
RESEARCH ARTICLE

Salmon increase forest bird abundance and

diversity

Marlene A. WagnerID
1,2*, John D. Reynolds1,2

1 Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby,

British Columbia, Canada, 2 Hakai Institute, Heriot Bay, British Columbia, Canada

* mawagner@sfu.ca

Abstract

Resource subsidies across ecosystems can have strong and unforeseen ecological

impacts. Marine-derived nutrients from Pacific salmon (Onchorhycus spp.) can be trans-

ferred to streams and riparian forests through diverse food web pathways, fertilizing forests

and increasing invertebrate abundance, which may in turn affect breeding birds. We quanti-

fied the influence of salmon on the abundance and composition of songbird communities

across a wide range of salmon-spawning biomass on 14 streams along a remote coastal

region of British Columbia, Canada. Point-count data spanning two years were combined

with salmon biomass and 13 environmental covariates in riparian forests to test for corre-

lates with bird abundance, foraging guilds, individual species, and avian diversity. We show

that bird abundance and diversity increase with salmon biomass and that watershed size

and forest composition are less important predictors. This work provides new evidence for

the importance of salmon to terrestrial ecosystems and information that can inform ecosys-

tem-based management.

Introduction

Resource availability and movement are major processes shaping ecosystem structure and

function [1]. Resource subsidies are prevalent across landscapes [2,3], and can have profound

direct and indirect impacts on recipient community structure, influencing primary productiv-

ity, trophic interactions, and predator-prey relationships [1,4–6]. Coastal streams provide bidi-

rectional highways for nutrient transport [7], and support the anadromous and semelparous

life-history of Pacific salmon (Oncorhynchus spp.). Salmon deliver an annual and predictable

flux of nutrient subsidies from marine to terrestrial systems, creating an opportune natural

experiment to examine effects of variation in resource subsidies across ecosystem boundaries.

Pacific salmon acquire 99% of their body mass after leaving freshwater streams to grow and

mature at sea [8]. When they return to spawn in natal streams, they bring a seasonal influx of

marine-derived nutrients that enhance both freshwater and terrestrial productivity by fertiliz-

ing otherwise nutrient-poor watersheds with nitrogen and phosphorous [9–12]. Salmon car-

casses are transferred to adjacent terrestrial habitat by bears, wolves, and other primary

consumers, as well as through flooding and hyporheic flow [13–15].
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After transfer, marine-derived nutrients move through several trophic pathways. First, they

enhance primary production, favoring plant growth and structural complexity [5,16,17] and

they influence the diversity of understory vegetation [12,18]. Birds respond to plant structure

and composition, and discriminate habitat at fine scales associated with foliage density and

geometry [19–21]. Furthermore, herbivorous insects are attracted to foliage with elevated lev-

els of nitrogen [22–24], and both terrestrial and aquatic invertebrates can be more abundant

on salmon streams [10,25,26] (but see [27,28]). As the combination of habitat (vegetation) and

food (invertebrates) are essential resources for birds, salmon may play a role in shaping avian

communities.

Songbird densities have been positively associated with artificial fertilization (N) of lakes

[29]. Previous work also suggests that songbirds achieve higher densities in the presence of

salmon across 15 small streams with and without salmon in Alaska [30], and this was sup-

ported in a comparison of bird densities above and below salmon barriers in two salmon-

bearing and one stream without salmon at our study streams in British Columbia [31]. Addi-

tionally, both density and (Shannon’s) diversity of bird communities increased in estuaries in

British Columbia along with salmon biomass [32,33]. However, no study has explored how

salmon-derived nutrients affect birds in riparian forests across a range of salmon-spawning

magnitudes. Our comparisons involved a wide span of salmon densities, as opposed to com-

parisons where salmon are either presence or absent, and we test for correlations with bird

communities across as opposed to within watersheds [31]. We also standardize elevation and

other factors that may influence bird communities inland by restricting site locations to forests

near the mouths of streams.

