 (A), an α-transformation on the triad (1, 3, 4) should be

carried out by α3,4 =
[

wLLSM
3 (A)/wLLSM

4 (A)
]

/a3,4 = 2, which results in the matrix

A(3,4). After that, another α-transformation on the triad (1, 2, 4) is necessary by α2,4 =
[

wLLSM
3 (A)/wLLSM

4 (A)
]

/a
(3,4)
2,4 = 2 in order to get the matrix A(2,4):

A(3,4) =











1 1 2 8
1 1 1 1

1/2 1 1 2
1/8 1 1/2 1











and A(2,4) =











1 2 2 4
1/2 1 1 2
1/2 1 1 2
1/4 1/2 1/2 1











= A(2,3).

Finally, an α-transformation on the triad (1, 2, 3) should be carried out by α2,3 =
[

wLLSM
2 (A)/wLLSM

3 (A)
]

/a
(3,4)
2,3 =

1, so the pairwise comparison matrix remains unchanged, A(2,3) = A(2,4). It is a con-
sistent matrix, therefore any weighting method satisfying correctness and invariance to
α-transformation on a triad should give wLLSM(A) as the weight vector associated with
the pairwise comparison matrix A.

Proposition 4.1. CO and IT are logically independent axioms.

Proof. It is shown that there exist weighting methods, which satisfy one axiom, but do
not meet the other:

1 CO: the Eigenvector Method (see Propositions 3.1 and 3.2);

2 IT : the flat method such that fi(A) = 1/n for all 1 ≤ i ≤ n.

5 Conclusions

We have proved LLSM to be the unique weighting method among the procedures used
to derive priorities from reciprocal pairwise comparison matrices, which is correct in the
consistent case and invariant to a specific transformation on a triad. The somewhat
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surprising fact is that our algorithm aims only to recover local consistency by focusing
on a given triad without the consideration of other elements of the pairwise comparison
matrix. Hence satisfaction of a local property fully determines a global weight vector.

Naturally, one can debate whether the axiom invariance to α-transformation on a triad
should be accepted, but, at least, it reveals an important aspect of the geometric mean,
contributing to the long list of its favourable theoretical properties (Barzilai et al., 1987;

Barzilai, 1997; Dijkstra, 2013; Čaklović and Kurdija, 2017; Lundy et al., 2017; Csató,
2018c). Furthermore, the violation of this property can be an argument against the Eigen-
vector Method, a procedure having several other disadvantages, for example, the Pareto
inefficiency of the weight vector (Blanquero et al., 2006; Bozóki, 2014; Bozóki and Fülöp,
2018), or the possibility of strong rank reversal in group decision-making (Pérez and Mokotoff,
2016; Csató, 2017).

Some directions for future research are also worth mentioning. First, further axiomatic
analysis and characterizations of weighting methods can help in a better understanding of
them. Second, α-transformation on a triad seems to be related to inconsistency reduction
processes in pairwise comparison matrices (Koczkodaj and Szybowski, 2016; Szybowski,
2018). Third, the Logarithmic Least Squares Methods has been extended to the in-
complete case when certain elements of the pairwise comparison matrix are unknown
(Bozóki et al., 2010). Axiomatization on this more general domain seems to be promising
and within reach, as revealed by Bozóki and Tsyganok (2017), although LLSM sometimes
behaves strangely on this general domain (Csató and Rónyai, 2016).
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Bozóki, S., Fülöp, J., and Rónyai, L. (2010). On optimal completion of incomplete pairwise
comparison matrices. Mathematical and Computer Modelling, 52(1-2):318–333.
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