Materials and methods

Study system

Our research was conducted under Simon Fraser University Animal Care Protocol #1044B-12,

and approval from Heiltsuk Tribal Council. We conducted our study in Heiltsuk First Nation

territory near Bella Bella, along the Central Coast of British Columbia, Canada (52.1619N,

128.1450W). This region is in the Western Hemlock Coastal Biogeoclimatic Zone, character-

ized by a cool, maritime climate, heavy rainfall (>3 m per year), and forests dominated by

coniferous tree communities of western hemlock (Tsuga heterophylla), and Sitka spruce (Picea
stichensis), western red cedar (Thuja plicata), and Amabilis fir (Abies amabilis). The only

deciduous tree in the region is red alder (Alnus rubra). Understory vegetation consists of stink

currant (Ribes bracteosum), blueberry and huckleberry (Vaccinium spp.), salmonberry (Rubus
spectabilis), salal (Gaultheria shallon), false azalea (Menziesia ferruginea), red elderberry (Sam-
bucus racemosa), and devil’s club (Oploplanax horridus). Further habitat descriptions are in

Mathewson et al. 2003 and Hocking & Reynolds 2011.

Study sites in 14 watersheds that span approximately 60 km of the coast were chosen

because they were adjacent to streams supporting a wide range of salmon (0 to 122,454 fish;

Fig 1). Selective logging occurred along some streams in the mid-twentieth century, however

no streams had been clear-cut and other modern-day anthropogenic disturbance is slight or

nonexistent. All sites were only accessible by boat from the sea.

Breeding birds

We conducted standard 10-minute point-count surveys [34] over two years across the streams

in 14 watersheds, where all birds seen or heard were recorded. Point-count stations were posi-

tioned in the riparian forest on alternate sides of the stream, beginning 50 m inland from the

estuary. Each point count was located 50 m upland from the stream, for a total of 5 point-
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counts on each stream, located 100 m apart. Each station was surveyed 4 times between May

16 and July 23, 2012, and 3 times between May 16 and July 17, 2013. All surveys were com-

pleted between 6:30 and 10:20 am PST. Each stream was visited once in a rotation before con-

tinuing the process over again with starting points reversed on subsequent visits. Point-count

surveys were not conducted in heavy rain or wind (>3; Beaufort Scale), or at stream noise lev-

els rated more than moderate on a standard ordinal scale (0–5; [31]). If conditions prevented

censusing, we returned during the same rotation under better conditions.

Birds detected as fly-overs, non-forest dwelling birds (e.g. seabirds, herons, gulls, etc.), and

birds detected on fewer than two surveys (early spring migrants and other non-breeders) were

excluded from analyses. We also excluded American Dipper (Cinclus mexicanus), an obligate

riverine songbird that will include salmon eggs and fry in their diet [35], because we were

interested in the influence that salmon may have on birds through indirect pathways. We trun-

cated the bird data to include only detections within a 100 m radius due to the small overall

plot size (~10 ha), distance between point-counts, and to ensure that resources within the

riparian zone were available to our sample population. If birds were detected at more than one

count, we removed subsequent detections from analyses. We calculated total bird density as

the relative abundance at each point-count for all bird species combined [36]. We then sepa-

rated the analyses into generalist, insectivore, and frugivore foraging guilds, and we examined

the six most commonly detected species across all study sites for each year. Finally, because

local bird species richness and available energy resources should be positively correlated, we

calculated two diversity indices, the effective number of species [37], and species richness (the

number of species observed at each point count station). The effective number of species rep-

resents the number of equally common species, is the exponential of Shannon’s Diversity, and

Fig 1. Location of 14 study streams along the central coast of British Columbia.

https://doi.org/10.1371/journal.pone.0210031.g001
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has the advantage of scaling linearly with species richness [38–40]. Subsequently, bird response

variables were grouped into three general categories: 1) relative abundance of all birds and for-

aging guilds, 2) relative abundance of individual bird species, and 3) avian diversity measures.

Salmon

Collaboration between the Department of Fisheries and Oceans, the Heiltsuk Integrated

Resource Management Department, and our research group at Simon Fraser University has

resulted in the creation of a large salmon dataset within the region, with salmon counts con-

ducted annually each fall. On each stream, the number of pink (O. gorbuscha) and chum (O.

keta) salmon, both live and dead, were counted by walking streams before, during, and after

the peak spawning period. Other species of salmon were excluded from analyses because they

comprise less than 5% of the salmon populations in these streams and tend to spawn farther

upstream.

We used salmon count data from 2009 to 2011 to quantify a 3-year average salmon biomass

metric (Table 1). On streams where 3 counts had been repeated, the area-under-the-curve

(AUC) method was used to estimate the total number of spawning fish for the year [41]. Oth-

erwise, the peak counts of live + dead were used as totals, which result in very similar popula-

tion estimates to the AUC method [12]. Biomass was estimated using:

Salmon biomass ¼ S ðNi �WiÞ

where N = the number of adult salmon, i = the salmon species; pink or chum, and W =

regional salmon mass estimates (1.2 and 3.5 kg, respectively; [12]). We also calculated two

alternative metrics of salmon density:

Salmon density=m2 ¼ S ðNi �WiÞ=L�W

and

Salmon density=m ¼ S ðNi �WiÞ=L

where L = the spawning length of the stream and W = the mean bankfull width (the maximum

width of a stream channel before flooding) of the stream, as these are common measures of

Table 1. Stream-specific features. Watershed, stream, and salmon metrics across 14 streams the central coast of British Columbia. Salmon biomass was calculated

from 2009–11 mean counts of spawning adults.

Stream Watershed catchment area (km2) Bankfull width (m) Spawn length (m) Salmon biomass (kg)

Beales 6.5 10.9 300 2,544

Bullock 3.3 10.9 622 13,558

Clatse 24.3 22.8 900 48,040

Fancy 9.9 4.8 298 922

Fannie 16.4 12.8 1,500 26,200

Farm Bay 2.3 6.4 0 0

Fell 7.0 10.9 0 0

Goatbushu 4.5 7.5 550 2,193

Hooknose 14.8 16.9 1,800 12,475

Kill 0.5 3.5 453 5,277

Kunsoot 4.9 13.1 1,280 1,242

Neekas 16 17.7 2,100 154,402

Quartcha 29.4 21.7 5,500 14,447

Ripley 15.4 14.7 0 0

https://doi.org/10.1371/journal.pone.0210031.t001
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salmon indices found in the literature. Preliminary analysis using univariate linear models

with each salmon metric indicated that they were highly correlated and that our salmon bio-

mass estimates (rather than density) explained the most variation in our bird data, so we used

this measurement in all subsequent analyses (S1 Table).

Forest habitat

Forest habitat variables were quantified from data collected on 50 m vegetation transects run-

ning perpendicular from the stream to point-count stations. Diameter at breast height (DBH),

and percent cover by species and height class (1.3–15 m, 15–25 m, and>25 m) were recorded

for all trees greater than 2.5 cm DBH in a 6 m belt along each transect. Shrub cover was

recorded as the percentage of cover by species and height class (<0.5 m, 0.5–1.3, and>1.3 m;

including saplings with DBH <2.5 cm) in five 1 m2 quadrats located at 5, 15, 25, 35, 45 m

along the transects. Vegetation sampling methods were adopted from modified protocols

described in Christie and Reimchen (2008) and Field and Reynolds (2011).

The DBH data were used to calculate stand basal area per plot for each dominant conifer

tree species and subjected to a principal components analysis (PCA) to determine the major

axes of change in conifer composition. Mean percent cover estimates from the six height clas-

ses for each transect were used to determine foliage height diversity (FHD; [42]). We also cal-

culated the mean percent cover of red alder, a nitrogen-fixing species and the only deciduous

tree in the region, and the mean percent cover of shrubs per transect (Table 2).

Principal components of conifer composition PC1 and PC2 explained 23.4% and 21.2%,

respectively, of the cumulative variation in forest species across 70 vegetation plots (S2 Table).

PC1 for conifer composition indicates a shift from spruce-dominated to cedar-dominated

riparian areas, with negative loadings for stand basal area of Sitka spruce (-0.65) and Amabilis

fir (-0.38), and high stand basal area of western red cedar (0.64). PC2 represents a shift from

low Amabilis fir (-0.45) to high Western hemlock (0.61) and snags (0.63).

Watershed size

Variation in geomorphology shapes riparian structure within a watershed [43]. Watershed size

can influence cross-boundary nutrient transfer by mediating both predator access to salmon

Table 2. Forest composition features. Mean stand basal area for conifer species, mean percent cover for red alder and shrubs, and foliage height diversity (FHD)

across 14 streams along the central coast of British Columbia. The FHD represents the distribution in amount of vertical canopy within plots.

Stream Amabilis fir Sitka spruce Snags Western red cedar Western hemlock % cover red alder FHD

Beales 10.5 43.4 3.2 0.1 11.1 14.2 1.3

Bullock 9.9 7.2 45.5 0 36.7 43 1.6

Clatse 0 20.2 80.0 0 25.2 44.8 1.3

Fancy 6.3 0.1 21.3 87.4 15.9 0.6 1.7

Fannie 18.9 8.8 23.4 52.8 16.1 14.5 1.4

Farm Bay 14.7 6.2 21.8 59.1 25.3 14 1.7

Fell 4.1 6.2 24.9 83.7 13.8 27 1.7

Goatbushu 5.9 13.2 16.9 16.6 29.2 39.5 1.5

Hooknose 8.1 50.9 56.4 0.2 22.6 5 1.6

Kill 3.2 1.0 13.7 26.1 31.7 17 1.6

Kunsoot 10.2 11.3 27.7 6.9 23.5 0 1.6

Neekas 0.6 16.5 5.4 0 18.4 35 1.5

Quartcha 11.3 53.5 19.1 4.9 13.2 19 1.6

Ripley 3.9 24.4 47.2 58.2 21.5 7.5 1.7

https://doi.org/10.1371/journal.pone.0210031.t002
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and terrestrial inputs [44,45]. Watershed catchment area (km2) was calculated in a Geographi-

cal Information System using iMAPBC ([46], Table 1). To account for stream size and length,

we used field measurements of bankfull width and the mainstream salmon spawning length

[12]. We combined these three variables to compute a PCA for overall watershed size for each

of our study streams. The first principal component axis explained 82% of the overall variation

in catchment area, bankfull width, and length of stream used by salmon, with all variables

loading positively (S2 Table). This was therefore the only metric used in subsequent analyses

to describe watershed characteristics.

Analyses

To test hypotheses about the influence of salmon-spawning biomass on birds, we used hierar-

chical partitioning and Akaike’s Information Criterion adjusted for small sample sizes (AICc)

with mixed-effects models. First, we modeled the individual contribution of each of our five

forest habitat covariates (conifer composition PC1, conifer composition PC2, FHD, red alder

cover, and shrub cover), on each of our bird response variables. The top-ranked forest habitat

variable was then used to build candidate model sets. We used this method to limit insertion

of forest habitat covariates in final candidate model sets [47], as our intent was to test overall

influences of factors that may drive bird distribution and diversity in the watershed, and not

quantify fine-scale habitat selection by various guilds or species.

We created a final candidate suite of seven models for each bird response variable, using

the unique forest habitat covariate retained in our initial model selection process (S3 Table).

We fit models to describe bird communities as a function of salmon biomass, forest habitat,

and watershed size with site and point as random factors in all models to account for the

repeated measures and spatial autocorrelation inherent in our study design [48]. We tested for

multicollinearity among predictor variables. All variance inflation scores were less than two,

and correlation coefficients were below 0.6. Yearly variation was included in all models as a

two-level factor (2012 and 2013). We examined the variance structure of residuals to ensure

assumptions of normality were met. Models were averaged to obtain weighted parameter esti-

mates for highly competitive models (ΔAICc< 2) using the natural method [49]. We stan-

dardized individual coefficients to enable direct comparison of effect sizes across variables

[50]. All analyses were completed in the R statistical program, version 3.2.2 [51], using pack-

ages AICcmodavg [52], Mumln [53], nlme [54], and vegan [55].

Results

We detected 55 species of birds across our point-count surveys over both years, of which 35

were retained for final analyses (S4 Table). The six most commonly detected species were, in

order of decreasing abundance; Pacific-slope Flycatcher (Empidonax difficilus), Pacific Wren

(Troglodytes pacificus), Golden-crowned Kinglet (Regulas satrapa), Townsend’s Warbler (Den-
droica townsendi), Varied Thrush (Ixoreus naevius), and Swainson’s Thrush (Catharus
usulatus).

Streams with higher salmon biomass had a greater relative abundance of all birds detected,

and this was true within each of our foraging guilds of generalists, insectivores, and frugivores

(Figs 2 and 3). We also observed a positive relationship between salmon biomass and effective

number of species and species richness (Fig 3). Each individual species, except for Pacific-

slope Flycatcher and Varied Thrush, showed strong evidence of higher relative abundances as

salmon biomass increased (Fig 4).

Most top-ranked models in our final analysis retained a forest habitat covariate (Table 3).

Abundances for all birds combined, Pacific Wren, Townsend’s Warbler, Golden-crowned

Salmon subsidies and songbirds
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Kinglet, and both diversity measures increased with salmon biomass and decreased conifer

PC1, indicating a preference for stands that are fir- and spruce-dominated (Figs 2–4). General-

ist and frugivore abundances also increased with salmon biomass and with shrub cover (Fig

3). Insectivore and Swainson’s Thrush abundances increased with salmon biomass but

decreased with red alder (Figs 3 and 4; S5 Table).

Overall watershed size characteristics that included width and length of the streams, and

catchment size, explained little of the variation in our bird metrics. However, overall watershed

size was included in two highest-ranking models (insectivores and Pacific-slope Flycatcher;

Figs 3 and 4; Table 3), and occurred across most averaged models (except Pacific Wren, Town-

send’s Warbler). However, confidence intervals for effect sizes overlapped zero, leading to

ambiguity in results.

Discussion

Our study confirms that salmon may provide an important indirect resource subsidy for song-

birds. We controlled for both watershed size and forest habitat while examining the influence

of salmon on avian communities across 14 streams that supported a wide range of variation in

biomass of spawning salmon. Many of the species in this study are migratory, and therefore

they do not have direct exposure to salmon in the fall (S4 Table), but are responding to their

influence in the spring. This provides evidence for a seasonal legacy effect of salmon. Every

bird metric correlated positively with salmon biomass, with the exception of the relative abun-

dance of Pacific-slope Flycatcher (which was not explained well by any model), and the rela-

tionship with salmon was greater than either forest habitat or watershed size. Our study

corroborates with previous work on two of our study streams that found increased abundance

of Pacific Wren, Swainson’s Thrush, and Golden-crowned Kinglet on salmon-bearing reaches

compared to non-salmon bearing reaches above waterfalls [31]. Additionally, our results also

provide strong evidence that inputs of salmon even at low levels on streams appear to elevate

bird populations above those without salmon.

There are likely several pathways that provide birds with the benefits from salmon biomass

[56]. Salmon enhance primary productivity in aquatic ecosystems [57], thus increasing the

density of common invertebrate taxa, at least in the spring [10,26,58,59]. In the spring, emer-

gent aquatic insects can comprise 50–90% of resident bird diet, at a time when other inverte-

brate populations are low [60,61]. Concentrations of both migrant and resident birds correlate

strongly with the timing of emergence [62,63] and emergent population abundance [64].

Many terrestrial invertebrates oviposit directly on salmon carcasses [65]. For example,

Fig 2. Relationships between relative abundance of all birds and A) salmon biomass, B) conifer composition, and

C) watershed size. Salmon biomass was log-transformed and 2012 (blue triangles) and 2013 (green circles) data points

were jittered to prevent over-plotting. Conifer composition and watershed size metrics are based on PCA (see

methods; S2 Table).

https://doi.org/10.1371/journal.pone.0210031.g002
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Fig 3. Standardized coefficients with 95% confidence intervals from the averaged mixed effects model (ΔAICc< 2) for all birds, generalists,

insectivores, frugivores and diversity metrics of effective number of species and richness as a function of salmon, forest habitat, and watershed size.

https://doi.org/10.1371/journal.pone.0210031.g003

Salmon subsidies and songbirds

PLOS ONE | https://doi.org/10.1371/journal.pone.0210031 February 6, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0210031.g003
https://doi.org/10.1371/journal.pone.0210031


Fig 4. Standardized coefficients with 95% confidence intervals from the averaged mixed effects model (ΔAICc< 2) for the 6 most common species

as a function of salmon, forest habitat, and watershed size.

https://doi.org/10.1371/journal.pone.0210031.g004
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Calliphoridae exhibit high productivity when breeding on chum carcasses and contribute to a

significant increase in overall invertebrate numbers in the fall [30,45]. Furthermore, herbivo-

rous insects select vegetation with high levels of nitrogen and may attain higher densities on

vegetation subsidized by salmon [22–24,66]. We also recorded higher numbers of terrestrial

invertebrates at nests in forests along streams with more fish in the breeding season during

field collections (Wagner, unpublished data).

Forest habitat influenced many of our avian response variables. Overall, conifer composi-

tion was the strongest forest habitat influence on abundance for all birds and for Pacific Wren,

Townsend’s Warbler, and Golden-crowned Kinglet. These results indicate a preference for

spruce- and fir-dominated forests and an avoidance of cedar. Tree species composition is

important to insectivores [67,68], and members of the cedar family have secondary chemicals

Table 3. Model selection results (ΔAICc< 2) depicting avian response to stream, salmon, and habitat features on 14 streams along the central coast of British

Columbia. Year was included as a covariate in all models but is not included in the table for clarity.

Avian Response Model k logLik ΔAICc w
All birds Salmon, Conifer PC1 7 -304.6 0 0.31

Salmon, Watershed, Conifer PC1 8 -303.6 0.2 0.28

Salmon, Watershed 7 -305 0.8 0.21

Salmon 6 -306.4 1.3 0.16

Generalists Salmon, Shrub 7 -208.9 0 0.35

Salmon 6 -210.5 1 0.21

Salmon, Shrub, Watershed 8 -208.4 1.3 0.19

Insectivores Salmon, Watershed, Red Alder 8 -290.1 0 0.34

Salmon, Red Alder 7 -291.4 0.3 0.29

Salmon, Watershed 7 -291.8 1.1 0.2

Salmon 6 -293.3 1.8 0.14

Frugivores Salmon, Shrub 7 -201 0 0.35

Salmon 6 -202.7 1.1 0.21

Salmon, Watershed, Shrub 8 -200.6 1.3 0.18

Effective number of species Salmon, Conifer PC1 7 -192.4 0 0.39

Salmon, Watershed, Conifer PC1 8 -191.6 0.6 0.29

Richness Salmon, Conifer PC1 7 -211.4 0 0.36

Salmon, Watershed, Conifer PC1 8 -210.4 0.3 0.32

Pacific Wren Salmon 6 -136.6 0 0.47

Salmon, Conifer PC1 7 -136.1 1.2 0.25

Townsend’s Warbler Salmon 6 -98 0 0.39

Salmon, Conifer PC1 7 -97 0.3 0.34

Golden-crowned Kinglet Salmon 6 -87 0 0.4

Salmon, Conifer PC1 7 -86.4 1 0.25

Salmon, Watershed 7 -86.5 1.3 0.21

Swainson’s Thrush Salmon, Red Alder 7 -74.1 0 0.33

Salmon 6 -75.8 1.1 0.19

Salmon, Watershed, Red Alder 8 -73.6 1.2 0.18

Varied Thrush Salmon 6 -103.6 0 0.24

Salmon, Conifer PC2 7 -102.7 0.3 0.21

Salmon, Watershed 7 -103.1 1.1 0.14

Salmon, Watershed, Conifer PC2 8 -102 1.3 0.12

Watershed 6 -104.4 1.6 0.11

Watershed, Conifer PC2 7 -103.3 1.6 0.11

https://doi.org/10.1371/journal.pone.0210031.t003
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that reduce invertebrate colonization of their bark and branches. Cedars host fewer beetles

compared with both Western hemlock and Amabilis fir, and this in addition to repellant phe-

nolics may reduce the prevalence of bark-gleaning or other foraging birds [69,70]. Surprisingly

red alder, which fixes atmospheric nitrogen and is the only deciduous tree present at study

sites, was a negative predictor for both insectivores and Swainson’s Thrush, which was con-

trary to our expectations, though 95% confidence intervals overlapped zero in both analyses.

Shrub cover was a positive predictor for both generalists and frugivores, and this may reflect

an attraction to berry-producing shrubs such as salmonberry, which are more dense along

streams with more salmon [12].

Food availability is a major driver of songbird productivity [71]. Limitation of food

resources can mediate spatial aggregation, nest success, and alter life history strategies. A pas-

serine that does feed on salmon and eggs when available, the American Dipper, is more likely

to disperse away from breeding territories in the winter in habitats without salmon, and enjoy

higher breeding success with salmon [72]. While they consume salmon fry and eggs, much of

their diet consists of aquatic invertebrates [73,74], suggesting indirect salmon subsidies also

influence habitat use by this species. There is also evidence of salmon-derived nutrients in the

diet of Pacific Wrens in two of the streams that we studied [75]. Further research is needed to

see what additional mechanisms lead to the increased abundance of the birds that do not con-

sume salmon or their eggs. For example, they could have higher nesting success on streams

with more salmon, or they may preferentially aggregate on such streams [76].

Conclusions

Our study shows that salmon biomass has a stronger relationship with bird density and diver-

sity across watersheds than forest composition or watershed size. As salmon impact terrestrial

taxa even in severely degraded habitats [77], and recently restored habitats [74], our results

emphasize the strength and importance of cross-boundary subsidies. The current fishery man-

agement paradigm of maintaining stock levels for next generation recruitment does not con-

sider essential landscape-scale processes that support ecosystem function. Our results also

reflect the importance of considering cross-boundary interactions during the current trend

towards ecosystem-based management [56,78–80]. As salmon runs persist well below historic

levels in many parts of their North American range [81], an ecosystem-based approach to

managing salmon and river ecosystems is necessary to maintain holistic ecosystem function.
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